1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * Davide Libenzi <davidel@xmailserver.org>
11 *
12 */
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/freezer.h>
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/mman.h>
41 #include <linux/atomic.h>
42 #include <linux/proc_fs.h>
43 #include <linux/seq_file.h>
44 #include <linux/compat.h>
45 #include <linux/rculist.h>
46
47 /*
48 * LOCKING:
49 * There are three level of locking required by epoll :
50 *
51 * 1) epmutex (mutex)
52 * 2) ep->mtx (mutex)
53 * 3) ep->lock (spinlock)
54 *
55 * The acquire order is the one listed above, from 1 to 3.
56 * We need a spinlock (ep->lock) because we manipulate objects
57 * from inside the poll callback, that might be triggered from
58 * a wake_up() that in turn might be called from IRQ context.
59 * So we can't sleep inside the poll callback and hence we need
60 * a spinlock. During the event transfer loop (from kernel to
61 * user space) we could end up sleeping due a copy_to_user(), so
62 * we need a lock that will allow us to sleep. This lock is a
63 * mutex (ep->mtx). It is acquired during the event transfer loop,
64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
65 * Then we also need a global mutex to serialize eventpoll_release_file()
66 * and ep_free().
67 * This mutex is acquired by ep_free() during the epoll file
68 * cleanup path and it is also acquired by eventpoll_release_file()
69 * if a file has been pushed inside an epoll set and it is then
70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
71 * It is also acquired when inserting an epoll fd onto another epoll
72 * fd. We do this so that we walk the epoll tree and ensure that this
73 * insertion does not create a cycle of epoll file descriptors, which
74 * could lead to deadlock. We need a global mutex to prevent two
75 * simultaneous inserts (A into B and B into A) from racing and
76 * constructing a cycle without either insert observing that it is
77 * going to.
78 * It is necessary to acquire multiple "ep->mtx"es at once in the
79 * case when one epoll fd is added to another. In this case, we
80 * always acquire the locks in the order of nesting (i.e. after
81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
82 * before e2->mtx). Since we disallow cycles of epoll file
83 * descriptors, this ensures that the mutexes are well-ordered. In
84 * order to communicate this nesting to lockdep, when walking a tree
85 * of epoll file descriptors, we use the current recursion depth as
86 * the lockdep subkey.
87 * It is possible to drop the "ep->mtx" and to use the global
88 * mutex "epmutex" (together with "ep->lock") to have it working,
89 * but having "ep->mtx" will make the interface more scalable.
90 * Events that require holding "epmutex" are very rare, while for
91 * normal operations the epoll private "ep->mtx" will guarantee
92 * a better scalability.
93 */
94
95 /* Epoll private bits inside the event mask */
96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET)
97
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
100
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102
103 #define EP_UNACTIVE_PTR ((void *) -1L)
104
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106
107 struct epoll_filefd {
108 struct file *file;
109 int fd;
110 } __packed;
111
112 /*
113 * Structure used to track possible nested calls, for too deep recursions
114 * and loop cycles.
115 */
116 struct nested_call_node {
117 struct list_head llink;
118 void *cookie;
119 void *ctx;
120 };
121
122 /*
123 * This structure is used as collector for nested calls, to check for
124 * maximum recursion dept and loop cycles.
125 */
126 struct nested_calls {
127 struct list_head tasks_call_list;
128 spinlock_t lock;
129 };
130
131 /*
132 * Each file descriptor added to the eventpoll interface will
133 * have an entry of this type linked to the "rbr" RB tree.
134 * Avoid increasing the size of this struct, there can be many thousands
135 * of these on a server and we do not want this to take another cache line.
136 */
137 struct epitem {
138 union {
139 /* RB tree node links this structure to the eventpoll RB tree */
140 struct rb_node rbn;
141 /* Used to free the struct epitem */
142 struct rcu_head rcu;
143 };
144
145 /* List header used to link this structure to the eventpoll ready list */
146 struct list_head rdllink;
147
148 /*
149 * Works together "struct eventpoll"->ovflist in keeping the
150 * single linked chain of items.
