• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44 
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 	[BTRFS_RAID_RAID10] = {
47 		.sub_stripes	= 2,
48 		.dev_stripes	= 1,
49 		.devs_max	= 0,	/* 0 == as many as possible */
50 		.devs_min	= 4,
51 		.tolerated_failures = 1,
52 		.devs_increment	= 2,
53 		.ncopies	= 2,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 	},
64 	[BTRFS_RAID_DUP] = {
65 		.sub_stripes	= 1,
66 		.dev_stripes	= 2,
67 		.devs_max	= 1,
68 		.devs_min	= 1,
69 		.tolerated_failures = 0,
70 		.devs_increment	= 1,
71 		.ncopies	= 2,
72 	},
73 	[BTRFS_RAID_RAID0] = {
74 		.sub_stripes	= 1,
75 		.dev_stripes	= 1,
76 		.devs_max	= 0,
77 		.devs_min	= 2,
78 		.tolerated_failures = 0,
79 		.devs_increment	= 1,
80 		.ncopies	= 1,
81 	},
82 	[BTRFS_RAID_SINGLE] = {
83 		.sub_stripes	= 1,
84 		.dev_stripes	= 1,
85 		.devs_max	= 1,
86 		.devs_min	= 1,
87 		.tolerated_failures = 0,
88 		.devs_increment	= 1,
89 		.ncopies	= 1,
90 	},
91 	[BTRFS_RAID_RAID5] = {
92 		.sub_stripes	= 1,
93 		.dev_stripes	= 1,
94 		.devs_max	= 0,
95 		.devs_min	= 2,
96 		.tolerated_failures = 1,
97 		.devs_increment	= 1,
98 		.ncopies	= 2,
99 	},
100 	[BTRFS_RAID_RAID6] = {
101 		.sub_stripes	= 1,
102 		.dev_stripes	= 1,
103 		.devs_max	= 0,
104 		.devs_min	= 3,
105 		.tolerated_failures = 2,
106 		.devs_increment	= 1,
107 		.ncopies	= 3,
108 	},
109 };
110 
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 	[BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 	[BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114 	[BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115 	[BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116 	[BTRFS_RAID_SINGLE] = 0,
117 	[BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118 	[BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120 
121 static int init_first_rw_device(struct btrfs_trans_handle *trans,
122 				struct btrfs_root *root,
123 				struct btrfs_device *device);
124 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
125 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
126 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
127 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
128 
129 DEFINE_MUTEX(uuid_mutex);
130 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)131 struct list_head *btrfs_get_fs_uuids(void)
132 {
133 	return &fs_uuids;
134 }
135 
__alloc_fs_devices(void)136 static struct btrfs_fs_devices *__alloc_fs_devices(void)
137 {
138 	struct btrfs_fs_devices *fs_devs;
139 
140 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
141 	if (!fs_devs)
142 		return ERR_PTR(-ENOMEM);
143 
144 	mutex_init(&fs_devs->device_list_mutex);
145 
146 	INIT_LIST_HEAD(&fs_devs->devices);
147 	INIT_LIST_HEAD(&fs_devs->resized_devices);
148 	INIT_LIST_HEAD(&fs_devs->alloc_list);
149 	INIT_LIST_HEAD(&fs_devs->list);
150 
151 	return fs_devs;
152 }
153 
154 /**
155  * alloc_fs_devices - allocate struct btrfs_fs_devices
156  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
157  *		generated.
158  *
159  * Return: a pointer to a new &struct btrfs_fs_devices on success;
160  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
161  * can be destroyed with kfree() right away.
162  */
alloc_fs_devices(const u8 * fsid)163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
164 {
165 	struct btrfs_fs_devices *fs_devs;
166 
167 	fs_devs = __alloc_fs_devices();
168 	if (IS_ERR(fs_devs))
169 		return fs_devs;
170 
171 	if (fsid)
172 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
173 	else
174 		generate_random_uuid(fs_devs->fsid);
175 
176 	return fs_devs;
177 }
178 
free_fs_devices(struct btrfs_fs_devices * fs_devices)179 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
180 {
181 	struct btrfs_device *device;
182 	WARN_ON(fs_devices->opened);
183 	while (!list_empty(&fs_devices->devices)) {
184 		device = list_entry(fs_devices->devices.next,
185 				    struct btrfs_device, dev_list);
186 		list_del(&device->dev_list);
187 		rcu_string_free(device->name);
188 		kfree(device);
189 	}
190 	kfree(fs_devices);
191 }
192 
btrfs_kobject_uevent(struct block_device * bdev,enum kobject_action action)193 static void btrfs_kobject_uevent(struct block_device *bdev,
194 				 enum kobject_action action)
195 {
196 	int ret;
197 
198 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
199 	if (ret)
200 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
201 			action,
202 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
203 			&disk_to_dev(bdev->bd_disk)->kobj);
204 }
205 
btrfs_cleanup_fs_uuids(void)206 void btrfs_cleanup_fs_uuids(void)
207 {
208 	struct btrfs_fs_devices *fs_devices;
209 
210 	while (!list_empty(&fs_uuids)) {
211 		fs_devices = list_entry(fs_uuids.next,
212 					struct btrfs_fs_devices, list);
213 		list_del(&fs_devices->list);
214 		free_fs_devices(fs_devices);
215 	}
216 }
217 
__alloc_device(void)218 static struct btrfs_device *__alloc_device(void)
219 {
220 	struct btrfs_device *dev;
221 
222 	dev = kzalloc(sizeof(*dev), GFP_NOFS);
223 	if (!dev)
224 		return ERR_PTR(-ENOMEM);
225 
226 	INIT_LIST_HEAD(&dev->dev_list);
227 	INIT_LIST_HEAD(&dev->dev_alloc_list);
228 	INIT_LIST_HEAD(&dev->resized_list);
229 
230 	spin_lock_init(&dev->io_lock);
231 
232 	spin_lock_init(&dev->reada_lock);
233 	atomic_set(&dev->reada_in_flight, 0);
234 	atomic_set(&dev->dev_stats_ccnt, 0);
235 	btrfs_device_data_ordered_init(dev);
236 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
237 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
238 
239 	return dev;
240 }
241 
__find_device(struct list_head * head,u64 devid,u8 * uuid)242 static noinline struct btrfs_device *__find_device(struct list_head *head,
243 						   u64 devid, u8 *uuid)
244 {
245 	struct btrfs_device *dev;
246 
247 	list_for_each_entry(dev, head, dev_list) {
248 		if (dev->devid == devid &&
249 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
250 			return dev;
251 		}
252 	}
253 	return NULL;
254 }
255 
find_fsid(u8 * fsid)256 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
257 {
258 	struct btrfs_fs_devices *fs_devices;
259 
260 	list_for_each_entry(fs_devices, &fs_uuids, list) {
261 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
262 			return fs_devices;
263 	}
264 	return NULL;
265 }
266 
267 static int
btrfs_get_bdev_and_sb(const char * device_path,fmode_t flags,void * holder,int flush,struct block_device ** bdev,struct buffer_head ** bh)268 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
269 		      int flush, struct block_device **bdev,
270 		      struct buffer_head **bh)
271 {
272 	int ret;
273 
274 	*bdev = blkdev_get_by_path(device_path, flags, holder);
275 
276 	if (IS_ERR(*bdev)) {
277 		ret = PTR_ERR(*bdev);
278 		goto error;
279 	}
280 
281 	if (flush)
282 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
283 	ret = set_blocksize(*bdev, 4096);
284 	if (ret) {
285 		blkdev_put(*bdev, flags);
286 		goto error;
287 	}
288 	invalidate_bdev(*bdev);
289 	*bh = btrfs_read_dev_super(*bdev);
290 	if (IS_ERR(*bh)) {
291 		ret = PTR_ERR(*bh);
292 		blkdev_put(*bdev, flags);
293 		goto error;
294 	}
295 
296 	return 0;
297 
298 error:
299 	*bdev = NULL;
300 	*bh = NULL;
301 	return ret;
302 }
303 
requeue_list(struct btrfs_pending_bios * pending_bios,struct bio * head,struct bio * tail)304 static void requeue_list(struct btrfs_pending_bios *pending_bios,
305 			struct bio *head, struct bio *tail)
306 {
307 
308 	struct bio *old_head;
309 
310 	old_head = pending_bios->head;
311 	pending_bios->head = head;
312 	if (pending_bios->tail)
313 		tail->bi_next = old_head;
314 	else
315 		pending_bios->tail = tail;
316 }
317 
318 /*
319  * we try to collect pending bios for a device so we don't get a large
320  * number of procs sending bios down to the same device.  This greatly
321  * improves the schedulers ability to collect and merge the bios.
322  *
323  * But, it also turns into a long list of bios to process and that is sure
324  * to eventually make the worker thread block.  The solution here is to
325  * make some progress and then put this work struct back at the end of
326  * the list if the block device is congested.  This way, multiple devices
327  * can make progress from a single worker thread.
328  */
run_scheduled_bios(struct btrfs_device * device)329 static noinline void run_scheduled_bios(struct btrfs_device *device)
330 {
331 	struct bio *pending;
332 	struct backing_dev_info *bdi;
333 	struct btrfs_fs_info *fs_info;
334 	struct btrfs_pending_bios *pending_bios;
335 	struct bio *tail;
336 	struct bio *cur;
337 	int again = 0;
338 	unsigned long num_run;
339 	unsigned long batch_run = 0;
340 	unsigned long limit;
341 	unsigned long last_waited = 0;
342 	int force_reg = 0;
343 	int sync_pending = 0;
344 	struct blk_plug plug;
345 
346 	/*
347 	 * this function runs all the bios we've collected for
348 	 * a particular device.  We don't want to wander off to
349 	 * another device without first sending all of these down.
350 	 * So, setup a plug here and finish it off before we return
351 	 */
352 	blk_start_plug(&plug);
353 
354 	bdi = blk_get_backing_dev_info(device->bdev);
355 	fs_info = device->dev_root->fs_info;
356 	limit = btrfs_async_submit_limit(fs_info);
357 	limit = limit * 2 / 3;
358 
359 loop:
360 	spin_lock(&device->io_lock);
361 
362 loop_lock:
363 	num_run = 0;
364 
365 	/* take all the bios off the list at once and process them
366 	 * later on (without the lock held).  But, remember the
367 	 * tail and other pointers so the bios can be properly reinserted
368 	 * into the list if we hit congestion
369 	 */
370 	if (!force_reg && device->pending_sync_bios.head) {
371 		pending_bios = &device->pending_sync_bios;
372 		force_reg = 1;
373 	} else {
374 		pending_bios = &device->pending_bios;
375 		force_reg = 0;
376 	}
377 
378 	pending = pending_bios->head;
379 	tail = pending_bios->tail;
380 	WARN_ON(pending && !tail);
381 
382 	/*
383 	 * if pending was null this time around, no bios need processing
384 	 * at all and we can stop.  Otherwise it'll loop back up again
385 	 * and do an additional check so no bios are missed.
386 	 *
387 	 * device->running_pending is used to synchronize with the
388 	 * schedule_bio code.
389 	 */
390 	if (device->pending_sync_bios.head == NULL &&
391 	    device->pending_bios.head == NULL) {
392 		again = 0;
393 		device->running_pending = 0;
394 	} else {
395 		again = 1;
396 		device->running_pending = 1;
397 	}
398 
399 	pending_bios->head = NULL;
400 	pending_bios->tail = NULL;
401 
402 	spin_unlock(&device->io_lock);
403 
404 	while (pending) {
405 
406 		rmb();
407 		/* we want to work on both lists, but do more bios on the
408 		 * sync list than the regular list
409 		 */
410 		if ((num_run > 32 &&
411 		    pending_bios != &device->pending_sync_bios &&
412 		    device->pending_sync_bios.head) ||
413 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
414 		    device->pending_bios.head)) {
415 			spin_lock(&device->io_lock);
416 			requeue_list(pending_bios, pending, tail);
417 			goto loop_lock;
418 		}
419 
420 		cur = pending;
421 		pending = pending->bi_next;
422 		cur->bi_next = NULL;
423 
424 		/*
425 		 * atomic_dec_return implies a barrier for waitqueue_active
426 		 */
427 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
428 		    waitqueue_active(&fs_info->async_submit_wait))
429 			wake_up(&fs_info->async_submit_wait);
430 
431 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
432 
433 		/*
434 		 * if we're doing the sync list, record that our
435 		 * plug has some sync requests on it
436 		 *
437 		 * If we're doing the regular list and there are
438 		 * sync requests sitting around, unplug before
439 		 * we add more
440 		 */
441 		if (pending_bios == &device->pending_sync_bios) {
442 			sync_pending = 1;
443 		} else if (sync_pending) {
444 			blk_finish_plug(&plug);
445 			blk_start_plug(&plug);
446 			sync_pending = 0;
447 		}
448 
449 		btrfsic_submit_bio(cur->bi_rw, cur);
450 		num_run++;
451 		batch_run++;
452 
453 		cond_resched();
454 
455 		/*
456 		 * we made progress, there is more work to do and the bdi
457 		 * is now congested.  Back off and let other work structs
458 		 * run instead
459 		 */
460 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
461 		    fs_info->fs_devices->open_devices > 1) {
462 			struct io_context *ioc;
463 
464 			ioc = current->io_context;
465 
466 			/*
467 			 * the main goal here is that we don't want to
468 			 * block if we're going to be able to submit
469 			 * more requests without blocking.
470 			 *
471 			 * This code does two great things, it pokes into
472 			 * the elevator code from a filesystem _and_
473 			 * it makes assumptions about how batching works.
474 			 */
475 			if (ioc && ioc->nr_batch_requests > 0 &&
476 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
477 			    (last_waited == 0 ||
478 			     ioc->last_waited == last_waited)) {
479 				/*
480 				 * we want to go through our batch of
481 				 * requests and stop.  So, we copy out
482 				 * the ioc->last_waited time and test
483 				 * against it before looping
484 				 */
485 				last_waited = ioc->last_waited;
486 				cond_resched();
487 				continue;
488 			}
489 			spin_lock(&device->io_lock);
490 			requeue_list(pending_bios, pending, tail);
491 			device->running_pending = 1;
492 
493 			spin_unlock(&device->io_lock);
494 			btrfs_queue_work(fs_info->submit_workers,
495 					 &device->work);
496 			goto done;
497 		}
498 		/* unplug every 64 requests just for good measure */
499 		if (batch_run % 64 == 0) {
500 			blk_finish_plug(&plug);
501 			blk_start_plug(&plug);
502 			sync_pending = 0;
503 		}
504 	}
505 
506 	cond_resched();
507 	if (again)
508 		goto loop;
509 
510 	spin_lock(&device->io_lock);
511 	if (device->pending_bios.head || device->pending_sync_bios.head)
512 		goto loop_lock;
513 	spin_unlock(&device->io_lock);
514 
515 done:
516 	blk_finish_plug(&plug);
517 }
518 
pending_bios_fn(struct btrfs_work * work)519 static void pending_bios_fn(struct btrfs_work *work)
520 {
521 	struct btrfs_device *device;
522 
523 	device = container_of(work, struct btrfs_device, work);
524 	run_scheduled_bios(device);
525 }
526 
527 
btrfs_free_stale_device(struct btrfs_device * cur_dev)528 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
529 {
530 	struct btrfs_fs_devices *fs_devs;
531 	struct btrfs_device *dev;
532 
533 	if (!cur_dev->name)
534 		return;
535 
536 	list_for_each_entry(fs_devs, &fs_uuids, list) {
537 		int del = 1;
538 
539 		if (fs_devs->opened)
540 			continue;
541 		if (fs_devs->seeding)
542 			continue;
543 
544 		list_for_each_entry(dev, &fs_devs->devices, dev_list) {
545 
546 			if (dev == cur_dev)
547 				continue;
548 			if (!dev->name)
549 				continue;
550 
551 			/*
552 			 * Todo: This won't be enough. What if the same device
553 			 * comes back (with new uuid and) with its mapper path?
554 			 * But for now, this does help as mostly an admin will
555 			 * either use mapper or non mapper path throughout.
556 			 */
557 			rcu_read_lock();
558 			del = strcmp(rcu_str_deref(dev->name),
559 						rcu_str_deref(cur_dev->name));
560 			rcu_read_unlock();
561 			if (!del)
562 				break;
563 		}
564 
565 		if (!del) {
566 			/* delete the stale device */
567 			if (fs_devs->num_devices == 1) {
568 				btrfs_sysfs_remove_fsid(fs_devs);
569 				list_del(&fs_devs->list);
570 				free_fs_devices(fs_devs);
571 				break;
572 			} else {
573 				fs_devs->num_devices--;
574 				list_del(&dev->dev_list);
575 				rcu_string_free(dev->name);
576 				kfree(dev);
577 			}
578 			break;
579 		}
580 	}
581 }
582 
583 /*
584  * Add new device to list of registered devices
585  *
586  * Returns:
587  * 1   - first time device is seen
588  * 0   - device already known
589  * < 0 - error
590  */
device_list_add(const char * path,struct btrfs_super_block * disk_super,u64 devid,struct btrfs_fs_devices ** fs_devices_ret)591 static noinline int device_list_add(const char *path,
592 			   struct btrfs_super_block *disk_super,
593 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
594 {
595 	struct btrfs_device *device;
596 	struct btrfs_fs_devices *fs_devices;
597 	struct rcu_string *name;
598 	int ret = 0;
599 	u64 found_transid = btrfs_super_generation(disk_super);
600 
601 	fs_devices = find_fsid(disk_super->fsid);
602 	if (!fs_devices) {
603 		fs_devices = alloc_fs_devices(disk_super->fsid);
604 		if (IS_ERR(fs_devices))
605 			return PTR_ERR(fs_devices);
606 
607 		list_add(&fs_devices->list, &fs_uuids);
608 
609 		device = NULL;
610 	} else {
611 		device = __find_device(&fs_devices->devices, devid,
612 				       disk_super->dev_item.uuid);
613 	}
614 
615 	if (!device) {
616 		if (fs_devices->opened)
617 			return -EBUSY;
618 
619 		device = btrfs_alloc_device(NULL, &devid,
620 					    disk_super->dev_item.uuid);
621 		if (IS_ERR(device)) {
622 			/* we can safely leave the fs_devices entry around */
623 			return PTR_ERR(device);
624 		}
625 
626 		name = rcu_string_strdup(path, GFP_NOFS);
627 		if (!name) {
628 			kfree(device);
629 			return -ENOMEM;
630 		}
631 		rcu_assign_pointer(device->name, name);
632 
633 		mutex_lock(&fs_devices->device_list_mutex);
634 		list_add_rcu(&device->dev_list, &fs_devices->devices);
635 		fs_devices->num_devices++;
636 		mutex_unlock(&fs_devices->device_list_mutex);
637 
638 		ret = 1;
639 		device->fs_devices = fs_devices;
640 	} else if (!device->name || strcmp(device->name->str, path)) {
641 		/*
642 		 * When FS is already mounted.
643 		 * 1. If you are here and if the device->name is NULL that
644 		 *    means this device was missing at time of FS mount.
645 		 * 2. If you are here and if the device->name is different
646 		 *    from 'path' that means either
647 		 *      a. The same device disappeared and reappeared with
648 		 *         different name. or
649 		 *      b. The missing-disk-which-was-replaced, has
650 		 *         reappeared now.
651 		 *
652 		 * We must allow 1 and 2a above. But 2b would be a spurious
653 		 * and unintentional.
654 		 *
655 		 * Further in case of 1 and 2a above, the disk at 'path'
656 		 * would have missed some transaction when it was away and
657 		 * in case of 2a the stale bdev has to be updated as well.
658 		 * 2b must not be allowed at all time.
659 		 */
660 
661 		/*
662 		 * For now, we do allow update to btrfs_fs_device through the
663 		 * btrfs dev scan cli after FS has been mounted.  We're still
664 		 * tracking a problem where systems fail mount by subvolume id
665 		 * when we reject replacement on a mounted FS.
666 		 */
667 		if (!fs_devices->opened && found_transid < device->generation) {
668 			/*
669 			 * That is if the FS is _not_ mounted and if you
670 			 * are here, that means there is more than one
671 			 * disk with same uuid and devid.We keep the one
672 			 * with larger generation number or the last-in if
673 			 * generation are equal.
674 			 */
675 			return -EEXIST;
676 		}
677 
678 		name = rcu_string_strdup(path, GFP_NOFS);
679 		if (!name)
680 			return -ENOMEM;
681 		rcu_string_free(device->name);
682 		rcu_assign_pointer(device->name, name);
683 		if (device->missing) {
684 			fs_devices->missing_devices--;
685 			device->missing = 0;
686 		}
687 	}
688 
689 	/*
690 	 * Unmount does not free the btrfs_device struct but would zero
691 	 * generation along with most of the other members. So just update
692 	 * it back. We need it to pick the disk with largest generation
693 	 * (as above).
694 	 */
695 	if (!fs_devices->opened)
696 		device->generation = found_transid;
697 
698 	/*
699 	 * if there is new btrfs on an already registered device,
700 	 * then remove the stale device entry.
701 	 */
702 	btrfs_free_stale_device(device);
703 
704 	*fs_devices_ret = fs_devices;
705 
706 	return ret;
707 }
708 
clone_fs_devices(struct btrfs_fs_devices * orig)709 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
710 {
711 	struct btrfs_fs_devices *fs_devices;
712 	struct btrfs_device *device;
713 	struct btrfs_device *orig_dev;
714 
715 	fs_devices = alloc_fs_devices(orig->fsid);
716 	if (IS_ERR(fs_devices))
717 		return fs_devices;
718 
719 	mutex_lock(&orig->device_list_mutex);
720 	fs_devices->total_devices = orig->total_devices;
721 
722 	/* We have held the volume lock, it is safe to get the devices. */
723 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
724 		struct rcu_string *name;
725 
726 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
727 					    orig_dev->uuid);
728 		if (IS_ERR(device))
729 			goto error;
730 
731 		/*
732 		 * This is ok to do without rcu read locked because we hold the
733 		 * uuid mutex so nothing we touch in here is going to disappear.
734 		 */
735 		if (orig_dev->name) {
736 			name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
737 			if (!name) {
738 				kfree(device);
739 				goto error;
740 			}
741 			rcu_assign_pointer(device->name, name);
742 		}
743 
744 		list_add(&device->dev_list, &fs_devices->devices);
745 		device->fs_devices = fs_devices;
746 		fs_devices->num_devices++;
747 	}
748 	mutex_unlock(&orig->device_list_mutex);
749 	return fs_devices;
750 error:
751 	mutex_unlock(&orig->device_list_mutex);
752 	free_fs_devices(fs_devices);
753 	return ERR_PTR(-ENOMEM);
754 }
755 
btrfs_close_extra_devices(struct btrfs_fs_devices * fs_devices,int step)756 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
757 {
758 	struct btrfs_device *device, *next;
759 	struct btrfs_device *latest_dev = NULL;
760 
761 	mutex_lock(&uuid_mutex);
762 again:
763 	/* This is the initialized path, it is safe to release the devices. */
764 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
765 		if (device->in_fs_metadata) {
766 			if (!device->is_tgtdev_for_dev_replace &&
767 			    (!latest_dev ||
768 			     device->generation > latest_dev->generation)) {
769 				latest_dev = device;
770 			}
771 			continue;
772 		}
773 
774 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
775 			/*
776 			 * In the first step, keep the device which has
777 			 * the correct fsid and the devid that is used
778 			 * for the dev_replace procedure.
779 			 * In the second step, the dev_replace state is
780 			 * read from the device tree and it is known
781 			 * whether the procedure is really active or
782 			 * not, which means whether this device is
783 			 * used or whether it should be removed.
784 			 */
785 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
786 				continue;
787 			}
788 		}
789 		if (device->bdev) {
790 			blkdev_put(device->bdev, device->mode);
791 			device->bdev = NULL;
792 			fs_devices->open_devices--;
793 		}
794 		if (device->writeable) {
795 			list_del_init(&device->dev_alloc_list);
796 			device->writeable = 0;
797 			if (!device->is_tgtdev_for_dev_replace)
798 				fs_devices->rw_devices--;
799 		}
800 		list_del_init(&device->dev_list);
801 		fs_devices->num_devices--;
802 		rcu_string_free(device->name);
803 		kfree(device);
804 	}
805 
806 	if (fs_devices->seed) {
807 		fs_devices = fs_devices->seed;
808 		goto again;
809 	}
810 
811 	fs_devices->latest_bdev = latest_dev->bdev;
812 
813 	mutex_unlock(&uuid_mutex);
814 }
815 
__free_device(struct work_struct * work)816 static void __free_device(struct work_struct *work)
817 {
818 	struct btrfs_device *device;
819 
820 	device = container_of(work, struct btrfs_device, rcu_work);
821 
822 	if (device->bdev)
823 		blkdev_put(device->bdev, device->mode);
824 
825 	rcu_string_free(device->name);
826 	kfree(device);
827 }
828 
free_device(struct rcu_head * head)829 static void free_device(struct rcu_head *head)
830 {
831 	struct btrfs_device *device;
832 
833 	device = container_of(head, struct btrfs_device, rcu);
834 
835 	INIT_WORK(&device->rcu_work, __free_device);
836 	schedule_work(&device->rcu_work);
837 }
838 
__btrfs_close_devices(struct btrfs_fs_devices * fs_devices)839 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
840 {
841 	struct btrfs_device *device, *tmp;
842 
843 	if (--fs_devices->opened > 0)
844 		return 0;
845 
846 	mutex_lock(&fs_devices->device_list_mutex);
847 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
848 		btrfs_close_one_device(device);
849 	}
850 	mutex_unlock(&fs_devices->device_list_mutex);
851 
852 	WARN_ON(fs_devices->open_devices);
853 	WARN_ON(fs_devices->rw_devices);
854 	fs_devices->opened = 0;
855 	fs_devices->seeding = 0;
856 
857 	return 0;
858 }
859 
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)860 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
861 {
862 	struct btrfs_fs_devices *seed_devices = NULL;
863 	int ret;
864 
865 	mutex_lock(&uuid_mutex);
866 	ret = __btrfs_close_devices(fs_devices);
867 	if (!fs_devices->opened) {
868 		seed_devices = fs_devices->seed;
869 		fs_devices->seed = NULL;
870 	}
871 	mutex_unlock(&uuid_mutex);
872 
873 	while (seed_devices) {
874 		fs_devices = seed_devices;
875 		seed_devices = fs_devices->seed;
876 		__btrfs_close_devices(fs_devices);
877 		free_fs_devices(fs_devices);
878 	}
879 	/*
880 	 * Wait for rcu kworkers under __btrfs_close_devices
881 	 * to finish all blkdev_puts so device is really
882 	 * free when umount is done.
883 	 */
884 	rcu_barrier();
885 	return ret;
886 }
887 
__btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)888 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
889 				fmode_t flags, void *holder)
890 {
891 	struct request_queue *q;
892 	struct block_device *bdev;
893 	struct list_head *head = &fs_devices->devices;
894 	struct btrfs_device *device;
895 	struct btrfs_device *latest_dev = NULL;
896 	struct buffer_head *bh;
897 	struct btrfs_super_block *disk_super;
898 	u64 devid;
899 	int seeding = 1;
900 	int ret = 0;
901 
902 	flags |= FMODE_EXCL;
903 
904 	list_for_each_entry(device, head, dev_list) {
905 		if (device->bdev)
906 			continue;
907 		if (!device->name)
908 			continue;
909 
910 		/* Just open everything we can; ignore failures here */
911 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
912 					    &bdev, &bh))
913 			continue;
914 
915 		disk_super = (struct btrfs_super_block *)bh->b_data;
916 		devid = btrfs_stack_device_id(&disk_super->dev_item);
917 		if (devid != device->devid)
918 			goto error_brelse;
919 
920 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
921 			   BTRFS_UUID_SIZE))
922 			goto error_brelse;
923 
924 		device->generation = btrfs_super_generation(disk_super);
925 		if (!latest_dev ||
926 		    device->generation > latest_dev->generation)
927 			latest_dev = device;
928 
929 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
930 			device->writeable = 0;
931 		} else {
932 			device->writeable = !bdev_read_only(bdev);
933 			seeding = 0;
934 		}
935 
936 		q = bdev_get_queue(bdev);
937 		if (blk_queue_discard(q))
938 			device->can_discard = 1;
939 
940 		device->bdev = bdev;
941 		device->in_fs_metadata = 0;
942 		device->mode = flags;
943 
944 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
945 			fs_devices->rotating = 1;
946 
947 		fs_devices->open_devices++;
948 		if (device->writeable &&
949 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
950 			fs_devices->rw_devices++;
951 			list_add(&device->dev_alloc_list,
952 				 &fs_devices->alloc_list);
953 		}
954 		brelse(bh);
955 		continue;
956 
957 error_brelse:
958 		brelse(bh);
959 		blkdev_put(bdev, flags);
960 		continue;
961 	}
962 	if (fs_devices->open_devices == 0) {
963 		ret = -EINVAL;
964 		goto out;
965 	}
966 	fs_devices->seeding = seeding;
967 	fs_devices->opened = 1;
968 	fs_devices->latest_bdev = latest_dev->bdev;
969 	fs_devices->total_rw_bytes = 0;
970 out:
971 	return ret;
972 }
973 
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)974 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
975 		       fmode_t flags, void *holder)
976 {
977 	int ret;
978 
979 	mutex_lock(&uuid_mutex);
980 	if (fs_devices->opened) {
981 		fs_devices->opened++;
982 		ret = 0;
983 	} else {
984 		ret = __btrfs_open_devices(fs_devices, flags, holder);
985 	}
986 	mutex_unlock(&uuid_mutex);
987 	return ret;
988 }
989 
990 /*
991  * Look for a btrfs signature on a device. This may be called out of the mount path
992  * and we are not allowed to call set_blocksize during the scan. The superblock
993  * is read via pagecache
994  */
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder,struct btrfs_fs_devices ** fs_devices_ret)995 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
996 			  struct btrfs_fs_devices **fs_devices_ret)
997 {
998 	struct btrfs_super_block *disk_super;
999 	struct block_device *bdev;
1000 	struct page *page;
1001 	void *p;
1002 	int ret = -EINVAL;
1003 	u64 devid;
1004 	u64 transid;
1005 	u64 total_devices;
1006 	u64 bytenr;
1007 	pgoff_t index;
1008 
1009 	/*
1010 	 * we would like to check all the supers, but that would make
1011 	 * a btrfs mount succeed after a mkfs from a different FS.
