• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62 
63 #include "qgroup.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
66 
67 static const struct super_operations btrfs_super_ops;
68 static struct file_system_type btrfs_fs_type;
69 
70 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
71 
btrfs_decode_error(int errno)72 const char *btrfs_decode_error(int errno)
73 {
74 	char *errstr = "unknown";
75 
76 	switch (errno) {
77 	case -EIO:
78 		errstr = "IO failure";
79 		break;
80 	case -ENOMEM:
81 		errstr = "Out of memory";
82 		break;
83 	case -EROFS:
84 		errstr = "Readonly filesystem";
85 		break;
86 	case -EEXIST:
87 		errstr = "Object already exists";
88 		break;
89 	case -ENOSPC:
90 		errstr = "No space left";
91 		break;
92 	case -ENOENT:
93 		errstr = "No such entry";
94 		break;
95 	}
96 
97 	return errstr;
98 }
99 
save_error_info(struct btrfs_fs_info * fs_info)100 static void save_error_info(struct btrfs_fs_info *fs_info)
101 {
102 	/*
103 	 * today we only save the error info into ram.  Long term we'll
104 	 * also send it down to the disk
105 	 */
106 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
107 }
108 
109 /* btrfs handle error by forcing the filesystem readonly */
btrfs_handle_error(struct btrfs_fs_info * fs_info)110 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
111 {
112 	struct super_block *sb = fs_info->sb;
113 
114 	if (sb->s_flags & MS_RDONLY)
115 		return;
116 
117 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
118 		sb->s_flags |= MS_RDONLY;
119 		btrfs_info(fs_info, "forced readonly");
120 		/*
121 		 * Note that a running device replace operation is not
122 		 * canceled here although there is no way to update
123 		 * the progress. It would add the risk of a deadlock,
124 		 * therefore the canceling is ommited. The only penalty
125 		 * is that some I/O remains active until the procedure
126 		 * completes. The next time when the filesystem is
127 		 * mounted writeable again, the device replace
128 		 * operation continues.
129 		 */
130 	}
131 }
132 
133 /*
134  * __btrfs_std_error decodes expected errors from the caller and
135  * invokes the approciate error response.
136  */
137 __cold
__btrfs_std_error(struct btrfs_fs_info * fs_info,const char * function,unsigned int line,int errno,const char * fmt,...)138 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
139 		       unsigned int line, int errno, const char *fmt, ...)
140 {
141 	struct super_block *sb = fs_info->sb;
142 #ifdef CONFIG_PRINTK
143 	const char *errstr;
144 #endif
145 
146 	/*
147 	 * Special case: if the error is EROFS, and we're already
148 	 * under MS_RDONLY, then it is safe here.
149 	 */
150 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
151   		return;
152 
153 #ifdef CONFIG_PRINTK
154 	errstr = btrfs_decode_error(errno);
155 	if (fmt) {
156 		struct va_format vaf;
157 		va_list args;
158 
159 		va_start(args, fmt);
160 		vaf.fmt = fmt;
161 		vaf.va = &args;
162 
163 		printk(KERN_CRIT
164 			"BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
165 			sb->s_id, function, line, errno, errstr, &vaf);
166 		va_end(args);
167 	} else {
168 		printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
169 			sb->s_id, function, line, errno, errstr);
170 	}
171 #endif
172 
173 	/* Don't go through full error handling during mount */
174 	save_error_info(fs_info);
175 	if (sb->s_flags & MS_BORN)
176 		btrfs_handle_error(fs_info);
177 }
178 
179 #ifdef CONFIG_PRINTK
180 static const char * const logtypes[] = {
181 	"emergency",
182 	"alert",
183 	"critical",
184 	"error",
185 	"warning",
186 	"notice",
187 	"info",
188 	"debug",
189 };
190 
btrfs_printk(const struct btrfs_fs_info * fs_info,const char * fmt,...)191 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
192 {
193 	struct super_block *sb = fs_info->sb;
194 	char lvl[4];
195 	struct va_format vaf;
196 	va_list args;
197 	const char *type = logtypes[4];
198 	int kern_level;
199 
200 	va_start(args, fmt);
201 
202 	kern_level = printk_get_level(fmt);
203 	if (kern_level) {
204 		size_t size = printk_skip_level(fmt) - fmt;
205 		memcpy(lvl, fmt,  size);
206 		lvl[size] = '\0';
207 		fmt += size;
208 		type = logtypes[kern_level - '0'];
209 	} else
210 		*lvl = '\0';
211 
212 	vaf.fmt = fmt;
213 	vaf.va = &args;
214 
215 	printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
216 
217 	va_end(args);
218 }
219 #endif
220 
221 /*
222  * We only mark the transaction aborted and then set the file system read-only.
223  * This will prevent new transactions from starting or trying to join this
224  * one.
225  *
226  * This means that error recovery at the call site is limited to freeing
227  * any local memory allocations and passing the error code up without
228  * further cleanup. The transaction should complete as it normally would
229  * in the call path but will return -EIO.
230  *
231  * We'll complete the cleanup in btrfs_end_transaction and
232  * btrfs_commit_transaction.
233  */
234 __cold
__btrfs_abort_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * function,unsigned int line,int errno)235 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
236 			       struct btrfs_root *root, const char *function,
237 			       unsigned int line, int errno)
238 {
239 	trans->aborted = errno;
240 	/* Nothing used. The other threads that have joined this
241 	 * transaction may be able to continue. */
242 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
243 		const char *errstr;
244 
245 		errstr = btrfs_decode_error(errno);
246 		btrfs_warn(root->fs_info,
247 		           "%s:%d: Aborting unused transaction(%s).",
248 		           function, line, errstr);
249 		return;
250 	}
251 	ACCESS_ONCE(trans->transaction->aborted) = errno;
252 	/* Wake up anybody who may be waiting on this transaction */
253 	wake_up(&root->fs_info->transaction_wait);
254 	wake_up(&root->fs_info->transaction_blocked_wait);
255 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
256 }
257 /*
258  * __btrfs_panic decodes unexpected, fatal errors from the caller,
259  * issues an alert, and either panics or BUGs, depending on mount options.
260  */
261 __cold
__btrfs_panic(struct btrfs_fs_info * fs_info,const char * function,unsigned int line,int errno,const char * fmt,...)262 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
263 		   unsigned int line, int errno, const char *fmt, ...)
264 {
265 	char *s_id = "<unknown>";
266 	const char *errstr;
267 	struct va_format vaf = { .fmt = fmt };
268 	va_list args;
269 
270 	if (fs_info)
271 		s_id = fs_info->sb->s_id;
272 
273 	va_start(args, fmt);
274 	vaf.va = &args;
275 
276 	errstr = btrfs_decode_error(errno);
277 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
278 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
279 			s_id, function, line, &vaf, errno, errstr);
280 
281 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
282 		   function, line, &vaf, errno, errstr);
283 	va_end(args);
284 	/* Caller calls BUG() */
285 }
286 
btrfs_put_super(struct super_block * sb)287 static void btrfs_put_super(struct super_block *sb)
288 {
289 	close_ctree(btrfs_sb(sb)->tree_root);
290 }
291 
292 enum {
293 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
294 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
295 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
296 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
297 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
298 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
299 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
300 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
301 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
302 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
303 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
304 	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
305 	Opt_datasum, Opt_treelog, Opt_noinode_cache,
306 #ifdef CONFIG_BTRFS_DEBUG
307 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
308 #endif
309 	Opt_err,
310 };
311 
312 static match_table_t tokens = {
313 	{Opt_degraded, "degraded"},
314 	{Opt_subvol, "subvol=%s"},
315 	{Opt_subvolid, "subvolid=%s"},
316 	{Opt_device, "device=%s"},
317 	{Opt_nodatasum, "nodatasum"},
318 	{Opt_datasum, "datasum"},
319 	{Opt_nodatacow, "nodatacow"},
320 	{Opt_datacow, "datacow"},
321 	{Opt_nobarrier, "nobarrier"},
322 	{Opt_barrier, "barrier"},
323 	{Opt_max_inline, "max_inline=%s"},
324 	{Opt_alloc_start, "alloc_start=%s"},
325 	{Opt_thread_pool, "thread_pool=%d"},
326 	{Opt_compress, "compress"},
327 	{Opt_compress_type, "compress=%s"},
328 	{Opt_compress_force, "compress-force"},
329 	{Opt_compress_force_type, "compress-force=%s"},
330 	{Opt_ssd, "ssd"},
331 	{Opt_ssd_spread, "ssd_spread"},
332 	{Opt_nossd, "nossd"},
333 	{Opt_acl, "acl"},
334 	{Opt_noacl, "noacl"},
335 	{Opt_notreelog, "notreelog"},
336 	{Opt_treelog, "treelog"},
337 	{Opt_flushoncommit, "flushoncommit"},
338 	{Opt_noflushoncommit, "noflushoncommit"},
339 	{Opt_ratio, "metadata_ratio=%d"},
340 	{Opt_discard, "discard"},
341 	{Opt_nodiscard, "nodiscard"},
342 	{Opt_space_cache, "space_cache"},
343 	{Opt_clear_cache, "clear_cache"},
344 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
345 	{Opt_enospc_debug, "enospc_debug"},
346 	{Opt_noenospc_debug, "noenospc_debug"},
347 	{Opt_subvolrootid, "subvolrootid=%d"},
348 	{Opt_defrag, "autodefrag"},
349 	{Opt_nodefrag, "noautodefrag"},
350 	{Opt_inode_cache, "inode_cache"},
351 	{Opt_noinode_cache, "noinode_cache"},
352 	{Opt_no_space_cache, "nospace_cache"},
353 	{Opt_recovery, "recovery"},
354 	{Opt_skip_balance, "skip_balance"},
355 	{Opt_check_integrity, "check_int"},
356 	{Opt_check_integrity_including_extent_data, "check_int_data"},
357 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
358 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
359 	{Opt_fatal_errors, "fatal_errors=%s"},
360 	{Opt_commit_interval, "commit=%d"},
361 #ifdef CONFIG_BTRFS_DEBUG
362 	{Opt_fragment_data, "fragment=data"},
363 	{Opt_fragment_metadata, "fragment=metadata"},
364 	{Opt_fragment_all, "fragment=all"},
365 #endif
366 	{Opt_err, NULL},
367 };
368 
369 /*
370  * Regular mount options parser.  Everything that is needed only when
371  * reading in a new superblock is parsed here.
