• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
btrfs_put_transaction(struct btrfs_transaction * transaction)61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		if (transaction->delayed_refs.pending_csums)
68 			printk(KERN_ERR "pending csums is %llu\n",
69 			       transaction->delayed_refs.pending_csums);
70 		while (!list_empty(&transaction->pending_chunks)) {
71 			struct extent_map *em;
72 
73 			em = list_first_entry(&transaction->pending_chunks,
74 					      struct extent_map, list);
75 			list_del_init(&em->list);
76 			free_extent_map(em);
77 		}
78 		kmem_cache_free(btrfs_transaction_cachep, transaction);
79 	}
80 }
81 
clear_btree_io_tree(struct extent_io_tree * tree)82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 	spin_lock(&tree->lock);
85 	/*
86 	 * Do a single barrier for the waitqueue_active check here, the state
87 	 * of the waitqueue should not change once clear_btree_io_tree is
88 	 * called.
89 	 */
90 	smp_mb();
91 	while (!RB_EMPTY_ROOT(&tree->state)) {
92 		struct rb_node *node;
93 		struct extent_state *state;
94 
95 		node = rb_first(&tree->state);
96 		state = rb_entry(node, struct extent_state, rb_node);
97 		rb_erase(&state->rb_node, &tree->state);
98 		RB_CLEAR_NODE(&state->rb_node);
99 		/*
100 		 * btree io trees aren't supposed to have tasks waiting for
101 		 * changes in the flags of extent states ever.
102 		 */
103 		ASSERT(!waitqueue_active(&state->wq));
104 		free_extent_state(state);
105 
106 		cond_resched_lock(&tree->lock);
107 	}
108 	spin_unlock(&tree->lock);
109 }
110 
switch_commit_roots(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)111 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
112 					 struct btrfs_fs_info *fs_info)
113 {
114 	struct btrfs_root *root, *tmp;
115 
116 	down_write(&fs_info->commit_root_sem);
117 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
118 				 dirty_list) {
119 		list_del_init(&root->dirty_list);
120 		free_extent_buffer(root->commit_root);
121 		root->commit_root = btrfs_root_node(root);
122 		if (is_fstree(root->objectid))
123 			btrfs_unpin_free_ino(root);
124 		clear_btree_io_tree(&root->dirty_log_pages);
125 	}
126 
127 	/* We can free old roots now. */
128 	spin_lock(&trans->dropped_roots_lock);
129 	while (!list_empty(&trans->dropped_roots)) {
130 		root = list_first_entry(&trans->dropped_roots,
131 					struct btrfs_root, root_list);
132 		list_del_init(&root->root_list);
133 		spin_unlock(&trans->dropped_roots_lock);
134 		btrfs_drop_and_free_fs_root(fs_info, root);
135 		spin_lock(&trans->dropped_roots_lock);
136 	}
137 	spin_unlock(&trans->dropped_roots_lock);
138 	up_write(&fs_info->commit_root_sem);
139 }
140 
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
142 					 unsigned int type)
143 {
144 	if (type & TRANS_EXTWRITERS)
145 		atomic_inc(&trans->num_extwriters);
146 }
147 
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
149 					 unsigned int type)
150 {
151 	if (type & TRANS_EXTWRITERS)
152 		atomic_dec(&trans->num_extwriters);
153 }
154 
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)155 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
156 					  unsigned int type)
157 {
158 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
159 }
160 
extwriter_counter_read(struct btrfs_transaction * trans)161 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
162 {
163 	return atomic_read(&trans->num_extwriters);
164 }
165 
166 /*
167  * either allocate a new transaction or hop into the existing one
168  */
join_transaction(struct btrfs_root * root,unsigned int type)169 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
170 {
171 	struct btrfs_transaction *cur_trans;
172 	struct btrfs_fs_info *fs_info = root->fs_info;
173 
174 	spin_lock(&fs_info->trans_lock);
175 loop:
176 	/* The file system has been taken offline. No new transactions. */
177 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
178 		spin_unlock(&fs_info->trans_lock);
179 		return -EROFS;
180 	}
181 
182 	cur_trans = fs_info->running_transaction;
183 	if (cur_trans) {
184 		if (cur_trans->aborted) {
185 			spin_unlock(&fs_info->trans_lock);
186 			return cur_trans->aborted;
187 		}
188 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
189 			spin_unlock(&fs_info->trans_lock);
190 			return -EBUSY;
191 		}
192 		atomic_inc(&cur_trans->use_count);
193 		atomic_inc(&cur_trans->num_writers);
194 		extwriter_counter_inc(cur_trans, type);
195 		spin_unlock(&fs_info->trans_lock);
196 		return 0;
197 	}
198 	spin_unlock(&fs_info->trans_lock);
199 
200 	/*
201 	 * If we are ATTACH, we just want to catch the current transaction,
202 	 * and commit it. If there is no transaction, just return ENOENT.
203 	 */
204 	if (type == TRANS_ATTACH)
205 		return -ENOENT;
206 
207 	/*
208 	 * JOIN_NOLOCK only happens during the transaction commit, so
209 	 * it is impossible that ->running_transaction is NULL
210 	 */
211 	BUG_ON(type == TRANS_JOIN_NOLOCK);
212 
213 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
214 	if (!cur_trans)
215 		return -ENOMEM;
216 
217 	spin_lock(&fs_info->trans_lock);
218 	if (fs_info->running_transaction) {
219 		/*
220 		 * someone started a transaction after we unlocked.  Make sure
221 		 * to redo the checks above
222 		 */
223 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
224 		goto loop;
225 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
226 		spin_unlock(&fs_info->trans_lock);
227 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
228 		return -EROFS;
229 	}
230 
231 	atomic_set(&cur_trans->num_writers, 1);
232 	extwriter_counter_init(cur_trans, type);
233 	init_waitqueue_head(&cur_trans->writer_wait);
234 	init_waitqueue_head(&cur_trans->commit_wait);
235 	init_waitqueue_head(&cur_trans->pending_wait);
236 	cur_trans->state = TRANS_STATE_RUNNING;
237 	/*
238 	 * One for this trans handle, one so it will live on until we
239 	 * commit the transaction.
240 	 */
241 	atomic_set(&cur_trans->use_count, 2);
242 	atomic_set(&cur_trans->pending_ordered, 0);
243 	cur_trans->flags = 0;
244 	cur_trans->start_time = get_seconds();
245 
246 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
247 
248 	cur_trans->delayed_refs.href_root = RB_ROOT;
249 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
250 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
251 
252 	/*
253 	 * although the tree mod log is per file system and not per transaction,
254 	 * the log must never go across transaction boundaries.
255 	 */
256 	smp_mb();
257 	if (!list_empty(&fs_info->tree_mod_seq_list))
258 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
259 			"creating a fresh transaction\n");
260 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
261 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
262 			"creating a fresh transaction\n");
263 	atomic64_set(&fs_info->tree_mod_seq, 0);
264 
265 	spin_lock_init(&cur_trans->delayed_refs.lock);
266 
267 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
268 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
269 	INIT_LIST_HEAD(&cur_trans->switch_commits);
270 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
271 	INIT_LIST_HEAD(&cur_trans->io_bgs);
272 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
273 	mutex_init(&cur_trans->cache_write_mutex);
274 	cur_trans->num_dirty_bgs = 0;
275 	spin_lock_init(&cur_trans->dirty_bgs_lock);
276 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
277 	spin_lock_init(&cur_trans->dropped_roots_lock);
278 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
279 	extent_io_tree_init(&cur_trans->dirty_pages,
280 			     fs_info->btree_inode->i_mapping);
281 	fs_info->generation++;
282 	cur_trans->transid = fs_info->generation;
283 	fs_info->running_transaction = cur_trans;
284 	cur_trans->aborted = 0;
285 	spin_unlock(&fs_info->trans_lock);
286 
287 	return 0;
288 }
289 
290 /*
291  * this does all the record keeping required to make sure that a reference
292  * counted root is properly recorded in a given transaction.  This is required
293  * to make sure the old root from before we joined the transaction is deleted
294  * when the transaction commits
295  */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)296 static int record_root_in_trans(struct btrfs_trans_handle *trans,
297 			       struct btrfs_root *root)
298 {
299 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
300 	    root->last_trans < trans->transid) {
301 		WARN_ON(root == root->fs_info->extent_root);
302 		WARN_ON(root->commit_root != root->node);
303 
304 		/*
305 		 * see below for IN_TRANS_SETUP usage rules
306 		 * we have the reloc mutex held now, so there
307 		 * is only one writer in this function
308 		 */
309 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
310 
311 		/* make sure readers find IN_TRANS_SETUP before
312 		 * they find our root->last_trans update
313 		 */
314 		smp_wmb();
315 
316 		spin_lock(&root->fs_info->fs_roots_radix_lock);
317 		if (root->last_trans == trans->transid) {
318 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
319 			return 0;
320 		}
321 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
322 			   (unsigned long)root->root_key.objectid,
323 			   BTRFS_ROOT_TRANS_TAG);
324 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
325 		root->last_trans = trans->transid;
326 
327 		/* this is pretty tricky.  We don't want to
328 		 * take the relocation lock in btrfs_record_root_in_trans
329 		 * unless we're really doing the first setup for this root in
330 		 * this transaction.
331 		 *
332 		 * Normally we'd use root->last_trans as a flag to decide
333 		 * if we want to take the expensive mutex.
