1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 static int init_first_rw_device(struct btrfs_trans_handle *trans,
122 struct btrfs_root *root,
123 struct btrfs_device *device);
124 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
125 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
126 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
127 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
128
129 DEFINE_MUTEX(uuid_mutex);
130 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)131 struct list_head *btrfs_get_fs_uuids(void)
132 {
133 return &fs_uuids;
134 }
135
__alloc_fs_devices(void)136 static struct btrfs_fs_devices *__alloc_fs_devices(void)
137 {
138 struct btrfs_fs_devices *fs_devs;
139
140 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
141 if (!fs_devs)
142 return ERR_PTR(-ENOMEM);
143
144 mutex_init(&fs_devs->device_list_mutex);
145
146 INIT_LIST_HEAD(&fs_devs->devices);
147 INIT_LIST_HEAD(&fs_devs->resized_devices);
148 INIT_LIST_HEAD(&fs_devs->alloc_list);
149 INIT_LIST_HEAD(&fs_devs->list);
150
151 return fs_devs;
152 }
153
154 /**
155 * alloc_fs_devices - allocate struct btrfs_fs_devices
156 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
157 * generated.
158 *
159 * Return: a pointer to a new &struct btrfs_fs_devices on success;
160 * ERR_PTR() on error. Returned struct is not linked onto any lists and
161 * can be destroyed with kfree() right away.
162 */
alloc_fs_devices(const u8 * fsid)163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
164 {
165 struct btrfs_fs_devices *fs_devs;
166
167 fs_devs = __alloc_fs_devices();
168 if (IS_ERR(fs_devs))
169 return fs_devs;
170
171 if (fsid)
172 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
173 else
174 generate_random_uuid(fs_devs->fsid);
175
176 return fs_devs;
177 }
178
free_fs_devices(struct btrfs_fs_devices * fs_devices)179 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
180 {
181 struct btrfs_device *device;
182 WARN_ON(fs_devices->opened);
183 while (!list_empty(&fs_devices->devices)) {
184 device = list_entry(fs_devices->devices.next,
185 struct btrfs_device, dev_list);
186 list_del(&device->dev_list);
187 rcu_string_free(device->name);
188 kfree(device);
189 }
190 kfree(fs_devices);
191 }
192
btrfs_kobject_uevent(struct block_device * bdev,enum kobject_action action)193 static void btrfs_kobject_uevent(struct block_device *bdev,
194 enum kobject_action action)
195 {
196 int ret;
197
198 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
199 if (ret)
200 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
201 action,
202 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
203 &disk_to_dev(bdev->bd_disk)->kobj);
204 }
205
btrfs_cleanup_fs_uuids(void)206 void btrfs_cleanup_fs_uuids(void)
207 {
208 struct btrfs_fs_devices *fs_devices;
209
210 while (!list_empty(&fs_uuids)) {
211 fs_devices = list_entry(fs_uuids.next,
212 struct btrfs_fs_devices, list);
213 list_del(&fs_devices->list);
214 free_fs_devices(fs_devices);
215 }
216 }
217
__alloc_device(void)218 static struct btrfs_device *__alloc_device(void)
219 {
220 struct btrfs_device *dev;
221
222 dev = kzalloc(sizeof(*dev), GFP_NOFS);
223 if (!dev)
224 return ERR_PTR(-ENOMEM);
225
226 INIT_LIST_HEAD(&dev->dev_list);
227 INIT_LIST_HEAD(&dev->dev_alloc_list);
228 INIT_LIST_HEAD(&dev->resized_list);
229
230 spin_lock_init(&dev->io_lock);
231
232 spin_lock_init(&dev->reada_lock);
233 atomic_set(&dev->reada_in_flight, 0);
234 atomic_set(&dev->dev_stats_ccnt, 0);
235 btrfs_device_data_ordered_init(dev);
236 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
237 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
238
239 return dev;
240 }
241
__find_device(struct list_head * head,u64 devid,u8 * uuid)242 static noinline struct btrfs_device *__find_device(struct list_head *head,
243 u64 devid, u8 *uuid)
244 {
245 struct btrfs_device *dev;
246
247 list_for_each_entry(dev, head, dev_list) {
248 if (dev->devid == devid &&
249 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
250 return dev;
251 }
252 }
253 return NULL;
254 }
255
find_fsid(u8 * fsid)256 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
257 {
258 struct btrfs_fs_devices *fs_devices;
259
260 list_for_each_entry(fs_devices, &fs_uuids, list) {
261 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
262 return fs_devices;
263 }
264 return NULL;
265 }
266
267 static int
btrfs_get_bdev_and_sb(const char * device_path,fmode_t flags,void * holder,int flush,struct block_device ** bdev,struct buffer_head ** bh)268 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
269 int flush, struct block_device **bdev,
270 struct buffer_head **bh)
271 {
272 int ret;
273
274 *bdev = blkdev_get_by_path(device_path, flags, holder);
275
276 if (IS_ERR(*bdev)) {
277 ret = PTR_ERR(*bdev);
278 goto error;
279 }
280
281 if (flush)
282 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
283 ret = set_blocksize(*bdev, 4096);
284 if (ret) {
285 blkdev_put(*bdev, flags);
286 goto error;
287 }
288 invalidate_bdev(*bdev);
289 *bh = btrfs_read_dev_super(*bdev);
290 if (IS_ERR(*bh)) {
291 ret = PTR_ERR(*bh);
292 blkdev_put(*bdev, flags);
293 goto error;
294 }
295
296 return 0;
297
298 error:
299 *bdev = NULL;
300 *bh = NULL;
301 return ret;
302 }
303
requeue_list(struct btrfs_pending_bios * pending_bios,struct bio * head,struct bio * tail)304 static void requeue_list(struct btrfs_pending_bios *pending_bios,
305 struct bio *head, struct bio *tail)
306 {
307
308 struct bio *old_head;
309
310 old_head = pending_bios->head;
311 pending_bios->head = head;
312 if (pending_bios->tail)
313 tail->bi_next = old_head;
314 else
315 pending_bios->tail = tail;
316 }
317
318 /*
319 * we try to collect pending bios for a device so we don't get a large
320 * number of procs sending bios down to the same device. This greatly
321 * improves the schedulers ability to collect and merge the bios.
322 *
323 * But, it also turns into a long list of bios to process and that is sure
324 * to eventually make the worker thread block. The solution here is to
325 * make some progress and then put this work struct back at the end of
326 * the list if the block device is congested. This way, multiple devices
327 * can make progress from a single worker thread.
328 */
run_scheduled_bios(struct btrfs_device * device)329 static noinline void run_scheduled_bios(struct btrfs_device *device)
330 {
331 struct bio *pending;
332 struct backing_dev_info *bdi;
333 struct btrfs_fs_info *fs_info;
334 struct btrfs_pending_bios *pending_bios;
335 struct bio *tail;
336 struct bio *cur;
337 int again = 0;
338 unsigned long num_run;
339 unsigned long batch_run = 0;
340 unsigned long limit;
341 unsigned long last_waited = 0;
342 int force_reg = 0;
343 int sync_pending = 0;
344 struct blk_plug plug;
345
346 /*
347 * this function runs all the bios we've collected for
348 * a particular device. We don't want to wander off to
349 * another device without first sending all of these down.
350 * So, setup a plug here and finish it off before we return
351 */
352 blk_start_plug(&plug);
353
354 bdi = blk_get_backing_dev_info(device->bdev);
355 fs_info = device->dev_root->fs_info;
356 limit = btrfs_async_submit_limit(fs_info);
357 limit = limit * 2 / 3;
358
359 loop:
360 spin_lock(&device->io_lock);
361
362 loop_lock:
363 num_run = 0;
364
365 /* take all the bios off the list at once and process them
366 * later on (without the lock held). But, remember the
367 * tail and other pointers so the bios can be properly reinserted
368 * into the list if we hit congestion
369 */
370 if (!force_reg && device->pending_sync_bios.head) {
371 pending_bios = &device->pending_sync_bios;
372 force_reg = 1;
373 } else {
374 pending_bios = &device->pending_bios;
375 force_reg = 0;
376 }
377
378 pending = pending_bios->head;
379 tail = pending_bios->tail;
380 WARN_ON(pending && !tail);
381
382 /*
383 * if pending was null this time around, no bios need processing
384 * at all and we can stop. Otherwise it'll loop back up again
385 * and do an additional check so no bios are missed.
386 *
387 * device->running_pending is used to synchronize with the
388 * schedule_bio code.
389 */
390 if (device->pending_sync_bios.head == NULL &&
391 device->pending_bios.head == NULL) {
392 again = 0;
393 device->running_pending = 0;
394 } else {
395 again = 1;
396 device->running_pending = 1;
397 }
398
399 pending_bios->head = NULL;
400 pending_bios->tail = NULL;
401
402 spin_unlock(&device->io_lock);
403
404 while (pending) {
405
406 rmb();
407 /* we want to work on both lists, but do more bios on the
408 * sync list than the regular list
409 */
410 if ((num_run > 32 &&
411 pending_bios != &device->pending_sync_bios &&
412 device->pending_sync_bios.head) ||
413 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
414 device->pending_bios.head)) {
415 spin_lock(&device->io_lock);
416 requeue_list(pending_bios, pending, tail);
417 goto loop_lock;
418 }
419
420 cur = pending;
421 pending = pending->bi_next;
422 cur->bi_next = NULL;
423
424 /*
425 * atomic_dec_return implies a barrier for waitqueue_active
426 */
427 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
428 waitqueue_active(&fs_info->async_submit_wait))
429 wake_up(&fs_info->async_submit_wait);
430
431 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
432
433 /*
434 * if we're doing the sync list, record that our
435 * plug has some sync requests on it
436 *
437 * If we're doing the regular list and there are
438 * sync requests sitting around, unplug before
439 * we add more
440 */
441 if (pending_bios == &device->pending_sync_bios) {
442 sync_pending = 1;
443 } else if (sync_pending) {
444 blk_finish_plug(&plug);
445 blk_start_plug(&plug);
446 sync_pending = 0;
447 }
448
449 btrfsic_submit_bio(cur->bi_rw, cur);
450 num_run++;
451 batch_run++;
452
453 cond_resched();
454
455 /*
456 * we made progress, there is more work to do and the bdi
457 * is now congested. Back off and let other work structs
458 * run instead
459 */
460 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
461 fs_info->fs_devices->open_devices > 1) {
462 struct io_context *ioc;
463
464 ioc = current->io_context;
465
466 /*
467 * the main goal here is that we don't want to
468 * block if we're going to be able to submit
469 * more requests without blocking.
470 *
471 * This code does two great things, it pokes into
472 * the elevator code from a filesystem _and_
473 * it makes assumptions about how batching works.
474 */
475 if (ioc && ioc->nr_batch_requests > 0 &&
476 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
477 (last_waited == 0 ||
478 ioc->last_waited == last_waited)) {
479 /*
480 * we want to go through our batch of
481 * requests and stop. So, we copy out
482 * the ioc->last_waited time and test
483 * against it before looping
484 */
485 last_waited = ioc->last_waited;
486 cond_resched();
487 continue;
488 }
489 spin_lock(&device->io_lock);
490 requeue_list(pending_bios, pending, tail);
491 device->running_pending = 1;
492
493 spin_unlock(&device->io_lock);
494 btrfs_queue_work(fs_info->submit_workers,
495 &device->work);
496 goto done;
497 }
498 /* unplug every 64 requests just for good measure */
499 if (batch_run % 64 == 0) {
500 blk_finish_plug(&plug);
501 blk_start_plug(&plug);
502 sync_pending = 0;
503 }
504 }
505
506 cond_resched();
507 if (again)
508 goto loop;
509
510 spin_lock(&device->io_lock);
511 if (device->pending_bios.head || device->pending_sync_bios.head)
512 goto loop_lock;
513 spin_unlock(&device->io_lock);
514
515 done:
516 blk_finish_plug(&plug);
517 }
518
pending_bios_fn(struct btrfs_work * work)519 static void pending_bios_fn(struct btrfs_work *work)
520 {
521 struct btrfs_device *device;
522
523 device = container_of(work, struct btrfs_device, work);
524 run_scheduled_bios(device);
525 }
526
527
btrfs_free_stale_device(struct btrfs_device * cur_dev)528 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
529 {
530 struct btrfs_fs_devices *fs_devs;
531 struct btrfs_device *dev;
532
533 if (!cur_dev->name)
534 return;
535
536 list_for_each_entry(fs_devs, &fs_uuids, list) {
537 int del = 1;
538
539 if (fs_devs->opened)
540 continue;
541 if (fs_devs->seeding)
542 continue;
543
544 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
545
546 if (dev == cur_dev)
547 continue;
548 if (!dev->name)
549 continue;
550
551 /*
552 * Todo: This won't be enough. What if the same device
553 * comes back (with new uuid and) with its mapper path?
554 * But for now, this does help as mostly an admin will
555 * either use mapper or non mapper path throughout.
556 */
557 rcu_read_lock();
558 del = strcmp(rcu_str_deref(dev->name),
559 rcu_str_deref(cur_dev->name));
560 rcu_read_unlock();
561 if (!del)
562 break;
563 }
564
565 if (!del) {
566 /* delete the stale device */
567 if (fs_devs->num_devices == 1) {
568 btrfs_sysfs_remove_fsid(fs_devs);
569 list_del(&fs_devs->list);
570 free_fs_devices(fs_devs);
571 break;
572 } else {
573 fs_devs->num_devices--;
574 list_del(&dev->dev_list);
575 rcu_string_free(dev->name);
576 kfree(dev);
577 }
578 break;
579 }
580 }
581 }
582
583 /*
584 * Add new device to list of registered devices
585 *
586 * Returns:
587 * 1 - first time device is seen
588 * 0 - device already known
589 * < 0 - error
590 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,u64 devid,struct btrfs_fs_devices ** fs_devices_ret)591 static noinline int device_list_add(const char *path,
592 struct btrfs_super_block *disk_super,
593 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
594 {
595 struct btrfs_device *device;
596 struct btrfs_fs_devices *fs_devices;
597 struct rcu_string *name;
598 int ret = 0;
599 u64 found_transid = btrfs_super_generation(disk_super);
600
601 fs_devices = find_fsid(disk_super->fsid);
602 if (!fs_devices) {
603 fs_devices = alloc_fs_devices(disk_super->fsid);
604 if (IS_ERR(fs_devices))
605 return PTR_ERR(fs_devices);
606
607 list_add(&fs_devices->list, &fs_uuids);
608
609 device = NULL;
610 } else {
611 device = __find_device(&fs_devices->devices, devid,
612 disk_super->dev_item.uuid);
613 }
614
615 if (!device) {
616 if (fs_devices->opened)
617 return -EBUSY;
618
619 device = btrfs_alloc_device(NULL, &devid,
620 disk_super->dev_item.uuid);
621 if (IS_ERR(device)) {
622 /* we can safely leave the fs_devices entry around */
623 return PTR_ERR(device);
624 }
625
626 name = rcu_string_strdup(path, GFP_NOFS);
627 if (!name) {
628 kfree(device);
629 return -ENOMEM;
630 }
631 rcu_assign_pointer(device->name, name);
632
633 mutex_lock(&fs_devices->device_list_mutex);
634 list_add_rcu(&device->dev_list, &fs_devices->devices);
635 fs_devices->num_devices++;
636 mutex_unlock(&fs_devices->device_list_mutex);
637
638 ret = 1;
639 device->fs_devices = fs_devices;
640 } else if (!device->name || strcmp(device->name->str, path)) {
641 /*
642 * When FS is already mounted.
643 * 1. If you are here and if the device->name is NULL that
644 * means this device was missing at time of FS mount.
645 * 2. If you are here and if the device->name is different
646 * from 'path' that means either
647 * a. The same device disappeared and reappeared with
648 * different name. or
649 * b. The missing-disk-which-was-replaced, has
650 * reappeared now.
651 *
652 * We must allow 1 and 2a above. But 2b would be a spurious
653 * and unintentional.
654 *
655 * Further in case of 1 and 2a above, the disk at 'path'
656 * would have missed some transaction when it was away and
657 * in case of 2a the stale bdev has to be updated as well.
658 * 2b must not be allowed at all time.
659 */
660
661 /*
662 * For now, we do allow update to btrfs_fs_device through the
663 * btrfs dev scan cli after FS has been mounted. We're still
664 * tracking a problem where systems fail mount by subvolume id
665 * when we reject replacement on a mounted FS.
666 */
667 if (!fs_devices->opened && found_transid < device->generation) {
668 /*
669 * That is if the FS is _not_ mounted and if you
670 * are here, that means there is more than one
671 * disk with same uuid and devid.We keep the one
672 * with larger generation number or the last-in if
673 * generation are equal.
674 */
675 return -EEXIST;
676 }
677
678 name = rcu_string_strdup(path, GFP_NOFS);
679 if (!name)
680 return -ENOMEM;
681 rcu_string_free(device->name);
682 rcu_assign_pointer(device->name, name);
683 if (device->missing) {
684 fs_devices->missing_devices--;
685 device->missing = 0;
686 }
687 }
688
689 /*
690 * Unmount does not free the btrfs_device struct but would zero
691 * generation along with most of the other members. So just update
692 * it back. We need it to pick the disk with largest generation
693 * (as above).
694 */
695 if (!fs_devices->opened)
696 device->generation = found_transid;
697
698 /*
699 * if there is new btrfs on an already registered device,
700 * then remove the stale device entry.
701 */
702 btrfs_free_stale_device(device);
703
704 *fs_devices_ret = fs_devices;
705
706 return ret;
707 }
708
clone_fs_devices(struct btrfs_fs_devices * orig)709 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
710 {
711 struct btrfs_fs_devices *fs_devices;
712 struct btrfs_device *device;
713 struct btrfs_device *orig_dev;
714
715 fs_devices = alloc_fs_devices(orig->fsid);
716 if (IS_ERR(fs_devices))
717 return fs_devices;
718
719 mutex_lock(&orig->device_list_mutex);
720 fs_devices->total_devices = orig->total_devices;
721
722 /* We have held the volume lock, it is safe to get the devices. */
723 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
724 struct rcu_string *name;
725
726 device = btrfs_alloc_device(NULL, &orig_dev->devid,
727 orig_dev->uuid);
728 if (IS_ERR(device))
729 goto error;
730
731 /*
732 * This is ok to do without rcu read locked because we hold the
733 * uuid mutex so nothing we touch in here is going to disappear.
734 */
735 if (orig_dev->name) {
736 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
737 if (!name) {
738 kfree(device);
739 goto error;
740 }
741 rcu_assign_pointer(device->name, name);
742 }
743
744 list_add(&device->dev_list, &fs_devices->devices);
745 device->fs_devices = fs_devices;
746 fs_devices->num_devices++;
747 }
748 mutex_unlock(&orig->device_list_mutex);
749 return fs_devices;
750 error:
751 mutex_unlock(&orig->device_list_mutex);
752 free_fs_devices(fs_devices);
753 return ERR_PTR(-ENOMEM);
754 }
755
btrfs_close_extra_devices(struct btrfs_fs_devices * fs_devices,int step)756 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
757 {
758 struct btrfs_device *device, *next;
759 struct btrfs_device *latest_dev = NULL;
760
761 mutex_lock(&uuid_mutex);
762 again:
763 /* This is the initialized path, it is safe to release the devices. */
764 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
765 if (device->in_fs_metadata) {
766 if (!device->is_tgtdev_for_dev_replace &&
767 (!latest_dev ||
768 device->generation > latest_dev->generation)) {
769 latest_dev = device;
770 }
771 continue;
772 }
773
774 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
775 /*
776 * In the first step, keep the device which has
777 * the correct fsid and the devid that is used
778 * for the dev_replace procedure.
779 * In the second step, the dev_replace state is
780 * read from the device tree and it is known
781 * whether the procedure is really active or
782 * not, which means whether this device is
783 * used or whether it should be removed.
784 */
785 if (step == 0 || device->is_tgtdev_for_dev_replace) {
786 continue;
787 }
788 }
789 if (device->bdev) {
790 blkdev_put(device->bdev, device->mode);
791 device->bdev = NULL;
792 fs_devices->open_devices--;
793 }
794 if (device->writeable) {
795 list_del_init(&device->dev_alloc_list);
796 device->writeable = 0;
797 if (!device->is_tgtdev_for_dev_replace)
798 fs_devices->rw_devices--;
799 }
800 list_del_init(&device->dev_list);
801 fs_devices->num_devices--;
802 rcu_string_free(device->name);
803 kfree(device);
804 }
805
806 if (fs_devices->seed) {
807 fs_devices = fs_devices->seed;
808 goto again;
809 }
810
811 fs_devices->latest_bdev = latest_dev->bdev;
812
813 mutex_unlock(&uuid_mutex);
814 }
815
__free_device(struct work_struct * work)816 static void __free_device(struct work_struct *work)
817 {
818 struct btrfs_device *device;
819
820 device = container_of(work, struct btrfs_device, rcu_work);
821
822 if (device->bdev)
823 blkdev_put(device->bdev, device->mode);
824
825 rcu_string_free(device->name);
826 kfree(device);
827 }
828
free_device(struct rcu_head * head)829 static void free_device(struct rcu_head *head)
830 {
831 struct btrfs_device *device;
832
833 device = container_of(head, struct btrfs_device, rcu);
834
835 INIT_WORK(&device->rcu_work, __free_device);
836 schedule_work(&device->rcu_work);
837 }
838
__btrfs_close_devices(struct btrfs_fs_devices * fs_devices)839 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
840 {
841 struct btrfs_device *device, *tmp;
842
843 if (--fs_devices->opened > 0)
844 return 0;
845
846 mutex_lock(&fs_devices->device_list_mutex);
847 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
848 btrfs_close_one_device(device);
849 }
850 mutex_unlock(&fs_devices->device_list_mutex);
851
852 WARN_ON(fs_devices->open_devices);
853 WARN_ON(fs_devices->rw_devices);
854 fs_devices->opened = 0;
855 fs_devices->seeding = 0;
856
857 return 0;
858 }
859
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)860 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
861 {
862 struct btrfs_fs_devices *seed_devices = NULL;
863 int ret;
864
865 mutex_lock(&uuid_mutex);
866 ret = __btrfs_close_devices(fs_devices);
867 if (!fs_devices->opened) {
868 seed_devices = fs_devices->seed;
869 fs_devices->seed = NULL;
870 }
871 mutex_unlock(&uuid_mutex);
872
873 while (seed_devices) {
874 fs_devices = seed_devices;
875 seed_devices = fs_devices->seed;
876 __btrfs_close_devices(fs_devices);
877 free_fs_devices(fs_devices);
878 }
879 /*
880 * Wait for rcu kworkers under __btrfs_close_devices
881 * to finish all blkdev_puts so device is really
882 * free when umount is done.
883 */
884 rcu_barrier();
885 return ret;
886 }
887
__btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)888 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
889 fmode_t flags, void *holder)
890 {
891 struct request_queue *q;
892 struct block_device *bdev;
893 struct list_head *head = &fs_devices->devices;
894 struct btrfs_device *device;
895 struct btrfs_device *latest_dev = NULL;
896 struct buffer_head *bh;
897 struct btrfs_super_block *disk_super;
898 u64 devid;
899 int seeding = 1;
900 int ret = 0;
901
902 flags |= FMODE_EXCL;
903
904 list_for_each_entry(device, head, dev_list) {
905 if (device->bdev)
906 continue;
907 if (!device->name)
908 continue;
909
910 /* Just open everything we can; ignore failures here */
911 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
912 &bdev, &bh))
913 continue;
914
915 disk_super = (struct btrfs_super_block *)bh->b_data;
916 devid = btrfs_stack_device_id(&disk_super->dev_item);
917 if (devid != device->devid)
918 goto error_brelse;
919
920 if (memcmp(device->uuid, disk_super->dev_item.uuid,
921 BTRFS_UUID_SIZE))
922 goto error_brelse;
923
924 device->generation = btrfs_super_generation(disk_super);
925 if (!latest_dev ||
926 device->generation > latest_dev->generation)
927 latest_dev = device;
928
929 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
930 device->writeable = 0;
931 } else {
932 device->writeable = !bdev_read_only(bdev);
933 seeding = 0;
934 }
935
936 q = bdev_get_queue(bdev);
937 if (blk_queue_discard(q))
938 device->can_discard = 1;
939
940 device->bdev = bdev;
941 device->in_fs_metadata = 0;
942 device->mode = flags;
943
944 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
945 fs_devices->rotating = 1;
946
947 fs_devices->open_devices++;
948 if (device->writeable &&
949 device->devid != BTRFS_DEV_REPLACE_DEVID) {
950 fs_devices->rw_devices++;
951 list_add(&device->dev_alloc_list,
952 &fs_devices->alloc_list);
953 }
954 brelse(bh);
955 continue;
956
957 error_brelse:
958 brelse(bh);
959 blkdev_put(bdev, flags);
960 continue;
961 }
962 if (fs_devices->open_devices == 0) {
963 ret = -EINVAL;
964 goto out;
965 }
966 fs_devices->seeding = seeding;
967 fs_devices->opened = 1;
968 fs_devices->latest_bdev = latest_dev->bdev;
969 fs_devices->total_rw_bytes = 0;
970 out:
971 return ret;
972 }
973
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)974 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
975 fmode_t flags, void *holder)
976 {
977 int ret;
978
979 mutex_lock(&uuid_mutex);
980 if (fs_devices->opened) {
981 fs_devices->opened++;
982 ret = 0;
983 } else {
984 ret = __btrfs_open_devices(fs_devices, flags, holder);
985 }
986 mutex_unlock(&uuid_mutex);
987 return ret;
988 }
989
990 /*
991 * Look for a btrfs signature on a device. This may be called out of the mount path
992 * and we are not allowed to call set_blocksize during the scan. The superblock
993 * is read via pagecache
994 */
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder,struct btrfs_fs_devices ** fs_devices_ret)995 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
996 struct btrfs_fs_devices **fs_devices_ret)
997 {
998 struct btrfs_super_block *disk_super;
999 struct block_device *bdev;
1000 struct page *page;
1001 void *p;
1002 int ret = -EINVAL;
1003 u64 devid;
1004 u64 transid;
1005 u64 total_devices;
1006 u64 bytenr;
1007 pgoff_t index;
1008
1009 /*
1010 * we would like to check all the supers, but that would make
1011 * a btrfs mount succeed after a mkfs from a different FS.
