• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
39 
40 #define DECRYPT		0
41 #define ENCRYPT		1
42 
43 /**
44  * ecryptfs_to_hex
45  * @dst: Buffer to take hex character representation of contents of
46  *       src; must be at least of size (src_size * 2)
47  * @src: Buffer to be converted to a hex string respresentation
48  * @src_size: number of bytes to convert
49  */
ecryptfs_to_hex(char * dst,char * src,size_t src_size)50 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
51 {
52 	int x;
53 
54 	for (x = 0; x < src_size; x++)
55 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
56 }
57 
58 /**
59  * ecryptfs_from_hex
60  * @dst: Buffer to take the bytes from src hex; must be at least of
61  *       size (src_size / 2)
62  * @src: Buffer to be converted from a hex string respresentation to raw value
63  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
64  */
ecryptfs_from_hex(char * dst,char * src,int dst_size)65 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
66 {
67 	int x;
68 	char tmp[3] = { 0, };
69 
70 	for (x = 0; x < dst_size; x++) {
71 		tmp[0] = src[x * 2];
72 		tmp[1] = src[x * 2 + 1];
73 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
74 	}
75 }
76 
77 /**
78  * ecryptfs_calculate_md5 - calculates the md5 of @src
79  * @dst: Pointer to 16 bytes of allocated memory
80  * @crypt_stat: Pointer to crypt_stat struct for the current inode
81  * @src: Data to be md5'd
82  * @len: Length of @src
83  *
84  * Uses the allocated crypto context that crypt_stat references to
85  * generate the MD5 sum of the contents of src.
86  */
ecryptfs_calculate_md5(char * dst,struct ecryptfs_crypt_stat * crypt_stat,char * src,int len)87 static int ecryptfs_calculate_md5(char *dst,
88 				  struct ecryptfs_crypt_stat *crypt_stat,
89 				  char *src, int len)
90 {
91 	struct scatterlist sg;
92 	struct hash_desc desc = {
93 		.tfm = crypt_stat->hash_tfm,
94 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
95 	};
96 	int rc = 0;
97 
98 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
99 	sg_init_one(&sg, (u8 *)src, len);
100 	if (!desc.tfm) {
101 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
102 					     CRYPTO_ALG_ASYNC);
103 		if (IS_ERR(desc.tfm)) {
104 			rc = PTR_ERR(desc.tfm);
105 			ecryptfs_printk(KERN_ERR, "Error attempting to "
106 					"allocate crypto context; rc = [%d]\n",
107 					rc);
108 			goto out;
109 		}
110 		crypt_stat->hash_tfm = desc.tfm;
111 	}
112 	rc = crypto_hash_init(&desc);
113 	if (rc) {
114 		printk(KERN_ERR
115 		       "%s: Error initializing crypto hash; rc = [%d]\n",
116 		       __func__, rc);
117 		goto out;
118 	}
119 	rc = crypto_hash_update(&desc, &sg, len);
120 	if (rc) {
121 		printk(KERN_ERR
122 		       "%s: Error updating crypto hash; rc = [%d]\n",
123 		       __func__, rc);
124 		goto out;
125 	}
126 	rc = crypto_hash_final(&desc, dst);
127 	if (rc) {
128 		printk(KERN_ERR
129 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
130 		       __func__, rc);
131 		goto out;
132 	}
133 out:
134 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
135 	return rc;
136 }
137 
ecryptfs_crypto_api_algify_cipher_name(char ** algified_name,char * cipher_name,char * chaining_modifier)138 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
139 						  char *cipher_name,
140 						  char *chaining_modifier)
141 {
142 	int cipher_name_len = strlen(cipher_name);
143 	int chaining_modifier_len = strlen(chaining_modifier);
144 	int algified_name_len;
145 	int rc;
146 
147 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
148 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
149 	if (!(*algified_name)) {
150 		rc = -ENOMEM;
151 		goto out;
152 	}
153 	snprintf((*algified_name), algified_name_len, "%s(%s)",
154 		 chaining_modifier, cipher_name);
155 	rc = 0;
156 out:
157 	return rc;
158 }
159 
160 /**
161  * ecryptfs_derive_iv
162  * @iv: destination for the derived iv vale
163  * @crypt_stat: Pointer to crypt_stat struct for the current inode
164  * @offset: Offset of the extent whose IV we are to derive
165  *
166  * Generate the initialization vector from the given root IV and page
167  * offset.
168  *
169  * Returns zero on success; non-zero on error.
170  */
ecryptfs_derive_iv(char * iv,struct ecryptfs_crypt_stat * crypt_stat,loff_t offset)171 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
172 		       loff_t offset)
173 {
174 	int rc = 0;
175 	char dst[MD5_DIGEST_SIZE];
176 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
177 
178 	if (unlikely(ecryptfs_verbosity > 0)) {
179 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
180 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
181 	}
182 	/* TODO: It is probably secure to just cast the least
183 	 * significant bits of the root IV into an unsigned long and
184 	 * add the offset to that rather than go through all this
185 	 * hashing business. -Halcrow */
186 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
187 	memset((src + crypt_stat->iv_bytes), 0, 16);
188 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
189 	if (unlikely(ecryptfs_verbosity > 0)) {
190 		ecryptfs_printk(KERN_DEBUG, "source:\n");
191 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
192 	}
193 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
194 				    (crypt_stat->iv_bytes + 16));
195 	if (rc) {
196 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
197 				"MD5 while generating IV for a page\n");
198 		goto out;
199 	}
200 	memcpy(iv, dst, crypt_stat->iv_bytes);
201 	if (unlikely(ecryptfs_verbosity > 0)) {
202 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
203 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
204 	}
205 out:
206 	return rc;
207 }
208 
209 /**
210  * ecryptfs_init_crypt_stat
211  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
212  *
213  * Initialize the crypt_stat structure.
214  */
215 void
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat * crypt_stat)216 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
217 {
218 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
219 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
220 	mutex_init(&crypt_stat->keysig_list_mutex);
221 	mutex_init(&crypt_stat->cs_mutex);
222 	mutex_init(&crypt_stat->cs_tfm_mutex);
223 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
224 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
225 }
226 
227 /**
228  * ecryptfs_destroy_crypt_stat
229  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
230  *
231  * Releases all memory associated with a crypt_stat struct.
232  */
ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat * crypt_stat)233 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
234 {
235 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
236 
237 	if (crypt_stat->tfm)
238 		crypto_free_ablkcipher(crypt_stat->tfm);
239 	if (crypt_stat->hash_tfm)
240 		crypto_free_hash(crypt_stat->hash_tfm);
241 	list_for_each_entry_safe(key_sig, key_sig_tmp,
242 				 &crypt_stat->keysig_list, crypt_stat_list) {
243 		list_del(&key_sig->crypt_stat_list);
244 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
245 	}
246 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
247 }
248 
ecryptfs_destroy_mount_crypt_stat(struct ecryptfs_mount_crypt_stat * mount_crypt_stat)249 void ecryptfs_destroy_mount_crypt_stat(
250 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
251 {
252 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
253 
254 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
255 		return;
256 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
257 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
258 				 &mount_crypt_stat->global_auth_tok_list,
259 				 mount_crypt_stat_list) {
260 		list_del(&auth_tok->mount_crypt_stat_list);
261 		if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
262 			key_put(auth_tok->global_auth_tok_key);
263 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
264 	}
265 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
266 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
267 }
268 
269 /**
270  * virt_to_scatterlist
271  * @addr: Virtual address
272  * @size: Size of data; should be an even multiple of the block size
273  * @sg: Pointer to scatterlist array; set to NULL to obtain only
274  *      the number of scatterlist structs required in array
275  * @sg_size: Max array size
276  *
277  * Fills in a scatterlist array with page references for a passed
278  * virtual address.