1012 	 * So, we need to add a special mount option to scan for
1013 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1014 	 */
1015 	bytenr = btrfs_sb_offset(0);
1016 	flags |= FMODE_EXCL;
1017 	mutex_lock(&uuid_mutex);
1018 
1019 	bdev = blkdev_get_by_path(path, flags, holder);
1020 
1021 	if (IS_ERR(bdev)) {
1022 		ret = PTR_ERR(bdev);
1023 		goto error;
1024 	}
1025 
1026 	/* make sure our super fits in the device */
1027 	if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
1028 		goto error_bdev_put;
1029 
1030 	/* make sure our super fits in the page */
1031 	if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
1032 		goto error_bdev_put;
1033 
1034 	/* make sure our super doesn't straddle pages on disk */
1035 	index = bytenr >> PAGE_CACHE_SHIFT;
1036 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
1037 		goto error_bdev_put;
1038 
1039 	/* pull in the page with our super */
1040 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1041 				   index, GFP_NOFS);
1042 
1043 	if (IS_ERR_OR_NULL(page))
1044 		goto error_bdev_put;
1045 
1046 	p = kmap(page);
1047 
1048 	/* align our pointer to the offset of the super block */
1049 	disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
1050 
1051 	if (btrfs_super_bytenr(disk_super) != bytenr ||
1052 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC)
1053 		goto error_unmap;
1054 
1055 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1056 	transid = btrfs_super_generation(disk_super);
1057 	total_devices = btrfs_super_num_devices(disk_super);
1058 
1059 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1060 	if (ret > 0) {
1061 		if (disk_super->label[0]) {
1062 			if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1063 				disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1064 			printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1065 		} else {
1066 			printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1067 		}
1068 
1069 		printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1070 		ret = 0;
1071 	}
1072 	if (!ret && fs_devices_ret)
1073 		(*fs_devices_ret)->total_devices = total_devices;
1074 
1075 error_unmap:
1076 	kunmap(page);
1077 	page_cache_release(page);
1078 
1079 error_bdev_put:
1080 	blkdev_put(bdev, flags);
1081 error:
1082 	mutex_unlock(&uuid_mutex);
1083 	return ret;
1084 }
1085 
1086 /* helper to account the used device space in the range */
btrfs_account_dev_extents_size(struct btrfs_device * device,u64 start,u64 end,u64 * length)1087 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1088 				   u64 end, u64 *length)
1089 {
1090 	struct btrfs_key key;
1091 	struct btrfs_root *root = device->dev_root;
1092 	struct btrfs_dev_extent *dev_extent;
1093 	struct btrfs_path *path;
1094 	u64 extent_end;
1095 	int ret;
1096 	int slot;
1097 	struct extent_buffer *l;
1098 
1099 	*length = 0;
1100 
1101 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1102 		return 0;
1103 
1104 	path = btrfs_alloc_path();
1105 	if (!path)
1106 		return -ENOMEM;
1107 	path->reada = 2;
1108 
1109 	key.objectid = device->devid;
1110 	key.offset = start;
1111 	key.type = BTRFS_DEV_EXTENT_KEY;
1112 
1113 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1114 	if (ret < 0)
1115 		goto out;
1116 	if (ret > 0) {
1117 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1118 		if (ret < 0)
1119 			goto out;
1120 	}
1121 
1122 	while (1) {
1123 		l = path->nodes[0];
1124 		slot = path->slots[0];
1125 		if (slot >= btrfs_header_nritems(l)) {
1126 			ret = btrfs_next_leaf(root, path);
1127 			if (ret == 0)
1128 				continue;
1129 			if (ret < 0)
1130 				goto out;
1131 
1132 			break;
1133 		}
1134 		btrfs_item_key_to_cpu(l, &key, slot);
1135 
1136 		if (key.objectid < device->devid)
1137 			goto next;
1138 
1139 		if (key.objectid > device->devid)
1140 			break;
1141 
1142 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1143 			goto next;
1144 
1145 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1146 		extent_end = key.offset + btrfs_dev_extent_length(l,
1147 								  dev_extent);
1148 		if (key.offset <= start && extent_end > end) {
1149 			*length = end - start + 1;
1150 			break;
1151 		} else if (key.offset <= start && extent_end > start)
1152 			*length += extent_end - start;
1153 		else if (key.offset > start && extent_end <= end)
1154 			*length += extent_end - key.offset;
1155 		else if (key.offset > start && key.offset <= end) {
1156 			*length += end - key.offset + 1;
1157 			break;
1158 		} else if (key.offset > end)
1159 			break;
1160 
1161 next:
1162 		path->slots[0]++;
1163 	}
1164 	ret = 0;
1165 out:
1166 	btrfs_free_path(path);
1167 	return ret;
1168 }
1169 
contains_pending_extent(struct btrfs_transaction * transaction,struct btrfs_device * device,u64 * start,u64 len)1170 static int contains_pending_extent(struct btrfs_transaction *transaction,
1171 				   struct btrfs_device *device,
1172 				   u64 *start, u64 len)
1173 {
1174 	struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1175 	struct extent_map *em;
1176 	struct list_head *search_list = &fs_info->pinned_chunks;
1177 	int ret = 0;
1178 	u64 physical_start = *start;
1179 
1180 	if (transaction)
1181 		search_list = &transaction->pending_chunks;
1182 again:
1183 	list_for_each_entry(em, search_list, list) {
1184 		struct map_lookup *map;
1185 		int i;
1186 
1187 		map = em->map_lookup;
1188 		for (i = 0; i < map->num_stripes; i++) {
1189 			u64 end;
1190 
1191 			if (map->stripes[i].dev != device)
1192 				continue;
1193 			if (map->stripes[i].physical >= physical_start + len ||
1194 			    map->stripes[i].physical + em->orig_block_len <=
1195 			    physical_start)
1196 				continue;
1197 			/*
1198 			 * Make sure that while processing the pinned list we do
1199 			 * not override our *start with a lower value, because
1200 			 * we can have pinned chunks that fall within this
1201 			 * device hole and that have lower physical addresses
1202 			 * than the pending chunks we processed before. If we
1203 			 * do not take this special care we can end up getting
1204 			 * 2 pending chunks that start at the same physical
1205 			 * device offsets because the end offset of a pinned
1206 			 * chunk can be equal to the start offset of some
1207 			 * pending chunk.
1208 			 */
1209 			end = map->stripes[i].physical + em->orig_block_len;
1210 			if (end > *start) {
1211 				*start = end;
1212 				ret = 1;
1213 			}
1214 		}
1215 	}
1216 	if (search_list != &fs_info->pinned_chunks) {
1217 		search_list = &fs_info->pinned_chunks;
1218 		goto again;
1219 	}
1220 
1221 	return ret;
1222 }
1223 
1224 
1225 /*
1226  * find_free_dev_extent_start - find free space in the specified device
1227  * @device:	  the device which we search the free space in
1228  * @num_bytes:	  the size of the free space that we need
1229  * @search_start: the position from which to begin the search
1230  * @start:	  store the start of the free space.
1231  * @len:	  the size of the free space. that we find, or the size
1232  *		  of the max free space if we don't find suitable free space
1233  *
1234  * this uses a pretty simple search, the expectation is that it is
1235  * called very infrequently and that a given device has a small number
1236  * of extents
1237  *
1238  * @start is used to store the start of the free space if we find. But if we
1239  * don't find suitable free space, it will be used to store the start position
1240  * of the max free space.
1241  *
1242  * @len is used to store the size of the free space that we find.
1243  * But if we don't find suitable free space, it is used to store the size of
1244  * the max free space.
1245  */
find_free_dev_extent_start(struct btrfs_transaction * transaction,struct btrfs_device * device,u64 num_bytes,u64 search_start,u64 * start,u64 * len)1246 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1247 			       struct btrfs_device *device, u64 num_bytes,
1248 			       u64 search_start, u64 *start, u64 *len)
1249 {
1250 	struct btrfs_key key;
1251 	struct btrfs_root *root = device->dev_root;
1252 	struct btrfs_dev_extent *dev_extent;
1253 	struct btrfs_path *path;
1254 	u64 hole_size;
1255 	u64 max_hole_start;
1256 	u64 max_hole_size;
1257 	u64 extent_end;
1258 	u64 search_end = device->total_bytes;
1259 	int ret;
1260 	int slot;
1261 	struct extent_buffer *l;
1262 	u64 min_search_start;
1263 
1264 	/*
1265 	 * We don't want to overwrite the superblock on the drive nor any area
1266 	 * used by the boot loader (grub for example), so we make sure to start
1267 	 * at an offset of at least 1MB.
1268 	 */
1269 	min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1270 	search_start = max(search_start, min_search_start);
1271 
1272 	path = btrfs_alloc_path();
1273 	if (!path)
1274 		return -ENOMEM;
1275 
1276 	max_hole_start = search_start;
1277 	max_hole_size = 0;
1278 
1279 again:
1280 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1281 		ret = -ENOSPC;
1282 		goto out;
1283 	}
1284 
1285 	path->reada = 2;
1286 	path->search_commit_root = 1;
1287 	path->skip_locking = 1;
1288 
1289 	key.objectid = device->devid;
1290 	key.offset = search_start;
1291 	key.type = BTRFS_DEV_EXTENT_KEY;
1292 
1293 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1294 	if (ret < 0)
1295 		goto out;
1296 	if (ret > 0) {
1297 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1298 		if (ret < 0)
1299 			goto out;
1300 	}
1301 
1302 	while (1) {
1303 		l = path->nodes[0];
1304 		slot = path->slots[0];
1305 		if (slot >= btrfs_header_nritems(l)) {
1306 			ret = btrfs_next_leaf(root, path);
1307 			if (ret == 0)
1308 				continue;
1309 			if (ret < 0)
1310 				goto out;
1311 
1312 			break;
1313 		}
1314 		btrfs_item_key_to_cpu(l, &key, slot);
1315 
1316 		if (key.objectid < device->devid)
1317 			goto next;
1318 
1319 		if (key.objectid > device->devid)
1320 			break;
1321 
1322 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1323 			goto next;
1324 
1325 		if (key.offset > search_start) {
1326 			hole_size = key.offset - search_start;
1327 
1328 			/*
1329 			 * Have to check before we set max_hole_start, otherwise
1330 			 * we could end up sending back this offset anyway.
1331 			 */
1332 			if (contains_pending_extent(transaction, device,
1333 						    &search_start,
1334 						    hole_size)) {
1335 				if (key.offset >= search_start) {
1336 					hole_size = key.offset - search_start;
1337 				} else {
1338 					WARN_ON_ONCE(1);
1339 					hole_size = 0;
1340 				}
1341 			}
1342 
1343 			if (hole_size > max_hole_size) {
1344 				max_hole_start = search_start;
1345 				max_hole_size = hole_size;
1346 			}
1347 
1348 			/*
1349 			 * If this free space is greater than which we need,
1350 			 * it must be the max free space that we have found
1351 			 * until now, so max_hole_start must point to the start
1352 			 * of this free space and the length of this free space
1353 			 * is stored in max_hole_size. Thus, we return
1354 			 * max_hole_start and max_hole_size and go back to the
1355 			 * caller.
1356 			 */
1357 			if (hole_size >= num_bytes) {
1358 				ret = 0;
1359 				goto out;
1360 			}
1361 		}
1362 
1363 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1364 		extent_end = key.offset + btrfs_dev_extent_length(l,
1365 								  dev_extent);
1366 		if (extent_end > search_start)
1367 			search_start = extent_end;
1368 next:
1369 		path->slots[0]++;
1370 		cond_resched();
1371 	}
1372 
1373 	/*
1374 	 * At this point, search_start should be the end of
1375 	 * allocated dev extents, and when shrinking the device,
1376 	 * search_end may be smaller than search_start.
1377 	 */
1378 	if (search_end > search_start) {
1379 		hole_size = search_end - search_start;
1380 
1381 		if (contains_pending_extent(transaction, device, &search_start,
1382 					    hole_size)) {
1383 			btrfs_release_path(path);
1384 			goto again;
1385 		}
1386 
1387 		if (hole_size > max_hole_size) {
1388 			max_hole_start = search_start;
1389 			max_hole_size = hole_size;
1390 		}
1391 	}
1392 
1393 	/* See above. */
1394 	if (max_hole_size < num_bytes)
1395 		ret = -ENOSPC;
1396 	else
1397 		ret = 0;
1398 
1399 out:
1400 	btrfs_free_path(path);
1401 	*start = max_hole_start;
1402 	if (len)
1403 		*len = max_hole_size;
1404 	return ret;
1405 }
1406 
find_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1407 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1408 			 struct btrfs_device *device, u64 num_bytes,
1409 			 u64 *start, u64 *len)
1410 {
1411 	/* FIXME use last free of some kind */
1412 	return find_free_dev_extent_start(trans->transaction, device,
1413 					  num_bytes, 0, start, len);
1414 }
1415 
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1416 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1417 			  struct btrfs_device *device,
1418 			  u64 start, u64 *dev_extent_len)
1419 {
1420 	int ret;
1421 	struct btrfs_path *path;
1422 	struct btrfs_root *root = device->dev_root;
1423 	struct btrfs_key key;
1424 	struct btrfs_key found_key;
1425 	struct extent_buffer *leaf = NULL;
1426 	struct btrfs_dev_extent *extent = NULL;
1427 
1428 	path = btrfs_alloc_path();
1429 	if (!path)
1430 		return -ENOMEM;
1431 
1432 	key.objectid = device->devid;
1433 	key.offset = start;
1434 	key.type = BTRFS_DEV_EXTENT_KEY;
1435 again:
1436 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1437 	if (ret > 0) {
1438 		ret = btrfs_previous_item(root, path, key.objectid,
1439 					  BTRFS_DEV_EXTENT_KEY);
1440 		if (ret)
1441 			goto out;
1442 		leaf = path->nodes[0];
1443 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1444 		extent = btrfs_item_ptr(leaf, path->slots[0],
1445 					struct btrfs_dev_extent);
1446 		BUG_ON(found_key.offset > start || found_key.offset +
1447 		       btrfs_dev_extent_length(leaf, extent) < start);
1448 		key = found_key;
1449 		btrfs_release_path(path);
1450 		goto again;
1451 	} else if (ret == 0) {
1452 		leaf = path->nodes[0];
1453 		extent = btrfs_item_ptr(leaf, path->slots[0],
1454 					struct btrfs_dev_extent);
1455 	} else {
1456 		btrfs_std_error(root->fs_info, ret, "Slot search failed");
1457 		goto out;
1458 	}
1459 
1460 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1461 
1462 	ret = btrfs_del_item(trans, root, path);
1463 	if (ret) {
1464 		btrfs_std_error(root->fs_info, ret,
1465 			    "Failed to remove dev extent item");
1466 	} else {
1467 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1468 	}
1469 out:
1470 	btrfs_free_path(path);
1471 	return ret;
1472 }
1473 
btrfs_alloc_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_tree,u64 chunk_objectid,u64 chunk_offset,u64 start,u64 num_bytes)1474 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1475 				  struct btrfs_device *device,
1476 				  u64 chunk_tree, u64 chunk_objectid,
1477 				  u64 chunk_offset, u64 start, u64 num_bytes)
1478 {
1479 	int ret;
1480 	struct btrfs_path *path;
1481 	struct btrfs_root *root = device->dev_root;
1482 	struct btrfs_dev_extent *extent;
1483 	struct extent_buffer *leaf;
1484 	struct btrfs_key key;
1485 
1486 	WARN_ON(!device->in_fs_metadata);
1487 	WARN_ON(device->is_tgtdev_for_dev_replace);
1488 	path = btrfs_alloc_path();
1489 	if (!path)
1490 		return -ENOMEM;
1491 
1492 	key.objectid = device->devid;
1493 	key.offset = start;
1494 	key.type = BTRFS_DEV_EXTENT_KEY;
1495 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1496 				      sizeof(*extent));
1497 	if (ret)
1498 		goto out;
1499 
1500 	leaf = path->nodes[0];
1501 	extent = btrfs_item_ptr(leaf, path->slots[0],
1502 				struct btrfs_dev_extent);
1503 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1504 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1505 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1506 
1507 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1508 		    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1509 
1510 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1511 	btrfs_mark_buffer_dirty(leaf);
1512 out:
1513 	btrfs_free_path(path);
1514 	return ret;
1515 }
1516 
find_next_chunk(struct btrfs_fs_info * fs_info)1517 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1518 {
1519 	struct extent_map_tree *em_tree;
1520 	struct extent_map *em;
1521 	struct rb_node *n;
1522 	u64 ret = 0;
1523 
1524 	em_tree = &fs_info->mapping_tree.map_tree;
1525 	read_lock(&em_tree->lock);
1526 	n = rb_last(&em_tree->map);
1527 	if (n) {
1528 		em = rb_entry(n, struct extent_map, rb_node);
1529 		ret = em->start + em->len;
1530 	}
1531 	read_unlock(&em_tree->lock);
1532 
1533 	return ret;
1534 }
1535 
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1536 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1537 				    u64 *devid_ret)
1538 {
1539 	int ret;
1540 	struct btrfs_key key;
1541 	struct btrfs_key found_key;
1542 	struct btrfs_path *path;
1543 
1544 	path = btrfs_alloc_path();
1545 	if (!path)
1546 		return -ENOMEM;
1547 
1548 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1549 	key.type = BTRFS_DEV_ITEM_KEY;
1550 	key.offset = (u64)-1;
1551 
1552 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1553 	if (ret < 0)
1554 		goto error;
1555 
1556 	BUG_ON(ret == 0); /* Corruption */
1557 
1558 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1559 				  BTRFS_DEV_ITEMS_OBJECTID,
1560 				  BTRFS_DEV_ITEM_KEY);
1561 	if (ret) {
1562 		*devid_ret = 1;
1563 	} else {
1564 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1565 				      path->slots[0]);
1566 		*devid_ret = found_key.offset + 1;
1567 	}
1568 	ret = 0;
1569 error:
1570 	btrfs_free_path(path);
1571 	return ret;
1572 }
1573 
1574 /*
1575  * the device information is stored in the chunk root
1576  * the btrfs_device struct should be fully filled in
1577  */
btrfs_add_device(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_device * device)1578 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1579 			    struct btrfs_root *root,
1580 			    struct btrfs_device *device)
1581 {
1582 	int ret;
1583 	struct btrfs_path *path;
1584 	struct btrfs_dev_item *dev_item;
1585 	struct extent_buffer *leaf;
1586 	struct btrfs_key key;
1587 	unsigned long ptr;
1588 
1589 	root = root->fs_info->chunk_root;
1590 
1591 	path = btrfs_alloc_path();
1592 	if (!path)
1593 		return -ENOMEM;
1594 
1595 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1596 	key.type = BTRFS_DEV_ITEM_KEY;
1597 	key.offset = device->devid;
1598 
1599 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1600 				      sizeof(*dev_item));
1601 	if (ret)
1602 		goto out;
1603 
1604 	leaf = path->nodes[0];
1605 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1606 
1607 	btrfs_set_device_id(leaf, dev_item, device->devid);
1608 	btrfs_set_device_generation(leaf, dev_item, 0);
1609 	btrfs_set_device_type(leaf, dev_item, device->type);
1610 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1611 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1612 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1613 	btrfs_set_device_total_bytes(leaf, dev_item,
1614 				     btrfs_device_get_disk_total_bytes(device));
1615 	btrfs_set_device_bytes_used(leaf, dev_item,
1616 				    btrfs_device_get_bytes_used(device));
1617 	btrfs_set_device_group(leaf, dev_item, 0);
1618 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1619 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1620 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1621 
1622 	ptr = btrfs_device_uuid(dev_item);
1623 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1624 	ptr = btrfs_device_fsid(dev_item);
1625 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1626 	btrfs_mark_buffer_dirty(leaf);
1627 
1628 	ret = 0;
1629 out:
1630 	btrfs_free_path(path);
1631 	return ret;
1632 }
1633 
1634 /*
1635  * Function to update ctime/mtime for a given device path.
1636  * Mainly used for ctime/mtime based probe like libblkid.
1637  */
update_dev_time(char * path_name)1638 static void update_dev_time(char *path_name)
1639 {
1640 	struct file *filp;
1641 
1642 	filp = filp_open(path_name, O_RDWR, 0);
1643 	if (IS_ERR(filp))
1644 		return;
1645 	file_update_time(filp);
1646 	filp_close(filp, NULL);
1647 	return;
1648 }
1649 
btrfs_rm_dev_item(struct btrfs_root * root,struct btrfs_device * device)1650 static int btrfs_rm_dev_item(struct btrfs_root *root,
1651 			     struct btrfs_device *device)
1652 {
1653 	int ret;
1654 	struct btrfs_path *path;
1655 	struct btrfs_key key;
1656 	struct btrfs_trans_handle *trans;
1657 
1658 	root = root->fs_info->chunk_root;
1659 
1660 	path = btrfs_alloc_path();
1661 	if (!path)
1662 		return -ENOMEM;
1663 
1664 	trans = btrfs_start_transaction(root, 0);
1665 	if (IS_ERR(trans)) {
1666 		btrfs_free_path(path);
1667 		return PTR_ERR(trans);
1668 	}
1669 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1670 	key.type = BTRFS_DEV_ITEM_KEY;
1671 	key.offset = device->devid;
1672 
1673 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1674 	if (ret < 0)
1675 		goto out;
1676 
1677 	if (ret > 0) {
1678 		ret = -ENOENT;
1679 		goto out;
1680 	}
1681 
1682 	ret = btrfs_del_item(trans, root, path);
1683 	if (ret)
1684 		goto out;
1685 out:
1686 	btrfs_free_path(path);
1687 	btrfs_commit_transaction(trans, root);
1688 	return ret;
1689 }
1690 
btrfs_rm_device(struct btrfs_root * root,char * device_path)1691 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1692 {
1693 	struct btrfs_device *device;
1694 	struct btrfs_device *next_device;
1695 	struct block_device *bdev;
1696 	struct buffer_head *bh = NULL;
1697 	struct btrfs_super_block *disk_super;
1698 	struct btrfs_fs_devices *cur_devices;
1699 	u64 all_avail;
1700 	u64 devid;
1701 	u64 num_devices;
1702 	u8 *dev_uuid;
1703 	unsigned seq;
1704 	int ret = 0;
1705 	bool clear_super = false;
1706 
1707 	mutex_lock(&uuid_mutex);
1708 
1709 	do {
1710 		seq = read_seqbegin(&root->fs_info->profiles_lock);
1711 
1712 		all_avail = root->fs_info->avail_data_alloc_bits |
1713 			    root->fs_info->avail_system_alloc_bits |
1714 			    root->fs_info->avail_metadata_alloc_bits;
1715 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
1716 
1717 	num_devices = root->fs_info->fs_devices->num_devices;
1718 	btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1719 	if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1720 		WARN_ON(num_devices < 1);
1721 		num_devices--;
1722 	}
1723 	btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1724 
1725 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1726 		ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1727 		goto out;
1728 	}
1729 
1730 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1731 		ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1732 		goto out;
1733 	}
1734 
1735 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1736 	    root->fs_info->fs_devices->rw_devices <= 2) {
1737 		ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1738 		goto out;
1739 	}
1740 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1741 	    root->fs_info->fs_devices->rw_devices <= 3) {
1742 		ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1743 		goto out;
1744 	}
1745 
1746 	if (strcmp(device_path, "missing") == 0) {
1747 		struct list_head *devices;
1748 		struct btrfs_device *tmp;
1749 
1750 		device = NULL;
1751 		devices = &root->fs_info->fs_devices->devices;
1752 		/*
1753 		 * It is safe to read the devices since the volume_mutex
1754 		 * is held.
1755 		 */
1756 		list_for_each_entry(tmp, devices, dev_list) {
1757 			if (tmp->in_fs_metadata &&
1758 			    !tmp->is_tgtdev_for_dev_replace &&
1759 			    !tmp->bdev) {
1760 				device = tmp;
1761 				break;
1762 			}
1763 		}
1764 		bdev = NULL;
1765 		bh = NULL;
1766 		disk_super = NULL;
1767 		if (!device) {
1768 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1769 			goto out;
1770 		}
1771 	} else {
1772 		ret = btrfs_get_bdev_and_sb(device_path,
1773 					    FMODE_WRITE | FMODE_EXCL,
1774 					    root->fs_info->bdev_holder, 0,
1775 					    &bdev, &bh);
1776 		if (ret)
1777 			goto out;
1778 		disk_super = (struct btrfs_super_block *)bh->b_data;
1779 		devid = btrfs_stack_device_id(&disk_super->dev_item);
1780 		dev_uuid = disk_super->dev_item.uuid;
1781 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1782 					   disk_super->fsid);
1783 		if (!device) {
1784 			ret = -ENOENT;
1785 			goto error_brelse;
1786 		}
1787 	}
1788 
1789 	if (device->is_tgtdev_for_dev_replace) {
1790 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1791 		goto error_brelse;
1792 	}
1793 
1794 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1795 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1796 		goto error_brelse;
1797 	}
1798 
1799 	if (device->writeable) {
1800 		lock_chunks(root);
1801 		list_del_init(&device->dev_alloc_list);
1802 		device->fs_devices->rw_devices--;
1803 		unlock_chunks(root);
1804 		clear_super = true;
1805 	}
1806 
1807 	mutex_unlock(&uuid_mutex);
1808 	ret = btrfs_shrink_device(device, 0);
1809 	mutex_lock(&uuid_mutex);
1810 	if (ret)
1811 		goto error_undo;
1812 
1813 	/*
1814 	 * TODO: the superblock still includes this device in its num_devices
1815 	 * counter although write_all_supers() is not locked out. This
1816 	 * could give a filesystem state which requires a degraded mount.
1817 	 */
1818 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1819 	if (ret)
1820 		goto error_undo;
1821 
1822 	device->in_fs_metadata = 0;
1823 	btrfs_scrub_cancel_dev(root->fs_info, device);
1824 
1825 	/*
1826 	 * the device list mutex makes sure that we don't change
1827 	 * the device list while someone else is writing out all
1828 	 * the device supers. Whoever is writing all supers, should
1829 	 * lock the device list mutex before getting the number of
1830 	 * devices in the super block (super_copy). Conversely,
1831 	 * whoever updates the number of devices in the super block
1832 	 * (super_copy) should hold the device list mutex.