372  * XXX JDM: This needs to be cleaned up for remount.
373  */
btrfs_parse_options(struct btrfs_root * root,char * options)374 int btrfs_parse_options(struct btrfs_root *root, char *options)
375 {
376 	struct btrfs_fs_info *info = root->fs_info;
377 	substring_t args[MAX_OPT_ARGS];
378 	char *p, *num, *orig = NULL;
379 	u64 cache_gen;
380 	int intarg;
381 	int ret = 0;
382 	char *compress_type;
383 	bool compress_force = false;
384 
385 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
386 	if (cache_gen)
387 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
388 
389 	if (!options)
390 		goto out;
391 
392 	/*
393 	 * strsep changes the string, duplicate it because parse_options
394 	 * gets called twice
395 	 */
396 	options = kstrdup(options, GFP_NOFS);
397 	if (!options)
398 		return -ENOMEM;
399 
400 	orig = options;
401 
402 	while ((p = strsep(&options, ",")) != NULL) {
403 		int token;
404 		if (!*p)
405 			continue;
406 
407 		token = match_token(p, tokens, args);
408 		switch (token) {
409 		case Opt_degraded:
410 			btrfs_info(root->fs_info, "allowing degraded mounts");
411 			btrfs_set_opt(info->mount_opt, DEGRADED);
412 			break;
413 		case Opt_subvol:
414 		case Opt_subvolid:
415 		case Opt_subvolrootid:
416 		case Opt_device:
417 			/*
418 			 * These are parsed by btrfs_parse_early_options
419 			 * and can be happily ignored here.
420 			 */
421 			break;
422 		case Opt_nodatasum:
423 			btrfs_set_and_info(root, NODATASUM,
424 					   "setting nodatasum");
425 			break;
426 		case Opt_datasum:
427 			if (btrfs_test_opt(root, NODATASUM)) {
428 				if (btrfs_test_opt(root, NODATACOW))
429 					btrfs_info(root->fs_info, "setting datasum, datacow enabled");
430 				else
431 					btrfs_info(root->fs_info, "setting datasum");
432 			}
433 			btrfs_clear_opt(info->mount_opt, NODATACOW);
434 			btrfs_clear_opt(info->mount_opt, NODATASUM);
435 			break;
436 		case Opt_nodatacow:
437 			if (!btrfs_test_opt(root, NODATACOW)) {
438 				if (!btrfs_test_opt(root, COMPRESS) ||
439 				    !btrfs_test_opt(root, FORCE_COMPRESS)) {
440 					btrfs_info(root->fs_info,
441 						   "setting nodatacow, compression disabled");
442 				} else {
443 					btrfs_info(root->fs_info, "setting nodatacow");
444 				}
445 			}
446 			btrfs_clear_opt(info->mount_opt, COMPRESS);
447 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
448 			btrfs_set_opt(info->mount_opt, NODATACOW);
449 			btrfs_set_opt(info->mount_opt, NODATASUM);
450 			break;
451 		case Opt_datacow:
452 			btrfs_clear_and_info(root, NODATACOW,
453 					     "setting datacow");
454 			break;
455 		case Opt_compress_force:
456 		case Opt_compress_force_type:
457 			compress_force = true;
458 			/* Fallthrough */
459 		case Opt_compress:
460 		case Opt_compress_type:
461 			if (token == Opt_compress ||
462 			    token == Opt_compress_force ||
463 			    strcmp(args[0].from, "zlib") == 0) {
464 				compress_type = "zlib";
465 				info->compress_type = BTRFS_COMPRESS_ZLIB;
466 				btrfs_set_opt(info->mount_opt, COMPRESS);
467 				btrfs_clear_opt(info->mount_opt, NODATACOW);
468 				btrfs_clear_opt(info->mount_opt, NODATASUM);
469 			} else if (strcmp(args[0].from, "lzo") == 0) {
470 				compress_type = "lzo";
471 				info->compress_type = BTRFS_COMPRESS_LZO;
472 				btrfs_set_opt(info->mount_opt, COMPRESS);
473 				btrfs_clear_opt(info->mount_opt, NODATACOW);
474 				btrfs_clear_opt(info->mount_opt, NODATASUM);
475 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
476 			} else if (strncmp(args[0].from, "no", 2) == 0) {
477 				compress_type = "no";
478 				btrfs_clear_opt(info->mount_opt, COMPRESS);
479 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
480 				compress_force = false;
481 			} else {
482 				ret = -EINVAL;
483 				goto out;
484 			}
485 
486 			if (compress_force) {
487 				btrfs_set_and_info(root, FORCE_COMPRESS,
488 						   "force %s compression",
489 						   compress_type);
490 			} else {
491 				if (!btrfs_test_opt(root, COMPRESS))
492 					btrfs_info(root->fs_info,
493 						   "btrfs: use %s compression",
494 						   compress_type);
495 				/*
496 				 * If we remount from compress-force=xxx to
497 				 * compress=xxx, we need clear FORCE_COMPRESS
498 				 * flag, otherwise, there is no way for users
499 				 * to disable forcible compression separately.
500 				 */
501 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
502 			}
503 			break;
504 		case Opt_ssd:
505 			btrfs_set_and_info(root, SSD,
506 					   "use ssd allocation scheme");
507 			break;
508 		case Opt_ssd_spread:
509 			btrfs_set_and_info(root, SSD_SPREAD,
510 					   "use spread ssd allocation scheme");
511 			btrfs_set_opt(info->mount_opt, SSD);
512 			break;
513 		case Opt_nossd:
514 			btrfs_set_and_info(root, NOSSD,
515 					     "not using ssd allocation scheme");
516 			btrfs_clear_opt(info->mount_opt, SSD);
517 			break;
518 		case Opt_barrier:
519 			btrfs_clear_and_info(root, NOBARRIER,
520 					     "turning on barriers");
521 			break;
522 		case Opt_nobarrier:
523 			btrfs_set_and_info(root, NOBARRIER,
524 					   "turning off barriers");
525 			break;
526 		case Opt_thread_pool:
527 			ret = match_int(&args[0], &intarg);
528 			if (ret) {
529 				goto out;
530 			} else if (intarg > 0) {
531 				info->thread_pool_size = intarg;
532 			} else {
533 				ret = -EINVAL;
534 				goto out;
535 			}
536 			break;
537 		case Opt_max_inline:
538 			num = match_strdup(&args[0]);
539 			if (num) {
540 				info->max_inline = memparse(num, NULL);
541 				kfree(num);
542 
543 				if (info->max_inline) {
544 					info->max_inline = min_t(u64,
545 						info->max_inline,
546 						root->sectorsize);
547 				}
548 				btrfs_info(root->fs_info, "max_inline at %llu",
549 					info->max_inline);
550 			} else {
551 				ret = -ENOMEM;
552 				goto out;
553 			}
554 			break;
555 		case Opt_alloc_start:
556 			num = match_strdup(&args[0]);
557 			if (num) {
558 				mutex_lock(&info->chunk_mutex);
559 				info->alloc_start = memparse(num, NULL);
560 				mutex_unlock(&info->chunk_mutex);
561 				kfree(num);
562 				btrfs_info(root->fs_info, "allocations start at %llu",
563 					info->alloc_start);
564 			} else {
565 				ret = -ENOMEM;
566 				goto out;
567 			}
568 			break;
569 		case Opt_acl:
570 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
571 			root->fs_info->sb->s_flags |= MS_POSIXACL;
572 			break;
573 #else
574 			btrfs_err(root->fs_info,
575 				"support for ACL not compiled in!");
576 			ret = -EINVAL;
577 			goto out;
578 #endif
579 		case Opt_noacl:
580 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
581 			break;
582 		case Opt_notreelog:
583 			btrfs_set_and_info(root, NOTREELOG,
584 					   "disabling tree log");
585 			break;
586 		case Opt_treelog:
587 			btrfs_clear_and_info(root, NOTREELOG,
588 					     "enabling tree log");
589 			break;
590 		case Opt_flushoncommit:
591 			btrfs_set_and_info(root, FLUSHONCOMMIT,
592 					   "turning on flush-on-commit");
593 			break;
594 		case Opt_noflushoncommit:
595 			btrfs_clear_and_info(root, FLUSHONCOMMIT,
596 					     "turning off flush-on-commit");
597 			break;
598 		case Opt_ratio:
599 			ret = match_int(&args[0], &intarg);
600 			if (ret) {
601 				goto out;
602 			} else if (intarg >= 0) {
603 				info->metadata_ratio = intarg;
604 				btrfs_info(root->fs_info, "metadata ratio %d",
605 				       info->metadata_ratio);
606 			} else {
607 				ret = -EINVAL;
608 				goto out;
609 			}
610 			break;
611 		case Opt_discard:
612 			btrfs_set_and_info(root, DISCARD,
613 					   "turning on discard");
614 			break;
615 		case Opt_nodiscard:
616 			btrfs_clear_and_info(root, DISCARD,
617 					     "turning off discard");
618 			break;
619 		case Opt_space_cache:
620 			btrfs_set_and_info(root, SPACE_CACHE,
621 					   "enabling disk space caching");
622 			break;
623 		case Opt_rescan_uuid_tree:
624 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
625 			break;
626 		case Opt_no_space_cache:
627 			btrfs_clear_and_info(root, SPACE_CACHE,
628 					     "disabling disk space caching");
629 			break;
630 		case Opt_inode_cache:
631 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
632 					   "enabling inode map caching");
633 			break;
634 		case Opt_noinode_cache:
635 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
636 					     "disabling inode map caching");
637 			break;
638 		case Opt_clear_cache:
639 			btrfs_set_and_info(root, CLEAR_CACHE,
640 					   "force clearing of disk cache");
641 			break;
642 		case Opt_user_subvol_rm_allowed:
643 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
644 			break;
645 		case Opt_enospc_debug:
646 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
647 			break;
648 		case Opt_noenospc_debug:
649 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
650 			break;
651 		case Opt_defrag:
652 			btrfs_set_and_info(root, AUTO_DEFRAG,
653 					   "enabling auto defrag");
654 			break;
655 		case Opt_nodefrag:
656 			btrfs_clear_and_info(root, AUTO_DEFRAG,
657 					     "disabling auto defrag");
658 			break;
659 		case Opt_recovery:
660 			btrfs_info(root->fs_info, "enabling auto recovery");
661 			btrfs_set_opt(info->mount_opt, RECOVERY);
662 			break;
663 		case Opt_skip_balance:
664 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
665 			break;
666 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
667 		case Opt_check_integrity_including_extent_data:
668 			btrfs_info(root->fs_info,
669 				   "enabling check integrity including extent data");
670 			btrfs_set_opt(info->mount_opt,
671 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
672 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
673 			break;
674 		case Opt_check_integrity:
675 			btrfs_info(root->fs_info, "enabling check integrity");
676 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
677 			break;
678 		case Opt_check_integrity_print_mask:
679 			ret = match_int(&args[0], &intarg);
680 			if (ret) {
681 				goto out;
682 			} else if (intarg >= 0) {
683 				info->check_integrity_print_mask = intarg;
684 				btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
685 				       info->check_integrity_print_mask);
686 			} else {
687 				ret = -EINVAL;
688 				goto out;
689 			}
690 			break;
691 #else
692 		case Opt_check_integrity_including_extent_data:
693 		case Opt_check_integrity:
694 		case Opt_check_integrity_print_mask:
695 			btrfs_err(root->fs_info,
696 				"support for check_integrity* not compiled in!");
697 			ret = -EINVAL;
698 			goto out;
699 #endif
700 		case Opt_fatal_errors:
701 			if (strcmp(args[0].from, "panic") == 0)
702 				btrfs_set_opt(info->mount_opt,
703 					      PANIC_ON_FATAL_ERROR);
704 			else if (strcmp(args[0].from, "bug") == 0)
705 				btrfs_clear_opt(info->mount_opt,
706 					      PANIC_ON_FATAL_ERROR);
707 			else {
708 				ret = -EINVAL;
709 				goto out;
710 			}
711 			break;
712 		case Opt_commit_interval:
713 			intarg = 0;
714 			ret = match_int(&args[0], &intarg);
715 			if (ret < 0) {
716 				btrfs_err(root->fs_info, "invalid commit interval");
717 				ret = -EINVAL;
718 				goto out;
719 			}
720 			if (intarg > 0) {
721 				if (intarg > 300) {
722 					btrfs_warn(root->fs_info, "excessive commit interval %d",
723 							intarg);
724 				}
725 				info->commit_interval = intarg;
726 			} else {
727 				btrfs_info(root->fs_info, "using default commit interval %ds",
728 				    BTRFS_DEFAULT_COMMIT_INTERVAL);
729 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
730 			}
731 			break;
732 #ifdef CONFIG_BTRFS_DEBUG
733 		case Opt_fragment_all:
734 			btrfs_info(root->fs_info, "fragmenting all space");
735 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
736 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
737 			break;
738 		case Opt_fragment_metadata:
739 			btrfs_info(root->fs_info, "fragmenting metadata");
740 			btrfs_set_opt(info->mount_opt,
741 				      FRAGMENT_METADATA);
742 			break;
743 		case Opt_fragment_data:
744 			btrfs_info(root->fs_info, "fragmenting data");
745 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
746 			break;
747 #endif
748 		case Opt_err:
749 			btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
750 			ret = -EINVAL;
751 			goto out;
752 		default:
753 			break;
754 		}
755 	}
756 out:
757 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
758 		btrfs_info(root->fs_info, "disk space caching is enabled");
759 	kfree(orig);
760 	return ret;
761 }
762 
763 /*
764  * Parse mount options that are required early in the mount process.
765  *
766  * All other options will be parsed on much later in the mount process and
767  * only when we need to allocate a new super block.
768  */
btrfs_parse_early_options(const char * options,fmode_t flags,void * holder,char ** subvol_name,u64 * subvol_objectid,struct btrfs_fs_devices ** fs_devices)769 static int btrfs_parse_early_options(const char *options, fmode_t flags,
770 		void *holder, char **subvol_name, u64 *subvol_objectid,
771 		struct btrfs_fs_devices **fs_devices)
772 {
773 	substring_t args[MAX_OPT_ARGS];
774 	char *device_name, *opts, *orig, *p;
775 	char *num = NULL;
776 	int error = 0;
777 
778 	if (!options)
779 		return 0;
780 
781 	/*
782 	 * strsep changes the string, duplicate it because parse_options
783 	 * gets called twice
784 	 */
785 	opts = kstrdup(options, GFP_KERNEL);
786 	if (!opts)
787 		return -ENOMEM;
788 	orig = opts;
789 
790 	while ((p = strsep(&opts, ",")) != NULL) {
791 		int token;
792 		if (!*p)
793 			continue;
794 
795 		token = match_token(p, tokens, args);
796 		switch (token) {
797 		case Opt_subvol:
798 			kfree(*subvol_name);
799 			*subvol_name = match_strdup(&args[0]);
800 			if (!*subvol_name) {
801 				error = -ENOMEM;
802 				goto out;
803 			}
804 			break;
805 		case Opt_subvolid:
806 			num = match_strdup(&args[0]);
807 			if (num) {
808 				*subvol_objectid = memparse(num, NULL);
809 				kfree(num);
810 				/* we want the original fs_tree */
811 				if (!*subvol_objectid)
812 					*subvol_objectid =
813 						BTRFS_FS_TREE_OBJECTID;
814 			} else {
815 				error = -EINVAL;
816 				goto out;
817 			}
818 			break;
819 		case Opt_subvolrootid:
820 			printk(KERN_WARNING
821 				"BTRFS: 'subvolrootid' mount option is deprecated and has "
822 				"no effect\n");
823 			break;
824 		case Opt_device:
825 			device_name = match_strdup(&args[0]);
826 			if (!device_name) {
827 				error = -ENOMEM;
828 				goto out;
829 			}
830 			error = btrfs_scan_one_device(device_name,
831 					flags, holder, fs_devices);
832 			kfree(device_name);
833 			if (error)
834 				goto out;
835 			break;
836 		default:
837 			break;
838 		}
839 	}
840 
841 out:
842 	kfree(orig);
843 	return error;
844 }
845 
btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info * fs_info,u64 subvol_objectid)846 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
847 					  u64 subvol_objectid)
848 {
849 	struct btrfs_root *root = fs_info->tree_root;
850 	struct btrfs_root *fs_root;
851 	struct btrfs_root_ref *root_ref;
852 	struct btrfs_inode_ref *inode_ref;
853 	struct btrfs_key key;
854 	struct btrfs_path *path = NULL;
855 	char *name = NULL, *ptr;
856 	u64 dirid;
857 	int len;
858 	int ret;
859 
860 	path = btrfs_alloc_path();
861 	if (!path) {
862 		ret = -ENOMEM;
863 		goto err;
864 	}
865 	path->leave_spinning = 1;
866 
867 	name = kmalloc(PATH_MAX, GFP_NOFS);
868 	if (!name) {
869 		ret = -ENOMEM;
870 		goto err;
871 	}
872 	ptr = name + PATH_MAX - 1;
873 	ptr[0] = '\0';
874 
875 	/*
876 	 * Walk up the subvolume trees in the tree of tree roots by root
877 	 * backrefs until we hit the top-level subvolume.
878 	 */
879 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
880 		key.objectid = subvol_objectid;
881 		key.type = BTRFS_ROOT_BACKREF_KEY;
882 		key.offset = (u64)-1;
883 
884 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
885 		if (ret < 0) {
886 			goto err;
887 		} else if (ret > 0) {
888 			ret = btrfs_previous_item(root, path, subvol_objectid,
889 						  BTRFS_ROOT_BACKREF_KEY);
890 			if (ret < 0) {
891 				goto err;
892 			} else if (ret > 0) {
893 				ret = -ENOENT;
894 				goto err;
895 			}
896 		}
897 
898 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
899 		subvol_objectid = key.offset;
900 
901 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
902 					  struct btrfs_root_ref);
903 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
904 		ptr -= len + 1;
905 		if (ptr < name) {
906 			ret = -ENAMETOOLONG;
907 			goto err;
908 		}
909 		read_extent_buffer(path->nodes[0], ptr + 1,
910 				   (unsigned long)(root_ref + 1), len);
911 		ptr[0] = '/';
912 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
913 		btrfs_release_path(path);
914 
915 		key.objectid = subvol_objectid;
916 		key.type = BTRFS_ROOT_ITEM_KEY;
917 		key.offset = (u64)-1;
918 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
919 		if (IS_ERR(fs_root)) {
920 			ret = PTR_ERR(fs_root);
921 			goto err;
922 		}
923 
924 		/*
925 		 * Walk up the filesystem tree by inode refs until we hit the
926 		 * root directory.