1012 * So, we need to add a special mount option to scan for
1013 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1014 */
1015 bytenr = btrfs_sb_offset(0);
1016 flags |= FMODE_EXCL;
1017 mutex_lock(&uuid_mutex);
1018
1019 bdev = blkdev_get_by_path(path, flags, holder);
1020
1021 if (IS_ERR(bdev)) {
1022 ret = PTR_ERR(bdev);
1023 goto error;
1024 }
1025
1026 /* make sure our super fits in the device */
1027 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
1028 goto error_bdev_put;
1029
1030 /* make sure our super fits in the page */
1031 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
1032 goto error_bdev_put;
1033
1034 /* make sure our super doesn't straddle pages on disk */
1035 index = bytenr >> PAGE_CACHE_SHIFT;
1036 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
1037 goto error_bdev_put;
1038
1039 /* pull in the page with our super */
1040 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1041 index, GFP_NOFS);
1042
1043 if (IS_ERR_OR_NULL(page))
1044 goto error_bdev_put;
1045
1046 p = kmap(page);
1047
1048 /* align our pointer to the offset of the super block */
1049 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
1050
1051 if (btrfs_super_bytenr(disk_super) != bytenr ||
1052 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
1053 goto error_unmap;
1054
1055 devid = btrfs_stack_device_id(&disk_super->dev_item);
1056 transid = btrfs_super_generation(disk_super);
1057 total_devices = btrfs_super_num_devices(disk_super);
1058
1059 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1060 if (ret > 0) {
1061 if (disk_super->label[0]) {
1062 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1063 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1064 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1065 } else {
1066 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1067 }
1068
1069 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1070 ret = 0;
1071 }
1072 if (!ret && fs_devices_ret)
1073 (*fs_devices_ret)->total_devices = total_devices;
1074
1075 error_unmap:
1076 kunmap(page);
1077 page_cache_release(page);
1078
1079 error_bdev_put:
1080 blkdev_put(bdev, flags);
1081 error:
1082 mutex_unlock(&uuid_mutex);
1083 return ret;
1084 }
1085
1086 /* helper to account the used device space in the range */
btrfs_account_dev_extents_size(struct btrfs_device * device,u64 start,u64 end,u64 * length)1087 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1088 u64 end, u64 *length)
1089 {
1090 struct btrfs_key key;
1091 struct btrfs_root *root = device->dev_root;
1092 struct btrfs_dev_extent *dev_extent;
1093 struct btrfs_path *path;
1094 u64 extent_end;
1095 int ret;
1096 int slot;
1097 struct extent_buffer *l;
1098
1099 *length = 0;
1100
1101 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1102 return 0;
1103
1104 path = btrfs_alloc_path();
1105 if (!path)
1106 return -ENOMEM;
1107 path->reada = 2;
1108
1109 key.objectid = device->devid;
1110 key.offset = start;
1111 key.type = BTRFS_DEV_EXTENT_KEY;
1112
1113 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1114 if (ret < 0)
1115 goto out;
1116 if (ret > 0) {
1117 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1118 if (ret < 0)
1119 goto out;
1120 }
1121
1122 while (1) {
1123 l = path->nodes[0];
1124 slot = path->slots[0];
1125 if (slot >= btrfs_header_nritems(l)) {
1126 ret = btrfs_next_leaf(root, path);
1127 if (ret == 0)
1128 continue;
1129 if (ret < 0)
1130 goto out;
1131
1132 break;
1133 }
1134 btrfs_item_key_to_cpu(l, &key, slot);
1135
1136 if (key.objectid < device->devid)
1137 goto next;
1138
1139 if (key.objectid > device->devid)
1140 break;
1141
1142 if (key.type != BTRFS_DEV_EXTENT_KEY)
1143 goto next;
1144
1145 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1146 extent_end = key.offset + btrfs_dev_extent_length(l,
1147 dev_extent);
1148 if (key.offset <= start && extent_end > end) {
1149 *length = end - start + 1;
1150 break;
1151 } else if (key.offset <= start && extent_end > start)
1152 *length += extent_end - start;
1153 else if (key.offset > start && extent_end <= end)
1154 *length += extent_end - key.offset;
1155 else if (key.offset > start && key.offset <= end) {
1156 *length += end - key.offset + 1;
1157 break;
1158 } else if (key.offset > end)
1159 break;
1160
1161 next:
1162 path->slots[0]++;
1163 }
1164 ret = 0;
1165 out:
1166 btrfs_free_path(path);
1167 return ret;
1168 }
1169
contains_pending_extent(struct btrfs_transaction * transaction,struct btrfs_device * device,u64 * start,u64 len)1170 static int contains_pending_extent(struct btrfs_transaction *transaction,
1171 struct btrfs_device *device,
1172 u64 *start, u64 len)
1173 {
1174 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1175 struct extent_map *em;
1176 struct list_head *search_list = &fs_info->pinned_chunks;
1177 int ret = 0;
1178 u64 physical_start = *start;
1179
1180 if (transaction)
1181 search_list = &transaction->pending_chunks;
1182 again:
1183 list_for_each_entry(em, search_list, list) {
1184 struct map_lookup *map;
1185 int i;
1186
1187 map = em->map_lookup;
1188 for (i = 0; i < map->num_stripes; i++) {
1189 u64 end;
1190
1191 if (map->stripes[i].dev != device)
1192 continue;
1193 if (map->stripes[i].physical >= physical_start + len ||
1194 map->stripes[i].physical + em->orig_block_len <=
1195 physical_start)
1196 continue;
1197 /*
1198 * Make sure that while processing the pinned list we do
1199 * not override our *start with a lower value, because
1200 * we can have pinned chunks that fall within this
1201 * device hole and that have lower physical addresses
1202 * than the pending chunks we processed before. If we
1203 * do not take this special care we can end up getting
1204 * 2 pending chunks that start at the same physical
1205 * device offsets because the end offset of a pinned
1206 * chunk can be equal to the start offset of some
1207 * pending chunk.
1208 */
1209 end = map->stripes[i].physical + em->orig_block_len;
1210 if (end > *start) {
1211 *start = end;
1212 ret = 1;
1213 }
1214 }
1215 }
1216 if (search_list != &fs_info->pinned_chunks) {
1217 search_list = &fs_info->pinned_chunks;
1218 goto again;
1219 }
1220
1221 return ret;
1222 }
1223
1224
1225 /*
1226 * find_free_dev_extent_start - find free space in the specified device
1227 * @device: the device which we search the free space in
1228 * @num_bytes: the size of the free space that we need
1229 * @search_start: the position from which to begin the search
1230 * @start: store the start of the free space.
1231 * @len: the size of the free space. that we find, or the size
1232 * of the max free space if we don't find suitable free space
1233 *
1234 * this uses a pretty simple search, the expectation is that it is
1235 * called very infrequently and that a given device has a small number
1236 * of extents
1237 *
1238 * @start is used to store the start of the free space if we find. But if we
1239 * don't find suitable free space, it will be used to store the start position
1240 * of the max free space.
1241 *
1242 * @len is used to store the size of the free space that we find.
1243 * But if we don't find suitable free space, it is used to store the size of
1244 * the max free space.
1245 */
find_free_dev_extent_start(struct btrfs_transaction * transaction,struct btrfs_device * device,u64 num_bytes,u64 search_start,u64 * start,u64 * len)1246 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1247 struct btrfs_device *device, u64 num_bytes,
1248 u64 search_start, u64 *start, u64 *len)
1249 {
1250 struct btrfs_key key;
1251 struct btrfs_root *root = device->dev_root;
1252 struct btrfs_dev_extent *dev_extent;
1253 struct btrfs_path *path;
1254 u64 hole_size;
1255 u64 max_hole_start;
1256 u64 max_hole_size;
1257 u64 extent_end;
1258 u64 search_end = device->total_bytes;
1259 int ret;
1260 int slot;
1261 struct extent_buffer *l;
1262 u64 min_search_start;
1263
1264 /*
1265 * We don't want to overwrite the superblock on the drive nor any area
1266 * used by the boot loader (grub for example), so we make sure to start
1267 * at an offset of at least 1MB.
1268 */
1269 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1270 search_start = max(search_start, min_search_start);
1271
1272 path = btrfs_alloc_path();
1273 if (!path)
1274 return -ENOMEM;
1275
1276 max_hole_start = search_start;
1277 max_hole_size = 0;
1278
1279 again:
1280 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1281 ret = -ENOSPC;
1282 goto out;
1283 }
1284
1285 path->reada = 2;
1286 path->search_commit_root = 1;
1287 path->skip_locking = 1;
1288
1289 key.objectid = device->devid;
1290 key.offset = search_start;
1291 key.type = BTRFS_DEV_EXTENT_KEY;
1292
1293 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1294 if (ret < 0)
1295 goto out;
1296 if (ret > 0) {
1297 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1298 if (ret < 0)
1299 goto out;
1300 }
1301
1302 while (1) {
1303 l = path->nodes[0];
1304 slot = path->slots[0];
1305 if (slot >= btrfs_header_nritems(l)) {
1306 ret = btrfs_next_leaf(root, path);
1307 if (ret == 0)
1308 continue;
1309 if (ret < 0)
1310 goto out;
1311
1312 break;
1313 }
1314 btrfs_item_key_to_cpu(l, &key, slot);
1315
1316 if (key.objectid < device->devid)
1317 goto next;
1318
1319 if (key.objectid > device->devid)
1320 break;
1321
1322 if (key.type != BTRFS_DEV_EXTENT_KEY)
1323 goto next;
1324
1325 if (key.offset > search_start) {
1326 hole_size = key.offset - search_start;
1327
1328 /*
1329 * Have to check before we set max_hole_start, otherwise
1330 * we could end up sending back this offset anyway.
1331 */
1332 if (contains_pending_extent(transaction, device,
1333 &search_start,
1334 hole_size)) {
1335 if (key.offset >= search_start) {
1336 hole_size = key.offset - search_start;
1337 } else {
1338 WARN_ON_ONCE(1);
1339 hole_size = 0;
1340 }
1341 }
1342
1343 if (hole_size > max_hole_size) {
1344 max_hole_start = search_start;
1345 max_hole_size = hole_size;
1346 }
1347
1348 /*
1349 * If this free space is greater than which we need,
1350 * it must be the max free space that we have found
1351 * until now, so max_hole_start must point to the start
1352 * of this free space and the length of this free space
1353 * is stored in max_hole_size. Thus, we return
1354 * max_hole_start and max_hole_size and go back to the
1355 * caller.
1356 */
1357 if (hole_size >= num_bytes) {
1358 ret = 0;
1359 goto out;
1360 }
1361 }
1362
1363 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1364 extent_end = key.offset + btrfs_dev_extent_length(l,
1365 dev_extent);
1366 if (extent_end > search_start)
1367 search_start = extent_end;
1368 next:
1369 path->slots[0]++;
1370 cond_resched();
1371 }
1372
1373 /*
1374 * At this point, search_start should be the end of
1375 * allocated dev extents, and when shrinking the device,
1376 * search_end may be smaller than search_start.
1377 */
1378 if (search_end > search_start) {
1379 hole_size = search_end - search_start;
1380
1381 if (contains_pending_extent(transaction, device, &search_start,
1382 hole_size)) {
1383 btrfs_release_path(path);
1384 goto again;
1385 }
1386
1387 if (hole_size > max_hole_size) {
1388 max_hole_start = search_start;
1389 max_hole_size = hole_size;
1390 }
1391 }
1392
1393 /* See above. */
1394 if (max_hole_size < num_bytes)
1395 ret = -ENOSPC;
1396 else
1397 ret = 0;
1398
1399 out:
1400 btrfs_free_path(path);
1401 *start = max_hole_start;
1402 if (len)
1403 *len = max_hole_size;
1404 return ret;
1405 }
1406
find_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1407 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1408 struct btrfs_device *device, u64 num_bytes,
1409 u64 *start, u64 *len)
1410 {
1411 /* FIXME use last free of some kind */
1412 return find_free_dev_extent_start(trans->transaction, device,
1413 num_bytes, 0, start, len);
1414 }
1415
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1416 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1417 struct btrfs_device *device,
1418 u64 start, u64 *dev_extent_len)
1419 {
1420 int ret;
1421 struct btrfs_path *path;
1422 struct btrfs_root *root = device->dev_root;
1423 struct btrfs_key key;
1424 struct btrfs_key found_key;
1425 struct extent_buffer *leaf = NULL;
1426 struct btrfs_dev_extent *extent = NULL;
1427
1428 path = btrfs_alloc_path();
1429 if (!path)
1430 return -ENOMEM;
1431
1432 key.objectid = device->devid;
1433 key.offset = start;
1434 key.type = BTRFS_DEV_EXTENT_KEY;
1435 again:
1436 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1437 if (ret > 0) {
1438 ret = btrfs_previous_item(root, path, key.objectid,
1439 BTRFS_DEV_EXTENT_KEY);
1440 if (ret)
1441 goto out;
1442 leaf = path->nodes[0];
1443 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1444 extent = btrfs_item_ptr(leaf, path->slots[0],
1445 struct btrfs_dev_extent);
1446 BUG_ON(found_key.offset > start || found_key.offset +
1447 btrfs_dev_extent_length(leaf, extent) < start);
1448 key = found_key;
1449 btrfs_release_path(path);
1450 goto again;
1451 } else if (ret == 0) {
1452 leaf = path->nodes[0];
1453 extent = btrfs_item_ptr(leaf, path->slots[0],
1454 struct btrfs_dev_extent);
1455 } else {
1456 btrfs_std_error(root->fs_info, ret, "Slot search failed");
1457 goto out;
1458 }
1459
1460 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1461
1462 ret = btrfs_del_item(trans, root, path);
1463 if (ret) {
1464 btrfs_std_error(root->fs_info, ret,
1465 "Failed to remove dev extent item");
1466 } else {
1467 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1468 }
1469 out:
1470 btrfs_free_path(path);
1471 return ret;
1472 }
1473
btrfs_alloc_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_tree,u64 chunk_objectid,u64 chunk_offset,u64 start,u64 num_bytes)1474 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1475 struct btrfs_device *device,
1476 u64 chunk_tree, u64 chunk_objectid,
1477 u64 chunk_offset, u64 start, u64 num_bytes)
1478 {
1479 int ret;
1480 struct btrfs_path *path;
1481 struct btrfs_root *root = device->dev_root;
1482 struct btrfs_dev_extent *extent;
1483 struct extent_buffer *leaf;
1484 struct btrfs_key key;
1485
1486 WARN_ON(!device->in_fs_metadata);
1487 WARN_ON(device->is_tgtdev_for_dev_replace);
1488 path = btrfs_alloc_path();
1489 if (!path)
1490 return -ENOMEM;
1491
1492 key.objectid = device->devid;
1493 key.offset = start;
1494 key.type = BTRFS_DEV_EXTENT_KEY;
1495 ret = btrfs_insert_empty_item(trans, root, path, &key,
1496 sizeof(*extent));
1497 if (ret)
1498 goto out;
1499
1500 leaf = path->nodes[0];
1501 extent = btrfs_item_ptr(leaf, path->slots[0],
1502 struct btrfs_dev_extent);
1503 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1504 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1505 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1506
1507 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1508 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1509
1510 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1511 btrfs_mark_buffer_dirty(leaf);
1512 out:
1513 btrfs_free_path(path);
1514 return ret;
1515 }
1516
find_next_chunk(struct btrfs_fs_info * fs_info)1517 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1518 {
1519 struct extent_map_tree *em_tree;
1520 struct extent_map *em;
1521 struct rb_node *n;
1522 u64 ret = 0;
1523
1524 em_tree = &fs_info->mapping_tree.map_tree;
1525 read_lock(&em_tree->lock);
1526 n = rb_last(&em_tree->map);
1527 if (n) {
1528 em = rb_entry(n, struct extent_map, rb_node);
1529 ret = em->start + em->len;
1530 }
1531 read_unlock(&em_tree->lock);
1532
1533 return ret;
1534 }
1535
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1536 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1537 u64 *devid_ret)
1538 {
1539 int ret;
1540 struct btrfs_key key;
1541 struct btrfs_key found_key;
1542 struct btrfs_path *path;
1543
1544 path = btrfs_alloc_path();
1545 if (!path)
1546 return -ENOMEM;
1547
1548 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1549 key.type = BTRFS_DEV_ITEM_KEY;
1550 key.offset = (u64)-1;
1551
1552 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1553 if (ret < 0)
1554 goto error;
1555
1556 BUG_ON(ret == 0); /* Corruption */
1557
1558 ret = btrfs_previous_item(fs_info->chunk_root, path,
1559 BTRFS_DEV_ITEMS_OBJECTID,
1560 BTRFS_DEV_ITEM_KEY);
1561 if (ret) {
1562 *devid_ret = 1;
1563 } else {
1564 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1565 path->slots[0]);
1566 *devid_ret = found_key.offset + 1;
1567 }
1568 ret = 0;
1569 error:
1570 btrfs_free_path(path);
1571 return ret;
1572 }
1573
1574 /*
1575 * the device information is stored in the chunk root
1576 * the btrfs_device struct should be fully filled in
1577 */
btrfs_add_device(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_device * device)1578 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1579 struct btrfs_root *root,
1580 struct btrfs_device *device)
1581 {
1582 int ret;
1583 struct btrfs_path *path;
1584 struct btrfs_dev_item *dev_item;
1585 struct extent_buffer *leaf;
1586 struct btrfs_key key;
1587 unsigned long ptr;
1588
1589 root = root->fs_info->chunk_root;
1590
1591 path = btrfs_alloc_path();
1592 if (!path)
1593 return -ENOMEM;
1594
1595 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1596 key.type = BTRFS_DEV_ITEM_KEY;
1597 key.offset = device->devid;
1598
1599 ret = btrfs_insert_empty_item(trans, root, path, &key,
1600 sizeof(*dev_item));
1601 if (ret)
1602 goto out;
1603
1604 leaf = path->nodes[0];
1605 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1606
1607 btrfs_set_device_id(leaf, dev_item, device->devid);
1608 btrfs_set_device_generation(leaf, dev_item, 0);
1609 btrfs_set_device_type(leaf, dev_item, device->type);
1610 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1611 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1612 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1613 btrfs_set_device_total_bytes(leaf, dev_item,
1614 btrfs_device_get_disk_total_bytes(device));
1615 btrfs_set_device_bytes_used(leaf, dev_item,
1616 btrfs_device_get_bytes_used(device));
1617 btrfs_set_device_group(leaf, dev_item, 0);
1618 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1619 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1620 btrfs_set_device_start_offset(leaf, dev_item, 0);
1621
1622 ptr = btrfs_device_uuid(dev_item);
1623 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1624 ptr = btrfs_device_fsid(dev_item);
1625 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1626 btrfs_mark_buffer_dirty(leaf);
1627
1628 ret = 0;
1629 out:
1630 btrfs_free_path(path);
1631 return ret;
1632 }
1633
1634 /*
1635 * Function to update ctime/mtime for a given device path.
1636 * Mainly used for ctime/mtime based probe like libblkid.
1637 */
update_dev_time(char * path_name)1638 static void update_dev_time(char *path_name)
1639 {
1640 struct file *filp;
1641
1642 filp = filp_open(path_name, O_RDWR, 0);
1643 if (IS_ERR(filp))
1644 return;
1645 file_update_time(filp);
1646 filp_close(filp, NULL);
1647 return;
1648 }
1649
btrfs_rm_dev_item(struct btrfs_root * root,struct btrfs_device * device)1650 static int btrfs_rm_dev_item(struct btrfs_root *root,
1651 struct btrfs_device *device)
1652 {
1653 int ret;
1654 struct btrfs_path *path;
1655 struct btrfs_key key;
1656 struct btrfs_trans_handle *trans;
1657
1658 root = root->fs_info->chunk_root;
1659
1660 path = btrfs_alloc_path();
1661 if (!path)
1662 return -ENOMEM;
1663
1664 trans = btrfs_start_transaction(root, 0);
1665 if (IS_ERR(trans)) {
1666 btrfs_free_path(path);
1667 return PTR_ERR(trans);
1668 }
1669 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1670 key.type = BTRFS_DEV_ITEM_KEY;
1671 key.offset = device->devid;
1672
1673 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1674 if (ret < 0)
1675 goto out;
1676
1677 if (ret > 0) {
1678 ret = -ENOENT;
1679 goto out;
1680 }
1681
1682 ret = btrfs_del_item(trans, root, path);
1683 if (ret)
1684 goto out;
1685 out:
1686 btrfs_free_path(path);
1687 btrfs_commit_transaction(trans, root);
1688 return ret;
1689 }
1690
btrfs_rm_device(struct btrfs_root * root,char * device_path)1691 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1692 {
1693 struct btrfs_device *device;
1694 struct btrfs_device *next_device;
1695 struct block_device *bdev;
1696 struct buffer_head *bh = NULL;
1697 struct btrfs_super_block *disk_super;
1698 struct btrfs_fs_devices *cur_devices;
1699 u64 all_avail;
1700 u64 devid;
1701 u64 num_devices;
1702 u8 *dev_uuid;
1703 unsigned seq;
1704 int ret = 0;
1705 bool clear_super = false;
1706
1707 mutex_lock(&uuid_mutex);
1708
1709 do {
1710 seq = read_seqbegin(&root->fs_info->profiles_lock);
1711
1712 all_avail = root->fs_info->avail_data_alloc_bits |
1713 root->fs_info->avail_system_alloc_bits |
1714 root->fs_info->avail_metadata_alloc_bits;
1715 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1716
1717 num_devices = root->fs_info->fs_devices->num_devices;
1718 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1719 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1720 WARN_ON(num_devices < 1);
1721 num_devices--;
1722 }
1723 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1724
1725 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1726 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1727 goto out;
1728 }
1729
1730 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1731 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1732 goto out;
1733 }
1734
1735 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1736 root->fs_info->fs_devices->rw_devices <= 2) {
1737 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1738 goto out;
1739 }
1740 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1741 root->fs_info->fs_devices->rw_devices <= 3) {
1742 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1743 goto out;
1744 }
1745
1746 if (strcmp(device_path, "missing") == 0) {
1747 struct list_head *devices;
1748 struct btrfs_device *tmp;
1749
1750 device = NULL;
1751 devices = &root->fs_info->fs_devices->devices;
1752 /*
1753 * It is safe to read the devices since the volume_mutex
1754 * is held.
1755 */
1756 list_for_each_entry(tmp, devices, dev_list) {
1757 if (tmp->in_fs_metadata &&
1758 !tmp->is_tgtdev_for_dev_replace &&
1759 !tmp->bdev) {
1760 device = tmp;
1761 break;
1762 }
1763 }
1764 bdev = NULL;
1765 bh = NULL;
1766 disk_super = NULL;
1767 if (!device) {
1768 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1769 goto out;
1770 }
1771 } else {
1772 ret = btrfs_get_bdev_and_sb(device_path,
1773 FMODE_WRITE | FMODE_EXCL,
1774 root->fs_info->bdev_holder, 0,
1775 &bdev, &bh);
1776 if (ret)
1777 goto out;
1778 disk_super = (struct btrfs_super_block *)bh->b_data;
1779 devid = btrfs_stack_device_id(&disk_super->dev_item);
1780 dev_uuid = disk_super->dev_item.uuid;
1781 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1782 disk_super->fsid);
1783 if (!device) {
1784 ret = -ENOENT;
1785 goto error_brelse;
1786 }
1787 }
1788
1789 if (device->is_tgtdev_for_dev_replace) {
1790 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1791 goto error_brelse;
1792 }
1793
1794 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1795 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1796 goto error_brelse;
1797 }
1798
1799 if (device->writeable) {
1800 lock_chunks(root);
1801 list_del_init(&device->dev_alloc_list);
1802 device->fs_devices->rw_devices--;
1803 unlock_chunks(root);
1804 clear_super = true;
1805 }
1806
1807 mutex_unlock(&uuid_mutex);
1808 ret = btrfs_shrink_device(device, 0);
1809 mutex_lock(&uuid_mutex);
1810 if (ret)
1811 goto error_undo;
1812
1813 /*
1814 * TODO: the superblock still includes this device in its num_devices
1815 * counter although write_all_supers() is not locked out. This
1816 * could give a filesystem state which requires a degraded mount.
1817 */
1818 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1819 if (ret)
1820 goto error_undo;
1821
1822 device->in_fs_metadata = 0;
1823 btrfs_scrub_cancel_dev(root->fs_info, device);
1824
1825 /*
1826 * the device list mutex makes sure that we don't change
1827 * the device list while someone else is writing out all
1828 * the device supers. Whoever is writing all supers, should
1829 * lock the device list mutex before getting the number of
1830 * devices in the super block (super_copy). Conversely,
1831 * whoever updates the number of devices in the super block
1832 * (super_copy) should hold the device list mutex.
1833 */
1834
1835 cur_devices = device->fs_devices;
1836 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1837 list_del_rcu(&device->dev_list);
1838
1839 device->fs_devices->num_devices--;
1840 device->fs_devices->total_devices--;
1841
1842 if (device->missing)
1843 device->fs_devices->missing_devices--;
1844
1845 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1846 struct btrfs_device, dev_list);
1847 if (device->bdev == root->fs_info->sb->s_bdev)
1848 root->fs_info->sb->s_bdev = next_device->bdev;
1849 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1850 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1851
1852 if (device->bdev) {
1853 device->fs_devices->open_devices--;
1854 /* remove sysfs entry */
1855 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1856 }
1857
1858 call_rcu(&device->rcu, free_device);
1859
1860 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1861 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1862 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1863
1864 if (cur_devices->open_devices == 0) {
1865 struct btrfs_fs_devices *fs_devices;
1866 fs_devices = root->fs_info->fs_devices;
1867 while (fs_devices) {
1868 if (fs_devices->seed == cur_devices) {
1869 fs_devices->seed = cur_devices->seed;
1870 break;
1871 }
1872 fs_devices = fs_devices->seed;
1873 }
1874 cur_devices->seed = NULL;
1875 __btrfs_close_devices(cur_devices);
1876 free_fs_devices(cur_devices);
1877 }
1878
1879 root->fs_info->num_tolerated_disk_barrier_failures =
1880 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1881
1882 /*
1883 * at this point, the device is zero sized. We want to
1884 * remove it from the devices list and zero out the old super
1885 */
1886 if (clear_super && disk_super) {
1887 u64 bytenr;
1888 int i;
1889
1890 /* make sure this device isn't detected as part of
1891 * the FS anymore
1892 */
1893 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1894 set_buffer_dirty(bh);
1895 sync_dirty_buffer(bh);
1896
1897 /* clear the mirror copies of super block on the disk
1898 * being removed, 0th copy is been taken care above and
1899 * the below would take of the rest
1900 */
1901 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1902 bytenr = btrfs_sb_offset(i);
1903 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1904 i_size_read(bdev->bd_inode))
1905 break;
1906
1907 brelse(bh);
1908 bh = __bread(bdev, bytenr / 4096,
1909 BTRFS_SUPER_INFO_SIZE);
1910 if (!bh)
1911 continue;
1912
1913 disk_super = (struct btrfs_super_block *)bh->b_data;
1914
1915 if (btrfs_super_bytenr(disk_super) != bytenr ||
1916 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1917 continue;
1918 }
1919 memset(&disk_super->magic, 0,
1920 sizeof(disk_super->magic));
1921 set_buffer_dirty(bh);
1922 sync_dirty_buffer(bh);
1923 }
1924 }
1925
1926 ret = 0;
1927
1928 if (bdev) {
1929 /* Notify udev that device has changed */
1930 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1931
1932 /* Update ctime/mtime for device path for libblkid */
1933 update_dev_time(device_path);
1934 }
1935
1936 error_brelse:
1937 brelse(bh);
1938 if (bdev)
1939 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1940 out:
1941 mutex_unlock(&uuid_mutex);
1942 return ret;
1943 error_undo:
1944 if (device->writeable) {
1945 lock_chunks(root);
1946 list_add(&device->dev_alloc_list,
1947 &root->fs_info->fs_devices->alloc_list);
1948 device->fs_devices->rw_devices++;
1949 unlock_chunks(root);
1950 }
1951 goto error_brelse;
1952 }
1953
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info * fs_info,struct btrfs_device * srcdev)1954 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1955 struct btrfs_device *srcdev)
1956 {
1957 struct btrfs_fs_devices *fs_devices;
1958
1959 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1960
1961 /*
1962 * in case of fs with no seed, srcdev->fs_devices will point
1963 * to fs_devices of fs_info. However when the dev being replaced is
1964 * a seed dev it will point to the seed's local fs_devices. In short
1965 * srcdev will have its correct fs_devices in both the cases.
