1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
btrfs_put_transaction(struct btrfs_transaction * transaction)61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 printk(KERN_ERR "pending csums is %llu\n",
69 transaction->delayed_refs.pending_csums);
70 while (!list_empty(&transaction->pending_chunks)) {
71 struct extent_map *em;
72
73 em = list_first_entry(&transaction->pending_chunks,
74 struct extent_map, list);
75 list_del_init(&em->list);
76 free_extent_map(em);
77 }
78 kmem_cache_free(btrfs_transaction_cachep, transaction);
79 }
80 }
81
clear_btree_io_tree(struct extent_io_tree * tree)82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 spin_lock(&tree->lock);
85 /*
86 * Do a single barrier for the waitqueue_active check here, the state
87 * of the waitqueue should not change once clear_btree_io_tree is
88 * called.
89 */
90 smp_mb();
91 while (!RB_EMPTY_ROOT(&tree->state)) {
92 struct rb_node *node;
93 struct extent_state *state;
94
95 node = rb_first(&tree->state);
96 state = rb_entry(node, struct extent_state, rb_node);
97 rb_erase(&state->rb_node, &tree->state);
98 RB_CLEAR_NODE(&state->rb_node);
99 /*
100 * btree io trees aren't supposed to have tasks waiting for
101 * changes in the flags of extent states ever.
102 */
103 ASSERT(!waitqueue_active(&state->wq));
104 free_extent_state(state);
105
106 cond_resched_lock(&tree->lock);
107 }
108 spin_unlock(&tree->lock);
109 }
110
switch_commit_roots(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)111 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
112 struct btrfs_fs_info *fs_info)
113 {
114 struct btrfs_root *root, *tmp;
115
116 down_write(&fs_info->commit_root_sem);
117 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
118 dirty_list) {
119 list_del_init(&root->dirty_list);
120 free_extent_buffer(root->commit_root);
121 root->commit_root = btrfs_root_node(root);
122 if (is_fstree(root->objectid))
123 btrfs_unpin_free_ino(root);
124 clear_btree_io_tree(&root->dirty_log_pages);
125 }
126
127 /* We can free old roots now. */
128 spin_lock(&trans->dropped_roots_lock);
129 while (!list_empty(&trans->dropped_roots)) {
130 root = list_first_entry(&trans->dropped_roots,
131 struct btrfs_root, root_list);
132 list_del_init(&root->root_list);
133 spin_unlock(&trans->dropped_roots_lock);
134 btrfs_drop_and_free_fs_root(fs_info, root);
135 spin_lock(&trans->dropped_roots_lock);
136 }
137 spin_unlock(&trans->dropped_roots_lock);
138 up_write(&fs_info->commit_root_sem);
139 }
140
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
142 unsigned int type)
143 {
144 if (type & TRANS_EXTWRITERS)
145 atomic_inc(&trans->num_extwriters);
146 }
147
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
149 unsigned int type)
150 {
151 if (type & TRANS_EXTWRITERS)
152 atomic_dec(&trans->num_extwriters);
153 }
154
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)155 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
156 unsigned int type)
157 {
158 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
159 }
160
extwriter_counter_read(struct btrfs_transaction * trans)161 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
162 {
163 return atomic_read(&trans->num_extwriters);
164 }
165
166 /*
167 * either allocate a new transaction or hop into the existing one
168 */
join_transaction(struct btrfs_root * root,unsigned int type)169 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
170 {
171 struct btrfs_transaction *cur_trans;
172 struct btrfs_fs_info *fs_info = root->fs_info;
173
174 spin_lock(&fs_info->trans_lock);
175 loop:
176 /* The file system has been taken offline. No new transactions. */
177 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
178 spin_unlock(&fs_info->trans_lock);
179 return -EROFS;
180 }
181
182 cur_trans = fs_info->running_transaction;
183 if (cur_trans) {
184 if (cur_trans->aborted) {
185 spin_unlock(&fs_info->trans_lock);
186 return cur_trans->aborted;
187 }
188 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
189 spin_unlock(&fs_info->trans_lock);
190 return -EBUSY;
191 }
192 atomic_inc(&cur_trans->use_count);
193 atomic_inc(&cur_trans->num_writers);
194 extwriter_counter_inc(cur_trans, type);
195 spin_unlock(&fs_info->trans_lock);
196 return 0;
197 }
198 spin_unlock(&fs_info->trans_lock);
199
200 /*
201 * If we are ATTACH, we just want to catch the current transaction,
202 * and commit it. If there is no transaction, just return ENOENT.
203 */
204 if (type == TRANS_ATTACH)
205 return -ENOENT;
206
207 /*
208 * JOIN_NOLOCK only happens during the transaction commit, so
209 * it is impossible that ->running_transaction is NULL
210 */
211 BUG_ON(type == TRANS_JOIN_NOLOCK);
212
213 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
214 if (!cur_trans)
215 return -ENOMEM;
216
217 spin_lock(&fs_info->trans_lock);
218 if (fs_info->running_transaction) {
219 /*
220 * someone started a transaction after we unlocked. Make sure
221 * to redo the checks above
222 */
223 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
224 goto loop;
225 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
226 spin_unlock(&fs_info->trans_lock);
227 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
228 return -EROFS;
229 }
230
231 atomic_set(&cur_trans->num_writers, 1);
232 extwriter_counter_init(cur_trans, type);
233 init_waitqueue_head(&cur_trans->writer_wait);
234 init_waitqueue_head(&cur_trans->commit_wait);
235 init_waitqueue_head(&cur_trans->pending_wait);
236 cur_trans->state = TRANS_STATE_RUNNING;
237 /*
238 * One for this trans handle, one so it will live on until we
239 * commit the transaction.
240 */
241 atomic_set(&cur_trans->use_count, 2);
242 atomic_set(&cur_trans->pending_ordered, 0);
243 cur_trans->flags = 0;
244 cur_trans->start_time = get_seconds();
245
246 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
247
248 cur_trans->delayed_refs.href_root = RB_ROOT;
249 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
250 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
251
252 /*
253 * although the tree mod log is per file system and not per transaction,
254 * the log must never go across transaction boundaries.
255 */
256 smp_mb();
257 if (!list_empty(&fs_info->tree_mod_seq_list))
258 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
259 "creating a fresh transaction\n");
260 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
261 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
262 "creating a fresh transaction\n");
263 atomic64_set(&fs_info->tree_mod_seq, 0);
264
265 spin_lock_init(&cur_trans->delayed_refs.lock);
266
267 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
268 INIT_LIST_HEAD(&cur_trans->pending_chunks);
269 INIT_LIST_HEAD(&cur_trans->switch_commits);
270 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
271 INIT_LIST_HEAD(&cur_trans->io_bgs);
272 INIT_LIST_HEAD(&cur_trans->dropped_roots);
273 mutex_init(&cur_trans->cache_write_mutex);
274 cur_trans->num_dirty_bgs = 0;
275 spin_lock_init(&cur_trans->dirty_bgs_lock);
276 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
277 spin_lock_init(&cur_trans->dropped_roots_lock);
278 list_add_tail(&cur_trans->list, &fs_info->trans_list);
279 extent_io_tree_init(&cur_trans->dirty_pages,
280 fs_info->btree_inode->i_mapping);
281 fs_info->generation++;
282 cur_trans->transid = fs_info->generation;
283 fs_info->running_transaction = cur_trans;
284 cur_trans->aborted = 0;
285 spin_unlock(&fs_info->trans_lock);
286
287 return 0;
288 }
289
290 /*
291 * this does all the record keeping required to make sure that a reference
292 * counted root is properly recorded in a given transaction. This is required
293 * to make sure the old root from before we joined the transaction is deleted
294 * when the transaction commits
295 */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)296 static int record_root_in_trans(struct btrfs_trans_handle *trans,
297 struct btrfs_root *root)
298 {
299 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
300 root->last_trans < trans->transid) {
301 WARN_ON(root == root->fs_info->extent_root);
302 WARN_ON(root->commit_root != root->node);
303
304 /*
305 * see below for IN_TRANS_SETUP usage rules
306 * we have the reloc mutex held now, so there
307 * is only one writer in this function
308 */
309 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
310
311 /* make sure readers find IN_TRANS_SETUP before
312 * they find our root->last_trans update
313 */
314 smp_wmb();
315
316 spin_lock(&root->fs_info->fs_roots_radix_lock);
317 if (root->last_trans == trans->transid) {
318 spin_unlock(&root->fs_info->fs_roots_radix_lock);
319 return 0;
320 }
321 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
322 (unsigned long)root->root_key.objectid,
323 BTRFS_ROOT_TRANS_TAG);
324 spin_unlock(&root->fs_info->fs_roots_radix_lock);
325 root->last_trans = trans->transid;
326
327 /* this is pretty tricky. We don't want to
328 * take the relocation lock in btrfs_record_root_in_trans
329 * unless we're really doing the first setup for this root in
330 * this transaction.
331 *
332 * Normally we'd use root->last_trans as a flag to decide
333 * if we want to take the expensive mutex.