279  *
280  * Returns the number of scatterlist structs in array used
281  */
virt_to_scatterlist(const void * addr,int size,struct scatterlist * sg,int sg_size)282 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
283 			int sg_size)
284 {
285 	int i = 0;
286 	struct page *pg;
287 	int offset;
288 	int remainder_of_page;
289 
290 	sg_init_table(sg, sg_size);
291 
292 	while (size > 0 && i < sg_size) {
293 		pg = virt_to_page(addr);
294 		offset = offset_in_page(addr);
295 		sg_set_page(&sg[i], pg, 0, offset);
296 		remainder_of_page = PAGE_CACHE_SIZE - offset;
297 		if (size >= remainder_of_page) {
298 			sg[i].length = remainder_of_page;
299 			addr += remainder_of_page;
300 			size -= remainder_of_page;
301 		} else {
302 			sg[i].length = size;
303 			addr += size;
304 			size = 0;
305 		}
306 		i++;
307 	}
308 	if (size > 0)
309 		return -ENOMEM;
310 	return i;
311 }
312 
313 struct extent_crypt_result {
314 	struct completion completion;
315 	int rc;
316 };
317 
extent_crypt_complete(struct crypto_async_request * req,int rc)318 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
319 {
320 	struct extent_crypt_result *ecr = req->data;
321 
322 	if (rc == -EINPROGRESS)
323 		return;
324 
325 	ecr->rc = rc;
326 	complete(&ecr->completion);
327 }
328 
329 /**
330  * crypt_scatterlist
331  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
332  * @dst_sg: Destination of the data after performing the crypto operation
333  * @src_sg: Data to be encrypted or decrypted
334  * @size: Length of data
335  * @iv: IV to use
336  * @op: ENCRYPT or DECRYPT to indicate the desired operation
337  *
338  * Returns the number of bytes encrypted or decrypted; negative value on error
339  */
crypt_scatterlist(struct ecryptfs_crypt_stat * crypt_stat,struct scatterlist * dst_sg,struct scatterlist * src_sg,int size,unsigned char * iv,int op)340 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
341 			     struct scatterlist *dst_sg,
342 			     struct scatterlist *src_sg, int size,
343 			     unsigned char *iv, int op)
344 {
345 	struct ablkcipher_request *req = NULL;
346 	struct extent_crypt_result ecr;
347 	int rc = 0;
348 
349 	BUG_ON(!crypt_stat || !crypt_stat->tfm
350 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
351 	if (unlikely(ecryptfs_verbosity > 0)) {
352 		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
353 				crypt_stat->key_size);
354 		ecryptfs_dump_hex(crypt_stat->key,
355 				  crypt_stat->key_size);
356 	}
357 
358 	init_completion(&ecr.completion);
359 
360 	mutex_lock(&crypt_stat->cs_tfm_mutex);
361 	req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
362 	if (!req) {
363 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
364 		rc = -ENOMEM;
365 		goto out;
366 	}
367 
368 	ablkcipher_request_set_callback(req,
369 			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
370 			extent_crypt_complete, &ecr);
371 	/* Consider doing this once, when the file is opened */
372 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
373 		rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
374 					      crypt_stat->key_size);
375 		if (rc) {
376 			ecryptfs_printk(KERN_ERR,
377 					"Error setting key; rc = [%d]\n",
378 					rc);
379 			mutex_unlock(&crypt_stat->cs_tfm_mutex);
380 			rc = -EINVAL;
381 			goto out;
382 		}
383 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
384 	}
385 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
386 	ablkcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
387 	rc = op == ENCRYPT ? crypto_ablkcipher_encrypt(req) :
388 			     crypto_ablkcipher_decrypt(req);
389 	if (rc == -EINPROGRESS || rc == -EBUSY) {
390 		struct extent_crypt_result *ecr = req->base.data;
391 
392 		wait_for_completion(&ecr->completion);
393 		rc = ecr->rc;
394 		reinit_completion(&ecr->completion);
395 	}
396 out:
397 	ablkcipher_request_free(req);
398 	return rc;
399 }
400 
401 /**
402  * lower_offset_for_page
403  *
404  * Convert an eCryptfs page index into a lower byte offset
405  */
lower_offset_for_page(struct ecryptfs_crypt_stat * crypt_stat,struct page * page)406 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
407 				    struct page *page)
408 {
409 	return ecryptfs_lower_header_size(crypt_stat) +
410 	       ((loff_t)page->index << PAGE_CACHE_SHIFT);
411 }
412 
413 /**
414  * crypt_extent
415  * @crypt_stat: crypt_stat containing cryptographic context for the
416  *              encryption operation
417  * @dst_page: The page to write the result into
418  * @src_page: The page to read from
419  * @extent_offset: Page extent offset for use in generating IV
420  * @op: ENCRYPT or DECRYPT to indicate the desired operation
421  *
422  * Encrypts or decrypts one extent of data.
423  *
424  * Return zero on success; non-zero otherwise
425  */
crypt_extent(struct ecryptfs_crypt_stat * crypt_stat,struct page * dst_page,struct page * src_page,unsigned long extent_offset,int op)426 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
427 			struct page *dst_page,
428 			struct page *src_page,
429 			unsigned long extent_offset, int op)
430 {
431 	pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
432 	loff_t extent_base;
433 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
434 	struct scatterlist src_sg, dst_sg;
435 	size_t extent_size = crypt_stat->extent_size;
436 	int rc;
437 
438 	extent_base = (((loff_t)page_index) * (PAGE_CACHE_SIZE / extent_size));
439 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
440 				(extent_base + extent_offset));
441 	if (rc) {
442 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
443 			"extent [0x%.16llx]; rc = [%d]\n",
444 			(unsigned long long)(extent_base + extent_offset), rc);
445 		goto out;
446 	}
447 
448 	sg_init_table(&src_sg, 1);
449 	sg_init_table(&dst_sg, 1);
450 
451 	sg_set_page(&src_sg, src_page, extent_size,
452 		    extent_offset * extent_size);
453 	sg_set_page(&dst_sg, dst_page, extent_size,
454 		    extent_offset * extent_size);
455 
456 	rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
457 			       extent_iv, op);
458 	if (rc < 0) {
459 		printk(KERN_ERR "%s: Error attempting to crypt page with "
460 		       "page_index = [%ld], extent_offset = [%ld]; "
461 		       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
462 		goto out;
463 	}
464 	rc = 0;
465 out:
466 	return rc;
467 }
468 
469 /**
470  * ecryptfs_encrypt_page
471  * @page: Page mapped from the eCryptfs inode for the file; contains
472  *        decrypted content that needs to be encrypted (to a temporary
473  *        page; not in place) and written out to the lower file
474  *
475  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
476  * that eCryptfs pages may straddle the lower pages -- for instance,
477  * if the file was created on a machine with an 8K page size
478  * (resulting in an 8K header), and then the file is copied onto a
479  * host with a 32K page size, then when reading page 0 of the eCryptfs
480  * file, 24K of page 0 of the lower file will be read and decrypted,
481  * and then 8K of page 1 of the lower file will be read and decrypted.
482  *
483  * Returns zero on success; negative on error
484  */
ecryptfs_encrypt_page(struct page * page)485 int ecryptfs_encrypt_page(struct page *page)
486 {
487 	struct inode *ecryptfs_inode;
488 	struct ecryptfs_crypt_stat *crypt_stat;
489 	char *enc_extent_virt;
490 	struct page *enc_extent_page = NULL;
491 	loff_t extent_offset;
492 	loff_t lower_offset;
493 	int rc = 0;
494 
495 	ecryptfs_inode = page->mapping->host;
496 	crypt_stat =
497 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
498 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
499 	enc_extent_page = alloc_page(GFP_USER);
500 	if (!enc_extent_page) {
501 		rc = -ENOMEM;
502 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
503 				"encrypted extent\n");
504 		goto out;
505 	}
506 
507 	for (extent_offset = 0;
508 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
509 	     extent_offset++) {
510 		rc = crypt_extent(crypt_stat, enc_extent_page, page,
511 				  extent_offset, ENCRYPT);
512 		if (rc) {
513 			printk(KERN_ERR "%s: Error encrypting extent; "
514 			       "rc = [%d]\n", __func__, rc);
515 			goto out;
516 		}
517 	}
518 
519 	lower_offset = lower_offset_for_page(crypt_stat, page);
520 	enc_extent_virt = kmap(enc_extent_page);
521 	rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
522 				  PAGE_CACHE_SIZE);
523 	kunmap(enc_extent_page);
524 	if (rc < 0) {
525 		ecryptfs_printk(KERN_ERR,
526 			"Error attempting to write lower page; rc = [%d]\n",
527 			rc);
528 		goto out;
529 	}
530 	rc = 0;
531 out:
532 	if (enc_extent_page) {
533 		__free_page(enc_extent_page);
534 	}
535 	return rc;
536 }
537 
538 /**
539  * ecryptfs_decrypt_page
540  * @page: Page mapped from the eCryptfs inode for the file; data read
541  *        and decrypted from the lower file will be written into this
542  *        page
543  *
544  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
545  * that eCryptfs pages may straddle the lower pages -- for instance,
546  * if the file was created on a machine with an 8K page size
547  * (resulting in an 8K header), and then the file is copied onto a
548  * host with a 32K page size, then when reading page 0 of the eCryptfs
549  * file, 24K of page 0 of the lower file will be read and decrypted,
550  * and then 8K of page 1 of the lower file will be read and decrypted.