334 		 *
335 		 * But, we have to set root->last_trans before we
336 		 * init the relocation root, otherwise, we trip over warnings
337 		 * in ctree.c.  The solution used here is to flag ourselves
338 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
339 		 * fixing up the reloc trees and everyone must wait.
340 		 *
341 		 * When this is zero, they can trust root->last_trans and fly
342 		 * through btrfs_record_root_in_trans without having to take the
343 		 * lock.  smp_wmb() makes sure that all the writes above are
344 		 * done before we pop in the zero below
345 		 */
346 		btrfs_init_reloc_root(trans, root);
347 		smp_mb__before_atomic();
348 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
349 	}
350 	return 0;
351 }
352 
353 
btrfs_add_dropped_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)354 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
355 			    struct btrfs_root *root)
356 {
357 	struct btrfs_transaction *cur_trans = trans->transaction;
358 
359 	/* Add ourselves to the transaction dropped list */
360 	spin_lock(&cur_trans->dropped_roots_lock);
361 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
362 	spin_unlock(&cur_trans->dropped_roots_lock);
363 
364 	/* Make sure we don't try to update the root at commit time */
365 	spin_lock(&root->fs_info->fs_roots_radix_lock);
366 	radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
367 			     (unsigned long)root->root_key.objectid,
368 			     BTRFS_ROOT_TRANS_TAG);
369 	spin_unlock(&root->fs_info->fs_roots_radix_lock);
370 }
371 
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)372 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
373 			       struct btrfs_root *root)
374 {
375 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
376 		return 0;
377 
378 	/*
379 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
380 	 * and barriers
381 	 */
382 	smp_rmb();
383 	if (root->last_trans == trans->transid &&
384 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
385 		return 0;
386 
387 	mutex_lock(&root->fs_info->reloc_mutex);
388 	record_root_in_trans(trans, root);
389 	mutex_unlock(&root->fs_info->reloc_mutex);
390 
391 	return 0;
392 }
393 
is_transaction_blocked(struct btrfs_transaction * trans)394 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
395 {
396 	return (trans->state >= TRANS_STATE_BLOCKED &&
397 		trans->state < TRANS_STATE_UNBLOCKED &&
398 		!trans->aborted);
399 }
400 
401 /* wait for commit against the current transaction to become unblocked
402  * when this is done, it is safe to start a new transaction, but the current
403  * transaction might not be fully on disk.
404  */
wait_current_trans(struct btrfs_root * root)405 static void wait_current_trans(struct btrfs_root *root)
406 {
407 	struct btrfs_transaction *cur_trans;
408 
409 	spin_lock(&root->fs_info->trans_lock);
410 	cur_trans = root->fs_info->running_transaction;
411 	if (cur_trans && is_transaction_blocked(cur_trans)) {
412 		atomic_inc(&cur_trans->use_count);
413 		spin_unlock(&root->fs_info->trans_lock);
414 
415 		wait_event(root->fs_info->transaction_wait,
416 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
417 			   cur_trans->aborted);
418 		btrfs_put_transaction(cur_trans);
419 	} else {
420 		spin_unlock(&root->fs_info->trans_lock);
421 	}
422 }
423 
may_wait_transaction(struct btrfs_root * root,int type)424 static int may_wait_transaction(struct btrfs_root *root, int type)
425 {
426 	if (root->fs_info->log_root_recovering)
427 		return 0;
428 
429 	if (type == TRANS_USERSPACE)
430 		return 1;
431 
432 	if (type == TRANS_START &&
433 	    !atomic_read(&root->fs_info->open_ioctl_trans))
434 		return 1;
435 
436 	return 0;
437 }
438 
need_reserve_reloc_root(struct btrfs_root * root)439 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
440 {
441 	if (!root->fs_info->reloc_ctl ||
442 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
443 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
444 	    root->reloc_root)
445 		return false;
446 
447 	return true;
448 }
449 
450 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,unsigned int num_items,unsigned int type,enum btrfs_reserve_flush_enum flush)451 start_transaction(struct btrfs_root *root, unsigned int num_items,
452 		  unsigned int type, enum btrfs_reserve_flush_enum flush)
453 {
454 	struct btrfs_trans_handle *h;
455 	struct btrfs_transaction *cur_trans;
456 	u64 num_bytes = 0;
457 	u64 qgroup_reserved = 0;
458 	bool reloc_reserved = false;
459 	int ret;
460 
461 	/* Send isn't supposed to start transactions. */
462 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
463 
464 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
465 		return ERR_PTR(-EROFS);
466 
467 	if (current->journal_info) {
468 		WARN_ON(type & TRANS_EXTWRITERS);
469 		h = current->journal_info;
470 		h->use_count++;
471 		WARN_ON(h->use_count > 2);
472 		h->orig_rsv = h->block_rsv;
473 		h->block_rsv = NULL;
474 		goto got_it;
475 	}
476 
477 	/*
478 	 * Do the reservation before we join the transaction so we can do all
479 	 * the appropriate flushing if need be.
480 	 */
481 	if (num_items > 0 && root != root->fs_info->chunk_root) {
482 		qgroup_reserved = num_items * root->nodesize;
483 		ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
484 		if (ret)
485 			return ERR_PTR(ret);
486 
487 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
488 		/*
489 		 * Do the reservation for the relocation root creation
490 		 */
491 		if (need_reserve_reloc_root(root)) {
492 			num_bytes += root->nodesize;
493 			reloc_reserved = true;
494 		}
495 
496 		ret = btrfs_block_rsv_add(root,
497 					  &root->fs_info->trans_block_rsv,
498 					  num_bytes, flush);
499 		if (ret)
500 			goto reserve_fail;
501 	}
502 again:
503 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
504 	if (!h) {
505 		ret = -ENOMEM;
506 		goto alloc_fail;
507 	}
508 
509 	/*
510 	 * If we are JOIN_NOLOCK we're already committing a transaction and
511 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
512 	 * because we're already holding a ref.  We need this because we could
513 	 * have raced in and did an fsync() on a file which can kick a commit
514 	 * and then we deadlock with somebody doing a freeze.
515 	 *
516 	 * If we are ATTACH, it means we just want to catch the current
517 	 * transaction and commit it, so we needn't do sb_start_intwrite().
518 	 */
519 	if (type & __TRANS_FREEZABLE)
520 		sb_start_intwrite(root->fs_info->sb);
521 
522 	if (may_wait_transaction(root, type))
523 		wait_current_trans(root);
524 
525 	do {
526 		ret = join_transaction(root, type);
527 		if (ret == -EBUSY) {
528 			wait_current_trans(root);
529 			if (unlikely(type == TRANS_ATTACH))
530 				ret = -ENOENT;
531 		}
532 	} while (ret == -EBUSY);
533 
534 	if (ret < 0) {
535 		/* We must get the transaction if we are JOIN_NOLOCK. */
536 		BUG_ON(type == TRANS_JOIN_NOLOCK);
537 		goto join_fail;
538 	}
539 
540 	cur_trans = root->fs_info->running_transaction;
541 
542 	h->transid = cur_trans->transid;
543 	h->transaction = cur_trans;
544 	h->root = root;
545 	h->use_count = 1;
546 
547 	h->type = type;
548 	h->can_flush_pending_bgs = true;
549 	INIT_LIST_HEAD(&h->qgroup_ref_list);
550 	INIT_LIST_HEAD(&h->new_bgs);
551 
552 	smp_mb();
553 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
554 	    may_wait_transaction(root, type)) {
555 		current->journal_info = h;
556 		btrfs_commit_transaction(h, root);
557 		goto again;
558 	}
559 
560 	if (num_bytes) {
561 		trace_btrfs_space_reservation(root->fs_info, "transaction",
562 					      h->transid, num_bytes, 1);
563 		h->block_rsv = &root->fs_info->trans_block_rsv;
564 		h->bytes_reserved = num_bytes;
565 		h->reloc_reserved = reloc_reserved;
566 	}
567 
568 got_it:
569 	btrfs_record_root_in_trans(h, root);
570 
571 	if (!current->journal_info && type != TRANS_USERSPACE)
572 		current->journal_info = h;
573 	return h;
574 
575 join_fail:
576 	if (type & __TRANS_FREEZABLE)
577 		sb_end_intwrite(root->fs_info->sb);
578 	kmem_cache_free(btrfs_trans_handle_cachep, h);
579 alloc_fail:
580 	if (num_bytes)
581 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
582 					num_bytes);
583 reserve_fail:
584 	btrfs_qgroup_free_meta(root, qgroup_reserved);
585 	return ERR_PTR(ret);
586 }
587 
btrfs_start_transaction(struct btrfs_root * root,unsigned int num_items)588 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
589 						   unsigned int num_items)
590 {
591 	return start_transaction(root, num_items, TRANS_START,
592 				 BTRFS_RESERVE_FLUSH_ALL);
593 }
btrfs_start_transaction_fallback_global_rsv(struct btrfs_root * root,unsigned int num_items,int min_factor)594 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
595 					struct btrfs_root *root,
596 					unsigned int num_items,
597 					int min_factor)
598 {
599 	struct btrfs_trans_handle *trans;
600 	u64 num_bytes;
601 	int ret;
602 
603 	trans = btrfs_start_transaction(root, num_items);
604 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
605 		return trans;
606 
607 	trans = btrfs_start_transaction(root, 0);
608 	if (IS_ERR(trans))
609 		return trans;
610 
611 	num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
612 	ret = btrfs_cond_migrate_bytes(root->fs_info,
613 				       &root->fs_info->trans_block_rsv,
614 				       num_bytes,
615 				       min_factor);
616 	if (ret) {
617 		btrfs_end_transaction(trans, root);
618 		return ERR_PTR(ret);
619 	}
620 
621 	trans->block_rsv = &root->fs_info->trans_block_rsv;
622 	trans->bytes_reserved = num_bytes;
623 
624 	return trans;
625 }
626 
btrfs_start_transaction_lflush(struct btrfs_root * root,unsigned int num_items)627 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
628 					struct btrfs_root *root,
629 					unsigned int num_items)
630 {
631 	return start_transaction(root, num_items, TRANS_START,
632 				 BTRFS_RESERVE_FLUSH_LIMIT);
633 }
634 
btrfs_join_transaction(struct btrfs_root * root)635 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
636 {
637 	return start_transaction(root, 0, TRANS_JOIN, 0);
638 }
639 
btrfs_join_transaction_nolock(struct btrfs_root * root)640 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
641 {
642 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
643 }
644 
btrfs_start_ioctl_transaction(struct btrfs_root * root)645 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
646 {
647 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
648 }
649 
650 /*
651  * btrfs_attach_transaction() - catch the running transaction
652  *
653  * It is used when we want to commit the current the transaction, but
654  * don't want to start a new one.