1966 */
1967 fs_devices = srcdev->fs_devices;
1968
1969 list_del_rcu(&srcdev->dev_list);
1970 list_del_rcu(&srcdev->dev_alloc_list);
1971 fs_devices->num_devices--;
1972 if (srcdev->missing)
1973 fs_devices->missing_devices--;
1974
1975 if (srcdev->writeable) {
1976 fs_devices->rw_devices--;
1977 /* zero out the old super if it is writable */
1978 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
1979 }
1980
1981 if (srcdev->bdev)
1982 fs_devices->open_devices--;
1983 }
1984
btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info * fs_info,struct btrfs_device * srcdev)1985 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1986 struct btrfs_device *srcdev)
1987 {
1988 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1989
1990 call_rcu(&srcdev->rcu, free_device);
1991
1992 /*
1993 * unless fs_devices is seed fs, num_devices shouldn't go
1994 * zero
1995 */
1996 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1997
1998 /* if this is no devs we rather delete the fs_devices */
1999 if (!fs_devices->num_devices) {
2000 struct btrfs_fs_devices *tmp_fs_devices;
2001
2002 tmp_fs_devices = fs_info->fs_devices;
2003 while (tmp_fs_devices) {
2004 if (tmp_fs_devices->seed == fs_devices) {
2005 tmp_fs_devices->seed = fs_devices->seed;
2006 break;
2007 }
2008 tmp_fs_devices = tmp_fs_devices->seed;
2009 }
2010 fs_devices->seed = NULL;
2011 __btrfs_close_devices(fs_devices);
2012 free_fs_devices(fs_devices);
2013 }
2014 }
2015
btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info * fs_info,struct btrfs_device * tgtdev)2016 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2017 struct btrfs_device *tgtdev)
2018 {
2019 struct btrfs_device *next_device;
2020
2021 mutex_lock(&uuid_mutex);
2022 WARN_ON(!tgtdev);
2023 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2024
2025 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2026
2027 if (tgtdev->bdev) {
2028 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2029 fs_info->fs_devices->open_devices--;
2030 }
2031 fs_info->fs_devices->num_devices--;
2032
2033 next_device = list_entry(fs_info->fs_devices->devices.next,
2034 struct btrfs_device, dev_list);
2035 if (tgtdev->bdev == fs_info->sb->s_bdev)
2036 fs_info->sb->s_bdev = next_device->bdev;
2037 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
2038 fs_info->fs_devices->latest_bdev = next_device->bdev;
2039 list_del_rcu(&tgtdev->dev_list);
2040
2041 call_rcu(&tgtdev->rcu, free_device);
2042
2043 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2044 mutex_unlock(&uuid_mutex);
2045 }
2046
btrfs_find_device_by_path(struct btrfs_root * root,char * device_path,struct btrfs_device ** device)2047 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2048 struct btrfs_device **device)
2049 {
2050 int ret = 0;
2051 struct btrfs_super_block *disk_super;
2052 u64 devid;
2053 u8 *dev_uuid;
2054 struct block_device *bdev;
2055 struct buffer_head *bh;
2056
2057 *device = NULL;
2058 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2059 root->fs_info->bdev_holder, 0, &bdev, &bh);
2060 if (ret)
2061 return ret;
2062 disk_super = (struct btrfs_super_block *)bh->b_data;
2063 devid = btrfs_stack_device_id(&disk_super->dev_item);
2064 dev_uuid = disk_super->dev_item.uuid;
2065 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2066 disk_super->fsid);
2067 brelse(bh);
2068 if (!*device)
2069 ret = -ENOENT;
2070 blkdev_put(bdev, FMODE_READ);
2071 return ret;
2072 }
2073
btrfs_find_device_missing_or_by_path(struct btrfs_root * root,char * device_path,struct btrfs_device ** device)2074 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2075 char *device_path,
2076 struct btrfs_device **device)
2077 {
2078 *device = NULL;
2079 if (strcmp(device_path, "missing") == 0) {
2080 struct list_head *devices;
2081 struct btrfs_device *tmp;
2082
2083 devices = &root->fs_info->fs_devices->devices;
2084 /*
2085 * It is safe to read the devices since the volume_mutex
2086 * is held by the caller.
2087 */
2088 list_for_each_entry(tmp, devices, dev_list) {
2089 if (tmp->in_fs_metadata && !tmp->bdev) {
2090 *device = tmp;
2091 break;
2092 }
2093 }
2094
2095 if (!*device)
2096 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2097
2098 return 0;
2099 } else {
2100 return btrfs_find_device_by_path(root, device_path, device);
2101 }
2102 }
2103
2104 /*
2105 * does all the dirty work required for changing file system's UUID.
2106 */
btrfs_prepare_sprout(struct btrfs_root * root)2107 static int btrfs_prepare_sprout(struct btrfs_root *root)
2108 {
2109 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2110 struct btrfs_fs_devices *old_devices;
2111 struct btrfs_fs_devices *seed_devices;
2112 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2113 struct btrfs_device *device;
2114 u64 super_flags;
2115
2116 BUG_ON(!mutex_is_locked(&uuid_mutex));
2117 if (!fs_devices->seeding)
2118 return -EINVAL;
2119
2120 seed_devices = __alloc_fs_devices();
2121 if (IS_ERR(seed_devices))
2122 return PTR_ERR(seed_devices);
2123
2124 old_devices = clone_fs_devices(fs_devices);
2125 if (IS_ERR(old_devices)) {
2126 kfree(seed_devices);
2127 return PTR_ERR(old_devices);
2128 }
2129
2130 list_add(&old_devices->list, &fs_uuids);
2131
2132 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2133 seed_devices->opened = 1;
2134 INIT_LIST_HEAD(&seed_devices->devices);
2135 INIT_LIST_HEAD(&seed_devices->alloc_list);
2136 mutex_init(&seed_devices->device_list_mutex);
2137
2138 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2139 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2140 synchronize_rcu);
2141 list_for_each_entry(device, &seed_devices->devices, dev_list)
2142 device->fs_devices = seed_devices;
2143
2144 lock_chunks(root);
2145 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2146 unlock_chunks(root);
2147
2148 fs_devices->seeding = 0;
2149 fs_devices->num_devices = 0;
2150 fs_devices->open_devices = 0;
2151 fs_devices->missing_devices = 0;
2152 fs_devices->rotating = 0;
2153 fs_devices->seed = seed_devices;
2154
2155 generate_random_uuid(fs_devices->fsid);
2156 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2157 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2158 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2159
2160 super_flags = btrfs_super_flags(disk_super) &
2161 ~BTRFS_SUPER_FLAG_SEEDING;
2162 btrfs_set_super_flags(disk_super, super_flags);
2163
2164 return 0;
2165 }
2166
2167 /*
2168 * strore the expected generation for seed devices in device items.
2169 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans,struct btrfs_root * root)2170 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2171 struct btrfs_root *root)
2172 {
2173 struct btrfs_path *path;
2174 struct extent_buffer *leaf;
2175 struct btrfs_dev_item *dev_item;
2176 struct btrfs_device *device;
2177 struct btrfs_key key;
2178 u8 fs_uuid[BTRFS_UUID_SIZE];
2179 u8 dev_uuid[BTRFS_UUID_SIZE];
2180 u64 devid;
2181 int ret;
2182
2183 path = btrfs_alloc_path();
2184 if (!path)
2185 return -ENOMEM;
2186
2187 root = root->fs_info->chunk_root;
2188 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2189 key.offset = 0;
2190 key.type = BTRFS_DEV_ITEM_KEY;
2191
2192 while (1) {
2193 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2194 if (ret < 0)
2195 goto error;
2196
2197 leaf = path->nodes[0];
2198 next_slot:
2199 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2200 ret = btrfs_next_leaf(root, path);
2201 if (ret > 0)
2202 break;
2203 if (ret < 0)
2204 goto error;
2205 leaf = path->nodes[0];
2206 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2207 btrfs_release_path(path);
2208 continue;
2209 }
2210
2211 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2212 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2213 key.type != BTRFS_DEV_ITEM_KEY)
2214 break;
2215
2216 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2217 struct btrfs_dev_item);
2218 devid = btrfs_device_id(leaf, dev_item);
2219 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2220 BTRFS_UUID_SIZE);
2221 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2222 BTRFS_UUID_SIZE);
2223 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2224 fs_uuid);
2225 BUG_ON(!device); /* Logic error */
2226
2227 if (device->fs_devices->seeding) {
2228 btrfs_set_device_generation(leaf, dev_item,
2229 device->generation);
2230 btrfs_mark_buffer_dirty(leaf);
2231 }
2232
2233 path->slots[0]++;
2234 goto next_slot;
2235 }
2236 ret = 0;
2237 error:
2238 btrfs_free_path(path);
2239 return ret;
2240 }
2241
btrfs_init_new_device(struct btrfs_root * root,char * device_path)2242 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2243 {
2244 struct request_queue *q;
2245 struct btrfs_trans_handle *trans;
2246 struct btrfs_device *device;
2247 struct block_device *bdev;
2248 struct list_head *devices;
2249 struct super_block *sb = root->fs_info->sb;
2250 struct rcu_string *name;
2251 u64 tmp;
2252 int seeding_dev = 0;
2253 int ret = 0;
2254
2255 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2256 return -EROFS;
2257
2258 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2259 root->fs_info->bdev_holder);
2260 if (IS_ERR(bdev))
2261 return PTR_ERR(bdev);
2262
2263 if (root->fs_info->fs_devices->seeding) {
2264 seeding_dev = 1;
2265 down_write(&sb->s_umount);
2266 mutex_lock(&uuid_mutex);
2267 }
2268
2269 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2270
2271 devices = &root->fs_info->fs_devices->devices;
2272
2273 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2274 list_for_each_entry(device, devices, dev_list) {
2275 if (device->bdev == bdev) {
2276 ret = -EEXIST;
2277 mutex_unlock(
2278 &root->fs_info->fs_devices->device_list_mutex);
2279 goto error;
2280 }
2281 }
2282 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2283
2284 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2285 if (IS_ERR(device)) {
2286 /* we can safely leave the fs_devices entry around */
2287 ret = PTR_ERR(device);
2288 goto error;
2289 }
2290
2291 name = rcu_string_strdup(device_path, GFP_NOFS);
2292 if (!name) {
2293 kfree(device);
2294 ret = -ENOMEM;
2295 goto error;
2296 }
2297 rcu_assign_pointer(device->name, name);
2298
2299 trans = btrfs_start_transaction(root, 0);
2300 if (IS_ERR(trans)) {
2301 rcu_string_free(device->name);
2302 kfree(device);
2303 ret = PTR_ERR(trans);
2304 goto error;
2305 }
2306
2307 q = bdev_get_queue(bdev);
2308 if (blk_queue_discard(q))
2309 device->can_discard = 1;
2310 device->writeable = 1;
2311 device->generation = trans->transid;
2312 device->io_width = root->sectorsize;
2313 device->io_align = root->sectorsize;
2314 device->sector_size = root->sectorsize;
2315 device->total_bytes = i_size_read(bdev->bd_inode);
2316 device->disk_total_bytes = device->total_bytes;
2317 device->commit_total_bytes = device->total_bytes;
2318 device->dev_root = root->fs_info->dev_root;
2319 device->bdev = bdev;
2320 device->in_fs_metadata = 1;
2321 device->is_tgtdev_for_dev_replace = 0;
2322 device->mode = FMODE_EXCL;
2323 device->dev_stats_valid = 1;
2324 set_blocksize(device->bdev, 4096);
2325
2326 if (seeding_dev) {
2327 sb->s_flags &= ~MS_RDONLY;
2328 ret = btrfs_prepare_sprout(root);
2329 BUG_ON(ret); /* -ENOMEM */
2330 }
2331
2332 device->fs_devices = root->fs_info->fs_devices;
2333
2334 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2335 lock_chunks(root);
2336 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2337 list_add(&device->dev_alloc_list,
2338 &root->fs_info->fs_devices->alloc_list);
2339 root->fs_info->fs_devices->num_devices++;
2340 root->fs_info->fs_devices->open_devices++;
2341 root->fs_info->fs_devices->rw_devices++;
2342 root->fs_info->fs_devices->total_devices++;
2343 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2344
2345 spin_lock(&root->fs_info->free_chunk_lock);
2346 root->fs_info->free_chunk_space += device->total_bytes;
2347 spin_unlock(&root->fs_info->free_chunk_lock);
2348
2349 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2350 root->fs_info->fs_devices->rotating = 1;
2351
2352 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2353 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2354 tmp + device->total_bytes);
2355
2356 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2357 btrfs_set_super_num_devices(root->fs_info->super_copy,
2358 tmp + 1);
2359
2360 /*
2361 * we've got more storage, clear any full flags on the space
2362 * infos
2363 */
2364 btrfs_clear_space_info_full(root->fs_info);
2365
2366 unlock_chunks(root);
2367
2368 /* add sysfs device entry */
2369 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2370
2371 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2372
2373 if (seeding_dev) {
2374 lock_chunks(root);
2375 ret = init_first_rw_device(trans, root, device);
2376 unlock_chunks(root);
2377 if (ret) {
2378 btrfs_abort_transaction(trans, root, ret);
2379 goto error_trans;
2380 }
2381 }
2382
2383 ret = btrfs_add_device(trans, root, device);
2384 if (ret) {
2385 btrfs_abort_transaction(trans, root, ret);
2386 goto error_trans;
2387 }
2388
2389 if (seeding_dev) {
2390 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2391
2392 ret = btrfs_finish_sprout(trans, root);
2393 if (ret) {
2394 btrfs_abort_transaction(trans, root, ret);
2395 goto error_trans;
2396 }
2397
2398 /* Sprouting would change fsid of the mounted root,
2399 * so rename the fsid on the sysfs
2400 */
2401 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2402 root->fs_info->fsid);
2403 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2404 fsid_buf))
2405 btrfs_warn(root->fs_info,
2406 "sysfs: failed to create fsid for sprout");
2407 }
2408
2409 root->fs_info->num_tolerated_disk_barrier_failures =
2410 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2411 ret = btrfs_commit_transaction(trans, root);
2412
2413 if (seeding_dev) {
2414 mutex_unlock(&uuid_mutex);
2415 up_write(&sb->s_umount);
2416
2417 if (ret) /* transaction commit */
2418 return ret;
2419
2420 ret = btrfs_relocate_sys_chunks(root);
2421 if (ret < 0)
2422 btrfs_std_error(root->fs_info, ret,
2423 "Failed to relocate sys chunks after "
2424 "device initialization. This can be fixed "
2425 "using the \"btrfs balance\" command.");
2426 trans = btrfs_attach_transaction(root);
2427 if (IS_ERR(trans)) {
2428 if (PTR_ERR(trans) == -ENOENT)
2429 return 0;
2430 return PTR_ERR(trans);
2431 }
2432 ret = btrfs_commit_transaction(trans, root);
2433 }
2434
2435 /* Update ctime/mtime for libblkid */
2436 update_dev_time(device_path);
2437 return ret;
2438
2439 error_trans:
2440 btrfs_end_transaction(trans, root);
2441 rcu_string_free(device->name);
2442 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2443 kfree(device);
2444 error:
2445 blkdev_put(bdev, FMODE_EXCL);
2446 if (seeding_dev) {
2447 mutex_unlock(&uuid_mutex);
2448 up_write(&sb->s_umount);
2449 }
2450 return ret;
2451 }
2452
btrfs_init_dev_replace_tgtdev(struct btrfs_root * root,char * device_path,struct btrfs_device * srcdev,struct btrfs_device ** device_out)2453 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2454 struct btrfs_device *srcdev,
2455 struct btrfs_device **device_out)
2456 {
2457 struct request_queue *q;
2458 struct btrfs_device *device;
2459 struct block_device *bdev;
2460 struct btrfs_fs_info *fs_info = root->fs_info;
2461 struct list_head *devices;
2462 struct rcu_string *name;
2463 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2464 int ret = 0;
2465
2466 *device_out = NULL;
2467 if (fs_info->fs_devices->seeding) {
2468 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2469 return -EINVAL;
2470 }
2471
2472 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2473 fs_info->bdev_holder);
2474 if (IS_ERR(bdev)) {
2475 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2476 return PTR_ERR(bdev);
2477 }
2478
2479 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2480
2481 devices = &fs_info->fs_devices->devices;
2482 list_for_each_entry(device, devices, dev_list) {
2483 if (device->bdev == bdev) {
2484 btrfs_err(fs_info, "target device is in the filesystem!");
2485 ret = -EEXIST;
2486 goto error;
2487 }
2488 }
2489
2490
2491 if (i_size_read(bdev->bd_inode) <
2492 btrfs_device_get_total_bytes(srcdev)) {
2493 btrfs_err(fs_info, "target device is smaller than source device!");
2494 ret = -EINVAL;
2495 goto error;
2496 }
2497
2498
2499 device = btrfs_alloc_device(NULL, &devid, NULL);
2500 if (IS_ERR(device)) {
2501 ret = PTR_ERR(device);
2502 goto error;
2503 }
2504
2505 name = rcu_string_strdup(device_path, GFP_NOFS);
2506 if (!name) {
2507 kfree(device);
2508 ret = -ENOMEM;
2509 goto error;
2510 }
2511 rcu_assign_pointer(device->name, name);
2512
2513 q = bdev_get_queue(bdev);
2514 if (blk_queue_discard(q))
2515 device->can_discard = 1;
2516 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2517 device->writeable = 1;
2518 device->generation = 0;
2519 device->io_width = root->sectorsize;
2520 device->io_align = root->sectorsize;
2521 device->sector_size = root->sectorsize;
2522 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2523 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2524 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2525 ASSERT(list_empty(&srcdev->resized_list));
2526 device->commit_total_bytes = srcdev->commit_total_bytes;
2527 device->commit_bytes_used = device->bytes_used;
2528 device->dev_root = fs_info->dev_root;
2529 device->bdev = bdev;
2530 device->in_fs_metadata = 1;
2531 device->is_tgtdev_for_dev_replace = 1;
2532 device->mode = FMODE_EXCL;
2533 device->dev_stats_valid = 1;
2534 set_blocksize(device->bdev, 4096);
2535 device->fs_devices = fs_info->fs_devices;
2536 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2537 fs_info->fs_devices->num_devices++;
2538 fs_info->fs_devices->open_devices++;
2539 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2540
2541 *device_out = device;
2542 return ret;
2543
2544 error:
2545 blkdev_put(bdev, FMODE_EXCL);
2546 return ret;
2547 }
2548
btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info * fs_info,struct btrfs_device * tgtdev)2549 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2550 struct btrfs_device *tgtdev)
2551 {
2552 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2553 tgtdev->io_width = fs_info->dev_root->sectorsize;
2554 tgtdev->io_align = fs_info->dev_root->sectorsize;
2555 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2556 tgtdev->dev_root = fs_info->dev_root;
2557 tgtdev->in_fs_metadata = 1;
2558 }
2559
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2560 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2561 struct btrfs_device *device)
2562 {
2563 int ret;
2564 struct btrfs_path *path;
2565 struct btrfs_root *root;
2566 struct btrfs_dev_item *dev_item;
2567 struct extent_buffer *leaf;
2568 struct btrfs_key key;
2569
2570 root = device->dev_root->fs_info->chunk_root;
2571
2572 path = btrfs_alloc_path();
2573 if (!path)
2574 return -ENOMEM;
2575
2576 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2577 key.type = BTRFS_DEV_ITEM_KEY;
2578 key.offset = device->devid;
2579
2580 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2581 if (ret < 0)
2582 goto out;
2583
2584 if (ret > 0) {
2585 ret = -ENOENT;
2586 goto out;
2587 }
2588
2589 leaf = path->nodes[0];
2590 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2591
2592 btrfs_set_device_id(leaf, dev_item, device->devid);
2593 btrfs_set_device_type(leaf, dev_item, device->type);
2594 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2595 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2596 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2597 btrfs_set_device_total_bytes(leaf, dev_item,
2598 btrfs_device_get_disk_total_bytes(device));
2599 btrfs_set_device_bytes_used(leaf, dev_item,
2600 btrfs_device_get_bytes_used(device));
2601 btrfs_mark_buffer_dirty(leaf);
2602
2603 out:
2604 btrfs_free_path(path);
2605 return ret;
2606 }
2607
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2608 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2609 struct btrfs_device *device, u64 new_size)
2610 {
2611 struct btrfs_super_block *super_copy =
2612 device->dev_root->fs_info->super_copy;
2613 struct btrfs_fs_devices *fs_devices;
2614 u64 old_total;
2615 u64 diff;
2616
2617 if (!device->writeable)
2618 return -EACCES;
2619
2620 lock_chunks(device->dev_root);
2621 old_total = btrfs_super_total_bytes(super_copy);
2622 diff = new_size - device->total_bytes;
2623
2624 if (new_size <= device->total_bytes ||
2625 device->is_tgtdev_for_dev_replace) {
2626 unlock_chunks(device->dev_root);
2627 return -EINVAL;
2628 }
2629
2630 fs_devices = device->dev_root->fs_info->fs_devices;
2631
2632 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2633 device->fs_devices->total_rw_bytes += diff;
2634
2635 btrfs_device_set_total_bytes(device, new_size);
2636 btrfs_device_set_disk_total_bytes(device, new_size);
2637 btrfs_clear_space_info_full(device->dev_root->fs_info);
2638 if (list_empty(&device->resized_list))
2639 list_add_tail(&device->resized_list,
2640 &fs_devices->resized_devices);
2641 unlock_chunks(device->dev_root);
2642
2643 return btrfs_update_device(trans, device);
2644 }
2645
btrfs_free_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 chunk_objectid,u64 chunk_offset)2646 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2647 struct btrfs_root *root, u64 chunk_objectid,
2648 u64 chunk_offset)
2649 {
2650 int ret;
2651 struct btrfs_path *path;
2652 struct btrfs_key key;
2653
2654 root = root->fs_info->chunk_root;
2655 path = btrfs_alloc_path();
2656 if (!path)
2657 return -ENOMEM;
2658
2659 key.objectid = chunk_objectid;
2660 key.offset = chunk_offset;
2661 key.type = BTRFS_CHUNK_ITEM_KEY;
2662
2663 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2664 if (ret < 0)
2665 goto out;
2666 else if (ret > 0) { /* Logic error or corruption */
2667 btrfs_std_error(root->fs_info, -ENOENT,
2668 "Failed lookup while freeing chunk.");
2669 ret = -ENOENT;
2670 goto out;
2671 }
2672
2673 ret = btrfs_del_item(trans, root, path);
2674 if (ret < 0)
2675 btrfs_std_error(root->fs_info, ret,
2676 "Failed to delete chunk item.");
2677 out:
2678 btrfs_free_path(path);
2679 return ret;
2680 }
2681
btrfs_del_sys_chunk(struct btrfs_root * root,u64 chunk_objectid,u64 chunk_offset)2682 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2683 chunk_offset)
2684 {
2685 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2686 struct btrfs_disk_key *disk_key;
2687 struct btrfs_chunk *chunk;
2688 u8 *ptr;
2689 int ret = 0;
2690 u32 num_stripes;
2691 u32 array_size;
2692 u32 len = 0;
2693 u32 cur;
2694 struct btrfs_key key;
2695
2696 lock_chunks(root);
2697 array_size = btrfs_super_sys_array_size(super_copy);
2698
2699 ptr = super_copy->sys_chunk_array;
2700 cur = 0;
2701
2702 while (cur < array_size) {
2703 disk_key = (struct btrfs_disk_key *)ptr;
2704 btrfs_disk_key_to_cpu(&key, disk_key);
2705
2706 len = sizeof(*disk_key);
2707
2708 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2709 chunk = (struct btrfs_chunk *)(ptr + len);
2710 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2711 len += btrfs_chunk_item_size(num_stripes);
2712 } else {
2713 ret = -EIO;
2714 break;
2715 }
2716 if (key.objectid == chunk_objectid &&
2717 key.offset == chunk_offset) {
2718 memmove(ptr, ptr + len, array_size - (cur + len));
2719 array_size -= len;
2720 btrfs_set_super_sys_array_size(super_copy, array_size);
2721 } else {
2722 ptr += len;
2723 cur += len;
2724 }
2725 }
2726 unlock_chunks(root);
2727 return ret;
2728 }
2729
btrfs_remove_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 chunk_offset)2730 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2731 struct btrfs_root *root, u64 chunk_offset)
2732 {
2733 struct extent_map_tree *em_tree;
2734 struct extent_map *em;
2735 struct btrfs_root *extent_root = root->fs_info->extent_root;
2736 struct map_lookup *map;
2737 u64 dev_extent_len = 0;
2738 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2739 int i, ret = 0;
2740
2741 /* Just in case */
2742 root = root->fs_info->chunk_root;
2743 em_tree = &root->fs_info->mapping_tree.map_tree;
2744
2745 read_lock(&em_tree->lock);
2746 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2747 read_unlock(&em_tree->lock);
2748
2749 if (!em || em->start > chunk_offset ||
2750 em->start + em->len < chunk_offset) {
2751 /*
2752 * This is a logic error, but we don't want to just rely on the
2753 * user having built with ASSERT enabled, so if ASSERT doens't
2754 * do anything we still error out.