927 		 */
928 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
929 			key.objectid = dirid;
930 			key.type = BTRFS_INODE_REF_KEY;
931 			key.offset = (u64)-1;
932 
933 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
934 			if (ret < 0) {
935 				goto err;
936 			} else if (ret > 0) {
937 				ret = btrfs_previous_item(fs_root, path, dirid,
938 							  BTRFS_INODE_REF_KEY);
939 				if (ret < 0) {
940 					goto err;
941 				} else if (ret > 0) {
942 					ret = -ENOENT;
943 					goto err;
944 				}
945 			}
946 
947 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
948 			dirid = key.offset;
949 
950 			inode_ref = btrfs_item_ptr(path->nodes[0],
951 						   path->slots[0],
952 						   struct btrfs_inode_ref);
953 			len = btrfs_inode_ref_name_len(path->nodes[0],
954 						       inode_ref);
955 			ptr -= len + 1;
956 			if (ptr < name) {
957 				ret = -ENAMETOOLONG;
958 				goto err;
959 			}
960 			read_extent_buffer(path->nodes[0], ptr + 1,
961 					   (unsigned long)(inode_ref + 1), len);
962 			ptr[0] = '/';
963 			btrfs_release_path(path);
964 		}
965 	}
966 
967 	btrfs_free_path(path);
968 	if (ptr == name + PATH_MAX - 1) {
969 		name[0] = '/';
970 		name[1] = '\0';
971 	} else {
972 		memmove(name, ptr, name + PATH_MAX - ptr);
973 	}
974 	return name;
975 
976 err:
977 	btrfs_free_path(path);
978 	kfree(name);
979 	return ERR_PTR(ret);
980 }
981 
get_default_subvol_objectid(struct btrfs_fs_info * fs_info,u64 * objectid)982 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
983 {
984 	struct btrfs_root *root = fs_info->tree_root;
985 	struct btrfs_dir_item *di;
986 	struct btrfs_path *path;
987 	struct btrfs_key location;
988 	u64 dir_id;
989 
990 	path = btrfs_alloc_path();
991 	if (!path)
992 		return -ENOMEM;
993 	path->leave_spinning = 1;
994 
995 	/*
996 	 * Find the "default" dir item which points to the root item that we
997 	 * will mount by default if we haven't been given a specific subvolume
998 	 * to mount.
999 	 */
1000 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1001 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1002 	if (IS_ERR(di)) {
1003 		btrfs_free_path(path);
1004 		return PTR_ERR(di);
1005 	}
1006 	if (!di) {
1007 		/*
1008 		 * Ok the default dir item isn't there.  This is weird since
1009 		 * it's always been there, but don't freak out, just try and
1010 		 * mount the top-level subvolume.
1011 		 */
1012 		btrfs_free_path(path);
1013 		*objectid = BTRFS_FS_TREE_OBJECTID;
1014 		return 0;
1015 	}
1016 
1017 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1018 	btrfs_free_path(path);
1019 	*objectid = location.objectid;
1020 	return 0;
1021 }
1022 
btrfs_fill_super(struct super_block * sb,struct btrfs_fs_devices * fs_devices,void * data,int silent)1023 static int btrfs_fill_super(struct super_block *sb,
1024 			    struct btrfs_fs_devices *fs_devices,
1025 			    void *data, int silent)
1026 {
1027 	struct inode *inode;
1028 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1029 	struct btrfs_key key;
1030 	int err;
1031 
1032 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1033 	sb->s_magic = BTRFS_SUPER_MAGIC;
1034 	sb->s_op = &btrfs_super_ops;
1035 	sb->s_d_op = &btrfs_dentry_operations;
1036 	sb->s_export_op = &btrfs_export_ops;
1037 	sb->s_xattr = btrfs_xattr_handlers;
1038 	sb->s_time_gran = 1;
1039 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1040 	sb->s_flags |= MS_POSIXACL;
1041 #endif
1042 	sb->s_flags |= MS_I_VERSION;
1043 	sb->s_iflags |= SB_I_CGROUPWB;
1044 	err = open_ctree(sb, fs_devices, (char *)data);
1045 	if (err) {
1046 		printk(KERN_ERR "BTRFS: open_ctree failed\n");
1047 		return err;
1048 	}
1049 
1050 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1051 	key.type = BTRFS_INODE_ITEM_KEY;
1052 	key.offset = 0;
1053 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1054 	if (IS_ERR(inode)) {
1055 		err = PTR_ERR(inode);
1056 		goto fail_close;
1057 	}
1058 
1059 	sb->s_root = d_make_root(inode);
1060 	if (!sb->s_root) {
1061 		err = -ENOMEM;
1062 		goto fail_close;
1063 	}
1064 
1065 	save_mount_options(sb, data);
1066 	cleancache_init_fs(sb);
1067 	sb->s_flags |= MS_ACTIVE;
1068 	return 0;
1069 
1070 fail_close:
1071 	close_ctree(fs_info->tree_root);
1072 	return err;
1073 }
1074 
btrfs_sync_fs(struct super_block * sb,int wait)1075 int btrfs_sync_fs(struct super_block *sb, int wait)
1076 {
1077 	struct btrfs_trans_handle *trans;
1078 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1079 	struct btrfs_root *root = fs_info->tree_root;
1080 
1081 	trace_btrfs_sync_fs(wait);
1082 
1083 	if (!wait) {
1084 		filemap_flush(fs_info->btree_inode->i_mapping);
1085 		return 0;
1086 	}
1087 
1088 	btrfs_wait_ordered_roots(fs_info, -1);
1089 
1090 	trans = btrfs_attach_transaction_barrier(root);
1091 	if (IS_ERR(trans)) {
1092 		/* no transaction, don't bother */
1093 		if (PTR_ERR(trans) == -ENOENT) {
1094 			/*
1095 			 * Exit unless we have some pending changes
1096 			 * that need to go through commit
1097 			 */
1098 			if (fs_info->pending_changes == 0)
1099 				return 0;
1100 			/*
1101 			 * A non-blocking test if the fs is frozen. We must not
1102 			 * start a new transaction here otherwise a deadlock
1103 			 * happens. The pending operations are delayed to the
1104 			 * next commit after thawing.
1105 			 */
1106 			if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1107 				__sb_end_write(sb, SB_FREEZE_WRITE);
1108 			else
1109 				return 0;
1110 			trans = btrfs_start_transaction(root, 0);
1111 		}
1112 		if (IS_ERR(trans))
1113 			return PTR_ERR(trans);
1114 	}
1115 	return btrfs_commit_transaction(trans, root);
1116 }
1117 
btrfs_show_options(struct seq_file * seq,struct dentry * dentry)1118 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1119 {
1120 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1121 	struct btrfs_root *root = info->tree_root;
1122 	char *compress_type;
1123 	const char *subvol_name;
1124 
1125 	if (btrfs_test_opt(root, DEGRADED))
1126 		seq_puts(seq, ",degraded");
1127 	if (btrfs_test_opt(root, NODATASUM))
1128 		seq_puts(seq, ",nodatasum");
1129 	if (btrfs_test_opt(root, NODATACOW))
1130 		seq_puts(seq, ",nodatacow");
1131 	if (btrfs_test_opt(root, NOBARRIER))
1132 		seq_puts(seq, ",nobarrier");
1133 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1134 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1135 	if (info->alloc_start != 0)
1136 		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1137 	if (info->thread_pool_size !=  min_t(unsigned long,
1138 					     num_online_cpus() + 2, 8))
1139 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1140 	if (btrfs_test_opt(root, COMPRESS)) {
1141 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1142 			compress_type = "zlib";
1143 		else
1144 			compress_type = "lzo";
1145 		if (btrfs_test_opt(root, FORCE_COMPRESS))
1146 			seq_printf(seq, ",compress-force=%s", compress_type);
1147 		else
1148 			seq_printf(seq, ",compress=%s", compress_type);
1149 	}
1150 	if (btrfs_test_opt(root, NOSSD))
1151 		seq_puts(seq, ",nossd");
1152 	if (btrfs_test_opt(root, SSD_SPREAD))
1153 		seq_puts(seq, ",ssd_spread");
1154 	else if (btrfs_test_opt(root, SSD))
1155 		seq_puts(seq, ",ssd");
1156 	if (btrfs_test_opt(root, NOTREELOG))
1157 		seq_puts(seq, ",notreelog");
1158 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
1159 		seq_puts(seq, ",flushoncommit");
1160 	if (btrfs_test_opt(root, DISCARD))
1161 		seq_puts(seq, ",discard");
1162 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1163 		seq_puts(seq, ",noacl");
1164 	if (btrfs_test_opt(root, SPACE_CACHE))
1165 		seq_puts(seq, ",space_cache");
1166 	else
1167 		seq_puts(seq, ",nospace_cache");
1168 	if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1169 		seq_puts(seq, ",rescan_uuid_tree");
1170 	if (btrfs_test_opt(root, CLEAR_CACHE))
1171 		seq_puts(seq, ",clear_cache");
1172 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1173 		seq_puts(seq, ",user_subvol_rm_allowed");
1174 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
1175 		seq_puts(seq, ",enospc_debug");
1176 	if (btrfs_test_opt(root, AUTO_DEFRAG))
1177 		seq_puts(seq, ",autodefrag");
1178 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
1179 		seq_puts(seq, ",inode_cache");
1180 	if (btrfs_test_opt(root, SKIP_BALANCE))
1181 		seq_puts(seq, ",skip_balance");
1182 	if (btrfs_test_opt(root, RECOVERY))
1183 		seq_puts(seq, ",recovery");
1184 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1185 	if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1186 		seq_puts(seq, ",check_int_data");
1187 	else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1188 		seq_puts(seq, ",check_int");
1189 	if (info->check_integrity_print_mask)
1190 		seq_printf(seq, ",check_int_print_mask=%d",
1191 				info->check_integrity_print_mask);
1192 #endif
1193 	if (info->metadata_ratio)
1194 		seq_printf(seq, ",metadata_ratio=%d",
1195 				info->metadata_ratio);
1196 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1197 		seq_puts(seq, ",fatal_errors=panic");
1198 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1199 		seq_printf(seq, ",commit=%d", info->commit_interval);
1200 #ifdef CONFIG_BTRFS_DEBUG
1201 	if (btrfs_test_opt(root, FRAGMENT_DATA))
1202 		seq_puts(seq, ",fragment=data");
1203 	if (btrfs_test_opt(root, FRAGMENT_METADATA))
1204 		seq_puts(seq, ",fragment=metadata");
1205 #endif
1206 	seq_printf(seq, ",subvolid=%llu",
1207 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1208 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1209 			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1210 	if (!IS_ERR(subvol_name)) {
1211 		seq_puts(seq, ",subvol=");
1212 		seq_escape(seq, subvol_name, " \t\n\\");
1213 		kfree(subvol_name);
1214 	}
1215 	return 0;
1216 }
1217 
btrfs_test_super(struct super_block * s,void * data)1218 static int btrfs_test_super(struct super_block *s, void *data)
1219 {
1220 	struct btrfs_fs_info *p = data;
1221 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1222 
1223 	return fs_info->fs_devices == p->fs_devices;
1224 }
1225 
btrfs_set_super(struct super_block * s,void * data)1226 static int btrfs_set_super(struct super_block *s, void *data)
1227 {
1228 	int err = set_anon_super(s, data);
1229 	if (!err)
1230 		s->s_fs_info = data;
1231 	return err;
1232 }
1233 
1234 /*
1235  * subvolumes are identified by ino 256
1236  */
is_subvolume_inode(struct inode * inode)1237 static inline int is_subvolume_inode(struct inode *inode)
1238 {
1239 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1240 		return 1;
1241 	return 0;
1242 }
1243 
1244 /*
1245  * This will add subvolid=0 to the argument string while removing any subvol=
1246  * and subvolid= arguments to make sure we get the top-level root for path
1247  * walking to the subvol we want.