655  *
656  * Note: If this function return -ENOENT, it just means there is no
657  * running transaction. But it is possible that the inactive transaction
658  * is still in the memory, not fully on disk. If you hope there is no
659  * inactive transaction in the fs when -ENOENT is returned, you should
660  * invoke
661  *     btrfs_attach_transaction_barrier()
662  */
btrfs_attach_transaction(struct btrfs_root * root)663 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
664 {
665 	return start_transaction(root, 0, TRANS_ATTACH, 0);
666 }
667 
668 /*
669  * btrfs_attach_transaction_barrier() - catch the running transaction
670  *
671  * It is similar to the above function, the differentia is this one
672  * will wait for all the inactive transactions until they fully
673  * complete.
674  */
675 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)676 btrfs_attach_transaction_barrier(struct btrfs_root *root)
677 {
678 	struct btrfs_trans_handle *trans;
679 
680 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
681 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
682 		btrfs_wait_for_commit(root, 0);
683 
684 	return trans;
685 }
686 
687 /* wait for a transaction commit to be fully complete */
wait_for_commit(struct btrfs_root * root,struct btrfs_transaction * commit)688 static noinline void wait_for_commit(struct btrfs_root *root,
689 				    struct btrfs_transaction *commit)
690 {
691 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
692 }
693 
btrfs_wait_for_commit(struct btrfs_root * root,u64 transid)694 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
695 {
696 	struct btrfs_transaction *cur_trans = NULL, *t;
697 	int ret = 0;
698 
699 	if (transid) {
700 		if (transid <= root->fs_info->last_trans_committed)
701 			goto out;
702 
703 		/* find specified transaction */
704 		spin_lock(&root->fs_info->trans_lock);
705 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
706 			if (t->transid == transid) {
707 				cur_trans = t;
708 				atomic_inc(&cur_trans->use_count);
709 				ret = 0;
710 				break;
711 			}
712 			if (t->transid > transid) {
713 				ret = 0;
714 				break;
715 			}
716 		}
717 		spin_unlock(&root->fs_info->trans_lock);
718 
719 		/*
720 		 * The specified transaction doesn't exist, or we
721 		 * raced with btrfs_commit_transaction
722 		 */
723 		if (!cur_trans) {
724 			if (transid > root->fs_info->last_trans_committed)
725 				ret = -EINVAL;
726 			goto out;
727 		}
728 	} else {
729 		/* find newest transaction that is committing | committed */
730 		spin_lock(&root->fs_info->trans_lock);
731 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
732 					    list) {
733 			if (t->state >= TRANS_STATE_COMMIT_START) {
734 				if (t->state == TRANS_STATE_COMPLETED)
735 					break;
736 				cur_trans = t;
737 				atomic_inc(&cur_trans->use_count);
738 				break;
739 			}
740 		}
741 		spin_unlock(&root->fs_info->trans_lock);
742 		if (!cur_trans)
743 			goto out;  /* nothing committing|committed */
744 	}
745 
746 	wait_for_commit(root, cur_trans);
747 	btrfs_put_transaction(cur_trans);
748 out:
749 	return ret;
750 }
751 
btrfs_throttle(struct btrfs_root * root)752 void btrfs_throttle(struct btrfs_root *root)
753 {
754 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
755 		wait_current_trans(root);
756 }
757 
should_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)758 static int should_end_transaction(struct btrfs_trans_handle *trans,
759 				  struct btrfs_root *root)
760 {
761 	if (root->fs_info->global_block_rsv.space_info->full &&
762 	    btrfs_check_space_for_delayed_refs(trans, root))
763 		return 1;
764 
765 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
766 }
767 
btrfs_should_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)768 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
769 				 struct btrfs_root *root)
770 {
771 	struct btrfs_transaction *cur_trans = trans->transaction;
772 	int updates;
773 	int err;
774 
775 	smp_mb();
776 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
777 	    cur_trans->delayed_refs.flushing)
778 		return 1;
779 
780 	updates = trans->delayed_ref_updates;
781 	trans->delayed_ref_updates = 0;
782 	if (updates) {
783 		err = btrfs_run_delayed_refs(trans, root, updates * 2);
784 		if (err) /* Error code will also eval true */
785 			return err;
786 	}
787 
788 	return should_end_transaction(trans, root);
789 }
790 
__btrfs_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root,int throttle)791 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
792 			  struct btrfs_root *root, int throttle)
793 {
794 	struct btrfs_transaction *cur_trans = trans->transaction;
795 	struct btrfs_fs_info *info = root->fs_info;
796 	unsigned long cur = trans->delayed_ref_updates;
797 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
798 	int err = 0;
799 	int must_run_delayed_refs = 0;
800 
801 	if (trans->use_count > 1) {
802 		trans->use_count--;
803 		trans->block_rsv = trans->orig_rsv;
804 		return 0;
805 	}
806 
807 	btrfs_trans_release_metadata(trans, root);
808 	trans->block_rsv = NULL;
809 
810 	if (!list_empty(&trans->new_bgs))
811 		btrfs_create_pending_block_groups(trans, root);
812 
813 	trans->delayed_ref_updates = 0;
814 	if (!trans->sync) {
815 		must_run_delayed_refs =
816 			btrfs_should_throttle_delayed_refs(trans, root);
817 		cur = max_t(unsigned long, cur, 32);
818 
819 		/*
820 		 * don't make the caller wait if they are from a NOLOCK
821 		 * or ATTACH transaction, it will deadlock with commit
822 		 */
823 		if (must_run_delayed_refs == 1 &&
824 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
825 			must_run_delayed_refs = 2;
826 	}
827 
828 	btrfs_trans_release_metadata(trans, root);
829 	trans->block_rsv = NULL;
830 
831 	if (!list_empty(&trans->new_bgs))
832 		btrfs_create_pending_block_groups(trans, root);
833 
834 	btrfs_trans_release_chunk_metadata(trans);
835 
836 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
837 	    should_end_transaction(trans, root) &&
838 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
839 		spin_lock(&info->trans_lock);
840 		if (cur_trans->state == TRANS_STATE_RUNNING)
841 			cur_trans->state = TRANS_STATE_BLOCKED;
842 		spin_unlock(&info->trans_lock);
843 	}
844 
845 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
846 		if (throttle)
847 			return btrfs_commit_transaction(trans, root);
848 		else
849 			wake_up_process(info->transaction_kthread);
850 	}
851 
852 	if (trans->type & __TRANS_FREEZABLE)
853 		sb_end_intwrite(root->fs_info->sb);
854 
855 	WARN_ON(cur_trans != info->running_transaction);
856 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
857 	atomic_dec(&cur_trans->num_writers);
858 	extwriter_counter_dec(cur_trans, trans->type);
859 
860 	/*
861 	 * Make sure counter is updated before we wake up waiters.
862 	 */
863 	smp_mb();
864 	if (waitqueue_active(&cur_trans->writer_wait))
865 		wake_up(&cur_trans->writer_wait);
866 	btrfs_put_transaction(cur_trans);
867 
868 	if (current->journal_info == trans)
869 		current->journal_info = NULL;
870 
871 	if (throttle)
872 		btrfs_run_delayed_iputs(root);
873 
874 	if (trans->aborted ||
875 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
876 		wake_up_process(info->transaction_kthread);
877 		err = -EIO;
878 	}
879 	assert_qgroups_uptodate(trans);
880 
881 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
882 	if (must_run_delayed_refs) {
883 		btrfs_async_run_delayed_refs(root, cur,
884 					     must_run_delayed_refs == 1);
885 	}
886 	return err;
887 }
888 
btrfs_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)889 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
890 			  struct btrfs_root *root)
891 {
892 	return __btrfs_end_transaction(trans, root, 0);
893 }
894 
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans,struct btrfs_root * root)895 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
896 				   struct btrfs_root *root)
897 {
898 	return __btrfs_end_transaction(trans, root, 1);
899 }
900 
901 /*
902  * when btree blocks are allocated, they have some corresponding bits set for
903  * them in one of two extent_io trees.  This is used to make sure all of
904  * those extents are sent to disk but does not wait on them
905  */
btrfs_write_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)906 int btrfs_write_marked_extents(struct btrfs_root *root,
907 			       struct extent_io_tree *dirty_pages, int mark)
908 {
909 	int err = 0;
910 	int werr = 0;
911 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
912 	struct extent_state *cached_state = NULL;
913 	u64 start = 0;
914 	u64 end;
915 
916 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
917 				      mark, &cached_state)) {
918 		bool wait_writeback = false;
919 
920 		err = convert_extent_bit(dirty_pages, start, end,
921 					 EXTENT_NEED_WAIT,
922 					 mark, &cached_state, GFP_NOFS);
923 		/*
924 		 * convert_extent_bit can return -ENOMEM, which is most of the
925 		 * time a temporary error. So when it happens, ignore the error
926 		 * and wait for writeback of this range to finish - because we
927 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
928 		 * to btrfs_wait_marked_extents() would not know that writeback
929 		 * for this range started and therefore wouldn't wait for it to
930 		 * finish - we don't want to commit a superblock that points to
931 		 * btree nodes/leafs for which writeback hasn't finished yet
932 		 * (and without errors).