151 */
152 struct epitem *next;
153
154 /* The file descriptor information this item refers to */
155 struct epoll_filefd ffd;
156
157 /* Number of active wait queue attached to poll operations */
158 int nwait;
159
160 /* List containing poll wait queues */
161 struct list_head pwqlist;
162
163 /* The "container" of this item */
164 struct eventpoll *ep;
165
166 /* List header used to link this item to the "struct file" items list */
167 struct list_head fllink;
168
169 /* wakeup_source used when EPOLLWAKEUP is set */
170 struct wakeup_source __rcu *ws;
171
172 /* The structure that describe the interested events and the source fd */
173 struct epoll_event event;
174 };
175
176 /*
177 * This structure is stored inside the "private_data" member of the file
178 * structure and represents the main data structure for the eventpoll
179 * interface.
180 */
181 struct eventpoll {
182 /* Protect the access to this structure */
183 spinlock_t lock;
184
185 /*
186 * This mutex is used to ensure that files are not removed
187 * while epoll is using them. This is held during the event
188 * collection loop, the file cleanup path, the epoll file exit
189 * code and the ctl operations.
190 */
191 struct mutex mtx;
192
193 /* Wait queue used by sys_epoll_wait() */
194 wait_queue_head_t wq;
195
196 /* Wait queue used by file->poll() */
197 wait_queue_head_t poll_wait;
198
199 /* List of ready file descriptors */
200 struct list_head rdllist;
201
202 /* RB tree root used to store monitored fd structs */
203 struct rb_root rbr;
204
205 /*
206 * This is a single linked list that chains all the "struct epitem" that
207 * happened while transferring ready events to userspace w/out
208 * holding ->lock.
209 */
210 struct epitem *ovflist;
211
212 /* wakeup_source used when ep_scan_ready_list is running */
213 struct wakeup_source *ws;
214
215 /* The user that created the eventpoll descriptor */
216 struct user_struct *user;
217
218 struct file *file;
219
220 /* used to optimize loop detection check */
221 u64 gen;
222 };
223
224 /* Wait structure used by the poll hooks */
225 struct eppoll_entry {
226 /* List header used to link this structure to the "struct epitem" */
227 struct list_head llink;
228
229 /* The "base" pointer is set to the container "struct epitem" */
230 struct epitem *base;
231
232 /*
233 * Wait queue item that will be linked to the target file wait
234 * queue head.
235 */
236 wait_queue_t wait;
237
238 /* The wait queue head that linked the "wait" wait queue item */
239 wait_queue_head_t *whead;
240 };
241
242 /* Wrapper struct used by poll queueing */
243 struct ep_pqueue {
244 poll_table pt;
245 struct epitem *epi;
246 };
247
248 /* Used by the ep_send_events() function as callback private data */
249 struct ep_send_events_data {
250 int maxevents;
251 struct epoll_event __user *events;
252 };
253
254 /*
255 * Configuration options available inside /proc/sys/fs/epoll/
256 */
257 /* Maximum number of epoll watched descriptors, per user */
258 static long max_user_watches __read_mostly;
259
260 /*
261 * This mutex is used to serialize ep_free() and eventpoll_release_file().
262 */
263 static DEFINE_MUTEX(epmutex);
264
265 static u64 loop_check_gen = 0;
266
267 /* Used to check for epoll file descriptor inclusion loops */
268 static struct nested_calls poll_loop_ncalls;
269
270 /* Used for safe wake up implementation */
271 static struct nested_calls poll_safewake_ncalls;
272
273 /* Used to call file's f_op->poll() under the nested calls boundaries */
274 static struct nested_calls poll_readywalk_ncalls;
275
276 /* Slab cache used to allocate "struct epitem" */
277 static struct kmem_cache *epi_cache __read_mostly;
278
279 /* Slab cache used to allocate "struct eppoll_entry" */
280 static struct kmem_cache *pwq_cache __read_mostly;
281
282 /*
283 * List of files with newly added links, where we may need to limit the number
284 * of emanating paths. Protected by the epmutex.