551  *
552  * Returns zero on success; negative on error
553  */
ecryptfs_decrypt_page(struct page * page)554 int ecryptfs_decrypt_page(struct page *page)
555 {
556 	struct inode *ecryptfs_inode;
557 	struct ecryptfs_crypt_stat *crypt_stat;
558 	char *page_virt;
559 	unsigned long extent_offset;
560 	loff_t lower_offset;
561 	int rc = 0;
562 
563 	ecryptfs_inode = page->mapping->host;
564 	crypt_stat =
565 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
566 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
567 
568 	lower_offset = lower_offset_for_page(crypt_stat, page);
569 	page_virt = kmap(page);
570 	rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_CACHE_SIZE,
571 				 ecryptfs_inode);
572 	kunmap(page);
573 	if (rc < 0) {
574 		ecryptfs_printk(KERN_ERR,
575 			"Error attempting to read lower page; rc = [%d]\n",
576 			rc);
577 		goto out;
578 	}
579 
580 	for (extent_offset = 0;
581 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
582 	     extent_offset++) {
583 		rc = crypt_extent(crypt_stat, page, page,
584 				  extent_offset, DECRYPT);
585 		if (rc) {
586 			printk(KERN_ERR "%s: Error encrypting extent; "
587 			       "rc = [%d]\n", __func__, rc);
588 			goto out;
589 		}
590 	}
591 out:
592 	return rc;
593 }
594 
595 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
596 
597 /**
598  * ecryptfs_init_crypt_ctx
599  * @crypt_stat: Uninitialized crypt stats structure
600  *
601  * Initialize the crypto context.
602  *
603  * TODO: Performance: Keep a cache of initialized cipher contexts;
604  * only init if needed
605  */
ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat * crypt_stat)606 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
607 {
608 	char *full_alg_name;
609 	int rc = -EINVAL;
610 
611 	ecryptfs_printk(KERN_DEBUG,
612 			"Initializing cipher [%s]; strlen = [%d]; "
613 			"key_size_bits = [%zd]\n",
614 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
615 			crypt_stat->key_size << 3);
616 	mutex_lock(&crypt_stat->cs_tfm_mutex);
617 	if (crypt_stat->tfm) {
618 		rc = 0;
619 		goto out_unlock;
620 	}
621 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
622 						    crypt_stat->cipher, "cbc");
623 	if (rc)
624 		goto out_unlock;
625 	crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
626 	if (IS_ERR(crypt_stat->tfm)) {
627 		rc = PTR_ERR(crypt_stat->tfm);
628 		crypt_stat->tfm = NULL;
629 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
630 				"Error initializing cipher [%s]\n",
631 				full_alg_name);
632 		goto out_free;
633 	}
634 	crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
635 	rc = 0;
636 out_free:
637 	kfree(full_alg_name);
638 out_unlock:
639 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
640 	return rc;
641 }
642 
set_extent_mask_and_shift(struct ecryptfs_crypt_stat * crypt_stat)643 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
644 {
645 	int extent_size_tmp;
646 
647 	crypt_stat->extent_mask = 0xFFFFFFFF;
648 	crypt_stat->extent_shift = 0;
649 	if (crypt_stat->extent_size == 0)
650 		return;
651 	extent_size_tmp = crypt_stat->extent_size;
652 	while ((extent_size_tmp & 0x01) == 0) {
653 		extent_size_tmp >>= 1;
654 		crypt_stat->extent_mask <<= 1;
655 		crypt_stat->extent_shift++;
656 	}
657 }
658 
ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat * crypt_stat)659 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
660 {
661 	/* Default values; may be overwritten as we are parsing the
662 	 * packets. */
663 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
664 	set_extent_mask_and_shift(crypt_stat);
665 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
666 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
667 		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
668 	else {
669 		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
670 			crypt_stat->metadata_size =
671 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
672 		else
673 			crypt_stat->metadata_size = PAGE_CACHE_SIZE;
674 	}
675 }
676 
677 /**
678  * ecryptfs_compute_root_iv
679  * @crypt_stats
680  *
681  * On error, sets the root IV to all 0's.
682  */
ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat * crypt_stat)683 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
684 {
685 	int rc = 0;
686 	char dst[MD5_DIGEST_SIZE];
687 
688 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
689 	BUG_ON(crypt_stat->iv_bytes <= 0);
690 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
691 		rc = -EINVAL;
692 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
693 				"cannot generate root IV\n");
694 		goto out;
695 	}
696 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
697 				    crypt_stat->key_size);
698 	if (rc) {
699 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
700 				"MD5 while generating root IV\n");
701 		goto out;
702 	}
703 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
704 out:
705 	if (rc) {
706 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
707 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
708 	}
709 	return rc;
710 }
711 
ecryptfs_generate_new_key(struct ecryptfs_crypt_stat * crypt_stat)712 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
713 {
714 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
715 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
716 	ecryptfs_compute_root_iv(crypt_stat);
717 	if (unlikely(ecryptfs_verbosity > 0)) {
718 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
719 		ecryptfs_dump_hex(crypt_stat->key,
720 				  crypt_stat->key_size);
721 	}
722 }
723 
724 /**
725  * ecryptfs_copy_mount_wide_flags_to_inode_flags
726  * @crypt_stat: The inode's cryptographic context
727  * @mount_crypt_stat: The mount point's cryptographic context
728  *
729  * This function propagates the mount-wide flags to individual inode
730  * flags.
731  */
ecryptfs_copy_mount_wide_flags_to_inode_flags(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)732 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
733 	struct ecryptfs_crypt_stat *crypt_stat,
734 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
735 {
736 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
737 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
738 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
739 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
740 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
741 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
742 		if (mount_crypt_stat->flags
743 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
744 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
745 		else if (mount_crypt_stat->flags
746 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
747 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
748 	}
749 }
750 
ecryptfs_copy_mount_wide_sigs_to_inode_sigs(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)751 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
752 	struct ecryptfs_crypt_stat *crypt_stat,
753 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
754 {
755 	struct ecryptfs_global_auth_tok *global_auth_tok;
756 	int rc = 0;
757 
758 	mutex_lock(&crypt_stat->keysig_list_mutex);
759 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
760 
761 	list_for_each_entry(global_auth_tok,
762 			    &mount_crypt_stat->global_auth_tok_list,
763 			    mount_crypt_stat_list) {
764 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
765 			continue;
766 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
767 		if (rc) {
768 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
769 			goto out;
770 		}
771 	}
772 
773 out:
774 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
775 	mutex_unlock(&crypt_stat->keysig_list_mutex);
776 	return rc;
777 }
778 
779 /**
780  * ecryptfs_set_default_crypt_stat_vals
781  * @crypt_stat: The inode's cryptographic context
782  * @mount_crypt_stat: The mount point's cryptographic context
783  *
784  * Default values in the event that policy does not override them.
785  */
ecryptfs_set_default_crypt_stat_vals(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)786 static void ecryptfs_set_default_crypt_stat_vals(
787 	struct ecryptfs_crypt_stat *crypt_stat,
788 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
789 {
790 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
791 						      mount_crypt_stat);
792 	ecryptfs_set_default_sizes(crypt_stat);
793 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
794 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
795 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
796 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
797 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
798 }
799 
800 /**
801  * ecryptfs_new_file_context
802  * @ecryptfs_inode: The eCryptfs inode
803  *
804  * If the crypto context for the file has not yet been established,
805  * this is where we do that.  Establishing a new crypto context
806  * involves the following decisions:
807  *  - What cipher to use?
808  *  - What set of authentication tokens to use?
809  * Here we just worry about getting enough information into the
810  * authentication tokens so that we know that they are available.
811  * We associate the available authentication tokens with the new file
812  * via the set of signatures in the crypt_stat struct.  Later, when
813  * the headers are actually written out, we may again defer to
814  * userspace to perform the encryption of the session key; for the
815  * foreseeable future, this will be the case with public key packets.