1833 	 */
1834 
1835 	cur_devices = device->fs_devices;
1836 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1837 	list_del_rcu(&device->dev_list);
1838 
1839 	device->fs_devices->num_devices--;
1840 	device->fs_devices->total_devices--;
1841 
1842 	if (device->missing)
1843 		device->fs_devices->missing_devices--;
1844 
1845 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1846 				 struct btrfs_device, dev_list);
1847 	if (device->bdev == root->fs_info->sb->s_bdev)
1848 		root->fs_info->sb->s_bdev = next_device->bdev;
1849 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1850 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1851 
1852 	if (device->bdev) {
1853 		device->fs_devices->open_devices--;
1854 		/* remove sysfs entry */
1855 		btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1856 	}
1857 
1858 	call_rcu(&device->rcu, free_device);
1859 
1860 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1861 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1862 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1863 
1864 	if (cur_devices->open_devices == 0) {
1865 		struct btrfs_fs_devices *fs_devices;
1866 		fs_devices = root->fs_info->fs_devices;
1867 		while (fs_devices) {
1868 			if (fs_devices->seed == cur_devices) {
1869 				fs_devices->seed = cur_devices->seed;
1870 				break;
1871 			}
1872 			fs_devices = fs_devices->seed;
1873 		}
1874 		cur_devices->seed = NULL;
1875 		__btrfs_close_devices(cur_devices);
1876 		free_fs_devices(cur_devices);
1877 	}
1878 
1879 	root->fs_info->num_tolerated_disk_barrier_failures =
1880 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1881 
1882 	/*
1883 	 * at this point, the device is zero sized.  We want to
1884 	 * remove it from the devices list and zero out the old super
1885 	 */
1886 	if (clear_super && disk_super) {
1887 		u64 bytenr;
1888 		int i;
1889 
1890 		/* make sure this device isn't detected as part of
1891 		 * the FS anymore
1892 		 */
1893 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1894 		set_buffer_dirty(bh);
1895 		sync_dirty_buffer(bh);
1896 
1897 		/* clear the mirror copies of super block on the disk
1898 		 * being removed, 0th copy is been taken care above and
1899 		 * the below would take of the rest
1900 		 */
1901 		for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1902 			bytenr = btrfs_sb_offset(i);
1903 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1904 					i_size_read(bdev->bd_inode))
1905 				break;
1906 
1907 			brelse(bh);
1908 			bh = __bread(bdev, bytenr / 4096,
1909 					BTRFS_SUPER_INFO_SIZE);
1910 			if (!bh)
1911 				continue;
1912 
1913 			disk_super = (struct btrfs_super_block *)bh->b_data;
1914 
1915 			if (btrfs_super_bytenr(disk_super) != bytenr ||
1916 				btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1917 				continue;
1918 			}
1919 			memset(&disk_super->magic, 0,
1920 						sizeof(disk_super->magic));
1921 			set_buffer_dirty(bh);
1922 			sync_dirty_buffer(bh);
1923 		}
1924 	}
1925 
1926 	ret = 0;
1927 
1928 	if (bdev) {
1929 		/* Notify udev that device has changed */
1930 		btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1931 
1932 		/* Update ctime/mtime for device path for libblkid */
1933 		update_dev_time(device_path);
1934 	}
1935 
1936 error_brelse:
1937 	brelse(bh);
1938 	if (bdev)
1939 		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1940 out:
1941 	mutex_unlock(&uuid_mutex);
1942 	return ret;
1943 error_undo:
1944 	if (device->writeable) {
1945 		lock_chunks(root);
1946 		list_add(&device->dev_alloc_list,
1947 			 &root->fs_info->fs_devices->alloc_list);
1948 		device->fs_devices->rw_devices++;
1949 		unlock_chunks(root);
1950 	}
1951 	goto error_brelse;
1952 }
1953 
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info * fs_info,struct btrfs_device * srcdev)1954 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1955 					struct btrfs_device *srcdev)
1956 {
1957 	struct btrfs_fs_devices *fs_devices;
1958 
1959 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1960 
1961 	/*
1962 	 * in case of fs with no seed, srcdev->fs_devices will point
1963 	 * to fs_devices of fs_info. However when the dev being replaced is
1964 	 * a seed dev it will point to the seed's local fs_devices. In short
1965 	 * srcdev will have its correct fs_devices in both the cases.
1966 	 */
1967 	fs_devices = srcdev->fs_devices;
1968 
1969 	list_del_rcu(&srcdev->dev_list);
1970 	list_del_rcu(&srcdev->dev_alloc_list);
1971 	fs_devices->num_devices--;
1972 	if (srcdev->missing)
1973 		fs_devices->missing_devices--;
1974 
1975 	if (srcdev->writeable) {
1976 		fs_devices->rw_devices--;
1977 		/* zero out the old super if it is writable */
1978 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
1979 	}
1980 
1981 	if (srcdev->bdev)
1982 		fs_devices->open_devices--;
1983 }
1984 
btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info * fs_info,struct btrfs_device * srcdev)1985 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1986 				      struct btrfs_device *srcdev)
1987 {
1988 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1989 
1990 	call_rcu(&srcdev->rcu, free_device);
1991 
1992 	/*
1993 	 * unless fs_devices is seed fs, num_devices shouldn't go
1994 	 * zero
1995 	 */
1996 	BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1997 
1998 	/* if this is no devs we rather delete the fs_devices */
1999 	if (!fs_devices->num_devices) {
2000 		struct btrfs_fs_devices *tmp_fs_devices;
2001 
2002 		tmp_fs_devices = fs_info->fs_devices;
2003 		while (tmp_fs_devices) {
2004 			if (tmp_fs_devices->seed == fs_devices) {
2005 				tmp_fs_devices->seed = fs_devices->seed;
2006 				break;
2007 			}
2008 			tmp_fs_devices = tmp_fs_devices->seed;
2009 		}
2010 		fs_devices->seed = NULL;
2011 		__btrfs_close_devices(fs_devices);
2012 		free_fs_devices(fs_devices);
2013 	}
2014 }
2015 
btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info * fs_info,struct btrfs_device * tgtdev)2016 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2017 				      struct btrfs_device *tgtdev)
2018 {
2019 	struct btrfs_device *next_device;
2020 
2021 	mutex_lock(&uuid_mutex);
2022 	WARN_ON(!tgtdev);
2023 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2024 
2025 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2026 
2027 	if (tgtdev->bdev) {
2028 		btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2029 		fs_info->fs_devices->open_devices--;
2030 	}
2031 	fs_info->fs_devices->num_devices--;
2032 
2033 	next_device = list_entry(fs_info->fs_devices->devices.next,
2034 				 struct btrfs_device, dev_list);
2035 	if (tgtdev->bdev == fs_info->sb->s_bdev)
2036 		fs_info->sb->s_bdev = next_device->bdev;
2037 	if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
2038 		fs_info->fs_devices->latest_bdev = next_device->bdev;
2039 	list_del_rcu(&tgtdev->dev_list);
2040 
2041 	call_rcu(&tgtdev->rcu, free_device);
2042 
2043 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2044 	mutex_unlock(&uuid_mutex);
2045 }
2046 
btrfs_find_device_by_path(struct btrfs_root * root,char * device_path,struct btrfs_device ** device)2047 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2048 				     struct btrfs_device **device)
2049 {
2050 	int ret = 0;
2051 	struct btrfs_super_block *disk_super;
2052 	u64 devid;
2053 	u8 *dev_uuid;
2054 	struct block_device *bdev;
2055 	struct buffer_head *bh;
2056 
2057 	*device = NULL;
2058 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2059 				    root->fs_info->bdev_holder, 0, &bdev, &bh);
2060 	if (ret)
2061 		return ret;
2062 	disk_super = (struct btrfs_super_block *)bh->b_data;
2063 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2064 	dev_uuid = disk_super->dev_item.uuid;
2065 	*device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2066 				    disk_super->fsid);
2067 	brelse(bh);
2068 	if (!*device)
2069 		ret = -ENOENT;
2070 	blkdev_put(bdev, FMODE_READ);
2071 	return ret;
2072 }
2073 
btrfs_find_device_missing_or_by_path(struct btrfs_root * root,char * device_path,struct btrfs_device ** device)2074 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2075 					 char *device_path,
2076 					 struct btrfs_device **device)
2077 {
2078 	*device = NULL;
2079 	if (strcmp(device_path, "missing") == 0) {
2080 		struct list_head *devices;
2081 		struct btrfs_device *tmp;
2082 
2083 		devices = &root->fs_info->fs_devices->devices;
2084 		/*
2085 		 * It is safe to read the devices since the volume_mutex
2086 		 * is held by the caller.
2087 		 */
2088 		list_for_each_entry(tmp, devices, dev_list) {
2089 			if (tmp->in_fs_metadata && !tmp->bdev) {
2090 				*device = tmp;
2091 				break;
2092 			}
2093 		}
2094 
2095 		if (!*device)
2096 			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2097 
2098 		return 0;
2099 	} else {
2100 		return btrfs_find_device_by_path(root, device_path, device);
2101 	}
2102 }
2103 
2104 /*
2105  * does all the dirty work required for changing file system's UUID.
2106  */
btrfs_prepare_sprout(struct btrfs_root * root)2107 static int btrfs_prepare_sprout(struct btrfs_root *root)
2108 {
2109 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2110 	struct btrfs_fs_devices *old_devices;
2111 	struct btrfs_fs_devices *seed_devices;
2112 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2113 	struct btrfs_device *device;
2114 	u64 super_flags;
2115 
2116 	BUG_ON(!mutex_is_locked(&uuid_mutex));
2117 	if (!fs_devices->seeding)
2118 		return -EINVAL;
2119 
2120 	seed_devices = __alloc_fs_devices();
2121 	if (IS_ERR(seed_devices))
2122 		return PTR_ERR(seed_devices);
2123 
2124 	old_devices = clone_fs_devices(fs_devices);
2125 	if (IS_ERR(old_devices)) {
2126 		kfree(seed_devices);
2127 		return PTR_ERR(old_devices);
2128 	}
2129 
2130 	list_add(&old_devices->list, &fs_uuids);
2131 
2132 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2133 	seed_devices->opened = 1;
2134 	INIT_LIST_HEAD(&seed_devices->devices);
2135 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2136 	mutex_init(&seed_devices->device_list_mutex);
2137 
2138 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2139 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2140 			      synchronize_rcu);
2141 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2142 		device->fs_devices = seed_devices;
2143 
2144 	lock_chunks(root);
2145 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2146 	unlock_chunks(root);
2147 
2148 	fs_devices->seeding = 0;
2149 	fs_devices->num_devices = 0;
2150 	fs_devices->open_devices = 0;
2151 	fs_devices->missing_devices = 0;
2152 	fs_devices->rotating = 0;
2153 	fs_devices->seed = seed_devices;
2154 
2155 	generate_random_uuid(fs_devices->fsid);
2156 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2157 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2158 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2159 
2160 	super_flags = btrfs_super_flags(disk_super) &
2161 		      ~BTRFS_SUPER_FLAG_SEEDING;
2162 	btrfs_set_super_flags(disk_super, super_flags);
2163 
2164 	return 0;
2165 }
2166 
2167 /*
2168  * strore the expected generation for seed devices in device items.
2169  */
btrfs_finish_sprout(struct btrfs_trans_handle * trans,struct btrfs_root * root)2170 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2171 			       struct btrfs_root *root)
2172 {
2173 	struct btrfs_path *path;
2174 	struct extent_buffer *leaf;
2175 	struct btrfs_dev_item *dev_item;
2176 	struct btrfs_device *device;
2177 	struct btrfs_key key;
2178 	u8 fs_uuid[BTRFS_UUID_SIZE];
2179 	u8 dev_uuid[BTRFS_UUID_SIZE];
2180 	u64 devid;
2181 	int ret;
2182 
2183 	path = btrfs_alloc_path();
2184 	if (!path)
2185 		return -ENOMEM;
2186 
2187 	root = root->fs_info->chunk_root;
2188 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2189 	key.offset = 0;
2190 	key.type = BTRFS_DEV_ITEM_KEY;
2191 
2192 	while (1) {
2193 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2194 		if (ret < 0)
2195 			goto error;
2196 
2197 		leaf = path->nodes[0];
2198 next_slot:
2199 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2200 			ret = btrfs_next_leaf(root, path);
2201 			if (ret > 0)
2202 				break;
2203 			if (ret < 0)
2204 				goto error;
2205 			leaf = path->nodes[0];
2206 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2207 			btrfs_release_path(path);
2208 			continue;
2209 		}
2210 
2211 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2212 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2213 		    key.type != BTRFS_DEV_ITEM_KEY)
2214 			break;
2215 
2216 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2217 					  struct btrfs_dev_item);
2218 		devid = btrfs_device_id(leaf, dev_item);
2219 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2220 				   BTRFS_UUID_SIZE);
2221 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2222 				   BTRFS_UUID_SIZE);
2223 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2224 					   fs_uuid);
2225 		BUG_ON(!device); /* Logic error */
2226 
2227 		if (device->fs_devices->seeding) {
2228 			btrfs_set_device_generation(leaf, dev_item,
2229 						    device->generation);
2230 			btrfs_mark_buffer_dirty(leaf);
2231 		}
2232 
2233 		path->slots[0]++;
2234 		goto next_slot;
2235 	}
2236 	ret = 0;
2237 error:
2238 	btrfs_free_path(path);
2239 	return ret;
2240 }
2241 
btrfs_init_new_device(struct btrfs_root * root,char * device_path)2242 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2243 {
2244 	struct request_queue *q;
2245 	struct btrfs_trans_handle *trans;
2246 	struct btrfs_device *device;
2247 	struct block_device *bdev;
2248 	struct list_head *devices;
2249 	struct super_block *sb = root->fs_info->sb;
2250 	struct rcu_string *name;
2251 	u64 tmp;
2252 	int seeding_dev = 0;
2253 	int ret = 0;
2254 
2255 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2256 		return -EROFS;
2257 
2258 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2259 				  root->fs_info->bdev_holder);
2260 	if (IS_ERR(bdev))
2261 		return PTR_ERR(bdev);
2262 
2263 	if (root->fs_info->fs_devices->seeding) {
2264 		seeding_dev = 1;
2265 		down_write(&sb->s_umount);
2266 		mutex_lock(&uuid_mutex);
2267 	}
2268 
2269 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2270 
2271 	devices = &root->fs_info->fs_devices->devices;
2272 
2273 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2274 	list_for_each_entry(device, devices, dev_list) {
2275 		if (device->bdev == bdev) {
2276 			ret = -EEXIST;
2277 			mutex_unlock(
2278 				&root->fs_info->fs_devices->device_list_mutex);
2279 			goto error;
2280 		}
2281 	}
2282 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2283 
2284 	device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2285 	if (IS_ERR(device)) {
2286 		/* we can safely leave the fs_devices entry around */
2287 		ret = PTR_ERR(device);
2288 		goto error;
2289 	}
2290 
2291 	name = rcu_string_strdup(device_path, GFP_NOFS);
2292 	if (!name) {
2293 		kfree(device);
2294 		ret = -ENOMEM;
2295 		goto error;
2296 	}
2297 	rcu_assign_pointer(device->name, name);
2298 
2299 	trans = btrfs_start_transaction(root, 0);
2300 	if (IS_ERR(trans)) {
2301 		rcu_string_free(device->name);
2302 		kfree(device);
2303 		ret = PTR_ERR(trans);
2304 		goto error;
2305 	}
2306 
2307 	q = bdev_get_queue(bdev);
2308 	if (blk_queue_discard(q))
2309 		device->can_discard = 1;
2310 	device->writeable = 1;
2311 	device->generation = trans->transid;
2312 	device->io_width = root->sectorsize;
2313 	device->io_align = root->sectorsize;
2314 	device->sector_size = root->sectorsize;
2315 	device->total_bytes = i_size_read(bdev->bd_inode);
2316 	device->disk_total_bytes = device->total_bytes;
2317 	device->commit_total_bytes = device->total_bytes;
2318 	device->dev_root = root->fs_info->dev_root;
2319 	device->bdev = bdev;
2320 	device->in_fs_metadata = 1;
2321 	device->is_tgtdev_for_dev_replace = 0;
2322 	device->mode = FMODE_EXCL;
2323 	device->dev_stats_valid = 1;
2324 	set_blocksize(device->bdev, 4096);
2325 
2326 	if (seeding_dev) {
2327 		sb->s_flags &= ~MS_RDONLY;
2328 		ret = btrfs_prepare_sprout(root);
2329 		BUG_ON(ret); /* -ENOMEM */
2330 	}
2331 
2332 	device->fs_devices = root->fs_info->fs_devices;
2333 
2334 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2335 	lock_chunks(root);
2336 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2337 	list_add(&device->dev_alloc_list,
2338 		 &root->fs_info->fs_devices->alloc_list);
2339 	root->fs_info->fs_devices->num_devices++;
2340 	root->fs_info->fs_devices->open_devices++;
2341 	root->fs_info->fs_devices->rw_devices++;
2342 	root->fs_info->fs_devices->total_devices++;
2343 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2344 
2345 	spin_lock(&root->fs_info->free_chunk_lock);
2346 	root->fs_info->free_chunk_space += device->total_bytes;
2347 	spin_unlock(&root->fs_info->free_chunk_lock);
2348 
2349 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2350 		root->fs_info->fs_devices->rotating = 1;
2351 
2352 	tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2353 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
2354 				    tmp + device->total_bytes);
2355 
2356 	tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2357 	btrfs_set_super_num_devices(root->fs_info->super_copy,
2358 				    tmp + 1);
2359 
2360 	/*
2361 	 * we've got more storage, clear any full flags on the space
2362 	 * infos
2363 	 */
2364 	btrfs_clear_space_info_full(root->fs_info);
2365 
2366 	unlock_chunks(root);
2367 
2368 	/* add sysfs device entry */
2369 	btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2370 
2371 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2372 
2373 	if (seeding_dev) {
2374 		lock_chunks(root);
2375 		ret = init_first_rw_device(trans, root, device);
2376 		unlock_chunks(root);
2377 		if (ret) {
2378 			btrfs_abort_transaction(trans, root, ret);
2379 			goto error_trans;
2380 		}
2381 	}
2382 
2383 	ret = btrfs_add_device(trans, root, device);
2384 	if (ret) {
2385 		btrfs_abort_transaction(trans, root, ret);
2386 		goto error_trans;
2387 	}
2388 
2389 	if (seeding_dev) {
2390 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2391 
2392 		ret = btrfs_finish_sprout(trans, root);
2393 		if (ret) {
2394 			btrfs_abort_transaction(trans, root, ret);
2395 			goto error_trans;
2396 		}
2397 
2398 		/* Sprouting would change fsid of the mounted root,
2399 		 * so rename the fsid on the sysfs
2400 		 */
2401 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2402 						root->fs_info->fsid);
2403 		if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2404 								fsid_buf))
2405 			btrfs_warn(root->fs_info,
2406 				"sysfs: failed to create fsid for sprout");
2407 	}
2408 
2409 	root->fs_info->num_tolerated_disk_barrier_failures =
2410 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2411 	ret = btrfs_commit_transaction(trans, root);
2412 
2413 	if (seeding_dev) {
2414 		mutex_unlock(&uuid_mutex);
2415 		up_write(&sb->s_umount);
2416 
2417 		if (ret) /* transaction commit */
2418 			return ret;
2419 
2420 		ret = btrfs_relocate_sys_chunks(root);
2421 		if (ret < 0)
2422 			btrfs_std_error(root->fs_info, ret,
2423 				    "Failed to relocate sys chunks after "
2424 				    "device initialization. This can be fixed "
2425 				    "using the \"btrfs balance\" command.");
2426 		trans = btrfs_attach_transaction(root);
2427 		if (IS_ERR(trans)) {
2428 			if (PTR_ERR(trans) == -ENOENT)
2429 				return 0;
2430 			return PTR_ERR(trans);
2431 		}
2432 		ret = btrfs_commit_transaction(trans, root);
2433 	}
2434 
2435 	/* Update ctime/mtime for libblkid */
2436 	update_dev_time(device_path);
2437 	return ret;
2438 
2439 error_trans:
2440 	btrfs_end_transaction(trans, root);
2441 	rcu_string_free(device->name);
2442 	btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2443 	kfree(device);
2444 error:
2445 	blkdev_put(bdev, FMODE_EXCL);
2446 	if (seeding_dev) {
2447 		mutex_unlock(&uuid_mutex);
2448 		up_write(&sb->s_umount);
2449 	}
2450 	return ret;
2451 }
2452 
btrfs_init_dev_replace_tgtdev(struct btrfs_root * root,char * device_path,struct btrfs_device * srcdev,struct btrfs_device ** device_out)2453 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2454 				  struct btrfs_device *srcdev,
2455 				  struct btrfs_device **device_out)
2456 {
2457 	struct request_queue *q;
2458 	struct btrfs_device *device;
2459 	struct block_device *bdev;
2460 	struct btrfs_fs_info *fs_info = root->fs_info;
2461 	struct list_head *devices;
2462 	struct rcu_string *name;
2463 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2464 	int ret = 0;
2465 
2466 	*device_out = NULL;
2467 	if (fs_info->fs_devices->seeding) {
2468 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2469 		return -EINVAL;
2470 	}
2471 
2472 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2473 				  fs_info->bdev_holder);
2474 	if (IS_ERR(bdev)) {
2475 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2476 		return PTR_ERR(bdev);
2477 	}
2478 
2479 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2480 
2481 	devices = &fs_info->fs_devices->devices;
2482 	list_for_each_entry(device, devices, dev_list) {
2483 		if (device->bdev == bdev) {
2484 			btrfs_err(fs_info, "target device is in the filesystem!");
2485 			ret = -EEXIST;
2486 			goto error;
2487 		}
2488 	}
2489 
2490 
2491 	if (i_size_read(bdev->bd_inode) <
2492 	    btrfs_device_get_total_bytes(srcdev)) {
2493 		btrfs_err(fs_info, "target device is smaller than source device!");
2494 		ret = -EINVAL;
2495 		goto error;
2496 	}
2497 
2498 
2499 	device = btrfs_alloc_device(NULL, &devid, NULL);
2500 	if (IS_ERR(device)) {
2501 		ret = PTR_ERR(device);
2502 		goto error;
2503 	}
2504 
2505 	name = rcu_string_strdup(device_path, GFP_NOFS);
2506 	if (!name) {
2507 		kfree(device);
2508 		ret = -ENOMEM;
2509 		goto error;
2510 	}
2511 	rcu_assign_pointer(device->name, name);
2512 
2513 	q = bdev_get_queue(bdev);
2514 	if (blk_queue_discard(q))
2515 		device->can_discard = 1;
2516 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2517 	device->writeable = 1;
2518 	device->generation = 0;
2519 	device->io_width = root->sectorsize;
2520 	device->io_align = root->sectorsize;
2521 	device->sector_size = root->sectorsize;
2522 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2523 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2524 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2525 	ASSERT(list_empty(&srcdev->resized_list));
2526 	device->commit_total_bytes = srcdev->commit_total_bytes;
2527 	device->commit_bytes_used = device->bytes_used;
2528 	device->dev_root = fs_info->dev_root;
2529 	device->bdev = bdev;
2530 	device->in_fs_metadata = 1;
2531 	device->is_tgtdev_for_dev_replace = 1;
2532 	device->mode = FMODE_EXCL;
2533 	device->dev_stats_valid = 1;
2534 	set_blocksize(device->bdev, 4096);
2535 	device->fs_devices = fs_info->fs_devices;
2536 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2537 	fs_info->fs_devices->num_devices++;
2538 	fs_info->fs_devices->open_devices++;
2539 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2540 
2541 	*device_out = device;
2542 	return ret;
2543 
2544 error:
2545 	blkdev_put(bdev, FMODE_EXCL);
2546 	return ret;
2547 }
2548 
btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info * fs_info,struct btrfs_device * tgtdev)2549 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2550 					      struct btrfs_device *tgtdev)
2551 {
2552 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2553 	tgtdev->io_width = fs_info->dev_root->sectorsize;
2554 	tgtdev->io_align = fs_info->dev_root->sectorsize;
2555 	tgtdev->sector_size = fs_info->dev_root->sectorsize;
2556 	tgtdev->dev_root = fs_info->dev_root;
2557 	tgtdev->in_fs_metadata = 1;
2558 }
2559 
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2560 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2561 					struct btrfs_device *device)
2562 {
2563 	int ret;
2564 	struct btrfs_path *path;
2565 	struct btrfs_root *root;
2566 	struct btrfs_dev_item *dev_item;
2567 	struct extent_buffer *leaf;
2568 	struct btrfs_key key;
2569 
2570 	root = device->dev_root->fs_info->chunk_root;
2571 
2572 	path = btrfs_alloc_path();
2573 	if (!path)
2574 		return -ENOMEM;
2575 
2576 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2577 	key.type = BTRFS_DEV_ITEM_KEY;
2578 	key.offset = device->devid;
2579 
2580 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2581 	if (ret < 0)
2582 		goto out;
2583 
2584 	if (ret > 0) {
2585 		ret = -ENOENT;
2586 		goto out;
2587 	}
2588 
2589 	leaf = path->nodes[0];
2590 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2591 
2592 	btrfs_set_device_id(leaf, dev_item, device->devid);
2593 	btrfs_set_device_type(leaf, dev_item, device->type);
2594 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2595 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2596 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2597 	btrfs_set_device_total_bytes(leaf, dev_item,
2598 				     btrfs_device_get_disk_total_bytes(device));
2599 	btrfs_set_device_bytes_used(leaf, dev_item,
2600 				    btrfs_device_get_bytes_used(device));
2601 	btrfs_mark_buffer_dirty(leaf);
2602 
2603 out:
2604 	btrfs_free_path(path);
2605 	return ret;
2606 }
2607 
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2608 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2609 		      struct btrfs_device *device, u64 new_size)
2610 {
2611 	struct btrfs_super_block *super_copy =
2612 		device->dev_root->fs_info->super_copy;
2613 	struct btrfs_fs_devices *fs_devices;
2614 	u64 old_total;
2615 	u64 diff;
2616 
2617 	if (!device->writeable)
2618 		return -EACCES;
2619 
2620 	lock_chunks(device->dev_root);
2621 	old_total = btrfs_super_total_bytes(super_copy);
2622 	diff = new_size - device->total_bytes;
2623 
2624 	if (new_size <= device->total_bytes ||
2625 	    device->is_tgtdev_for_dev_replace) {
2626 		unlock_chunks(device->dev_root);
2627 		return -EINVAL;
2628 	}
2629 
2630 	fs_devices = device->dev_root->fs_info->fs_devices;
2631 
2632 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2633 	device->fs_devices->total_rw_bytes += diff;
2634 
2635 	btrfs_device_set_total_bytes(device, new_size);
2636 	btrfs_device_set_disk_total_bytes(device, new_size);
2637 	btrfs_clear_space_info_full(device->dev_root->fs_info);
2638 	if (list_empty(&device->resized_list))
2639 		list_add_tail(&device->resized_list,
2640 			      &fs_devices->resized_devices);
2641 	unlock_chunks(device->dev_root);
2642 
2643 	return btrfs_update_device(trans, device);
2644 }
2645 
btrfs_free_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 chunk_objectid,u64 chunk_offset)2646 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2647 			    struct btrfs_root *root, u64 chunk_objectid,
2648 			    u64 chunk_offset)
2649 {
2650 	int ret;
2651 	struct btrfs_path *path;
2652 	struct btrfs_key key;
2653 
2654 	root = root->fs_info->chunk_root;
2655 	path = btrfs_alloc_path();
2656 	if (!path)
2657 		return -ENOMEM;
2658 
2659 	key.objectid = chunk_objectid;
2660 	key.offset = chunk_offset;
2661 	key.type = BTRFS_CHUNK_ITEM_KEY;
2662 
2663 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2664 	if (ret < 0)
2665 		goto out;
2666 	else if (ret > 0) { /* Logic error or corruption */
2667 		btrfs_std_error(root->fs_info, -ENOENT,
2668 			    "Failed lookup while freeing chunk.");
2669 		ret = -ENOENT;
2670 		goto out;
2671 	}
2672 
2673 	ret = btrfs_del_item(trans, root, path);
2674 	if (ret < 0)
2675 		btrfs_std_error(root->fs_info, ret,
2676 			    "Failed to delete chunk item.");
2677 out:
2678 	btrfs_free_path(path);
2679 	return ret;
2680 }
2681 
btrfs_del_sys_chunk(struct btrfs_root * root,u64 chunk_objectid,u64 chunk_offset)2682 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2683 			chunk_offset)
2684 {
2685 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2686 	struct btrfs_disk_key *disk_key;
2687 	struct btrfs_chunk *chunk;
2688 	u8 *ptr;
2689 	int ret = 0;
2690 	u32 num_stripes;
2691 	u32 array_size;
2692 	u32 len = 0;
2693 	u32 cur;
2694 	struct btrfs_key key;
2695 
2696 	lock_chunks(root);
2697 	array_size = btrfs_super_sys_array_size(super_copy);
2698 
2699 	ptr = super_copy->sys_chunk_array;
2700 	cur = 0;
2701 
2702 	while (cur < array_size) {
2703 		disk_key = (struct btrfs_disk_key *)ptr;
2704 		btrfs_disk_key_to_cpu(&key, disk_key);
2705 
2706 		len = sizeof(*disk_key);
2707 
2708 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2709 			chunk = (struct btrfs_chunk *)(ptr + len);
2710 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2711 			len += btrfs_chunk_item_size(num_stripes);
2712 		} else {
2713 			ret = -EIO;
2714 			break;
2715 		}
2716 		if (key.objectid == chunk_objectid &&
2717 		    key.offset == chunk_offset) {
2718 			memmove(ptr, ptr + len, array_size - (cur + len));
2719 			array_size -= len;
2720 			btrfs_set_super_sys_array_size(super_copy, array_size);
2721 		} else {
2722 			ptr += len;
2723 			cur += len;
2724 		}
2725 	}
2726 	unlock_chunks(root);
2727 	return ret;
2728 }
2729 
btrfs_remove_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 chunk_offset)2730 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2731 		       struct btrfs_root *root, u64 chunk_offset)
2732 {
2733 	struct extent_map_tree *em_tree;
2734 	struct extent_map *em;
2735 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2736 	struct map_lookup *map;
2737 	u64 dev_extent_len = 0;
2738 	u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2739 	int i, ret = 0;
2740 
2741 	/* Just in case */
2742 	root = root->fs_info->chunk_root;
2743 	em_tree = &root->fs_info->mapping_tree.map_tree;
2744 
2745 	read_lock(&em_tree->lock);
2746 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2747 	read_unlock(&em_tree->lock);
2748 
2749 	if (!em || em->start > chunk_offset ||
2750 	    em->start + em->len < chunk_offset) {
2751 		/*
2752 		 * This is a logic error, but we don't want to just rely on the
2753 		 * user having built with ASSERT enabled, so if ASSERT doens't
2754 		 * do anything we still error out.