285 */
286 static LIST_HEAD(tfile_check_list);
287
288 #ifdef CONFIG_SYSCTL
289
290 #include <linux/sysctl.h>
291
292 static long zero;
293 static long long_max = LONG_MAX;
294
295 struct ctl_table epoll_table[] = {
296 {
297 .procname = "max_user_watches",
298 .data = &max_user_watches,
299 .maxlen = sizeof(max_user_watches),
300 .mode = 0644,
301 .proc_handler = proc_doulongvec_minmax,
302 .extra1 = &zero,
303 .extra2 = &long_max,
304 },
305 { }
306 };
307 #endif /* CONFIG_SYSCTL */
308
309 static const struct file_operations eventpoll_fops;
310
is_file_epoll(struct file * f)311 static inline int is_file_epoll(struct file *f)
312 {
313 return f->f_op == &eventpoll_fops;
314 }
315
316 /* Setup the structure that is used as key for the RB tree */
ep_set_ffd(struct epoll_filefd * ffd,struct file * file,int fd)317 static inline void ep_set_ffd(struct epoll_filefd *ffd,
318 struct file *file, int fd)
319 {
320 ffd->file = file;
321 ffd->fd = fd;
322 }
323
324 /* Compare RB tree keys */
ep_cmp_ffd(struct epoll_filefd * p1,struct epoll_filefd * p2)325 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
326 struct epoll_filefd *p2)
327 {
328 return (p1->file > p2->file ? +1:
329 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
330 }
331
332 /* Tells us if the item is currently linked */
ep_is_linked(struct list_head * p)333 static inline int ep_is_linked(struct list_head *p)
334 {
335 return !list_empty(p);
336 }
337
ep_pwq_from_wait(wait_queue_t * p)338 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
339 {
340 return container_of(p, struct eppoll_entry, wait);
341 }
342
343 /* Get the "struct epitem" from a wait queue pointer */
ep_item_from_wait(wait_queue_t * p)344 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
345 {
346 return container_of(p, struct eppoll_entry, wait)->base;
347 }
348
349 /* Get the "struct epitem" from an epoll queue wrapper */
ep_item_from_epqueue(poll_table * p)350 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
351 {
352 return container_of(p, struct ep_pqueue, pt)->epi;
353 }
354
355 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
ep_op_has_event(int op)356 static inline int ep_op_has_event(int op)
357 {
358 return op != EPOLL_CTL_DEL;
359 }
360
361 /* Initialize the poll safe wake up structure */
ep_nested_calls_init(struct nested_calls * ncalls)362 static void ep_nested_calls_init(struct nested_calls *ncalls)
363 {
364 INIT_LIST_HEAD(&ncalls->tasks_call_list);
365 spin_lock_init(&ncalls->lock);
366 }
367
368 /**
369 * ep_events_available - Checks if ready events might be available.
370 *
371 * @ep: Pointer to the eventpoll context.
372 *
373 * Returns: Returns a value different than zero if ready events are available,
374 * or zero otherwise.
375 */
ep_events_available(struct eventpoll * ep)376 static inline int ep_events_available(struct eventpoll *ep)
377 {
378 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
379 }
380
381 /**
382 * ep_call_nested - Perform a bound (possibly) nested call, by checking
383 * that the recursion limit is not exceeded, and that
384 * the same nested call (by the meaning of same cookie) is
385 * no re-entered.
386 *
387 * @ncalls: Pointer to the nested_calls structure to be used for this call.
388 * @max_nests: Maximum number of allowed nesting calls.
389 * @nproc: Nested call core function pointer.
390 * @priv: Opaque data to be passed to the @nproc callback.
391 * @cookie: Cookie to be used to identify this nested call.
392 * @ctx: This instance context.
393 *
394 * Returns: Returns the code returned by the @nproc callback, or -1 if
395 * the maximum recursion limit has been exceeded.