816  *
817  * Returns zero on success; non-zero otherwise
818  */
ecryptfs_new_file_context(struct inode * ecryptfs_inode)819 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
820 {
821 	struct ecryptfs_crypt_stat *crypt_stat =
822 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
823 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
824 	    &ecryptfs_superblock_to_private(
825 		    ecryptfs_inode->i_sb)->mount_crypt_stat;
826 	int cipher_name_len;
827 	int rc = 0;
828 
829 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
830 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
831 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
832 						      mount_crypt_stat);
833 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
834 							 mount_crypt_stat);
835 	if (rc) {
836 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
837 		       "to the inode key sigs; rc = [%d]\n", rc);
838 		goto out;
839 	}
840 	cipher_name_len =
841 		strlen(mount_crypt_stat->global_default_cipher_name);
842 	memcpy(crypt_stat->cipher,
843 	       mount_crypt_stat->global_default_cipher_name,
844 	       cipher_name_len);
845 	crypt_stat->cipher[cipher_name_len] = '\0';
846 	crypt_stat->key_size =
847 		mount_crypt_stat->global_default_cipher_key_size;
848 	ecryptfs_generate_new_key(crypt_stat);
849 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
850 	if (rc)
851 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
852 				"context for cipher [%s]: rc = [%d]\n",
853 				crypt_stat->cipher, rc);
854 out:
855 	return rc;
856 }
857 
858 /**
859  * ecryptfs_validate_marker - check for the ecryptfs marker
860  * @data: The data block in which to check
861  *
862  * Returns zero if marker found; -EINVAL if not found
863  */
ecryptfs_validate_marker(char * data)864 static int ecryptfs_validate_marker(char *data)
865 {
866 	u32 m_1, m_2;
867 
868 	m_1 = get_unaligned_be32(data);
869 	m_2 = get_unaligned_be32(data + 4);
870 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
871 		return 0;
872 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
873 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
874 			MAGIC_ECRYPTFS_MARKER);
875 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
876 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
877 	return -EINVAL;
878 }
879 
880 struct ecryptfs_flag_map_elem {
881 	u32 file_flag;
882 	u32 local_flag;
883 };
884 
885 /* Add support for additional flags by adding elements here. */
886 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
887 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
888 	{0x00000002, ECRYPTFS_ENCRYPTED},
889 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
890 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
891 };
892 
893 /**
894  * ecryptfs_process_flags
895  * @crypt_stat: The cryptographic context
896  * @page_virt: Source data to be parsed
897  * @bytes_read: Updated with the number of bytes read
898  *
899  * Returns zero on success; non-zero if the flag set is invalid
900  */
ecryptfs_process_flags(struct ecryptfs_crypt_stat * crypt_stat,char * page_virt,int * bytes_read)901 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
902 				  char *page_virt, int *bytes_read)
903 {
904 	int rc = 0;
905 	int i;
906 	u32 flags;
907 
908 	flags = get_unaligned_be32(page_virt);
909 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
910 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
911 		if (flags & ecryptfs_flag_map[i].file_flag) {
912 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
913 		} else
914 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
915 	/* Version is in top 8 bits of the 32-bit flag vector */
916 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
917 	(*bytes_read) = 4;
918 	return rc;
919 }
920 
921 /**
922  * write_ecryptfs_marker
923  * @page_virt: The pointer to in a page to begin writing the marker
924  * @written: Number of bytes written
925  *
926  * Marker = 0x3c81b7f5
927  */
write_ecryptfs_marker(char * page_virt,size_t * written)928 static void write_ecryptfs_marker(char *page_virt, size_t *written)
929 {
930 	u32 m_1, m_2;
931 
932 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
933 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
934 	put_unaligned_be32(m_1, page_virt);
935 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
936 	put_unaligned_be32(m_2, page_virt);
937 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
938 }
939 
ecryptfs_write_crypt_stat_flags(char * page_virt,struct ecryptfs_crypt_stat * crypt_stat,size_t * written)940 void ecryptfs_write_crypt_stat_flags(char *page_virt,
941 				     struct ecryptfs_crypt_stat *crypt_stat,
942 				     size_t *written)
943 {
944 	u32 flags = 0;
945 	int i;
946 
947 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
948 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
949 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
950 			flags |= ecryptfs_flag_map[i].file_flag;
951 	/* Version is in top 8 bits of the 32-bit flag vector */
952 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
953 	put_unaligned_be32(flags, page_virt);
954 	(*written) = 4;
955 }
956 
957 struct ecryptfs_cipher_code_str_map_elem {
958 	char cipher_str[16];
959 	u8 cipher_code;
960 };
961 
962 /* Add support for additional ciphers by adding elements here. The
963  * cipher_code is whatever OpenPGP applicatoins use to identify the
964  * ciphers. List in order of probability. */
965 static struct ecryptfs_cipher_code_str_map_elem
966 ecryptfs_cipher_code_str_map[] = {
967 	{"aes",RFC2440_CIPHER_AES_128 },
968 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
969 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
970 	{"cast5", RFC2440_CIPHER_CAST_5},
971 	{"twofish", RFC2440_CIPHER_TWOFISH},
972 	{"cast6", RFC2440_CIPHER_CAST_6},
973 	{"aes", RFC2440_CIPHER_AES_192},
974 	{"aes", RFC2440_CIPHER_AES_256}
975 };
976 
977 /**
978  * ecryptfs_code_for_cipher_string
979  * @cipher_name: The string alias for the cipher
980  * @key_bytes: Length of key in bytes; used for AES code selection
981  *
982  * Returns zero on no match, or the cipher code on match
983  */
ecryptfs_code_for_cipher_string(char * cipher_name,size_t key_bytes)984 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
985 {
986 	int i;
987 	u8 code = 0;
988 	struct ecryptfs_cipher_code_str_map_elem *map =
989 		ecryptfs_cipher_code_str_map;
990 
991 	if (strcmp(cipher_name, "aes") == 0) {
992 		switch (key_bytes) {
993 		case 16:
994 			code = RFC2440_CIPHER_AES_128;
995 			break;
996 		case 24:
997 			code = RFC2440_CIPHER_AES_192;
998 			break;
999 		case 32:
1000 			code = RFC2440_CIPHER_AES_256;
1001 		}
1002 	} else {
1003 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1004 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1005 				code = map[i].cipher_code;
1006 				break;
1007 			}
1008 	}
1009 	return code;
1010 }
1011 
1012 /**
1013  * ecryptfs_cipher_code_to_string
1014  * @str: Destination to write out the cipher name
1015  * @cipher_code: The code to convert to cipher name string
1016  *
1017  * Returns zero on success
1018  */
ecryptfs_cipher_code_to_string(char * str,u8 cipher_code)1019 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1020 {
1021 	int rc = 0;
1022 	int i;
1023 
1024 	str[0] = '\0';
1025 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1026 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1027 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1028 	if (str[0] == '\0') {
1029 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1030 				"[%d]\n", cipher_code);
1031 		rc = -EINVAL;
1032 	}
1033 	return rc;
1034 }
1035 
ecryptfs_read_and_validate_header_region(struct inode * inode)1036 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1037 {
1038 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1039 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1040 	int rc;
1041 
1042 	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1043 				 inode);
1044 	if (rc < 0)
1045 		return rc;
1046 	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1047 		return -EINVAL;
1048 	rc = ecryptfs_validate_marker(marker);
1049 	if (!rc)
1050 		ecryptfs_i_size_init(file_size, inode);
1051 	return rc;
1052 }
1053 
1054 void
ecryptfs_write_header_metadata(char * virt,struct ecryptfs_crypt_stat * crypt_stat,size_t * written)1055 ecryptfs_write_header_metadata(char *virt,
1056 			       struct ecryptfs_crypt_stat *crypt_stat,
1057 			       size_t *written)
1058 {
1059 	u32 header_extent_size;
1060 	u16 num_header_extents_at_front;
1061 
1062 	header_extent_size = (u32)crypt_stat->extent_size;
1063 	num_header_extents_at_front =
1064 		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1065 	put_unaligned_be32(header_extent_size, virt);
1066 	virt += 4;
1067 	put_unaligned_be16(num_header_extents_at_front, virt);
1068 	(*written) = 6;
1069 }
1070 
1071 struct kmem_cache *ecryptfs_header_cache;
1072 
1073 /**
1074  * ecryptfs_write_headers_virt
1075  * @page_virt: The virtual address to write the headers to
1076  * @max: The size of memory allocated at page_virt
1077  * @size: Set to the number of bytes written by this function
1078  * @crypt_stat: The cryptographic context
1079  * @ecryptfs_dentry: The eCryptfs dentry
1080  *
1081  * Format version: 1
1082  *
1083  *   Header Extent:
1084  *     Octets 0-7:        Unencrypted file size (big-endian)
1085  *     Octets 8-15:       eCryptfs special marker
1086  *     Octets 16-19:      Flags
1087  *      Octet 16:         File format version number (between 0 and 255)
1088  *      Octets 17-18:     Reserved
1089  *      Octet 19:         Bit 1 (lsb): Reserved
1090  *                        Bit 2: Encrypted?
1091  *                        Bits 3-8: Reserved
1092  *     Octets 20-23:      Header extent size (big-endian)
1093  *     Octets 24-25:      Number of header extents at front of file
1094  *                        (big-endian)
1095  *     Octet  26:         Begin RFC 2440 authentication token packet set
1096  *   Data Extent 0:
1097  *     Lower data (CBC encrypted)
1098  *   Data Extent 1:
1099  *     Lower data (CBC encrypted)
1100  *   ...