334 *
335 * But, we have to set root->last_trans before we
336 * init the relocation root, otherwise, we trip over warnings
337 * in ctree.c. The solution used here is to flag ourselves
338 * with root IN_TRANS_SETUP. When this is 1, we're still
339 * fixing up the reloc trees and everyone must wait.
340 *
341 * When this is zero, they can trust root->last_trans and fly
342 * through btrfs_record_root_in_trans without having to take the
343 * lock. smp_wmb() makes sure that all the writes above are
344 * done before we pop in the zero below
345 */
346 btrfs_init_reloc_root(trans, root);
347 smp_mb__before_atomic();
348 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
349 }
350 return 0;
351 }
352
353
btrfs_add_dropped_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)354 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
355 struct btrfs_root *root)
356 {
357 struct btrfs_transaction *cur_trans = trans->transaction;
358
359 /* Add ourselves to the transaction dropped list */
360 spin_lock(&cur_trans->dropped_roots_lock);
361 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
362 spin_unlock(&cur_trans->dropped_roots_lock);
363
364 /* Make sure we don't try to update the root at commit time */
365 spin_lock(&root->fs_info->fs_roots_radix_lock);
366 radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
367 (unsigned long)root->root_key.objectid,
368 BTRFS_ROOT_TRANS_TAG);
369 spin_unlock(&root->fs_info->fs_roots_radix_lock);
370 }
371
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)372 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
373 struct btrfs_root *root)
374 {
375 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
376 return 0;
377
378 /*
379 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
380 * and barriers
381 */
382 smp_rmb();
383 if (root->last_trans == trans->transid &&
384 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
385 return 0;
386
387 mutex_lock(&root->fs_info->reloc_mutex);
388 record_root_in_trans(trans, root);
389 mutex_unlock(&root->fs_info->reloc_mutex);
390
391 return 0;
392 }
393
is_transaction_blocked(struct btrfs_transaction * trans)394 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
395 {
396 return (trans->state >= TRANS_STATE_BLOCKED &&
397 trans->state < TRANS_STATE_UNBLOCKED &&
398 !trans->aborted);
399 }
400
401 /* wait for commit against the current transaction to become unblocked
402 * when this is done, it is safe to start a new transaction, but the current
403 * transaction might not be fully on disk.
404 */
wait_current_trans(struct btrfs_root * root)405 static void wait_current_trans(struct btrfs_root *root)
406 {
407 struct btrfs_transaction *cur_trans;
408
409 spin_lock(&root->fs_info->trans_lock);
410 cur_trans = root->fs_info->running_transaction;
411 if (cur_trans && is_transaction_blocked(cur_trans)) {
412 atomic_inc(&cur_trans->use_count);
413 spin_unlock(&root->fs_info->trans_lock);
414
415 wait_event(root->fs_info->transaction_wait,
416 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
417 cur_trans->aborted);
418 btrfs_put_transaction(cur_trans);
419 } else {
420 spin_unlock(&root->fs_info->trans_lock);
421 }
422 }
423
may_wait_transaction(struct btrfs_root * root,int type)424 static int may_wait_transaction(struct btrfs_root *root, int type)
425 {
426 if (root->fs_info->log_root_recovering)
427 return 0;
428
429 if (type == TRANS_USERSPACE)
430 return 1;
431
432 if (type == TRANS_START &&
433 !atomic_read(&root->fs_info->open_ioctl_trans))
434 return 1;
435
436 return 0;
437 }
438
need_reserve_reloc_root(struct btrfs_root * root)439 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
440 {
441 if (!root->fs_info->reloc_ctl ||
442 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
443 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
444 root->reloc_root)
445 return false;
446
447 return true;
448 }
449
450 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,unsigned int num_items,unsigned int type,enum btrfs_reserve_flush_enum flush)451 start_transaction(struct btrfs_root *root, unsigned int num_items,
452 unsigned int type, enum btrfs_reserve_flush_enum flush)
453 {
454 struct btrfs_trans_handle *h;
455 struct btrfs_transaction *cur_trans;
456 u64 num_bytes = 0;
457 u64 qgroup_reserved = 0;
458 bool reloc_reserved = false;
459 int ret;
460
461 /* Send isn't supposed to start transactions. */
462 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
463
464 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
465 return ERR_PTR(-EROFS);
466
467 if (current->journal_info) {
468 WARN_ON(type & TRANS_EXTWRITERS);
469 h = current->journal_info;
470 h->use_count++;
471 WARN_ON(h->use_count > 2);
472 h->orig_rsv = h->block_rsv;
473 h->block_rsv = NULL;
474 goto got_it;
475 }
476
477 /*
478 * Do the reservation before we join the transaction so we can do all
479 * the appropriate flushing if need be.
480 */
481 if (num_items > 0 && root != root->fs_info->chunk_root) {
482 qgroup_reserved = num_items * root->nodesize;
483 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
484 if (ret)
485 return ERR_PTR(ret);
486
487 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
488 /*
489 * Do the reservation for the relocation root creation
490 */
491 if (need_reserve_reloc_root(root)) {
492 num_bytes += root->nodesize;
493 reloc_reserved = true;
494 }
495
496 ret = btrfs_block_rsv_add(root,
497 &root->fs_info->trans_block_rsv,
498 num_bytes, flush);
499 if (ret)
500 goto reserve_fail;
501 }
502 again:
503 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
504 if (!h) {
505 ret = -ENOMEM;
506 goto alloc_fail;
507 }
508
509 /*
510 * If we are JOIN_NOLOCK we're already committing a transaction and
511 * waiting on this guy, so we don't need to do the sb_start_intwrite
512 * because we're already holding a ref. We need this because we could
513 * have raced in and did an fsync() on a file which can kick a commit
514 * and then we deadlock with somebody doing a freeze.
515 *
516 * If we are ATTACH, it means we just want to catch the current
517 * transaction and commit it, so we needn't do sb_start_intwrite().
518 */
519 if (type & __TRANS_FREEZABLE)
520 sb_start_intwrite(root->fs_info->sb);
521
522 if (may_wait_transaction(root, type))
523 wait_current_trans(root);
524
525 do {
526 ret = join_transaction(root, type);
527 if (ret == -EBUSY) {
528 wait_current_trans(root);
529 if (unlikely(type == TRANS_ATTACH))
530 ret = -ENOENT;
531 }
532 } while (ret == -EBUSY);
533
534 if (ret < 0) {
535 /* We must get the transaction if we are JOIN_NOLOCK. */
536 BUG_ON(type == TRANS_JOIN_NOLOCK);
537 goto join_fail;
538 }
539
540 cur_trans = root->fs_info->running_transaction;
541
542 h->transid = cur_trans->transid;
543 h->transaction = cur_trans;
544 h->root = root;
545 h->use_count = 1;
546
547 h->type = type;
548 h->can_flush_pending_bgs = true;
549 INIT_LIST_HEAD(&h->qgroup_ref_list);
550 INIT_LIST_HEAD(&h->new_bgs);
551
552 smp_mb();
553 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
554 may_wait_transaction(root, type)) {
555 current->journal_info = h;
556 btrfs_commit_transaction(h, root);
557 goto again;
558 }
559
560 if (num_bytes) {
561 trace_btrfs_space_reservation(root->fs_info, "transaction",
562 h->transid, num_bytes, 1);
563 h->block_rsv = &root->fs_info->trans_block_rsv;
564 h->bytes_reserved = num_bytes;
565 h->reloc_reserved = reloc_reserved;
566 }
567
568 got_it:
569 btrfs_record_root_in_trans(h, root);
570
571 if (!current->journal_info && type != TRANS_USERSPACE)
572 current->journal_info = h;
573 return h;
574
575 join_fail:
576 if (type & __TRANS_FREEZABLE)
577 sb_end_intwrite(root->fs_info->sb);
578 kmem_cache_free(btrfs_trans_handle_cachep, h);
579 alloc_fail:
580 if (num_bytes)
581 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
582 num_bytes);
583 reserve_fail:
584 btrfs_qgroup_free_meta(root, qgroup_reserved);
585 return ERR_PTR(ret);
586 }
587
btrfs_start_transaction(struct btrfs_root * root,unsigned int num_items)588 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
589 unsigned int num_items)
590 {
591 return start_transaction(root, num_items, TRANS_START,
592 BTRFS_RESERVE_FLUSH_ALL);
593 }
btrfs_start_transaction_fallback_global_rsv(struct btrfs_root * root,unsigned int num_items,int min_factor)594 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
595 struct btrfs_root *root,
596 unsigned int num_items,
597 int min_factor)
598 {
599 struct btrfs_trans_handle *trans;
600 u64 num_bytes;
601 int ret;
602
603 trans = btrfs_start_transaction(root, num_items);
604 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
605 return trans;
606
607 trans = btrfs_start_transaction(root, 0);
608 if (IS_ERR(trans))
609 return trans;
610
611 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
612 ret = btrfs_cond_migrate_bytes(root->fs_info,
613 &root->fs_info->trans_block_rsv,
614 num_bytes,
615 min_factor);
616 if (ret) {
617 btrfs_end_transaction(trans, root);
618 return ERR_PTR(ret);
619 }
620
621 trans->block_rsv = &root->fs_info->trans_block_rsv;
622 trans->bytes_reserved = num_bytes;
623
624 return trans;
625 }
626
btrfs_start_transaction_lflush(struct btrfs_root * root,unsigned int num_items)627 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
628 struct btrfs_root *root,
629 unsigned int num_items)
630 {
631 return start_transaction(root, num_items, TRANS_START,
632 BTRFS_RESERVE_FLUSH_LIMIT);
633 }
634
btrfs_join_transaction(struct btrfs_root * root)635 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
636 {
637 return start_transaction(root, 0, TRANS_JOIN, 0);
638 }
639
btrfs_join_transaction_nolock(struct btrfs_root * root)640 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
641 {
642 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
643 }
644
btrfs_start_ioctl_transaction(struct btrfs_root * root)645 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
646 {
647 return start_transaction(root, 0, TRANS_USERSPACE, 0);
648 }
649
650 /*
651 * btrfs_attach_transaction() - catch the running transaction
652 *
653 * It is used when we want to commit the current the transaction, but
654 * don't want to start a new one.