396 */
ep_call_nested(struct nested_calls * ncalls,int max_nests,int (* nproc)(void *,void *,int),void * priv,void * cookie,void * ctx)397 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
398 int (*nproc)(void *, void *, int), void *priv,
399 void *cookie, void *ctx)
400 {
401 int error, call_nests = 0;
402 unsigned long flags;
403 struct list_head *lsthead = &ncalls->tasks_call_list;
404 struct nested_call_node *tncur;
405 struct nested_call_node tnode;
406
407 spin_lock_irqsave(&ncalls->lock, flags);
408
409 /*
410 * Try to see if the current task is already inside this wakeup call.
411 * We use a list here, since the population inside this set is always
412 * very much limited.
413 */
414 list_for_each_entry(tncur, lsthead, llink) {
415 if (tncur->ctx == ctx &&
416 (tncur->cookie == cookie || ++call_nests > max_nests)) {
417 /*
418 * Ops ... loop detected or maximum nest level reached.
419 * We abort this wake by breaking the cycle itself.
420 */
421 error = -1;
422 goto out_unlock;
423 }
424 }
425
426 /* Add the current task and cookie to the list */
427 tnode.ctx = ctx;
428 tnode.cookie = cookie;
429 list_add(&tnode.llink, lsthead);
430
431 spin_unlock_irqrestore(&ncalls->lock, flags);
432
433 /* Call the nested function */
434 error = (*nproc)(priv, cookie, call_nests);
435
436 /* Remove the current task from the list */
437 spin_lock_irqsave(&ncalls->lock, flags);
438 list_del(&tnode.llink);
439 out_unlock:
440 spin_unlock_irqrestore(&ncalls->lock, flags);
441
442 return error;
443 }
444
445 /*
446 * As described in commit 0ccf831cb lockdep: annotate epoll
447 * the use of wait queues used by epoll is done in a very controlled
448 * manner. Wake ups can nest inside each other, but are never done
449 * with the same locking. For example:
450 *
451 * dfd = socket(...);
452 * efd1 = epoll_create();
453 * efd2 = epoll_create();
454 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
455 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
456 *
457 * When a packet arrives to the device underneath "dfd", the net code will
458 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
459 * callback wakeup entry on that queue, and the wake_up() performed by the
460 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
461 * (efd1) notices that it may have some event ready, so it needs to wake up
462 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
463 * that ends up in another wake_up(), after having checked about the
464 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
465 * avoid stack blasting.
466 *
467 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
468 * this special case of epoll.
469 */
470 #ifdef CONFIG_DEBUG_LOCK_ALLOC
ep_wake_up_nested(wait_queue_head_t * wqueue,unsigned long events,int subclass)471 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
472 unsigned long events, int subclass)
473 {
474 unsigned long flags;
475
476 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
477 wake_up_locked_poll(wqueue, events);
478 spin_unlock_irqrestore(&wqueue->lock, flags);
479 }
480 #else
ep_wake_up_nested(wait_queue_head_t * wqueue,unsigned long events,int subclass)481 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
482 unsigned long events, int subclass)
483 {
484 wake_up_poll(wqueue, events);
485 }
486 #endif
487
ep_poll_wakeup_proc(void * priv,void * cookie,int call_nests)488 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
489 {
490 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
491 1 + call_nests);
492 return 0;
493 }
494
495 /*
496 * Perform a safe wake up of the poll wait list. The problem is that
497 * with the new callback'd wake up system, it is possible that the
498 * poll callback is reentered from inside the call to wake_up() done
499 * on the poll wait queue head. The rule is that we cannot reenter the
500 * wake up code from the same task more than EP_MAX_NESTS times,
501 * and we cannot reenter the same wait queue head at all. This will
502 * enable to have a hierarchy of epoll file descriptor of no more than
503 * EP_MAX_NESTS deep.
504 */
ep_poll_safewake(wait_queue_head_t * wq)505 static void ep_poll_safewake(wait_queue_head_t *wq)
506 {
507 int this_cpu = get_cpu();
508
509 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
510 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
511
512 put_cpu();
513 }
514
ep_remove_wait_queue(struct eppoll_entry * pwq)515 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
516 {
517 wait_queue_head_t *whead;
518
519 rcu_read_lock();
520 /*
521 * If it is cleared by POLLFREE, it should be rcu-safe.
522 * If we read NULL we need a barrier paired with
523 * smp_store_release() in ep_poll_callback(), otherwise
524 * we rely on whead->lock.