2755 */
2756 ASSERT(0);
2757 if (em)
2758 free_extent_map(em);
2759 return -EINVAL;
2760 }
2761 map = em->map_lookup;
2762 lock_chunks(root->fs_info->chunk_root);
2763 check_system_chunk(trans, extent_root, map->type);
2764 unlock_chunks(root->fs_info->chunk_root);
2765
2766 for (i = 0; i < map->num_stripes; i++) {
2767 struct btrfs_device *device = map->stripes[i].dev;
2768 ret = btrfs_free_dev_extent(trans, device,
2769 map->stripes[i].physical,
2770 &dev_extent_len);
2771 if (ret) {
2772 btrfs_abort_transaction(trans, root, ret);
2773 goto out;
2774 }
2775
2776 if (device->bytes_used > 0) {
2777 lock_chunks(root);
2778 btrfs_device_set_bytes_used(device,
2779 device->bytes_used - dev_extent_len);
2780 spin_lock(&root->fs_info->free_chunk_lock);
2781 root->fs_info->free_chunk_space += dev_extent_len;
2782 spin_unlock(&root->fs_info->free_chunk_lock);
2783 btrfs_clear_space_info_full(root->fs_info);
2784 unlock_chunks(root);
2785 }
2786
2787 if (map->stripes[i].dev) {
2788 ret = btrfs_update_device(trans, map->stripes[i].dev);
2789 if (ret) {
2790 btrfs_abort_transaction(trans, root, ret);
2791 goto out;
2792 }
2793 }
2794 }
2795 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2796 if (ret) {
2797 btrfs_abort_transaction(trans, root, ret);
2798 goto out;
2799 }
2800
2801 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2802
2803 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2804 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2805 if (ret) {
2806 btrfs_abort_transaction(trans, root, ret);
2807 goto out;
2808 }
2809 }
2810
2811 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2812 if (ret) {
2813 btrfs_abort_transaction(trans, extent_root, ret);
2814 goto out;
2815 }
2816
2817 out:
2818 /* once for us */
2819 free_extent_map(em);
2820 return ret;
2821 }
2822
btrfs_relocate_chunk(struct btrfs_root * root,u64 chunk_offset)2823 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2824 {
2825 struct btrfs_root *extent_root;
2826 struct btrfs_trans_handle *trans;
2827 int ret;
2828
2829 root = root->fs_info->chunk_root;
2830 extent_root = root->fs_info->extent_root;
2831
2832 /*
2833 * Prevent races with automatic removal of unused block groups.
2834 * After we relocate and before we remove the chunk with offset
2835 * chunk_offset, automatic removal of the block group can kick in,
2836 * resulting in a failure when calling btrfs_remove_chunk() below.
2837 *
2838 * Make sure to acquire this mutex before doing a tree search (dev
2839 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2840 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2841 * we release the path used to search the chunk/dev tree and before
2842 * the current task acquires this mutex and calls us.
2843 */
2844 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2845
2846 ret = btrfs_can_relocate(extent_root, chunk_offset);
2847 if (ret)
2848 return -ENOSPC;
2849
2850 /* step one, relocate all the extents inside this chunk */
2851 btrfs_scrub_pause(root);
2852 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2853 btrfs_scrub_continue(root);
2854 if (ret)
2855 return ret;
2856
2857 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2858 chunk_offset);
2859 if (IS_ERR(trans)) {
2860 ret = PTR_ERR(trans);
2861 btrfs_std_error(root->fs_info, ret, NULL);
2862 return ret;
2863 }
2864
2865 /*
2866 * step two, delete the device extents and the
2867 * chunk tree entries
2868 */
2869 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2870 btrfs_end_transaction(trans, root);
2871 return ret;
2872 }
2873
btrfs_relocate_sys_chunks(struct btrfs_root * root)2874 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2875 {
2876 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2877 struct btrfs_path *path;
2878 struct extent_buffer *leaf;
2879 struct btrfs_chunk *chunk;
2880 struct btrfs_key key;
2881 struct btrfs_key found_key;
2882 u64 chunk_type;
2883 bool retried = false;
2884 int failed = 0;
2885 int ret;
2886
2887 path = btrfs_alloc_path();
2888 if (!path)
2889 return -ENOMEM;
2890
2891 again:
2892 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2893 key.offset = (u64)-1;
2894 key.type = BTRFS_CHUNK_ITEM_KEY;
2895
2896 while (1) {
2897 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2898 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2899 if (ret < 0) {
2900 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2901 goto error;
2902 }
2903 BUG_ON(ret == 0); /* Corruption */
2904
2905 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2906 key.type);
2907 if (ret)
2908 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2909 if (ret < 0)
2910 goto error;
2911 if (ret > 0)
2912 break;
2913
2914 leaf = path->nodes[0];
2915 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2916
2917 chunk = btrfs_item_ptr(leaf, path->slots[0],
2918 struct btrfs_chunk);
2919 chunk_type = btrfs_chunk_type(leaf, chunk);
2920 btrfs_release_path(path);
2921
2922 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2923 ret = btrfs_relocate_chunk(chunk_root,
2924 found_key.offset);
2925 if (ret == -ENOSPC)
2926 failed++;
2927 else
2928 BUG_ON(ret);
2929 }
2930 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2931
2932 if (found_key.offset == 0)
2933 break;
2934 key.offset = found_key.offset - 1;
2935 }
2936 ret = 0;
2937 if (failed && !retried) {
2938 failed = 0;
2939 retried = true;
2940 goto again;
2941 } else if (WARN_ON(failed && retried)) {
2942 ret = -ENOSPC;
2943 }
2944 error:
2945 btrfs_free_path(path);
2946 return ret;
2947 }
2948
insert_balance_item(struct btrfs_root * root,struct btrfs_balance_control * bctl)2949 static int insert_balance_item(struct btrfs_root *root,
2950 struct btrfs_balance_control *bctl)
2951 {
2952 struct btrfs_trans_handle *trans;
2953 struct btrfs_balance_item *item;
2954 struct btrfs_disk_balance_args disk_bargs;
2955 struct btrfs_path *path;
2956 struct extent_buffer *leaf;
2957 struct btrfs_key key;
2958 int ret, err;
2959
2960 path = btrfs_alloc_path();
2961 if (!path)
2962 return -ENOMEM;
2963
2964 trans = btrfs_start_transaction(root, 0);
2965 if (IS_ERR(trans)) {
2966 btrfs_free_path(path);
2967 return PTR_ERR(trans);
2968 }
2969
2970 key.objectid = BTRFS_BALANCE_OBJECTID;
2971 key.type = BTRFS_BALANCE_ITEM_KEY;
2972 key.offset = 0;
2973
2974 ret = btrfs_insert_empty_item(trans, root, path, &key,
2975 sizeof(*item));
2976 if (ret)
2977 goto out;
2978
2979 leaf = path->nodes[0];
2980 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2981
2982 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2983
2984 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2985 btrfs_set_balance_data(leaf, item, &disk_bargs);
2986 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2987 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2988 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2989 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2990
2991 btrfs_set_balance_flags(leaf, item, bctl->flags);
2992
2993 btrfs_mark_buffer_dirty(leaf);
2994 out:
2995 btrfs_free_path(path);
2996 err = btrfs_commit_transaction(trans, root);
2997 if (err && !ret)
2998 ret = err;
2999 return ret;
3000 }
3001
del_balance_item(struct btrfs_root * root)3002 static int del_balance_item(struct btrfs_root *root)
3003 {
3004 struct btrfs_trans_handle *trans;
3005 struct btrfs_path *path;
3006 struct btrfs_key key;
3007 int ret, err;
3008
3009 path = btrfs_alloc_path();
3010 if (!path)
3011 return -ENOMEM;
3012
3013 trans = btrfs_start_transaction(root, 0);
3014 if (IS_ERR(trans)) {
3015 btrfs_free_path(path);
3016 return PTR_ERR(trans);
3017 }
3018
3019 key.objectid = BTRFS_BALANCE_OBJECTID;
3020 key.type = BTRFS_BALANCE_ITEM_KEY;
3021 key.offset = 0;
3022
3023 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3024 if (ret < 0)
3025 goto out;
3026 if (ret > 0) {
3027 ret = -ENOENT;
3028 goto out;
3029 }
3030
3031 ret = btrfs_del_item(trans, root, path);
3032 out:
3033 btrfs_free_path(path);
3034 err = btrfs_commit_transaction(trans, root);
3035 if (err && !ret)
3036 ret = err;
3037 return ret;
3038 }
3039
3040 /*
3041 * This is a heuristic used to reduce the number of chunks balanced on
3042 * resume after balance was interrupted.
3043 */
update_balance_args(struct btrfs_balance_control * bctl)3044 static void update_balance_args(struct btrfs_balance_control *bctl)
3045 {
3046 /*
3047 * Turn on soft mode for chunk types that were being converted.
3048 */
3049 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3050 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3051 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3052 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3053 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3054 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3055
3056 /*
3057 * Turn on usage filter if is not already used. The idea is
3058 * that chunks that we have already balanced should be
3059 * reasonably full. Don't do it for chunks that are being
3060 * converted - that will keep us from relocating unconverted
3061 * (albeit full) chunks.
3062 */
3063 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3064 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3065 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3066 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3067 bctl->data.usage = 90;
3068 }
3069 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3070 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3071 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3072 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3073 bctl->sys.usage = 90;
3074 }
3075 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3076 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3077 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3078 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3079 bctl->meta.usage = 90;
3080 }
3081 }
3082
3083 /*
3084 * Should be called with both balance and volume mutexes held to
3085 * serialize other volume operations (add_dev/rm_dev/resize) with
3086 * restriper. Same goes for unset_balance_control.
3087 */
set_balance_control(struct btrfs_balance_control * bctl)3088 static void set_balance_control(struct btrfs_balance_control *bctl)
3089 {
3090 struct btrfs_fs_info *fs_info = bctl->fs_info;
3091
3092 BUG_ON(fs_info->balance_ctl);
3093
3094 spin_lock(&fs_info->balance_lock);
3095 fs_info->balance_ctl = bctl;
3096 spin_unlock(&fs_info->balance_lock);
3097 }
3098
unset_balance_control(struct btrfs_fs_info * fs_info)3099 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3100 {
3101 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3102
3103 BUG_ON(!fs_info->balance_ctl);
3104
3105 spin_lock(&fs_info->balance_lock);
3106 fs_info->balance_ctl = NULL;
3107 spin_unlock(&fs_info->balance_lock);
3108
3109 kfree(bctl);
3110 }
3111
3112 /*
3113 * Balance filters. Return 1 if chunk should be filtered out
3114 * (should not be balanced).
3115 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3116 static int chunk_profiles_filter(u64 chunk_type,
3117 struct btrfs_balance_args *bargs)
3118 {
3119 chunk_type = chunk_to_extended(chunk_type) &
3120 BTRFS_EXTENDED_PROFILE_MASK;
3121
3122 if (bargs->profiles & chunk_type)
3123 return 0;
3124
3125 return 1;
3126 }
3127
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3128 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3129 struct btrfs_balance_args *bargs)
3130 {
3131 struct btrfs_block_group_cache *cache;
3132 u64 chunk_used;
3133 u64 user_thresh_min;
3134 u64 user_thresh_max;
3135 int ret = 1;
3136
3137 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3138 chunk_used = btrfs_block_group_used(&cache->item);
3139
3140 if (bargs->usage_min == 0)
3141 user_thresh_min = 0;
3142 else
3143 user_thresh_min = div_factor_fine(cache->key.offset,
3144 bargs->usage_min);
3145
3146 if (bargs->usage_max == 0)
3147 user_thresh_max = 1;
3148 else if (bargs->usage_max > 100)
3149 user_thresh_max = cache->key.offset;
3150 else
3151 user_thresh_max = div_factor_fine(cache->key.offset,
3152 bargs->usage_max);
3153
3154 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3155 ret = 0;
3156
3157 btrfs_put_block_group(cache);
3158 return ret;
3159 }
3160
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3161 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3162 u64 chunk_offset, struct btrfs_balance_args *bargs)
3163 {
3164 struct btrfs_block_group_cache *cache;
3165 u64 chunk_used, user_thresh;
3166 int ret = 1;
3167
3168 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3169 chunk_used = btrfs_block_group_used(&cache->item);
3170
3171 if (bargs->usage_min == 0)
3172 user_thresh = 1;
3173 else if (bargs->usage > 100)
3174 user_thresh = cache->key.offset;
3175 else
3176 user_thresh = div_factor_fine(cache->key.offset,
3177 bargs->usage);
3178
3179 if (chunk_used < user_thresh)
3180 ret = 0;
3181
3182 btrfs_put_block_group(cache);
3183 return ret;
3184 }
3185
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3186 static int chunk_devid_filter(struct extent_buffer *leaf,
3187 struct btrfs_chunk *chunk,
3188 struct btrfs_balance_args *bargs)
3189 {
3190 struct btrfs_stripe *stripe;
3191 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3192 int i;
3193
3194 for (i = 0; i < num_stripes; i++) {
3195 stripe = btrfs_stripe_nr(chunk, i);
3196 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3197 return 0;
3198 }
3199
3200 return 1;
3201 }
3202
3203 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3204 static int chunk_drange_filter(struct extent_buffer *leaf,
3205 struct btrfs_chunk *chunk,
3206 u64 chunk_offset,
3207 struct btrfs_balance_args *bargs)
3208 {
3209 struct btrfs_stripe *stripe;
3210 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3211 u64 stripe_offset;
3212 u64 stripe_length;
3213 int factor;
3214 int i;
3215
3216 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3217 return 0;
3218
3219 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3220 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3221 factor = num_stripes / 2;
3222 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3223 factor = num_stripes - 1;
3224 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3225 factor = num_stripes - 2;
3226 } else {
3227 factor = num_stripes;
3228 }
3229
3230 for (i = 0; i < num_stripes; i++) {
3231 stripe = btrfs_stripe_nr(chunk, i);
3232 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3233 continue;
3234
3235 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3236 stripe_length = btrfs_chunk_length(leaf, chunk);
3237 stripe_length = div_u64(stripe_length, factor);
3238
3239 if (stripe_offset < bargs->pend &&
3240 stripe_offset + stripe_length > bargs->pstart)
3241 return 0;
3242 }
3243
3244 return 1;
3245 }
3246
3247 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3248 static int chunk_vrange_filter(struct extent_buffer *leaf,
3249 struct btrfs_chunk *chunk,
3250 u64 chunk_offset,
3251 struct btrfs_balance_args *bargs)
3252 {
3253 if (chunk_offset < bargs->vend &&
3254 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3255 /* at least part of the chunk is inside this vrange */
3256 return 0;
3257
3258 return 1;
3259 }
3260
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3261 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3262 struct btrfs_chunk *chunk,
3263 struct btrfs_balance_args *bargs)
3264 {
3265 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3266
3267 if (bargs->stripes_min <= num_stripes
3268 && num_stripes <= bargs->stripes_max)
3269 return 0;
3270
3271 return 1;
3272 }
3273
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3274 static int chunk_soft_convert_filter(u64 chunk_type,
3275 struct btrfs_balance_args *bargs)
3276 {
3277 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3278 return 0;
3279
3280 chunk_type = chunk_to_extended(chunk_type) &
3281 BTRFS_EXTENDED_PROFILE_MASK;
3282
3283 if (bargs->target == chunk_type)
3284 return 1;
3285
3286 return 0;
3287 }
3288
should_balance_chunk(struct btrfs_root * root,struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3289 static int should_balance_chunk(struct btrfs_root *root,
3290 struct extent_buffer *leaf,
3291 struct btrfs_chunk *chunk, u64 chunk_offset)
3292 {
3293 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3294 struct btrfs_balance_args *bargs = NULL;
3295 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3296
3297 /* type filter */
3298 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3299 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3300 return 0;
3301 }
3302
3303 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3304 bargs = &bctl->data;
3305 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3306 bargs = &bctl->sys;
3307 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3308 bargs = &bctl->meta;
3309
3310 /* profiles filter */
3311 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3312 chunk_profiles_filter(chunk_type, bargs)) {
3313 return 0;
3314 }
3315
3316 /* usage filter */
3317 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3318 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3319 return 0;
3320 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3321 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3322 return 0;
3323 }
3324
3325 /* devid filter */
3326 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3327 chunk_devid_filter(leaf, chunk, bargs)) {
3328 return 0;
3329 }
3330
3331 /* drange filter, makes sense only with devid filter */
3332 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3333 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3334 return 0;
3335 }
3336
3337 /* vrange filter */
3338 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3339 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3340 return 0;
3341 }
3342
3343 /* stripes filter */
3344 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3345 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3346 return 0;
3347 }
3348
3349 /* soft profile changing mode */
3350 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3351 chunk_soft_convert_filter(chunk_type, bargs)) {
3352 return 0;
3353 }
3354
3355 /*
3356 * limited by count, must be the last filter
3357 */
3358 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3359 if (bargs->limit == 0)
3360 return 0;
3361 else
3362 bargs->limit--;
3363 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3364 /*
3365 * Same logic as the 'limit' filter; the minimum cannot be
3366 * determined here because we do not have the global informatoin
3367 * about the count of all chunks that satisfy the filters.
3368 */
3369 if (bargs->limit_max == 0)
3370 return 0;
3371 else
3372 bargs->limit_max--;
3373 }
3374
3375 return 1;
3376 }
3377
__btrfs_balance(struct btrfs_fs_info * fs_info)3378 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3379 {
3380 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3381 struct btrfs_root *chunk_root = fs_info->chunk_root;
3382 struct btrfs_root *dev_root = fs_info->dev_root;
3383 struct list_head *devices;
3384 struct btrfs_device *device;
3385 u64 old_size;
3386 u64 size_to_free;
3387 u64 chunk_type;
3388 struct btrfs_chunk *chunk;
3389 struct btrfs_path *path;
3390 struct btrfs_key key;
3391 struct btrfs_key found_key;
3392 struct btrfs_trans_handle *trans;
3393 struct extent_buffer *leaf;
3394 int slot;
3395 int ret;
3396 int enospc_errors = 0;
3397 bool counting = true;
3398 /* The single value limit and min/max limits use the same bytes in the */
3399 u64 limit_data = bctl->data.limit;
3400 u64 limit_meta = bctl->meta.limit;
3401 u64 limit_sys = bctl->sys.limit;
3402 u32 count_data = 0;
3403 u32 count_meta = 0;
3404 u32 count_sys = 0;
3405 int chunk_reserved = 0;
3406
3407 /* step one make some room on all the devices */
3408 devices = &fs_info->fs_devices->devices;
3409 list_for_each_entry(device, devices, dev_list) {
3410 old_size = btrfs_device_get_total_bytes(device);
3411 size_to_free = div_factor(old_size, 1);
3412 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3413 if (!device->writeable ||
3414 btrfs_device_get_total_bytes(device) -
3415 btrfs_device_get_bytes_used(device) > size_to_free ||
3416 device->is_tgtdev_for_dev_replace)
3417 continue;
3418
3419 ret = btrfs_shrink_device(device, old_size - size_to_free);
3420 if (ret == -ENOSPC)
3421 break;
3422 BUG_ON(ret);
3423
3424 trans = btrfs_start_transaction(dev_root, 0);
3425 BUG_ON(IS_ERR(trans));
3426
3427 ret = btrfs_grow_device(trans, device, old_size);
3428 BUG_ON(ret);
3429
3430 btrfs_end_transaction(trans, dev_root);
3431 }
3432
3433 /* step two, relocate all the chunks */
3434 path = btrfs_alloc_path();
3435 if (!path) {
3436 ret = -ENOMEM;
3437 goto error;
3438 }
3439
3440 /* zero out stat counters */
3441 spin_lock(&fs_info->balance_lock);
3442 memset(&bctl->stat, 0, sizeof(bctl->stat));
3443 spin_unlock(&fs_info->balance_lock);
3444 again:
3445 if (!counting) {
3446 /*
3447 * The single value limit and min/max limits use the same bytes
3448 * in the
3449 */
3450 bctl->data.limit = limit_data;
3451 bctl->meta.limit = limit_meta;
3452 bctl->sys.limit = limit_sys;
3453 }
3454 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3455 key.offset = (u64)-1;
3456 key.type = BTRFS_CHUNK_ITEM_KEY;
3457
3458 while (1) {
3459 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3460 atomic_read(&fs_info->balance_cancel_req)) {
3461 ret = -ECANCELED;
3462 goto error;
3463 }
3464
3465 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3466 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3467 if (ret < 0) {
3468 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3469 goto error;
3470 }
3471
3472 /*
3473 * this shouldn't happen, it means the last relocate
3474 * failed
3475 */
3476 if (ret == 0)
3477 BUG(); /* FIXME break ? */
3478
3479 ret = btrfs_previous_item(chunk_root, path, 0,
3480 BTRFS_CHUNK_ITEM_KEY);
3481 if (ret) {
3482 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3483 ret = 0;
3484 break;
3485 }
3486
3487 leaf = path->nodes[0];
3488 slot = path->slots[0];
3489 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3490
3491 if (found_key.objectid != key.objectid) {
3492 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3493 break;
3494 }
3495
3496 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3497 chunk_type = btrfs_chunk_type(leaf, chunk);
3498
3499 if (!counting) {
3500 spin_lock(&fs_info->balance_lock);
3501 bctl->stat.considered++;
3502 spin_unlock(&fs_info->balance_lock);
3503 }
3504
3505 ret = should_balance_chunk(chunk_root, leaf, chunk,
3506 found_key.offset);
3507
3508 btrfs_release_path(path);
3509 if (!ret) {
3510 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3511 goto loop;
3512 }
3513
3514 if (counting) {
3515 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3516 spin_lock(&fs_info->balance_lock);
3517 bctl->stat.expected++;
3518 spin_unlock(&fs_info->balance_lock);
3519
3520 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3521 count_data++;
3522 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3523 count_sys++;
3524 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3525 count_meta++;
3526
3527 goto loop;
3528 }
3529
3530 /*
3531 * Apply limit_min filter, no need to check if the LIMITS
3532 * filter is used, limit_min is 0 by default
3533 */
3534 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3535 count_data < bctl->data.limit_min)
3536 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3537 count_meta < bctl->meta.limit_min)
3538 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3539 count_sys < bctl->sys.limit_min)) {
3540 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3541 goto loop;
3542 }
3543
3544 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && !chunk_reserved) {
3545 trans = btrfs_start_transaction(chunk_root, 0);
3546 if (IS_ERR(trans)) {
3547 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3548 ret = PTR_ERR(trans);
3549 goto error;
3550 }
3551
3552 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3553 BTRFS_BLOCK_GROUP_DATA);
3554 btrfs_end_transaction(trans, chunk_root);
3555 if (ret < 0) {
3556 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3557 goto error;
3558 }
3559 chunk_reserved = 1;
3560 }
3561
3562 ret = btrfs_relocate_chunk(chunk_root,
3563 found_key.offset);
3564 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3565 if (ret && ret != -ENOSPC)
3566 goto error;
3567 if (ret == -ENOSPC) {
3568 enospc_errors++;
3569 } else {
3570 spin_lock(&fs_info->balance_lock);
3571 bctl->stat.completed++;
3572 spin_unlock(&fs_info->balance_lock);
3573 }
3574 loop:
3575 if (found_key.offset == 0)
3576 break;
3577 key.offset = found_key.offset - 1;
3578 }
3579
3580 if (counting) {
3581 btrfs_release_path(path);
3582 counting = false;
3583 goto again;
3584 }
3585 error:
3586 btrfs_free_path(path);
3587 if (enospc_errors) {
3588 btrfs_info(fs_info, "%d enospc errors during balance",
3589 enospc_errors);
3590 if (!ret)
3591 ret = -ENOSPC;
3592 }
3593
3594 return ret;
3595 }
3596
3597 /**
3598 * alloc_profile_is_valid - see if a given profile is valid and reduced
3599 * @flags: profile to validate
3600 * @extended: if true @flags is treated as an extended profile
3601 */
alloc_profile_is_valid(u64 flags,int extended)3602 static int alloc_profile_is_valid(u64 flags, int extended)
3603 {
3604 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3605 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3606
3607 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3608
3609 /* 1) check that all other bits are zeroed */
3610 if (flags & ~mask)
3611 return 0;
3612
3613 /* 2) see if profile is reduced */
3614 if (flags == 0)
3615 return !extended; /* "0" is valid for usual profiles */
3616
3617 /* true if exactly one bit set */
3618 return (flags & (flags - 1)) == 0;
3619 }
3620
balance_need_close(struct btrfs_fs_info * fs_info)3621 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3622 {
3623 /* cancel requested || normal exit path */
3624 return atomic_read(&fs_info->balance_cancel_req) ||
3625 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3626 atomic_read(&fs_info->balance_cancel_req) == 0);
3627 }
3628
__cancel_balance(struct btrfs_fs_info * fs_info)3629 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3630 {
3631 int ret;
3632
3633 unset_balance_control(fs_info);
3634 ret = del_balance_item(fs_info->tree_root);
3635 if (ret)
3636 btrfs_std_error(fs_info, ret, NULL);
3637
3638 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3639 }
3640
3641 /* Non-zero return value signifies invalidity */
validate_convert_profile(struct btrfs_balance_args * bctl_arg,u64 allowed)3642 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3643 u64 allowed)
3644 {
3645 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3646 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3647 (bctl_arg->target & ~allowed)));
3648 }
3649
3650 /*
3651 * Should be called with both balance and volume mutexes held
3652 */
btrfs_balance(struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)3653 int btrfs_balance(struct btrfs_balance_control *bctl,
3654 struct btrfs_ioctl_balance_args *bargs)
3655 {
3656 struct btrfs_fs_info *fs_info = bctl->fs_info;
3657 u64 allowed;
3658 int mixed = 0;
3659 int ret;
3660 u64 num_devices;
3661 unsigned seq;
3662
3663 if (btrfs_fs_closing(fs_info) ||
3664 atomic_read(&fs_info->balance_pause_req) ||
3665 atomic_read(&fs_info->balance_cancel_req)) {
3666 ret = -EINVAL;
3667 goto out;
3668 }
3669
3670 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3671 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3672 mixed = 1;
3673
3674 /*
3675 * In case of mixed groups both data and meta should be picked,
3676 * and identical options should be given for both of them.