933 		 * We cleanup any entries left in the io tree when committing
934 		 * the transaction (through clear_btree_io_tree()).
935 		 */
936 		if (err == -ENOMEM) {
937 			err = 0;
938 			wait_writeback = true;
939 		}
940 		if (!err)
941 			err = filemap_fdatawrite_range(mapping, start, end);
942 		if (err)
943 			werr = err;
944 		else if (wait_writeback)
945 			werr = filemap_fdatawait_range(mapping, start, end);
946 		free_extent_state(cached_state);
947 		cached_state = NULL;
948 		cond_resched();
949 		start = end + 1;
950 	}
951 	return werr;
952 }
953 
954 /*
955  * when btree blocks are allocated, they have some corresponding bits set for
956  * them in one of two extent_io trees.  This is used to make sure all of
957  * those extents are on disk for transaction or log commit.  We wait
958  * on all the pages and clear them from the dirty pages state tree
959  */
btrfs_wait_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)960 int btrfs_wait_marked_extents(struct btrfs_root *root,
961 			      struct extent_io_tree *dirty_pages, int mark)
962 {
963 	int err = 0;
964 	int werr = 0;
965 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
966 	struct extent_state *cached_state = NULL;
967 	u64 start = 0;
968 	u64 end;
969 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
970 	bool errors = false;
971 
972 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
973 				      EXTENT_NEED_WAIT, &cached_state)) {
974 		/*
975 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
976 		 * When committing the transaction, we'll remove any entries
977 		 * left in the io tree. For a log commit, we don't remove them
978 		 * after committing the log because the tree can be accessed
979 		 * concurrently - we do it only at transaction commit time when
980 		 * it's safe to do it (through clear_btree_io_tree()).
981 		 */
982 		err = clear_extent_bit(dirty_pages, start, end,
983 				       EXTENT_NEED_WAIT,
984 				       0, 0, &cached_state, GFP_NOFS);
985 		if (err == -ENOMEM)
986 			err = 0;
987 		if (!err)
988 			err = filemap_fdatawait_range(mapping, start, end);
989 		if (err)
990 			werr = err;
991 		free_extent_state(cached_state);
992 		cached_state = NULL;
993 		cond_resched();
994 		start = end + 1;
995 	}
996 	if (err)
997 		werr = err;
998 
999 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1000 		if ((mark & EXTENT_DIRTY) &&
1001 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1002 				       &btree_ino->runtime_flags))
1003 			errors = true;
1004 
1005 		if ((mark & EXTENT_NEW) &&
1006 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1007 				       &btree_ino->runtime_flags))
1008 			errors = true;
1009 	} else {
1010 		if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1011 				       &btree_ino->runtime_flags))
1012 			errors = true;
1013 	}
1014 
1015 	if (errors && !werr)
1016 		werr = -EIO;
1017 
1018 	return werr;
1019 }
1020 
1021 /*
1022  * when btree blocks are allocated, they have some corresponding bits set for
1023  * them in one of two extent_io trees.  This is used to make sure all of
1024  * those extents are on disk for transaction or log commit
1025  */
btrfs_write_and_wait_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)1026 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1027 				struct extent_io_tree *dirty_pages, int mark)
1028 {
1029 	int ret;
1030 	int ret2;
1031 	struct blk_plug plug;
1032 
1033 	blk_start_plug(&plug);
1034 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1035 	blk_finish_plug(&plug);
1036 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1037 
1038 	if (ret)
1039 		return ret;
1040 	if (ret2)
1041 		return ret2;
1042 	return 0;
1043 }
1044 
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)1045 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1046 				     struct btrfs_root *root)
1047 {
1048 	int ret;
1049 
1050 	ret = btrfs_write_and_wait_marked_extents(root,
1051 					   &trans->transaction->dirty_pages,
1052 					   EXTENT_DIRTY);
1053 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1054 
1055 	return ret;
1056 }
1057 
1058 /*
1059  * this is used to update the root pointer in the tree of tree roots.
1060  *
1061  * But, in the case of the extent allocation tree, updating the root
1062  * pointer may allocate blocks which may change the root of the extent
1063  * allocation tree.
1064  *
1065  * So, this loops and repeats and makes sure the cowonly root didn't
1066  * change while the root pointer was being updated in the metadata.
1067  */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1068 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1069 			       struct btrfs_root *root)
1070 {
1071 	int ret;
1072 	u64 old_root_bytenr;
1073 	u64 old_root_used;
1074 	struct btrfs_root *tree_root = root->fs_info->tree_root;
1075 
1076 	old_root_used = btrfs_root_used(&root->root_item);
1077 
1078 	while (1) {
1079 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1080 		if (old_root_bytenr == root->node->start &&
1081 		    old_root_used == btrfs_root_used(&root->root_item))
1082 			break;
1083 
1084 		btrfs_set_root_node(&root->root_item, root->node);
1085 		ret = btrfs_update_root(trans, tree_root,
1086 					&root->root_key,
1087 					&root->root_item);
1088 		if (ret)
1089 			return ret;
1090 
1091 		old_root_used = btrfs_root_used(&root->root_item);
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 /*
1098  * update all the cowonly tree roots on disk
1099  *
1100  * The error handling in this function may not be obvious. Any of the
1101  * failures will cause the file system to go offline. We still need
1102  * to clean up the delayed refs.
1103  */
commit_cowonly_roots(struct btrfs_trans_handle * trans,struct btrfs_root * root)1104 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1105 					 struct btrfs_root *root)
1106 {
1107 	struct btrfs_fs_info *fs_info = root->fs_info;
1108 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1109 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1110 	struct list_head *next;
1111 	struct extent_buffer *eb;
1112 	int ret;
1113 
1114 	eb = btrfs_lock_root_node(fs_info->tree_root);
1115 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1116 			      0, &eb);
1117 	btrfs_tree_unlock(eb);
1118 	free_extent_buffer(eb);
1119 
1120 	if (ret)
1121 		return ret;
1122 
1123 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1124 	if (ret)
1125 		return ret;
1126 
1127 	ret = btrfs_run_dev_stats(trans, root->fs_info);
1128 	if (ret)
1129 		return ret;
1130 	ret = btrfs_run_dev_replace(trans, root->fs_info);
1131 	if (ret)
1132 		return ret;
1133 	ret = btrfs_run_qgroups(trans, root->fs_info);
1134 	if (ret)
1135 		return ret;
1136 
1137 	ret = btrfs_setup_space_cache(trans, root);
1138 	if (ret)
1139 		return ret;
1140 
1141 	/* run_qgroups might have added some more refs */
1142 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1143 	if (ret)
1144 		return ret;
1145 again:
1146 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1147 		next = fs_info->dirty_cowonly_roots.next;
1148 		list_del_init(next);
1149 		root = list_entry(next, struct btrfs_root, dirty_list);
1150 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1151 
1152 		if (root != fs_info->extent_root)
1153 			list_add_tail(&root->dirty_list,
1154 				      &trans->transaction->switch_commits);
1155 		ret = update_cowonly_root(trans, root);
1156 		if (ret)
1157 			return ret;
1158 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1159 		if (ret)
1160 			return ret;
1161 	}
1162 
1163 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1164 		ret = btrfs_write_dirty_block_groups(trans, root);
1165 		if (ret)
1166 			return ret;
1167 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1168 		if (ret)
1169 			return ret;
1170 	}
1171 
1172 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1173 		goto again;
1174 
1175 	list_add_tail(&fs_info->extent_root->dirty_list,
1176 		      &trans->transaction->switch_commits);
1177 	btrfs_after_dev_replace_commit(fs_info);
1178 
1179 	return 0;
1180 }
1181 
1182 /*
1183  * dead roots are old snapshots that need to be deleted.  This allocates
1184  * a dirty root struct and adds it into the list of dead roots that need to
1185  * be deleted
1186  */
btrfs_add_dead_root(struct btrfs_root * root)1187 void btrfs_add_dead_root(struct btrfs_root *root)
1188 {
1189 	spin_lock(&root->fs_info->trans_lock);
1190 	if (list_empty(&root->root_list))
1191 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1192 	spin_unlock(&root->fs_info->trans_lock);
1193 }
1194 
1195 /*
1196  * update all the cowonly tree roots on disk
1197  */
commit_fs_roots(struct btrfs_trans_handle * trans,struct btrfs_root * root)1198 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1199 				    struct btrfs_root *root)
1200 {
1201 	struct btrfs_root *gang[8];
1202 	struct btrfs_fs_info *fs_info = root->fs_info;
1203 	int i;
1204 	int ret;
1205 	int err = 0;
1206 
1207 	spin_lock(&fs_info->fs_roots_radix_lock);
1208 	while (1) {
1209 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1210 						 (void **)gang, 0,
1211 						 ARRAY_SIZE(gang),
1212 						 BTRFS_ROOT_TRANS_TAG);
1213 		if (ret == 0)
1214 			break;
1215 		for (i = 0; i < ret; i++) {
1216 			root = gang[i];
1217 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1218 					(unsigned long)root->root_key.objectid,
1219 					BTRFS_ROOT_TRANS_TAG);
1220 			spin_unlock(&fs_info->fs_roots_radix_lock);
1221 
1222 			btrfs_free_log(trans, root);
1223 			btrfs_update_reloc_root(trans, root);
1224 			btrfs_orphan_commit_root(trans, root);
1225 
1226 			btrfs_save_ino_cache(root, trans);
1227 
1228 			/* see comments in should_cow_block() */
1229 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1230 			smp_mb__after_atomic();
1231 
1232 			if (root->commit_root != root->node) {
1233 				list_add_tail(&root->dirty_list,
1234 					&trans->transaction->switch_commits);
1235 				btrfs_set_root_node(&root->root_item,
1236 						    root->node);
1237 			}
1238 
1239 			err = btrfs_update_root(trans, fs_info->tree_root,
1240 						&root->root_key,
1241 						&root->root_item);
1242 			spin_lock(&fs_info->fs_roots_radix_lock);
1243 			if (err)
1244 				break;
1245 			btrfs_qgroup_free_meta_all(root);
1246 		}
1247 	}
1248 	spin_unlock(&fs_info->fs_roots_radix_lock);
1249 	return err;
1250 }
1251 
1252 /*
1253  * defrag a given btree.