655 *
656 * Note: If this function return -ENOENT, it just means there is no
657 * running transaction. But it is possible that the inactive transaction
658 * is still in the memory, not fully on disk. If you hope there is no
659 * inactive transaction in the fs when -ENOENT is returned, you should
660 * invoke
661 * btrfs_attach_transaction_barrier()
662 */
btrfs_attach_transaction(struct btrfs_root * root)663 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
664 {
665 return start_transaction(root, 0, TRANS_ATTACH, 0);
666 }
667
668 /*
669 * btrfs_attach_transaction_barrier() - catch the running transaction
670 *
671 * It is similar to the above function, the differentia is this one
672 * will wait for all the inactive transactions until they fully
673 * complete.
674 */
675 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)676 btrfs_attach_transaction_barrier(struct btrfs_root *root)
677 {
678 struct btrfs_trans_handle *trans;
679
680 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
681 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
682 btrfs_wait_for_commit(root, 0);
683
684 return trans;
685 }
686
687 /* wait for a transaction commit to be fully complete */
wait_for_commit(struct btrfs_root * root,struct btrfs_transaction * commit)688 static noinline void wait_for_commit(struct btrfs_root *root,
689 struct btrfs_transaction *commit)
690 {
691 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
692 }
693
btrfs_wait_for_commit(struct btrfs_root * root,u64 transid)694 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
695 {
696 struct btrfs_transaction *cur_trans = NULL, *t;
697 int ret = 0;
698
699 if (transid) {
700 if (transid <= root->fs_info->last_trans_committed)
701 goto out;
702
703 /* find specified transaction */
704 spin_lock(&root->fs_info->trans_lock);
705 list_for_each_entry(t, &root->fs_info->trans_list, list) {
706 if (t->transid == transid) {
707 cur_trans = t;
708 atomic_inc(&cur_trans->use_count);
709 ret = 0;
710 break;
711 }
712 if (t->transid > transid) {
713 ret = 0;
714 break;
715 }
716 }
717 spin_unlock(&root->fs_info->trans_lock);
718
719 /*
720 * The specified transaction doesn't exist, or we
721 * raced with btrfs_commit_transaction
722 */
723 if (!cur_trans) {
724 if (transid > root->fs_info->last_trans_committed)
725 ret = -EINVAL;
726 goto out;
727 }
728 } else {
729 /* find newest transaction that is committing | committed */
730 spin_lock(&root->fs_info->trans_lock);
731 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
732 list) {
733 if (t->state >= TRANS_STATE_COMMIT_START) {
734 if (t->state == TRANS_STATE_COMPLETED)
735 break;
736 cur_trans = t;
737 atomic_inc(&cur_trans->use_count);
738 break;
739 }
740 }
741 spin_unlock(&root->fs_info->trans_lock);
742 if (!cur_trans)
743 goto out; /* nothing committing|committed */
744 }
745
746 wait_for_commit(root, cur_trans);
747 btrfs_put_transaction(cur_trans);
748 out:
749 return ret;
750 }
751
btrfs_throttle(struct btrfs_root * root)752 void btrfs_throttle(struct btrfs_root *root)
753 {
754 if (!atomic_read(&root->fs_info->open_ioctl_trans))
755 wait_current_trans(root);
756 }
757
should_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)758 static int should_end_transaction(struct btrfs_trans_handle *trans,
759 struct btrfs_root *root)
760 {
761 if (root->fs_info->global_block_rsv.space_info->full &&
762 btrfs_check_space_for_delayed_refs(trans, root))
763 return 1;
764
765 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
766 }
767
btrfs_should_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)768 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
769 struct btrfs_root *root)
770 {
771 struct btrfs_transaction *cur_trans = trans->transaction;
772 int updates;
773 int err;
774
775 smp_mb();
776 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
777 cur_trans->delayed_refs.flushing)
778 return 1;
779
780 updates = trans->delayed_ref_updates;
781 trans->delayed_ref_updates = 0;
782 if (updates) {
783 err = btrfs_run_delayed_refs(trans, root, updates * 2);
784 if (err) /* Error code will also eval true */
785 return err;
786 }
787
788 return should_end_transaction(trans, root);
789 }
790
__btrfs_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root,int throttle)791 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
792 struct btrfs_root *root, int throttle)
793 {
794 struct btrfs_transaction *cur_trans = trans->transaction;
795 struct btrfs_fs_info *info = root->fs_info;
796 unsigned long cur = trans->delayed_ref_updates;
797 int lock = (trans->type != TRANS_JOIN_NOLOCK);
798 int err = 0;
799 int must_run_delayed_refs = 0;
800
801 if (trans->use_count > 1) {
802 trans->use_count--;
803 trans->block_rsv = trans->orig_rsv;
804 return 0;
805 }
806
807 btrfs_trans_release_metadata(trans, root);
808 trans->block_rsv = NULL;
809
810 if (!list_empty(&trans->new_bgs))
811 btrfs_create_pending_block_groups(trans, root);
812
813 trans->delayed_ref_updates = 0;
814 if (!trans->sync) {
815 must_run_delayed_refs =
816 btrfs_should_throttle_delayed_refs(trans, root);
817 cur = max_t(unsigned long, cur, 32);
818
819 /*
820 * don't make the caller wait if they are from a NOLOCK
821 * or ATTACH transaction, it will deadlock with commit
822 */
823 if (must_run_delayed_refs == 1 &&
824 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
825 must_run_delayed_refs = 2;
826 }
827
828 btrfs_trans_release_metadata(trans, root);
829 trans->block_rsv = NULL;
830
831 if (!list_empty(&trans->new_bgs))
832 btrfs_create_pending_block_groups(trans, root);
833
834 btrfs_trans_release_chunk_metadata(trans);
835
836 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
837 should_end_transaction(trans, root) &&
838 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
839 spin_lock(&info->trans_lock);
840 if (cur_trans->state == TRANS_STATE_RUNNING)
841 cur_trans->state = TRANS_STATE_BLOCKED;
842 spin_unlock(&info->trans_lock);
843 }
844
845 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
846 if (throttle)
847 return btrfs_commit_transaction(trans, root);
848 else
849 wake_up_process(info->transaction_kthread);
850 }
851
852 if (trans->type & __TRANS_FREEZABLE)
853 sb_end_intwrite(root->fs_info->sb);
854
855 WARN_ON(cur_trans != info->running_transaction);
856 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
857 atomic_dec(&cur_trans->num_writers);
858 extwriter_counter_dec(cur_trans, trans->type);
859
860 /*
861 * Make sure counter is updated before we wake up waiters.