3677 */
3678 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3679 if (mixed && (bctl->flags & allowed)) {
3680 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3681 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3682 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3683 btrfs_err(fs_info, "with mixed groups data and "
3684 "metadata balance options must be the same");
3685 ret = -EINVAL;
3686 goto out;
3687 }
3688 }
3689
3690 num_devices = fs_info->fs_devices->num_devices;
3691 btrfs_dev_replace_lock(&fs_info->dev_replace);
3692 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3693 BUG_ON(num_devices < 1);
3694 num_devices--;
3695 }
3696 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3697 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3698 if (num_devices == 1)
3699 allowed |= BTRFS_BLOCK_GROUP_DUP;
3700 else if (num_devices > 1)
3701 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3702 if (num_devices > 2)
3703 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3704 if (num_devices > 3)
3705 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3706 BTRFS_BLOCK_GROUP_RAID6);
3707 if (validate_convert_profile(&bctl->data, allowed)) {
3708 btrfs_err(fs_info, "unable to start balance with target "
3709 "data profile %llu",
3710 bctl->data.target);
3711 ret = -EINVAL;
3712 goto out;
3713 }
3714 if (validate_convert_profile(&bctl->meta, allowed)) {
3715 btrfs_err(fs_info,
3716 "unable to start balance with target metadata profile %llu",
3717 bctl->meta.target);
3718 ret = -EINVAL;
3719 goto out;
3720 }
3721 if (validate_convert_profile(&bctl->sys, allowed)) {
3722 btrfs_err(fs_info,
3723 "unable to start balance with target system profile %llu",
3724 bctl->sys.target);
3725 ret = -EINVAL;
3726 goto out;
3727 }
3728
3729 /* allow dup'ed data chunks only in mixed mode */
3730 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3731 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3732 btrfs_err(fs_info, "dup for data is not allowed");
3733 ret = -EINVAL;
3734 goto out;
3735 }
3736
3737 /* allow to reduce meta or sys integrity only if force set */
3738 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3739 BTRFS_BLOCK_GROUP_RAID10 |
3740 BTRFS_BLOCK_GROUP_RAID5 |
3741 BTRFS_BLOCK_GROUP_RAID6;
3742 do {
3743 seq = read_seqbegin(&fs_info->profiles_lock);
3744
3745 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3746 (fs_info->avail_system_alloc_bits & allowed) &&
3747 !(bctl->sys.target & allowed)) ||
3748 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3749 (fs_info->avail_metadata_alloc_bits & allowed) &&
3750 !(bctl->meta.target & allowed))) {
3751 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3752 btrfs_info(fs_info, "force reducing metadata integrity");
3753 } else {
3754 btrfs_err(fs_info, "balance will reduce metadata "
3755 "integrity, use force if you want this");
3756 ret = -EINVAL;
3757 goto out;
3758 }
3759 }
3760 } while (read_seqretry(&fs_info->profiles_lock, seq));
3761
3762 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3763 fs_info->num_tolerated_disk_barrier_failures = min(
3764 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3765 btrfs_get_num_tolerated_disk_barrier_failures(
3766 bctl->sys.target));
3767 }
3768
3769 ret = insert_balance_item(fs_info->tree_root, bctl);
3770 if (ret && ret != -EEXIST)
3771 goto out;
3772
3773 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3774 BUG_ON(ret == -EEXIST);
3775 set_balance_control(bctl);
3776 } else {
3777 BUG_ON(ret != -EEXIST);
3778 spin_lock(&fs_info->balance_lock);
3779 update_balance_args(bctl);
3780 spin_unlock(&fs_info->balance_lock);
3781 }
3782
3783 atomic_inc(&fs_info->balance_running);
3784 mutex_unlock(&fs_info->balance_mutex);
3785
3786 ret = __btrfs_balance(fs_info);
3787
3788 mutex_lock(&fs_info->balance_mutex);
3789 atomic_dec(&fs_info->balance_running);
3790
3791 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3792 fs_info->num_tolerated_disk_barrier_failures =
3793 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3794 }
3795
3796 if (bargs) {
3797 memset(bargs, 0, sizeof(*bargs));
3798 update_ioctl_balance_args(fs_info, 0, bargs);
3799 }
3800
3801 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3802 balance_need_close(fs_info)) {
3803 __cancel_balance(fs_info);
3804 }
3805
3806 wake_up(&fs_info->balance_wait_q);
3807
3808 return ret;
3809 out:
3810 if (bctl->flags & BTRFS_BALANCE_RESUME)
3811 __cancel_balance(fs_info);
3812 else {
3813 kfree(bctl);
3814 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3815 }
3816 return ret;
3817 }
3818
balance_kthread(void * data)3819 static int balance_kthread(void *data)
3820 {
3821 struct btrfs_fs_info *fs_info = data;
3822 int ret = 0;
3823
3824 mutex_lock(&fs_info->volume_mutex);
3825 mutex_lock(&fs_info->balance_mutex);
3826
3827 if (fs_info->balance_ctl) {
3828 btrfs_info(fs_info, "continuing balance");
3829 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3830 }
3831
3832 mutex_unlock(&fs_info->balance_mutex);
3833 mutex_unlock(&fs_info->volume_mutex);
3834
3835 return ret;
3836 }
3837
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)3838 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3839 {
3840 struct task_struct *tsk;
3841
3842 spin_lock(&fs_info->balance_lock);
3843 if (!fs_info->balance_ctl) {
3844 spin_unlock(&fs_info->balance_lock);
3845 return 0;
3846 }
3847 spin_unlock(&fs_info->balance_lock);
3848
3849 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3850 btrfs_info(fs_info, "force skipping balance");
3851 return 0;
3852 }
3853
3854 /*
3855 * A ro->rw remount sequence should continue with the paused balance
3856 * regardless of who pauses it, system or the user as of now, so set
3857 * the resume flag.
3858 */
3859 spin_lock(&fs_info->balance_lock);
3860 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3861 spin_unlock(&fs_info->balance_lock);
3862
3863 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3864 return PTR_ERR_OR_ZERO(tsk);
3865 }
3866
btrfs_recover_balance(struct btrfs_fs_info * fs_info)3867 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3868 {
3869 struct btrfs_balance_control *bctl;
3870 struct btrfs_balance_item *item;
3871 struct btrfs_disk_balance_args disk_bargs;
3872 struct btrfs_path *path;
3873 struct extent_buffer *leaf;
3874 struct btrfs_key key;
3875 int ret;
3876
3877 path = btrfs_alloc_path();
3878 if (!path)
3879 return -ENOMEM;
3880
3881 key.objectid = BTRFS_BALANCE_OBJECTID;
3882 key.type = BTRFS_BALANCE_ITEM_KEY;
3883 key.offset = 0;
3884
3885 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3886 if (ret < 0)
3887 goto out;
3888 if (ret > 0) { /* ret = -ENOENT; */
3889 ret = 0;
3890 goto out;
3891 }
3892
3893 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3894 if (!bctl) {
3895 ret = -ENOMEM;
3896 goto out;
3897 }
3898
3899 leaf = path->nodes[0];
3900 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3901
3902 bctl->fs_info = fs_info;
3903 bctl->flags = btrfs_balance_flags(leaf, item);
3904 bctl->flags |= BTRFS_BALANCE_RESUME;
3905
3906 btrfs_balance_data(leaf, item, &disk_bargs);
3907 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3908 btrfs_balance_meta(leaf, item, &disk_bargs);
3909 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3910 btrfs_balance_sys(leaf, item, &disk_bargs);
3911 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3912
3913 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3914
3915 mutex_lock(&fs_info->volume_mutex);
3916 mutex_lock(&fs_info->balance_mutex);
3917
3918 set_balance_control(bctl);
3919
3920 mutex_unlock(&fs_info->balance_mutex);
3921 mutex_unlock(&fs_info->volume_mutex);
3922 out:
3923 btrfs_free_path(path);
3924 return ret;
3925 }
3926
btrfs_pause_balance(struct btrfs_fs_info * fs_info)3927 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3928 {
3929 int ret = 0;
3930
3931 mutex_lock(&fs_info->balance_mutex);
3932 if (!fs_info->balance_ctl) {
3933 mutex_unlock(&fs_info->balance_mutex);
3934 return -ENOTCONN;
3935 }
3936
3937 if (atomic_read(&fs_info->balance_running)) {
3938 atomic_inc(&fs_info->balance_pause_req);
3939 mutex_unlock(&fs_info->balance_mutex);
3940
3941 wait_event(fs_info->balance_wait_q,
3942 atomic_read(&fs_info->balance_running) == 0);
3943
3944 mutex_lock(&fs_info->balance_mutex);
3945 /* we are good with balance_ctl ripped off from under us */
3946 BUG_ON(atomic_read(&fs_info->balance_running));
3947 atomic_dec(&fs_info->balance_pause_req);
3948 } else {
3949 ret = -ENOTCONN;
3950 }
3951
3952 mutex_unlock(&fs_info->balance_mutex);
3953 return ret;
3954 }
3955
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)3956 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3957 {
3958 if (fs_info->sb->s_flags & MS_RDONLY)
3959 return -EROFS;
3960
3961 mutex_lock(&fs_info->balance_mutex);
3962 if (!fs_info->balance_ctl) {
3963 mutex_unlock(&fs_info->balance_mutex);
3964 return -ENOTCONN;
3965 }
3966
3967 atomic_inc(&fs_info->balance_cancel_req);
3968 /*
3969 * if we are running just wait and return, balance item is
3970 * deleted in btrfs_balance in this case
3971 */
3972 if (atomic_read(&fs_info->balance_running)) {
3973 mutex_unlock(&fs_info->balance_mutex);
3974 wait_event(fs_info->balance_wait_q,
3975 atomic_read(&fs_info->balance_running) == 0);
3976 mutex_lock(&fs_info->balance_mutex);
3977 } else {
3978 /* __cancel_balance needs volume_mutex */
3979 mutex_unlock(&fs_info->balance_mutex);
3980 mutex_lock(&fs_info->volume_mutex);
3981 mutex_lock(&fs_info->balance_mutex);
3982
3983 if (fs_info->balance_ctl)
3984 __cancel_balance(fs_info);
3985
3986 mutex_unlock(&fs_info->volume_mutex);
3987 }
3988
3989 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3990 atomic_dec(&fs_info->balance_cancel_req);
3991 mutex_unlock(&fs_info->balance_mutex);
3992 return 0;
3993 }
3994
btrfs_uuid_scan_kthread(void * data)3995 static int btrfs_uuid_scan_kthread(void *data)
3996 {
3997 struct btrfs_fs_info *fs_info = data;
3998 struct btrfs_root *root = fs_info->tree_root;
3999 struct btrfs_key key;
4000 struct btrfs_key max_key;
4001 struct btrfs_path *path = NULL;
4002 int ret = 0;
4003 struct extent_buffer *eb;
4004 int slot;
4005 struct btrfs_root_item root_item;
4006 u32 item_size;
4007 struct btrfs_trans_handle *trans = NULL;
4008
4009 path = btrfs_alloc_path();
4010 if (!path) {
4011 ret = -ENOMEM;
4012 goto out;
4013 }
4014
4015 key.objectid = 0;
4016 key.type = BTRFS_ROOT_ITEM_KEY;
4017 key.offset = 0;
4018
4019 max_key.objectid = (u64)-1;
4020 max_key.type = BTRFS_ROOT_ITEM_KEY;
4021 max_key.offset = (u64)-1;
4022
4023 while (1) {
4024 ret = btrfs_search_forward(root, &key, path, 0);
4025 if (ret) {
4026 if (ret > 0)
4027 ret = 0;
4028 break;
4029 }
4030
4031 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4032 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4033 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4034 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4035 goto skip;
4036
4037 eb = path->nodes[0];
4038 slot = path->slots[0];
4039 item_size = btrfs_item_size_nr(eb, slot);
4040 if (item_size < sizeof(root_item))
4041 goto skip;
4042
4043 read_extent_buffer(eb, &root_item,
4044 btrfs_item_ptr_offset(eb, slot),
4045 (int)sizeof(root_item));
4046 if (btrfs_root_refs(&root_item) == 0)
4047 goto skip;
4048
4049 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4050 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4051 if (trans)
4052 goto update_tree;
4053
4054 btrfs_release_path(path);
4055 /*
4056 * 1 - subvol uuid item
4057 * 1 - received_subvol uuid item
4058 */
4059 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4060 if (IS_ERR(trans)) {
4061 ret = PTR_ERR(trans);
4062 break;
4063 }
4064 continue;
4065 } else {
4066 goto skip;
4067 }
4068 update_tree:
4069 btrfs_release_path(path);
4070 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4071 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4072 root_item.uuid,
4073 BTRFS_UUID_KEY_SUBVOL,
4074 key.objectid);
4075 if (ret < 0) {
4076 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4077 ret);
4078 break;
4079 }
4080 }
4081
4082 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4083 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4084 root_item.received_uuid,
4085 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4086 key.objectid);
4087 if (ret < 0) {
4088 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4089 ret);
4090 break;
4091 }
4092 }
4093
4094 skip:
4095 btrfs_release_path(path);
4096 if (trans) {
4097 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4098 trans = NULL;
4099 if (ret)
4100 break;
4101 }
4102
4103 if (key.offset < (u64)-1) {
4104 key.offset++;
4105 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4106 key.offset = 0;
4107 key.type = BTRFS_ROOT_ITEM_KEY;
4108 } else if (key.objectid < (u64)-1) {
4109 key.offset = 0;
4110 key.type = BTRFS_ROOT_ITEM_KEY;
4111 key.objectid++;
4112 } else {
4113 break;
4114 }
4115 cond_resched();
4116 }
4117
4118 out:
4119 btrfs_free_path(path);
4120 if (trans && !IS_ERR(trans))
4121 btrfs_end_transaction(trans, fs_info->uuid_root);
4122 if (ret)
4123 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4124 else
4125 fs_info->update_uuid_tree_gen = 1;
4126 up(&fs_info->uuid_tree_rescan_sem);
4127 return 0;
4128 }
4129
4130 /*
4131 * Callback for btrfs_uuid_tree_iterate().
4132 * returns:
4133 * 0 check succeeded, the entry is not outdated.
4134 * < 0 if an error occured.
4135 * > 0 if the check failed, which means the caller shall remove the entry.
4136 */
btrfs_check_uuid_tree_entry(struct btrfs_fs_info * fs_info,u8 * uuid,u8 type,u64 subid)4137 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4138 u8 *uuid, u8 type, u64 subid)
4139 {
4140 struct btrfs_key key;
4141 int ret = 0;
4142 struct btrfs_root *subvol_root;
4143
4144 if (type != BTRFS_UUID_KEY_SUBVOL &&
4145 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4146 goto out;
4147
4148 key.objectid = subid;
4149 key.type = BTRFS_ROOT_ITEM_KEY;
4150 key.offset = (u64)-1;
4151 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4152 if (IS_ERR(subvol_root)) {
4153 ret = PTR_ERR(subvol_root);
4154 if (ret == -ENOENT)
4155 ret = 1;
4156 goto out;
4157 }
4158
4159 switch (type) {
4160 case BTRFS_UUID_KEY_SUBVOL:
4161 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4162 ret = 1;
4163 break;
4164 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4165 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4166 BTRFS_UUID_SIZE))
4167 ret = 1;
4168 break;
4169 }
4170
4171 out:
4172 return ret;
4173 }
4174
btrfs_uuid_rescan_kthread(void * data)4175 static int btrfs_uuid_rescan_kthread(void *data)
4176 {
4177 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4178 int ret;
4179
4180 /*
4181 * 1st step is to iterate through the existing UUID tree and
4182 * to delete all entries that contain outdated data.
4183 * 2nd step is to add all missing entries to the UUID tree.
4184 */
4185 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4186 if (ret < 0) {
4187 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4188 up(&fs_info->uuid_tree_rescan_sem);
4189 return ret;
4190 }
4191 return btrfs_uuid_scan_kthread(data);
4192 }
4193
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4194 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4195 {
4196 struct btrfs_trans_handle *trans;
4197 struct btrfs_root *tree_root = fs_info->tree_root;
4198 struct btrfs_root *uuid_root;
4199 struct task_struct *task;
4200 int ret;
4201
4202 /*
4203 * 1 - root node
4204 * 1 - root item
4205 */
4206 trans = btrfs_start_transaction(tree_root, 2);
4207 if (IS_ERR(trans))
4208 return PTR_ERR(trans);
4209
4210 uuid_root = btrfs_create_tree(trans, fs_info,
4211 BTRFS_UUID_TREE_OBJECTID);
4212 if (IS_ERR(uuid_root)) {
4213 ret = PTR_ERR(uuid_root);
4214 btrfs_abort_transaction(trans, tree_root, ret);
4215 return ret;
4216 }
4217
4218 fs_info->uuid_root = uuid_root;
4219
4220 ret = btrfs_commit_transaction(trans, tree_root);
4221 if (ret)
4222 return ret;
4223
4224 down(&fs_info->uuid_tree_rescan_sem);
4225 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4226 if (IS_ERR(task)) {
4227 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4228 btrfs_warn(fs_info, "failed to start uuid_scan task");
4229 up(&fs_info->uuid_tree_rescan_sem);
4230 return PTR_ERR(task);
4231 }
4232
4233 return 0;
4234 }
4235
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)4236 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4237 {
4238 struct task_struct *task;
4239
4240 down(&fs_info->uuid_tree_rescan_sem);
4241 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4242 if (IS_ERR(task)) {
4243 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4244 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4245 up(&fs_info->uuid_tree_rescan_sem);
4246 return PTR_ERR(task);
4247 }
4248
4249 return 0;
4250 }
4251
4252 /*
4253 * shrinking a device means finding all of the device extents past
4254 * the new size, and then following the back refs to the chunks.
4255 * The chunk relocation code actually frees the device extent
4256 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4257 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4258 {
4259 struct btrfs_trans_handle *trans;
4260 struct btrfs_root *root = device->dev_root;
4261 struct btrfs_dev_extent *dev_extent = NULL;
4262 struct btrfs_path *path;
4263 u64 length;
4264 u64 chunk_offset;
4265 int ret;
4266 int slot;
4267 int failed = 0;
4268 bool retried = false;
4269 bool checked_pending_chunks = false;
4270 struct extent_buffer *l;
4271 struct btrfs_key key;
4272 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4273 u64 old_total = btrfs_super_total_bytes(super_copy);
4274 u64 old_size = btrfs_device_get_total_bytes(device);
4275 u64 diff = old_size - new_size;
4276
4277 if (device->is_tgtdev_for_dev_replace)
4278 return -EINVAL;
4279
4280 path = btrfs_alloc_path();
4281 if (!path)
4282 return -ENOMEM;
4283
4284 path->reada = 2;
4285
4286 lock_chunks(root);
4287
4288 btrfs_device_set_total_bytes(device, new_size);
4289 if (device->writeable) {
4290 device->fs_devices->total_rw_bytes -= diff;
4291 spin_lock(&root->fs_info->free_chunk_lock);
4292 root->fs_info->free_chunk_space -= diff;
4293 spin_unlock(&root->fs_info->free_chunk_lock);
4294 }
4295 unlock_chunks(root);
4296
4297 again:
4298 key.objectid = device->devid;
4299 key.offset = (u64)-1;
4300 key.type = BTRFS_DEV_EXTENT_KEY;
4301
4302 do {
4303 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4304 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4305 if (ret < 0) {
4306 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4307 goto done;
4308 }
4309
4310 ret = btrfs_previous_item(root, path, 0, key.type);
4311 if (ret)
4312 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4313 if (ret < 0)
4314 goto done;
4315 if (ret) {
4316 ret = 0;
4317 btrfs_release_path(path);
4318 break;
4319 }
4320
4321 l = path->nodes[0];
4322 slot = path->slots[0];
4323 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4324
4325 if (key.objectid != device->devid) {
4326 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4327 btrfs_release_path(path);
4328 break;
4329 }
4330
4331 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4332 length = btrfs_dev_extent_length(l, dev_extent);
4333
4334 if (key.offset + length <= new_size) {
4335 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4336 btrfs_release_path(path);
4337 break;
4338 }
4339
4340 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4341 btrfs_release_path(path);
4342
4343 ret = btrfs_relocate_chunk(root, chunk_offset);
4344 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4345 if (ret && ret != -ENOSPC)
4346 goto done;
4347 if (ret == -ENOSPC)
4348 failed++;
4349 } while (key.offset-- > 0);
4350
4351 if (failed && !retried) {
4352 failed = 0;
4353 retried = true;
4354 goto again;
4355 } else if (failed && retried) {
4356 ret = -ENOSPC;
4357 goto done;
4358 }
4359
4360 /* Shrinking succeeded, else we would be at "done". */
4361 trans = btrfs_start_transaction(root, 0);
4362 if (IS_ERR(trans)) {
4363 ret = PTR_ERR(trans);
4364 goto done;
4365 }
4366
4367 lock_chunks(root);
4368
4369 /*
4370 * We checked in the above loop all device extents that were already in
4371 * the device tree. However before we have updated the device's
4372 * total_bytes to the new size, we might have had chunk allocations that
4373 * have not complete yet (new block groups attached to transaction
4374 * handles), and therefore their device extents were not yet in the
4375 * device tree and we missed them in the loop above. So if we have any
4376 * pending chunk using a device extent that overlaps the device range
4377 * that we can not use anymore, commit the current transaction and
4378 * repeat the search on the device tree - this way we guarantee we will
4379 * not have chunks using device extents that end beyond 'new_size'.
4380 */
4381 if (!checked_pending_chunks) {
4382 u64 start = new_size;
4383 u64 len = old_size - new_size;
4384
4385 if (contains_pending_extent(trans->transaction, device,
4386 &start, len)) {
4387 unlock_chunks(root);
4388 checked_pending_chunks = true;
4389 failed = 0;
4390 retried = false;
4391 ret = btrfs_commit_transaction(trans, root);
4392 if (ret)
4393 goto done;
4394 goto again;
4395 }
4396 }
4397
4398 btrfs_device_set_disk_total_bytes(device, new_size);
4399 if (list_empty(&device->resized_list))
4400 list_add_tail(&device->resized_list,
4401 &root->fs_info->fs_devices->resized_devices);
4402
4403 WARN_ON(diff > old_total);
4404 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4405 unlock_chunks(root);
4406
4407 /* Now btrfs_update_device() will change the on-disk size. */
4408 ret = btrfs_update_device(trans, device);
4409 btrfs_end_transaction(trans, root);
4410 done:
4411 btrfs_free_path(path);
4412 if (ret) {
4413 lock_chunks(root);
4414 btrfs_device_set_total_bytes(device, old_size);
4415 if (device->writeable)
4416 device->fs_devices->total_rw_bytes += diff;
4417 spin_lock(&root->fs_info->free_chunk_lock);
4418 root->fs_info->free_chunk_space += diff;
4419 spin_unlock(&root->fs_info->free_chunk_lock);
4420 unlock_chunks(root);
4421 }
4422 return ret;
4423 }
4424
btrfs_add_system_chunk(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4425 static int btrfs_add_system_chunk(struct btrfs_root *root,
4426 struct btrfs_key *key,
4427 struct btrfs_chunk *chunk, int item_size)
4428 {
4429 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4430 struct btrfs_disk_key disk_key;
4431 u32 array_size;
4432 u8 *ptr;
4433
4434 lock_chunks(root);
4435 array_size = btrfs_super_sys_array_size(super_copy);
4436 if (array_size + item_size + sizeof(disk_key)
4437 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4438 unlock_chunks(root);
4439 return -EFBIG;
4440 }
4441
4442 ptr = super_copy->sys_chunk_array + array_size;
4443 btrfs_cpu_key_to_disk(&disk_key, key);
4444 memcpy(ptr, &disk_key, sizeof(disk_key));
4445 ptr += sizeof(disk_key);
4446 memcpy(ptr, chunk, item_size);
4447 item_size += sizeof(disk_key);
4448 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4449 unlock_chunks(root);
4450
4451 return 0;
4452 }
4453
4454 /*
4455 * sort the devices in descending order by max_avail, total_avail
4456 */
btrfs_cmp_device_info(const void * a,const void * b)4457 static int btrfs_cmp_device_info(const void *a, const void *b)
4458 {
4459 const struct btrfs_device_info *di_a = a;
4460 const struct btrfs_device_info *di_b = b;
4461
4462 if (di_a->max_avail > di_b->max_avail)
4463 return -1;
4464 if (di_a->max_avail < di_b->max_avail)
4465 return 1;
4466 if (di_a->total_avail > di_b->total_avail)
4467 return -1;
4468 if (di_a->total_avail < di_b->total_avail)
4469 return 1;
4470 return 0;
4471 }
4472
find_raid56_stripe_len(u32 data_devices,u32 dev_stripe_target)4473 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4474 {
4475 /* TODO allow them to set a preferred stripe size */
4476 return 64 * 1024;
4477 }
4478
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)4479 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4480 {
4481 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4482 return;
4483
4484 btrfs_set_fs_incompat(info, RAID56);
4485 }
4486
4487 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4488 - sizeof(struct btrfs_item) \
4489 - sizeof(struct btrfs_chunk)) \
4490 / sizeof(struct btrfs_stripe) + 1)
4491
4492 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4493 - 2 * sizeof(struct btrfs_disk_key) \
4494 - 2 * sizeof(struct btrfs_chunk)) \
4495 / sizeof(struct btrfs_stripe) + 1)
4496
__btrfs_alloc_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,u64 start,u64 type)4497 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4498 struct btrfs_root *extent_root, u64 start,
4499 u64 type)
4500 {
4501 struct btrfs_fs_info *info = extent_root->fs_info;
4502 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4503 struct list_head *cur;
4504 struct map_lookup *map = NULL;
4505 struct extent_map_tree *em_tree;
4506 struct extent_map *em;
4507 struct btrfs_device_info *devices_info = NULL;
4508 u64 total_avail;
4509 int num_stripes; /* total number of stripes to allocate */
4510 int data_stripes; /* number of stripes that count for
4511 block group size */
4512 int sub_stripes; /* sub_stripes info for map */
4513 int dev_stripes; /* stripes per dev */
4514 int devs_max; /* max devs to use */
4515 int devs_min; /* min devs needed */
4516 int devs_increment; /* ndevs has to be a multiple of this */
4517 int ncopies; /* how many copies to data has */
4518 int ret;
4519 u64 max_stripe_size;
4520 u64 max_chunk_size;
4521 u64 stripe_size;
4522 u64 num_bytes;
4523 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4524 int ndevs;
4525 int i;
4526 int j;
4527 int index;
4528
4529 BUG_ON(!alloc_profile_is_valid(type, 0));
4530
4531 if (list_empty(&fs_devices->alloc_list))
4532 return -ENOSPC;
4533
4534 index = __get_raid_index(type);
4535
4536 sub_stripes = btrfs_raid_array[index].sub_stripes;
4537 dev_stripes = btrfs_raid_array[index].dev_stripes;
4538 devs_max = btrfs_raid_array[index].devs_max;
4539 devs_min = btrfs_raid_array[index].devs_min;
4540 devs_increment = btrfs_raid_array[index].devs_increment;
4541 ncopies = btrfs_raid_array[index].ncopies;
4542
4543 if (type & BTRFS_BLOCK_GROUP_DATA) {
4544 max_stripe_size = 1024 * 1024 * 1024;
4545 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4546 if (!devs_max)
4547 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4548 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4549 /* for larger filesystems, use larger metadata chunks */
4550 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4551 max_stripe_size = 1024 * 1024 * 1024;
4552 else
4553 max_stripe_size = 256 * 1024 * 1024;
4554 max_chunk_size = max_stripe_size;
4555 if (!devs_max)
4556 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4557 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4558 max_stripe_size = 32 * 1024 * 1024;
4559 max_chunk_size = 2 * max_stripe_size;
4560 if (!devs_max)
4561 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4562 } else {
4563 btrfs_err(info, "invalid chunk type 0x%llx requested",
4564 type);
4565 BUG_ON(1);
4566 }
4567
4568 /* we don't want a chunk larger than 10% of writeable space */
4569 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4570 max_chunk_size);
4571
4572 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4573 GFP_NOFS);
4574 if (!devices_info)
4575 return -ENOMEM;
4576
4577 cur = fs_devices->alloc_list.next;
4578
4579 /*
4580 * in the first pass through the devices list, we gather information
4581 * about the available holes on each device.