1254  * Every leaf in the btree is read and defragged.
1255  */
btrfs_defrag_root(struct btrfs_root * root)1256 int btrfs_defrag_root(struct btrfs_root *root)
1257 {
1258 	struct btrfs_fs_info *info = root->fs_info;
1259 	struct btrfs_trans_handle *trans;
1260 	int ret;
1261 
1262 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1263 		return 0;
1264 
1265 	while (1) {
1266 		trans = btrfs_start_transaction(root, 0);
1267 		if (IS_ERR(trans)) {
1268 			ret = PTR_ERR(trans);
1269 			break;
1270 		}
1271 
1272 		ret = btrfs_defrag_leaves(trans, root);
1273 
1274 		btrfs_end_transaction(trans, root);
1275 		btrfs_btree_balance_dirty(info->tree_root);
1276 		cond_resched();
1277 
1278 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1279 			break;
1280 
1281 		if (btrfs_defrag_cancelled(root->fs_info)) {
1282 			pr_debug("BTRFS: defrag_root cancelled\n");
1283 			ret = -EAGAIN;
1284 			break;
1285 		}
1286 	}
1287 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1288 	return ret;
1289 }
1290 
1291 /*
1292  * new snapshots need to be created at a very specific time in the
1293  * transaction commit.  This does the actual creation.
1294  *
1295  * Note:
1296  * If the error which may affect the commitment of the current transaction
1297  * happens, we should return the error number. If the error which just affect
1298  * the creation of the pending snapshots, just return 0.
1299  */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_pending_snapshot * pending)1300 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1301 				   struct btrfs_fs_info *fs_info,
1302 				   struct btrfs_pending_snapshot *pending)
1303 {
1304 	struct btrfs_key key;
1305 	struct btrfs_root_item *new_root_item;
1306 	struct btrfs_root *tree_root = fs_info->tree_root;
1307 	struct btrfs_root *root = pending->root;
1308 	struct btrfs_root *parent_root;
1309 	struct btrfs_block_rsv *rsv;
1310 	struct inode *parent_inode;
1311 	struct btrfs_path *path;
1312 	struct btrfs_dir_item *dir_item;
1313 	struct dentry *dentry;
1314 	struct extent_buffer *tmp;
1315 	struct extent_buffer *old;
1316 	struct timespec cur_time = CURRENT_TIME;
1317 	int ret = 0;
1318 	u64 to_reserve = 0;
1319 	u64 index = 0;
1320 	u64 objectid;
1321 	u64 root_flags;
1322 	uuid_le new_uuid;
1323 
1324 	path = btrfs_alloc_path();
1325 	if (!path) {
1326 		pending->error = -ENOMEM;
1327 		return 0;
1328 	}
1329 
1330 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1331 	if (!new_root_item) {
1332 		pending->error = -ENOMEM;
1333 		goto root_item_alloc_fail;
1334 	}
1335 
1336 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1337 	if (pending->error)
1338 		goto no_free_objectid;
1339 
1340 	/*
1341 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1342 	 * accounted by later btrfs_qgroup_inherit().
1343 	 */
1344 	btrfs_set_skip_qgroup(trans, objectid);
1345 
1346 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1347 
1348 	if (to_reserve > 0) {
1349 		pending->error = btrfs_block_rsv_add(root,
1350 						     &pending->block_rsv,
1351 						     to_reserve,
1352 						     BTRFS_RESERVE_NO_FLUSH);
1353 		if (pending->error)
1354 			goto clear_skip_qgroup;
1355 	}
1356 
1357 	key.objectid = objectid;
1358 	key.offset = (u64)-1;
1359 	key.type = BTRFS_ROOT_ITEM_KEY;
1360 
1361 	rsv = trans->block_rsv;
1362 	trans->block_rsv = &pending->block_rsv;
1363 	trans->bytes_reserved = trans->block_rsv->reserved;
1364 
1365 	dentry = pending->dentry;
1366 	parent_inode = pending->dir;
1367 	parent_root = BTRFS_I(parent_inode)->root;
1368 	record_root_in_trans(trans, parent_root);
1369 
1370 	/*
1371 	 * insert the directory item
1372 	 */
1373 	ret = btrfs_set_inode_index(parent_inode, &index);
1374 	BUG_ON(ret); /* -ENOMEM */
1375 
1376 	/* check if there is a file/dir which has the same name. */
1377 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1378 					 btrfs_ino(parent_inode),
1379 					 dentry->d_name.name,
1380 					 dentry->d_name.len, 0);
1381 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1382 		pending->error = -EEXIST;
1383 		goto dir_item_existed;
1384 	} else if (IS_ERR(dir_item)) {
1385 		ret = PTR_ERR(dir_item);
1386 		btrfs_abort_transaction(trans, root, ret);
1387 		goto fail;
1388 	}
1389 	btrfs_release_path(path);
1390 
1391 	/*
1392 	 * pull in the delayed directory update
1393 	 * and the delayed inode item
1394 	 * otherwise we corrupt the FS during
1395 	 * snapshot
1396 	 */
1397 	ret = btrfs_run_delayed_items(trans, root);
1398 	if (ret) {	/* Transaction aborted */
1399 		btrfs_abort_transaction(trans, root, ret);
1400 		goto fail;
1401 	}
1402 
1403 	record_root_in_trans(trans, root);
1404 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1405 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1406 	btrfs_check_and_init_root_item(new_root_item);
1407 
1408 	root_flags = btrfs_root_flags(new_root_item);
1409 	if (pending->readonly)
1410 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1411 	else
1412 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1413 	btrfs_set_root_flags(new_root_item, root_flags);
1414 
1415 	btrfs_set_root_generation_v2(new_root_item,
1416 			trans->transid);
1417 	uuid_le_gen(&new_uuid);
1418 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1419 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1420 			BTRFS_UUID_SIZE);
1421 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1422 		memset(new_root_item->received_uuid, 0,
1423 		       sizeof(new_root_item->received_uuid));
1424 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1425 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1426 		btrfs_set_root_stransid(new_root_item, 0);
1427 		btrfs_set_root_rtransid(new_root_item, 0);
1428 	}
1429 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1430 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1431 	btrfs_set_root_otransid(new_root_item, trans->transid);
1432 
1433 	old = btrfs_lock_root_node(root);
1434 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1435 	if (ret) {
1436 		btrfs_tree_unlock(old);
1437 		free_extent_buffer(old);
1438 		btrfs_abort_transaction(trans, root, ret);
1439 		goto fail;
1440 	}
1441 
1442 	btrfs_set_lock_blocking(old);
1443 
1444 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1445 	/* clean up in any case */
1446 	btrfs_tree_unlock(old);
1447 	free_extent_buffer(old);
1448 	if (ret) {
1449 		btrfs_abort_transaction(trans, root, ret);
1450 		goto fail;
1451 	}
1452 	/* see comments in should_cow_block() */
1453 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1454 	smp_wmb();
1455 
1456 	btrfs_set_root_node(new_root_item, tmp);
1457 	/* record when the snapshot was created in key.offset */
1458 	key.offset = trans->transid;
1459 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1460 	btrfs_tree_unlock(tmp);
1461 	free_extent_buffer(tmp);
1462 	if (ret) {
1463 		btrfs_abort_transaction(trans, root, ret);
1464 		goto fail;
1465 	}
1466 
1467 	/*
1468 	 * insert root back/forward references
1469 	 */
1470 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1471 				 parent_root->root_key.objectid,
1472 				 btrfs_ino(parent_inode), index,
1473 				 dentry->d_name.name, dentry->d_name.len);
1474 	if (ret) {
1475 		btrfs_abort_transaction(trans, root, ret);
1476 		goto fail;
1477 	}
1478 
1479 	key.offset = (u64)-1;
1480 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1481 	if (IS_ERR(pending->snap)) {
1482 		ret = PTR_ERR(pending->snap);
1483 		btrfs_abort_transaction(trans, root, ret);
1484 		goto fail;
1485 	}
1486 
1487 	ret = btrfs_reloc_post_snapshot(trans, pending);
1488 	if (ret) {
1489 		btrfs_abort_transaction(trans, root, ret);
1490 		goto fail;
1491 	}
1492 
1493 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1494 	if (ret) {
1495 		btrfs_abort_transaction(trans, root, ret);
1496 		goto fail;
1497 	}
1498 
1499 	ret = btrfs_insert_dir_item(trans, parent_root,
1500 				    dentry->d_name.name, dentry->d_name.len,
1501 				    parent_inode, &key,
1502 				    BTRFS_FT_DIR, index);
1503 	/* We have check then name at the beginning, so it is impossible. */
1504 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1505 	if (ret) {
1506 		btrfs_abort_transaction(trans, root, ret);