862 */
863 smp_mb();
864 if (waitqueue_active(&cur_trans->writer_wait))
865 wake_up(&cur_trans->writer_wait);
866 btrfs_put_transaction(cur_trans);
867
868 if (current->journal_info == trans)
869 current->journal_info = NULL;
870
871 if (throttle)
872 btrfs_run_delayed_iputs(root);
873
874 if (trans->aborted ||
875 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
876 wake_up_process(info->transaction_kthread);
877 err = -EIO;
878 }
879 assert_qgroups_uptodate(trans);
880
881 kmem_cache_free(btrfs_trans_handle_cachep, trans);
882 if (must_run_delayed_refs) {
883 btrfs_async_run_delayed_refs(root, cur,
884 must_run_delayed_refs == 1);
885 }
886 return err;
887 }
888
btrfs_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)889 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
890 struct btrfs_root *root)
891 {
892 return __btrfs_end_transaction(trans, root, 0);
893 }
894
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans,struct btrfs_root * root)895 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
896 struct btrfs_root *root)
897 {
898 return __btrfs_end_transaction(trans, root, 1);
899 }
900
901 /*
902 * when btree blocks are allocated, they have some corresponding bits set for
903 * them in one of two extent_io trees. This is used to make sure all of
904 * those extents are sent to disk but does not wait on them
905 */
btrfs_write_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)906 int btrfs_write_marked_extents(struct btrfs_root *root,
907 struct extent_io_tree *dirty_pages, int mark)
908 {
909 int err = 0;
910 int werr = 0;
911 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
912 struct extent_state *cached_state = NULL;
913 u64 start = 0;
914 u64 end;
915
916 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
917 mark, &cached_state)) {
918 bool wait_writeback = false;
919
920 err = convert_extent_bit(dirty_pages, start, end,
921 EXTENT_NEED_WAIT,
922 mark, &cached_state, GFP_NOFS);
923 /*
924 * convert_extent_bit can return -ENOMEM, which is most of the
925 * time a temporary error. So when it happens, ignore the error
926 * and wait for writeback of this range to finish - because we
927 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
928 * to btrfs_wait_marked_extents() would not know that writeback
929 * for this range started and therefore wouldn't wait for it to
930 * finish - we don't want to commit a superblock that points to
931 * btree nodes/leafs for which writeback hasn't finished yet
932 * (and without errors).
933 * We cleanup any entries left in the io tree when committing
934 * the transaction (through clear_btree_io_tree()).
935 */
936 if (err == -ENOMEM) {
937 err = 0;
938 wait_writeback = true;
939 }
940 if (!err)
941 err = filemap_fdatawrite_range(mapping, start, end);
942 if (err)
943 werr = err;
944 else if (wait_writeback)
945 werr = filemap_fdatawait_range(mapping, start, end);
946 free_extent_state(cached_state);
947 cached_state = NULL;
948 cond_resched();
949 start = end + 1;
950 }
951 return werr;
952 }
953
954 /*
955 * when btree blocks are allocated, they have some corresponding bits set for
956 * them in one of two extent_io trees. This is used to make sure all of
957 * those extents are on disk for transaction or log commit. We wait
958 * on all the pages and clear them from the dirty pages state tree
959 */
btrfs_wait_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)960 int btrfs_wait_marked_extents(struct btrfs_root *root,
961 struct extent_io_tree *dirty_pages, int mark)
962 {
963 int err = 0;
964 int werr = 0;
965 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
966 struct extent_state *cached_state = NULL;
967 u64 start = 0;
968 u64 end;
969 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
970 bool errors = false;
971
972 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
973 EXTENT_NEED_WAIT, &cached_state)) {
974 /*
975 * Ignore -ENOMEM errors returned by clear_extent_bit().
976 * When committing the transaction, we'll remove any entries
977 * left in the io tree. For a log commit, we don't remove them
978 * after committing the log because the tree can be accessed
979 * concurrently - we do it only at transaction commit time when
980 * it's safe to do it (through clear_btree_io_tree()).
981 */
982 err = clear_extent_bit(dirty_pages, start, end,
983 EXTENT_NEED_WAIT,
984 0, 0, &cached_state, GFP_NOFS);
985 if (err == -ENOMEM)
986 err = 0;
987 if (!err)
988 err = filemap_fdatawait_range(mapping, start, end);
989 if (err)
990 werr = err;
991 free_extent_state(cached_state);
992 cached_state = NULL;
993 cond_resched();
994 start = end + 1;
995 }
996 if (err)
997 werr = err;
998
999 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1000 if ((mark & EXTENT_DIRTY) &&
1001 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1002 &btree_ino->runtime_flags))
1003 errors = true;
1004
1005 if ((mark & EXTENT_NEW) &&
1006 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1007 &btree_ino->runtime_flags))
1008 errors = true;
1009 } else {
1010 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1011 &btree_ino->runtime_flags))
1012 errors = true;
1013 }
1014
1015 if (errors && !werr)
1016 werr = -EIO;
1017
1018 return werr;
1019 }
1020
1021 /*
1022 * when btree blocks are allocated, they have some corresponding bits set for
1023 * them in one of two extent_io trees. This is used to make sure all of
1024 * those extents are on disk for transaction or log commit
1025 */
btrfs_write_and_wait_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)1026 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1027 struct extent_io_tree *dirty_pages, int mark)
1028 {
1029 int ret;
1030 int ret2;
1031 struct blk_plug plug;
1032
1033 blk_start_plug(&plug);
1034 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1035 blk_finish_plug(&plug);
1036 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1037
1038 if (ret)
1039 return ret;
1040 if (ret2)
1041 return ret2;
1042 return 0;
1043 }
1044
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)1045 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1046 struct btrfs_root *root)
1047 {
1048 int ret;
1049
1050 ret = btrfs_write_and_wait_marked_extents(root,
1051 &trans->transaction->dirty_pages,
1052 EXTENT_DIRTY);
1053 clear_btree_io_tree(&trans->transaction->dirty_pages);
1054
1055 return ret;
1056 }
1057
1058 /*
1059 * this is used to update the root pointer in the tree of tree roots.
1060 *
1061 * But, in the case of the extent allocation tree, updating the root
1062 * pointer may allocate blocks which may change the root of the extent
1063 * allocation tree.
1064 *
1065 * So, this loops and repeats and makes sure the cowonly root didn't
1066 * change while the root pointer was being updated in the metadata.
1067 */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1068 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1069 struct btrfs_root *root)
1070 {
1071 int ret;
1072 u64 old_root_bytenr;
1073 u64 old_root_used;
1074 struct btrfs_root *tree_root = root->fs_info->tree_root;
1075
1076 old_root_used = btrfs_root_used(&root->root_item);
1077
1078 while (1) {
1079 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1080 if (old_root_bytenr == root->node->start &&
1081 old_root_used == btrfs_root_used(&root->root_item))
1082 break;
1083
1084 btrfs_set_root_node(&root->root_item, root->node);
1085 ret = btrfs_update_root(trans, tree_root,
1086 &root->root_key,
1087 &root->root_item);
1088 if (ret)
1089 return ret;
1090
1091 old_root_used = btrfs_root_used(&root->root_item);
1092 }
1093
1094 return 0;
1095 }
1096
1097 /*
1098 * update all the cowonly tree roots on disk
1099 *
1100 * The error handling in this function may not be obvious. Any of the
1101 * failures will cause the file system to go offline. We still need
1102 * to clean up the delayed refs.
1103 */
commit_cowonly_roots(struct btrfs_trans_handle * trans,struct btrfs_root * root)1104 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1105 struct btrfs_root *root)
1106 {
1107 struct btrfs_fs_info *fs_info = root->fs_info;
1108 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1109 struct list_head *io_bgs = &trans->transaction->io_bgs;
1110 struct list_head *next;
1111 struct extent_buffer *eb;
1112 int ret;
1113
1114 eb = btrfs_lock_root_node(fs_info->tree_root);
1115 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1116 0, &eb);
1117 btrfs_tree_unlock(eb);
1118 free_extent_buffer(eb);
1119
1120 if (ret)
1121 return ret;
1122
1123 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1124 if (ret)
1125 return ret;
1126
1127 ret = btrfs_run_dev_stats(trans, root->fs_info);
1128 if (ret)
1129 return ret;
1130 ret = btrfs_run_dev_replace(trans, root->fs_info);
1131 if (ret)
1132 return ret;
1133 ret = btrfs_run_qgroups(trans, root->fs_info);
1134 if (ret)
1135 return ret;
1136
1137 ret = btrfs_setup_space_cache(trans, root);
1138 if (ret)
1139 return ret;
1140
1141 /* run_qgroups might have added some more refs */
1142 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1143 if (ret)
1144 return ret;
1145 again:
1146 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1147 next = fs_info->dirty_cowonly_roots.next;
1148 list_del_init(next);
1149 root = list_entry(next, struct btrfs_root, dirty_list);
1150 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1151
1152 if (root != fs_info->extent_root)
1153 list_add_tail(&root->dirty_list,
1154 &trans->transaction->switch_commits);
1155 ret = update_cowonly_root(trans, root);
1156 if (ret)
1157 return ret;
1158 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1159 if (ret)
1160 return ret;
1161 }
1162
1163 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1164 ret = btrfs_write_dirty_block_groups(trans, root);
1165 if (ret)
1166 return ret;
1167 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1168 if (ret)
1169 return ret;
1170 }
1171
1172 if (!list_empty(&fs_info->dirty_cowonly_roots))
1173 goto again;
1174
1175 list_add_tail(&fs_info->extent_root->dirty_list,
1176 &trans->transaction->switch_commits);
1177 btrfs_after_dev_replace_commit(fs_info);
1178
1179 return 0;
1180 }
1181
1182 /*
1183 * dead roots are old snapshots that need to be deleted. This allocates
1184 * a dirty root struct and adds it into the list of dead roots that need to
1185 * be deleted
1186 */
btrfs_add_dead_root(struct btrfs_root * root)1187 void btrfs_add_dead_root(struct btrfs_root *root)
1188 {
1189 spin_lock(&root->fs_info->trans_lock);
1190 if (list_empty(&root->root_list))
1191 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1192 spin_unlock(&root->fs_info->trans_lock);
1193 }
1194
1195 /*
1196 * update all the cowonly tree roots on disk
1197 */
commit_fs_roots(struct btrfs_trans_handle * trans,struct btrfs_root * root)1198 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1199 struct btrfs_root *root)
1200 {
1201 struct btrfs_root *gang[8];
1202 struct btrfs_fs_info *fs_info = root->fs_info;
1203 int i;
1204 int ret;
1205 int err = 0;
1206
1207 spin_lock(&fs_info->fs_roots_radix_lock);
1208 while (1) {
1209 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1210 (void **)gang, 0,
1211 ARRAY_SIZE(gang),
1212 BTRFS_ROOT_TRANS_TAG);
1213 if (ret == 0)
1214 break;
1215 for (i = 0; i < ret; i++) {
1216 root = gang[i];
1217 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1218 (unsigned long)root->root_key.objectid,
1219 BTRFS_ROOT_TRANS_TAG);
1220 spin_unlock(&fs_info->fs_roots_radix_lock);
1221
1222 btrfs_free_log(trans, root);
1223 btrfs_update_reloc_root(trans, root);
1224 btrfs_orphan_commit_root(trans, root);
1225
1226 btrfs_save_ino_cache(root, trans);
1227
1228 /* see comments in should_cow_block() */
1229 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1230 smp_mb__after_atomic();
1231
1232 if (root->commit_root != root->node) {
1233 list_add_tail(&root->dirty_list,
1234 &trans->transaction->switch_commits);
1235 btrfs_set_root_node(&root->root_item,
1236 root->node);
1237 }
1238
1239 err = btrfs_update_root(trans, fs_info->tree_root,
1240 &root->root_key,
1241 &root->root_item);
1242 spin_lock(&fs_info->fs_roots_radix_lock);
1243 if (err)
1244 break;
1245 btrfs_qgroup_free_meta_all(root);
1246 }
1247 }
1248 spin_unlock(&fs_info->fs_roots_radix_lock);
1249 return err;
1250 }
1251
1252 /*
1253 * defrag a given btree.