2755 		 */
2756 		ASSERT(0);
2757 		if (em)
2758 			free_extent_map(em);
2759 		return -EINVAL;
2760 	}
2761 	map = em->map_lookup;
2762 	lock_chunks(root->fs_info->chunk_root);
2763 	check_system_chunk(trans, extent_root, map->type);
2764 	unlock_chunks(root->fs_info->chunk_root);
2765 
2766 	for (i = 0; i < map->num_stripes; i++) {
2767 		struct btrfs_device *device = map->stripes[i].dev;
2768 		ret = btrfs_free_dev_extent(trans, device,
2769 					    map->stripes[i].physical,
2770 					    &dev_extent_len);
2771 		if (ret) {
2772 			btrfs_abort_transaction(trans, root, ret);
2773 			goto out;
2774 		}
2775 
2776 		if (device->bytes_used > 0) {
2777 			lock_chunks(root);
2778 			btrfs_device_set_bytes_used(device,
2779 					device->bytes_used - dev_extent_len);
2780 			spin_lock(&root->fs_info->free_chunk_lock);
2781 			root->fs_info->free_chunk_space += dev_extent_len;
2782 			spin_unlock(&root->fs_info->free_chunk_lock);
2783 			btrfs_clear_space_info_full(root->fs_info);
2784 			unlock_chunks(root);
2785 		}
2786 
2787 		if (map->stripes[i].dev) {
2788 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2789 			if (ret) {
2790 				btrfs_abort_transaction(trans, root, ret);
2791 				goto out;
2792 			}
2793 		}
2794 	}
2795 	ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2796 	if (ret) {
2797 		btrfs_abort_transaction(trans, root, ret);
2798 		goto out;
2799 	}
2800 
2801 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2802 
2803 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2804 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2805 		if (ret) {
2806 			btrfs_abort_transaction(trans, root, ret);
2807 			goto out;
2808 		}
2809 	}
2810 
2811 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2812 	if (ret) {
2813 		btrfs_abort_transaction(trans, extent_root, ret);
2814 		goto out;
2815 	}
2816 
2817 out:
2818 	/* once for us */
2819 	free_extent_map(em);
2820 	return ret;
2821 }
2822 
btrfs_relocate_chunk(struct btrfs_root * root,u64 chunk_offset)2823 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2824 {
2825 	struct btrfs_root *extent_root;
2826 	struct btrfs_trans_handle *trans;
2827 	int ret;
2828 
2829 	root = root->fs_info->chunk_root;
2830 	extent_root = root->fs_info->extent_root;
2831 
2832 	/*
2833 	 * Prevent races with automatic removal of unused block groups.
2834 	 * After we relocate and before we remove the chunk with offset
2835 	 * chunk_offset, automatic removal of the block group can kick in,
2836 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2837 	 *
2838 	 * Make sure to acquire this mutex before doing a tree search (dev
2839 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2840 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2841 	 * we release the path used to search the chunk/dev tree and before
2842 	 * the current task acquires this mutex and calls us.
2843 	 */
2844 	ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2845 
2846 	ret = btrfs_can_relocate(extent_root, chunk_offset);
2847 	if (ret)
2848 		return -ENOSPC;
2849 
2850 	/* step one, relocate all the extents inside this chunk */
2851 	btrfs_scrub_pause(root);
2852 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2853 	btrfs_scrub_continue(root);
2854 	if (ret)
2855 		return ret;
2856 
2857 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
2858 						     chunk_offset);
2859 	if (IS_ERR(trans)) {
2860 		ret = PTR_ERR(trans);
2861 		btrfs_std_error(root->fs_info, ret, NULL);
2862 		return ret;
2863 	}
2864 
2865 	/*
2866 	 * step two, delete the device extents and the
2867 	 * chunk tree entries
2868 	 */
2869 	ret = btrfs_remove_chunk(trans, root, chunk_offset);
2870 	btrfs_end_transaction(trans, root);
2871 	return ret;
2872 }
2873 
btrfs_relocate_sys_chunks(struct btrfs_root * root)2874 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2875 {
2876 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2877 	struct btrfs_path *path;
2878 	struct extent_buffer *leaf;
2879 	struct btrfs_chunk *chunk;
2880 	struct btrfs_key key;
2881 	struct btrfs_key found_key;
2882 	u64 chunk_type;
2883 	bool retried = false;
2884 	int failed = 0;
2885 	int ret;
2886 
2887 	path = btrfs_alloc_path();
2888 	if (!path)
2889 		return -ENOMEM;
2890 
2891 again:
2892 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2893 	key.offset = (u64)-1;
2894 	key.type = BTRFS_CHUNK_ITEM_KEY;
2895 
2896 	while (1) {
2897 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2898 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2899 		if (ret < 0) {
2900 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2901 			goto error;
2902 		}
2903 		BUG_ON(ret == 0); /* Corruption */
2904 
2905 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2906 					  key.type);
2907 		if (ret)
2908 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2909 		if (ret < 0)
2910 			goto error;
2911 		if (ret > 0)
2912 			break;
2913 
2914 		leaf = path->nodes[0];
2915 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2916 
2917 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2918 				       struct btrfs_chunk);
2919 		chunk_type = btrfs_chunk_type(leaf, chunk);
2920 		btrfs_release_path(path);
2921 
2922 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2923 			ret = btrfs_relocate_chunk(chunk_root,
2924 						   found_key.offset);
2925 			if (ret == -ENOSPC)
2926 				failed++;
2927 			else
2928 				BUG_ON(ret);
2929 		}
2930 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2931 
2932 		if (found_key.offset == 0)
2933 			break;
2934 		key.offset = found_key.offset - 1;
2935 	}
2936 	ret = 0;
2937 	if (failed && !retried) {
2938 		failed = 0;
2939 		retried = true;
2940 		goto again;
2941 	} else if (WARN_ON(failed && retried)) {
2942 		ret = -ENOSPC;
2943 	}
2944 error:
2945 	btrfs_free_path(path);
2946 	return ret;
2947 }
2948 
insert_balance_item(struct btrfs_root * root,struct btrfs_balance_control * bctl)2949 static int insert_balance_item(struct btrfs_root *root,
2950 			       struct btrfs_balance_control *bctl)
2951 {
2952 	struct btrfs_trans_handle *trans;
2953 	struct btrfs_balance_item *item;
2954 	struct btrfs_disk_balance_args disk_bargs;
2955 	struct btrfs_path *path;
2956 	struct extent_buffer *leaf;
2957 	struct btrfs_key key;
2958 	int ret, err;
2959 
2960 	path = btrfs_alloc_path();
2961 	if (!path)
2962 		return -ENOMEM;
2963 
2964 	trans = btrfs_start_transaction(root, 0);
2965 	if (IS_ERR(trans)) {
2966 		btrfs_free_path(path);
2967 		return PTR_ERR(trans);
2968 	}
2969 
2970 	key.objectid = BTRFS_BALANCE_OBJECTID;
2971 	key.type = BTRFS_BALANCE_ITEM_KEY;
2972 	key.offset = 0;
2973 
2974 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2975 				      sizeof(*item));
2976 	if (ret)
2977 		goto out;
2978 
2979 	leaf = path->nodes[0];
2980 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2981 
2982 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2983 
2984 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2985 	btrfs_set_balance_data(leaf, item, &disk_bargs);
2986 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2987 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
2988 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2989 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
2990 
2991 	btrfs_set_balance_flags(leaf, item, bctl->flags);
2992 
2993 	btrfs_mark_buffer_dirty(leaf);
2994 out:
2995 	btrfs_free_path(path);
2996 	err = btrfs_commit_transaction(trans, root);
2997 	if (err && !ret)
2998 		ret = err;
2999 	return ret;
3000 }
3001 
del_balance_item(struct btrfs_root * root)3002 static int del_balance_item(struct btrfs_root *root)
3003 {
3004 	struct btrfs_trans_handle *trans;
3005 	struct btrfs_path *path;
3006 	struct btrfs_key key;
3007 	int ret, err;
3008 
3009 	path = btrfs_alloc_path();
3010 	if (!path)
3011 		return -ENOMEM;
3012 
3013 	trans = btrfs_start_transaction(root, 0);
3014 	if (IS_ERR(trans)) {
3015 		btrfs_free_path(path);
3016 		return PTR_ERR(trans);
3017 	}
3018 
3019 	key.objectid = BTRFS_BALANCE_OBJECTID;
3020 	key.type = BTRFS_BALANCE_ITEM_KEY;
3021 	key.offset = 0;
3022 
3023 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3024 	if (ret < 0)
3025 		goto out;
3026 	if (ret > 0) {
3027 		ret = -ENOENT;
3028 		goto out;
3029 	}
3030 
3031 	ret = btrfs_del_item(trans, root, path);
3032 out:
3033 	btrfs_free_path(path);
3034 	err = btrfs_commit_transaction(trans, root);
3035 	if (err && !ret)
3036 		ret = err;
3037 	return ret;
3038 }
3039 
3040 /*
3041  * This is a heuristic used to reduce the number of chunks balanced on
3042  * resume after balance was interrupted.
3043  */
update_balance_args(struct btrfs_balance_control * bctl)3044 static void update_balance_args(struct btrfs_balance_control *bctl)
3045 {
3046 	/*
3047 	 * Turn on soft mode for chunk types that were being converted.
3048 	 */
3049 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3050 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3051 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3052 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3053 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3054 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3055 
3056 	/*
3057 	 * Turn on usage filter if is not already used.  The idea is
3058 	 * that chunks that we have already balanced should be
3059 	 * reasonably full.  Don't do it for chunks that are being
3060 	 * converted - that will keep us from relocating unconverted
3061 	 * (albeit full) chunks.
3062 	 */
3063 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3064 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3065 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3066 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3067 		bctl->data.usage = 90;
3068 	}
3069 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3070 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3071 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3072 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3073 		bctl->sys.usage = 90;
3074 	}
3075 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3076 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3077 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3078 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3079 		bctl->meta.usage = 90;
3080 	}
3081 }
3082 
3083 /*
3084  * Should be called with both balance and volume mutexes held to
3085  * serialize other volume operations (add_dev/rm_dev/resize) with
3086  * restriper.  Same goes for unset_balance_control.
3087  */
set_balance_control(struct btrfs_balance_control * bctl)3088 static void set_balance_control(struct btrfs_balance_control *bctl)
3089 {
3090 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3091 
3092 	BUG_ON(fs_info->balance_ctl);
3093 
3094 	spin_lock(&fs_info->balance_lock);
3095 	fs_info->balance_ctl = bctl;
3096 	spin_unlock(&fs_info->balance_lock);
3097 }
3098 
unset_balance_control(struct btrfs_fs_info * fs_info)3099 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3100 {
3101 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3102 
3103 	BUG_ON(!fs_info->balance_ctl);
3104 
3105 	spin_lock(&fs_info->balance_lock);
3106 	fs_info->balance_ctl = NULL;
3107 	spin_unlock(&fs_info->balance_lock);
3108 
3109 	kfree(bctl);
3110 }
3111 
3112 /*
3113  * Balance filters.  Return 1 if chunk should be filtered out
3114  * (should not be balanced).
3115  */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3116 static int chunk_profiles_filter(u64 chunk_type,
3117 				 struct btrfs_balance_args *bargs)
3118 {
3119 	chunk_type = chunk_to_extended(chunk_type) &
3120 				BTRFS_EXTENDED_PROFILE_MASK;
3121 
3122 	if (bargs->profiles & chunk_type)
3123 		return 0;
3124 
3125 	return 1;
3126 }
3127 
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3128 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3129 			      struct btrfs_balance_args *bargs)
3130 {
3131 	struct btrfs_block_group_cache *cache;
3132 	u64 chunk_used;
3133 	u64 user_thresh_min;
3134 	u64 user_thresh_max;
3135 	int ret = 1;
3136 
3137 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3138 	chunk_used = btrfs_block_group_used(&cache->item);
3139 
3140 	if (bargs->usage_min == 0)
3141 		user_thresh_min = 0;
3142 	else
3143 		user_thresh_min = div_factor_fine(cache->key.offset,
3144 					bargs->usage_min);
3145 
3146 	if (bargs->usage_max == 0)
3147 		user_thresh_max = 1;
3148 	else if (bargs->usage_max > 100)
3149 		user_thresh_max = cache->key.offset;
3150 	else
3151 		user_thresh_max = div_factor_fine(cache->key.offset,
3152 					bargs->usage_max);
3153 
3154 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3155 		ret = 0;
3156 
3157 	btrfs_put_block_group(cache);
3158 	return ret;
3159 }
3160 
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3161 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3162 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3163 {
3164 	struct btrfs_block_group_cache *cache;
3165 	u64 chunk_used, user_thresh;
3166 	int ret = 1;
3167 
3168 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3169 	chunk_used = btrfs_block_group_used(&cache->item);
3170 
3171 	if (bargs->usage_min == 0)
3172 		user_thresh = 1;
3173 	else if (bargs->usage > 100)
3174 		user_thresh = cache->key.offset;
3175 	else
3176 		user_thresh = div_factor_fine(cache->key.offset,
3177 					      bargs->usage);
3178 
3179 	if (chunk_used < user_thresh)
3180 		ret = 0;
3181 
3182 	btrfs_put_block_group(cache);
3183 	return ret;
3184 }
3185 
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3186 static int chunk_devid_filter(struct extent_buffer *leaf,
3187 			      struct btrfs_chunk *chunk,
3188 			      struct btrfs_balance_args *bargs)
3189 {
3190 	struct btrfs_stripe *stripe;
3191 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3192 	int i;
3193 
3194 	for (i = 0; i < num_stripes; i++) {
3195 		stripe = btrfs_stripe_nr(chunk, i);
3196 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3197 			return 0;
3198 	}
3199 
3200 	return 1;
3201 }
3202 
3203 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3204 static int chunk_drange_filter(struct extent_buffer *leaf,
3205 			       struct btrfs_chunk *chunk,
3206 			       u64 chunk_offset,
3207 			       struct btrfs_balance_args *bargs)
3208 {
3209 	struct btrfs_stripe *stripe;
3210 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3211 	u64 stripe_offset;
3212 	u64 stripe_length;
3213 	int factor;
3214 	int i;
3215 
3216 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3217 		return 0;
3218 
3219 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3220 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3221 		factor = num_stripes / 2;
3222 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3223 		factor = num_stripes - 1;
3224 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3225 		factor = num_stripes - 2;
3226 	} else {
3227 		factor = num_stripes;
3228 	}
3229 
3230 	for (i = 0; i < num_stripes; i++) {
3231 		stripe = btrfs_stripe_nr(chunk, i);
3232 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3233 			continue;
3234 
3235 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3236 		stripe_length = btrfs_chunk_length(leaf, chunk);
3237 		stripe_length = div_u64(stripe_length, factor);
3238 
3239 		if (stripe_offset < bargs->pend &&
3240 		    stripe_offset + stripe_length > bargs->pstart)
3241 			return 0;
3242 	}
3243 
3244 	return 1;
3245 }
3246 
3247 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3248 static int chunk_vrange_filter(struct extent_buffer *leaf,
3249 			       struct btrfs_chunk *chunk,
3250 			       u64 chunk_offset,
3251 			       struct btrfs_balance_args *bargs)
3252 {
3253 	if (chunk_offset < bargs->vend &&
3254 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3255 		/* at least part of the chunk is inside this vrange */
3256 		return 0;
3257 
3258 	return 1;
3259 }
3260 
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3261 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3262 			       struct btrfs_chunk *chunk,
3263 			       struct btrfs_balance_args *bargs)
3264 {
3265 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3266 
3267 	if (bargs->stripes_min <= num_stripes
3268 			&& num_stripes <= bargs->stripes_max)
3269 		return 0;
3270 
3271 	return 1;
3272 }
3273 
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3274 static int chunk_soft_convert_filter(u64 chunk_type,
3275 				     struct btrfs_balance_args *bargs)
3276 {
3277 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3278 		return 0;
3279 
3280 	chunk_type = chunk_to_extended(chunk_type) &
3281 				BTRFS_EXTENDED_PROFILE_MASK;
3282 
3283 	if (bargs->target == chunk_type)
3284 		return 1;
3285 
3286 	return 0;
3287 }
3288 
should_balance_chunk(struct btrfs_root * root,struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3289 static int should_balance_chunk(struct btrfs_root *root,
3290 				struct extent_buffer *leaf,
3291 				struct btrfs_chunk *chunk, u64 chunk_offset)
3292 {
3293 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3294 	struct btrfs_balance_args *bargs = NULL;
3295 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3296 
3297 	/* type filter */
3298 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3299 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3300 		return 0;
3301 	}
3302 
3303 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3304 		bargs = &bctl->data;
3305 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3306 		bargs = &bctl->sys;
3307 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3308 		bargs = &bctl->meta;
3309 
3310 	/* profiles filter */
3311 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3312 	    chunk_profiles_filter(chunk_type, bargs)) {
3313 		return 0;
3314 	}
3315 
3316 	/* usage filter */
3317 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3318 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3319 		return 0;
3320 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3321 	    chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3322 		return 0;
3323 	}
3324 
3325 	/* devid filter */
3326 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3327 	    chunk_devid_filter(leaf, chunk, bargs)) {
3328 		return 0;
3329 	}
3330 
3331 	/* drange filter, makes sense only with devid filter */
3332 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3333 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3334 		return 0;
3335 	}
3336 
3337 	/* vrange filter */
3338 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3339 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3340 		return 0;
3341 	}
3342 
3343 	/* stripes filter */
3344 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3345 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3346 		return 0;
3347 	}
3348 
3349 	/* soft profile changing mode */
3350 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3351 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3352 		return 0;
3353 	}
3354 
3355 	/*
3356 	 * limited by count, must be the last filter
3357 	 */
3358 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3359 		if (bargs->limit == 0)
3360 			return 0;
3361 		else
3362 			bargs->limit--;
3363 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3364 		/*
3365 		 * Same logic as the 'limit' filter; the minimum cannot be
3366 		 * determined here because we do not have the global informatoin
3367 		 * about the count of all chunks that satisfy the filters.
3368 		 */
3369 		if (bargs->limit_max == 0)
3370 			return 0;
3371 		else
3372 			bargs->limit_max--;
3373 	}
3374 
3375 	return 1;
3376 }
3377 
__btrfs_balance(struct btrfs_fs_info * fs_info)3378 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3379 {
3380 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3381 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3382 	struct btrfs_root *dev_root = fs_info->dev_root;
3383 	struct list_head *devices;
3384 	struct btrfs_device *device;
3385 	u64 old_size;
3386 	u64 size_to_free;
3387 	u64 chunk_type;
3388 	struct btrfs_chunk *chunk;
3389 	struct btrfs_path *path;
3390 	struct btrfs_key key;
3391 	struct btrfs_key found_key;
3392 	struct btrfs_trans_handle *trans;
3393 	struct extent_buffer *leaf;
3394 	int slot;
3395 	int ret;
3396 	int enospc_errors = 0;
3397 	bool counting = true;
3398 	/* The single value limit and min/max limits use the same bytes in the */
3399 	u64 limit_data = bctl->data.limit;
3400 	u64 limit_meta = bctl->meta.limit;
3401 	u64 limit_sys = bctl->sys.limit;
3402 	u32 count_data = 0;
3403 	u32 count_meta = 0;
3404 	u32 count_sys = 0;
3405 	int chunk_reserved = 0;
3406 
3407 	/* step one make some room on all the devices */
3408 	devices = &fs_info->fs_devices->devices;
3409 	list_for_each_entry(device, devices, dev_list) {
3410 		old_size = btrfs_device_get_total_bytes(device);
3411 		size_to_free = div_factor(old_size, 1);
3412 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3413 		if (!device->writeable ||
3414 		    btrfs_device_get_total_bytes(device) -
3415 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3416 		    device->is_tgtdev_for_dev_replace)
3417 			continue;
3418 
3419 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3420 		if (ret == -ENOSPC)
3421 			break;
3422 		BUG_ON(ret);
3423 
3424 		trans = btrfs_start_transaction(dev_root, 0);
3425 		BUG_ON(IS_ERR(trans));
3426 
3427 		ret = btrfs_grow_device(trans, device, old_size);
3428 		BUG_ON(ret);
3429 
3430 		btrfs_end_transaction(trans, dev_root);
3431 	}
3432 
3433 	/* step two, relocate all the chunks */
3434 	path = btrfs_alloc_path();
3435 	if (!path) {
3436 		ret = -ENOMEM;
3437 		goto error;
3438 	}
3439 
3440 	/* zero out stat counters */
3441 	spin_lock(&fs_info->balance_lock);
3442 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3443 	spin_unlock(&fs_info->balance_lock);
3444 again:
3445 	if (!counting) {
3446 		/*
3447 		 * The single value limit and min/max limits use the same bytes
3448 		 * in the
3449 		 */
3450 		bctl->data.limit = limit_data;
3451 		bctl->meta.limit = limit_meta;
3452 		bctl->sys.limit = limit_sys;
3453 	}
3454 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3455 	key.offset = (u64)-1;
3456 	key.type = BTRFS_CHUNK_ITEM_KEY;
3457 
3458 	while (1) {
3459 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3460 		    atomic_read(&fs_info->balance_cancel_req)) {
3461 			ret = -ECANCELED;
3462 			goto error;
3463 		}
3464 
3465 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3466 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3467 		if (ret < 0) {
3468 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3469 			goto error;
3470 		}
3471 
3472 		/*
3473 		 * this shouldn't happen, it means the last relocate
3474 		 * failed
3475 		 */
3476 		if (ret == 0)
3477 			BUG(); /* FIXME break ? */
3478 
3479 		ret = btrfs_previous_item(chunk_root, path, 0,
3480 					  BTRFS_CHUNK_ITEM_KEY);
3481 		if (ret) {
3482 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3483 			ret = 0;
3484 			break;
3485 		}
3486 
3487 		leaf = path->nodes[0];
3488 		slot = path->slots[0];
3489 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3490 
3491 		if (found_key.objectid != key.objectid) {
3492 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3493 			break;
3494 		}
3495 
3496 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3497 		chunk_type = btrfs_chunk_type(leaf, chunk);
3498 
3499 		if (!counting) {
3500 			spin_lock(&fs_info->balance_lock);
3501 			bctl->stat.considered++;
3502 			spin_unlock(&fs_info->balance_lock);
3503 		}
3504 
3505 		ret = should_balance_chunk(chunk_root, leaf, chunk,
3506 					   found_key.offset);
3507 
3508 		btrfs_release_path(path);
3509 		if (!ret) {
3510 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3511 			goto loop;
3512 		}
3513 
3514 		if (counting) {
3515 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3516 			spin_lock(&fs_info->balance_lock);
3517 			bctl->stat.expected++;
3518 			spin_unlock(&fs_info->balance_lock);
3519 
3520 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3521 				count_data++;
3522 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3523 				count_sys++;
3524 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3525 				count_meta++;
3526 
3527 			goto loop;
3528 		}
3529 
3530 		/*
3531 		 * Apply limit_min filter, no need to check if the LIMITS
3532 		 * filter is used, limit_min is 0 by default
3533 		 */
3534 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3535 					count_data < bctl->data.limit_min)
3536 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3537 					count_meta < bctl->meta.limit_min)
3538 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3539 					count_sys < bctl->sys.limit_min)) {
3540 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3541 			goto loop;
3542 		}
3543 
3544 		if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && !chunk_reserved) {
3545 			trans = btrfs_start_transaction(chunk_root, 0);
3546 			if (IS_ERR(trans)) {
3547 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3548 				ret = PTR_ERR(trans);
3549 				goto error;
3550 			}
3551 
3552 			ret = btrfs_force_chunk_alloc(trans, chunk_root,
3553 						      BTRFS_BLOCK_GROUP_DATA);
3554 			btrfs_end_transaction(trans, chunk_root);
3555 			if (ret < 0) {
3556 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3557 				goto error;
3558 			}
3559 			chunk_reserved = 1;
3560 		}
3561 
3562 		ret = btrfs_relocate_chunk(chunk_root,
3563 					   found_key.offset);
3564 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3565 		if (ret && ret != -ENOSPC)
3566 			goto error;
3567 		if (ret == -ENOSPC) {
3568 			enospc_errors++;
3569 		} else {
3570 			spin_lock(&fs_info->balance_lock);
3571 			bctl->stat.completed++;
3572 			spin_unlock(&fs_info->balance_lock);
3573 		}
3574 loop:
3575 		if (found_key.offset == 0)
3576 			break;
3577 		key.offset = found_key.offset - 1;
3578 	}
3579 
3580 	if (counting) {
3581 		btrfs_release_path(path);
3582 		counting = false;
3583 		goto again;
3584 	}
3585 error:
3586 	btrfs_free_path(path);
3587 	if (enospc_errors) {
3588 		btrfs_info(fs_info, "%d enospc errors during balance",
3589 		       enospc_errors);
3590 		if (!ret)
3591 			ret = -ENOSPC;
3592 	}
3593 
3594 	return ret;
3595 }
3596 
3597 /**
3598  * alloc_profile_is_valid - see if a given profile is valid and reduced
3599  * @flags: profile to validate
3600  * @extended: if true @flags is treated as an extended profile
3601  */
alloc_profile_is_valid(u64 flags,int extended)3602 static int alloc_profile_is_valid(u64 flags, int extended)
3603 {
3604 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3605 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3606 
3607 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3608 
3609 	/* 1) check that all other bits are zeroed */
3610 	if (flags & ~mask)
3611 		return 0;
3612 
3613 	/* 2) see if profile is reduced */
3614 	if (flags == 0)
3615 		return !extended; /* "0" is valid for usual profiles */
3616 
3617 	/* true if exactly one bit set */
3618 	return (flags & (flags - 1)) == 0;
3619 }
3620 
balance_need_close(struct btrfs_fs_info * fs_info)3621 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3622 {
3623 	/* cancel requested || normal exit path */
3624 	return atomic_read(&fs_info->balance_cancel_req) ||
3625 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3626 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3627 }
3628 
__cancel_balance(struct btrfs_fs_info * fs_info)3629 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3630 {
3631 	int ret;
3632 
3633 	unset_balance_control(fs_info);
3634 	ret = del_balance_item(fs_info->tree_root);
3635 	if (ret)
3636 		btrfs_std_error(fs_info, ret, NULL);
3637 
3638 	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3639 }
3640 
3641 /* Non-zero return value signifies invalidity */
validate_convert_profile(struct btrfs_balance_args * bctl_arg,u64 allowed)3642 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3643 		u64 allowed)
3644 {
3645 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3646 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3647 		 (bctl_arg->target & ~allowed)));
3648 }
3649 
3650 /*
3651  * Should be called with both balance and volume mutexes held
3652  */
btrfs_balance(struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)3653 int btrfs_balance(struct btrfs_balance_control *bctl,
3654 		  struct btrfs_ioctl_balance_args *bargs)
3655 {
3656 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3657 	u64 allowed;
3658 	int mixed = 0;
3659 	int ret;
3660 	u64 num_devices;
3661 	unsigned seq;
3662 
3663 	if (btrfs_fs_closing(fs_info) ||
3664 	    atomic_read(&fs_info->balance_pause_req) ||
3665 	    atomic_read(&fs_info->balance_cancel_req)) {
3666 		ret = -EINVAL;
3667 		goto out;
3668 	}
3669 
3670 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3671 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3672 		mixed = 1;
3673 
3674 	/*
3675 	 * In case of mixed groups both data and meta should be picked,
3676 	 * and identical options should be given for both of them.