525 */
526 whead = smp_load_acquire(&pwq->whead);
527 if (whead)
528 remove_wait_queue(whead, &pwq->wait);
529 rcu_read_unlock();
530 }
531
532 /*
533 * This function unregisters poll callbacks from the associated file
534 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
535 * ep_free).
536 */
ep_unregister_pollwait(struct eventpoll * ep,struct epitem * epi)537 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
538 {
539 struct list_head *lsthead = &epi->pwqlist;
540 struct eppoll_entry *pwq;
541
542 while (!list_empty(lsthead)) {
543 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
544
545 list_del(&pwq->llink);
546 ep_remove_wait_queue(pwq);
547 kmem_cache_free(pwq_cache, pwq);
548 }
549 }
550
551 /* call only when ep->mtx is held */
ep_wakeup_source(struct epitem * epi)552 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
553 {
554 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
555 }
556
557 /* call only when ep->mtx is held */
ep_pm_stay_awake(struct epitem * epi)558 static inline void ep_pm_stay_awake(struct epitem *epi)
559 {
560 struct wakeup_source *ws = ep_wakeup_source(epi);
561
562 if (ws)
563 __pm_stay_awake(ws);
564 }
565
ep_has_wakeup_source(struct epitem * epi)566 static inline bool ep_has_wakeup_source(struct epitem *epi)
567 {
568 return rcu_access_pointer(epi->ws) ? true : false;
569 }
570
571 /* call when ep->mtx cannot be held (ep_poll_callback) */
ep_pm_stay_awake_rcu(struct epitem * epi)572 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
573 {
574 struct wakeup_source *ws;
575
576 rcu_read_lock();
577 ws = rcu_dereference(epi->ws);
578 if (ws)
579 __pm_stay_awake(ws);
580 rcu_read_unlock();
581 }
582
583 /**
584 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
585 * the scan code, to call f_op->poll(). Also allows for
586 * O(NumReady) performance.
587 *
588 * @ep: Pointer to the epoll private data structure.
589 * @sproc: Pointer to the scan callback.
590 * @priv: Private opaque data passed to the @sproc callback.
591 * @depth: The current depth of recursive f_op->poll calls.
592 * @ep_locked: caller already holds ep->mtx
593 *
594 * Returns: The same integer error code returned by the @sproc callback.
595 */
ep_scan_ready_list(struct eventpoll * ep,int (* sproc)(struct eventpoll *,struct list_head *,void *),void * priv,int depth,bool ep_locked)596 static int ep_scan_ready_list(struct eventpoll *ep,
597 int (*sproc)(struct eventpoll *,
598 struct list_head *, void *),
599 void *priv, int depth, bool ep_locked)
600 {
601 int error, pwake = 0;
602 unsigned long flags;
603 struct epitem *epi, *nepi;
604 LIST_HEAD(txlist);
605
606 /*
607 * We need to lock this because we could be hit by
608 * eventpoll_release_file() and epoll_ctl().
609 */
610
611 if (!ep_locked)
612 mutex_lock_nested(&ep->mtx, depth);
613
614 /*
615 * Steal the ready list, and re-init the original one to the
616 * empty list. Also, set ep->ovflist to NULL so that events
617 * happening while looping w/out locks, are not lost. We cannot
618 * have the poll callback to queue directly on ep->rdllist,
619 * because we want the "sproc" callback to be able to do it
620 * in a lockless way.
621 */
622 spin_lock_irqsave(&ep->lock, flags);
623 list_splice_init(&ep->rdllist, &txlist);
624 ep->ovflist = NULL;
625 spin_unlock_irqrestore(&ep->lock, flags);
626
627 /*
628 * Now call the callback function.
629 */
630 error = (*sproc)(ep, &txlist, priv);
631
632 spin_lock_irqsave(&ep->lock, flags);
633 /*
634 * During the time we spent inside the "sproc" callback, some
635 * other events might have been queued by the poll callback.
636 * We re-insert them inside the main ready-list here.