1254 * Every leaf in the btree is read and defragged.
1255 */
btrfs_defrag_root(struct btrfs_root * root)1256 int btrfs_defrag_root(struct btrfs_root *root)
1257 {
1258 struct btrfs_fs_info *info = root->fs_info;
1259 struct btrfs_trans_handle *trans;
1260 int ret;
1261
1262 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1263 return 0;
1264
1265 while (1) {
1266 trans = btrfs_start_transaction(root, 0);
1267 if (IS_ERR(trans)) {
1268 ret = PTR_ERR(trans);
1269 break;
1270 }
1271
1272 ret = btrfs_defrag_leaves(trans, root);
1273
1274 btrfs_end_transaction(trans, root);
1275 btrfs_btree_balance_dirty(info->tree_root);
1276 cond_resched();
1277
1278 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1279 break;
1280
1281 if (btrfs_defrag_cancelled(root->fs_info)) {
1282 pr_debug("BTRFS: defrag_root cancelled\n");
1283 ret = -EAGAIN;
1284 break;
1285 }
1286 }
1287 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1288 return ret;
1289 }
1290
1291 /*
1292 * new snapshots need to be created at a very specific time in the
1293 * transaction commit. This does the actual creation.
1294 *
1295 * Note:
1296 * If the error which may affect the commitment of the current transaction
1297 * happens, we should return the error number. If the error which just affect
1298 * the creation of the pending snapshots, just return 0.
1299 */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_pending_snapshot * pending)1300 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1301 struct btrfs_fs_info *fs_info,
1302 struct btrfs_pending_snapshot *pending)
1303 {
1304 struct btrfs_key key;
1305 struct btrfs_root_item *new_root_item;
1306 struct btrfs_root *tree_root = fs_info->tree_root;
1307 struct btrfs_root *root = pending->root;
1308 struct btrfs_root *parent_root;
1309 struct btrfs_block_rsv *rsv;
1310 struct inode *parent_inode;
1311 struct btrfs_path *path;
1312 struct btrfs_dir_item *dir_item;
1313 struct dentry *dentry;
1314 struct extent_buffer *tmp;
1315 struct extent_buffer *old;
1316 struct timespec cur_time = CURRENT_TIME;
1317 int ret = 0;
1318 u64 to_reserve = 0;
1319 u64 index = 0;
1320 u64 objectid;
1321 u64 root_flags;
1322 uuid_le new_uuid;
1323
1324 path = btrfs_alloc_path();
1325 if (!path) {
1326 pending->error = -ENOMEM;
1327 return 0;
1328 }
1329
1330 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1331 if (!new_root_item) {
1332 pending->error = -ENOMEM;
1333 goto root_item_alloc_fail;
1334 }
1335
1336 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1337 if (pending->error)
1338 goto no_free_objectid;
1339
1340 /*
1341 * Make qgroup to skip current new snapshot's qgroupid, as it is
1342 * accounted by later btrfs_qgroup_inherit().
1343 */
1344 btrfs_set_skip_qgroup(trans, objectid);
1345
1346 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1347
1348 if (to_reserve > 0) {
1349 pending->error = btrfs_block_rsv_add(root,
1350 &pending->block_rsv,
1351 to_reserve,
1352 BTRFS_RESERVE_NO_FLUSH);
1353 if (pending->error)
1354 goto clear_skip_qgroup;
1355 }
1356
1357 key.objectid = objectid;
1358 key.offset = (u64)-1;
1359 key.type = BTRFS_ROOT_ITEM_KEY;
1360
1361 rsv = trans->block_rsv;
1362 trans->block_rsv = &pending->block_rsv;
1363 trans->bytes_reserved = trans->block_rsv->reserved;
1364
1365 dentry = pending->dentry;
1366 parent_inode = pending->dir;
1367 parent_root = BTRFS_I(parent_inode)->root;
1368 record_root_in_trans(trans, parent_root);
1369
1370 /*
1371 * insert the directory item
1372 */
1373 ret = btrfs_set_inode_index(parent_inode, &index);
1374 BUG_ON(ret); /* -ENOMEM */
1375
1376 /* check if there is a file/dir which has the same name. */
1377 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1378 btrfs_ino(parent_inode),
1379 dentry->d_name.name,
1380 dentry->d_name.len, 0);
1381 if (dir_item != NULL && !IS_ERR(dir_item)) {
1382 pending->error = -EEXIST;
1383 goto dir_item_existed;
1384 } else if (IS_ERR(dir_item)) {
1385 ret = PTR_ERR(dir_item);
1386 btrfs_abort_transaction(trans, root, ret);
1387 goto fail;
1388 }
1389 btrfs_release_path(path);
1390
1391 /*
1392 * pull in the delayed directory update
1393 * and the delayed inode item
1394 * otherwise we corrupt the FS during
1395 * snapshot
1396 */
1397 ret = btrfs_run_delayed_items(trans, root);
1398 if (ret) { /* Transaction aborted */
1399 btrfs_abort_transaction(trans, root, ret);
1400 goto fail;
1401 }
1402
1403 record_root_in_trans(trans, root);
1404 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1405 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1406 btrfs_check_and_init_root_item(new_root_item);
1407
1408 root_flags = btrfs_root_flags(new_root_item);
1409 if (pending->readonly)
1410 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1411 else
1412 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1413 btrfs_set_root_flags(new_root_item, root_flags);
1414
1415 btrfs_set_root_generation_v2(new_root_item,
1416 trans->transid);
1417 uuid_le_gen(&new_uuid);
1418 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1419 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1420 BTRFS_UUID_SIZE);
1421 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1422 memset(new_root_item->received_uuid, 0,
1423 sizeof(new_root_item->received_uuid));
1424 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1425 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1426 btrfs_set_root_stransid(new_root_item, 0);
1427 btrfs_set_root_rtransid(new_root_item, 0);
1428 }
1429 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1430 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1431 btrfs_set_root_otransid(new_root_item, trans->transid);
1432
1433 old = btrfs_lock_root_node(root);
1434 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1435 if (ret) {
1436 btrfs_tree_unlock(old);
1437 free_extent_buffer(old);
1438 btrfs_abort_transaction(trans, root, ret);
1439 goto fail;
1440 }
1441
1442 btrfs_set_lock_blocking(old);
1443
1444 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1445 /* clean up in any case */
1446 btrfs_tree_unlock(old);
1447 free_extent_buffer(old);
1448 if (ret) {
1449 btrfs_abort_transaction(trans, root, ret);
1450 goto fail;
1451 }
1452 /* see comments in should_cow_block() */
1453 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1454 smp_wmb();
1455
1456 btrfs_set_root_node(new_root_item, tmp);
1457 /* record when the snapshot was created in key.offset */
1458 key.offset = trans->transid;
1459 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1460 btrfs_tree_unlock(tmp);
1461 free_extent_buffer(tmp);
1462 if (ret) {
1463 btrfs_abort_transaction(trans, root, ret);
1464 goto fail;
1465 }
1466
1467 /*
1468 * insert root back/forward references
1469 */
1470 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1471 parent_root->root_key.objectid,
1472 btrfs_ino(parent_inode), index,
1473 dentry->d_name.name, dentry->d_name.len);
1474 if (ret) {
1475 btrfs_abort_transaction(trans, root, ret);
1476 goto fail;
1477 }
1478
1479 key.offset = (u64)-1;
1480 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1481 if (IS_ERR(pending->snap)) {
1482 ret = PTR_ERR(pending->snap);
1483 btrfs_abort_transaction(trans, root, ret);
1484 goto fail;
1485 }
1486
1487 ret = btrfs_reloc_post_snapshot(trans, pending);
1488 if (ret) {
1489 btrfs_abort_transaction(trans, root, ret);
1490 goto fail;
1491 }
1492
1493 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1494 if (ret) {
1495 btrfs_abort_transaction(trans, root, ret);
1496 goto fail;
1497 }
1498
1499 ret = btrfs_insert_dir_item(trans, parent_root,
1500 dentry->d_name.name, dentry->d_name.len,
1501 parent_inode, &key,
1502 BTRFS_FT_DIR, index);
1503 /* We have check then name at the beginning, so it is impossible. */
1504 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1505 if (ret) {
1506 btrfs_abort_transaction(trans, root, ret);