3677 	 */
3678 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3679 	if (mixed && (bctl->flags & allowed)) {
3680 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3681 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3682 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3683 			btrfs_err(fs_info, "with mixed groups data and "
3684 				   "metadata balance options must be the same");
3685 			ret = -EINVAL;
3686 			goto out;
3687 		}
3688 	}
3689 
3690 	num_devices = fs_info->fs_devices->num_devices;
3691 	btrfs_dev_replace_lock(&fs_info->dev_replace);
3692 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3693 		BUG_ON(num_devices < 1);
3694 		num_devices--;
3695 	}
3696 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3697 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3698 	if (num_devices == 1)
3699 		allowed |= BTRFS_BLOCK_GROUP_DUP;
3700 	else if (num_devices > 1)
3701 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3702 	if (num_devices > 2)
3703 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3704 	if (num_devices > 3)
3705 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3706 			    BTRFS_BLOCK_GROUP_RAID6);
3707 	if (validate_convert_profile(&bctl->data, allowed)) {
3708 		btrfs_err(fs_info, "unable to start balance with target "
3709 			   "data profile %llu",
3710 		       bctl->data.target);
3711 		ret = -EINVAL;
3712 		goto out;
3713 	}
3714 	if (validate_convert_profile(&bctl->meta, allowed)) {
3715 		btrfs_err(fs_info,
3716 			   "unable to start balance with target metadata profile %llu",
3717 		       bctl->meta.target);
3718 		ret = -EINVAL;
3719 		goto out;
3720 	}
3721 	if (validate_convert_profile(&bctl->sys, allowed)) {
3722 		btrfs_err(fs_info,
3723 			   "unable to start balance with target system profile %llu",
3724 		       bctl->sys.target);
3725 		ret = -EINVAL;
3726 		goto out;
3727 	}
3728 
3729 	/* allow dup'ed data chunks only in mixed mode */
3730 	if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3731 	    (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3732 		btrfs_err(fs_info, "dup for data is not allowed");
3733 		ret = -EINVAL;
3734 		goto out;
3735 	}
3736 
3737 	/* allow to reduce meta or sys integrity only if force set */
3738 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3739 			BTRFS_BLOCK_GROUP_RAID10 |
3740 			BTRFS_BLOCK_GROUP_RAID5 |
3741 			BTRFS_BLOCK_GROUP_RAID6;
3742 	do {
3743 		seq = read_seqbegin(&fs_info->profiles_lock);
3744 
3745 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3746 		     (fs_info->avail_system_alloc_bits & allowed) &&
3747 		     !(bctl->sys.target & allowed)) ||
3748 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3749 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3750 		     !(bctl->meta.target & allowed))) {
3751 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3752 				btrfs_info(fs_info, "force reducing metadata integrity");
3753 			} else {
3754 				btrfs_err(fs_info, "balance will reduce metadata "
3755 					   "integrity, use force if you want this");
3756 				ret = -EINVAL;
3757 				goto out;
3758 			}
3759 		}
3760 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3761 
3762 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3763 		fs_info->num_tolerated_disk_barrier_failures = min(
3764 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3765 			btrfs_get_num_tolerated_disk_barrier_failures(
3766 				bctl->sys.target));
3767 	}
3768 
3769 	ret = insert_balance_item(fs_info->tree_root, bctl);
3770 	if (ret && ret != -EEXIST)
3771 		goto out;
3772 
3773 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3774 		BUG_ON(ret == -EEXIST);
3775 		set_balance_control(bctl);
3776 	} else {
3777 		BUG_ON(ret != -EEXIST);
3778 		spin_lock(&fs_info->balance_lock);
3779 		update_balance_args(bctl);
3780 		spin_unlock(&fs_info->balance_lock);
3781 	}
3782 
3783 	atomic_inc(&fs_info->balance_running);
3784 	mutex_unlock(&fs_info->balance_mutex);
3785 
3786 	ret = __btrfs_balance(fs_info);
3787 
3788 	mutex_lock(&fs_info->balance_mutex);
3789 	atomic_dec(&fs_info->balance_running);
3790 
3791 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3792 		fs_info->num_tolerated_disk_barrier_failures =
3793 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3794 	}
3795 
3796 	if (bargs) {
3797 		memset(bargs, 0, sizeof(*bargs));
3798 		update_ioctl_balance_args(fs_info, 0, bargs);
3799 	}
3800 
3801 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3802 	    balance_need_close(fs_info)) {
3803 		__cancel_balance(fs_info);
3804 	}
3805 
3806 	wake_up(&fs_info->balance_wait_q);
3807 
3808 	return ret;
3809 out:
3810 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3811 		__cancel_balance(fs_info);
3812 	else {
3813 		kfree(bctl);
3814 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3815 	}
3816 	return ret;
3817 }
3818 
balance_kthread(void * data)3819 static int balance_kthread(void *data)
3820 {
3821 	struct btrfs_fs_info *fs_info = data;
3822 	int ret = 0;
3823 
3824 	mutex_lock(&fs_info->volume_mutex);
3825 	mutex_lock(&fs_info->balance_mutex);
3826 
3827 	if (fs_info->balance_ctl) {
3828 		btrfs_info(fs_info, "continuing balance");
3829 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3830 	}
3831 
3832 	mutex_unlock(&fs_info->balance_mutex);
3833 	mutex_unlock(&fs_info->volume_mutex);
3834 
3835 	return ret;
3836 }
3837 
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)3838 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3839 {
3840 	struct task_struct *tsk;
3841 
3842 	spin_lock(&fs_info->balance_lock);
3843 	if (!fs_info->balance_ctl) {
3844 		spin_unlock(&fs_info->balance_lock);
3845 		return 0;
3846 	}
3847 	spin_unlock(&fs_info->balance_lock);
3848 
3849 	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3850 		btrfs_info(fs_info, "force skipping balance");
3851 		return 0;
3852 	}
3853 
3854 	/*
3855 	 * A ro->rw remount sequence should continue with the paused balance
3856 	 * regardless of who pauses it, system or the user as of now, so set
3857 	 * the resume flag.
3858 	 */
3859 	spin_lock(&fs_info->balance_lock);
3860 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3861 	spin_unlock(&fs_info->balance_lock);
3862 
3863 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3864 	return PTR_ERR_OR_ZERO(tsk);
3865 }
3866 
btrfs_recover_balance(struct btrfs_fs_info * fs_info)3867 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3868 {
3869 	struct btrfs_balance_control *bctl;
3870 	struct btrfs_balance_item *item;
3871 	struct btrfs_disk_balance_args disk_bargs;
3872 	struct btrfs_path *path;
3873 	struct extent_buffer *leaf;
3874 	struct btrfs_key key;
3875 	int ret;
3876 
3877 	path = btrfs_alloc_path();
3878 	if (!path)
3879 		return -ENOMEM;
3880 
3881 	key.objectid = BTRFS_BALANCE_OBJECTID;
3882 	key.type = BTRFS_BALANCE_ITEM_KEY;
3883 	key.offset = 0;
3884 
3885 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3886 	if (ret < 0)
3887 		goto out;
3888 	if (ret > 0) { /* ret = -ENOENT; */
3889 		ret = 0;
3890 		goto out;
3891 	}
3892 
3893 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3894 	if (!bctl) {
3895 		ret = -ENOMEM;
3896 		goto out;
3897 	}
3898 
3899 	leaf = path->nodes[0];
3900 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3901 
3902 	bctl->fs_info = fs_info;
3903 	bctl->flags = btrfs_balance_flags(leaf, item);
3904 	bctl->flags |= BTRFS_BALANCE_RESUME;
3905 
3906 	btrfs_balance_data(leaf, item, &disk_bargs);
3907 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3908 	btrfs_balance_meta(leaf, item, &disk_bargs);
3909 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3910 	btrfs_balance_sys(leaf, item, &disk_bargs);
3911 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3912 
3913 	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3914 
3915 	mutex_lock(&fs_info->volume_mutex);
3916 	mutex_lock(&fs_info->balance_mutex);
3917 
3918 	set_balance_control(bctl);
3919 
3920 	mutex_unlock(&fs_info->balance_mutex);
3921 	mutex_unlock(&fs_info->volume_mutex);
3922 out:
3923 	btrfs_free_path(path);
3924 	return ret;
3925 }
3926 
btrfs_pause_balance(struct btrfs_fs_info * fs_info)3927 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3928 {
3929 	int ret = 0;
3930 
3931 	mutex_lock(&fs_info->balance_mutex);
3932 	if (!fs_info->balance_ctl) {
3933 		mutex_unlock(&fs_info->balance_mutex);
3934 		return -ENOTCONN;
3935 	}
3936 
3937 	if (atomic_read(&fs_info->balance_running)) {
3938 		atomic_inc(&fs_info->balance_pause_req);
3939 		mutex_unlock(&fs_info->balance_mutex);
3940 
3941 		wait_event(fs_info->balance_wait_q,
3942 			   atomic_read(&fs_info->balance_running) == 0);
3943 
3944 		mutex_lock(&fs_info->balance_mutex);
3945 		/* we are good with balance_ctl ripped off from under us */
3946 		BUG_ON(atomic_read(&fs_info->balance_running));
3947 		atomic_dec(&fs_info->balance_pause_req);
3948 	} else {
3949 		ret = -ENOTCONN;
3950 	}
3951 
3952 	mutex_unlock(&fs_info->balance_mutex);
3953 	return ret;
3954 }
3955 
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)3956 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3957 {
3958 	if (fs_info->sb->s_flags & MS_RDONLY)
3959 		return -EROFS;
3960 
3961 	mutex_lock(&fs_info->balance_mutex);
3962 	if (!fs_info->balance_ctl) {
3963 		mutex_unlock(&fs_info->balance_mutex);
3964 		return -ENOTCONN;
3965 	}
3966 
3967 	atomic_inc(&fs_info->balance_cancel_req);
3968 	/*
3969 	 * if we are running just wait and return, balance item is
3970 	 * deleted in btrfs_balance in this case
3971 	 */
3972 	if (atomic_read(&fs_info->balance_running)) {
3973 		mutex_unlock(&fs_info->balance_mutex);
3974 		wait_event(fs_info->balance_wait_q,
3975 			   atomic_read(&fs_info->balance_running) == 0);
3976 		mutex_lock(&fs_info->balance_mutex);
3977 	} else {
3978 		/* __cancel_balance needs volume_mutex */
3979 		mutex_unlock(&fs_info->balance_mutex);
3980 		mutex_lock(&fs_info->volume_mutex);
3981 		mutex_lock(&fs_info->balance_mutex);
3982 
3983 		if (fs_info->balance_ctl)
3984 			__cancel_balance(fs_info);
3985 
3986 		mutex_unlock(&fs_info->volume_mutex);
3987 	}
3988 
3989 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3990 	atomic_dec(&fs_info->balance_cancel_req);
3991 	mutex_unlock(&fs_info->balance_mutex);
3992 	return 0;
3993 }
3994 
btrfs_uuid_scan_kthread(void * data)3995 static int btrfs_uuid_scan_kthread(void *data)
3996 {
3997 	struct btrfs_fs_info *fs_info = data;
3998 	struct btrfs_root *root = fs_info->tree_root;
3999 	struct btrfs_key key;
4000 	struct btrfs_key max_key;
4001 	struct btrfs_path *path = NULL;
4002 	int ret = 0;
4003 	struct extent_buffer *eb;
4004 	int slot;
4005 	struct btrfs_root_item root_item;
4006 	u32 item_size;
4007 	struct btrfs_trans_handle *trans = NULL;
4008 
4009 	path = btrfs_alloc_path();
4010 	if (!path) {
4011 		ret = -ENOMEM;
4012 		goto out;
4013 	}
4014 
4015 	key.objectid = 0;
4016 	key.type = BTRFS_ROOT_ITEM_KEY;
4017 	key.offset = 0;
4018 
4019 	max_key.objectid = (u64)-1;
4020 	max_key.type = BTRFS_ROOT_ITEM_KEY;
4021 	max_key.offset = (u64)-1;
4022 
4023 	while (1) {
4024 		ret = btrfs_search_forward(root, &key, path, 0);
4025 		if (ret) {
4026 			if (ret > 0)
4027 				ret = 0;
4028 			break;
4029 		}
4030 
4031 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4032 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4033 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4034 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4035 			goto skip;
4036 
4037 		eb = path->nodes[0];
4038 		slot = path->slots[0];
4039 		item_size = btrfs_item_size_nr(eb, slot);
4040 		if (item_size < sizeof(root_item))
4041 			goto skip;
4042 
4043 		read_extent_buffer(eb, &root_item,
4044 				   btrfs_item_ptr_offset(eb, slot),
4045 				   (int)sizeof(root_item));
4046 		if (btrfs_root_refs(&root_item) == 0)
4047 			goto skip;
4048 
4049 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4050 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4051 			if (trans)
4052 				goto update_tree;
4053 
4054 			btrfs_release_path(path);
4055 			/*
4056 			 * 1 - subvol uuid item
4057 			 * 1 - received_subvol uuid item
4058 			 */
4059 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4060 			if (IS_ERR(trans)) {
4061 				ret = PTR_ERR(trans);
4062 				break;
4063 			}
4064 			continue;
4065 		} else {
4066 			goto skip;
4067 		}
4068 update_tree:
4069 		btrfs_release_path(path);
4070 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4071 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4072 						  root_item.uuid,
4073 						  BTRFS_UUID_KEY_SUBVOL,
4074 						  key.objectid);
4075 			if (ret < 0) {
4076 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4077 					ret);
4078 				break;
4079 			}
4080 		}
4081 
4082 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4083 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4084 						  root_item.received_uuid,
4085 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4086 						  key.objectid);
4087 			if (ret < 0) {
4088 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4089 					ret);
4090 				break;
4091 			}
4092 		}
4093 
4094 skip:
4095 		btrfs_release_path(path);
4096 		if (trans) {
4097 			ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4098 			trans = NULL;
4099 			if (ret)
4100 				break;
4101 		}
4102 
4103 		if (key.offset < (u64)-1) {
4104 			key.offset++;
4105 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4106 			key.offset = 0;
4107 			key.type = BTRFS_ROOT_ITEM_KEY;
4108 		} else if (key.objectid < (u64)-1) {
4109 			key.offset = 0;
4110 			key.type = BTRFS_ROOT_ITEM_KEY;
4111 			key.objectid++;
4112 		} else {
4113 			break;
4114 		}
4115 		cond_resched();
4116 	}
4117 
4118 out:
4119 	btrfs_free_path(path);
4120 	if (trans && !IS_ERR(trans))
4121 		btrfs_end_transaction(trans, fs_info->uuid_root);
4122 	if (ret)
4123 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4124 	else
4125 		fs_info->update_uuid_tree_gen = 1;
4126 	up(&fs_info->uuid_tree_rescan_sem);
4127 	return 0;
4128 }
4129 
4130 /*
4131  * Callback for btrfs_uuid_tree_iterate().
4132  * returns:
4133  * 0	check succeeded, the entry is not outdated.
4134  * < 0	if an error occured.
4135  * > 0	if the check failed, which means the caller shall remove the entry.
4136  */
btrfs_check_uuid_tree_entry(struct btrfs_fs_info * fs_info,u8 * uuid,u8 type,u64 subid)4137 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4138 				       u8 *uuid, u8 type, u64 subid)
4139 {
4140 	struct btrfs_key key;
4141 	int ret = 0;
4142 	struct btrfs_root *subvol_root;
4143 
4144 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4145 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4146 		goto out;
4147 
4148 	key.objectid = subid;
4149 	key.type = BTRFS_ROOT_ITEM_KEY;
4150 	key.offset = (u64)-1;
4151 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4152 	if (IS_ERR(subvol_root)) {
4153 		ret = PTR_ERR(subvol_root);
4154 		if (ret == -ENOENT)
4155 			ret = 1;
4156 		goto out;
4157 	}
4158 
4159 	switch (type) {
4160 	case BTRFS_UUID_KEY_SUBVOL:
4161 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4162 			ret = 1;
4163 		break;
4164 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4165 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4166 			   BTRFS_UUID_SIZE))
4167 			ret = 1;
4168 		break;
4169 	}
4170 
4171 out:
4172 	return ret;
4173 }
4174 
btrfs_uuid_rescan_kthread(void * data)4175 static int btrfs_uuid_rescan_kthread(void *data)
4176 {
4177 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4178 	int ret;
4179 
4180 	/*
4181 	 * 1st step is to iterate through the existing UUID tree and
4182 	 * to delete all entries that contain outdated data.
4183 	 * 2nd step is to add all missing entries to the UUID tree.
4184 	 */
4185 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4186 	if (ret < 0) {
4187 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4188 		up(&fs_info->uuid_tree_rescan_sem);
4189 		return ret;
4190 	}
4191 	return btrfs_uuid_scan_kthread(data);
4192 }
4193 
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4194 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4195 {
4196 	struct btrfs_trans_handle *trans;
4197 	struct btrfs_root *tree_root = fs_info->tree_root;
4198 	struct btrfs_root *uuid_root;
4199 	struct task_struct *task;
4200 	int ret;
4201 
4202 	/*
4203 	 * 1 - root node
4204 	 * 1 - root item
4205 	 */
4206 	trans = btrfs_start_transaction(tree_root, 2);
4207 	if (IS_ERR(trans))
4208 		return PTR_ERR(trans);
4209 
4210 	uuid_root = btrfs_create_tree(trans, fs_info,
4211 				      BTRFS_UUID_TREE_OBJECTID);
4212 	if (IS_ERR(uuid_root)) {
4213 		ret = PTR_ERR(uuid_root);
4214 		btrfs_abort_transaction(trans, tree_root, ret);
4215 		return ret;
4216 	}
4217 
4218 	fs_info->uuid_root = uuid_root;
4219 
4220 	ret = btrfs_commit_transaction(trans, tree_root);
4221 	if (ret)
4222 		return ret;
4223 
4224 	down(&fs_info->uuid_tree_rescan_sem);
4225 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4226 	if (IS_ERR(task)) {
4227 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4228 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4229 		up(&fs_info->uuid_tree_rescan_sem);
4230 		return PTR_ERR(task);
4231 	}
4232 
4233 	return 0;
4234 }
4235 
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)4236 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4237 {
4238 	struct task_struct *task;
4239 
4240 	down(&fs_info->uuid_tree_rescan_sem);
4241 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4242 	if (IS_ERR(task)) {
4243 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4244 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4245 		up(&fs_info->uuid_tree_rescan_sem);
4246 		return PTR_ERR(task);
4247 	}
4248 
4249 	return 0;
4250 }
4251 
4252 /*
4253  * shrinking a device means finding all of the device extents past
4254  * the new size, and then following the back refs to the chunks.
4255  * The chunk relocation code actually frees the device extent
4256  */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4257 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4258 {
4259 	struct btrfs_trans_handle *trans;
4260 	struct btrfs_root *root = device->dev_root;
4261 	struct btrfs_dev_extent *dev_extent = NULL;
4262 	struct btrfs_path *path;
4263 	u64 length;
4264 	u64 chunk_offset;
4265 	int ret;
4266 	int slot;
4267 	int failed = 0;
4268 	bool retried = false;
4269 	bool checked_pending_chunks = false;
4270 	struct extent_buffer *l;
4271 	struct btrfs_key key;
4272 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4273 	u64 old_total = btrfs_super_total_bytes(super_copy);
4274 	u64 old_size = btrfs_device_get_total_bytes(device);
4275 	u64 diff = old_size - new_size;
4276 
4277 	if (device->is_tgtdev_for_dev_replace)
4278 		return -EINVAL;
4279 
4280 	path = btrfs_alloc_path();
4281 	if (!path)
4282 		return -ENOMEM;
4283 
4284 	path->reada = 2;
4285 
4286 	lock_chunks(root);
4287 
4288 	btrfs_device_set_total_bytes(device, new_size);
4289 	if (device->writeable) {
4290 		device->fs_devices->total_rw_bytes -= diff;
4291 		spin_lock(&root->fs_info->free_chunk_lock);
4292 		root->fs_info->free_chunk_space -= diff;
4293 		spin_unlock(&root->fs_info->free_chunk_lock);
4294 	}
4295 	unlock_chunks(root);
4296 
4297 again:
4298 	key.objectid = device->devid;
4299 	key.offset = (u64)-1;
4300 	key.type = BTRFS_DEV_EXTENT_KEY;
4301 
4302 	do {
4303 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4304 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4305 		if (ret < 0) {
4306 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4307 			goto done;
4308 		}
4309 
4310 		ret = btrfs_previous_item(root, path, 0, key.type);
4311 		if (ret)
4312 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4313 		if (ret < 0)
4314 			goto done;
4315 		if (ret) {
4316 			ret = 0;
4317 			btrfs_release_path(path);
4318 			break;
4319 		}
4320 
4321 		l = path->nodes[0];
4322 		slot = path->slots[0];
4323 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4324 
4325 		if (key.objectid != device->devid) {
4326 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4327 			btrfs_release_path(path);
4328 			break;
4329 		}
4330 
4331 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4332 		length = btrfs_dev_extent_length(l, dev_extent);
4333 
4334 		if (key.offset + length <= new_size) {
4335 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4336 			btrfs_release_path(path);
4337 			break;
4338 		}
4339 
4340 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4341 		btrfs_release_path(path);
4342 
4343 		ret = btrfs_relocate_chunk(root, chunk_offset);
4344 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4345 		if (ret && ret != -ENOSPC)
4346 			goto done;
4347 		if (ret == -ENOSPC)
4348 			failed++;
4349 	} while (key.offset-- > 0);
4350 
4351 	if (failed && !retried) {
4352 		failed = 0;
4353 		retried = true;
4354 		goto again;
4355 	} else if (failed && retried) {
4356 		ret = -ENOSPC;
4357 		goto done;
4358 	}
4359 
4360 	/* Shrinking succeeded, else we would be at "done". */
4361 	trans = btrfs_start_transaction(root, 0);
4362 	if (IS_ERR(trans)) {
4363 		ret = PTR_ERR(trans);
4364 		goto done;
4365 	}
4366 
4367 	lock_chunks(root);
4368 
4369 	/*
4370 	 * We checked in the above loop all device extents that were already in
4371 	 * the device tree. However before we have updated the device's
4372 	 * total_bytes to the new size, we might have had chunk allocations that
4373 	 * have not complete yet (new block groups attached to transaction
4374 	 * handles), and therefore their device extents were not yet in the
4375 	 * device tree and we missed them in the loop above. So if we have any
4376 	 * pending chunk using a device extent that overlaps the device range
4377 	 * that we can not use anymore, commit the current transaction and
4378 	 * repeat the search on the device tree - this way we guarantee we will
4379 	 * not have chunks using device extents that end beyond 'new_size'.
4380 	 */
4381 	if (!checked_pending_chunks) {
4382 		u64 start = new_size;
4383 		u64 len = old_size - new_size;
4384 
4385 		if (contains_pending_extent(trans->transaction, device,
4386 					    &start, len)) {
4387 			unlock_chunks(root);
4388 			checked_pending_chunks = true;
4389 			failed = 0;
4390 			retried = false;
4391 			ret = btrfs_commit_transaction(trans, root);
4392 			if (ret)
4393 				goto done;
4394 			goto again;
4395 		}
4396 	}
4397 
4398 	btrfs_device_set_disk_total_bytes(device, new_size);
4399 	if (list_empty(&device->resized_list))
4400 		list_add_tail(&device->resized_list,
4401 			      &root->fs_info->fs_devices->resized_devices);
4402 
4403 	WARN_ON(diff > old_total);
4404 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
4405 	unlock_chunks(root);
4406 
4407 	/* Now btrfs_update_device() will change the on-disk size. */
4408 	ret = btrfs_update_device(trans, device);
4409 	btrfs_end_transaction(trans, root);
4410 done:
4411 	btrfs_free_path(path);
4412 	if (ret) {
4413 		lock_chunks(root);
4414 		btrfs_device_set_total_bytes(device, old_size);
4415 		if (device->writeable)
4416 			device->fs_devices->total_rw_bytes += diff;
4417 		spin_lock(&root->fs_info->free_chunk_lock);
4418 		root->fs_info->free_chunk_space += diff;
4419 		spin_unlock(&root->fs_info->free_chunk_lock);
4420 		unlock_chunks(root);
4421 	}
4422 	return ret;
4423 }
4424 
btrfs_add_system_chunk(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4425 static int btrfs_add_system_chunk(struct btrfs_root *root,
4426 			   struct btrfs_key *key,
4427 			   struct btrfs_chunk *chunk, int item_size)
4428 {
4429 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4430 	struct btrfs_disk_key disk_key;
4431 	u32 array_size;
4432 	u8 *ptr;
4433 
4434 	lock_chunks(root);
4435 	array_size = btrfs_super_sys_array_size(super_copy);
4436 	if (array_size + item_size + sizeof(disk_key)
4437 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4438 		unlock_chunks(root);
4439 		return -EFBIG;
4440 	}
4441 
4442 	ptr = super_copy->sys_chunk_array + array_size;
4443 	btrfs_cpu_key_to_disk(&disk_key, key);
4444 	memcpy(ptr, &disk_key, sizeof(disk_key));
4445 	ptr += sizeof(disk_key);
4446 	memcpy(ptr, chunk, item_size);
4447 	item_size += sizeof(disk_key);
4448 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4449 	unlock_chunks(root);
4450 
4451 	return 0;
4452 }
4453 
4454 /*
4455  * sort the devices in descending order by max_avail, total_avail
4456  */
btrfs_cmp_device_info(const void * a,const void * b)4457 static int btrfs_cmp_device_info(const void *a, const void *b)
4458 {
4459 	const struct btrfs_device_info *di_a = a;
4460 	const struct btrfs_device_info *di_b = b;
4461 
4462 	if (di_a->max_avail > di_b->max_avail)
4463 		return -1;
4464 	if (di_a->max_avail < di_b->max_avail)
4465 		return 1;
4466 	if (di_a->total_avail > di_b->total_avail)
4467 		return -1;
4468 	if (di_a->total_avail < di_b->total_avail)
4469 		return 1;
4470 	return 0;
4471 }
4472 
find_raid56_stripe_len(u32 data_devices,u32 dev_stripe_target)4473 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4474 {
4475 	/* TODO allow them to set a preferred stripe size */
4476 	return 64 * 1024;
4477 }
4478 
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)4479 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4480 {
4481 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4482 		return;
4483 
4484 	btrfs_set_fs_incompat(info, RAID56);
4485 }
4486 
4487 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)		\
4488 			- sizeof(struct btrfs_item)		\
4489 			- sizeof(struct btrfs_chunk))		\
4490 			/ sizeof(struct btrfs_stripe) + 1)
4491 
4492 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4493 				- 2 * sizeof(struct btrfs_disk_key)	\
4494 				- 2 * sizeof(struct btrfs_chunk))	\
4495 				/ sizeof(struct btrfs_stripe) + 1)
4496 
__btrfs_alloc_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,u64 start,u64 type)4497 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4498 			       struct btrfs_root *extent_root, u64 start,
4499 			       u64 type)
4500 {
4501 	struct btrfs_fs_info *info = extent_root->fs_info;
4502 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4503 	struct list_head *cur;
4504 	struct map_lookup *map = NULL;
4505 	struct extent_map_tree *em_tree;
4506 	struct extent_map *em;
4507 	struct btrfs_device_info *devices_info = NULL;
4508 	u64 total_avail;
4509 	int num_stripes;	/* total number of stripes to allocate */
4510 	int data_stripes;	/* number of stripes that count for
4511 				   block group size */
4512 	int sub_stripes;	/* sub_stripes info for map */
4513 	int dev_stripes;	/* stripes per dev */
4514 	int devs_max;		/* max devs to use */
4515 	int devs_min;		/* min devs needed */
4516 	int devs_increment;	/* ndevs has to be a multiple of this */
4517 	int ncopies;		/* how many copies to data has */
4518 	int ret;
4519 	u64 max_stripe_size;
4520 	u64 max_chunk_size;
4521 	u64 stripe_size;
4522 	u64 num_bytes;
4523 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4524 	int ndevs;
4525 	int i;
4526 	int j;
4527 	int index;
4528 
4529 	BUG_ON(!alloc_profile_is_valid(type, 0));
4530 
4531 	if (list_empty(&fs_devices->alloc_list))
4532 		return -ENOSPC;
4533 
4534 	index = __get_raid_index(type);
4535 
4536 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4537 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4538 	devs_max = btrfs_raid_array[index].devs_max;
4539 	devs_min = btrfs_raid_array[index].devs_min;
4540 	devs_increment = btrfs_raid_array[index].devs_increment;
4541 	ncopies = btrfs_raid_array[index].ncopies;
4542 
4543 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4544 		max_stripe_size = 1024 * 1024 * 1024;
4545 		max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4546 		if (!devs_max)
4547 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4548 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4549 		/* for larger filesystems, use larger metadata chunks */
4550 		if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4551 			max_stripe_size = 1024 * 1024 * 1024;
4552 		else
4553 			max_stripe_size = 256 * 1024 * 1024;
4554 		max_chunk_size = max_stripe_size;
4555 		if (!devs_max)
4556 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4557 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4558 		max_stripe_size = 32 * 1024 * 1024;
4559 		max_chunk_size = 2 * max_stripe_size;
4560 		if (!devs_max)
4561 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4562 	} else {
4563 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4564 		       type);
4565 		BUG_ON(1);
4566 	}
4567 
4568 	/* we don't want a chunk larger than 10% of writeable space */
4569 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4570 			     max_chunk_size);
4571 
4572 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4573 			       GFP_NOFS);
4574 	if (!devices_info)
4575 		return -ENOMEM;
4576 
4577 	cur = fs_devices->alloc_list.next;
4578 
4579 	/*
4580 	 * in the first pass through the devices list, we gather information
4581 	 * about the available holes on each device.