1101  *
1102  * Returns zero on success
1103  */
ecryptfs_write_headers_virt(char * page_virt,size_t max,size_t * size,struct ecryptfs_crypt_stat * crypt_stat,struct dentry * ecryptfs_dentry)1104 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1105 				       size_t *size,
1106 				       struct ecryptfs_crypt_stat *crypt_stat,
1107 				       struct dentry *ecryptfs_dentry)
1108 {
1109 	int rc;
1110 	size_t written;
1111 	size_t offset;
1112 
1113 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1114 	write_ecryptfs_marker((page_virt + offset), &written);
1115 	offset += written;
1116 	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1117 					&written);
1118 	offset += written;
1119 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1120 				       &written);
1121 	offset += written;
1122 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1123 					      ecryptfs_dentry, &written,
1124 					      max - offset);
1125 	if (rc)
1126 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1127 				"set; rc = [%d]\n", rc);
1128 	if (size) {
1129 		offset += written;
1130 		*size = offset;
1131 	}
1132 	return rc;
1133 }
1134 
1135 static int
ecryptfs_write_metadata_to_contents(struct inode * ecryptfs_inode,char * virt,size_t virt_len)1136 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1137 				    char *virt, size_t virt_len)
1138 {
1139 	int rc;
1140 
1141 	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1142 				  0, virt_len);
1143 	if (rc < 0)
1144 		printk(KERN_ERR "%s: Error attempting to write header "
1145 		       "information to lower file; rc = [%d]\n", __func__, rc);
1146 	else
1147 		rc = 0;
1148 	return rc;
1149 }
1150 
1151 static int
ecryptfs_write_metadata_to_xattr(struct dentry * ecryptfs_dentry,char * page_virt,size_t size)1152 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1153 				 char *page_virt, size_t size)
1154 {
1155 	int rc;
1156 
1157 	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1158 			       size, 0);
1159 	return rc;
1160 }
1161 
ecryptfs_get_zeroed_pages(gfp_t gfp_mask,unsigned int order)1162 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1163 					       unsigned int order)
1164 {
1165 	struct page *page;
1166 
1167 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1168 	if (page)
1169 		return (unsigned long) page_address(page);
1170 	return 0;
1171 }
1172 
1173 /**
1174  * ecryptfs_write_metadata
1175  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1176  * @ecryptfs_inode: The newly created eCryptfs inode
1177  *
1178  * Write the file headers out.  This will likely involve a userspace
1179  * callout, in which the session key is encrypted with one or more
1180  * public keys and/or the passphrase necessary to do the encryption is
1181  * retrieved via a prompt.  Exactly what happens at this point should
1182  * be policy-dependent.
1183  *
1184  * Returns zero on success; non-zero on error
1185  */
ecryptfs_write_metadata(struct dentry * ecryptfs_dentry,struct inode * ecryptfs_inode)1186 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1187 			    struct inode *ecryptfs_inode)
1188 {
1189 	struct ecryptfs_crypt_stat *crypt_stat =
1190 		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1191 	unsigned int order;
1192 	char *virt;
1193 	size_t virt_len;
1194 	size_t size = 0;
1195 	int rc = 0;
1196 
1197 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1198 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1199 			printk(KERN_ERR "Key is invalid; bailing out\n");
1200 			rc = -EINVAL;
1201 			goto out;
1202 		}
1203 	} else {
1204 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1205 		       __func__);
1206 		rc = -EINVAL;
1207 		goto out;
1208 	}
1209 	virt_len = crypt_stat->metadata_size;
1210 	order = get_order(virt_len);
1211 	/* Released in this function */
1212 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1213 	if (!virt) {
1214 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1215 		rc = -ENOMEM;
1216 		goto out;
1217 	}
1218 	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1219 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1220 					 ecryptfs_dentry);
1221 	if (unlikely(rc)) {
1222 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1223 		       __func__, rc);
1224 		goto out_free;
1225 	}
1226 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1227 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1228 						      size);
1229 	else
1230 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1231 							 virt_len);
1232 	if (rc) {
1233 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1234 		       "rc = [%d]\n", __func__, rc);
1235 		goto out_free;
1236 	}
1237 out_free:
1238 	free_pages((unsigned long)virt, order);
1239 out:
1240 	return rc;
1241 }
1242 
1243 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1244 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
parse_header_metadata(struct ecryptfs_crypt_stat * crypt_stat,char * virt,int * bytes_read,int validate_header_size)1245 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1246 				 char *virt, int *bytes_read,
1247 				 int validate_header_size)
1248 {
1249 	int rc = 0;
1250 	u32 header_extent_size;
1251 	u16 num_header_extents_at_front;
1252 
1253 	header_extent_size = get_unaligned_be32(virt);
1254 	virt += sizeof(__be32);
1255 	num_header_extents_at_front = get_unaligned_be16(virt);
1256 	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1257 				     * (size_t)header_extent_size));
1258 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1259 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1260 	    && (crypt_stat->metadata_size
1261 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1262 		rc = -EINVAL;
1263 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1264 		       crypt_stat->metadata_size);
1265 	}
1266 	return rc;
1267 }
1268 
1269 /**
1270  * set_default_header_data
1271  * @crypt_stat: The cryptographic context
1272  *
1273  * For version 0 file format; this function is only for backwards
1274  * compatibility for files created with the prior versions of
1275  * eCryptfs.
1276  */
set_default_header_data(struct ecryptfs_crypt_stat * crypt_stat)1277 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1278 {
1279 	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1280 }
1281 
ecryptfs_i_size_init(const char * page_virt,struct inode * inode)1282 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1283 {
1284 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1285 	struct ecryptfs_crypt_stat *crypt_stat;
1286 	u64 file_size;
1287 
1288 	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1289 	mount_crypt_stat =
1290 		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1291 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1292 		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1293 		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1294 			file_size += crypt_stat->metadata_size;
1295 	} else
1296 		file_size = get_unaligned_be64(page_virt);
1297 	i_size_write(inode, (loff_t)file_size);
1298 	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1299 }
1300 
1301 /**
1302  * ecryptfs_read_headers_virt
1303  * @page_virt: The virtual address into which to read the headers
1304  * @crypt_stat: The cryptographic context
1305  * @ecryptfs_dentry: The eCryptfs dentry
1306  * @validate_header_size: Whether to validate the header size while reading
1307  *
1308  * Read/parse the header data. The header format is detailed in the
1309  * comment block for the ecryptfs_write_headers_virt() function.
1310  *
1311  * Returns zero on success
1312  */
ecryptfs_read_headers_virt(char * page_virt,struct ecryptfs_crypt_stat * crypt_stat,struct dentry * ecryptfs_dentry,int validate_header_size)1313 static int ecryptfs_read_headers_virt(char *page_virt,
1314 				      struct ecryptfs_crypt_stat *crypt_stat,
1315 				      struct dentry *ecryptfs_dentry,
1316 				      int validate_header_size)
1317 {
1318 	int rc = 0;
1319 	int offset;
1320 	int bytes_read;
1321 
1322 	ecryptfs_set_default_sizes(crypt_stat);
1323 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1324 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1325 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1326 	rc = ecryptfs_validate_marker(page_virt + offset);
1327 	if (rc)
1328 		goto out;
1329 	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1330 		ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1331 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1332 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1333 				    &bytes_read);
1334 	if (rc) {
1335 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1336 		goto out;
1337 	}
1338 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1339 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1340 				"file version [%d] is supported by this "
1341 				"version of eCryptfs\n",
1342 				crypt_stat->file_version,
1343 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1344 		rc = -EINVAL;
1345 		goto out;
1346 	}
1347 	offset += bytes_read;
1348 	if (crypt_stat->file_version >= 1) {
1349 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1350 					   &bytes_read, validate_header_size);
1351 		if (rc) {
1352 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1353 					"metadata; rc = [%d]\n", rc);
1354 		}
1355 		offset += bytes_read;
1356 	} else
1357 		set_default_header_data(crypt_stat);
1358 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1359 				       ecryptfs_dentry);
1360 out:
1361 	return rc;
1362 }
1363 
1364 /**
1365  * ecryptfs_read_xattr_region
1366  * @page_virt: The vitual address into which to read the xattr data
1367  * @ecryptfs_inode: The eCryptfs inode
1368  *
1369  * Attempts to read the crypto metadata from the extended attribute
1370  * region of the lower file.