1507 goto fail;
1508 }
1509
1510 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1511 dentry->d_name.len * 2);
1512 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1513 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1514 if (ret) {
1515 btrfs_abort_transaction(trans, root, ret);
1516 goto fail;
1517 }
1518 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1519 BTRFS_UUID_KEY_SUBVOL, objectid);
1520 if (ret) {
1521 btrfs_abort_transaction(trans, root, ret);
1522 goto fail;
1523 }
1524 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1525 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1526 new_root_item->received_uuid,
1527 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1528 objectid);
1529 if (ret && ret != -EEXIST) {
1530 btrfs_abort_transaction(trans, root, ret);
1531 goto fail;
1532 }
1533 }
1534
1535 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1536 if (ret) {
1537 btrfs_abort_transaction(trans, root, ret);
1538 goto fail;
1539 }
1540
1541 /*
1542 * account qgroup counters before qgroup_inherit()
1543 */
1544 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1545 if (ret)
1546 goto fail;
1547 ret = btrfs_qgroup_account_extents(trans, fs_info);
1548 if (ret)
1549 goto fail;
1550 ret = btrfs_qgroup_inherit(trans, fs_info,
1551 root->root_key.objectid,
1552 objectid, pending->inherit);
1553 if (ret) {
1554 btrfs_abort_transaction(trans, root, ret);
1555 goto fail;
1556 }
1557
1558 fail:
1559 pending->error = ret;
1560 dir_item_existed:
1561 trans->block_rsv = rsv;
1562 trans->bytes_reserved = 0;
1563 clear_skip_qgroup:
1564 btrfs_clear_skip_qgroup(trans);
1565 no_free_objectid:
1566 kfree(new_root_item);
1567 root_item_alloc_fail:
1568 btrfs_free_path(path);
1569 return ret;
1570 }
1571
1572 /*
1573 * create all the snapshots we've scheduled for creation
1574 */
create_pending_snapshots(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1575 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1576 struct btrfs_fs_info *fs_info)
1577 {
1578 struct btrfs_pending_snapshot *pending, *next;
1579 struct list_head *head = &trans->transaction->pending_snapshots;
1580 int ret = 0;
1581
1582 list_for_each_entry_safe(pending, next, head, list) {
1583 list_del(&pending->list);
1584 ret = create_pending_snapshot(trans, fs_info, pending);
1585 if (ret)
1586 break;
1587 }
1588 return ret;
1589 }
1590
update_super_roots(struct btrfs_root * root)1591 static void update_super_roots(struct btrfs_root *root)
1592 {
1593 struct btrfs_root_item *root_item;
1594 struct btrfs_super_block *super;
1595
1596 super = root->fs_info->super_copy;
1597
1598 root_item = &root->fs_info->chunk_root->root_item;
1599 super->chunk_root = root_item->bytenr;
1600 super->chunk_root_generation = root_item->generation;
1601 super->chunk_root_level = root_item->level;
1602
1603 root_item = &root->fs_info->tree_root->root_item;
1604 super->root = root_item->bytenr;
1605 super->generation = root_item->generation;
1606 super->root_level = root_item->level;
1607 if (btrfs_test_opt(root, SPACE_CACHE))
1608 super->cache_generation = root_item->generation;
1609 if (root->fs_info->update_uuid_tree_gen)
1610 super->uuid_tree_generation = root_item->generation;
1611 }
1612
btrfs_transaction_in_commit(struct btrfs_fs_info * info)1613 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1614 {
1615 struct btrfs_transaction *trans;
1616 int ret = 0;
1617
1618 spin_lock(&info->trans_lock);
1619 trans = info->running_transaction;
1620 if (trans)
1621 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1622 spin_unlock(&info->trans_lock);
1623 return ret;
1624 }
1625
btrfs_transaction_blocked(struct btrfs_fs_info * info)1626 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1627 {
1628 struct btrfs_transaction *trans;
1629 int ret = 0;
1630
1631 spin_lock(&info->trans_lock);
1632 trans = info->running_transaction;
1633 if (trans)
1634 ret = is_transaction_blocked(trans);
1635 spin_unlock(&info->trans_lock);
1636 return ret;
1637 }
1638
1639 /*
1640 * wait for the current transaction commit to start and block subsequent
1641 * transaction joins
1642 */
wait_current_trans_commit_start(struct btrfs_root * root,struct btrfs_transaction * trans)1643 static void wait_current_trans_commit_start(struct btrfs_root *root,
1644 struct btrfs_transaction *trans)
1645 {
1646 wait_event(root->fs_info->transaction_blocked_wait,
1647 trans->state >= TRANS_STATE_COMMIT_START ||
1648 trans->aborted);
1649 }
1650
1651 /*
1652 * wait for the current transaction to start and then become unblocked.
1653 * caller holds ref.
1654 */
wait_current_trans_commit_start_and_unblock(struct btrfs_root * root,struct btrfs_transaction * trans)1655 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1656 struct btrfs_transaction *trans)
1657 {
1658 wait_event(root->fs_info->transaction_wait,
1659 trans->state >= TRANS_STATE_UNBLOCKED ||
1660 trans->aborted);
1661 }
1662
1663 /*
1664 * commit transactions asynchronously. once btrfs_commit_transaction_async
1665 * returns, any subsequent transaction will not be allowed to join.
1666 */
1667 struct btrfs_async_commit {
1668 struct btrfs_trans_handle *newtrans;
1669 struct btrfs_root *root;
1670 struct work_struct work;
1671 };
1672
do_async_commit(struct work_struct * work)1673 static void do_async_commit(struct work_struct *work)
1674 {
1675 struct btrfs_async_commit *ac =
1676 container_of(work, struct btrfs_async_commit, work);
1677
1678 /*
1679 * We've got freeze protection passed with the transaction.
1680 * Tell lockdep about it.
1681 */
1682 if (ac->newtrans->type & __TRANS_FREEZABLE)
1683 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1684
1685 current->journal_info = ac->newtrans;
1686
1687 btrfs_commit_transaction(ac->newtrans, ac->root);
1688 kfree(ac);
1689 }
1690
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans,struct btrfs_root * root,int wait_for_unblock)1691 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1692 struct btrfs_root *root,
1693 int wait_for_unblock)
1694 {
1695 struct btrfs_async_commit *ac;
1696 struct btrfs_transaction *cur_trans;
1697
1698 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1699 if (!ac)
1700 return -ENOMEM;
1701
1702 INIT_WORK(&ac->work, do_async_commit);
1703 ac->root = root;
1704 ac->newtrans = btrfs_join_transaction(root);
1705 if (IS_ERR(ac->newtrans)) {
1706 int err = PTR_ERR(ac->newtrans);
1707 kfree(ac);
1708 return err;
1709 }
1710
1711 /* take transaction reference */
1712 cur_trans = trans->transaction;
1713 atomic_inc(&cur_trans->use_count);
1714
1715 btrfs_end_transaction(trans, root);
1716
1717 /*
1718 * Tell lockdep we've released the freeze rwsem, since the
1719 * async commit thread will be the one to unlock it.
1720 */
1721 if (ac->newtrans->type & __TRANS_FREEZABLE)
1722 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1723
1724 schedule_work(&ac->work);
1725
1726 /* wait for transaction to start and unblock */
1727 if (wait_for_unblock)
1728 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1729 else
1730 wait_current_trans_commit_start(root, cur_trans);
1731
1732 if (current->journal_info == trans)
1733 current->journal_info = NULL;
1734
1735 btrfs_put_transaction(cur_trans);
1736 return 0;
1737 }
1738
1739
cleanup_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root,int err)1740 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1741 struct btrfs_root *root, int err)
1742 {
1743 struct btrfs_transaction *cur_trans = trans->transaction;
1744 DEFINE_WAIT(wait);
1745
1746 WARN_ON(trans->use_count > 1);
1747
1748 btrfs_abort_transaction(trans, root, err);
1749
1750 spin_lock(&root->fs_info->trans_lock);
1751
1752 /*
1753 * If the transaction is removed from the list, it means this
1754 * transaction has been committed successfully, so it is impossible
1755 * to call the cleanup function.