4582 */
4583 ndevs = 0;
4584 while (cur != &fs_devices->alloc_list) {
4585 struct btrfs_device *device;
4586 u64 max_avail;
4587 u64 dev_offset;
4588
4589 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4590
4591 cur = cur->next;
4592
4593 if (!device->writeable) {
4594 WARN(1, KERN_ERR
4595 "BTRFS: read-only device in alloc_list\n");
4596 continue;
4597 }
4598
4599 if (!device->in_fs_metadata ||
4600 device->is_tgtdev_for_dev_replace)
4601 continue;
4602
4603 if (device->total_bytes > device->bytes_used)
4604 total_avail = device->total_bytes - device->bytes_used;
4605 else
4606 total_avail = 0;
4607
4608 /* If there is no space on this device, skip it. */
4609 if (total_avail == 0)
4610 continue;
4611
4612 ret = find_free_dev_extent(trans, device,
4613 max_stripe_size * dev_stripes,
4614 &dev_offset, &max_avail);
4615 if (ret && ret != -ENOSPC)
4616 goto error;
4617
4618 if (ret == 0)
4619 max_avail = max_stripe_size * dev_stripes;
4620
4621 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4622 continue;
4623
4624 if (ndevs == fs_devices->rw_devices) {
4625 WARN(1, "%s: found more than %llu devices\n",
4626 __func__, fs_devices->rw_devices);
4627 break;
4628 }
4629 devices_info[ndevs].dev_offset = dev_offset;
4630 devices_info[ndevs].max_avail = max_avail;
4631 devices_info[ndevs].total_avail = total_avail;
4632 devices_info[ndevs].dev = device;
4633 ++ndevs;
4634 }
4635
4636 /*
4637 * now sort the devices by hole size / available space
4638 */
4639 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4640 btrfs_cmp_device_info, NULL);
4641
4642 /* round down to number of usable stripes */
4643 ndevs -= ndevs % devs_increment;
4644
4645 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4646 ret = -ENOSPC;
4647 goto error;
4648 }
4649
4650 if (devs_max && ndevs > devs_max)
4651 ndevs = devs_max;
4652 /*
4653 * The primary goal is to maximize the number of stripes, so use as
4654 * many devices as possible, even if the stripes are not maximum sized.
4655 *
4656 * The DUP profile stores more than one stripe per device, the
4657 * max_avail is the total size so we have to adjust.
4658 */
4659 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4660 num_stripes = ndevs * dev_stripes;
4661
4662 /*
4663 * this will have to be fixed for RAID1 and RAID10 over
4664 * more drives
4665 */
4666 data_stripes = num_stripes / ncopies;
4667
4668 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4669 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4670 btrfs_super_stripesize(info->super_copy));
4671 data_stripes = num_stripes - 1;
4672 }
4673 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4674 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4675 btrfs_super_stripesize(info->super_copy));
4676 data_stripes = num_stripes - 2;
4677 }
4678
4679 /*
4680 * Use the number of data stripes to figure out how big this chunk
4681 * is really going to be in terms of logical address space,
4682 * and compare that answer with the max chunk size
4683 */
4684 if (stripe_size * data_stripes > max_chunk_size) {
4685 u64 mask = (1ULL << 24) - 1;
4686
4687 stripe_size = div_u64(max_chunk_size, data_stripes);
4688
4689 /* bump the answer up to a 16MB boundary */
4690 stripe_size = (stripe_size + mask) & ~mask;
4691
4692 /* but don't go higher than the limits we found
4693 * while searching for free extents
4694 */
4695 if (stripe_size > devices_info[ndevs-1].max_avail)
4696 stripe_size = devices_info[ndevs-1].max_avail;
4697 }
4698
4699 /* align to BTRFS_STRIPE_LEN */
4700 stripe_size = div_u64(stripe_size, raid_stripe_len);
4701 stripe_size *= raid_stripe_len;
4702
4703 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4704 if (!map) {
4705 ret = -ENOMEM;
4706 goto error;
4707 }
4708 map->num_stripes = num_stripes;
4709
4710 for (i = 0; i < ndevs; ++i) {
4711 for (j = 0; j < dev_stripes; ++j) {
4712 int s = i * dev_stripes + j;
4713 map->stripes[s].dev = devices_info[i].dev;
4714 map->stripes[s].physical = devices_info[i].dev_offset +
4715 j * stripe_size;
4716 }
4717 }
4718 map->sector_size = extent_root->sectorsize;
4719 map->stripe_len = raid_stripe_len;
4720 map->io_align = raid_stripe_len;
4721 map->io_width = raid_stripe_len;
4722 map->type = type;
4723 map->sub_stripes = sub_stripes;
4724
4725 num_bytes = stripe_size * data_stripes;
4726
4727 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4728
4729 em = alloc_extent_map();
4730 if (!em) {
4731 kfree(map);
4732 ret = -ENOMEM;
4733 goto error;
4734 }
4735 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4736 em->map_lookup = map;
4737 em->start = start;
4738 em->len = num_bytes;
4739 em->block_start = 0;
4740 em->block_len = em->len;
4741 em->orig_block_len = stripe_size;
4742
4743 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4744 write_lock(&em_tree->lock);
4745 ret = add_extent_mapping(em_tree, em, 0);
4746 if (!ret) {
4747 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4748 atomic_inc(&em->refs);
4749 }
4750 write_unlock(&em_tree->lock);
4751 if (ret) {
4752 free_extent_map(em);
4753 goto error;
4754 }
4755
4756 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4757 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4758 start, num_bytes);
4759 if (ret)
4760 goto error_del_extent;
4761
4762 for (i = 0; i < map->num_stripes; i++) {
4763 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4764 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4765 map->stripes[i].dev->has_pending_chunks = true;
4766 }
4767
4768 spin_lock(&extent_root->fs_info->free_chunk_lock);
4769 extent_root->fs_info->free_chunk_space -= (stripe_size *
4770 map->num_stripes);
4771 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4772
4773 free_extent_map(em);
4774 check_raid56_incompat_flag(extent_root->fs_info, type);
4775
4776 kfree(devices_info);
4777 return 0;
4778
4779 error_del_extent:
4780 write_lock(&em_tree->lock);
4781 remove_extent_mapping(em_tree, em);
4782 write_unlock(&em_tree->lock);
4783
4784 /* One for our allocation */
4785 free_extent_map(em);
4786 /* One for the tree reference */
4787 free_extent_map(em);
4788 /* One for the pending_chunks list reference */
4789 free_extent_map(em);
4790 error:
4791 kfree(devices_info);
4792 return ret;
4793 }
4794
btrfs_finish_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,u64 chunk_offset,u64 chunk_size)4795 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4796 struct btrfs_root *extent_root,
4797 u64 chunk_offset, u64 chunk_size)
4798 {
4799 struct btrfs_key key;
4800 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4801 struct btrfs_device *device;
4802 struct btrfs_chunk *chunk;
4803 struct btrfs_stripe *stripe;
4804 struct extent_map_tree *em_tree;
4805 struct extent_map *em;
4806 struct map_lookup *map;
4807 size_t item_size;
4808 u64 dev_offset;
4809 u64 stripe_size;
4810 int i = 0;
4811 int ret;
4812
4813 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4814 read_lock(&em_tree->lock);
4815 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4816 read_unlock(&em_tree->lock);
4817
4818 if (!em) {
4819 btrfs_crit(extent_root->fs_info, "unable to find logical "
4820 "%Lu len %Lu", chunk_offset, chunk_size);
4821 return -EINVAL;
4822 }
4823
4824 if (em->start != chunk_offset || em->len != chunk_size) {
4825 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4826 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4827 chunk_size, em->start, em->len);
4828 free_extent_map(em);
4829 return -EINVAL;
4830 }
4831
4832 map = em->map_lookup;
4833 item_size = btrfs_chunk_item_size(map->num_stripes);
4834 stripe_size = em->orig_block_len;
4835
4836 chunk = kzalloc(item_size, GFP_NOFS);
4837 if (!chunk) {
4838 ret = -ENOMEM;
4839 goto out;
4840 }
4841
4842 for (i = 0; i < map->num_stripes; i++) {
4843 device = map->stripes[i].dev;
4844 dev_offset = map->stripes[i].physical;
4845
4846 ret = btrfs_update_device(trans, device);
4847 if (ret)
4848 goto out;
4849 ret = btrfs_alloc_dev_extent(trans, device,
4850 chunk_root->root_key.objectid,
4851 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4852 chunk_offset, dev_offset,
4853 stripe_size);
4854 if (ret)
4855 goto out;
4856 }
4857
4858 stripe = &chunk->stripe;
4859 for (i = 0; i < map->num_stripes; i++) {
4860 device = map->stripes[i].dev;
4861 dev_offset = map->stripes[i].physical;
4862
4863 btrfs_set_stack_stripe_devid(stripe, device->devid);
4864 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4865 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4866 stripe++;
4867 }
4868
4869 btrfs_set_stack_chunk_length(chunk, chunk_size);
4870 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4871 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4872 btrfs_set_stack_chunk_type(chunk, map->type);
4873 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4874 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4875 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4876 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4877 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4878
4879 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4880 key.type = BTRFS_CHUNK_ITEM_KEY;
4881 key.offset = chunk_offset;
4882
4883 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4884 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4885 /*
4886 * TODO: Cleanup of inserted chunk root in case of
4887 * failure.
4888 */
4889 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4890 item_size);
4891 }
4892
4893 out:
4894 kfree(chunk);
4895 free_extent_map(em);
4896 return ret;
4897 }
4898
4899 /*
4900 * Chunk allocation falls into two parts. The first part does works
4901 * that make the new allocated chunk useable, but not do any operation
4902 * that modifies the chunk tree. The second part does the works that
4903 * require modifying the chunk tree. This division is important for the
4904 * bootstrap process of adding storage to a seed btrfs.
4905 */
btrfs_alloc_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,u64 type)4906 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4907 struct btrfs_root *extent_root, u64 type)
4908 {
4909 u64 chunk_offset;
4910
4911 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4912 chunk_offset = find_next_chunk(extent_root->fs_info);
4913 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4914 }
4915
init_first_rw_device(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_device * device)4916 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4917 struct btrfs_root *root,
4918 struct btrfs_device *device)
4919 {
4920 u64 chunk_offset;
4921 u64 sys_chunk_offset;
4922 u64 alloc_profile;
4923 struct btrfs_fs_info *fs_info = root->fs_info;
4924 struct btrfs_root *extent_root = fs_info->extent_root;
4925 int ret;
4926
4927 chunk_offset = find_next_chunk(fs_info);
4928 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4929 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4930 alloc_profile);
4931 if (ret)
4932 return ret;
4933
4934 sys_chunk_offset = find_next_chunk(root->fs_info);
4935 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4936 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4937 alloc_profile);
4938 return ret;
4939 }
4940
btrfs_chunk_max_errors(struct map_lookup * map)4941 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4942 {
4943 int max_errors;
4944
4945 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4946 BTRFS_BLOCK_GROUP_RAID10 |
4947 BTRFS_BLOCK_GROUP_RAID5)) {
4948 max_errors = 1;
4949 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4950 max_errors = 2;
4951 } else {
4952 max_errors = 0;
4953 }
4954
4955 return max_errors;
4956 }
4957
btrfs_chunk_readonly(struct btrfs_root * root,u64 chunk_offset)4958 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4959 {
4960 struct extent_map *em;
4961 struct map_lookup *map;
4962 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4963 int readonly = 0;
4964 int miss_ndevs = 0;
4965 int i;
4966
4967 read_lock(&map_tree->map_tree.lock);
4968 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4969 read_unlock(&map_tree->map_tree.lock);
4970 if (!em)
4971 return 1;
4972
4973 map = em->map_lookup;
4974 for (i = 0; i < map->num_stripes; i++) {
4975 if (map->stripes[i].dev->missing) {
4976 miss_ndevs++;
4977 continue;
4978 }
4979
4980 if (!map->stripes[i].dev->writeable) {
4981 readonly = 1;
4982 goto end;
4983 }
4984 }
4985
4986 /*
4987 * If the number of missing devices is larger than max errors,
4988 * we can not write the data into that chunk successfully, so
4989 * set it readonly.
4990 */
4991 if (miss_ndevs > btrfs_chunk_max_errors(map))
4992 readonly = 1;
4993 end:
4994 free_extent_map(em);
4995 return readonly;
4996 }
4997
btrfs_mapping_init(struct btrfs_mapping_tree * tree)4998 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4999 {
5000 extent_map_tree_init(&tree->map_tree);
5001 }
5002
btrfs_mapping_tree_free(struct btrfs_mapping_tree * tree)5003 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5004 {
5005 struct extent_map *em;
5006
5007 while (1) {
5008 write_lock(&tree->map_tree.lock);
5009 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5010 if (em)
5011 remove_extent_mapping(&tree->map_tree, em);
5012 write_unlock(&tree->map_tree.lock);
5013 if (!em)
5014 break;
5015 /* once for us */
5016 free_extent_map(em);
5017 /* once for the tree */
5018 free_extent_map(em);
5019 }
5020 }
5021
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5022 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5023 {
5024 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5025 struct extent_map *em;
5026 struct map_lookup *map;
5027 struct extent_map_tree *em_tree = &map_tree->map_tree;
5028 int ret;
5029
5030 read_lock(&em_tree->lock);
5031 em = lookup_extent_mapping(em_tree, logical, len);
5032 read_unlock(&em_tree->lock);
5033
5034 /*
5035 * We could return errors for these cases, but that could get ugly and
5036 * we'd probably do the same thing which is just not do anything else
5037 * and exit, so return 1 so the callers don't try to use other copies.
5038 */
5039 if (!em) {
5040 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5041 logical+len);
5042 return 1;
5043 }
5044
5045 if (em->start > logical || em->start + em->len < logical) {
5046 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
5047 "%Lu-%Lu", logical, logical+len, em->start,
5048 em->start + em->len);
5049 free_extent_map(em);
5050 return 1;
5051 }
5052
5053 map = em->map_lookup;
5054 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5055 ret = map->num_stripes;
5056 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5057 ret = map->sub_stripes;
5058 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5059 ret = 2;
5060 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5061 /*
5062 * There could be two corrupted data stripes, we need
5063 * to loop retry in order to rebuild the correct data.
5064 *
5065 * Fail a stripe at a time on every retry except the
5066 * stripe under reconstruction.
5067 */
5068 ret = map->num_stripes;
5069 else
5070 ret = 1;
5071 free_extent_map(em);
5072
5073 btrfs_dev_replace_lock(&fs_info->dev_replace);
5074 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5075 ret++;
5076 btrfs_dev_replace_unlock(&fs_info->dev_replace);
5077
5078 return ret;
5079 }
5080
btrfs_full_stripe_len(struct btrfs_root * root,struct btrfs_mapping_tree * map_tree,u64 logical)5081 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5082 struct btrfs_mapping_tree *map_tree,
5083 u64 logical)
5084 {
5085 struct extent_map *em;
5086 struct map_lookup *map;
5087 struct extent_map_tree *em_tree = &map_tree->map_tree;
5088 unsigned long len = root->sectorsize;
5089
5090 read_lock(&em_tree->lock);
5091 em = lookup_extent_mapping(em_tree, logical, len);
5092 read_unlock(&em_tree->lock);
5093 BUG_ON(!em);
5094
5095 BUG_ON(em->start > logical || em->start + em->len < logical);
5096 map = em->map_lookup;
5097 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5098 len = map->stripe_len * nr_data_stripes(map);
5099 free_extent_map(em);
5100 return len;
5101 }
5102
btrfs_is_parity_mirror(struct btrfs_mapping_tree * map_tree,u64 logical,u64 len,int mirror_num)5103 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5104 u64 logical, u64 len, int mirror_num)
5105 {
5106 struct extent_map *em;
5107 struct map_lookup *map;
5108 struct extent_map_tree *em_tree = &map_tree->map_tree;
5109 int ret = 0;
5110
5111 read_lock(&em_tree->lock);
5112 em = lookup_extent_mapping(em_tree, logical, len);
5113 read_unlock(&em_tree->lock);
5114 BUG_ON(!em);
5115
5116 BUG_ON(em->start > logical || em->start + em->len < logical);
5117 map = em->map_lookup;
5118 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5119 ret = 1;
5120 free_extent_map(em);
5121 return ret;
5122 }
5123
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int num,int optimal,int dev_replace_is_ongoing)5124 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5125 struct map_lookup *map, int first, int num,
5126 int optimal, int dev_replace_is_ongoing)
5127 {
5128 int i;
5129 int tolerance;
5130 struct btrfs_device *srcdev;
5131
5132 if (dev_replace_is_ongoing &&
5133 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5134 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5135 srcdev = fs_info->dev_replace.srcdev;
5136 else
5137 srcdev = NULL;
5138
5139 /*
5140 * try to avoid the drive that is the source drive for a
5141 * dev-replace procedure, only choose it if no other non-missing
5142 * mirror is available
5143 */
5144 for (tolerance = 0; tolerance < 2; tolerance++) {
5145 if (map->stripes[optimal].dev->bdev &&
5146 (tolerance || map->stripes[optimal].dev != srcdev))
5147 return optimal;
5148 for (i = first; i < first + num; i++) {
5149 if (map->stripes[i].dev->bdev &&
5150 (tolerance || map->stripes[i].dev != srcdev))
5151 return i;
5152 }
5153 }
5154
5155 /* we couldn't find one that doesn't fail. Just return something
5156 * and the io error handling code will clean up eventually
5157 */
5158 return optimal;
5159 }
5160
parity_smaller(u64 a,u64 b)5161 static inline int parity_smaller(u64 a, u64 b)
5162 {
5163 return a > b;
5164 }
5165
5166 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
sort_parity_stripes(struct btrfs_bio * bbio,int num_stripes)5167 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5168 {
5169 struct btrfs_bio_stripe s;
5170 int i;
5171 u64 l;
5172 int again = 1;
5173
5174 while (again) {
5175 again = 0;
5176 for (i = 0; i < num_stripes - 1; i++) {
5177 if (parity_smaller(bbio->raid_map[i],
5178 bbio->raid_map[i+1])) {
5179 s = bbio->stripes[i];
5180 l = bbio->raid_map[i];
5181 bbio->stripes[i] = bbio->stripes[i+1];
5182 bbio->raid_map[i] = bbio->raid_map[i+1];
5183 bbio->stripes[i+1] = s;
5184 bbio->raid_map[i+1] = l;
5185
5186 again = 1;
5187 }
5188 }
5189 }
5190 }
5191
alloc_btrfs_bio(int total_stripes,int real_stripes)5192 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5193 {
5194 struct btrfs_bio *bbio = kzalloc(
5195 /* the size of the btrfs_bio */
5196 sizeof(struct btrfs_bio) +
5197 /* plus the variable array for the stripes */
5198 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5199 /* plus the variable array for the tgt dev */
5200 sizeof(int) * (real_stripes) +
5201 /*
5202 * plus the raid_map, which includes both the tgt dev
5203 * and the stripes
5204 */
5205 sizeof(u64) * (total_stripes),
5206 GFP_NOFS|__GFP_NOFAIL);
5207
5208 atomic_set(&bbio->error, 0);
5209 atomic_set(&bbio->refs, 1);
5210
5211 return bbio;
5212 }
5213
btrfs_get_bbio(struct btrfs_bio * bbio)5214 void btrfs_get_bbio(struct btrfs_bio *bbio)
5215 {
5216 WARN_ON(!atomic_read(&bbio->refs));
5217 atomic_inc(&bbio->refs);
5218 }
5219
btrfs_put_bbio(struct btrfs_bio * bbio)5220 void btrfs_put_bbio(struct btrfs_bio *bbio)
5221 {
5222 if (!bbio)
5223 return;
5224 if (atomic_dec_and_test(&bbio->refs))
5225 kfree(bbio);
5226 }
5227
__btrfs_map_block(struct btrfs_fs_info * fs_info,int rw,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)5228 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5229 u64 logical, u64 *length,
5230 struct btrfs_bio **bbio_ret,
5231 int mirror_num, int need_raid_map)
5232 {
5233 struct extent_map *em;
5234 struct map_lookup *map;
5235 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5236 struct extent_map_tree *em_tree = &map_tree->map_tree;
5237 u64 offset;
5238 u64 stripe_offset;
5239 u64 stripe_end_offset;
5240 u64 stripe_nr;
5241 u64 stripe_nr_orig;
5242 u64 stripe_nr_end;
5243 u64 stripe_len;
5244 u32 stripe_index;
5245 int i;
5246 int ret = 0;
5247 int num_stripes;
5248 int max_errors = 0;
5249 int tgtdev_indexes = 0;
5250 struct btrfs_bio *bbio = NULL;
5251 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5252 int dev_replace_is_ongoing = 0;
5253 int num_alloc_stripes;
5254 int patch_the_first_stripe_for_dev_replace = 0;
5255 u64 physical_to_patch_in_first_stripe = 0;
5256 u64 raid56_full_stripe_start = (u64)-1;
5257
5258 read_lock(&em_tree->lock);
5259 em = lookup_extent_mapping(em_tree, logical, *length);
5260 read_unlock(&em_tree->lock);
5261
5262 if (!em) {
5263 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5264 logical, *length);
5265 return -EINVAL;
5266 }
5267
5268 if (em->start > logical || em->start + em->len < logical) {
5269 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5270 "found %Lu-%Lu", logical, em->start,
5271 em->start + em->len);
5272 free_extent_map(em);
5273 return -EINVAL;
5274 }
5275
5276 map = em->map_lookup;
5277 offset = logical - em->start;
5278
5279 stripe_len = map->stripe_len;
5280 stripe_nr = offset;
5281 /*
5282 * stripe_nr counts the total number of stripes we have to stride
5283 * to get to this block
5284 */
5285 stripe_nr = div64_u64(stripe_nr, stripe_len);
5286
5287 stripe_offset = stripe_nr * stripe_len;
5288 BUG_ON(offset < stripe_offset);
5289
5290 /* stripe_offset is the offset of this block in its stripe*/
5291 stripe_offset = offset - stripe_offset;
5292
5293 /* if we're here for raid56, we need to know the stripe aligned start */
5294 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5295 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5296 raid56_full_stripe_start = offset;
5297
5298 /* allow a write of a full stripe, but make sure we don't
5299 * allow straddling of stripes
5300 */
5301 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5302 full_stripe_len);
5303 raid56_full_stripe_start *= full_stripe_len;
5304 }
5305
5306 if (rw & REQ_DISCARD) {
5307 /* we don't discard raid56 yet */
5308 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5309 ret = -EOPNOTSUPP;
5310 goto out;
5311 }
5312 *length = min_t(u64, em->len - offset, *length);
5313 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5314 u64 max_len;
5315 /* For writes to RAID[56], allow a full stripeset across all disks.
5316 For other RAID types and for RAID[56] reads, just allow a single
5317 stripe (on a single disk). */
5318 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5319 (rw & REQ_WRITE)) {
5320 max_len = stripe_len * nr_data_stripes(map) -
5321 (offset - raid56_full_stripe_start);
5322 } else {
5323 /* we limit the length of each bio to what fits in a stripe */
5324 max_len = stripe_len - stripe_offset;
5325 }
5326 *length = min_t(u64, em->len - offset, max_len);
5327 } else {
5328 *length = em->len - offset;
5329 }
5330
5331 /* This is for when we're called from btrfs_merge_bio_hook() and all
5332 it cares about is the length */
5333 if (!bbio_ret)
5334 goto out;
5335
5336 btrfs_dev_replace_lock(dev_replace);
5337 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5338 if (!dev_replace_is_ongoing)
5339 btrfs_dev_replace_unlock(dev_replace);
5340
5341 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5342 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5343 dev_replace->tgtdev != NULL) {
5344 /*
5345 * in dev-replace case, for repair case (that's the only
5346 * case where the mirror is selected explicitly when
5347 * calling btrfs_map_block), blocks left of the left cursor
5348 * can also be read from the target drive.
5349 * For REQ_GET_READ_MIRRORS, the target drive is added as
5350 * the last one to the array of stripes. For READ, it also
5351 * needs to be supported using the same mirror number.
5352 * If the requested block is not left of the left cursor,
5353 * EIO is returned. This can happen because btrfs_num_copies()
5354 * returns one more in the dev-replace case.
5355 */
5356 u64 tmp_length = *length;
5357 struct btrfs_bio *tmp_bbio = NULL;
5358 int tmp_num_stripes;
5359 u64 srcdev_devid = dev_replace->srcdev->devid;
5360 int index_srcdev = 0;
5361 int found = 0;
5362 u64 physical_of_found = 0;
5363
5364 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5365 logical, &tmp_length, &tmp_bbio, 0, 0);
5366 if (ret) {
5367 WARN_ON(tmp_bbio != NULL);
5368 goto out;
5369 }
5370
5371 tmp_num_stripes = tmp_bbio->num_stripes;
5372 if (mirror_num > tmp_num_stripes) {
5373 /*
5374 * REQ_GET_READ_MIRRORS does not contain this
5375 * mirror, that means that the requested area
5376 * is not left of the left cursor
5377 */
5378 ret = -EIO;
5379 btrfs_put_bbio(tmp_bbio);
5380 goto out;
5381 }
5382
5383 /*
5384 * process the rest of the function using the mirror_num
5385 * of the source drive. Therefore look it up first.
5386 * At the end, patch the device pointer to the one of the
5387 * target drive.