1248  */
setup_root_args(char * args)1249 static char *setup_root_args(char *args)
1250 {
1251 	char *buf, *dst, *sep;
1252 
1253 	if (!args)
1254 		return kstrdup("subvolid=0", GFP_NOFS);
1255 
1256 	/* The worst case is that we add ",subvolid=0" to the end. */
1257 	buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS);
1258 	if (!buf)
1259 		return NULL;
1260 
1261 	while (1) {
1262 		sep = strchrnul(args, ',');
1263 		if (!strstarts(args, "subvol=") &&
1264 		    !strstarts(args, "subvolid=")) {
1265 			memcpy(dst, args, sep - args);
1266 			dst += sep - args;
1267 			*dst++ = ',';
1268 		}
1269 		if (*sep)
1270 			args = sep + 1;
1271 		else
1272 			break;
1273 	}
1274 	strcpy(dst, "subvolid=0");
1275 
1276 	return buf;
1277 }
1278 
mount_subvol(const char * subvol_name,u64 subvol_objectid,int flags,const char * device_name,char * data)1279 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1280 				   int flags, const char *device_name,
1281 				   char *data)
1282 {
1283 	struct dentry *root;
1284 	struct vfsmount *mnt = NULL;
1285 	char *newargs;
1286 	int ret;
1287 
1288 	newargs = setup_root_args(data);
1289 	if (!newargs) {
1290 		root = ERR_PTR(-ENOMEM);
1291 		goto out;
1292 	}
1293 
1294 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
1295 	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
1296 		if (flags & MS_RDONLY) {
1297 			mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY,
1298 					     device_name, newargs);
1299 		} else {
1300 			mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY,
1301 					     device_name, newargs);
1302 			if (IS_ERR(mnt)) {
1303 				root = ERR_CAST(mnt);
1304 				mnt = NULL;
1305 				goto out;
1306 			}
1307 
1308 			down_write(&mnt->mnt_sb->s_umount);
1309 			ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1310 			up_write(&mnt->mnt_sb->s_umount);
1311 			if (ret < 0) {
1312 				root = ERR_PTR(ret);
1313 				goto out;
1314 			}
1315 		}
1316 	}
1317 	if (IS_ERR(mnt)) {
1318 		root = ERR_CAST(mnt);
1319 		mnt = NULL;
1320 		goto out;
1321 	}
1322 
1323 	if (!subvol_name) {
1324 		if (!subvol_objectid) {
1325 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1326 							  &subvol_objectid);
1327 			if (ret) {
1328 				root = ERR_PTR(ret);
1329 				goto out;
1330 			}
1331 		}
1332 		subvol_name = btrfs_get_subvol_name_from_objectid(
1333 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1334 		if (IS_ERR(subvol_name)) {
1335 			root = ERR_CAST(subvol_name);
1336 			subvol_name = NULL;
1337 			goto out;
1338 		}
1339 
1340 	}
1341 
1342 	root = mount_subtree(mnt, subvol_name);
1343 	/* mount_subtree() drops our reference on the vfsmount. */
1344 	mnt = NULL;
1345 
1346 	if (!IS_ERR(root)) {
1347 		struct super_block *s = root->d_sb;
1348 		struct inode *root_inode = d_inode(root);
1349 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1350 
1351 		ret = 0;
1352 		if (!is_subvolume_inode(root_inode)) {
1353 			pr_err("BTRFS: '%s' is not a valid subvolume\n",
1354 			       subvol_name);
1355 			ret = -EINVAL;
1356 		}
1357 		if (subvol_objectid && root_objectid != subvol_objectid) {
1358 			/*
1359 			 * This will also catch a race condition where a
1360 			 * subvolume which was passed by ID is renamed and
1361 			 * another subvolume is renamed over the old location.
1362 			 */
1363 			pr_err("BTRFS: subvol '%s' does not match subvolid %llu\n",
1364 			       subvol_name, subvol_objectid);
1365 			ret = -EINVAL;
1366 		}
1367 		if (ret) {
1368 			dput(root);
1369 			root = ERR_PTR(ret);
1370 			deactivate_locked_super(s);
1371 		}
1372 	}
1373 
1374 out:
1375 	mntput(mnt);
1376 	kfree(newargs);
1377 	kfree(subvol_name);
1378 	return root;
1379 }
1380 
parse_security_options(char * orig_opts,struct security_mnt_opts * sec_opts)1381 static int parse_security_options(char *orig_opts,
1382 				  struct security_mnt_opts *sec_opts)
1383 {
1384 	char *secdata = NULL;
1385 	int ret = 0;
1386 
1387 	secdata = alloc_secdata();
1388 	if (!secdata)
1389 		return -ENOMEM;
1390 	ret = security_sb_copy_data(orig_opts, secdata);
1391 	if (ret) {
1392 		free_secdata(secdata);
1393 		return ret;
1394 	}
1395 	ret = security_sb_parse_opts_str(secdata, sec_opts);
1396 	free_secdata(secdata);
1397 	return ret;
1398 }
1399 
setup_security_options(struct btrfs_fs_info * fs_info,struct super_block * sb,struct security_mnt_opts * sec_opts)1400 static int setup_security_options(struct btrfs_fs_info *fs_info,
1401 				  struct super_block *sb,
1402 				  struct security_mnt_opts *sec_opts)
1403 {
1404 	int ret = 0;
1405 
1406 	/*
1407 	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1408 	 * is valid.
1409 	 */
1410 	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1411 	if (ret)
1412 		return ret;
1413 
1414 #ifdef CONFIG_SECURITY
1415 	if (!fs_info->security_opts.num_mnt_opts) {
1416 		/* first time security setup, copy sec_opts to fs_info */
1417 		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1418 	} else {
1419 		/*
1420 		 * Since SELinux(the only one supports security_mnt_opts) does
1421 		 * NOT support changing context during remount/mount same sb,
1422 		 * This must be the same or part of the same security options,
1423 		 * just free it.
1424 		 */
1425 		security_free_mnt_opts(sec_opts);
1426 	}
1427 #endif
1428 	return ret;
1429 }
1430 
1431 /*
1432  * Find a superblock for the given device / mount point.
1433  *
1434  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1435  *	  for multiple device setup.  Make sure to keep it in sync.
1436  */
btrfs_mount(struct file_system_type * fs_type,int flags,const char * device_name,void * data)1437 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1438 		const char *device_name, void *data)
1439 {
1440 	struct block_device *bdev = NULL;
1441 	struct super_block *s;
1442 	struct btrfs_fs_devices *fs_devices = NULL;
1443 	struct btrfs_fs_info *fs_info = NULL;
1444 	struct security_mnt_opts new_sec_opts;
1445 	fmode_t mode = FMODE_READ;
1446 	char *subvol_name = NULL;
1447 	u64 subvol_objectid = 0;
1448 	int error = 0;
1449 
1450 	if (!(flags & MS_RDONLY))
1451 		mode |= FMODE_WRITE;
1452 
1453 	error = btrfs_parse_early_options(data, mode, fs_type,
1454 					  &subvol_name, &subvol_objectid,
1455 					  &fs_devices);
1456 	if (error) {
1457 		kfree(subvol_name);
1458 		return ERR_PTR(error);
1459 	}
1460 
1461 	if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1462 		/* mount_subvol() will free subvol_name. */
1463 		return mount_subvol(subvol_name, subvol_objectid, flags,
1464 				    device_name, data);
1465 	}
1466 
1467 	security_init_mnt_opts(&new_sec_opts);
1468 	if (data) {
1469 		error = parse_security_options(data, &new_sec_opts);
1470 		if (error)
1471 			return ERR_PTR(error);
1472 	}
1473 
1474 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1475 	if (error)
1476 		goto error_sec_opts;
1477 
1478 	/*
1479 	 * Setup a dummy root and fs_info for test/set super.  This is because
1480 	 * we don't actually fill this stuff out until open_ctree, but we need
1481 	 * it for searching for existing supers, so this lets us do that and
1482 	 * then open_ctree will properly initialize everything later.