1371  *
1372  * Returns zero on success; non-zero on error
1373  */
ecryptfs_read_xattr_region(char * page_virt,struct inode * ecryptfs_inode)1374 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1375 {
1376 	struct dentry *lower_dentry =
1377 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1378 	ssize_t size;
1379 	int rc = 0;
1380 
1381 	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1382 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1383 	if (size < 0) {
1384 		if (unlikely(ecryptfs_verbosity > 0))
1385 			printk(KERN_INFO "Error attempting to read the [%s] "
1386 			       "xattr from the lower file; return value = "
1387 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1388 		rc = -EINVAL;
1389 		goto out;
1390 	}
1391 out:
1392 	return rc;
1393 }
1394 
ecryptfs_read_and_validate_xattr_region(struct dentry * dentry,struct inode * inode)1395 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1396 					    struct inode *inode)
1397 {
1398 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1399 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1400 	int rc;
1401 
1402 	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1403 				     ECRYPTFS_XATTR_NAME, file_size,
1404 				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1405 	if (rc < 0)
1406 		return rc;
1407 	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1408 		return -EINVAL;
1409 	rc = ecryptfs_validate_marker(marker);
1410 	if (!rc)
1411 		ecryptfs_i_size_init(file_size, inode);
1412 	return rc;
1413 }
1414 
1415 /**
1416  * ecryptfs_read_metadata
1417  *
1418  * Common entry point for reading file metadata. From here, we could
1419  * retrieve the header information from the header region of the file,
1420  * the xattr region of the file, or some other repostory that is
1421  * stored separately from the file itself. The current implementation
1422  * supports retrieving the metadata information from the file contents
1423  * and from the xattr region.
1424  *
1425  * Returns zero if valid headers found and parsed; non-zero otherwise
1426  */
ecryptfs_read_metadata(struct dentry * ecryptfs_dentry)1427 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1428 {
1429 	int rc;
1430 	char *page_virt;
1431 	struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1432 	struct ecryptfs_crypt_stat *crypt_stat =
1433 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1434 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1435 		&ecryptfs_superblock_to_private(
1436 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1437 
1438 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1439 						      mount_crypt_stat);
1440 	/* Read the first page from the underlying file */
1441 	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1442 	if (!page_virt) {
1443 		rc = -ENOMEM;
1444 		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1445 		       __func__);
1446 		goto out;
1447 	}
1448 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1449 				 ecryptfs_inode);
1450 	if (rc >= 0)
1451 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1452 						ecryptfs_dentry,
1453 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1454 	if (rc) {
1455 		/* metadata is not in the file header, so try xattrs */
1456 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1457 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1458 		if (rc) {
1459 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1460 			       "file header region or xattr region, inode %lu\n",
1461 				ecryptfs_inode->i_ino);
1462 			rc = -EINVAL;
1463 			goto out;
1464 		}
1465 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1466 						ecryptfs_dentry,
1467 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1468 		if (rc) {
1469 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1470 			       "file xattr region either, inode %lu\n",
1471 				ecryptfs_inode->i_ino);
1472 			rc = -EINVAL;
1473 		}
1474 		if (crypt_stat->mount_crypt_stat->flags
1475 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1476 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1477 		} else {
1478 			printk(KERN_WARNING "Attempt to access file with "
1479 			       "crypto metadata only in the extended attribute "
1480 			       "region, but eCryptfs was mounted without "
1481 			       "xattr support enabled. eCryptfs will not treat "
1482 			       "this like an encrypted file, inode %lu\n",
1483 				ecryptfs_inode->i_ino);
1484 			rc = -EINVAL;
1485 		}
1486 	}
1487 out:
1488 	if (page_virt) {
1489 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1490 		kmem_cache_free(ecryptfs_header_cache, page_virt);
1491 	}
1492 	return rc;
1493 }
1494 
1495 /**
1496  * ecryptfs_encrypt_filename - encrypt filename
1497  *
1498  * CBC-encrypts the filename. We do not want to encrypt the same
1499  * filename with the same key and IV, which may happen with hard
1500  * links, so we prepend random bits to each filename.
1501  *
1502  * Returns zero on success; non-zero otherwise
1503  */
1504 static int
ecryptfs_encrypt_filename(struct ecryptfs_filename * filename,struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)1505 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1506 			  struct ecryptfs_crypt_stat *crypt_stat,
1507 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1508 {
1509 	int rc = 0;
1510 
1511 	filename->encrypted_filename = NULL;
1512 	filename->encrypted_filename_size = 0;
1513 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1514 	    || (mount_crypt_stat && (mount_crypt_stat->flags
1515 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1516 		size_t packet_size;
1517 		size_t remaining_bytes;
1518 
1519 		rc = ecryptfs_write_tag_70_packet(
1520 			NULL, NULL,
1521 			&filename->encrypted_filename_size,
1522 			mount_crypt_stat, NULL,
1523 			filename->filename_size);
1524 		if (rc) {
1525 			printk(KERN_ERR "%s: Error attempting to get packet "
1526 			       "size for tag 72; rc = [%d]\n", __func__,
1527 			       rc);
1528 			filename->encrypted_filename_size = 0;
1529 			goto out;
1530 		}
1531 		filename->encrypted_filename =
1532 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1533 		if (!filename->encrypted_filename) {
1534 			printk(KERN_ERR "%s: Out of memory whilst attempting "
1535 			       "to kmalloc [%zd] bytes\n", __func__,
1536 			       filename->encrypted_filename_size);
1537 			rc = -ENOMEM;
1538 			goto out;
1539 		}
1540 		remaining_bytes = filename->encrypted_filename_size;
1541 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1542 						  &remaining_bytes,
1543 						  &packet_size,
1544 						  mount_crypt_stat,
1545 						  filename->filename,
1546 						  filename->filename_size);
1547 		if (rc) {
1548 			printk(KERN_ERR "%s: Error attempting to generate "
1549 			       "tag 70 packet; rc = [%d]\n", __func__,
1550 			       rc);
1551 			kfree(filename->encrypted_filename);
1552 			filename->encrypted_filename = NULL;
1553 			filename->encrypted_filename_size = 0;
1554 			goto out;
1555 		}
1556 		filename->encrypted_filename_size = packet_size;
1557 	} else {
1558 		printk(KERN_ERR "%s: No support for requested filename "
1559 		       "encryption method in this release\n", __func__);
1560 		rc = -EOPNOTSUPP;
1561 		goto out;
1562 	}
1563 out:
1564 	return rc;
1565 }
1566 
ecryptfs_copy_filename(char ** copied_name,size_t * copied_name_size,const char * name,size_t name_size)1567 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1568 				  const char *name, size_t name_size)
1569 {
1570 	int rc = 0;
1571 
1572 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1573 	if (!(*copied_name)) {
1574 		rc = -ENOMEM;
1575 		goto out;
1576 	}
1577 	memcpy((void *)(*copied_name), (void *)name, name_size);
1578 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1579 						 * in printing out the
1580 						 * string in debug
1581 						 * messages */
1582 	(*copied_name_size) = name_size;
1583 out:
1584 	return rc;
1585 }
1586 
1587 /**
1588  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1589  * @key_tfm: Crypto context for key material, set by this function
1590  * @cipher_name: Name of the cipher
1591  * @key_size: Size of the key in bytes
1592  *
1593  * Returns zero on success. Any crypto_tfm structs allocated here
1594  * should be released by other functions, such as on a superblock put
1595  * event, regardless of whether this function succeeds for fails.