5388 */
5389 for (i = 0; i < tmp_num_stripes; i++) {
5390 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5391 /*
5392 * In case of DUP, in order to keep it
5393 * simple, only add the mirror with the
5394 * lowest physical address
5395 */
5396 if (found &&
5397 physical_of_found <=
5398 tmp_bbio->stripes[i].physical)
5399 continue;
5400 index_srcdev = i;
5401 found = 1;
5402 physical_of_found =
5403 tmp_bbio->stripes[i].physical;
5404 }
5405 }
5406
5407 if (found) {
5408 mirror_num = index_srcdev + 1;
5409 patch_the_first_stripe_for_dev_replace = 1;
5410 physical_to_patch_in_first_stripe = physical_of_found;
5411 } else {
5412 WARN_ON(1);
5413 ret = -EIO;
5414 btrfs_put_bbio(tmp_bbio);
5415 goto out;
5416 }
5417
5418 btrfs_put_bbio(tmp_bbio);
5419 } else if (mirror_num > map->num_stripes) {
5420 mirror_num = 0;
5421 }
5422
5423 num_stripes = 1;
5424 stripe_index = 0;
5425 stripe_nr_orig = stripe_nr;
5426 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5427 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5428 stripe_end_offset = stripe_nr_end * map->stripe_len -
5429 (offset + *length);
5430
5431 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5432 if (rw & REQ_DISCARD)
5433 num_stripes = min_t(u64, map->num_stripes,
5434 stripe_nr_end - stripe_nr_orig);
5435 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5436 &stripe_index);
5437 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5438 mirror_num = 1;
5439 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5440 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5441 num_stripes = map->num_stripes;
5442 else if (mirror_num)
5443 stripe_index = mirror_num - 1;
5444 else {
5445 stripe_index = find_live_mirror(fs_info, map, 0,
5446 map->num_stripes,
5447 current->pid % map->num_stripes,
5448 dev_replace_is_ongoing);
5449 mirror_num = stripe_index + 1;
5450 }
5451
5452 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5453 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5454 num_stripes = map->num_stripes;
5455 } else if (mirror_num) {
5456 stripe_index = mirror_num - 1;
5457 } else {
5458 mirror_num = 1;
5459 }
5460
5461 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5462 u32 factor = map->num_stripes / map->sub_stripes;
5463
5464 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5465 stripe_index *= map->sub_stripes;
5466
5467 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5468 num_stripes = map->sub_stripes;
5469 else if (rw & REQ_DISCARD)
5470 num_stripes = min_t(u64, map->sub_stripes *
5471 (stripe_nr_end - stripe_nr_orig),
5472 map->num_stripes);
5473 else if (mirror_num)
5474 stripe_index += mirror_num - 1;
5475 else {
5476 int old_stripe_index = stripe_index;
5477 stripe_index = find_live_mirror(fs_info, map,
5478 stripe_index,
5479 map->sub_stripes, stripe_index +
5480 current->pid % map->sub_stripes,
5481 dev_replace_is_ongoing);
5482 mirror_num = stripe_index - old_stripe_index + 1;
5483 }
5484
5485 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5486 if (need_raid_map &&
5487 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5488 mirror_num > 1)) {
5489 /* push stripe_nr back to the start of the full stripe */
5490 stripe_nr = div_u64(raid56_full_stripe_start,
5491 stripe_len * nr_data_stripes(map));
5492
5493 /* RAID[56] write or recovery. Return all stripes */
5494 num_stripes = map->num_stripes;
5495 max_errors = nr_parity_stripes(map);
5496
5497 *length = map->stripe_len;
5498 stripe_index = 0;
5499 stripe_offset = 0;
5500 } else {
5501 /*
5502 * Mirror #0 or #1 means the original data block.
5503 * Mirror #2 is RAID5 parity block.
5504 * Mirror #3 is RAID6 Q block.
5505 */
5506 stripe_nr = div_u64_rem(stripe_nr,
5507 nr_data_stripes(map), &stripe_index);
5508 if (mirror_num > 1)
5509 stripe_index = nr_data_stripes(map) +
5510 mirror_num - 2;
5511
5512 /* We distribute the parity blocks across stripes */
5513 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5514 &stripe_index);
5515 if (!(rw & (REQ_WRITE | REQ_DISCARD |
5516 REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5517 mirror_num = 1;
5518 }
5519 } else {
5520 /*
5521 * after this, stripe_nr is the number of stripes on this
5522 * device we have to walk to find the data, and stripe_index is
5523 * the number of our device in the stripe array
5524 */
5525 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5526 &stripe_index);
5527 mirror_num = stripe_index + 1;
5528 }
5529 BUG_ON(stripe_index >= map->num_stripes);
5530
5531 num_alloc_stripes = num_stripes;
5532 if (dev_replace_is_ongoing) {
5533 if (rw & (REQ_WRITE | REQ_DISCARD))
5534 num_alloc_stripes <<= 1;
5535 if (rw & REQ_GET_READ_MIRRORS)
5536 num_alloc_stripes++;
5537 tgtdev_indexes = num_stripes;
5538 }
5539
5540 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5541 if (!bbio) {
5542 ret = -ENOMEM;
5543 goto out;
5544 }
5545 if (dev_replace_is_ongoing)
5546 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5547
5548 /* build raid_map */
5549 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5550 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5551 mirror_num > 1)) {
5552 u64 tmp;
5553 unsigned rot;
5554
5555 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5556 sizeof(struct btrfs_bio_stripe) *
5557 num_alloc_stripes +
5558 sizeof(int) * tgtdev_indexes);
5559
5560 /* Work out the disk rotation on this stripe-set */
5561 div_u64_rem(stripe_nr, num_stripes, &rot);
5562
5563 /* Fill in the logical address of each stripe */
5564 tmp = stripe_nr * nr_data_stripes(map);
5565 for (i = 0; i < nr_data_stripes(map); i++)
5566 bbio->raid_map[(i+rot) % num_stripes] =
5567 em->start + (tmp + i) * map->stripe_len;
5568
5569 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5570 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5571 bbio->raid_map[(i+rot+1) % num_stripes] =
5572 RAID6_Q_STRIPE;
5573 }
5574
5575 if (rw & REQ_DISCARD) {
5576 u32 factor = 0;
5577 u32 sub_stripes = 0;
5578 u64 stripes_per_dev = 0;
5579 u32 remaining_stripes = 0;
5580 u32 last_stripe = 0;
5581
5582 if (map->type &
5583 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5584 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5585 sub_stripes = 1;
5586 else
5587 sub_stripes = map->sub_stripes;
5588
5589 factor = map->num_stripes / sub_stripes;
5590 stripes_per_dev = div_u64_rem(stripe_nr_end -
5591 stripe_nr_orig,
5592 factor,
5593 &remaining_stripes);
5594 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5595 last_stripe *= sub_stripes;
5596 }
5597
5598 for (i = 0; i < num_stripes; i++) {
5599 bbio->stripes[i].physical =
5600 map->stripes[stripe_index].physical +
5601 stripe_offset + stripe_nr * map->stripe_len;
5602 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5603
5604 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5605 BTRFS_BLOCK_GROUP_RAID10)) {
5606 bbio->stripes[i].length = stripes_per_dev *
5607 map->stripe_len;
5608
5609 if (i / sub_stripes < remaining_stripes)
5610 bbio->stripes[i].length +=
5611 map->stripe_len;
5612
5613 /*
5614 * Special for the first stripe and
5615 * the last stripe:
5616 *
5617 * |-------|...|-------|
5618 * |----------|
5619 * off end_off
5620 */
5621 if (i < sub_stripes)
5622 bbio->stripes[i].length -=
5623 stripe_offset;
5624
5625 if (stripe_index >= last_stripe &&
5626 stripe_index <= (last_stripe +
5627 sub_stripes - 1))
5628 bbio->stripes[i].length -=
5629 stripe_end_offset;
5630
5631 if (i == sub_stripes - 1)
5632 stripe_offset = 0;
5633 } else
5634 bbio->stripes[i].length = *length;
5635
5636 stripe_index++;
5637 if (stripe_index == map->num_stripes) {
5638 /* This could only happen for RAID0/10 */
5639 stripe_index = 0;
5640 stripe_nr++;
5641 }
5642 }
5643 } else {
5644 for (i = 0; i < num_stripes; i++) {
5645 bbio->stripes[i].physical =
5646 map->stripes[stripe_index].physical +
5647 stripe_offset +
5648 stripe_nr * map->stripe_len;
5649 bbio->stripes[i].dev =
5650 map->stripes[stripe_index].dev;
5651 stripe_index++;
5652 }
5653 }
5654
5655 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5656 max_errors = btrfs_chunk_max_errors(map);
5657
5658 if (bbio->raid_map)
5659 sort_parity_stripes(bbio, num_stripes);
5660
5661 tgtdev_indexes = 0;
5662 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5663 dev_replace->tgtdev != NULL) {
5664 int index_where_to_add;
5665 u64 srcdev_devid = dev_replace->srcdev->devid;
5666
5667 /*
5668 * duplicate the write operations while the dev replace
5669 * procedure is running. Since the copying of the old disk
5670 * to the new disk takes place at run time while the
5671 * filesystem is mounted writable, the regular write
5672 * operations to the old disk have to be duplicated to go
5673 * to the new disk as well.
5674 * Note that device->missing is handled by the caller, and
5675 * that the write to the old disk is already set up in the
5676 * stripes array.
5677 */
5678 index_where_to_add = num_stripes;
5679 for (i = 0; i < num_stripes; i++) {
5680 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5681 /* write to new disk, too */
5682 struct btrfs_bio_stripe *new =
5683 bbio->stripes + index_where_to_add;
5684 struct btrfs_bio_stripe *old =
5685 bbio->stripes + i;
5686
5687 new->physical = old->physical;
5688 new->length = old->length;
5689 new->dev = dev_replace->tgtdev;
5690 bbio->tgtdev_map[i] = index_where_to_add;
5691 index_where_to_add++;
5692 max_errors++;
5693 tgtdev_indexes++;
5694 }
5695 }
5696 num_stripes = index_where_to_add;
5697 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5698 dev_replace->tgtdev != NULL) {
5699 u64 srcdev_devid = dev_replace->srcdev->devid;
5700 int index_srcdev = 0;
5701 int found = 0;
5702 u64 physical_of_found = 0;
5703
5704 /*
5705 * During the dev-replace procedure, the target drive can
5706 * also be used to read data in case it is needed to repair
5707 * a corrupt block elsewhere. This is possible if the
5708 * requested area is left of the left cursor. In this area,
5709 * the target drive is a full copy of the source drive.
5710 */
5711 for (i = 0; i < num_stripes; i++) {
5712 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5713 /*
5714 * In case of DUP, in order to keep it
5715 * simple, only add the mirror with the
5716 * lowest physical address
5717 */
5718 if (found &&
5719 physical_of_found <=
5720 bbio->stripes[i].physical)
5721 continue;
5722 index_srcdev = i;
5723 found = 1;
5724 physical_of_found = bbio->stripes[i].physical;
5725 }
5726 }
5727 if (found) {
5728 if (physical_of_found + map->stripe_len <=
5729 dev_replace->cursor_left) {
5730 struct btrfs_bio_stripe *tgtdev_stripe =
5731 bbio->stripes + num_stripes;
5732
5733 tgtdev_stripe->physical = physical_of_found;
5734 tgtdev_stripe->length =
5735 bbio->stripes[index_srcdev].length;
5736 tgtdev_stripe->dev = dev_replace->tgtdev;
5737 bbio->tgtdev_map[index_srcdev] = num_stripes;
5738
5739 tgtdev_indexes++;
5740 num_stripes++;
5741 }
5742 }
5743 }
5744
5745 *bbio_ret = bbio;
5746 bbio->map_type = map->type;
5747 bbio->num_stripes = num_stripes;
5748 bbio->max_errors = max_errors;
5749 bbio->mirror_num = mirror_num;
5750 bbio->num_tgtdevs = tgtdev_indexes;
5751
5752 /*
5753 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5754 * mirror_num == num_stripes + 1 && dev_replace target drive is
5755 * available as a mirror
5756 */
5757 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5758 WARN_ON(num_stripes > 1);
5759 bbio->stripes[0].dev = dev_replace->tgtdev;
5760 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5761 bbio->mirror_num = map->num_stripes + 1;
5762 }
5763 out:
5764 if (dev_replace_is_ongoing)
5765 btrfs_dev_replace_unlock(dev_replace);
5766 free_extent_map(em);
5767 return ret;
5768 }
5769
btrfs_map_block(struct btrfs_fs_info * fs_info,int rw,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num)5770 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5771 u64 logical, u64 *length,
5772 struct btrfs_bio **bbio_ret, int mirror_num)
5773 {
5774 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5775 mirror_num, 0);
5776 }
5777
5778 /* For Scrub/replace */
btrfs_map_sblock(struct btrfs_fs_info * fs_info,int rw,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)5779 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5780 u64 logical, u64 *length,
5781 struct btrfs_bio **bbio_ret, int mirror_num,
5782 int need_raid_map)
5783 {
5784 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5785 mirror_num, need_raid_map);
5786 }
5787
btrfs_rmap_block(struct btrfs_mapping_tree * map_tree,u64 chunk_start,u64 physical,u64 devid,u64 ** logical,int * naddrs,int * stripe_len)5788 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5789 u64 chunk_start, u64 physical, u64 devid,
5790 u64 **logical, int *naddrs, int *stripe_len)
5791 {
5792 struct extent_map_tree *em_tree = &map_tree->map_tree;
5793 struct extent_map *em;
5794 struct map_lookup *map;
5795 u64 *buf;
5796 u64 bytenr;
5797 u64 length;
5798 u64 stripe_nr;
5799 u64 rmap_len;
5800 int i, j, nr = 0;
5801
5802 read_lock(&em_tree->lock);
5803 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5804 read_unlock(&em_tree->lock);
5805
5806 if (!em) {
5807 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5808 chunk_start);
5809 return -EIO;
5810 }
5811
5812 if (em->start != chunk_start) {
5813 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5814 em->start, chunk_start);
5815 free_extent_map(em);
5816 return -EIO;
5817 }
5818 map = em->map_lookup;
5819
5820 length = em->len;
5821 rmap_len = map->stripe_len;
5822
5823 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5824 length = div_u64(length, map->num_stripes / map->sub_stripes);
5825 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5826 length = div_u64(length, map->num_stripes);
5827 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5828 length = div_u64(length, nr_data_stripes(map));
5829 rmap_len = map->stripe_len * nr_data_stripes(map);
5830 }
5831
5832 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5833 BUG_ON(!buf); /* -ENOMEM */
5834
5835 for (i = 0; i < map->num_stripes; i++) {
5836 if (devid && map->stripes[i].dev->devid != devid)
5837 continue;
5838 if (map->stripes[i].physical > physical ||
5839 map->stripes[i].physical + length <= physical)
5840 continue;
5841
5842 stripe_nr = physical - map->stripes[i].physical;
5843 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5844
5845 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5846 stripe_nr = stripe_nr * map->num_stripes + i;
5847 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5848 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5849 stripe_nr = stripe_nr * map->num_stripes + i;
5850 } /* else if RAID[56], multiply by nr_data_stripes().
5851 * Alternatively, just use rmap_len below instead of
5852 * map->stripe_len */
5853
5854 bytenr = chunk_start + stripe_nr * rmap_len;
5855 WARN_ON(nr >= map->num_stripes);
5856 for (j = 0; j < nr; j++) {
5857 if (buf[j] == bytenr)
5858 break;
5859 }
5860 if (j == nr) {
5861 WARN_ON(nr >= map->num_stripes);
5862 buf[nr++] = bytenr;
5863 }
5864 }
5865
5866 *logical = buf;
5867 *naddrs = nr;
5868 *stripe_len = rmap_len;
5869
5870 free_extent_map(em);
5871 return 0;
5872 }
5873
btrfs_end_bbio(struct btrfs_bio * bbio,struct bio * bio)5874 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5875 {
5876 bio->bi_private = bbio->private;
5877 bio->bi_end_io = bbio->end_io;
5878 bio_endio(bio);
5879
5880 btrfs_put_bbio(bbio);
5881 }
5882
btrfs_end_bio(struct bio * bio)5883 static void btrfs_end_bio(struct bio *bio)
5884 {
5885 struct btrfs_bio *bbio = bio->bi_private;
5886 int is_orig_bio = 0;
5887
5888 if (bio->bi_error) {
5889 atomic_inc(&bbio->error);
5890 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5891 unsigned int stripe_index =
5892 btrfs_io_bio(bio)->stripe_index;
5893 struct btrfs_device *dev;
5894
5895 BUG_ON(stripe_index >= bbio->num_stripes);
5896 dev = bbio->stripes[stripe_index].dev;
5897 if (dev->bdev) {
5898 if (bio->bi_rw & WRITE)
5899 btrfs_dev_stat_inc(dev,
5900 BTRFS_DEV_STAT_WRITE_ERRS);
5901 else
5902 btrfs_dev_stat_inc(dev,
5903 BTRFS_DEV_STAT_READ_ERRS);
5904 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5905 btrfs_dev_stat_inc(dev,
5906 BTRFS_DEV_STAT_FLUSH_ERRS);
5907 btrfs_dev_stat_print_on_error(dev);
5908 }
5909 }
5910 }
5911
5912 if (bio == bbio->orig_bio)
5913 is_orig_bio = 1;
5914
5915 btrfs_bio_counter_dec(bbio->fs_info);
5916
5917 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5918 if (!is_orig_bio) {
5919 bio_put(bio);
5920 bio = bbio->orig_bio;
5921 }
5922
5923 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5924 /* only send an error to the higher layers if it is
5925 * beyond the tolerance of the btrfs bio
5926 */
5927 if (atomic_read(&bbio->error) > bbio->max_errors) {
5928 bio->bi_error = -EIO;
5929 } else {
5930 /*
5931 * this bio is actually up to date, we didn't
5932 * go over the max number of errors
5933 */
5934 bio->bi_error = 0;
5935 }
5936
5937 btrfs_end_bbio(bbio, bio);
5938 } else if (!is_orig_bio) {
5939 bio_put(bio);
5940 }
5941 }
5942
5943 /*
5944 * see run_scheduled_bios for a description of why bios are collected for
5945 * async submit.
5946 *
5947 * This will add one bio to the pending list for a device and make sure
5948 * the work struct is scheduled.
5949 */
btrfs_schedule_bio(struct btrfs_root * root,struct btrfs_device * device,int rw,struct bio * bio)5950 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5951 struct btrfs_device *device,
5952 int rw, struct bio *bio)
5953 {
5954 int should_queue = 1;
5955 struct btrfs_pending_bios *pending_bios;
5956
5957 if (device->missing || !device->bdev) {
5958 bio_io_error(bio);
5959 return;
5960 }
5961
5962 /* don't bother with additional async steps for reads, right now */
5963 if (!(rw & REQ_WRITE)) {
5964 bio_get(bio);
5965 btrfsic_submit_bio(rw, bio);
5966 bio_put(bio);
5967 return;
5968 }
5969
5970 /*
5971 * nr_async_bios allows us to reliably return congestion to the
5972 * higher layers. Otherwise, the async bio makes it appear we have
5973 * made progress against dirty pages when we've really just put it
5974 * on a queue for later
5975 */
5976 atomic_inc(&root->fs_info->nr_async_bios);
5977 WARN_ON(bio->bi_next);
5978 bio->bi_next = NULL;
5979 bio->bi_rw |= rw;
5980
5981 spin_lock(&device->io_lock);
5982 if (bio->bi_rw & REQ_SYNC)
5983 pending_bios = &device->pending_sync_bios;
5984 else
5985 pending_bios = &device->pending_bios;
5986
5987 if (pending_bios->tail)
5988 pending_bios->tail->bi_next = bio;
5989
5990 pending_bios->tail = bio;
5991 if (!pending_bios->head)
5992 pending_bios->head = bio;
5993 if (device->running_pending)
5994 should_queue = 0;
5995
5996 spin_unlock(&device->io_lock);
5997
5998 if (should_queue)
5999 btrfs_queue_work(root->fs_info->submit_workers,
6000 &device->work);
6001 }
6002
submit_stripe_bio(struct btrfs_root * root,struct btrfs_bio * bbio,struct bio * bio,u64 physical,int dev_nr,int rw,int async)6003 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6004 struct bio *bio, u64 physical, int dev_nr,
6005 int rw, int async)
6006 {
6007 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6008
6009 bio->bi_private = bbio;
6010 btrfs_io_bio(bio)->stripe_index = dev_nr;
6011 bio->bi_end_io = btrfs_end_bio;
6012 bio->bi_iter.bi_sector = physical >> 9;
6013 #ifdef DEBUG
6014 {
6015 struct rcu_string *name;
6016
6017 rcu_read_lock();
6018 name = rcu_dereference(dev->name);
6019 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
6020 "(%s id %llu), size=%u\n", rw,
6021 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6022 name->str, dev->devid, bio->bi_iter.bi_size);
6023 rcu_read_unlock();
6024 }
6025 #endif
6026 bio->bi_bdev = dev->bdev;
6027
6028 btrfs_bio_counter_inc_noblocked(root->fs_info);
6029
6030 if (async)
6031 btrfs_schedule_bio(root, dev, rw, bio);
6032 else
6033 btrfsic_submit_bio(rw, bio);
6034 }
6035
bbio_error(struct btrfs_bio * bbio,struct bio * bio,u64 logical)6036 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6037 {
6038 atomic_inc(&bbio->error);
6039 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6040 /* Shoud be the original bio. */
6041 WARN_ON(bio != bbio->orig_bio);
6042
6043 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6044 bio->bi_iter.bi_sector = logical >> 9;
6045 bio->bi_error = -EIO;
6046 btrfs_end_bbio(bbio, bio);
6047 }
6048 }
6049
btrfs_map_bio(struct btrfs_root * root,int rw,struct bio * bio,int mirror_num,int async_submit)6050 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
6051 int mirror_num, int async_submit)
6052 {
6053 struct btrfs_device *dev;
6054 struct bio *first_bio = bio;
6055 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6056 u64 length = 0;
6057 u64 map_length;
6058 int ret;
6059 int dev_nr;
6060 int total_devs;
6061 struct btrfs_bio *bbio = NULL;
6062
6063 length = bio->bi_iter.bi_size;
6064 map_length = length;
6065
6066 btrfs_bio_counter_inc_blocked(root->fs_info);
6067 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
6068 mirror_num, 1);
6069 if (ret) {
6070 btrfs_bio_counter_dec(root->fs_info);
6071 return ret;
6072 }
6073
6074 total_devs = bbio->num_stripes;
6075 bbio->orig_bio = first_bio;
6076 bbio->private = first_bio->bi_private;
6077 bbio->end_io = first_bio->bi_end_io;
6078 bbio->fs_info = root->fs_info;
6079 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6080
6081 if (bbio->raid_map) {
6082 /* In this case, map_length has been set to the length of
6083 a single stripe; not the whole write */
6084 if (rw & WRITE) {
6085 ret = raid56_parity_write(root, bio, bbio, map_length);
6086 } else {
6087 ret = raid56_parity_recover(root, bio, bbio, map_length,
6088 mirror_num, 1);
6089 }
6090
6091 btrfs_bio_counter_dec(root->fs_info);
6092 return ret;
6093 }
6094
6095 if (map_length < length) {
6096 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
6097 logical, length, map_length);
6098 BUG();
6099 }
6100
6101 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6102 dev = bbio->stripes[dev_nr].dev;
6103 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6104 bbio_error(bbio, first_bio, logical);
6105 continue;
6106 }
6107
6108 if (dev_nr < total_devs - 1) {
6109 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6110 BUG_ON(!bio); /* -ENOMEM */
6111 } else
6112 bio = first_bio;
6113
6114 submit_stripe_bio(root, bbio, bio,
6115 bbio->stripes[dev_nr].physical, dev_nr, rw,
6116 async_submit);
6117 }
6118 btrfs_bio_counter_dec(root->fs_info);
6119 return 0;
6120 }
6121
btrfs_find_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,u8 * fsid)6122 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6123 u8 *uuid, u8 *fsid)
6124 {
6125 struct btrfs_device *device;
6126 struct btrfs_fs_devices *cur_devices;
6127
6128 cur_devices = fs_info->fs_devices;
6129 while (cur_devices) {
6130 if (!fsid ||
6131 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6132 device = __find_device(&cur_devices->devices,
6133 devid, uuid);
6134 if (device)
6135 return device;
6136 }
6137 cur_devices = cur_devices->seed;
6138 }
6139 return NULL;
6140 }
6141
add_missing_dev(struct btrfs_root * root,struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6142 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6143 struct btrfs_fs_devices *fs_devices,
6144 u64 devid, u8 *dev_uuid)
6145 {
6146 struct btrfs_device *device;
6147
6148 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6149 if (IS_ERR(device))
6150 return NULL;
6151
6152 list_add(&device->dev_list, &fs_devices->devices);
6153 device->fs_devices = fs_devices;
6154 fs_devices->num_devices++;
6155
6156 device->missing = 1;
6157 fs_devices->missing_devices++;
6158
6159 return device;
6160 }
6161
6162 /**
6163 * btrfs_alloc_device - allocate struct btrfs_device
6164 * @fs_info: used only for generating a new devid, can be NULL if
6165 * devid is provided (i.e. @devid != NULL).
6166 * @devid: a pointer to devid for this device. If NULL a new devid
6167 * is generated.
6168 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6169 * is generated.
6170 *
6171 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6172 * on error. Returned struct is not linked onto any lists and can be
6173 * destroyed with kfree() right away.