4582 	 */
4583 	ndevs = 0;
4584 	while (cur != &fs_devices->alloc_list) {
4585 		struct btrfs_device *device;
4586 		u64 max_avail;
4587 		u64 dev_offset;
4588 
4589 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4590 
4591 		cur = cur->next;
4592 
4593 		if (!device->writeable) {
4594 			WARN(1, KERN_ERR
4595 			       "BTRFS: read-only device in alloc_list\n");
4596 			continue;
4597 		}
4598 
4599 		if (!device->in_fs_metadata ||
4600 		    device->is_tgtdev_for_dev_replace)
4601 			continue;
4602 
4603 		if (device->total_bytes > device->bytes_used)
4604 			total_avail = device->total_bytes - device->bytes_used;
4605 		else
4606 			total_avail = 0;
4607 
4608 		/* If there is no space on this device, skip it. */
4609 		if (total_avail == 0)
4610 			continue;
4611 
4612 		ret = find_free_dev_extent(trans, device,
4613 					   max_stripe_size * dev_stripes,
4614 					   &dev_offset, &max_avail);
4615 		if (ret && ret != -ENOSPC)
4616 			goto error;
4617 
4618 		if (ret == 0)
4619 			max_avail = max_stripe_size * dev_stripes;
4620 
4621 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4622 			continue;
4623 
4624 		if (ndevs == fs_devices->rw_devices) {
4625 			WARN(1, "%s: found more than %llu devices\n",
4626 			     __func__, fs_devices->rw_devices);
4627 			break;
4628 		}
4629 		devices_info[ndevs].dev_offset = dev_offset;
4630 		devices_info[ndevs].max_avail = max_avail;
4631 		devices_info[ndevs].total_avail = total_avail;
4632 		devices_info[ndevs].dev = device;
4633 		++ndevs;
4634 	}
4635 
4636 	/*
4637 	 * now sort the devices by hole size / available space
4638 	 */
4639 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4640 	     btrfs_cmp_device_info, NULL);
4641 
4642 	/* round down to number of usable stripes */
4643 	ndevs -= ndevs % devs_increment;
4644 
4645 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4646 		ret = -ENOSPC;
4647 		goto error;
4648 	}
4649 
4650 	if (devs_max && ndevs > devs_max)
4651 		ndevs = devs_max;
4652 	/*
4653 	 * The primary goal is to maximize the number of stripes, so use as
4654 	 * many devices as possible, even if the stripes are not maximum sized.
4655 	 *
4656 	 * The DUP profile stores more than one stripe per device, the
4657 	 * max_avail is the total size so we have to adjust.
4658 	 */
4659 	stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4660 	num_stripes = ndevs * dev_stripes;
4661 
4662 	/*
4663 	 * this will have to be fixed for RAID1 and RAID10 over
4664 	 * more drives
4665 	 */
4666 	data_stripes = num_stripes / ncopies;
4667 
4668 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4669 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4670 				 btrfs_super_stripesize(info->super_copy));
4671 		data_stripes = num_stripes - 1;
4672 	}
4673 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4674 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4675 				 btrfs_super_stripesize(info->super_copy));
4676 		data_stripes = num_stripes - 2;
4677 	}
4678 
4679 	/*
4680 	 * Use the number of data stripes to figure out how big this chunk
4681 	 * is really going to be in terms of logical address space,
4682 	 * and compare that answer with the max chunk size
4683 	 */
4684 	if (stripe_size * data_stripes > max_chunk_size) {
4685 		u64 mask = (1ULL << 24) - 1;
4686 
4687 		stripe_size = div_u64(max_chunk_size, data_stripes);
4688 
4689 		/* bump the answer up to a 16MB boundary */
4690 		stripe_size = (stripe_size + mask) & ~mask;
4691 
4692 		/* but don't go higher than the limits we found
4693 		 * while searching for free extents
4694 		 */
4695 		if (stripe_size > devices_info[ndevs-1].max_avail)
4696 			stripe_size = devices_info[ndevs-1].max_avail;
4697 	}
4698 
4699 	/* align to BTRFS_STRIPE_LEN */
4700 	stripe_size = div_u64(stripe_size, raid_stripe_len);
4701 	stripe_size *= raid_stripe_len;
4702 
4703 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4704 	if (!map) {
4705 		ret = -ENOMEM;
4706 		goto error;
4707 	}
4708 	map->num_stripes = num_stripes;
4709 
4710 	for (i = 0; i < ndevs; ++i) {
4711 		for (j = 0; j < dev_stripes; ++j) {
4712 			int s = i * dev_stripes + j;
4713 			map->stripes[s].dev = devices_info[i].dev;
4714 			map->stripes[s].physical = devices_info[i].dev_offset +
4715 						   j * stripe_size;
4716 		}
4717 	}
4718 	map->sector_size = extent_root->sectorsize;
4719 	map->stripe_len = raid_stripe_len;
4720 	map->io_align = raid_stripe_len;
4721 	map->io_width = raid_stripe_len;
4722 	map->type = type;
4723 	map->sub_stripes = sub_stripes;
4724 
4725 	num_bytes = stripe_size * data_stripes;
4726 
4727 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4728 
4729 	em = alloc_extent_map();
4730 	if (!em) {
4731 		kfree(map);
4732 		ret = -ENOMEM;
4733 		goto error;
4734 	}
4735 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4736 	em->map_lookup = map;
4737 	em->start = start;
4738 	em->len = num_bytes;
4739 	em->block_start = 0;
4740 	em->block_len = em->len;
4741 	em->orig_block_len = stripe_size;
4742 
4743 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4744 	write_lock(&em_tree->lock);
4745 	ret = add_extent_mapping(em_tree, em, 0);
4746 	if (!ret) {
4747 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4748 		atomic_inc(&em->refs);
4749 	}
4750 	write_unlock(&em_tree->lock);
4751 	if (ret) {
4752 		free_extent_map(em);
4753 		goto error;
4754 	}
4755 
4756 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
4757 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4758 				     start, num_bytes);
4759 	if (ret)
4760 		goto error_del_extent;
4761 
4762 	for (i = 0; i < map->num_stripes; i++) {
4763 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4764 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4765 		map->stripes[i].dev->has_pending_chunks = true;
4766 	}
4767 
4768 	spin_lock(&extent_root->fs_info->free_chunk_lock);
4769 	extent_root->fs_info->free_chunk_space -= (stripe_size *
4770 						   map->num_stripes);
4771 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
4772 
4773 	free_extent_map(em);
4774 	check_raid56_incompat_flag(extent_root->fs_info, type);
4775 
4776 	kfree(devices_info);
4777 	return 0;
4778 
4779 error_del_extent:
4780 	write_lock(&em_tree->lock);
4781 	remove_extent_mapping(em_tree, em);
4782 	write_unlock(&em_tree->lock);
4783 
4784 	/* One for our allocation */
4785 	free_extent_map(em);
4786 	/* One for the tree reference */
4787 	free_extent_map(em);
4788 	/* One for the pending_chunks list reference */
4789 	free_extent_map(em);
4790 error:
4791 	kfree(devices_info);
4792 	return ret;
4793 }
4794 
btrfs_finish_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,u64 chunk_offset,u64 chunk_size)4795 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4796 				struct btrfs_root *extent_root,
4797 				u64 chunk_offset, u64 chunk_size)
4798 {
4799 	struct btrfs_key key;
4800 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4801 	struct btrfs_device *device;
4802 	struct btrfs_chunk *chunk;
4803 	struct btrfs_stripe *stripe;
4804 	struct extent_map_tree *em_tree;
4805 	struct extent_map *em;
4806 	struct map_lookup *map;
4807 	size_t item_size;
4808 	u64 dev_offset;
4809 	u64 stripe_size;
4810 	int i = 0;
4811 	int ret;
4812 
4813 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4814 	read_lock(&em_tree->lock);
4815 	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4816 	read_unlock(&em_tree->lock);
4817 
4818 	if (!em) {
4819 		btrfs_crit(extent_root->fs_info, "unable to find logical "
4820 			   "%Lu len %Lu", chunk_offset, chunk_size);
4821 		return -EINVAL;
4822 	}
4823 
4824 	if (em->start != chunk_offset || em->len != chunk_size) {
4825 		btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4826 			  " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4827 			  chunk_size, em->start, em->len);
4828 		free_extent_map(em);
4829 		return -EINVAL;
4830 	}
4831 
4832 	map = em->map_lookup;
4833 	item_size = btrfs_chunk_item_size(map->num_stripes);
4834 	stripe_size = em->orig_block_len;
4835 
4836 	chunk = kzalloc(item_size, GFP_NOFS);
4837 	if (!chunk) {
4838 		ret = -ENOMEM;
4839 		goto out;
4840 	}
4841 
4842 	for (i = 0; i < map->num_stripes; i++) {
4843 		device = map->stripes[i].dev;
4844 		dev_offset = map->stripes[i].physical;
4845 
4846 		ret = btrfs_update_device(trans, device);
4847 		if (ret)
4848 			goto out;
4849 		ret = btrfs_alloc_dev_extent(trans, device,
4850 					     chunk_root->root_key.objectid,
4851 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4852 					     chunk_offset, dev_offset,
4853 					     stripe_size);
4854 		if (ret)
4855 			goto out;
4856 	}
4857 
4858 	stripe = &chunk->stripe;
4859 	for (i = 0; i < map->num_stripes; i++) {
4860 		device = map->stripes[i].dev;
4861 		dev_offset = map->stripes[i].physical;
4862 
4863 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4864 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4865 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4866 		stripe++;
4867 	}
4868 
4869 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4870 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4871 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4872 	btrfs_set_stack_chunk_type(chunk, map->type);
4873 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4874 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4875 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4876 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4877 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4878 
4879 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4880 	key.type = BTRFS_CHUNK_ITEM_KEY;
4881 	key.offset = chunk_offset;
4882 
4883 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4884 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4885 		/*
4886 		 * TODO: Cleanup of inserted chunk root in case of
4887 		 * failure.
4888 		 */
4889 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4890 					     item_size);
4891 	}
4892 
4893 out:
4894 	kfree(chunk);
4895 	free_extent_map(em);
4896 	return ret;
4897 }
4898 
4899 /*
4900  * Chunk allocation falls into two parts. The first part does works
4901  * that make the new allocated chunk useable, but not do any operation
4902  * that modifies the chunk tree. The second part does the works that
4903  * require modifying the chunk tree. This division is important for the
4904  * bootstrap process of adding storage to a seed btrfs.
4905  */
btrfs_alloc_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,u64 type)4906 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4907 		      struct btrfs_root *extent_root, u64 type)
4908 {
4909 	u64 chunk_offset;
4910 
4911 	ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4912 	chunk_offset = find_next_chunk(extent_root->fs_info);
4913 	return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4914 }
4915 
init_first_rw_device(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_device * device)4916 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4917 					 struct btrfs_root *root,
4918 					 struct btrfs_device *device)
4919 {
4920 	u64 chunk_offset;
4921 	u64 sys_chunk_offset;
4922 	u64 alloc_profile;
4923 	struct btrfs_fs_info *fs_info = root->fs_info;
4924 	struct btrfs_root *extent_root = fs_info->extent_root;
4925 	int ret;
4926 
4927 	chunk_offset = find_next_chunk(fs_info);
4928 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4929 	ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4930 				  alloc_profile);
4931 	if (ret)
4932 		return ret;
4933 
4934 	sys_chunk_offset = find_next_chunk(root->fs_info);
4935 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4936 	ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4937 				  alloc_profile);
4938 	return ret;
4939 }
4940 
btrfs_chunk_max_errors(struct map_lookup * map)4941 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4942 {
4943 	int max_errors;
4944 
4945 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4946 			 BTRFS_BLOCK_GROUP_RAID10 |
4947 			 BTRFS_BLOCK_GROUP_RAID5)) {
4948 		max_errors = 1;
4949 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4950 		max_errors = 2;
4951 	} else {
4952 		max_errors = 0;
4953 	}
4954 
4955 	return max_errors;
4956 }
4957 
btrfs_chunk_readonly(struct btrfs_root * root,u64 chunk_offset)4958 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4959 {
4960 	struct extent_map *em;
4961 	struct map_lookup *map;
4962 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4963 	int readonly = 0;
4964 	int miss_ndevs = 0;
4965 	int i;
4966 
4967 	read_lock(&map_tree->map_tree.lock);
4968 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4969 	read_unlock(&map_tree->map_tree.lock);
4970 	if (!em)
4971 		return 1;
4972 
4973 	map = em->map_lookup;
4974 	for (i = 0; i < map->num_stripes; i++) {
4975 		if (map->stripes[i].dev->missing) {
4976 			miss_ndevs++;
4977 			continue;
4978 		}
4979 
4980 		if (!map->stripes[i].dev->writeable) {
4981 			readonly = 1;
4982 			goto end;
4983 		}
4984 	}
4985 
4986 	/*
4987 	 * If the number of missing devices is larger than max errors,
4988 	 * we can not write the data into that chunk successfully, so
4989 	 * set it readonly.
4990 	 */
4991 	if (miss_ndevs > btrfs_chunk_max_errors(map))
4992 		readonly = 1;
4993 end:
4994 	free_extent_map(em);
4995 	return readonly;
4996 }
4997 
btrfs_mapping_init(struct btrfs_mapping_tree * tree)4998 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4999 {
5000 	extent_map_tree_init(&tree->map_tree);
5001 }
5002 
btrfs_mapping_tree_free(struct btrfs_mapping_tree * tree)5003 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5004 {
5005 	struct extent_map *em;
5006 
5007 	while (1) {
5008 		write_lock(&tree->map_tree.lock);
5009 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5010 		if (em)
5011 			remove_extent_mapping(&tree->map_tree, em);
5012 		write_unlock(&tree->map_tree.lock);
5013 		if (!em)
5014 			break;
5015 		/* once for us */
5016 		free_extent_map(em);
5017 		/* once for the tree */
5018 		free_extent_map(em);
5019 	}
5020 }
5021 
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5022 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5023 {
5024 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5025 	struct extent_map *em;
5026 	struct map_lookup *map;
5027 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5028 	int ret;
5029 
5030 	read_lock(&em_tree->lock);
5031 	em = lookup_extent_mapping(em_tree, logical, len);
5032 	read_unlock(&em_tree->lock);
5033 
5034 	/*
5035 	 * We could return errors for these cases, but that could get ugly and
5036 	 * we'd probably do the same thing which is just not do anything else
5037 	 * and exit, so return 1 so the callers don't try to use other copies.
5038 	 */
5039 	if (!em) {
5040 		btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5041 			    logical+len);
5042 		return 1;
5043 	}
5044 
5045 	if (em->start > logical || em->start + em->len < logical) {
5046 		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
5047 			    "%Lu-%Lu", logical, logical+len, em->start,
5048 			    em->start + em->len);
5049 		free_extent_map(em);
5050 		return 1;
5051 	}
5052 
5053 	map = em->map_lookup;
5054 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5055 		ret = map->num_stripes;
5056 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5057 		ret = map->sub_stripes;
5058 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5059 		ret = 2;
5060 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5061 		/*
5062 		 * There could be two corrupted data stripes, we need
5063 		 * to loop retry in order to rebuild the correct data.
5064 		 *
5065 		 * Fail a stripe at a time on every retry except the
5066 		 * stripe under reconstruction.
5067 		 */
5068 		ret = map->num_stripes;
5069 	else
5070 		ret = 1;
5071 	free_extent_map(em);
5072 
5073 	btrfs_dev_replace_lock(&fs_info->dev_replace);
5074 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5075 		ret++;
5076 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
5077 
5078 	return ret;
5079 }
5080 
btrfs_full_stripe_len(struct btrfs_root * root,struct btrfs_mapping_tree * map_tree,u64 logical)5081 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5082 				    struct btrfs_mapping_tree *map_tree,
5083 				    u64 logical)
5084 {
5085 	struct extent_map *em;
5086 	struct map_lookup *map;
5087 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5088 	unsigned long len = root->sectorsize;
5089 
5090 	read_lock(&em_tree->lock);
5091 	em = lookup_extent_mapping(em_tree, logical, len);
5092 	read_unlock(&em_tree->lock);
5093 	BUG_ON(!em);
5094 
5095 	BUG_ON(em->start > logical || em->start + em->len < logical);
5096 	map = em->map_lookup;
5097 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5098 		len = map->stripe_len * nr_data_stripes(map);
5099 	free_extent_map(em);
5100 	return len;
5101 }
5102 
btrfs_is_parity_mirror(struct btrfs_mapping_tree * map_tree,u64 logical,u64 len,int mirror_num)5103 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5104 			   u64 logical, u64 len, int mirror_num)
5105 {
5106 	struct extent_map *em;
5107 	struct map_lookup *map;
5108 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5109 	int ret = 0;
5110 
5111 	read_lock(&em_tree->lock);
5112 	em = lookup_extent_mapping(em_tree, logical, len);
5113 	read_unlock(&em_tree->lock);
5114 	BUG_ON(!em);
5115 
5116 	BUG_ON(em->start > logical || em->start + em->len < logical);
5117 	map = em->map_lookup;
5118 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5119 		ret = 1;
5120 	free_extent_map(em);
5121 	return ret;
5122 }
5123 
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int num,int optimal,int dev_replace_is_ongoing)5124 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5125 			    struct map_lookup *map, int first, int num,
5126 			    int optimal, int dev_replace_is_ongoing)
5127 {
5128 	int i;
5129 	int tolerance;
5130 	struct btrfs_device *srcdev;
5131 
5132 	if (dev_replace_is_ongoing &&
5133 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5134 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5135 		srcdev = fs_info->dev_replace.srcdev;
5136 	else
5137 		srcdev = NULL;
5138 
5139 	/*
5140 	 * try to avoid the drive that is the source drive for a
5141 	 * dev-replace procedure, only choose it if no other non-missing
5142 	 * mirror is available
5143 	 */
5144 	for (tolerance = 0; tolerance < 2; tolerance++) {
5145 		if (map->stripes[optimal].dev->bdev &&
5146 		    (tolerance || map->stripes[optimal].dev != srcdev))
5147 			return optimal;
5148 		for (i = first; i < first + num; i++) {
5149 			if (map->stripes[i].dev->bdev &&
5150 			    (tolerance || map->stripes[i].dev != srcdev))
5151 				return i;
5152 		}
5153 	}
5154 
5155 	/* we couldn't find one that doesn't fail.  Just return something
5156 	 * and the io error handling code will clean up eventually
5157 	 */
5158 	return optimal;
5159 }
5160 
parity_smaller(u64 a,u64 b)5161 static inline int parity_smaller(u64 a, u64 b)
5162 {
5163 	return a > b;
5164 }
5165 
5166 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
sort_parity_stripes(struct btrfs_bio * bbio,int num_stripes)5167 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5168 {
5169 	struct btrfs_bio_stripe s;
5170 	int i;
5171 	u64 l;
5172 	int again = 1;
5173 
5174 	while (again) {
5175 		again = 0;
5176 		for (i = 0; i < num_stripes - 1; i++) {
5177 			if (parity_smaller(bbio->raid_map[i],
5178 					   bbio->raid_map[i+1])) {
5179 				s = bbio->stripes[i];
5180 				l = bbio->raid_map[i];
5181 				bbio->stripes[i] = bbio->stripes[i+1];
5182 				bbio->raid_map[i] = bbio->raid_map[i+1];
5183 				bbio->stripes[i+1] = s;
5184 				bbio->raid_map[i+1] = l;
5185 
5186 				again = 1;
5187 			}
5188 		}
5189 	}
5190 }
5191 
alloc_btrfs_bio(int total_stripes,int real_stripes)5192 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5193 {
5194 	struct btrfs_bio *bbio = kzalloc(
5195 		 /* the size of the btrfs_bio */
5196 		sizeof(struct btrfs_bio) +
5197 		/* plus the variable array for the stripes */
5198 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5199 		/* plus the variable array for the tgt dev */
5200 		sizeof(int) * (real_stripes) +
5201 		/*
5202 		 * plus the raid_map, which includes both the tgt dev
5203 		 * and the stripes
5204 		 */
5205 		sizeof(u64) * (total_stripes),
5206 		GFP_NOFS|__GFP_NOFAIL);
5207 
5208 	atomic_set(&bbio->error, 0);
5209 	atomic_set(&bbio->refs, 1);
5210 
5211 	return bbio;
5212 }
5213 
btrfs_get_bbio(struct btrfs_bio * bbio)5214 void btrfs_get_bbio(struct btrfs_bio *bbio)
5215 {
5216 	WARN_ON(!atomic_read(&bbio->refs));
5217 	atomic_inc(&bbio->refs);
5218 }
5219 
btrfs_put_bbio(struct btrfs_bio * bbio)5220 void btrfs_put_bbio(struct btrfs_bio *bbio)
5221 {
5222 	if (!bbio)
5223 		return;
5224 	if (atomic_dec_and_test(&bbio->refs))
5225 		kfree(bbio);
5226 }
5227 
__btrfs_map_block(struct btrfs_fs_info * fs_info,int rw,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)5228 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5229 			     u64 logical, u64 *length,
5230 			     struct btrfs_bio **bbio_ret,
5231 			     int mirror_num, int need_raid_map)
5232 {
5233 	struct extent_map *em;
5234 	struct map_lookup *map;
5235 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5236 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5237 	u64 offset;
5238 	u64 stripe_offset;
5239 	u64 stripe_end_offset;
5240 	u64 stripe_nr;
5241 	u64 stripe_nr_orig;
5242 	u64 stripe_nr_end;
5243 	u64 stripe_len;
5244 	u32 stripe_index;
5245 	int i;
5246 	int ret = 0;
5247 	int num_stripes;
5248 	int max_errors = 0;
5249 	int tgtdev_indexes = 0;
5250 	struct btrfs_bio *bbio = NULL;
5251 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5252 	int dev_replace_is_ongoing = 0;
5253 	int num_alloc_stripes;
5254 	int patch_the_first_stripe_for_dev_replace = 0;
5255 	u64 physical_to_patch_in_first_stripe = 0;
5256 	u64 raid56_full_stripe_start = (u64)-1;
5257 
5258 	read_lock(&em_tree->lock);
5259 	em = lookup_extent_mapping(em_tree, logical, *length);
5260 	read_unlock(&em_tree->lock);
5261 
5262 	if (!em) {
5263 		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5264 			logical, *length);
5265 		return -EINVAL;
5266 	}
5267 
5268 	if (em->start > logical || em->start + em->len < logical) {
5269 		btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5270 			   "found %Lu-%Lu", logical, em->start,
5271 			   em->start + em->len);
5272 		free_extent_map(em);
5273 		return -EINVAL;
5274 	}
5275 
5276 	map = em->map_lookup;
5277 	offset = logical - em->start;
5278 
5279 	stripe_len = map->stripe_len;
5280 	stripe_nr = offset;
5281 	/*
5282 	 * stripe_nr counts the total number of stripes we have to stride
5283 	 * to get to this block
5284 	 */
5285 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5286 
5287 	stripe_offset = stripe_nr * stripe_len;
5288 	BUG_ON(offset < stripe_offset);
5289 
5290 	/* stripe_offset is the offset of this block in its stripe*/
5291 	stripe_offset = offset - stripe_offset;
5292 
5293 	/* if we're here for raid56, we need to know the stripe aligned start */
5294 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5295 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5296 		raid56_full_stripe_start = offset;
5297 
5298 		/* allow a write of a full stripe, but make sure we don't
5299 		 * allow straddling of stripes
5300 		 */
5301 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5302 				full_stripe_len);
5303 		raid56_full_stripe_start *= full_stripe_len;
5304 	}
5305 
5306 	if (rw & REQ_DISCARD) {
5307 		/* we don't discard raid56 yet */
5308 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5309 			ret = -EOPNOTSUPP;
5310 			goto out;
5311 		}
5312 		*length = min_t(u64, em->len - offset, *length);
5313 	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5314 		u64 max_len;
5315 		/* For writes to RAID[56], allow a full stripeset across all disks.
5316 		   For other RAID types and for RAID[56] reads, just allow a single
5317 		   stripe (on a single disk). */
5318 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5319 		    (rw & REQ_WRITE)) {
5320 			max_len = stripe_len * nr_data_stripes(map) -
5321 				(offset - raid56_full_stripe_start);
5322 		} else {
5323 			/* we limit the length of each bio to what fits in a stripe */
5324 			max_len = stripe_len - stripe_offset;
5325 		}
5326 		*length = min_t(u64, em->len - offset, max_len);
5327 	} else {
5328 		*length = em->len - offset;
5329 	}
5330 
5331 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5332 	   it cares about is the length */
5333 	if (!bbio_ret)
5334 		goto out;
5335 
5336 	btrfs_dev_replace_lock(dev_replace);
5337 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5338 	if (!dev_replace_is_ongoing)
5339 		btrfs_dev_replace_unlock(dev_replace);
5340 
5341 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5342 	    !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5343 	    dev_replace->tgtdev != NULL) {
5344 		/*
5345 		 * in dev-replace case, for repair case (that's the only
5346 		 * case where the mirror is selected explicitly when
5347 		 * calling btrfs_map_block), blocks left of the left cursor
5348 		 * can also be read from the target drive.
5349 		 * For REQ_GET_READ_MIRRORS, the target drive is added as
5350 		 * the last one to the array of stripes. For READ, it also
5351 		 * needs to be supported using the same mirror number.
5352 		 * If the requested block is not left of the left cursor,
5353 		 * EIO is returned. This can happen because btrfs_num_copies()
5354 		 * returns one more in the dev-replace case.
5355 		 */
5356 		u64 tmp_length = *length;
5357 		struct btrfs_bio *tmp_bbio = NULL;
5358 		int tmp_num_stripes;
5359 		u64 srcdev_devid = dev_replace->srcdev->devid;
5360 		int index_srcdev = 0;
5361 		int found = 0;
5362 		u64 physical_of_found = 0;
5363 
5364 		ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5365 			     logical, &tmp_length, &tmp_bbio, 0, 0);
5366 		if (ret) {
5367 			WARN_ON(tmp_bbio != NULL);
5368 			goto out;
5369 		}
5370 
5371 		tmp_num_stripes = tmp_bbio->num_stripes;
5372 		if (mirror_num > tmp_num_stripes) {
5373 			/*
5374 			 * REQ_GET_READ_MIRRORS does not contain this
5375 			 * mirror, that means that the requested area
5376 			 * is not left of the left cursor
5377 			 */
5378 			ret = -EIO;
5379 			btrfs_put_bbio(tmp_bbio);
5380 			goto out;
5381 		}
5382 
5383 		/*
5384 		 * process the rest of the function using the mirror_num
5385 		 * of the source drive. Therefore look it up first.
5386 		 * At the end, patch the device pointer to the one of the
5387 		 * target drive.