1596  */
1597 static int
ecryptfs_process_key_cipher(struct crypto_blkcipher ** key_tfm,char * cipher_name,size_t * key_size)1598 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1599 			    char *cipher_name, size_t *key_size)
1600 {
1601 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1602 	char *full_alg_name = NULL;
1603 	int rc;
1604 
1605 	*key_tfm = NULL;
1606 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1607 		rc = -EINVAL;
1608 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1609 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1610 		goto out;
1611 	}
1612 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1613 						    "ecb");
1614 	if (rc)
1615 		goto out;
1616 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1617 	if (IS_ERR(*key_tfm)) {
1618 		rc = PTR_ERR(*key_tfm);
1619 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1620 		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1621 		goto out;
1622 	}
1623 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1624 	if (*key_size == 0) {
1625 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1626 
1627 		*key_size = alg->max_keysize;
1628 	}
1629 	get_random_bytes(dummy_key, *key_size);
1630 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1631 	if (rc) {
1632 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1633 		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1634 		       rc);
1635 		rc = -EINVAL;
1636 		goto out;
1637 	}
1638 out:
1639 	kfree(full_alg_name);
1640 	return rc;
1641 }
1642 
1643 struct kmem_cache *ecryptfs_key_tfm_cache;
1644 static struct list_head key_tfm_list;
1645 struct mutex key_tfm_list_mutex;
1646 
ecryptfs_init_crypto(void)1647 int __init ecryptfs_init_crypto(void)
1648 {
1649 	mutex_init(&key_tfm_list_mutex);
1650 	INIT_LIST_HEAD(&key_tfm_list);
1651 	return 0;
1652 }
1653 
1654 /**
1655  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1656  *
1657  * Called only at module unload time
1658  */
ecryptfs_destroy_crypto(void)1659 int ecryptfs_destroy_crypto(void)
1660 {
1661 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1662 
1663 	mutex_lock(&key_tfm_list_mutex);
1664 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1665 				 key_tfm_list) {
1666 		list_del(&key_tfm->key_tfm_list);
1667 		if (key_tfm->key_tfm)
1668 			crypto_free_blkcipher(key_tfm->key_tfm);
1669 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1670 	}
1671 	mutex_unlock(&key_tfm_list_mutex);
1672 	return 0;
1673 }
1674 
1675 int
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm ** key_tfm,char * cipher_name,size_t key_size)1676 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1677 			 size_t key_size)
1678 {
1679 	struct ecryptfs_key_tfm *tmp_tfm;
1680 	int rc = 0;
1681 
1682 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1683 
1684 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1685 	if (key_tfm != NULL)
1686 		(*key_tfm) = tmp_tfm;
1687 	if (!tmp_tfm) {
1688 		rc = -ENOMEM;
1689 		printk(KERN_ERR "Error attempting to allocate from "
1690 		       "ecryptfs_key_tfm_cache\n");
1691 		goto out;
1692 	}
1693 	mutex_init(&tmp_tfm->key_tfm_mutex);
1694 	strncpy(tmp_tfm->cipher_name, cipher_name,
1695 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1696 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1697 	tmp_tfm->key_size = key_size;
1698 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1699 					 tmp_tfm->cipher_name,
1700 					 &tmp_tfm->key_size);
1701 	if (rc) {
1702 		printk(KERN_ERR "Error attempting to initialize key TFM "
1703 		       "cipher with name = [%s]; rc = [%d]\n",
1704 		       tmp_tfm->cipher_name, rc);
1705 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1706 		if (key_tfm != NULL)
1707 			(*key_tfm) = NULL;
1708 		goto out;
1709 	}
1710 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1711 out:
1712 	return rc;
1713 }
1714 
1715 /**
1716  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1717  * @cipher_name: the name of the cipher to search for
1718  * @key_tfm: set to corresponding tfm if found
1719  *
1720  * Searches for cached key_tfm matching @cipher_name
1721  * Must be called with &key_tfm_list_mutex held
1722  * Returns 1 if found, with @key_tfm set
1723  * Returns 0 if not found, with @key_tfm set to NULL
1724  */
ecryptfs_tfm_exists(char * cipher_name,struct ecryptfs_key_tfm ** key_tfm)1725 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1726 {
1727 	struct ecryptfs_key_tfm *tmp_key_tfm;
1728 
1729 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1730 
1731 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1732 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1733 			if (key_tfm)
1734 				(*key_tfm) = tmp_key_tfm;
1735 			return 1;
1736 		}
1737 	}
1738 	if (key_tfm)
1739 		(*key_tfm) = NULL;
1740 	return 0;
1741 }
1742 
1743 /**
1744  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1745  *
1746  * @tfm: set to cached tfm found, or new tfm created
1747  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1748  * @cipher_name: the name of the cipher to search for and/or add
1749  *
1750  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1751  * Searches for cached item first, and creates new if not found.
1752  * Returns 0 on success, non-zero if adding new cipher failed
1753  */
ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher ** tfm,struct mutex ** tfm_mutex,char * cipher_name)1754 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1755 					       struct mutex **tfm_mutex,
1756 					       char *cipher_name)
1757 {
1758 	struct ecryptfs_key_tfm *key_tfm;
1759 	int rc = 0;
1760 
1761 	(*tfm) = NULL;
1762 	(*tfm_mutex) = NULL;
1763 
1764 	mutex_lock(&key_tfm_list_mutex);
1765 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1766 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1767 		if (rc) {
1768 			printk(KERN_ERR "Error adding new key_tfm to list; "
1769 					"rc = [%d]\n", rc);
1770 			goto out;
1771 		}
1772 	}
1773 	(*tfm) = key_tfm->key_tfm;
1774 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1775 out:
1776 	mutex_unlock(&key_tfm_list_mutex);
1777 	return rc;
1778 }
1779 
1780 /* 64 characters forming a 6-bit target field */
1781 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1782 						 "EFGHIJKLMNOPQRST"
1783 						 "UVWXYZabcdefghij"
1784 						 "klmnopqrstuvwxyz");
1785 
1786 /* We could either offset on every reverse map or just pad some 0x00's
1787  * at the front here */
1788 static const unsigned char filename_rev_map[256] = {
1789 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1790 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1791 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1792 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1793 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1794 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1795 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1796 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1797 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1798 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1799 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1800 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1801 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1802 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1803 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1804 	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1805 };
1806 
1807 /**
1808  * ecryptfs_encode_for_filename
1809  * @dst: Destination location for encoded filename
1810  * @dst_size: Size of the encoded filename in bytes
1811  * @src: Source location for the filename to encode
1812  * @src_size: Size of the source in bytes
1813  */
ecryptfs_encode_for_filename(unsigned char * dst,size_t * dst_size,unsigned char * src,size_t src_size)1814 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1815 				  unsigned char *src, size_t src_size)
1816 {
1817 	size_t num_blocks;
1818 	size_t block_num = 0;
1819 	size_t dst_offset = 0;
1820 	unsigned char last_block[3];
1821 
1822 	if (src_size == 0) {
1823 		(*dst_size) = 0;
1824 		goto out;
1825 	}
1826 	num_blocks = (src_size / 3);
1827 	if ((src_size % 3) == 0) {
1828 		memcpy(last_block, (&src[src_size - 3]), 3);
1829 	} else {
1830 		num_blocks++;
1831 		last_block[2] = 0x00;
1832 		switch (src_size % 3) {
1833 		case 1:
1834 			last_block[0] = src[src_size - 1];
1835 			last_block[1] = 0x00;
1836 			break;
1837 		case 2:
1838 			last_block[0] = src[src_size - 2];
1839 			last_block[1] = src[src_size - 1];
1840 		}
1841 	}
1842 	(*dst_size) = (num_blocks * 4);
1843 	if (!dst)
1844 		goto out;
1845 	while (block_num < num_blocks) {
1846 		unsigned char *src_block;
1847 		unsigned char dst_block[4];
1848 
1849 		if (block_num == (num_blocks - 1))
1850 			src_block = last_block;
1851 		else
1852 			src_block = &src[block_num * 3];
1853 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1854 		dst_block[1] = (((src_block[0] << 4) & 0x30)
1855 				| ((src_block[1] >> 4) & 0x0F));
1856 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
1857 				| ((src_block[2] >> 6) & 0x03));
1858 		dst_block[3] = (src_block[2] & 0x3F);
1859 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1860 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1861 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1862 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1863 		block_num++;
1864 	}
1865 out:
1866 	return;
1867 }
1868 
ecryptfs_max_decoded_size(size_t encoded_size)1869 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1870 {
1871 	/* Not exact; conservatively long. Every block of 4
1872 	 * encoded characters decodes into a block of 3
1873 	 * decoded characters. This segment of code provides
1874 	 * the caller with the maximum amount of allocated
1875 	 * space that @dst will need to point to in a
1876 	 * subsequent call. */
1877 	return ((encoded_size + 1) * 3) / 4;
1878 }
1879 
1880 /**
1881  * ecryptfs_decode_from_filename
1882  * @dst: If NULL, this function only sets @dst_size and returns. If
1883  *       non-NULL, this function decodes the encoded octets in @src
1884  *       into the memory that @dst points to.
1885  * @dst_size: Set to the size of the decoded string.
1886  * @src: The encoded set of octets to decode.
1887  * @src_size: The size of the encoded set of octets to decode.