6174 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid)6175 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6176 const u64 *devid,
6177 const u8 *uuid)
6178 {
6179 struct btrfs_device *dev;
6180 u64 tmp;
6181
6182 if (WARN_ON(!devid && !fs_info))
6183 return ERR_PTR(-EINVAL);
6184
6185 dev = __alloc_device();
6186 if (IS_ERR(dev))
6187 return dev;
6188
6189 if (devid)
6190 tmp = *devid;
6191 else {
6192 int ret;
6193
6194 ret = find_next_devid(fs_info, &tmp);
6195 if (ret) {
6196 kfree(dev);
6197 return ERR_PTR(ret);
6198 }
6199 }
6200 dev->devid = tmp;
6201
6202 if (uuid)
6203 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6204 else
6205 generate_random_uuid(dev->uuid);
6206
6207 btrfs_init_work(&dev->work, btrfs_submit_helper,
6208 pending_bios_fn, NULL, NULL);
6209
6210 return dev;
6211 }
6212
6213 /* Return -EIO if any error, otherwise return 0. */
btrfs_check_chunk_valid(struct btrfs_root * root,struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 logical)6214 static int btrfs_check_chunk_valid(struct btrfs_root *root,
6215 struct extent_buffer *leaf,
6216 struct btrfs_chunk *chunk, u64 logical)
6217 {
6218 u64 length;
6219 u64 stripe_len;
6220 u16 num_stripes;
6221 u16 sub_stripes;
6222 u64 type;
6223 u64 features;
6224 bool mixed = false;
6225
6226 length = btrfs_chunk_length(leaf, chunk);
6227 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6228 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6229 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6230 type = btrfs_chunk_type(leaf, chunk);
6231
6232 if (!num_stripes) {
6233 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6234 num_stripes);
6235 return -EIO;
6236 }
6237 if (!IS_ALIGNED(logical, root->sectorsize)) {
6238 btrfs_err(root->fs_info,
6239 "invalid chunk logical %llu", logical);
6240 return -EIO;
6241 }
6242 if (btrfs_chunk_sector_size(leaf, chunk) != root->sectorsize) {
6243 btrfs_err(root->fs_info, "invalid chunk sectorsize %u",
6244 btrfs_chunk_sector_size(leaf, chunk));
6245 return -EIO;
6246 }
6247 if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6248 btrfs_err(root->fs_info,
6249 "invalid chunk length %llu", length);
6250 return -EIO;
6251 }
6252 if (!is_power_of_2(stripe_len)) {
6253 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6254 stripe_len);
6255 return -EIO;
6256 }
6257 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6258 type) {
6259 btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6260 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6261 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6262 btrfs_chunk_type(leaf, chunk));
6263 return -EIO;
6264 }
6265
6266 if (!is_power_of_2(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
6267 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0) {
6268 btrfs_err(root->fs_info,
6269 "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set",
6270 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6271 return -EUCLEAN;
6272 }
6273 if ((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0) {
6274 btrfs_err(root->fs_info, "missing chunk type flag: 0x%llx", type);
6275 return -EIO;
6276 }
6277
6278 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
6279 (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) {
6280 btrfs_err(root->fs_info,
6281 "system chunk with data or metadata type: 0x%llx", type);
6282 return -EIO;
6283 }
6284
6285 features = btrfs_super_incompat_flags(root->fs_info->super_copy);
6286 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
6287 mixed = true;
6288
6289 if (!mixed) {
6290 if ((type & BTRFS_BLOCK_GROUP_METADATA) &&
6291 (type & BTRFS_BLOCK_GROUP_DATA)) {
6292 btrfs_err(root->fs_info,
6293 "mixed chunk type in non-mixed mode: 0x%llx", type);
6294 return -EIO;
6295 }
6296 }
6297
6298 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6299 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes != 2) ||
6300 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6301 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6302 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes != 2) ||
6303 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6304 num_stripes != 1)) {
6305 btrfs_err(root->fs_info,
6306 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6307 num_stripes, sub_stripes,
6308 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6309 return -EIO;
6310 }
6311
6312 return 0;
6313 }
6314
read_one_chunk(struct btrfs_root * root,struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6315 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6316 struct extent_buffer *leaf,
6317 struct btrfs_chunk *chunk)
6318 {
6319 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6320 struct map_lookup *map;
6321 struct extent_map *em;
6322 u64 logical;
6323 u64 length;
6324 u64 stripe_len;
6325 u64 devid;
6326 u8 uuid[BTRFS_UUID_SIZE];
6327 int num_stripes;
6328 int ret;
6329 int i;
6330
6331 logical = key->offset;
6332 length = btrfs_chunk_length(leaf, chunk);
6333 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6334 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6335
6336 ret = btrfs_check_chunk_valid(root, leaf, chunk, logical);
6337 if (ret)
6338 return ret;
6339
6340 read_lock(&map_tree->map_tree.lock);
6341 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6342 read_unlock(&map_tree->map_tree.lock);
6343
6344 /* already mapped? */
6345 if (em && em->start <= logical && em->start + em->len > logical) {
6346 free_extent_map(em);
6347 return 0;
6348 } else if (em) {
6349 free_extent_map(em);
6350 }
6351
6352 em = alloc_extent_map();
6353 if (!em)
6354 return -ENOMEM;
6355 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6356 if (!map) {
6357 free_extent_map(em);
6358 return -ENOMEM;
6359 }
6360
6361 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6362 em->map_lookup = map;
6363 em->start = logical;
6364 em->len = length;
6365 em->orig_start = 0;
6366 em->block_start = 0;
6367 em->block_len = em->len;
6368
6369 map->num_stripes = num_stripes;
6370 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6371 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6372 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6373 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6374 map->type = btrfs_chunk_type(leaf, chunk);
6375 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6376 for (i = 0; i < num_stripes; i++) {
6377 map->stripes[i].physical =
6378 btrfs_stripe_offset_nr(leaf, chunk, i);
6379 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6380 read_extent_buffer(leaf, uuid, (unsigned long)
6381 btrfs_stripe_dev_uuid_nr(chunk, i),
6382 BTRFS_UUID_SIZE);
6383 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6384 uuid, NULL);
6385 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6386 free_extent_map(em);
6387 return -EIO;
6388 }
6389 if (!map->stripes[i].dev) {
6390 map->stripes[i].dev =
6391 add_missing_dev(root, root->fs_info->fs_devices,
6392 devid, uuid);
6393 if (!map->stripes[i].dev) {
6394 free_extent_map(em);
6395 return -EIO;
6396 }
6397 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6398 devid, uuid);
6399 }
6400 map->stripes[i].dev->in_fs_metadata = 1;
6401 }
6402
6403 write_lock(&map_tree->map_tree.lock);
6404 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6405 write_unlock(&map_tree->map_tree.lock);
6406 BUG_ON(ret); /* Tree corruption */
6407 free_extent_map(em);
6408
6409 return 0;
6410 }
6411
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)6412 static void fill_device_from_item(struct extent_buffer *leaf,
6413 struct btrfs_dev_item *dev_item,
6414 struct btrfs_device *device)
6415 {
6416 unsigned long ptr;
6417
6418 device->devid = btrfs_device_id(leaf, dev_item);
6419 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6420 device->total_bytes = device->disk_total_bytes;
6421 device->commit_total_bytes = device->disk_total_bytes;
6422 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6423 device->commit_bytes_used = device->bytes_used;
6424 device->type = btrfs_device_type(leaf, dev_item);
6425 device->io_align = btrfs_device_io_align(leaf, dev_item);
6426 device->io_width = btrfs_device_io_width(leaf, dev_item);
6427 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6428 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6429 device->is_tgtdev_for_dev_replace = 0;
6430
6431 ptr = btrfs_device_uuid(dev_item);
6432 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6433 }
6434
open_seed_devices(struct btrfs_root * root,u8 * fsid)6435 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6436 u8 *fsid)
6437 {
6438 struct btrfs_fs_devices *fs_devices;
6439 int ret;
6440
6441 BUG_ON(!mutex_is_locked(&uuid_mutex));
6442
6443 fs_devices = root->fs_info->fs_devices->seed;
6444 while (fs_devices) {
6445 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6446 return fs_devices;
6447
6448 fs_devices = fs_devices->seed;
6449 }
6450
6451 fs_devices = find_fsid(fsid);
6452 if (!fs_devices) {
6453 if (!btrfs_test_opt(root, DEGRADED))
6454 return ERR_PTR(-ENOENT);
6455
6456 fs_devices = alloc_fs_devices(fsid);
6457 if (IS_ERR(fs_devices))
6458 return fs_devices;
6459
6460 fs_devices->seeding = 1;
6461 fs_devices->opened = 1;
6462 return fs_devices;
6463 }
6464
6465 fs_devices = clone_fs_devices(fs_devices);
6466 if (IS_ERR(fs_devices))
6467 return fs_devices;
6468
6469 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6470 root->fs_info->bdev_holder);
6471 if (ret) {
6472 free_fs_devices(fs_devices);
6473 fs_devices = ERR_PTR(ret);
6474 goto out;
6475 }
6476
6477 if (!fs_devices->seeding) {
6478 __btrfs_close_devices(fs_devices);
6479 free_fs_devices(fs_devices);
6480 fs_devices = ERR_PTR(-EINVAL);
6481 goto out;
6482 }
6483
6484 fs_devices->seed = root->fs_info->fs_devices->seed;
6485 root->fs_info->fs_devices->seed = fs_devices;
6486 out:
6487 return fs_devices;
6488 }
6489
read_one_dev(struct btrfs_root * root,struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)6490 static int read_one_dev(struct btrfs_root *root,
6491 struct extent_buffer *leaf,
6492 struct btrfs_dev_item *dev_item)
6493 {
6494 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6495 struct btrfs_device *device;
6496 u64 devid;
6497 int ret;
6498 u8 fs_uuid[BTRFS_UUID_SIZE];
6499 u8 dev_uuid[BTRFS_UUID_SIZE];
6500
6501 devid = btrfs_device_id(leaf, dev_item);
6502 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6503 BTRFS_UUID_SIZE);
6504 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6505 BTRFS_UUID_SIZE);
6506
6507 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6508 fs_devices = open_seed_devices(root, fs_uuid);
6509 if (IS_ERR(fs_devices))
6510 return PTR_ERR(fs_devices);
6511 }
6512
6513 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6514 if (!device) {
6515 if (!btrfs_test_opt(root, DEGRADED))
6516 return -EIO;
6517
6518 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6519 if (!device)
6520 return -ENOMEM;
6521 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6522 devid, dev_uuid);
6523 } else {
6524 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6525 return -EIO;
6526
6527 if(!device->bdev && !device->missing) {
6528 /*
6529 * this happens when a device that was properly setup
6530 * in the device info lists suddenly goes bad.
6531 * device->bdev is NULL, and so we have to set
6532 * device->missing to one here
6533 */
6534 device->fs_devices->missing_devices++;
6535 device->missing = 1;
6536 }
6537
6538 /* Move the device to its own fs_devices */
6539 if (device->fs_devices != fs_devices) {
6540 ASSERT(device->missing);
6541
6542 list_move(&device->dev_list, &fs_devices->devices);
6543 device->fs_devices->num_devices--;
6544 fs_devices->num_devices++;
6545
6546 device->fs_devices->missing_devices--;
6547 fs_devices->missing_devices++;
6548
6549 device->fs_devices = fs_devices;
6550 }
6551 }
6552
6553 if (device->fs_devices != root->fs_info->fs_devices) {
6554 BUG_ON(device->writeable);
6555 if (device->generation !=
6556 btrfs_device_generation(leaf, dev_item))
6557 return -EINVAL;
6558 }
6559
6560 fill_device_from_item(leaf, dev_item, device);
6561 device->in_fs_metadata = 1;
6562 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6563 device->fs_devices->total_rw_bytes += device->total_bytes;
6564 spin_lock(&root->fs_info->free_chunk_lock);
6565 root->fs_info->free_chunk_space += device->total_bytes -
6566 device->bytes_used;
6567 spin_unlock(&root->fs_info->free_chunk_lock);
6568 }
6569 ret = 0;
6570 return ret;
6571 }
6572
btrfs_read_sys_array(struct btrfs_root * root)6573 int btrfs_read_sys_array(struct btrfs_root *root)
6574 {
6575 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6576 struct extent_buffer *sb;
6577 struct btrfs_disk_key *disk_key;
6578 struct btrfs_chunk *chunk;
6579 u8 *array_ptr;
6580 unsigned long sb_array_offset;
6581 int ret = 0;
6582 u32 num_stripes;
6583 u32 array_size;
6584 u32 len = 0;
6585 u32 cur_offset;
6586 u64 type;
6587 struct btrfs_key key;
6588
6589 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6590 /*
6591 * This will create extent buffer of nodesize, superblock size is
6592 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6593 * overallocate but we can keep it as-is, only the first page is used.
6594 */
6595 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6596 if (!sb)
6597 return -ENOMEM;
6598 btrfs_set_buffer_uptodate(sb);
6599 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6600 /*
6601 * The sb extent buffer is artifical and just used to read the system array.
6602 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6603 * pages up-to-date when the page is larger: extent does not cover the
6604 * whole page and consequently check_page_uptodate does not find all
6605 * the page's extents up-to-date (the hole beyond sb),
6606 * write_extent_buffer then triggers a WARN_ON.
6607 *
6608 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6609 * but sb spans only this function. Add an explicit SetPageUptodate call
6610 * to silence the warning eg. on PowerPC 64.
6611 */
6612 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6613 SetPageUptodate(sb->pages[0]);
6614
6615 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6616 array_size = btrfs_super_sys_array_size(super_copy);
6617
6618 array_ptr = super_copy->sys_chunk_array;
6619 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6620 cur_offset = 0;
6621
6622 while (cur_offset < array_size) {
6623 disk_key = (struct btrfs_disk_key *)array_ptr;
6624 len = sizeof(*disk_key);
6625 if (cur_offset + len > array_size)
6626 goto out_short_read;
6627
6628 btrfs_disk_key_to_cpu(&key, disk_key);
6629
6630 array_ptr += len;
6631 sb_array_offset += len;
6632 cur_offset += len;
6633
6634 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6635 chunk = (struct btrfs_chunk *)sb_array_offset;
6636 /*
6637 * At least one btrfs_chunk with one stripe must be
6638 * present, exact stripe count check comes afterwards
6639 */
6640 len = btrfs_chunk_item_size(1);
6641 if (cur_offset + len > array_size)
6642 goto out_short_read;
6643
6644 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6645 if (!num_stripes) {
6646 printk(KERN_ERR
6647 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6648 num_stripes, cur_offset);
6649 ret = -EIO;
6650 break;
6651 }
6652
6653 type = btrfs_chunk_type(sb, chunk);
6654 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6655 btrfs_err(root->fs_info,
6656 "invalid chunk type %llu in sys_array at offset %u",
6657 type, cur_offset);
6658 ret = -EIO;
6659 break;
6660 }
6661
6662 len = btrfs_chunk_item_size(num_stripes);
6663 if (cur_offset + len > array_size)
6664 goto out_short_read;
6665
6666 ret = read_one_chunk(root, &key, sb, chunk);
6667 if (ret)
6668 break;
6669 } else {
6670 ret = -EIO;
6671 break;
6672 }
6673 array_ptr += len;
6674 sb_array_offset += len;
6675 cur_offset += len;
6676 }
6677 free_extent_buffer(sb);
6678 return ret;
6679
6680 out_short_read:
6681 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6682 len, cur_offset);
6683 free_extent_buffer(sb);
6684 return -EIO;
6685 }
6686
btrfs_read_chunk_tree(struct btrfs_root * root)6687 int btrfs_read_chunk_tree(struct btrfs_root *root)
6688 {
6689 struct btrfs_path *path;
6690 struct extent_buffer *leaf;
6691 struct btrfs_key key;
6692 struct btrfs_key found_key;
6693 int ret;
6694 int slot;
6695
6696 root = root->fs_info->chunk_root;
6697
6698 path = btrfs_alloc_path();
6699 if (!path)
6700 return -ENOMEM;
6701
6702 mutex_lock(&uuid_mutex);
6703 lock_chunks(root);
6704
6705 /*
6706 * It is possible for mount and umount to race in such a way that
6707 * we execute this code path, but open_fs_devices failed to clear
6708 * total_rw_bytes. We certainly want it cleared before reading the
6709 * device items, so clear it here.
6710 */
6711 root->fs_info->fs_devices->total_rw_bytes = 0;
6712
6713 /*
6714 * Read all device items, and then all the chunk items. All
6715 * device items are found before any chunk item (their object id
6716 * is smaller than the lowest possible object id for a chunk
6717 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6718 */
6719 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6720 key.offset = 0;
6721 key.type = 0;
6722 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6723 if (ret < 0)
6724 goto error;
6725 while (1) {
6726 leaf = path->nodes[0];
6727 slot = path->slots[0];
6728 if (slot >= btrfs_header_nritems(leaf)) {
6729 ret = btrfs_next_leaf(root, path);
6730 if (ret == 0)
6731 continue;
6732 if (ret < 0)
6733 goto error;
6734 break;
6735 }
6736 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6737 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6738 struct btrfs_dev_item *dev_item;
6739 dev_item = btrfs_item_ptr(leaf, slot,
6740 struct btrfs_dev_item);
6741 ret = read_one_dev(root, leaf, dev_item);
6742 if (ret)
6743 goto error;
6744 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6745 struct btrfs_chunk *chunk;
6746 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6747 ret = read_one_chunk(root, &found_key, leaf, chunk);
6748 if (ret)
6749 goto error;
6750 }
6751 path->slots[0]++;
6752 }
6753 ret = 0;
6754 error:
6755 unlock_chunks(root);
6756 mutex_unlock(&uuid_mutex);
6757
6758 btrfs_free_path(path);
6759 return ret;
6760 }
6761
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)6762 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6763 {
6764 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6765 struct btrfs_device *device;
6766
6767 while (fs_devices) {
6768 mutex_lock(&fs_devices->device_list_mutex);
6769 list_for_each_entry(device, &fs_devices->devices, dev_list)
6770 device->dev_root = fs_info->dev_root;
6771 mutex_unlock(&fs_devices->device_list_mutex);
6772
6773 fs_devices = fs_devices->seed;
6774 }
6775 }
6776
__btrfs_reset_dev_stats(struct btrfs_device * dev)6777 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6778 {
6779 int i;
6780
6781 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6782 btrfs_dev_stat_reset(dev, i);
6783 }
6784
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)6785 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6786 {
6787 struct btrfs_key key;
6788 struct btrfs_key found_key;
6789 struct btrfs_root *dev_root = fs_info->dev_root;
6790 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6791 struct extent_buffer *eb;
6792 int slot;
6793 int ret = 0;
6794 struct btrfs_device *device;
6795 struct btrfs_path *path = NULL;
6796 int i;
6797
6798 path = btrfs_alloc_path();
6799 if (!path) {
6800 ret = -ENOMEM;
6801 goto out;
6802 }
6803
6804 mutex_lock(&fs_devices->device_list_mutex);
6805 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6806 int item_size;
6807 struct btrfs_dev_stats_item *ptr;
6808
6809 key.objectid = 0;
6810 key.type = BTRFS_DEV_STATS_KEY;
6811 key.offset = device->devid;
6812 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6813 if (ret) {
6814 __btrfs_reset_dev_stats(device);
6815 device->dev_stats_valid = 1;
6816 btrfs_release_path(path);
6817 continue;
6818 }
6819 slot = path->slots[0];
6820 eb = path->nodes[0];
6821 btrfs_item_key_to_cpu(eb, &found_key, slot);
6822 item_size = btrfs_item_size_nr(eb, slot);
6823
6824 ptr = btrfs_item_ptr(eb, slot,
6825 struct btrfs_dev_stats_item);
6826
6827 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6828 if (item_size >= (1 + i) * sizeof(__le64))
6829 btrfs_dev_stat_set(device, i,
6830 btrfs_dev_stats_value(eb, ptr, i));
6831 else
6832 btrfs_dev_stat_reset(device, i);
6833 }
6834
6835 device->dev_stats_valid = 1;
6836 btrfs_dev_stat_print_on_load(device);
6837 btrfs_release_path(path);
6838 }
6839 mutex_unlock(&fs_devices->device_list_mutex);
6840
6841 out:
6842 btrfs_free_path(path);
6843 return ret < 0 ? ret : 0;
6844 }
6845
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_root * dev_root,struct btrfs_device * device)6846 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6847 struct btrfs_root *dev_root,
6848 struct btrfs_device *device)
6849 {
6850 struct btrfs_path *path;
6851 struct btrfs_key key;
6852 struct extent_buffer *eb;
6853 struct btrfs_dev_stats_item *ptr;
6854 int ret;
6855 int i;
6856
6857 key.objectid = 0;
6858 key.type = BTRFS_DEV_STATS_KEY;
6859 key.offset = device->devid;
6860
6861 path = btrfs_alloc_path();
6862 BUG_ON(!path);
6863 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6864 if (ret < 0) {
6865 btrfs_warn_in_rcu(dev_root->fs_info,
6866 "error %d while searching for dev_stats item for device %s",
6867 ret, rcu_str_deref(device->name));
6868 goto out;
6869 }
6870
6871 if (ret == 0 &&
6872 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6873 /* need to delete old one and insert a new one */
6874 ret = btrfs_del_item(trans, dev_root, path);
6875 if (ret != 0) {
6876 btrfs_warn_in_rcu(dev_root->fs_info,
6877 "delete too small dev_stats item for device %s failed %d",
6878 rcu_str_deref(device->name), ret);
6879 goto out;
6880 }
6881 ret = 1;
6882 }
6883
6884 if (ret == 1) {
6885 /* need to insert a new item */
6886 btrfs_release_path(path);
6887 ret = btrfs_insert_empty_item(trans, dev_root, path,
6888 &key, sizeof(*ptr));
6889 if (ret < 0) {
6890 btrfs_warn_in_rcu(dev_root->fs_info,
6891 "insert dev_stats item for device %s failed %d",
6892 rcu_str_deref(device->name), ret);
6893 goto out;
6894 }
6895 }
6896
6897 eb = path->nodes[0];
6898 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6899 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6900 btrfs_set_dev_stats_value(eb, ptr, i,
6901 btrfs_dev_stat_read(device, i));
6902 btrfs_mark_buffer_dirty(eb);
6903
6904 out:
6905 btrfs_free_path(path);
6906 return ret;
6907 }
6908
6909 /*
6910 * called from commit_transaction. Writes all changed device stats to disk.
6911 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)6912 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6913 struct btrfs_fs_info *fs_info)
6914 {
6915 struct btrfs_root *dev_root = fs_info->dev_root;
6916 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6917 struct btrfs_device *device;
6918 int stats_cnt;
6919 int ret = 0;
6920
6921 mutex_lock(&fs_devices->device_list_mutex);
6922 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6923 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6924 continue;
6925
6926 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6927 ret = update_dev_stat_item(trans, dev_root, device);
6928 if (!ret)
6929 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6930 }
6931 mutex_unlock(&fs_devices->device_list_mutex);
6932
6933 return ret;
6934 }
6935
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)6936 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6937 {
6938 btrfs_dev_stat_inc(dev, index);
6939 btrfs_dev_stat_print_on_error(dev);
6940 }
6941
btrfs_dev_stat_print_on_error(struct btrfs_device * dev)6942 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6943 {
6944 if (!dev->dev_stats_valid)
6945 return;
6946 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6947 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6948 rcu_str_deref(dev->name),
6949 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6950 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6951 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6952 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6953 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6954 }
6955
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)6956 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6957 {
6958 int i;
6959
6960 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6961 if (btrfs_dev_stat_read(dev, i) != 0)
6962 break;
6963 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6964 return; /* all values == 0, suppress message */
6965
6966 btrfs_info_in_rcu(dev->dev_root->fs_info,
6967 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6968 rcu_str_deref(dev->name),
6969 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6970 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6971 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6972 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6973 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6974 }
6975
btrfs_get_dev_stats(struct btrfs_root * root,struct btrfs_ioctl_get_dev_stats * stats)6976 int btrfs_get_dev_stats(struct btrfs_root *root,
6977 struct btrfs_ioctl_get_dev_stats *stats)
6978 {
6979 struct btrfs_device *dev;
6980 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6981 int i;
6982
6983 mutex_lock(&fs_devices->device_list_mutex);
6984 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6985 mutex_unlock(&fs_devices->device_list_mutex);
6986
6987 if (!dev) {
6988 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6989 return -ENODEV;
6990 } else if (!dev->dev_stats_valid) {
6991 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6992 return -ENODEV;
6993 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6994 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6995 if (stats->nr_items > i)
6996 stats->values[i] =
6997 btrfs_dev_stat_read_and_reset(dev, i);
6998 else
6999 btrfs_dev_stat_reset(dev, i);
7000 }
7001 } else {
7002 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7003 if (stats->nr_items > i)
7004 stats->values[i] = btrfs_dev_stat_read(dev, i);
7005 }
7006 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7007 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7008 return 0;
7009 }
7010
btrfs_scratch_superblocks(struct block_device * bdev,char * device_path)7011 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
7012 {
7013 struct buffer_head *bh;
7014 struct btrfs_super_block *disk_super;
7015 int copy_num;
7016
7017 if (!bdev)
7018 return;
7019
7020 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7021 copy_num++) {
7022
7023 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7024 continue;
7025
7026 disk_super = (struct btrfs_super_block *)bh->b_data;
7027
7028 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7029 set_buffer_dirty(bh);
7030 sync_dirty_buffer(bh);
7031 brelse(bh);
7032 }
7033
7034 /* Notify udev that device has changed */
7035 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7036
7037 /* Update ctime/mtime for device path for libblkid */
7038 update_dev_time(device_path);
7039 }
7040
7041 /*
7042 * Update the size of all devices, which is used for writing out the
7043 * super blocks.
7044 */
btrfs_update_commit_device_size(struct btrfs_fs_info * fs_info)7045 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7046 {
7047 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7048 struct btrfs_device *curr, *next;
7049
7050 if (list_empty(&fs_devices->resized_devices))
7051 return;
7052
7053 mutex_lock(&fs_devices->device_list_mutex);
7054 lock_chunks(fs_info->dev_root);
7055 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7056 resized_list) {
7057 list_del_init(&curr->resized_list);
7058 curr->commit_total_bytes = curr->disk_total_bytes;
7059 }
7060 unlock_chunks(fs_info->dev_root);
7061 mutex_unlock(&fs_devices->device_list_mutex);
7062 }
7063
7064 /* Must be invoked during the transaction commit */
btrfs_update_commit_device_bytes_used(struct btrfs_root * root,struct btrfs_transaction * transaction)7065 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7066 struct btrfs_transaction *transaction)
7067 {
7068 struct extent_map *em;
7069 struct map_lookup *map;
7070 struct btrfs_device *dev;
7071 int i;
7072
7073 if (list_empty(&transaction->pending_chunks))
7074 return;
7075
7076 /* In order to kick the device replace finish process */
7077 lock_chunks(root);
7078 list_for_each_entry(em, &transaction->pending_chunks, list) {
7079 map = em->map_lookup;
7080
7081 for (i = 0; i < map->num_stripes; i++) {
7082 dev = map->stripes[i].dev;
7083 dev->commit_bytes_used = dev->bytes_used;
7084 dev->has_pending_chunks = false;
7085 }
7086 }
7087 unlock_chunks(root);
7088 }
7089
btrfs_set_fs_info_ptr(struct btrfs_fs_info * fs_info)7090 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7091 {
7092 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7093 while (fs_devices) {
7094 fs_devices->fs_info = fs_info;
7095 fs_devices = fs_devices->seed;
7096 }
7097 }
7098
btrfs_reset_fs_info_ptr(struct btrfs_fs_info * fs_info)7099 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7100 {
7101 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7102 while (fs_devices) {
7103 fs_devices->fs_info = NULL;
7104 fs_devices = fs_devices->seed;
7105 }
7106 }
7107
btrfs_close_one_device(struct btrfs_device * device)7108 void btrfs_close_one_device(struct btrfs_device *device)
7109 {
7110 struct btrfs_fs_devices *fs_devices = device->fs_devices;
7111 struct btrfs_device *new_device;
7112 struct rcu_string *name;
7113
7114 if (device->bdev)
7115 fs_devices->open_devices--;
7116
7117 if (device->writeable &&
7118 device->devid != BTRFS_DEV_REPLACE_DEVID) {
7119 list_del_init(&device->dev_alloc_list);
7120 fs_devices->rw_devices--;
7121 }
7122
7123 if (device->missing)
7124 fs_devices->missing_devices--;
7125
7126 new_device = btrfs_alloc_device(NULL, &device->devid,
7127 device->uuid);
7128 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
7129
7130 /* Safe because we are under uuid_mutex */
7131 if (device->name) {
7132 name = rcu_string_strdup(device->name->str, GFP_NOFS);
7133 BUG_ON(!name); /* -ENOMEM */
7134 rcu_assign_pointer(new_device->name, name);
7135 }
7136
7137 list_replace_rcu(&device->dev_list, &new_device->dev_list);
7138 new_device->fs_devices = device->fs_devices;
7139
7140 call_rcu(&device->rcu, free_device);
7141 }
7142