1756 */
1757 BUG_ON(list_empty(&cur_trans->list));
1758
1759 list_del_init(&cur_trans->list);
1760 if (cur_trans == root->fs_info->running_transaction) {
1761 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1762 spin_unlock(&root->fs_info->trans_lock);
1763 wait_event(cur_trans->writer_wait,
1764 atomic_read(&cur_trans->num_writers) == 1);
1765
1766 spin_lock(&root->fs_info->trans_lock);
1767 }
1768 spin_unlock(&root->fs_info->trans_lock);
1769
1770 btrfs_cleanup_one_transaction(trans->transaction, root);
1771
1772 spin_lock(&root->fs_info->trans_lock);
1773 if (cur_trans == root->fs_info->running_transaction)
1774 root->fs_info->running_transaction = NULL;
1775 spin_unlock(&root->fs_info->trans_lock);
1776
1777 if (trans->type & __TRANS_FREEZABLE)
1778 sb_end_intwrite(root->fs_info->sb);
1779 btrfs_put_transaction(cur_trans);
1780 btrfs_put_transaction(cur_trans);
1781
1782 trace_btrfs_transaction_commit(root);
1783
1784 if (current->journal_info == trans)
1785 current->journal_info = NULL;
1786 btrfs_scrub_cancel(root->fs_info);
1787
1788 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1789 }
1790
btrfs_start_delalloc_flush(struct btrfs_fs_info * fs_info)1791 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1792 {
1793 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1794 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1795 return 0;
1796 }
1797
btrfs_wait_delalloc_flush(struct btrfs_fs_info * fs_info)1798 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1799 {
1800 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1801 btrfs_wait_ordered_roots(fs_info, -1);
1802 }
1803
1804 static inline void
btrfs_wait_pending_ordered(struct btrfs_transaction * cur_trans)1805 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1806 {
1807 wait_event(cur_trans->pending_wait,
1808 atomic_read(&cur_trans->pending_ordered) == 0);
1809 }
1810
btrfs_commit_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)1811 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1812 struct btrfs_root *root)
1813 {
1814 struct btrfs_transaction *cur_trans = trans->transaction;
1815 struct btrfs_transaction *prev_trans = NULL;
1816 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1817 int ret;
1818
1819 /*
1820 * Some places just start a transaction to commit it. We need to make
1821 * sure that if this commit fails that the abort code actually marks the
1822 * transaction as failed, so set trans->dirty to make the abort code do
1823 * the right thing.
1824 */
1825 trans->dirty = true;
1826
1827 /* Stop the commit early if ->aborted is set */
1828 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1829 ret = cur_trans->aborted;
1830 btrfs_end_transaction(trans, root);
1831 return ret;
1832 }
1833
1834 btrfs_trans_release_metadata(trans, root);
1835 trans->block_rsv = NULL;
1836
1837 /* make a pass through all the delayed refs we have so far
1838 * any runnings procs may add more while we are here
1839 */
1840 ret = btrfs_run_delayed_refs(trans, root, 0);
1841 if (ret) {
1842 btrfs_end_transaction(trans, root);
1843 return ret;
1844 }
1845
1846 cur_trans = trans->transaction;
1847
1848 /*
1849 * set the flushing flag so procs in this transaction have to
1850 * start sending their work down.
1851 */
1852 cur_trans->delayed_refs.flushing = 1;
1853 smp_wmb();
1854
1855 if (!list_empty(&trans->new_bgs))
1856 btrfs_create_pending_block_groups(trans, root);
1857
1858 ret = btrfs_run_delayed_refs(trans, root, 0);
1859 if (ret) {
1860 btrfs_end_transaction(trans, root);
1861 return ret;
1862 }
1863
1864 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1865 int run_it = 0;
1866
1867 /* this mutex is also taken before trying to set
1868 * block groups readonly. We need to make sure
1869 * that nobody has set a block group readonly
1870 * after a extents from that block group have been
1871 * allocated for cache files. btrfs_set_block_group_ro
1872 * will wait for the transaction to commit if it
1873 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1874 *
1875 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1876 * only one process starts all the block group IO. It wouldn't
1877 * hurt to have more than one go through, but there's no
1878 * real advantage to it either.
1879 */
1880 mutex_lock(&root->fs_info->ro_block_group_mutex);
1881 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1882 &cur_trans->flags))
1883 run_it = 1;
1884 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1885
1886 if (run_it)
1887 ret = btrfs_start_dirty_block_groups(trans, root);
1888 }
1889 if (ret) {
1890 btrfs_end_transaction(trans, root);
1891 return ret;
1892 }
1893
1894 spin_lock(&root->fs_info->trans_lock);
1895 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1896 spin_unlock(&root->fs_info->trans_lock);
1897 atomic_inc(&cur_trans->use_count);
1898 ret = btrfs_end_transaction(trans, root);
1899
1900 wait_for_commit(root, cur_trans);
1901
1902 if (unlikely(cur_trans->aborted))
1903 ret = cur_trans->aborted;
1904
1905 btrfs_put_transaction(cur_trans);
1906
1907 return ret;
1908 }
1909
1910 cur_trans->state = TRANS_STATE_COMMIT_START;
1911 wake_up(&root->fs_info->transaction_blocked_wait);
1912
1913 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1914 prev_trans = list_entry(cur_trans->list.prev,
1915 struct btrfs_transaction, list);
1916 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1917 atomic_inc(&prev_trans->use_count);
1918 spin_unlock(&root->fs_info->trans_lock);
1919
1920 wait_for_commit(root, prev_trans);
1921 ret = prev_trans->aborted;
1922
1923 btrfs_put_transaction(prev_trans);
1924 if (ret)
1925 goto cleanup_transaction;
1926 } else {
1927 spin_unlock(&root->fs_info->trans_lock);
1928 }
1929 } else {
1930 spin_unlock(&root->fs_info->trans_lock);
1931 }
1932
1933 extwriter_counter_dec(cur_trans, trans->type);
1934
1935 ret = btrfs_start_delalloc_flush(root->fs_info);
1936 if (ret)
1937 goto cleanup_transaction;
1938
1939 ret = btrfs_run_delayed_items(trans, root);
1940 if (ret)
1941 goto cleanup_transaction;
1942
1943 wait_event(cur_trans->writer_wait,
1944 extwriter_counter_read(cur_trans) == 0);
1945
1946 /* some pending stuffs might be added after the previous flush. */
1947 ret = btrfs_run_delayed_items(trans, root);
1948 if (ret)
1949 goto cleanup_transaction;
1950
1951 btrfs_wait_delalloc_flush(root->fs_info);
1952
1953 btrfs_wait_pending_ordered(cur_trans);
1954
1955 btrfs_scrub_pause(root);
1956 /*
1957 * Ok now we need to make sure to block out any other joins while we
1958 * commit the transaction. We could have started a join before setting
1959 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1960 */
1961 spin_lock(&root->fs_info->trans_lock);
1962 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1963 spin_unlock(&root->fs_info->trans_lock);
1964 wait_event(cur_trans->writer_wait,
1965 atomic_read(&cur_trans->num_writers) == 1);
1966
1967 /* ->aborted might be set after the previous check, so check it */
1968 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1969 ret = cur_trans->aborted;
1970 goto scrub_continue;
1971 }
1972 /*
1973 * the reloc mutex makes sure that we stop
1974 * the balancing code from coming in and moving
1975 * extents around in the middle of the commit
1976 */
1977 mutex_lock(&root->fs_info->reloc_mutex);
1978
1979 /*
1980 * We needn't worry about the delayed items because we will
1981 * deal with them in create_pending_snapshot(), which is the
1982 * core function of the snapshot creation.
1983 */
1984 ret = create_pending_snapshots(trans, root->fs_info);
1985 if (ret) {
1986 mutex_unlock(&root->fs_info->reloc_mutex);
1987 goto scrub_continue;
1988 }
1989
1990 /*
1991 * We insert the dir indexes of the snapshots and update the inode
1992 * of the snapshots' parents after the snapshot creation, so there
1993 * are some delayed items which are not dealt with. Now deal with
1994 * them.
1995 *
1996 * We needn't worry that this operation will corrupt the snapshots,
1997 * because all the tree which are snapshoted will be forced to COW
1998 * the nodes and leaves.