1483 	 */
1484 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1485 	if (!fs_info) {
1486 		error = -ENOMEM;
1487 		goto error_sec_opts;
1488 	}
1489 
1490 	fs_info->fs_devices = fs_devices;
1491 
1492 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1493 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1494 	security_init_mnt_opts(&fs_info->security_opts);
1495 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1496 		error = -ENOMEM;
1497 		goto error_fs_info;
1498 	}
1499 
1500 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1501 	if (error)
1502 		goto error_fs_info;
1503 
1504 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1505 		error = -EACCES;
1506 		goto error_close_devices;
1507 	}
1508 
1509 	bdev = fs_devices->latest_bdev;
1510 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1511 		 fs_info);
1512 	if (IS_ERR(s)) {
1513 		error = PTR_ERR(s);
1514 		goto error_close_devices;
1515 	}
1516 
1517 	if (s->s_root) {
1518 		btrfs_close_devices(fs_devices);
1519 		free_fs_info(fs_info);
1520 		if ((flags ^ s->s_flags) & MS_RDONLY)
1521 			error = -EBUSY;
1522 	} else {
1523 		char b[BDEVNAME_SIZE];
1524 
1525 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1526 		btrfs_sb(s)->bdev_holder = fs_type;
1527 		error = btrfs_fill_super(s, fs_devices, data,
1528 					 flags & MS_SILENT ? 1 : 0);
1529 	}
1530 	if (error) {
1531 		deactivate_locked_super(s);
1532 		goto error_sec_opts;
1533 	}
1534 
1535 	fs_info = btrfs_sb(s);
1536 	error = setup_security_options(fs_info, s, &new_sec_opts);
1537 	if (error) {
1538 		deactivate_locked_super(s);
1539 		goto error_sec_opts;
1540 	}
1541 
1542 	return dget(s->s_root);
1543 
1544 error_close_devices:
1545 	btrfs_close_devices(fs_devices);
1546 error_fs_info:
1547 	free_fs_info(fs_info);
1548 error_sec_opts:
1549 	security_free_mnt_opts(&new_sec_opts);
1550 	return ERR_PTR(error);
1551 }
1552 
btrfs_resize_thread_pool(struct btrfs_fs_info * fs_info,int new_pool_size,int old_pool_size)1553 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1554 				     int new_pool_size, int old_pool_size)
1555 {
1556 	if (new_pool_size == old_pool_size)
1557 		return;
1558 
1559 	fs_info->thread_pool_size = new_pool_size;
1560 
1561 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1562 	       old_pool_size, new_pool_size);
1563 
1564 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1565 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1566 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1567 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1568 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1569 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1570 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1571 				new_pool_size);
1572 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1573 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1574 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1575 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1576 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1577 				new_pool_size);
1578 }
1579 
btrfs_remount_prepare(struct btrfs_fs_info * fs_info)1580 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1581 {
1582 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1583 }
1584 
btrfs_remount_begin(struct btrfs_fs_info * fs_info,unsigned long old_opts,int flags)1585 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1586 				       unsigned long old_opts, int flags)
1587 {
1588 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1589 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1590 	     (flags & MS_RDONLY))) {
1591 		/* wait for any defraggers to finish */
1592 		wait_event(fs_info->transaction_wait,
1593 			   (atomic_read(&fs_info->defrag_running) == 0));
1594 		if (flags & MS_RDONLY)
1595 			sync_filesystem(fs_info->sb);
1596 	}
1597 }
1598 
btrfs_remount_cleanup(struct btrfs_fs_info * fs_info,unsigned long old_opts)1599 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1600 					 unsigned long old_opts)
1601 {
1602 	/*
1603 	 * We need cleanup all defragable inodes if the autodefragment is
1604 	 * close or the fs is R/O.
1605 	 */
1606 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1607 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1608 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1609 		btrfs_cleanup_defrag_inodes(fs_info);
1610 	}
1611 
1612 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1613 }
1614 
btrfs_remount(struct super_block * sb,int * flags,char * data)1615 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1616 {
1617 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1618 	struct btrfs_root *root = fs_info->tree_root;
1619 	unsigned old_flags = sb->s_flags;
1620 	unsigned long old_opts = fs_info->mount_opt;
1621 	unsigned long old_compress_type = fs_info->compress_type;
1622 	u64 old_max_inline = fs_info->max_inline;
1623 	u64 old_alloc_start = fs_info->alloc_start;
1624 	int old_thread_pool_size = fs_info->thread_pool_size;
1625 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1626 	int ret;
1627 
1628 	sync_filesystem(sb);
1629 	btrfs_remount_prepare(fs_info);
1630 
1631 	if (data) {
1632 		struct security_mnt_opts new_sec_opts;
1633 
1634 		security_init_mnt_opts(&new_sec_opts);
1635 		ret = parse_security_options(data, &new_sec_opts);
1636 		if (ret)
1637 			goto restore;
1638 		ret = setup_security_options(fs_info, sb,
1639 					     &new_sec_opts);
1640 		if (ret) {
1641 			security_free_mnt_opts(&new_sec_opts);
1642 			goto restore;
1643 		}
1644 	}
1645 
1646 	ret = btrfs_parse_options(root, data);
1647 	if (ret) {
1648 		ret = -EINVAL;
1649 		goto restore;
1650 	}
1651 
1652 	btrfs_remount_begin(fs_info, old_opts, *flags);
1653 	btrfs_resize_thread_pool(fs_info,
1654 		fs_info->thread_pool_size, old_thread_pool_size);
1655 
1656 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1657 		goto out;
1658 
1659 	if (*flags & MS_RDONLY) {
1660 		/*
1661 		 * this also happens on 'umount -rf' or on shutdown, when
1662 		 * the filesystem is busy.
1663 		 */
1664 		cancel_work_sync(&fs_info->async_reclaim_work);
1665 
1666 		/* wait for the uuid_scan task to finish */
1667 		down(&fs_info->uuid_tree_rescan_sem);
1668 		/* avoid complains from lockdep et al. */
1669 		up(&fs_info->uuid_tree_rescan_sem);
1670 
1671 		sb->s_flags |= MS_RDONLY;
1672 
1673 		/*
1674 		 * Setting MS_RDONLY will put the cleaner thread to
1675 		 * sleep at the next loop if it's already active.
1676 		 * If it's already asleep, we'll leave unused block
1677 		 * groups on disk until we're mounted read-write again
1678 		 * unless we clean them up here.
1679 		 */
1680 		btrfs_delete_unused_bgs(fs_info);
1681 
1682 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1683 		btrfs_scrub_cancel(fs_info);
1684 		btrfs_pause_balance(fs_info);
1685 
1686 		ret = btrfs_commit_super(root);
1687 		if (ret)
1688 			goto restore;
1689 	} else {
1690 		if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1691 			btrfs_err(fs_info,
1692 				"Remounting read-write after error is not allowed");
1693 			ret = -EINVAL;
1694 			goto restore;
1695 		}
1696 		if (fs_info->fs_devices->rw_devices == 0) {
1697 			ret = -EACCES;
1698 			goto restore;
1699 		}
1700 
1701 		if (fs_info->fs_devices->missing_devices >
1702 		     fs_info->num_tolerated_disk_barrier_failures &&
1703 		    !(*flags & MS_RDONLY)) {
1704 			btrfs_warn(fs_info,
1705 				"too many missing devices, writeable remount is not allowed");
1706 			ret = -EACCES;
1707 			goto restore;
1708 		}
1709 
1710 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1711 			btrfs_warn(fs_info,
1712 		"mount required to replay tree-log, cannot remount read-write");
1713 			ret = -EINVAL;
1714 			goto restore;
1715 		}
1716 
1717 		ret = btrfs_cleanup_fs_roots(fs_info);
1718 		if (ret)
1719 			goto restore;
1720 
1721 		/* recover relocation */
1722 		mutex_lock(&fs_info->cleaner_mutex);
1723 		ret = btrfs_recover_relocation(root);
1724 		mutex_unlock(&fs_info->cleaner_mutex);
1725 		if (ret)
1726 			goto restore;
1727 
1728 		ret = btrfs_resume_balance_async(fs_info);
1729 		if (ret)
1730 			goto restore;
1731 
1732 		ret = btrfs_resume_dev_replace_async(fs_info);
1733 		if (ret) {
1734 			btrfs_warn(fs_info, "failed to resume dev_replace");
1735 			goto restore;
1736 		}
1737 
1738 		btrfs_qgroup_rescan_resume(fs_info);
1739 
1740 		if (!fs_info->uuid_root) {
1741 			btrfs_info(fs_info, "creating UUID tree");
1742 			ret = btrfs_create_uuid_tree(fs_info);
1743 			if (ret) {
1744 				btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1745 				goto restore;
1746 			}
1747 		}
1748 		sb->s_flags &= ~MS_RDONLY;
1749 	}
1750 out:
1751 	wake_up_process(fs_info->transaction_kthread);
1752 	btrfs_remount_cleanup(fs_info, old_opts);
1753 	return 0;
1754 
1755 restore:
1756 	/* We've hit an error - don't reset MS_RDONLY */
1757 	if (sb->s_flags & MS_RDONLY)
1758 		old_flags |= MS_RDONLY;
1759 	sb->s_flags = old_flags;
1760 	fs_info->mount_opt = old_opts;
1761 	fs_info->compress_type = old_compress_type;
1762 	fs_info->max_inline = old_max_inline;
1763 	mutex_lock(&fs_info->chunk_mutex);
1764 	fs_info->alloc_start = old_alloc_start;
1765 	mutex_unlock(&fs_info->chunk_mutex);
1766 	btrfs_resize_thread_pool(fs_info,
1767 		old_thread_pool_size, fs_info->thread_pool_size);
1768 	fs_info->metadata_ratio = old_metadata_ratio;
1769 	btrfs_remount_cleanup(fs_info, old_opts);
1770 	return ret;
1771 }
1772 
1773 /* Used to sort the devices by max_avail(descending sort) */
btrfs_cmp_device_free_bytes(const void * dev_info1,const void * dev_info2)1774 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1775 				       const void *dev_info2)
1776 {
1777 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1778 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1779 		return -1;
1780 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1781 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1782 		return 1;
1783 	else
1784 	return 0;
1785 }
1786 
1787 /*
1788  * sort the devices by max_avail, in which max free extent size of each device
1789  * is stored.(Descending Sort)
1790  */
btrfs_descending_sort_devices(struct btrfs_device_info * devices,size_t nr_devices)1791 static inline void btrfs_descending_sort_devices(
1792 					struct btrfs_device_info *devices,
1793 					size_t nr_devices)
1794 {
1795 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1796 	     btrfs_cmp_device_free_bytes, NULL);
1797 }
1798 
1799 /*
1800  * The helper to calc the free space on the devices that can be used to store
1801  * file data.
1802  */
btrfs_calc_avail_data_space(struct btrfs_root * root,u64 * free_bytes)1803 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1804 {
1805 	struct btrfs_fs_info *fs_info = root->fs_info;
1806 	struct btrfs_device_info *devices_info;
1807 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1808 	struct btrfs_device *device;
1809 	u64 skip_space;
1810 	u64 type;
1811 	u64 avail_space;
1812 	u64 used_space;
1813 	u64 min_stripe_size;
1814 	int min_stripes = 1, num_stripes = 1;
1815 	int i = 0, nr_devices;
1816 	int ret;
1817 
1818 	/*
1819 	 * We aren't under the device list lock, so this is racey-ish, but good
1820 	 * enough for our purposes.