1507 		goto fail;
1508 	}
1509 
1510 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1511 					 dentry->d_name.len * 2);
1512 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1513 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1514 	if (ret) {
1515 		btrfs_abort_transaction(trans, root, ret);
1516 		goto fail;
1517 	}
1518 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1519 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1520 	if (ret) {
1521 		btrfs_abort_transaction(trans, root, ret);
1522 		goto fail;
1523 	}
1524 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1525 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1526 					  new_root_item->received_uuid,
1527 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1528 					  objectid);
1529 		if (ret && ret != -EEXIST) {
1530 			btrfs_abort_transaction(trans, root, ret);
1531 			goto fail;
1532 		}
1533 	}
1534 
1535 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1536 	if (ret) {
1537 		btrfs_abort_transaction(trans, root, ret);
1538 		goto fail;
1539 	}
1540 
1541 	/*
1542 	 * account qgroup counters before qgroup_inherit()
1543 	 */
1544 	ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1545 	if (ret)
1546 		goto fail;
1547 	ret = btrfs_qgroup_account_extents(trans, fs_info);
1548 	if (ret)
1549 		goto fail;
1550 	ret = btrfs_qgroup_inherit(trans, fs_info,
1551 				   root->root_key.objectid,
1552 				   objectid, pending->inherit);
1553 	if (ret) {
1554 		btrfs_abort_transaction(trans, root, ret);
1555 		goto fail;
1556 	}
1557 
1558 fail:
1559 	pending->error = ret;
1560 dir_item_existed:
1561 	trans->block_rsv = rsv;
1562 	trans->bytes_reserved = 0;
1563 clear_skip_qgroup:
1564 	btrfs_clear_skip_qgroup(trans);
1565 no_free_objectid:
1566 	kfree(new_root_item);
1567 root_item_alloc_fail:
1568 	btrfs_free_path(path);
1569 	return ret;
1570 }
1571 
1572 /*
1573  * create all the snapshots we've scheduled for creation
1574  */
create_pending_snapshots(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1575 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1576 					     struct btrfs_fs_info *fs_info)
1577 {
1578 	struct btrfs_pending_snapshot *pending, *next;
1579 	struct list_head *head = &trans->transaction->pending_snapshots;
1580 	int ret = 0;
1581 
1582 	list_for_each_entry_safe(pending, next, head, list) {
1583 		list_del(&pending->list);
1584 		ret = create_pending_snapshot(trans, fs_info, pending);
1585 		if (ret)
1586 			break;
1587 	}
1588 	return ret;
1589 }
1590 
update_super_roots(struct btrfs_root * root)1591 static void update_super_roots(struct btrfs_root *root)
1592 {
1593 	struct btrfs_root_item *root_item;
1594 	struct btrfs_super_block *super;
1595 
1596 	super = root->fs_info->super_copy;
1597 
1598 	root_item = &root->fs_info->chunk_root->root_item;
1599 	super->chunk_root = root_item->bytenr;
1600 	super->chunk_root_generation = root_item->generation;
1601 	super->chunk_root_level = root_item->level;
1602 
1603 	root_item = &root->fs_info->tree_root->root_item;
1604 	super->root = root_item->bytenr;
1605 	super->generation = root_item->generation;
1606 	super->root_level = root_item->level;
1607 	if (btrfs_test_opt(root, SPACE_CACHE))
1608 		super->cache_generation = root_item->generation;
1609 	if (root->fs_info->update_uuid_tree_gen)
1610 		super->uuid_tree_generation = root_item->generation;
1611 }
1612 
btrfs_transaction_in_commit(struct btrfs_fs_info * info)1613 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1614 {
1615 	struct btrfs_transaction *trans;
1616 	int ret = 0;
1617 
1618 	spin_lock(&info->trans_lock);
1619 	trans = info->running_transaction;
1620 	if (trans)
1621 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1622 	spin_unlock(&info->trans_lock);
1623 	return ret;
1624 }
1625 
btrfs_transaction_blocked(struct btrfs_fs_info * info)1626 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1627 {
1628 	struct btrfs_transaction *trans;
1629 	int ret = 0;
1630 
1631 	spin_lock(&info->trans_lock);
1632 	trans = info->running_transaction;
1633 	if (trans)
1634 		ret = is_transaction_blocked(trans);
1635 	spin_unlock(&info->trans_lock);
1636 	return ret;
1637 }
1638 
1639 /*
1640  * wait for the current transaction commit to start and block subsequent
1641  * transaction joins
1642  */
wait_current_trans_commit_start(struct btrfs_root * root,struct btrfs_transaction * trans)1643 static void wait_current_trans_commit_start(struct btrfs_root *root,
1644 					    struct btrfs_transaction *trans)
1645 {
1646 	wait_event(root->fs_info->transaction_blocked_wait,
1647 		   trans->state >= TRANS_STATE_COMMIT_START ||
1648 		   trans->aborted);
1649 }
1650 
1651 /*
1652  * wait for the current transaction to start and then become unblocked.
1653  * caller holds ref.
1654  */
wait_current_trans_commit_start_and_unblock(struct btrfs_root * root,struct btrfs_transaction * trans)1655 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1656 					 struct btrfs_transaction *trans)
1657 {
1658 	wait_event(root->fs_info->transaction_wait,
1659 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1660 		   trans->aborted);
1661 }
1662 
1663 /*
1664  * commit transactions asynchronously. once btrfs_commit_transaction_async
1665  * returns, any subsequent transaction will not be allowed to join.
1666  */
1667 struct btrfs_async_commit {
1668 	struct btrfs_trans_handle *newtrans;
1669 	struct btrfs_root *root;
1670 	struct work_struct work;
1671 };
1672 
do_async_commit(struct work_struct * work)1673 static void do_async_commit(struct work_struct *work)
1674 {
1675 	struct btrfs_async_commit *ac =
1676 		container_of(work, struct btrfs_async_commit, work);
1677 
1678 	/*
1679 	 * We've got freeze protection passed with the transaction.
1680 	 * Tell lockdep about it.
1681 	 */
1682 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1683 		__sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1684 
1685 	current->journal_info = ac->newtrans;
1686 
1687 	btrfs_commit_transaction(ac->newtrans, ac->root);
1688 	kfree(ac);
1689 }
1690 
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans,struct btrfs_root * root,int wait_for_unblock)1691 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1692 				   struct btrfs_root *root,
1693 				   int wait_for_unblock)
1694 {
1695 	struct btrfs_async_commit *ac;
1696 	struct btrfs_transaction *cur_trans;
1697 
1698 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1699 	if (!ac)
1700 		return -ENOMEM;
1701 
1702 	INIT_WORK(&ac->work, do_async_commit);
1703 	ac->root = root;
1704 	ac->newtrans = btrfs_join_transaction(root);
1705 	if (IS_ERR(ac->newtrans)) {
1706 		int err = PTR_ERR(ac->newtrans);
1707 		kfree(ac);
1708 		return err;
1709 	}
1710 
1711 	/* take transaction reference */
1712 	cur_trans = trans->transaction;
1713 	atomic_inc(&cur_trans->use_count);
1714 
1715 	btrfs_end_transaction(trans, root);
1716 
1717 	/*
1718 	 * Tell lockdep we've released the freeze rwsem, since the
1719 	 * async commit thread will be the one to unlock it.
1720 	 */
1721 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1722 		__sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1723 
1724 	schedule_work(&ac->work);
1725 
1726 	/* wait for transaction to start and unblock */
1727 	if (wait_for_unblock)
1728 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1729 	else
1730 		wait_current_trans_commit_start(root, cur_trans);
1731 
1732 	if (current->journal_info == trans)
1733 		current->journal_info = NULL;
1734 
1735 	btrfs_put_transaction(cur_trans);
1736 	return 0;
1737 }
1738 
1739 
cleanup_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root,int err)1740 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1741 				struct btrfs_root *root, int err)
1742 {
1743 	struct btrfs_transaction *cur_trans = trans->transaction;
1744 	DEFINE_WAIT(wait);
1745 
1746 	WARN_ON(trans->use_count > 1);
1747 
1748 	btrfs_abort_transaction(trans, root, err);
1749 
1750 	spin_lock(&root->fs_info->trans_lock);
1751 
1752 	/*
1753 	 * If the transaction is removed from the list, it means this
1754 	 * transaction has been committed successfully, so it is impossible
1755 	 * to call the cleanup function.