1999 */
2000 ret = btrfs_run_delayed_items(trans, root);
2001 if (ret) {
2002 mutex_unlock(&root->fs_info->reloc_mutex);
2003 goto scrub_continue;
2004 }
2005
2006 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2007 if (ret) {
2008 mutex_unlock(&root->fs_info->reloc_mutex);
2009 goto scrub_continue;
2010 }
2011
2012 /* Reocrd old roots for later qgroup accounting */
2013 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2014 if (ret) {
2015 mutex_unlock(&root->fs_info->reloc_mutex);
2016 goto scrub_continue;
2017 }
2018
2019 /*
2020 * make sure none of the code above managed to slip in a
2021 * delayed item
2022 */
2023 btrfs_assert_delayed_root_empty(root);
2024
2025 WARN_ON(cur_trans != trans->transaction);
2026
2027 /* btrfs_commit_tree_roots is responsible for getting the
2028 * various roots consistent with each other. Every pointer
2029 * in the tree of tree roots has to point to the most up to date
2030 * root for every subvolume and other tree. So, we have to keep
2031 * the tree logging code from jumping in and changing any
2032 * of the trees.
2033 *
2034 * At this point in the commit, there can't be any tree-log
2035 * writers, but a little lower down we drop the trans mutex
2036 * and let new people in. By holding the tree_log_mutex
2037 * from now until after the super is written, we avoid races
2038 * with the tree-log code.
2039 */
2040 mutex_lock(&root->fs_info->tree_log_mutex);
2041
2042 ret = commit_fs_roots(trans, root);
2043 if (ret) {
2044 mutex_unlock(&root->fs_info->tree_log_mutex);
2045 mutex_unlock(&root->fs_info->reloc_mutex);
2046 goto scrub_continue;
2047 }
2048
2049 /*
2050 * Since the transaction is done, we can apply the pending changes
2051 * before the next transaction.
2052 */
2053 btrfs_apply_pending_changes(root->fs_info);
2054
2055 /* commit_fs_roots gets rid of all the tree log roots, it is now
2056 * safe to free the root of tree log roots
2057 */
2058 btrfs_free_log_root_tree(trans, root->fs_info);
2059
2060 /*
2061 * Since fs roots are all committed, we can get a quite accurate
2062 * new_roots. So let's do quota accounting.
2063 */
2064 ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2065 if (ret < 0) {
2066 mutex_unlock(&root->fs_info->tree_log_mutex);
2067 mutex_unlock(&root->fs_info->reloc_mutex);
2068 goto scrub_continue;
2069 }
2070
2071 ret = commit_cowonly_roots(trans, root);
2072 if (ret) {
2073 mutex_unlock(&root->fs_info->tree_log_mutex);
2074 mutex_unlock(&root->fs_info->reloc_mutex);
2075 goto scrub_continue;
2076 }
2077
2078 /*
2079 * The tasks which save the space cache and inode cache may also
2080 * update ->aborted, check it.
2081 */
2082 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2083 ret = cur_trans->aborted;
2084 mutex_unlock(&root->fs_info->tree_log_mutex);
2085 mutex_unlock(&root->fs_info->reloc_mutex);
2086 goto scrub_continue;
2087 }
2088
2089 btrfs_prepare_extent_commit(trans, root);
2090
2091 cur_trans = root->fs_info->running_transaction;
2092
2093 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2094 root->fs_info->tree_root->node);
2095 list_add_tail(&root->fs_info->tree_root->dirty_list,
2096 &cur_trans->switch_commits);
2097
2098 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2099 root->fs_info->chunk_root->node);
2100 list_add_tail(&root->fs_info->chunk_root->dirty_list,
2101 &cur_trans->switch_commits);
2102
2103 switch_commit_roots(cur_trans, root->fs_info);
2104
2105 assert_qgroups_uptodate(trans);
2106 ASSERT(list_empty(&cur_trans->dirty_bgs));
2107 ASSERT(list_empty(&cur_trans->io_bgs));
2108 update_super_roots(root);
2109
2110 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2111 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2112 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2113 sizeof(*root->fs_info->super_copy));
2114
2115 btrfs_update_commit_device_size(root->fs_info);
2116 btrfs_update_commit_device_bytes_used(root, cur_trans);
2117
2118 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2119 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2120
2121 btrfs_trans_release_chunk_metadata(trans);
2122
2123 spin_lock(&root->fs_info->trans_lock);
2124 cur_trans->state = TRANS_STATE_UNBLOCKED;
2125 root->fs_info->running_transaction = NULL;
2126 spin_unlock(&root->fs_info->trans_lock);
2127 mutex_unlock(&root->fs_info->reloc_mutex);
2128
2129 wake_up(&root->fs_info->transaction_wait);
2130
2131 ret = btrfs_write_and_wait_transaction(trans, root);
2132 if (ret) {
2133 btrfs_std_error(root->fs_info, ret,
2134 "Error while writing out transaction");
2135 mutex_unlock(&root->fs_info->tree_log_mutex);
2136 goto scrub_continue;
2137 }
2138
2139 ret = write_ctree_super(trans, root, 0);
2140 if (ret) {
2141 mutex_unlock(&root->fs_info->tree_log_mutex);
2142 goto scrub_continue;
2143 }
2144
2145 /*
2146 * the super is written, we can safely allow the tree-loggers
2147 * to go about their business
2148 */
2149 mutex_unlock(&root->fs_info->tree_log_mutex);
2150
2151 btrfs_finish_extent_commit(trans, root);
2152
2153 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2154 btrfs_clear_space_info_full(root->fs_info);
2155
2156 root->fs_info->last_trans_committed = cur_trans->transid;
2157 /*
2158 * We needn't acquire the lock here because there is no other task
2159 * which can change it.
2160 */
2161 cur_trans->state = TRANS_STATE_COMPLETED;
2162 wake_up(&cur_trans->commit_wait);
2163
2164 spin_lock(&root->fs_info->trans_lock);
2165 list_del_init(&cur_trans->list);
2166 spin_unlock(&root->fs_info->trans_lock);
2167
2168 btrfs_put_transaction(cur_trans);
2169 btrfs_put_transaction(cur_trans);
2170
2171 if (trans->type & __TRANS_FREEZABLE)
2172 sb_end_intwrite(root->fs_info->sb);
2173
2174 trace_btrfs_transaction_commit(root);
2175
2176 btrfs_scrub_continue(root);
2177
2178 if (current->journal_info == trans)
2179 current->journal_info = NULL;
2180
2181 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2182
2183 if (current != root->fs_info->transaction_kthread &&
2184 current != root->fs_info->cleaner_kthread)
2185 btrfs_run_delayed_iputs(root);
2186
2187 return ret;
2188
2189 scrub_continue:
2190 btrfs_scrub_continue(root);
2191 cleanup_transaction:
2192 btrfs_trans_release_metadata(trans, root);
2193 btrfs_trans_release_chunk_metadata(trans);
2194 trans->block_rsv = NULL;
2195 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2196 if (current->journal_info == trans)
2197 current->journal_info = NULL;
2198 cleanup_transaction(trans, root, ret);
2199
2200 return ret;
2201 }
2202
2203 /*
2204 * return < 0 if error
2205 * 0 if there are no more dead_roots at the time of call
2206 * 1 there are more to be processed, call me again
2207 *
2208 * The return value indicates there are certainly more snapshots to delete, but
2209 * if there comes a new one during processing, it may return 0. We don't mind,
2210 * because btrfs_commit_super will poke cleaner thread and it will process it a
2211 * few seconds later.
2212 */
btrfs_clean_one_deleted_snapshot(struct btrfs_root * root)2213 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2214 {
2215 int ret;
2216 struct btrfs_fs_info *fs_info = root->fs_info;
2217
2218 spin_lock(&fs_info->trans_lock);
2219 if (list_empty(&fs_info->dead_roots)) {
2220 spin_unlock(&fs_info->trans_lock);
2221 return 0;
2222 }
2223 root = list_first_entry(&fs_info->dead_roots,
2224 struct btrfs_root, root_list);
2225 list_del_init(&root->root_list);
2226 spin_unlock(&fs_info->trans_lock);
2227
2228 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2229
2230 btrfs_kill_all_delayed_nodes(root);
2231
2232 if (btrfs_header_backref_rev(root->node) <
2233 BTRFS_MIXED_BACKREF_REV)
2234 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2235 else
2236 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2237
2238 return (ret < 0) ? 0 : 1;
2239 }
2240
btrfs_apply_pending_changes(struct btrfs_fs_info * fs_info)2241 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2242 {
2243 unsigned long prev;
2244 unsigned long bit;
2245
2246 prev = xchg(&fs_info->pending_changes, 0);
2247 if (!prev)
2248 return;
2249
2250 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2251 if (prev & bit)
2252 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2253 prev &= ~bit;
2254
2255 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2256 if (prev & bit)
2257 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2258 prev &= ~bit;
2259
2260 bit = 1 << BTRFS_PENDING_COMMIT;
2261 if (prev & bit)
2262 btrfs_debug(fs_info, "pending commit done");
2263 prev &= ~bit;
2264
2265 if (prev)
2266 btrfs_warn(fs_info,
2267 "unknown pending changes left 0x%lx, ignoring", prev);
2268 }
2269