1821 	 */
1822 	nr_devices = fs_info->fs_devices->open_devices;
1823 	if (!nr_devices) {
1824 		smp_mb();
1825 		nr_devices = fs_info->fs_devices->open_devices;
1826 		ASSERT(nr_devices);
1827 		if (!nr_devices) {
1828 			*free_bytes = 0;
1829 			return 0;
1830 		}
1831 	}
1832 
1833 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1834 			       GFP_NOFS);
1835 	if (!devices_info)
1836 		return -ENOMEM;
1837 
1838 	/* calc min stripe number for data space alloction */
1839 	type = btrfs_get_alloc_profile(root, 1);
1840 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1841 		min_stripes = 2;
1842 		num_stripes = nr_devices;
1843 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1844 		min_stripes = 2;
1845 		num_stripes = 2;
1846 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1847 		min_stripes = 4;
1848 		num_stripes = 4;
1849 	}
1850 
1851 	if (type & BTRFS_BLOCK_GROUP_DUP)
1852 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1853 	else
1854 		min_stripe_size = BTRFS_STRIPE_LEN;
1855 
1856 	if (fs_info->alloc_start)
1857 		mutex_lock(&fs_devices->device_list_mutex);
1858 	rcu_read_lock();
1859 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1860 		if (!device->in_fs_metadata || !device->bdev ||
1861 		    device->is_tgtdev_for_dev_replace)
1862 			continue;
1863 
1864 		if (i >= nr_devices)
1865 			break;
1866 
1867 		avail_space = device->total_bytes - device->bytes_used;
1868 
1869 		/* align with stripe_len */
1870 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1871 		avail_space *= BTRFS_STRIPE_LEN;
1872 
1873 		/*
1874 		 * In order to avoid overwritting the superblock on the drive,
1875 		 * btrfs starts at an offset of at least 1MB when doing chunk
1876 		 * allocation.
1877 		 */
1878 		skip_space = 1024 * 1024;
1879 
1880 		/* user can set the offset in fs_info->alloc_start. */
1881 		if (fs_info->alloc_start &&
1882 		    fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1883 		    device->total_bytes) {
1884 			rcu_read_unlock();
1885 			skip_space = max(fs_info->alloc_start, skip_space);
1886 
1887 			/*
1888 			 * btrfs can not use the free space in
1889 			 * [0, skip_space - 1], we must subtract it from the
1890 			 * total. In order to implement it, we account the used
1891 			 * space in this range first.
1892 			 */
1893 			ret = btrfs_account_dev_extents_size(device, 0,
1894 							     skip_space - 1,
1895 							     &used_space);
1896 			if (ret) {
1897 				kfree(devices_info);
1898 				mutex_unlock(&fs_devices->device_list_mutex);
1899 				return ret;
1900 			}
1901 
1902 			rcu_read_lock();
1903 
1904 			/* calc the free space in [0, skip_space - 1] */
1905 			skip_space -= used_space;
1906 		}
1907 
1908 		/*
1909 		 * we can use the free space in [0, skip_space - 1], subtract
1910 		 * it from the total.
1911 		 */
1912 		if (avail_space && avail_space >= skip_space)
1913 			avail_space -= skip_space;
1914 		else
1915 			avail_space = 0;
1916 
1917 		if (avail_space < min_stripe_size)
1918 			continue;
1919 
1920 		devices_info[i].dev = device;
1921 		devices_info[i].max_avail = avail_space;
1922 
1923 		i++;
1924 	}
1925 	rcu_read_unlock();
1926 	if (fs_info->alloc_start)
1927 		mutex_unlock(&fs_devices->device_list_mutex);
1928 
1929 	nr_devices = i;
1930 
1931 	btrfs_descending_sort_devices(devices_info, nr_devices);
1932 
1933 	i = nr_devices - 1;
1934 	avail_space = 0;
1935 	while (nr_devices >= min_stripes) {
1936 		if (num_stripes > nr_devices)
1937 			num_stripes = nr_devices;
1938 
1939 		if (devices_info[i].max_avail >= min_stripe_size) {
1940 			int j;
1941 			u64 alloc_size;
1942 
1943 			avail_space += devices_info[i].max_avail * num_stripes;
1944 			alloc_size = devices_info[i].max_avail;
1945 			for (j = i + 1 - num_stripes; j <= i; j++)
1946 				devices_info[j].max_avail -= alloc_size;
1947 		}
1948 		i--;
1949 		nr_devices--;
1950 	}
1951 
1952 	kfree(devices_info);
1953 	*free_bytes = avail_space;
1954 	return 0;
1955 }
1956 
1957 /*
1958  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1959  *
1960  * If there's a redundant raid level at DATA block groups, use the respective
1961  * multiplier to scale the sizes.
1962  *
1963  * Unused device space usage is based on simulating the chunk allocator
1964  * algorithm that respects the device sizes, order of allocations and the
1965  * 'alloc_start' value, this is a close approximation of the actual use but
1966  * there are other factors that may change the result (like a new metadata
1967  * chunk).
1968  *
1969  * If metadata is exhausted, f_bavail will be 0.
1970  *
1971  * FIXME: not accurate for mixed block groups, total and free/used are ok,
1972  * available appears slightly larger.
1973  */
btrfs_statfs(struct dentry * dentry,struct kstatfs * buf)1974 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1975 {
1976 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1977 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1978 	struct list_head *head = &fs_info->space_info;
1979 	struct btrfs_space_info *found;
1980 	u64 total_used = 0;
1981 	u64 total_free_data = 0;
1982 	u64 total_free_meta = 0;
1983 	int bits = dentry->d_sb->s_blocksize_bits;
1984 	__be32 *fsid = (__be32 *)fs_info->fsid;
1985 	unsigned factor = 1;
1986 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1987 	int ret;
1988 	u64 thresh = 0;
1989 	int mixed = 0;
1990 
1991 	/*
1992 	 * holding chunk_muext to avoid allocating new chunks, holding
1993 	 * device_list_mutex to avoid the device being removed
1994 	 */
1995 	rcu_read_lock();
1996 	list_for_each_entry_rcu(found, head, list) {
1997 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1998 			int i;
1999 
2000 			total_free_data += found->disk_total - found->disk_used;
2001 			total_free_data -=
2002 				btrfs_account_ro_block_groups_free_space(found);
2003 
2004 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2005 				if (!list_empty(&found->block_groups[i])) {
2006 					switch (i) {
2007 					case BTRFS_RAID_DUP:
2008 					case BTRFS_RAID_RAID1:
2009 					case BTRFS_RAID_RAID10:
2010 						factor = 2;
2011 					}
2012 				}
2013 			}
2014 		}
2015 
2016 		/*
2017 		 * Metadata in mixed block goup profiles are accounted in data
2018 		 */
2019 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2020 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2021 				mixed = 1;
2022 			else
2023 				total_free_meta += found->disk_total -
2024 					found->disk_used;
2025 		}
2026 
2027 		total_used += found->disk_used;
2028 	}
2029 
2030 	rcu_read_unlock();
2031 
2032 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2033 	buf->f_blocks >>= bits;
2034 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2035 
2036 	/* Account global block reserve as used, it's in logical size already */
2037 	spin_lock(&block_rsv->lock);
2038 	buf->f_bfree -= block_rsv->size >> bits;
2039 	spin_unlock(&block_rsv->lock);
2040 
2041 	buf->f_bavail = div_u64(total_free_data, factor);
2042 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
2043 	if (ret)
2044 		return ret;
2045 	buf->f_bavail += div_u64(total_free_data, factor);
2046 	buf->f_bavail = buf->f_bavail >> bits;
2047 
2048 	/*
2049 	 * We calculate the remaining metadata space minus global reserve. If
2050 	 * this is (supposedly) smaller than zero, there's no space. But this
2051 	 * does not hold in practice, the exhausted state happens where's still
2052 	 * some positive delta. So we apply some guesswork and compare the
2053 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2054 	 *
2055 	 * We probably cannot calculate the exact threshold value because this
2056 	 * depends on the internal reservations requested by various
2057 	 * operations, so some operations that consume a few metadata will
2058 	 * succeed even if the Avail is zero. But this is better than the other
2059 	 * way around.
2060 	 */
2061 	thresh = 4 * 1024 * 1024;
2062 
2063 	/*
2064 	 * We only want to claim there's no available space if we can no longer
2065 	 * allocate chunks for our metadata profile and our global reserve will
2066 	 * not fit in the free metadata space.  If we aren't ->full then we
2067 	 * still can allocate chunks and thus are fine using the currently
2068 	 * calculated f_bavail.
2069 	 */
2070 	if (!mixed && block_rsv->space_info->full &&
2071 	    total_free_meta - thresh < block_rsv->size)
2072 		buf->f_bavail = 0;
2073 
2074 	buf->f_type = BTRFS_SUPER_MAGIC;
2075 	buf->f_bsize = dentry->d_sb->s_blocksize;
2076 	buf->f_namelen = BTRFS_NAME_LEN;
2077 
2078 	/* We treat it as constant endianness (it doesn't matter _which_)
2079 	   because we want the fsid to come out the same whether mounted
2080 	   on a big-endian or little-endian host */
2081 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2082 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2083 	/* Mask in the root object ID too, to disambiguate subvols */
2084 	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2085 	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2086 
2087 	return 0;
2088 }
2089 
btrfs_kill_super(struct super_block * sb)2090 static void btrfs_kill_super(struct super_block *sb)
2091 {
2092 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2093 	kill_anon_super(sb);
2094 	free_fs_info(fs_info);
2095 }
2096 
2097 static struct file_system_type btrfs_fs_type = {
2098 	.owner		= THIS_MODULE,
2099 	.name		= "btrfs",
2100 	.mount		= btrfs_mount,
2101 	.kill_sb	= btrfs_kill_super,
2102 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2103 };
2104 MODULE_ALIAS_FS("btrfs");
2105 
btrfs_control_open(struct inode * inode,struct file * file)2106 static int btrfs_control_open(struct inode *inode, struct file *file)
2107 {
2108 	/*
2109 	 * The control file's private_data is used to hold the
2110 	 * transaction when it is started and is used to keep
2111 	 * track of whether a transaction is already in progress.