5388 		 */
5389 		for (i = 0; i < tmp_num_stripes; i++) {
5390 			if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5391 				/*
5392 				 * In case of DUP, in order to keep it
5393 				 * simple, only add the mirror with the
5394 				 * lowest physical address
5395 				 */
5396 				if (found &&
5397 				    physical_of_found <=
5398 				     tmp_bbio->stripes[i].physical)
5399 					continue;
5400 				index_srcdev = i;
5401 				found = 1;
5402 				physical_of_found =
5403 					tmp_bbio->stripes[i].physical;
5404 			}
5405 		}
5406 
5407 		if (found) {
5408 			mirror_num = index_srcdev + 1;
5409 			patch_the_first_stripe_for_dev_replace = 1;
5410 			physical_to_patch_in_first_stripe = physical_of_found;
5411 		} else {
5412 			WARN_ON(1);
5413 			ret = -EIO;
5414 			btrfs_put_bbio(tmp_bbio);
5415 			goto out;
5416 		}
5417 
5418 		btrfs_put_bbio(tmp_bbio);
5419 	} else if (mirror_num > map->num_stripes) {
5420 		mirror_num = 0;
5421 	}
5422 
5423 	num_stripes = 1;
5424 	stripe_index = 0;
5425 	stripe_nr_orig = stripe_nr;
5426 	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5427 	stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5428 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5429 			    (offset + *length);
5430 
5431 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5432 		if (rw & REQ_DISCARD)
5433 			num_stripes = min_t(u64, map->num_stripes,
5434 					    stripe_nr_end - stripe_nr_orig);
5435 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5436 				&stripe_index);
5437 		if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5438 			mirror_num = 1;
5439 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5440 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5441 			num_stripes = map->num_stripes;
5442 		else if (mirror_num)
5443 			stripe_index = mirror_num - 1;
5444 		else {
5445 			stripe_index = find_live_mirror(fs_info, map, 0,
5446 					    map->num_stripes,
5447 					    current->pid % map->num_stripes,
5448 					    dev_replace_is_ongoing);
5449 			mirror_num = stripe_index + 1;
5450 		}
5451 
5452 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5453 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5454 			num_stripes = map->num_stripes;
5455 		} else if (mirror_num) {
5456 			stripe_index = mirror_num - 1;
5457 		} else {
5458 			mirror_num = 1;
5459 		}
5460 
5461 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5462 		u32 factor = map->num_stripes / map->sub_stripes;
5463 
5464 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5465 		stripe_index *= map->sub_stripes;
5466 
5467 		if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5468 			num_stripes = map->sub_stripes;
5469 		else if (rw & REQ_DISCARD)
5470 			num_stripes = min_t(u64, map->sub_stripes *
5471 					    (stripe_nr_end - stripe_nr_orig),
5472 					    map->num_stripes);
5473 		else if (mirror_num)
5474 			stripe_index += mirror_num - 1;
5475 		else {
5476 			int old_stripe_index = stripe_index;
5477 			stripe_index = find_live_mirror(fs_info, map,
5478 					      stripe_index,
5479 					      map->sub_stripes, stripe_index +
5480 					      current->pid % map->sub_stripes,
5481 					      dev_replace_is_ongoing);
5482 			mirror_num = stripe_index - old_stripe_index + 1;
5483 		}
5484 
5485 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5486 		if (need_raid_map &&
5487 		    ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5488 		     mirror_num > 1)) {
5489 			/* push stripe_nr back to the start of the full stripe */
5490 			stripe_nr = div_u64(raid56_full_stripe_start,
5491 					stripe_len * nr_data_stripes(map));
5492 
5493 			/* RAID[56] write or recovery. Return all stripes */
5494 			num_stripes = map->num_stripes;
5495 			max_errors = nr_parity_stripes(map);
5496 
5497 			*length = map->stripe_len;
5498 			stripe_index = 0;
5499 			stripe_offset = 0;
5500 		} else {
5501 			/*
5502 			 * Mirror #0 or #1 means the original data block.
5503 			 * Mirror #2 is RAID5 parity block.
5504 			 * Mirror #3 is RAID6 Q block.
5505 			 */
5506 			stripe_nr = div_u64_rem(stripe_nr,
5507 					nr_data_stripes(map), &stripe_index);
5508 			if (mirror_num > 1)
5509 				stripe_index = nr_data_stripes(map) +
5510 						mirror_num - 2;
5511 
5512 			/* We distribute the parity blocks across stripes */
5513 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5514 					&stripe_index);
5515 			if (!(rw & (REQ_WRITE | REQ_DISCARD |
5516 				    REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5517 				mirror_num = 1;
5518 		}
5519 	} else {
5520 		/*
5521 		 * after this, stripe_nr is the number of stripes on this
5522 		 * device we have to walk to find the data, and stripe_index is
5523 		 * the number of our device in the stripe array
5524 		 */
5525 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5526 				&stripe_index);
5527 		mirror_num = stripe_index + 1;
5528 	}
5529 	BUG_ON(stripe_index >= map->num_stripes);
5530 
5531 	num_alloc_stripes = num_stripes;
5532 	if (dev_replace_is_ongoing) {
5533 		if (rw & (REQ_WRITE | REQ_DISCARD))
5534 			num_alloc_stripes <<= 1;
5535 		if (rw & REQ_GET_READ_MIRRORS)
5536 			num_alloc_stripes++;
5537 		tgtdev_indexes = num_stripes;
5538 	}
5539 
5540 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5541 	if (!bbio) {
5542 		ret = -ENOMEM;
5543 		goto out;
5544 	}
5545 	if (dev_replace_is_ongoing)
5546 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5547 
5548 	/* build raid_map */
5549 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5550 	    need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5551 	    mirror_num > 1)) {
5552 		u64 tmp;
5553 		unsigned rot;
5554 
5555 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5556 				 sizeof(struct btrfs_bio_stripe) *
5557 				 num_alloc_stripes +
5558 				 sizeof(int) * tgtdev_indexes);
5559 
5560 		/* Work out the disk rotation on this stripe-set */
5561 		div_u64_rem(stripe_nr, num_stripes, &rot);
5562 
5563 		/* Fill in the logical address of each stripe */
5564 		tmp = stripe_nr * nr_data_stripes(map);
5565 		for (i = 0; i < nr_data_stripes(map); i++)
5566 			bbio->raid_map[(i+rot) % num_stripes] =
5567 				em->start + (tmp + i) * map->stripe_len;
5568 
5569 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5570 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5571 			bbio->raid_map[(i+rot+1) % num_stripes] =
5572 				RAID6_Q_STRIPE;
5573 	}
5574 
5575 	if (rw & REQ_DISCARD) {
5576 		u32 factor = 0;
5577 		u32 sub_stripes = 0;
5578 		u64 stripes_per_dev = 0;
5579 		u32 remaining_stripes = 0;
5580 		u32 last_stripe = 0;
5581 
5582 		if (map->type &
5583 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5584 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5585 				sub_stripes = 1;
5586 			else
5587 				sub_stripes = map->sub_stripes;
5588 
5589 			factor = map->num_stripes / sub_stripes;
5590 			stripes_per_dev = div_u64_rem(stripe_nr_end -
5591 						      stripe_nr_orig,
5592 						      factor,
5593 						      &remaining_stripes);
5594 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5595 			last_stripe *= sub_stripes;
5596 		}
5597 
5598 		for (i = 0; i < num_stripes; i++) {
5599 			bbio->stripes[i].physical =
5600 				map->stripes[stripe_index].physical +
5601 				stripe_offset + stripe_nr * map->stripe_len;
5602 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5603 
5604 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5605 					 BTRFS_BLOCK_GROUP_RAID10)) {
5606 				bbio->stripes[i].length = stripes_per_dev *
5607 							  map->stripe_len;
5608 
5609 				if (i / sub_stripes < remaining_stripes)
5610 					bbio->stripes[i].length +=
5611 						map->stripe_len;
5612 
5613 				/*
5614 				 * Special for the first stripe and
5615 				 * the last stripe:
5616 				 *
5617 				 * |-------|...|-------|
5618 				 *     |----------|
5619 				 *    off     end_off
5620 				 */
5621 				if (i < sub_stripes)
5622 					bbio->stripes[i].length -=
5623 						stripe_offset;
5624 
5625 				if (stripe_index >= last_stripe &&
5626 				    stripe_index <= (last_stripe +
5627 						     sub_stripes - 1))
5628 					bbio->stripes[i].length -=
5629 						stripe_end_offset;
5630 
5631 				if (i == sub_stripes - 1)
5632 					stripe_offset = 0;
5633 			} else
5634 				bbio->stripes[i].length = *length;
5635 
5636 			stripe_index++;
5637 			if (stripe_index == map->num_stripes) {
5638 				/* This could only happen for RAID0/10 */
5639 				stripe_index = 0;
5640 				stripe_nr++;
5641 			}
5642 		}
5643 	} else {
5644 		for (i = 0; i < num_stripes; i++) {
5645 			bbio->stripes[i].physical =
5646 				map->stripes[stripe_index].physical +
5647 				stripe_offset +
5648 				stripe_nr * map->stripe_len;
5649 			bbio->stripes[i].dev =
5650 				map->stripes[stripe_index].dev;
5651 			stripe_index++;
5652 		}
5653 	}
5654 
5655 	if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5656 		max_errors = btrfs_chunk_max_errors(map);
5657 
5658 	if (bbio->raid_map)
5659 		sort_parity_stripes(bbio, num_stripes);
5660 
5661 	tgtdev_indexes = 0;
5662 	if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5663 	    dev_replace->tgtdev != NULL) {
5664 		int index_where_to_add;
5665 		u64 srcdev_devid = dev_replace->srcdev->devid;
5666 
5667 		/*
5668 		 * duplicate the write operations while the dev replace
5669 		 * procedure is running. Since the copying of the old disk
5670 		 * to the new disk takes place at run time while the
5671 		 * filesystem is mounted writable, the regular write
5672 		 * operations to the old disk have to be duplicated to go
5673 		 * to the new disk as well.
5674 		 * Note that device->missing is handled by the caller, and
5675 		 * that the write to the old disk is already set up in the
5676 		 * stripes array.
5677 		 */
5678 		index_where_to_add = num_stripes;
5679 		for (i = 0; i < num_stripes; i++) {
5680 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5681 				/* write to new disk, too */
5682 				struct btrfs_bio_stripe *new =
5683 					bbio->stripes + index_where_to_add;
5684 				struct btrfs_bio_stripe *old =
5685 					bbio->stripes + i;
5686 
5687 				new->physical = old->physical;
5688 				new->length = old->length;
5689 				new->dev = dev_replace->tgtdev;
5690 				bbio->tgtdev_map[i] = index_where_to_add;
5691 				index_where_to_add++;
5692 				max_errors++;
5693 				tgtdev_indexes++;
5694 			}
5695 		}
5696 		num_stripes = index_where_to_add;
5697 	} else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5698 		   dev_replace->tgtdev != NULL) {
5699 		u64 srcdev_devid = dev_replace->srcdev->devid;
5700 		int index_srcdev = 0;
5701 		int found = 0;
5702 		u64 physical_of_found = 0;
5703 
5704 		/*
5705 		 * During the dev-replace procedure, the target drive can
5706 		 * also be used to read data in case it is needed to repair
5707 		 * a corrupt block elsewhere. This is possible if the
5708 		 * requested area is left of the left cursor. In this area,
5709 		 * the target drive is a full copy of the source drive.
5710 		 */
5711 		for (i = 0; i < num_stripes; i++) {
5712 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5713 				/*
5714 				 * In case of DUP, in order to keep it
5715 				 * simple, only add the mirror with the
5716 				 * lowest physical address
5717 				 */
5718 				if (found &&
5719 				    physical_of_found <=
5720 				     bbio->stripes[i].physical)
5721 					continue;
5722 				index_srcdev = i;
5723 				found = 1;
5724 				physical_of_found = bbio->stripes[i].physical;
5725 			}
5726 		}
5727 		if (found) {
5728 			if (physical_of_found + map->stripe_len <=
5729 			    dev_replace->cursor_left) {
5730 				struct btrfs_bio_stripe *tgtdev_stripe =
5731 					bbio->stripes + num_stripes;
5732 
5733 				tgtdev_stripe->physical = physical_of_found;
5734 				tgtdev_stripe->length =
5735 					bbio->stripes[index_srcdev].length;
5736 				tgtdev_stripe->dev = dev_replace->tgtdev;
5737 				bbio->tgtdev_map[index_srcdev] = num_stripes;
5738 
5739 				tgtdev_indexes++;
5740 				num_stripes++;
5741 			}
5742 		}
5743 	}
5744 
5745 	*bbio_ret = bbio;
5746 	bbio->map_type = map->type;
5747 	bbio->num_stripes = num_stripes;
5748 	bbio->max_errors = max_errors;
5749 	bbio->mirror_num = mirror_num;
5750 	bbio->num_tgtdevs = tgtdev_indexes;
5751 
5752 	/*
5753 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5754 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5755 	 * available as a mirror
5756 	 */
5757 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5758 		WARN_ON(num_stripes > 1);
5759 		bbio->stripes[0].dev = dev_replace->tgtdev;
5760 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5761 		bbio->mirror_num = map->num_stripes + 1;
5762 	}
5763 out:
5764 	if (dev_replace_is_ongoing)
5765 		btrfs_dev_replace_unlock(dev_replace);
5766 	free_extent_map(em);
5767 	return ret;
5768 }
5769 
btrfs_map_block(struct btrfs_fs_info * fs_info,int rw,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num)5770 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5771 		      u64 logical, u64 *length,
5772 		      struct btrfs_bio **bbio_ret, int mirror_num)
5773 {
5774 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5775 				 mirror_num, 0);
5776 }
5777 
5778 /* For Scrub/replace */
btrfs_map_sblock(struct btrfs_fs_info * fs_info,int rw,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)5779 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5780 		     u64 logical, u64 *length,
5781 		     struct btrfs_bio **bbio_ret, int mirror_num,
5782 		     int need_raid_map)
5783 {
5784 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5785 				 mirror_num, need_raid_map);
5786 }
5787 
btrfs_rmap_block(struct btrfs_mapping_tree * map_tree,u64 chunk_start,u64 physical,u64 devid,u64 ** logical,int * naddrs,int * stripe_len)5788 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5789 		     u64 chunk_start, u64 physical, u64 devid,
5790 		     u64 **logical, int *naddrs, int *stripe_len)
5791 {
5792 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5793 	struct extent_map *em;
5794 	struct map_lookup *map;
5795 	u64 *buf;
5796 	u64 bytenr;
5797 	u64 length;
5798 	u64 stripe_nr;
5799 	u64 rmap_len;
5800 	int i, j, nr = 0;
5801 
5802 	read_lock(&em_tree->lock);
5803 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5804 	read_unlock(&em_tree->lock);
5805 
5806 	if (!em) {
5807 		printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5808 		       chunk_start);
5809 		return -EIO;
5810 	}
5811 
5812 	if (em->start != chunk_start) {
5813 		printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5814 		       em->start, chunk_start);
5815 		free_extent_map(em);
5816 		return -EIO;
5817 	}
5818 	map = em->map_lookup;
5819 
5820 	length = em->len;
5821 	rmap_len = map->stripe_len;
5822 
5823 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5824 		length = div_u64(length, map->num_stripes / map->sub_stripes);
5825 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5826 		length = div_u64(length, map->num_stripes);
5827 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5828 		length = div_u64(length, nr_data_stripes(map));
5829 		rmap_len = map->stripe_len * nr_data_stripes(map);
5830 	}
5831 
5832 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5833 	BUG_ON(!buf); /* -ENOMEM */
5834 
5835 	for (i = 0; i < map->num_stripes; i++) {
5836 		if (devid && map->stripes[i].dev->devid != devid)
5837 			continue;
5838 		if (map->stripes[i].physical > physical ||
5839 		    map->stripes[i].physical + length <= physical)
5840 			continue;
5841 
5842 		stripe_nr = physical - map->stripes[i].physical;
5843 		stripe_nr = div_u64(stripe_nr, map->stripe_len);
5844 
5845 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5846 			stripe_nr = stripe_nr * map->num_stripes + i;
5847 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5848 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5849 			stripe_nr = stripe_nr * map->num_stripes + i;
5850 		} /* else if RAID[56], multiply by nr_data_stripes().
5851 		   * Alternatively, just use rmap_len below instead of
5852 		   * map->stripe_len */
5853 
5854 		bytenr = chunk_start + stripe_nr * rmap_len;
5855 		WARN_ON(nr >= map->num_stripes);
5856 		for (j = 0; j < nr; j++) {
5857 			if (buf[j] == bytenr)
5858 				break;
5859 		}
5860 		if (j == nr) {
5861 			WARN_ON(nr >= map->num_stripes);
5862 			buf[nr++] = bytenr;
5863 		}
5864 	}
5865 
5866 	*logical = buf;
5867 	*naddrs = nr;
5868 	*stripe_len = rmap_len;
5869 
5870 	free_extent_map(em);
5871 	return 0;
5872 }
5873 
btrfs_end_bbio(struct btrfs_bio * bbio,struct bio * bio)5874 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5875 {
5876 	bio->bi_private = bbio->private;
5877 	bio->bi_end_io = bbio->end_io;
5878 	bio_endio(bio);
5879 
5880 	btrfs_put_bbio(bbio);
5881 }
5882 
btrfs_end_bio(struct bio * bio)5883 static void btrfs_end_bio(struct bio *bio)
5884 {
5885 	struct btrfs_bio *bbio = bio->bi_private;
5886 	int is_orig_bio = 0;
5887 
5888 	if (bio->bi_error) {
5889 		atomic_inc(&bbio->error);
5890 		if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5891 			unsigned int stripe_index =
5892 				btrfs_io_bio(bio)->stripe_index;
5893 			struct btrfs_device *dev;
5894 
5895 			BUG_ON(stripe_index >= bbio->num_stripes);
5896 			dev = bbio->stripes[stripe_index].dev;
5897 			if (dev->bdev) {
5898 				if (bio->bi_rw & WRITE)
5899 					btrfs_dev_stat_inc(dev,
5900 						BTRFS_DEV_STAT_WRITE_ERRS);
5901 				else
5902 					btrfs_dev_stat_inc(dev,
5903 						BTRFS_DEV_STAT_READ_ERRS);
5904 				if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5905 					btrfs_dev_stat_inc(dev,
5906 						BTRFS_DEV_STAT_FLUSH_ERRS);
5907 				btrfs_dev_stat_print_on_error(dev);
5908 			}
5909 		}
5910 	}
5911 
5912 	if (bio == bbio->orig_bio)
5913 		is_orig_bio = 1;
5914 
5915 	btrfs_bio_counter_dec(bbio->fs_info);
5916 
5917 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5918 		if (!is_orig_bio) {
5919 			bio_put(bio);
5920 			bio = bbio->orig_bio;
5921 		}
5922 
5923 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5924 		/* only send an error to the higher layers if it is
5925 		 * beyond the tolerance of the btrfs bio
5926 		 */
5927 		if (atomic_read(&bbio->error) > bbio->max_errors) {
5928 			bio->bi_error = -EIO;
5929 		} else {
5930 			/*
5931 			 * this bio is actually up to date, we didn't
5932 			 * go over the max number of errors
5933 			 */
5934 			bio->bi_error = 0;
5935 		}
5936 
5937 		btrfs_end_bbio(bbio, bio);
5938 	} else if (!is_orig_bio) {
5939 		bio_put(bio);
5940 	}
5941 }
5942 
5943 /*
5944  * see run_scheduled_bios for a description of why bios are collected for
5945  * async submit.
5946  *
5947  * This will add one bio to the pending list for a device and make sure
5948  * the work struct is scheduled.
5949  */
btrfs_schedule_bio(struct btrfs_root * root,struct btrfs_device * device,int rw,struct bio * bio)5950 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5951 					struct btrfs_device *device,
5952 					int rw, struct bio *bio)
5953 {
5954 	int should_queue = 1;
5955 	struct btrfs_pending_bios *pending_bios;
5956 
5957 	if (device->missing || !device->bdev) {
5958 		bio_io_error(bio);
5959 		return;
5960 	}
5961 
5962 	/* don't bother with additional async steps for reads, right now */
5963 	if (!(rw & REQ_WRITE)) {
5964 		bio_get(bio);
5965 		btrfsic_submit_bio(rw, bio);
5966 		bio_put(bio);
5967 		return;
5968 	}
5969 
5970 	/*
5971 	 * nr_async_bios allows us to reliably return congestion to the
5972 	 * higher layers.  Otherwise, the async bio makes it appear we have
5973 	 * made progress against dirty pages when we've really just put it
5974 	 * on a queue for later
5975 	 */
5976 	atomic_inc(&root->fs_info->nr_async_bios);
5977 	WARN_ON(bio->bi_next);
5978 	bio->bi_next = NULL;
5979 	bio->bi_rw |= rw;
5980 
5981 	spin_lock(&device->io_lock);
5982 	if (bio->bi_rw & REQ_SYNC)
5983 		pending_bios = &device->pending_sync_bios;
5984 	else
5985 		pending_bios = &device->pending_bios;
5986 
5987 	if (pending_bios->tail)
5988 		pending_bios->tail->bi_next = bio;
5989 
5990 	pending_bios->tail = bio;
5991 	if (!pending_bios->head)
5992 		pending_bios->head = bio;
5993 	if (device->running_pending)
5994 		should_queue = 0;
5995 
5996 	spin_unlock(&device->io_lock);
5997 
5998 	if (should_queue)
5999 		btrfs_queue_work(root->fs_info->submit_workers,
6000 				 &device->work);
6001 }
6002 
submit_stripe_bio(struct btrfs_root * root,struct btrfs_bio * bbio,struct bio * bio,u64 physical,int dev_nr,int rw,int async)6003 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6004 			      struct bio *bio, u64 physical, int dev_nr,
6005 			      int rw, int async)
6006 {
6007 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6008 
6009 	bio->bi_private = bbio;
6010 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6011 	bio->bi_end_io = btrfs_end_bio;
6012 	bio->bi_iter.bi_sector = physical >> 9;
6013 #ifdef DEBUG
6014 	{
6015 		struct rcu_string *name;
6016 
6017 		rcu_read_lock();
6018 		name = rcu_dereference(dev->name);
6019 		pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
6020 			 "(%s id %llu), size=%u\n", rw,
6021 			 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6022 			 name->str, dev->devid, bio->bi_iter.bi_size);
6023 		rcu_read_unlock();
6024 	}
6025 #endif
6026 	bio->bi_bdev = dev->bdev;
6027 
6028 	btrfs_bio_counter_inc_noblocked(root->fs_info);
6029 
6030 	if (async)
6031 		btrfs_schedule_bio(root, dev, rw, bio);
6032 	else
6033 		btrfsic_submit_bio(rw, bio);
6034 }
6035 
bbio_error(struct btrfs_bio * bbio,struct bio * bio,u64 logical)6036 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6037 {
6038 	atomic_inc(&bbio->error);
6039 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6040 		/* Shoud be the original bio. */
6041 		WARN_ON(bio != bbio->orig_bio);
6042 
6043 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6044 		bio->bi_iter.bi_sector = logical >> 9;
6045 		bio->bi_error = -EIO;
6046 		btrfs_end_bbio(bbio, bio);
6047 	}
6048 }
6049 
btrfs_map_bio(struct btrfs_root * root,int rw,struct bio * bio,int mirror_num,int async_submit)6050 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
6051 		  int mirror_num, int async_submit)
6052 {
6053 	struct btrfs_device *dev;
6054 	struct bio *first_bio = bio;
6055 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6056 	u64 length = 0;
6057 	u64 map_length;
6058 	int ret;
6059 	int dev_nr;
6060 	int total_devs;
6061 	struct btrfs_bio *bbio = NULL;
6062 
6063 	length = bio->bi_iter.bi_size;
6064 	map_length = length;
6065 
6066 	btrfs_bio_counter_inc_blocked(root->fs_info);
6067 	ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
6068 			      mirror_num, 1);
6069 	if (ret) {
6070 		btrfs_bio_counter_dec(root->fs_info);
6071 		return ret;
6072 	}
6073 
6074 	total_devs = bbio->num_stripes;
6075 	bbio->orig_bio = first_bio;
6076 	bbio->private = first_bio->bi_private;
6077 	bbio->end_io = first_bio->bi_end_io;
6078 	bbio->fs_info = root->fs_info;
6079 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6080 
6081 	if (bbio->raid_map) {
6082 		/* In this case, map_length has been set to the length of
6083 		   a single stripe; not the whole write */
6084 		if (rw & WRITE) {
6085 			ret = raid56_parity_write(root, bio, bbio, map_length);
6086 		} else {
6087 			ret = raid56_parity_recover(root, bio, bbio, map_length,
6088 						    mirror_num, 1);
6089 		}
6090 
6091 		btrfs_bio_counter_dec(root->fs_info);
6092 		return ret;
6093 	}
6094 
6095 	if (map_length < length) {
6096 		btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
6097 			logical, length, map_length);
6098 		BUG();
6099 	}
6100 
6101 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6102 		dev = bbio->stripes[dev_nr].dev;
6103 		if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6104 			bbio_error(bbio, first_bio, logical);
6105 			continue;
6106 		}
6107 
6108 		if (dev_nr < total_devs - 1) {
6109 			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6110 			BUG_ON(!bio); /* -ENOMEM */
6111 		} else
6112 			bio = first_bio;
6113 
6114 		submit_stripe_bio(root, bbio, bio,
6115 				  bbio->stripes[dev_nr].physical, dev_nr, rw,
6116 				  async_submit);
6117 	}
6118 	btrfs_bio_counter_dec(root->fs_info);
6119 	return 0;
6120 }
6121 
btrfs_find_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,u8 * fsid)6122 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6123 				       u8 *uuid, u8 *fsid)
6124 {
6125 	struct btrfs_device *device;
6126 	struct btrfs_fs_devices *cur_devices;
6127 
6128 	cur_devices = fs_info->fs_devices;
6129 	while (cur_devices) {
6130 		if (!fsid ||
6131 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6132 			device = __find_device(&cur_devices->devices,
6133 					       devid, uuid);
6134 			if (device)
6135 				return device;
6136 		}
6137 		cur_devices = cur_devices->seed;
6138 	}
6139 	return NULL;
6140 }
6141 
add_missing_dev(struct btrfs_root * root,struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6142 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6143 					    struct btrfs_fs_devices *fs_devices,
6144 					    u64 devid, u8 *dev_uuid)
6145 {
6146 	struct btrfs_device *device;
6147 
6148 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6149 	if (IS_ERR(device))
6150 		return NULL;
6151 
6152 	list_add(&device->dev_list, &fs_devices->devices);
6153 	device->fs_devices = fs_devices;
6154 	fs_devices->num_devices++;
6155 
6156 	device->missing = 1;
6157 	fs_devices->missing_devices++;
6158 
6159 	return device;
6160 }
6161 
6162 /**
6163  * btrfs_alloc_device - allocate struct btrfs_device
6164  * @fs_info:	used only for generating a new devid, can be NULL if
6165  *		devid is provided (i.e. @devid != NULL).
6166  * @devid:	a pointer to devid for this device.  If NULL a new devid
6167  *		is generated.
6168  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6169  *		is generated.
6170  *
6171  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6172  * on error.  Returned struct is not linked onto any lists and can be
6173  * destroyed with kfree() right away.