1888  */
1889 static void
ecryptfs_decode_from_filename(unsigned char * dst,size_t * dst_size,const unsigned char * src,size_t src_size)1890 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1891 			      const unsigned char *src, size_t src_size)
1892 {
1893 	u8 current_bit_offset = 0;
1894 	size_t src_byte_offset = 0;
1895 	size_t dst_byte_offset = 0;
1896 
1897 	if (dst == NULL) {
1898 		(*dst_size) = ecryptfs_max_decoded_size(src_size);
1899 		goto out;
1900 	}
1901 	while (src_byte_offset < src_size) {
1902 		unsigned char src_byte =
1903 				filename_rev_map[(int)src[src_byte_offset]];
1904 
1905 		switch (current_bit_offset) {
1906 		case 0:
1907 			dst[dst_byte_offset] = (src_byte << 2);
1908 			current_bit_offset = 6;
1909 			break;
1910 		case 6:
1911 			dst[dst_byte_offset++] |= (src_byte >> 4);
1912 			dst[dst_byte_offset] = ((src_byte & 0xF)
1913 						 << 4);
1914 			current_bit_offset = 4;
1915 			break;
1916 		case 4:
1917 			dst[dst_byte_offset++] |= (src_byte >> 2);
1918 			dst[dst_byte_offset] = (src_byte << 6);
1919 			current_bit_offset = 2;
1920 			break;
1921 		case 2:
1922 			dst[dst_byte_offset++] |= (src_byte);
1923 			current_bit_offset = 0;
1924 			break;
1925 		}
1926 		src_byte_offset++;
1927 	}
1928 	(*dst_size) = dst_byte_offset;
1929 out:
1930 	return;
1931 }
1932 
1933 /**
1934  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1935  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1936  * @name: The plaintext name
1937  * @length: The length of the plaintext
1938  * @encoded_name: The encypted name
1939  *
1940  * Encrypts and encodes a filename into something that constitutes a
1941  * valid filename for a filesystem, with printable characters.
1942  *
1943  * We assume that we have a properly initialized crypto context,
1944  * pointed to by crypt_stat->tfm.
1945  *
1946  * Returns zero on success; non-zero on otherwise
1947  */
ecryptfs_encrypt_and_encode_filename(char ** encoded_name,size_t * encoded_name_size,struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,const char * name,size_t name_size)1948 int ecryptfs_encrypt_and_encode_filename(
1949 	char **encoded_name,
1950 	size_t *encoded_name_size,
1951 	struct ecryptfs_crypt_stat *crypt_stat,
1952 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1953 	const char *name, size_t name_size)
1954 {
1955 	size_t encoded_name_no_prefix_size;
1956 	int rc = 0;
1957 
1958 	(*encoded_name) = NULL;
1959 	(*encoded_name_size) = 0;
1960 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
1961 	    || (mount_crypt_stat && (mount_crypt_stat->flags
1962 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
1963 		struct ecryptfs_filename *filename;
1964 
1965 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1966 		if (!filename) {
1967 			printk(KERN_ERR "%s: Out of memory whilst attempting "
1968 			       "to kzalloc [%zd] bytes\n", __func__,
1969 			       sizeof(*filename));
1970 			rc = -ENOMEM;
1971 			goto out;
1972 		}
1973 		filename->filename = (char *)name;
1974 		filename->filename_size = name_size;
1975 		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
1976 					       mount_crypt_stat);
1977 		if (rc) {
1978 			printk(KERN_ERR "%s: Error attempting to encrypt "
1979 			       "filename; rc = [%d]\n", __func__, rc);
1980 			kfree(filename);
1981 			goto out;
1982 		}
1983 		ecryptfs_encode_for_filename(
1984 			NULL, &encoded_name_no_prefix_size,
1985 			filename->encrypted_filename,
1986 			filename->encrypted_filename_size);
1987 		if ((crypt_stat && (crypt_stat->flags
1988 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1989 		    || (mount_crypt_stat
1990 			&& (mount_crypt_stat->flags
1991 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
1992 			(*encoded_name_size) =
1993 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1994 				 + encoded_name_no_prefix_size);
1995 		else
1996 			(*encoded_name_size) =
1997 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1998 				 + encoded_name_no_prefix_size);
1999 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2000 		if (!(*encoded_name)) {
2001 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2002 			       "to kzalloc [%zd] bytes\n", __func__,
2003 			       (*encoded_name_size));
2004 			rc = -ENOMEM;
2005 			kfree(filename->encrypted_filename);
2006 			kfree(filename);
2007 			goto out;
2008 		}
2009 		if ((crypt_stat && (crypt_stat->flags
2010 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2011 		    || (mount_crypt_stat
2012 			&& (mount_crypt_stat->flags
2013 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2014 			memcpy((*encoded_name),
2015 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2016 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2017 			ecryptfs_encode_for_filename(
2018 			    ((*encoded_name)
2019 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2020 			    &encoded_name_no_prefix_size,
2021 			    filename->encrypted_filename,
2022 			    filename->encrypted_filename_size);
2023 			(*encoded_name_size) =
2024 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2025 				 + encoded_name_no_prefix_size);
2026 			(*encoded_name)[(*encoded_name_size)] = '\0';
2027 		} else {
2028 			rc = -EOPNOTSUPP;
2029 		}
2030 		if (rc) {
2031 			printk(KERN_ERR "%s: Error attempting to encode "
2032 			       "encrypted filename; rc = [%d]\n", __func__,
2033 			       rc);
2034 			kfree((*encoded_name));
2035 			(*encoded_name) = NULL;
2036 			(*encoded_name_size) = 0;
2037 		}
2038 		kfree(filename->encrypted_filename);
2039 		kfree(filename);
2040 	} else {
2041 		rc = ecryptfs_copy_filename(encoded_name,
2042 					    encoded_name_size,
2043 					    name, name_size);
2044 	}
2045 out:
2046 	return rc;
2047 }
2048 
2049 /**
2050  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2051  * @plaintext_name: The plaintext name
2052  * @plaintext_name_size: The plaintext name size
2053  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2054  * @name: The filename in cipher text
2055  * @name_size: The cipher text name size
2056  *
2057  * Decrypts and decodes the filename.
2058  *
2059  * Returns zero on error; non-zero otherwise
2060  */
ecryptfs_decode_and_decrypt_filename(char ** plaintext_name,size_t * plaintext_name_size,struct super_block * sb,const char * name,size_t name_size)2061 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2062 					 size_t *plaintext_name_size,
2063 					 struct super_block *sb,
2064 					 const char *name, size_t name_size)
2065 {
2066 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2067 		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2068 	char *decoded_name;
2069 	size_t decoded_name_size;
2070 	size_t packet_size;
2071 	int rc = 0;
2072 
2073 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2074 	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2075 	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2076 	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2077 			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2078 		const char *orig_name = name;
2079 		size_t orig_name_size = name_size;
2080 
2081 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2082 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2083 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2084 					      name, name_size);
2085 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2086 		if (!decoded_name) {
2087 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2088 			       "to kmalloc [%zd] bytes\n", __func__,
2089 			       decoded_name_size);
2090 			rc = -ENOMEM;
2091 			goto out;
2092 		}
2093 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2094 					      name, name_size);
2095 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2096 						  plaintext_name_size,
2097 						  &packet_size,
2098 						  mount_crypt_stat,
2099 						  decoded_name,
2100 						  decoded_name_size);
2101 		if (rc) {
2102 			printk(KERN_INFO "%s: Could not parse tag 70 packet "
2103 			       "from filename; copying through filename "
2104 			       "as-is\n", __func__);
2105 			rc = ecryptfs_copy_filename(plaintext_name,
2106 						    plaintext_name_size,
2107 						    orig_name, orig_name_size);
2108 			goto out_free;
2109 		}
2110 	} else {
2111 		rc = ecryptfs_copy_filename(plaintext_name,
2112 					    plaintext_name_size,
2113 					    name, name_size);
2114 		goto out;
2115 	}
2116 out_free:
2117 	kfree(decoded_name);
2118 out:
2119 	return rc;
2120 }
2121 
2122 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
2123 
ecryptfs_set_f_namelen(long * namelen,long lower_namelen,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)2124 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2125 			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2126 {
2127 	struct blkcipher_desc desc;
2128 	struct mutex *tfm_mutex;
2129 	size_t cipher_blocksize;
2130 	int rc;
2131 
2132 	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2133 		(*namelen) = lower_namelen;
2134 		return 0;
2135 	}
2136 
2137 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2138 			mount_crypt_stat->global_default_fn_cipher_name);
2139 	if (unlikely(rc)) {
2140 		(*namelen) = 0;
2141 		return rc;
2142 	}
2143 
2144 	mutex_lock(tfm_mutex);
2145 	cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2146 	mutex_unlock(tfm_mutex);
2147 
2148 	/* Return an exact amount for the common cases */
2149 	if (lower_namelen == NAME_MAX
2150 	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2151 		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2152 		return 0;
2153 	}
2154 
2155 	/* Return a safe estimate for the uncommon cases */
2156 	(*namelen) = lower_namelen;
2157 	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2158 	/* Since this is the max decoded size, subtract 1 "decoded block" len */
2159 	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2160 	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2161 	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2162 	/* Worst case is that the filename is padded nearly a full block size */
2163 	(*namelen) -= cipher_blocksize - 1;
2164 
2165 	if ((*namelen) < 0)
2166 		(*namelen) = 0;
2167 
2168 	return 0;
2169 }
2170