2112 	 */
2113 	file->private_data = NULL;
2114 	return 0;
2115 }
2116 
2117 /*
2118  * used by btrfsctl to scan devices when no FS is mounted
2119  */
btrfs_control_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2120 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2121 				unsigned long arg)
2122 {
2123 	struct btrfs_ioctl_vol_args *vol;
2124 	struct btrfs_fs_devices *fs_devices;
2125 	int ret = -ENOTTY;
2126 
2127 	if (!capable(CAP_SYS_ADMIN))
2128 		return -EPERM;
2129 
2130 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2131 	if (IS_ERR(vol))
2132 		return PTR_ERR(vol);
2133 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2134 
2135 	switch (cmd) {
2136 	case BTRFS_IOC_SCAN_DEV:
2137 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2138 					    &btrfs_fs_type, &fs_devices);
2139 		break;
2140 	case BTRFS_IOC_DEVICES_READY:
2141 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2142 					    &btrfs_fs_type, &fs_devices);
2143 		if (ret)
2144 			break;
2145 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
2146 		break;
2147 	}
2148 
2149 	kfree(vol);
2150 	return ret;
2151 }
2152 
btrfs_freeze(struct super_block * sb)2153 static int btrfs_freeze(struct super_block *sb)
2154 {
2155 	struct btrfs_trans_handle *trans;
2156 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
2157 
2158 	trans = btrfs_attach_transaction_barrier(root);
2159 	if (IS_ERR(trans)) {
2160 		/* no transaction, don't bother */
2161 		if (PTR_ERR(trans) == -ENOENT)
2162 			return 0;
2163 		return PTR_ERR(trans);
2164 	}
2165 	return btrfs_commit_transaction(trans, root);
2166 }
2167 
btrfs_show_devname(struct seq_file * m,struct dentry * root)2168 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2169 {
2170 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2171 	struct btrfs_fs_devices *cur_devices;
2172 	struct btrfs_device *dev, *first_dev = NULL;
2173 	struct list_head *head;
2174 	struct rcu_string *name;
2175 
2176 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2177 	cur_devices = fs_info->fs_devices;
2178 	while (cur_devices) {
2179 		head = &cur_devices->devices;
2180 		list_for_each_entry(dev, head, dev_list) {
2181 			if (dev->missing)
2182 				continue;
2183 			if (!dev->name)
2184 				continue;
2185 			if (!first_dev || dev->devid < first_dev->devid)
2186 				first_dev = dev;
2187 		}
2188 		cur_devices = cur_devices->seed;
2189 	}
2190 
2191 	if (first_dev) {
2192 		rcu_read_lock();
2193 		name = rcu_dereference(first_dev->name);
2194 		seq_escape(m, name->str, " \t\n\\");
2195 		rcu_read_unlock();
2196 	} else {
2197 		WARN_ON(1);
2198 	}
2199 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2200 	return 0;
2201 }
2202 
2203 static const struct super_operations btrfs_super_ops = {
2204 	.drop_inode	= btrfs_drop_inode,
2205 	.evict_inode	= btrfs_evict_inode,
2206 	.put_super	= btrfs_put_super,
2207 	.sync_fs	= btrfs_sync_fs,
2208 	.show_options	= btrfs_show_options,
2209 	.show_devname	= btrfs_show_devname,
2210 	.write_inode	= btrfs_write_inode,
2211 	.alloc_inode	= btrfs_alloc_inode,
2212 	.destroy_inode	= btrfs_destroy_inode,
2213 	.statfs		= btrfs_statfs,
2214 	.remount_fs	= btrfs_remount,
2215 	.freeze_fs	= btrfs_freeze,
2216 };
2217 
2218 static const struct file_operations btrfs_ctl_fops = {
2219 	.open = btrfs_control_open,
2220 	.unlocked_ioctl	 = btrfs_control_ioctl,
2221 	.compat_ioctl = btrfs_control_ioctl,
2222 	.owner	 = THIS_MODULE,
2223 	.llseek = noop_llseek,
2224 };
2225 
2226 static struct miscdevice btrfs_misc = {
2227 	.minor		= BTRFS_MINOR,
2228 	.name		= "btrfs-control",
2229 	.fops		= &btrfs_ctl_fops
2230 };
2231 
2232 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2233 MODULE_ALIAS("devname:btrfs-control");
2234 
btrfs_interface_init(void)2235 static int btrfs_interface_init(void)
2236 {
2237 	return misc_register(&btrfs_misc);
2238 }
2239 
btrfs_interface_exit(void)2240 static void btrfs_interface_exit(void)
2241 {
2242 	misc_deregister(&btrfs_misc);
2243 }
2244 
btrfs_print_info(void)2245 static void btrfs_print_info(void)
2246 {
2247 	printk(KERN_INFO "Btrfs loaded"
2248 #ifdef CONFIG_BTRFS_DEBUG
2249 			", debug=on"
2250 #endif
2251 #ifdef CONFIG_BTRFS_ASSERT
2252 			", assert=on"
2253 #endif
2254 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2255 			", integrity-checker=on"
2256 #endif
2257 			"\n");
2258 }
2259 
btrfs_run_sanity_tests(void)2260 static int btrfs_run_sanity_tests(void)
2261 {
2262 	int ret;
2263 
2264 	ret = btrfs_init_test_fs();
2265 	if (ret)
2266 		return ret;
2267 
2268 	ret = btrfs_test_free_space_cache();
2269 	if (ret)
2270 		goto out;
2271 	ret = btrfs_test_extent_buffer_operations();
2272 	if (ret)
2273 		goto out;
2274 	ret = btrfs_test_extent_io();
2275 	if (ret)
2276 		goto out;
2277 	ret = btrfs_test_inodes();
2278 	if (ret)
2279 		goto out;
2280 	ret = btrfs_test_qgroups();
2281 out:
2282 	btrfs_destroy_test_fs();
2283 	return ret;
2284 }
2285 
init_btrfs_fs(void)2286 static int __init init_btrfs_fs(void)
2287 {
2288 	int err;
2289 
2290 	err = btrfs_hash_init();
2291 	if (err)
2292 		return err;
2293 
2294 	btrfs_props_init();
2295 
2296 	err = btrfs_init_sysfs();
2297 	if (err)
2298 		goto free_hash;
2299 
2300 	btrfs_init_compress();
2301 
2302 	err = btrfs_init_cachep();
2303 	if (err)
2304 		goto free_compress;
2305 
2306 	err = extent_io_init();
2307 	if (err)
2308 		goto free_cachep;
2309 
2310 	err = extent_map_init();
2311 	if (err)
2312 		goto free_extent_io;
2313 
2314 	err = ordered_data_init();
2315 	if (err)
2316 		goto free_extent_map;
2317 
2318 	err = btrfs_delayed_inode_init();
2319 	if (err)
2320 		goto free_ordered_data;
2321 
2322 	err = btrfs_auto_defrag_init();
2323 	if (err)
2324 		goto free_delayed_inode;
2325 
2326 	err = btrfs_delayed_ref_init();
2327 	if (err)
2328 		goto free_auto_defrag;
2329 
2330 	err = btrfs_prelim_ref_init();
2331 	if (err)
2332 		goto free_delayed_ref;
2333 
2334 	err = btrfs_end_io_wq_init();
2335 	if (err)
2336 		goto free_prelim_ref;
2337 
2338 	err = btrfs_interface_init();
2339 	if (err)
2340 		goto free_end_io_wq;
2341 
2342 	btrfs_init_lockdep();
2343 
2344 	btrfs_print_info();
2345 
2346 	err = btrfs_run_sanity_tests();
2347 	if (err)
2348 		goto unregister_ioctl;
2349 
2350 	err = register_filesystem(&btrfs_fs_type);
2351 	if (err)
2352 		goto unregister_ioctl;
2353 
2354 	return 0;
2355 
2356 unregister_ioctl:
2357 	btrfs_interface_exit();
2358 free_end_io_wq:
2359 	btrfs_end_io_wq_exit();
2360 free_prelim_ref:
2361 	btrfs_prelim_ref_exit();
2362 free_delayed_ref:
2363 	btrfs_delayed_ref_exit();
2364 free_auto_defrag:
2365 	btrfs_auto_defrag_exit();
2366 free_delayed_inode:
2367 	btrfs_delayed_inode_exit();
2368 free_ordered_data:
2369 	ordered_data_exit();
2370 free_extent_map:
2371 	extent_map_exit();
2372 free_extent_io:
2373 	extent_io_exit();
2374 free_cachep:
2375 	btrfs_destroy_cachep();
2376 free_compress:
2377 	btrfs_exit_compress();
2378 	btrfs_exit_sysfs();
2379 free_hash:
2380 	btrfs_hash_exit();
2381 	return err;
2382 }
2383 
exit_btrfs_fs(void)2384 static void __exit exit_btrfs_fs(void)
2385 {
2386 	btrfs_destroy_cachep();
2387 	btrfs_delayed_ref_exit();
2388 	btrfs_auto_defrag_exit();
2389 	btrfs_delayed_inode_exit();
2390 	btrfs_prelim_ref_exit();
2391 	ordered_data_exit();
2392 	extent_map_exit();
2393 	extent_io_exit();
2394 	btrfs_interface_exit();
2395 	btrfs_end_io_wq_exit();
2396 	unregister_filesystem(&btrfs_fs_type);
2397 	btrfs_exit_sysfs();
2398 	btrfs_cleanup_fs_uuids();
2399 	btrfs_exit_compress();
2400 	btrfs_hash_exit();
2401 }
2402 
2403 late_initcall(init_btrfs_fs);
2404 module_exit(exit_btrfs_fs)
2405 
2406 MODULE_LICENSE("GPL");
2407