1756 	 */
1757 	BUG_ON(list_empty(&cur_trans->list));
1758 
1759 	list_del_init(&cur_trans->list);
1760 	if (cur_trans == root->fs_info->running_transaction) {
1761 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1762 		spin_unlock(&root->fs_info->trans_lock);
1763 		wait_event(cur_trans->writer_wait,
1764 			   atomic_read(&cur_trans->num_writers) == 1);
1765 
1766 		spin_lock(&root->fs_info->trans_lock);
1767 	}
1768 	spin_unlock(&root->fs_info->trans_lock);
1769 
1770 	btrfs_cleanup_one_transaction(trans->transaction, root);
1771 
1772 	spin_lock(&root->fs_info->trans_lock);
1773 	if (cur_trans == root->fs_info->running_transaction)
1774 		root->fs_info->running_transaction = NULL;
1775 	spin_unlock(&root->fs_info->trans_lock);
1776 
1777 	if (trans->type & __TRANS_FREEZABLE)
1778 		sb_end_intwrite(root->fs_info->sb);
1779 	btrfs_put_transaction(cur_trans);
1780 	btrfs_put_transaction(cur_trans);
1781 
1782 	trace_btrfs_transaction_commit(root);
1783 
1784 	if (current->journal_info == trans)
1785 		current->journal_info = NULL;
1786 	btrfs_scrub_cancel(root->fs_info);
1787 
1788 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1789 }
1790 
btrfs_start_delalloc_flush(struct btrfs_fs_info * fs_info)1791 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1792 {
1793 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1794 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1795 	return 0;
1796 }
1797 
btrfs_wait_delalloc_flush(struct btrfs_fs_info * fs_info)1798 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1799 {
1800 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1801 		btrfs_wait_ordered_roots(fs_info, -1);
1802 }
1803 
1804 static inline void
btrfs_wait_pending_ordered(struct btrfs_transaction * cur_trans)1805 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1806 {
1807 	wait_event(cur_trans->pending_wait,
1808 		   atomic_read(&cur_trans->pending_ordered) == 0);
1809 }
1810 
btrfs_commit_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)1811 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1812 			     struct btrfs_root *root)
1813 {
1814 	struct btrfs_transaction *cur_trans = trans->transaction;
1815 	struct btrfs_transaction *prev_trans = NULL;
1816 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1817 	int ret;
1818 
1819 	/*
1820 	 * Some places just start a transaction to commit it.  We need to make
1821 	 * sure that if this commit fails that the abort code actually marks the
1822 	 * transaction as failed, so set trans->dirty to make the abort code do
1823 	 * the right thing.
1824 	 */
1825 	trans->dirty = true;
1826 
1827 	/* Stop the commit early if ->aborted is set */
1828 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1829 		ret = cur_trans->aborted;
1830 		btrfs_end_transaction(trans, root);
1831 		return ret;
1832 	}
1833 
1834 	btrfs_trans_release_metadata(trans, root);
1835 	trans->block_rsv = NULL;
1836 
1837 	/* make a pass through all the delayed refs we have so far
1838 	 * any runnings procs may add more while we are here
1839 	 */
1840 	ret = btrfs_run_delayed_refs(trans, root, 0);
1841 	if (ret) {
1842 		btrfs_end_transaction(trans, root);
1843 		return ret;
1844 	}
1845 
1846 	cur_trans = trans->transaction;
1847 
1848 	/*
1849 	 * set the flushing flag so procs in this transaction have to
1850 	 * start sending their work down.
1851 	 */
1852 	cur_trans->delayed_refs.flushing = 1;
1853 	smp_wmb();
1854 
1855 	if (!list_empty(&trans->new_bgs))
1856 		btrfs_create_pending_block_groups(trans, root);
1857 
1858 	ret = btrfs_run_delayed_refs(trans, root, 0);
1859 	if (ret) {
1860 		btrfs_end_transaction(trans, root);
1861 		return ret;
1862 	}
1863 
1864 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1865 		int run_it = 0;
1866 
1867 		/* this mutex is also taken before trying to set
1868 		 * block groups readonly.  We need to make sure
1869 		 * that nobody has set a block group readonly
1870 		 * after a extents from that block group have been
1871 		 * allocated for cache files.  btrfs_set_block_group_ro
1872 		 * will wait for the transaction to commit if it
1873 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1874 		 *
1875 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1876 		 * only one process starts all the block group IO.  It wouldn't
1877 		 * hurt to have more than one go through, but there's no
1878 		 * real advantage to it either.
1879 		 */
1880 		mutex_lock(&root->fs_info->ro_block_group_mutex);
1881 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1882 				      &cur_trans->flags))
1883 			run_it = 1;
1884 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
1885 
1886 		if (run_it)
1887 			ret = btrfs_start_dirty_block_groups(trans, root);
1888 	}
1889 	if (ret) {
1890 		btrfs_end_transaction(trans, root);
1891 		return ret;
1892 	}
1893 
1894 	spin_lock(&root->fs_info->trans_lock);
1895 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1896 		spin_unlock(&root->fs_info->trans_lock);
1897 		atomic_inc(&cur_trans->use_count);
1898 		ret = btrfs_end_transaction(trans, root);
1899 
1900 		wait_for_commit(root, cur_trans);
1901 
1902 		if (unlikely(cur_trans->aborted))
1903 			ret = cur_trans->aborted;
1904 
1905 		btrfs_put_transaction(cur_trans);
1906 
1907 		return ret;
1908 	}
1909 
1910 	cur_trans->state = TRANS_STATE_COMMIT_START;
1911 	wake_up(&root->fs_info->transaction_blocked_wait);
1912 
1913 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1914 		prev_trans = list_entry(cur_trans->list.prev,
1915 					struct btrfs_transaction, list);
1916 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1917 			atomic_inc(&prev_trans->use_count);
1918 			spin_unlock(&root->fs_info->trans_lock);
1919 
1920 			wait_for_commit(root, prev_trans);
1921 			ret = prev_trans->aborted;
1922 
1923 			btrfs_put_transaction(prev_trans);
1924 			if (ret)
1925 				goto cleanup_transaction;
1926 		} else {
1927 			spin_unlock(&root->fs_info->trans_lock);
1928 		}
1929 	} else {
1930 		spin_unlock(&root->fs_info->trans_lock);
1931 	}
1932 
1933 	extwriter_counter_dec(cur_trans, trans->type);
1934 
1935 	ret = btrfs_start_delalloc_flush(root->fs_info);
1936 	if (ret)
1937 		goto cleanup_transaction;
1938 
1939 	ret = btrfs_run_delayed_items(trans, root);
1940 	if (ret)
1941 		goto cleanup_transaction;
1942 
1943 	wait_event(cur_trans->writer_wait,
1944 		   extwriter_counter_read(cur_trans) == 0);
1945 
1946 	/* some pending stuffs might be added after the previous flush. */
1947 	ret = btrfs_run_delayed_items(trans, root);
1948 	if (ret)
1949 		goto cleanup_transaction;
1950 
1951 	btrfs_wait_delalloc_flush(root->fs_info);
1952 
1953 	btrfs_wait_pending_ordered(cur_trans);
1954 
1955 	btrfs_scrub_pause(root);
1956 	/*
1957 	 * Ok now we need to make sure to block out any other joins while we
1958 	 * commit the transaction.  We could have started a join before setting
1959 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1960 	 */
1961 	spin_lock(&root->fs_info->trans_lock);
1962 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1963 	spin_unlock(&root->fs_info->trans_lock);
1964 	wait_event(cur_trans->writer_wait,
1965 		   atomic_read(&cur_trans->num_writers) == 1);
1966 
1967 	/* ->aborted might be set after the previous check, so check it */
1968 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1969 		ret = cur_trans->aborted;
1970 		goto scrub_continue;
1971 	}
1972 	/*
1973 	 * the reloc mutex makes sure that we stop
1974 	 * the balancing code from coming in and moving
1975 	 * extents around in the middle of the commit
1976 	 */
1977 	mutex_lock(&root->fs_info->reloc_mutex);
1978 
1979 	/*
1980 	 * We needn't worry about the delayed items because we will
1981 	 * deal with them in create_pending_snapshot(), which is the
1982 	 * core function of the snapshot creation.
1983 	 */
1984 	ret = create_pending_snapshots(trans, root->fs_info);
1985 	if (ret) {
1986 		mutex_unlock(&root->fs_info->reloc_mutex);
1987 		goto scrub_continue;
1988 	}
1989 
1990 	/*
1991 	 * We insert the dir indexes of the snapshots and update the inode
1992 	 * of the snapshots' parents after the snapshot creation, so there
1993 	 * are some delayed items which are not dealt with. Now deal with
1994 	 * them.
1995 	 *
1996 	 * We needn't worry that this operation will corrupt the snapshots,
1997 	 * because all the tree which are snapshoted will be forced to COW
1998 	 * the nodes and leaves.