6174  */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid)6175 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6176 					const u64 *devid,
6177 					const u8 *uuid)
6178 {
6179 	struct btrfs_device *dev;
6180 	u64 tmp;
6181 
6182 	if (WARN_ON(!devid && !fs_info))
6183 		return ERR_PTR(-EINVAL);
6184 
6185 	dev = __alloc_device();
6186 	if (IS_ERR(dev))
6187 		return dev;
6188 
6189 	if (devid)
6190 		tmp = *devid;
6191 	else {
6192 		int ret;
6193 
6194 		ret = find_next_devid(fs_info, &tmp);
6195 		if (ret) {
6196 			kfree(dev);
6197 			return ERR_PTR(ret);
6198 		}
6199 	}
6200 	dev->devid = tmp;
6201 
6202 	if (uuid)
6203 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6204 	else
6205 		generate_random_uuid(dev->uuid);
6206 
6207 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6208 			pending_bios_fn, NULL, NULL);
6209 
6210 	return dev;
6211 }
6212 
6213 /* Return -EIO if any error, otherwise return 0. */
btrfs_check_chunk_valid(struct btrfs_root * root,struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 logical)6214 static int btrfs_check_chunk_valid(struct btrfs_root *root,
6215 				   struct extent_buffer *leaf,
6216 				   struct btrfs_chunk *chunk, u64 logical)
6217 {
6218 	u64 length;
6219 	u64 stripe_len;
6220 	u16 num_stripes;
6221 	u16 sub_stripes;
6222 	u64 type;
6223 	u64 features;
6224 	bool mixed = false;
6225 
6226 	length = btrfs_chunk_length(leaf, chunk);
6227 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6228 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6229 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6230 	type = btrfs_chunk_type(leaf, chunk);
6231 
6232 	if (!num_stripes) {
6233 		btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6234 			  num_stripes);
6235 		return -EIO;
6236 	}
6237 	if (!IS_ALIGNED(logical, root->sectorsize)) {
6238 		btrfs_err(root->fs_info,
6239 			  "invalid chunk logical %llu", logical);
6240 		return -EIO;
6241 	}
6242 	if (btrfs_chunk_sector_size(leaf, chunk) != root->sectorsize) {
6243 		btrfs_err(root->fs_info, "invalid chunk sectorsize %u",
6244 			  btrfs_chunk_sector_size(leaf, chunk));
6245 		return -EIO;
6246 	}
6247 	if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6248 		btrfs_err(root->fs_info,
6249 			"invalid chunk length %llu", length);
6250 		return -EIO;
6251 	}
6252 	if (!is_power_of_2(stripe_len)) {
6253 		btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6254 			  stripe_len);
6255 		return -EIO;
6256 	}
6257 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6258 	    type) {
6259 		btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6260 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6261 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6262 			  btrfs_chunk_type(leaf, chunk));
6263 		return -EIO;
6264 	}
6265 
6266 	if (!is_power_of_2(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
6267 	    (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0) {
6268 		btrfs_err(root->fs_info,
6269 		"invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set",
6270 			  type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6271 		return -EUCLEAN;
6272 	}
6273 	if ((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0) {
6274 		btrfs_err(root->fs_info, "missing chunk type flag: 0x%llx", type);
6275 		return -EIO;
6276 	}
6277 
6278 	if ((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
6279 	    (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) {
6280 		btrfs_err(root->fs_info,
6281 			"system chunk with data or metadata type: 0x%llx", type);
6282 		return -EIO;
6283 	}
6284 
6285 	features = btrfs_super_incompat_flags(root->fs_info->super_copy);
6286 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
6287 		mixed = true;
6288 
6289 	if (!mixed) {
6290 		if ((type & BTRFS_BLOCK_GROUP_METADATA) &&
6291 		    (type & BTRFS_BLOCK_GROUP_DATA)) {
6292 			btrfs_err(root->fs_info,
6293 			"mixed chunk type in non-mixed mode: 0x%llx", type);
6294 			return -EIO;
6295 		}
6296 	}
6297 
6298 	if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6299 	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes != 2) ||
6300 	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6301 	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6302 	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes != 2) ||
6303 	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6304 	     num_stripes != 1)) {
6305 		btrfs_err(root->fs_info,
6306 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
6307 			num_stripes, sub_stripes,
6308 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6309 		return -EIO;
6310 	}
6311 
6312 	return 0;
6313 }
6314 
read_one_chunk(struct btrfs_root * root,struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6315 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6316 			  struct extent_buffer *leaf,
6317 			  struct btrfs_chunk *chunk)
6318 {
6319 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6320 	struct map_lookup *map;
6321 	struct extent_map *em;
6322 	u64 logical;
6323 	u64 length;
6324 	u64 stripe_len;
6325 	u64 devid;
6326 	u8 uuid[BTRFS_UUID_SIZE];
6327 	int num_stripes;
6328 	int ret;
6329 	int i;
6330 
6331 	logical = key->offset;
6332 	length = btrfs_chunk_length(leaf, chunk);
6333 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6334 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6335 
6336 	ret = btrfs_check_chunk_valid(root, leaf, chunk, logical);
6337 	if (ret)
6338 		return ret;
6339 
6340 	read_lock(&map_tree->map_tree.lock);
6341 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6342 	read_unlock(&map_tree->map_tree.lock);
6343 
6344 	/* already mapped? */
6345 	if (em && em->start <= logical && em->start + em->len > logical) {
6346 		free_extent_map(em);
6347 		return 0;
6348 	} else if (em) {
6349 		free_extent_map(em);
6350 	}
6351 
6352 	em = alloc_extent_map();
6353 	if (!em)
6354 		return -ENOMEM;
6355 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6356 	if (!map) {
6357 		free_extent_map(em);
6358 		return -ENOMEM;
6359 	}
6360 
6361 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6362 	em->map_lookup = map;
6363 	em->start = logical;
6364 	em->len = length;
6365 	em->orig_start = 0;
6366 	em->block_start = 0;
6367 	em->block_len = em->len;
6368 
6369 	map->num_stripes = num_stripes;
6370 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6371 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6372 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6373 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6374 	map->type = btrfs_chunk_type(leaf, chunk);
6375 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6376 	for (i = 0; i < num_stripes; i++) {
6377 		map->stripes[i].physical =
6378 			btrfs_stripe_offset_nr(leaf, chunk, i);
6379 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6380 		read_extent_buffer(leaf, uuid, (unsigned long)
6381 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6382 				   BTRFS_UUID_SIZE);
6383 		map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6384 							uuid, NULL);
6385 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6386 			free_extent_map(em);
6387 			return -EIO;
6388 		}
6389 		if (!map->stripes[i].dev) {
6390 			map->stripes[i].dev =
6391 				add_missing_dev(root, root->fs_info->fs_devices,
6392 						devid, uuid);
6393 			if (!map->stripes[i].dev) {
6394 				free_extent_map(em);
6395 				return -EIO;
6396 			}
6397 			btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6398 						devid, uuid);
6399 		}
6400 		map->stripes[i].dev->in_fs_metadata = 1;
6401 	}
6402 
6403 	write_lock(&map_tree->map_tree.lock);
6404 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6405 	write_unlock(&map_tree->map_tree.lock);
6406 	BUG_ON(ret); /* Tree corruption */
6407 	free_extent_map(em);
6408 
6409 	return 0;
6410 }
6411 
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)6412 static void fill_device_from_item(struct extent_buffer *leaf,
6413 				 struct btrfs_dev_item *dev_item,
6414 				 struct btrfs_device *device)
6415 {
6416 	unsigned long ptr;
6417 
6418 	device->devid = btrfs_device_id(leaf, dev_item);
6419 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6420 	device->total_bytes = device->disk_total_bytes;
6421 	device->commit_total_bytes = device->disk_total_bytes;
6422 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6423 	device->commit_bytes_used = device->bytes_used;
6424 	device->type = btrfs_device_type(leaf, dev_item);
6425 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6426 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6427 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6428 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6429 	device->is_tgtdev_for_dev_replace = 0;
6430 
6431 	ptr = btrfs_device_uuid(dev_item);
6432 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6433 }
6434 
open_seed_devices(struct btrfs_root * root,u8 * fsid)6435 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6436 						  u8 *fsid)
6437 {
6438 	struct btrfs_fs_devices *fs_devices;
6439 	int ret;
6440 
6441 	BUG_ON(!mutex_is_locked(&uuid_mutex));
6442 
6443 	fs_devices = root->fs_info->fs_devices->seed;
6444 	while (fs_devices) {
6445 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6446 			return fs_devices;
6447 
6448 		fs_devices = fs_devices->seed;
6449 	}
6450 
6451 	fs_devices = find_fsid(fsid);
6452 	if (!fs_devices) {
6453 		if (!btrfs_test_opt(root, DEGRADED))
6454 			return ERR_PTR(-ENOENT);
6455 
6456 		fs_devices = alloc_fs_devices(fsid);
6457 		if (IS_ERR(fs_devices))
6458 			return fs_devices;
6459 
6460 		fs_devices->seeding = 1;
6461 		fs_devices->opened = 1;
6462 		return fs_devices;
6463 	}
6464 
6465 	fs_devices = clone_fs_devices(fs_devices);
6466 	if (IS_ERR(fs_devices))
6467 		return fs_devices;
6468 
6469 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6470 				   root->fs_info->bdev_holder);
6471 	if (ret) {
6472 		free_fs_devices(fs_devices);
6473 		fs_devices = ERR_PTR(ret);
6474 		goto out;
6475 	}
6476 
6477 	if (!fs_devices->seeding) {
6478 		__btrfs_close_devices(fs_devices);
6479 		free_fs_devices(fs_devices);
6480 		fs_devices = ERR_PTR(-EINVAL);
6481 		goto out;
6482 	}
6483 
6484 	fs_devices->seed = root->fs_info->fs_devices->seed;
6485 	root->fs_info->fs_devices->seed = fs_devices;
6486 out:
6487 	return fs_devices;
6488 }
6489 
read_one_dev(struct btrfs_root * root,struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)6490 static int read_one_dev(struct btrfs_root *root,
6491 			struct extent_buffer *leaf,
6492 			struct btrfs_dev_item *dev_item)
6493 {
6494 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6495 	struct btrfs_device *device;
6496 	u64 devid;
6497 	int ret;
6498 	u8 fs_uuid[BTRFS_UUID_SIZE];
6499 	u8 dev_uuid[BTRFS_UUID_SIZE];
6500 
6501 	devid = btrfs_device_id(leaf, dev_item);
6502 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6503 			   BTRFS_UUID_SIZE);
6504 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6505 			   BTRFS_UUID_SIZE);
6506 
6507 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6508 		fs_devices = open_seed_devices(root, fs_uuid);
6509 		if (IS_ERR(fs_devices))
6510 			return PTR_ERR(fs_devices);
6511 	}
6512 
6513 	device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6514 	if (!device) {
6515 		if (!btrfs_test_opt(root, DEGRADED))
6516 			return -EIO;
6517 
6518 		device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6519 		if (!device)
6520 			return -ENOMEM;
6521 		btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6522 				devid, dev_uuid);
6523 	} else {
6524 		if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6525 			return -EIO;
6526 
6527 		if(!device->bdev && !device->missing) {
6528 			/*
6529 			 * this happens when a device that was properly setup
6530 			 * in the device info lists suddenly goes bad.
6531 			 * device->bdev is NULL, and so we have to set
6532 			 * device->missing to one here
6533 			 */
6534 			device->fs_devices->missing_devices++;
6535 			device->missing = 1;
6536 		}
6537 
6538 		/* Move the device to its own fs_devices */
6539 		if (device->fs_devices != fs_devices) {
6540 			ASSERT(device->missing);
6541 
6542 			list_move(&device->dev_list, &fs_devices->devices);
6543 			device->fs_devices->num_devices--;
6544 			fs_devices->num_devices++;
6545 
6546 			device->fs_devices->missing_devices--;
6547 			fs_devices->missing_devices++;
6548 
6549 			device->fs_devices = fs_devices;
6550 		}
6551 	}
6552 
6553 	if (device->fs_devices != root->fs_info->fs_devices) {
6554 		BUG_ON(device->writeable);
6555 		if (device->generation !=
6556 		    btrfs_device_generation(leaf, dev_item))
6557 			return -EINVAL;
6558 	}
6559 
6560 	fill_device_from_item(leaf, dev_item, device);
6561 	device->in_fs_metadata = 1;
6562 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6563 		device->fs_devices->total_rw_bytes += device->total_bytes;
6564 		spin_lock(&root->fs_info->free_chunk_lock);
6565 		root->fs_info->free_chunk_space += device->total_bytes -
6566 			device->bytes_used;
6567 		spin_unlock(&root->fs_info->free_chunk_lock);
6568 	}
6569 	ret = 0;
6570 	return ret;
6571 }
6572 
btrfs_read_sys_array(struct btrfs_root * root)6573 int btrfs_read_sys_array(struct btrfs_root *root)
6574 {
6575 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6576 	struct extent_buffer *sb;
6577 	struct btrfs_disk_key *disk_key;
6578 	struct btrfs_chunk *chunk;
6579 	u8 *array_ptr;
6580 	unsigned long sb_array_offset;
6581 	int ret = 0;
6582 	u32 num_stripes;
6583 	u32 array_size;
6584 	u32 len = 0;
6585 	u32 cur_offset;
6586 	u64 type;
6587 	struct btrfs_key key;
6588 
6589 	ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6590 	/*
6591 	 * This will create extent buffer of nodesize, superblock size is
6592 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6593 	 * overallocate but we can keep it as-is, only the first page is used.
6594 	 */
6595 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6596 	if (!sb)
6597 		return -ENOMEM;
6598 	btrfs_set_buffer_uptodate(sb);
6599 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6600 	/*
6601 	 * The sb extent buffer is artifical and just used to read the system array.
6602 	 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6603 	 * pages up-to-date when the page is larger: extent does not cover the
6604 	 * whole page and consequently check_page_uptodate does not find all
6605 	 * the page's extents up-to-date (the hole beyond sb),
6606 	 * write_extent_buffer then triggers a WARN_ON.
6607 	 *
6608 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6609 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6610 	 * to silence the warning eg. on PowerPC 64.
6611 	 */
6612 	if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6613 		SetPageUptodate(sb->pages[0]);
6614 
6615 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6616 	array_size = btrfs_super_sys_array_size(super_copy);
6617 
6618 	array_ptr = super_copy->sys_chunk_array;
6619 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6620 	cur_offset = 0;
6621 
6622 	while (cur_offset < array_size) {
6623 		disk_key = (struct btrfs_disk_key *)array_ptr;
6624 		len = sizeof(*disk_key);
6625 		if (cur_offset + len > array_size)
6626 			goto out_short_read;
6627 
6628 		btrfs_disk_key_to_cpu(&key, disk_key);
6629 
6630 		array_ptr += len;
6631 		sb_array_offset += len;
6632 		cur_offset += len;
6633 
6634 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6635 			chunk = (struct btrfs_chunk *)sb_array_offset;
6636 			/*
6637 			 * At least one btrfs_chunk with one stripe must be
6638 			 * present, exact stripe count check comes afterwards
6639 			 */
6640 			len = btrfs_chunk_item_size(1);
6641 			if (cur_offset + len > array_size)
6642 				goto out_short_read;
6643 
6644 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6645 			if (!num_stripes) {
6646 				printk(KERN_ERR
6647 	    "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6648 					num_stripes, cur_offset);
6649 				ret = -EIO;
6650 				break;
6651 			}
6652 
6653 			type = btrfs_chunk_type(sb, chunk);
6654 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6655 				btrfs_err(root->fs_info,
6656 			    "invalid chunk type %llu in sys_array at offset %u",
6657 					type, cur_offset);
6658 				ret = -EIO;
6659 				break;
6660 			}
6661 
6662 			len = btrfs_chunk_item_size(num_stripes);
6663 			if (cur_offset + len > array_size)
6664 				goto out_short_read;
6665 
6666 			ret = read_one_chunk(root, &key, sb, chunk);
6667 			if (ret)
6668 				break;
6669 		} else {
6670 			ret = -EIO;
6671 			break;
6672 		}
6673 		array_ptr += len;
6674 		sb_array_offset += len;
6675 		cur_offset += len;
6676 	}
6677 	free_extent_buffer(sb);
6678 	return ret;
6679 
6680 out_short_read:
6681 	printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6682 			len, cur_offset);
6683 	free_extent_buffer(sb);
6684 	return -EIO;
6685 }
6686 
btrfs_read_chunk_tree(struct btrfs_root * root)6687 int btrfs_read_chunk_tree(struct btrfs_root *root)
6688 {
6689 	struct btrfs_path *path;
6690 	struct extent_buffer *leaf;
6691 	struct btrfs_key key;
6692 	struct btrfs_key found_key;
6693 	int ret;
6694 	int slot;
6695 
6696 	root = root->fs_info->chunk_root;
6697 
6698 	path = btrfs_alloc_path();
6699 	if (!path)
6700 		return -ENOMEM;
6701 
6702 	mutex_lock(&uuid_mutex);
6703 	lock_chunks(root);
6704 
6705 	/*
6706 	 * It is possible for mount and umount to race in such a way that
6707 	 * we execute this code path, but open_fs_devices failed to clear
6708 	 * total_rw_bytes. We certainly want it cleared before reading the
6709 	 * device items, so clear it here.
6710 	 */
6711 	root->fs_info->fs_devices->total_rw_bytes = 0;
6712 
6713 	/*
6714 	 * Read all device items, and then all the chunk items. All
6715 	 * device items are found before any chunk item (their object id
6716 	 * is smaller than the lowest possible object id for a chunk
6717 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6718 	 */
6719 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6720 	key.offset = 0;
6721 	key.type = 0;
6722 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6723 	if (ret < 0)
6724 		goto error;
6725 	while (1) {
6726 		leaf = path->nodes[0];
6727 		slot = path->slots[0];
6728 		if (slot >= btrfs_header_nritems(leaf)) {
6729 			ret = btrfs_next_leaf(root, path);
6730 			if (ret == 0)
6731 				continue;
6732 			if (ret < 0)
6733 				goto error;
6734 			break;
6735 		}
6736 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6737 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6738 			struct btrfs_dev_item *dev_item;
6739 			dev_item = btrfs_item_ptr(leaf, slot,
6740 						  struct btrfs_dev_item);
6741 			ret = read_one_dev(root, leaf, dev_item);
6742 			if (ret)
6743 				goto error;
6744 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6745 			struct btrfs_chunk *chunk;
6746 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6747 			ret = read_one_chunk(root, &found_key, leaf, chunk);
6748 			if (ret)
6749 				goto error;
6750 		}
6751 		path->slots[0]++;
6752 	}
6753 	ret = 0;
6754 error:
6755 	unlock_chunks(root);
6756 	mutex_unlock(&uuid_mutex);
6757 
6758 	btrfs_free_path(path);
6759 	return ret;
6760 }
6761 
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)6762 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6763 {
6764 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6765 	struct btrfs_device *device;
6766 
6767 	while (fs_devices) {
6768 		mutex_lock(&fs_devices->device_list_mutex);
6769 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6770 			device->dev_root = fs_info->dev_root;
6771 		mutex_unlock(&fs_devices->device_list_mutex);
6772 
6773 		fs_devices = fs_devices->seed;
6774 	}
6775 }
6776 
__btrfs_reset_dev_stats(struct btrfs_device * dev)6777 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6778 {
6779 	int i;
6780 
6781 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6782 		btrfs_dev_stat_reset(dev, i);
6783 }
6784 
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)6785 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6786 {
6787 	struct btrfs_key key;
6788 	struct btrfs_key found_key;
6789 	struct btrfs_root *dev_root = fs_info->dev_root;
6790 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6791 	struct extent_buffer *eb;
6792 	int slot;
6793 	int ret = 0;
6794 	struct btrfs_device *device;
6795 	struct btrfs_path *path = NULL;
6796 	int i;
6797 
6798 	path = btrfs_alloc_path();
6799 	if (!path) {
6800 		ret = -ENOMEM;
6801 		goto out;
6802 	}
6803 
6804 	mutex_lock(&fs_devices->device_list_mutex);
6805 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6806 		int item_size;
6807 		struct btrfs_dev_stats_item *ptr;
6808 
6809 		key.objectid = 0;
6810 		key.type = BTRFS_DEV_STATS_KEY;
6811 		key.offset = device->devid;
6812 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6813 		if (ret) {
6814 			__btrfs_reset_dev_stats(device);
6815 			device->dev_stats_valid = 1;
6816 			btrfs_release_path(path);
6817 			continue;
6818 		}
6819 		slot = path->slots[0];
6820 		eb = path->nodes[0];
6821 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6822 		item_size = btrfs_item_size_nr(eb, slot);
6823 
6824 		ptr = btrfs_item_ptr(eb, slot,
6825 				     struct btrfs_dev_stats_item);
6826 
6827 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6828 			if (item_size >= (1 + i) * sizeof(__le64))
6829 				btrfs_dev_stat_set(device, i,
6830 					btrfs_dev_stats_value(eb, ptr, i));
6831 			else
6832 				btrfs_dev_stat_reset(device, i);
6833 		}
6834 
6835 		device->dev_stats_valid = 1;
6836 		btrfs_dev_stat_print_on_load(device);
6837 		btrfs_release_path(path);
6838 	}
6839 	mutex_unlock(&fs_devices->device_list_mutex);
6840 
6841 out:
6842 	btrfs_free_path(path);
6843 	return ret < 0 ? ret : 0;
6844 }
6845 
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_root * dev_root,struct btrfs_device * device)6846 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6847 				struct btrfs_root *dev_root,
6848 				struct btrfs_device *device)
6849 {
6850 	struct btrfs_path *path;
6851 	struct btrfs_key key;
6852 	struct extent_buffer *eb;
6853 	struct btrfs_dev_stats_item *ptr;
6854 	int ret;
6855 	int i;
6856 
6857 	key.objectid = 0;
6858 	key.type = BTRFS_DEV_STATS_KEY;
6859 	key.offset = device->devid;
6860 
6861 	path = btrfs_alloc_path();
6862 	BUG_ON(!path);
6863 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6864 	if (ret < 0) {
6865 		btrfs_warn_in_rcu(dev_root->fs_info,
6866 			"error %d while searching for dev_stats item for device %s",
6867 			      ret, rcu_str_deref(device->name));
6868 		goto out;
6869 	}
6870 
6871 	if (ret == 0 &&
6872 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6873 		/* need to delete old one and insert a new one */
6874 		ret = btrfs_del_item(trans, dev_root, path);
6875 		if (ret != 0) {
6876 			btrfs_warn_in_rcu(dev_root->fs_info,
6877 				"delete too small dev_stats item for device %s failed %d",
6878 				      rcu_str_deref(device->name), ret);
6879 			goto out;
6880 		}
6881 		ret = 1;
6882 	}
6883 
6884 	if (ret == 1) {
6885 		/* need to insert a new item */
6886 		btrfs_release_path(path);
6887 		ret = btrfs_insert_empty_item(trans, dev_root, path,
6888 					      &key, sizeof(*ptr));
6889 		if (ret < 0) {
6890 			btrfs_warn_in_rcu(dev_root->fs_info,
6891 				"insert dev_stats item for device %s failed %d",
6892 				rcu_str_deref(device->name), ret);
6893 			goto out;
6894 		}
6895 	}
6896 
6897 	eb = path->nodes[0];
6898 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6899 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6900 		btrfs_set_dev_stats_value(eb, ptr, i,
6901 					  btrfs_dev_stat_read(device, i));
6902 	btrfs_mark_buffer_dirty(eb);
6903 
6904 out:
6905 	btrfs_free_path(path);
6906 	return ret;
6907 }
6908 
6909 /*
6910  * called from commit_transaction. Writes all changed device stats to disk.
6911  */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)6912 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6913 			struct btrfs_fs_info *fs_info)
6914 {
6915 	struct btrfs_root *dev_root = fs_info->dev_root;
6916 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6917 	struct btrfs_device *device;
6918 	int stats_cnt;
6919 	int ret = 0;
6920 
6921 	mutex_lock(&fs_devices->device_list_mutex);
6922 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6923 		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6924 			continue;
6925 
6926 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
6927 		ret = update_dev_stat_item(trans, dev_root, device);
6928 		if (!ret)
6929 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6930 	}
6931 	mutex_unlock(&fs_devices->device_list_mutex);
6932 
6933 	return ret;
6934 }
6935 
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)6936 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6937 {
6938 	btrfs_dev_stat_inc(dev, index);
6939 	btrfs_dev_stat_print_on_error(dev);
6940 }
6941 
btrfs_dev_stat_print_on_error(struct btrfs_device * dev)6942 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6943 {
6944 	if (!dev->dev_stats_valid)
6945 		return;
6946 	btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6947 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6948 			   rcu_str_deref(dev->name),
6949 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6950 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6951 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6952 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6953 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6954 }
6955 
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)6956 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6957 {
6958 	int i;
6959 
6960 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6961 		if (btrfs_dev_stat_read(dev, i) != 0)
6962 			break;
6963 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
6964 		return; /* all values == 0, suppress message */
6965 
6966 	btrfs_info_in_rcu(dev->dev_root->fs_info,
6967 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6968 	       rcu_str_deref(dev->name),
6969 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6970 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6971 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6972 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6973 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6974 }
6975 
btrfs_get_dev_stats(struct btrfs_root * root,struct btrfs_ioctl_get_dev_stats * stats)6976 int btrfs_get_dev_stats(struct btrfs_root *root,
6977 			struct btrfs_ioctl_get_dev_stats *stats)
6978 {
6979 	struct btrfs_device *dev;
6980 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6981 	int i;
6982 
6983 	mutex_lock(&fs_devices->device_list_mutex);
6984 	dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6985 	mutex_unlock(&fs_devices->device_list_mutex);
6986 
6987 	if (!dev) {
6988 		btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6989 		return -ENODEV;
6990 	} else if (!dev->dev_stats_valid) {
6991 		btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6992 		return -ENODEV;
6993 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6994 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6995 			if (stats->nr_items > i)
6996 				stats->values[i] =
6997 					btrfs_dev_stat_read_and_reset(dev, i);
6998 			else
6999 				btrfs_dev_stat_reset(dev, i);
7000 		}
7001 	} else {
7002 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7003 			if (stats->nr_items > i)
7004 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7005 	}
7006 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7007 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7008 	return 0;
7009 }
7010 
btrfs_scratch_superblocks(struct block_device * bdev,char * device_path)7011 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
7012 {
7013 	struct buffer_head *bh;
7014 	struct btrfs_super_block *disk_super;
7015 	int copy_num;
7016 
7017 	if (!bdev)
7018 		return;
7019 
7020 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7021 		copy_num++) {
7022 
7023 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7024 			continue;
7025 
7026 		disk_super = (struct btrfs_super_block *)bh->b_data;
7027 
7028 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7029 		set_buffer_dirty(bh);
7030 		sync_dirty_buffer(bh);
7031 		brelse(bh);
7032 	}
7033 
7034 	/* Notify udev that device has changed */
7035 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7036 
7037 	/* Update ctime/mtime for device path for libblkid */
7038 	update_dev_time(device_path);
7039 }
7040 
7041 /*
7042  * Update the size of all devices, which is used for writing out the
7043  * super blocks.
7044  */
btrfs_update_commit_device_size(struct btrfs_fs_info * fs_info)7045 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7046 {
7047 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7048 	struct btrfs_device *curr, *next;
7049 
7050 	if (list_empty(&fs_devices->resized_devices))
7051 		return;
7052 
7053 	mutex_lock(&fs_devices->device_list_mutex);
7054 	lock_chunks(fs_info->dev_root);
7055 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7056 				 resized_list) {
7057 		list_del_init(&curr->resized_list);
7058 		curr->commit_total_bytes = curr->disk_total_bytes;
7059 	}
7060 	unlock_chunks(fs_info->dev_root);
7061 	mutex_unlock(&fs_devices->device_list_mutex);
7062 }
7063 
7064 /* Must be invoked during the transaction commit */
btrfs_update_commit_device_bytes_used(struct btrfs_root * root,struct btrfs_transaction * transaction)7065 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7066 					struct btrfs_transaction *transaction)
7067 {
7068 	struct extent_map *em;
7069 	struct map_lookup *map;
7070 	struct btrfs_device *dev;
7071 	int i;
7072 
7073 	if (list_empty(&transaction->pending_chunks))
7074 		return;
7075 
7076 	/* In order to kick the device replace finish process */
7077 	lock_chunks(root);
7078 	list_for_each_entry(em, &transaction->pending_chunks, list) {
7079 		map = em->map_lookup;
7080 
7081 		for (i = 0; i < map->num_stripes; i++) {
7082 			dev = map->stripes[i].dev;
7083 			dev->commit_bytes_used = dev->bytes_used;
7084 			dev->has_pending_chunks = false;
7085 		}
7086 	}
7087 	unlock_chunks(root);
7088 }
7089 
btrfs_set_fs_info_ptr(struct btrfs_fs_info * fs_info)7090 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7091 {
7092 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7093 	while (fs_devices) {
7094 		fs_devices->fs_info = fs_info;
7095 		fs_devices = fs_devices->seed;
7096 	}
7097 }
7098 
btrfs_reset_fs_info_ptr(struct btrfs_fs_info * fs_info)7099 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7100 {
7101 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7102 	while (fs_devices) {
7103 		fs_devices->fs_info = NULL;
7104 		fs_devices = fs_devices->seed;
7105 	}
7106 }
7107 
btrfs_close_one_device(struct btrfs_device * device)7108 void btrfs_close_one_device(struct btrfs_device *device)
7109 {
7110 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
7111 	struct btrfs_device *new_device;
7112 	struct rcu_string *name;
7113 
7114 	if (device->bdev)
7115 		fs_devices->open_devices--;
7116 
7117 	if (device->writeable &&
7118 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
7119 		list_del_init(&device->dev_alloc_list);
7120 		fs_devices->rw_devices--;
7121 	}
7122 
7123 	if (device->missing)
7124 		fs_devices->missing_devices--;
7125 
7126 	new_device = btrfs_alloc_device(NULL, &device->devid,
7127 					device->uuid);
7128 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
7129 
7130 	/* Safe because we are under uuid_mutex */
7131 	if (device->name) {
7132 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
7133 		BUG_ON(!name); /* -ENOMEM */
7134 		rcu_assign_pointer(new_device->name, name);
7135 	}
7136 
7137 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
7138 	new_device->fs_devices = device->fs_devices;
7139 
7140 	call_rcu(&device->rcu, free_device);
7141 }
7142