1999 	 */
2000 	ret = btrfs_run_delayed_items(trans, root);
2001 	if (ret) {
2002 		mutex_unlock(&root->fs_info->reloc_mutex);
2003 		goto scrub_continue;
2004 	}
2005 
2006 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2007 	if (ret) {
2008 		mutex_unlock(&root->fs_info->reloc_mutex);
2009 		goto scrub_continue;
2010 	}
2011 
2012 	/* Reocrd old roots for later qgroup accounting */
2013 	ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2014 	if (ret) {
2015 		mutex_unlock(&root->fs_info->reloc_mutex);
2016 		goto scrub_continue;
2017 	}
2018 
2019 	/*
2020 	 * make sure none of the code above managed to slip in a
2021 	 * delayed item
2022 	 */
2023 	btrfs_assert_delayed_root_empty(root);
2024 
2025 	WARN_ON(cur_trans != trans->transaction);
2026 
2027 	/* btrfs_commit_tree_roots is responsible for getting the
2028 	 * various roots consistent with each other.  Every pointer
2029 	 * in the tree of tree roots has to point to the most up to date
2030 	 * root for every subvolume and other tree.  So, we have to keep
2031 	 * the tree logging code from jumping in and changing any
2032 	 * of the trees.
2033 	 *
2034 	 * At this point in the commit, there can't be any tree-log
2035 	 * writers, but a little lower down we drop the trans mutex
2036 	 * and let new people in.  By holding the tree_log_mutex
2037 	 * from now until after the super is written, we avoid races
2038 	 * with the tree-log code.
2039 	 */
2040 	mutex_lock(&root->fs_info->tree_log_mutex);
2041 
2042 	ret = commit_fs_roots(trans, root);
2043 	if (ret) {
2044 		mutex_unlock(&root->fs_info->tree_log_mutex);
2045 		mutex_unlock(&root->fs_info->reloc_mutex);
2046 		goto scrub_continue;
2047 	}
2048 
2049 	/*
2050 	 * Since the transaction is done, we can apply the pending changes
2051 	 * before the next transaction.
2052 	 */
2053 	btrfs_apply_pending_changes(root->fs_info);
2054 
2055 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2056 	 * safe to free the root of tree log roots
2057 	 */
2058 	btrfs_free_log_root_tree(trans, root->fs_info);
2059 
2060 	/*
2061 	 * Since fs roots are all committed, we can get a quite accurate
2062 	 * new_roots. So let's do quota accounting.
2063 	 */
2064 	ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2065 	if (ret < 0) {
2066 		mutex_unlock(&root->fs_info->tree_log_mutex);
2067 		mutex_unlock(&root->fs_info->reloc_mutex);
2068 		goto scrub_continue;
2069 	}
2070 
2071 	ret = commit_cowonly_roots(trans, root);
2072 	if (ret) {
2073 		mutex_unlock(&root->fs_info->tree_log_mutex);
2074 		mutex_unlock(&root->fs_info->reloc_mutex);
2075 		goto scrub_continue;
2076 	}
2077 
2078 	/*
2079 	 * The tasks which save the space cache and inode cache may also
2080 	 * update ->aborted, check it.
2081 	 */
2082 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2083 		ret = cur_trans->aborted;
2084 		mutex_unlock(&root->fs_info->tree_log_mutex);
2085 		mutex_unlock(&root->fs_info->reloc_mutex);
2086 		goto scrub_continue;
2087 	}
2088 
2089 	btrfs_prepare_extent_commit(trans, root);
2090 
2091 	cur_trans = root->fs_info->running_transaction;
2092 
2093 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2094 			    root->fs_info->tree_root->node);
2095 	list_add_tail(&root->fs_info->tree_root->dirty_list,
2096 		      &cur_trans->switch_commits);
2097 
2098 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2099 			    root->fs_info->chunk_root->node);
2100 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
2101 		      &cur_trans->switch_commits);
2102 
2103 	switch_commit_roots(cur_trans, root->fs_info);
2104 
2105 	assert_qgroups_uptodate(trans);
2106 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2107 	ASSERT(list_empty(&cur_trans->io_bgs));
2108 	update_super_roots(root);
2109 
2110 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2111 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2112 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2113 	       sizeof(*root->fs_info->super_copy));
2114 
2115 	btrfs_update_commit_device_size(root->fs_info);
2116 	btrfs_update_commit_device_bytes_used(root, cur_trans);
2117 
2118 	clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2119 	clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2120 
2121 	btrfs_trans_release_chunk_metadata(trans);
2122 
2123 	spin_lock(&root->fs_info->trans_lock);
2124 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2125 	root->fs_info->running_transaction = NULL;
2126 	spin_unlock(&root->fs_info->trans_lock);
2127 	mutex_unlock(&root->fs_info->reloc_mutex);
2128 
2129 	wake_up(&root->fs_info->transaction_wait);
2130 
2131 	ret = btrfs_write_and_wait_transaction(trans, root);
2132 	if (ret) {
2133 		btrfs_std_error(root->fs_info, ret,
2134 			    "Error while writing out transaction");
2135 		mutex_unlock(&root->fs_info->tree_log_mutex);
2136 		goto scrub_continue;
2137 	}
2138 
2139 	ret = write_ctree_super(trans, root, 0);
2140 	if (ret) {
2141 		mutex_unlock(&root->fs_info->tree_log_mutex);
2142 		goto scrub_continue;
2143 	}
2144 
2145 	/*
2146 	 * the super is written, we can safely allow the tree-loggers
2147 	 * to go about their business
2148 	 */
2149 	mutex_unlock(&root->fs_info->tree_log_mutex);
2150 
2151 	btrfs_finish_extent_commit(trans, root);
2152 
2153 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2154 		btrfs_clear_space_info_full(root->fs_info);
2155 
2156 	root->fs_info->last_trans_committed = cur_trans->transid;
2157 	/*
2158 	 * We needn't acquire the lock here because there is no other task
2159 	 * which can change it.
2160 	 */
2161 	cur_trans->state = TRANS_STATE_COMPLETED;
2162 	wake_up(&cur_trans->commit_wait);
2163 
2164 	spin_lock(&root->fs_info->trans_lock);
2165 	list_del_init(&cur_trans->list);
2166 	spin_unlock(&root->fs_info->trans_lock);
2167 
2168 	btrfs_put_transaction(cur_trans);
2169 	btrfs_put_transaction(cur_trans);
2170 
2171 	if (trans->type & __TRANS_FREEZABLE)
2172 		sb_end_intwrite(root->fs_info->sb);
2173 
2174 	trace_btrfs_transaction_commit(root);
2175 
2176 	btrfs_scrub_continue(root);
2177 
2178 	if (current->journal_info == trans)
2179 		current->journal_info = NULL;
2180 
2181 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2182 
2183 	if (current != root->fs_info->transaction_kthread &&
2184 	    current != root->fs_info->cleaner_kthread)
2185 		btrfs_run_delayed_iputs(root);
2186 
2187 	return ret;
2188 
2189 scrub_continue:
2190 	btrfs_scrub_continue(root);
2191 cleanup_transaction:
2192 	btrfs_trans_release_metadata(trans, root);
2193 	btrfs_trans_release_chunk_metadata(trans);
2194 	trans->block_rsv = NULL;
2195 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2196 	if (current->journal_info == trans)
2197 		current->journal_info = NULL;
2198 	cleanup_transaction(trans, root, ret);
2199 
2200 	return ret;
2201 }
2202 
2203 /*
2204  * return < 0 if error
2205  * 0 if there are no more dead_roots at the time of call
2206  * 1 there are more to be processed, call me again
2207  *
2208  * The return value indicates there are certainly more snapshots to delete, but
2209  * if there comes a new one during processing, it may return 0. We don't mind,
2210  * because btrfs_commit_super will poke cleaner thread and it will process it a
2211  * few seconds later.
2212  */
btrfs_clean_one_deleted_snapshot(struct btrfs_root * root)2213 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2214 {
2215 	int ret;
2216 	struct btrfs_fs_info *fs_info = root->fs_info;
2217 
2218 	spin_lock(&fs_info->trans_lock);
2219 	if (list_empty(&fs_info->dead_roots)) {
2220 		spin_unlock(&fs_info->trans_lock);
2221 		return 0;
2222 	}
2223 	root = list_first_entry(&fs_info->dead_roots,
2224 			struct btrfs_root, root_list);
2225 	list_del_init(&root->root_list);
2226 	spin_unlock(&fs_info->trans_lock);
2227 
2228 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2229 
2230 	btrfs_kill_all_delayed_nodes(root);
2231 
2232 	if (btrfs_header_backref_rev(root->node) <
2233 			BTRFS_MIXED_BACKREF_REV)
2234 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2235 	else
2236 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2237 
2238 	return (ret < 0) ? 0 : 1;
2239 }
2240 
btrfs_apply_pending_changes(struct btrfs_fs_info * fs_info)2241 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2242 {
2243 	unsigned long prev;
2244 	unsigned long bit;
2245 
2246 	prev = xchg(&fs_info->pending_changes, 0);
2247 	if (!prev)
2248 		return;
2249 
2250 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2251 	if (prev & bit)
2252 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2253 	prev &= ~bit;
2254 
2255 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2256 	if (prev & bit)
2257 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2258 	prev &= ~bit;
2259 
2260 	bit = 1 << BTRFS_PENDING_COMMIT;
2261 	if (prev & bit)
2262 		btrfs_debug(fs_info, "pending commit done");
2263 	prev &= ~bit;
2264 
2265 	if (prev)
2266 		btrfs_warn(fs_info,
2267 			"unknown pending changes left 0x%lx, ignoring", prev);
2268 }
2269