637 */
638 for (nepi = ep->ovflist; (epi = nepi) != NULL;
639 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
640 /*
641 * We need to check if the item is already in the list.
642 * During the "sproc" callback execution time, items are
643 * queued into ->ovflist but the "txlist" might already
644 * contain them, and the list_splice() below takes care of them.
645 */
646 if (!ep_is_linked(&epi->rdllink)) {
647 list_add_tail(&epi->rdllink, &ep->rdllist);
648 ep_pm_stay_awake(epi);
649 }
650 }
651 /*
652 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
653 * releasing the lock, events will be queued in the normal way inside
654 * ep->rdllist.
655 */
656 ep->ovflist = EP_UNACTIVE_PTR;
657
658 /*
659 * Quickly re-inject items left on "txlist".
660 */
661 list_splice(&txlist, &ep->rdllist);
662 __pm_relax(ep->ws);
663
664 if (!list_empty(&ep->rdllist)) {
665 /*
666 * Wake up (if active) both the eventpoll wait list and
667 * the ->poll() wait list (delayed after we release the lock).
668 */
669 if (waitqueue_active(&ep->wq))
670 wake_up_locked(&ep->wq);
671 if (waitqueue_active(&ep->poll_wait))
672 pwake++;
673 }
674 spin_unlock_irqrestore(&ep->lock, flags);
675
676 if (!ep_locked)
677 mutex_unlock(&ep->mtx);
678
679 /* We have to call this outside the lock */
680 if (pwake)
681 ep_poll_safewake(&ep->poll_wait);
682
683 return error;
684 }
685
epi_rcu_free(struct rcu_head * head)686 static void epi_rcu_free(struct rcu_head *head)
687 {
688 struct epitem *epi = container_of(head, struct epitem, rcu);
689 kmem_cache_free(epi_cache, epi);
690 }
691
692 /*
693 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
694 * all the associated resources. Must be called with "mtx" held.
695 */
ep_remove(struct eventpoll * ep,struct epitem * epi)696 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
697 {
698 unsigned long flags;
699 struct file *file = epi->ffd.file;
700
701 /*
702 * Removes poll wait queue hooks. We _have_ to do this without holding
703 * the "ep->lock" otherwise a deadlock might occur. This because of the
704 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
705 * queue head lock when unregistering the wait queue. The wakeup callback
706 * will run by holding the wait queue head lock and will call our callback
707 * that will try to get "ep->lock".
708 */
709 ep_unregister_pollwait(ep, epi);
710
711 /* Remove the current item from the list of epoll hooks */
712 spin_lock(&file->f_lock);
713 list_del_rcu(&epi->fllink);
714 spin_unlock(&file->f_lock);
715
716 rb_erase(&epi->rbn, &ep->rbr);
717
718 spin_lock_irqsave(&ep->lock, flags);
719 if (ep_is_linked(&epi->rdllink))
720 list_del_init(&epi->rdllink);
721 spin_unlock_irqrestore(&ep->lock, flags);
722
723 wakeup_source_unregister(ep_wakeup_source(epi));
724 /*
725 * At this point it is safe to free the eventpoll item. Use the union
726 * field epi->rcu, since we are trying to minimize the size of
727 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
728 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
729 * use of the rbn field.
730 */
731 call_rcu(&epi->rcu, epi_rcu_free);
732
733 atomic_long_dec(&ep->user->epoll_watches);
734
735 return 0;
736 }
737
ep_free(struct eventpoll * ep)738 static void ep_free(struct eventpoll *ep)
739 {
740 struct rb_node *rbp;
741 struct epitem *epi;
742
743 /* We need to release all tasks waiting for these file */
744 if (waitqueue_active(&ep->poll_wait))
745 ep_poll_safewake(&ep->poll_wait);
746
747 /*
748 * We need to lock this because we could be hit by
749 * eventpoll_release_file() while we're freeing the "struct eventpoll".
750 * We do not need to hold "ep->mtx" here because the epoll file
751 * is on the way to be removed and no one has references to it
752 * anymore. The only hit might come from eventpoll_release_file() but
753 * holding "epmutex" is sufficient here.
754 */
755 mutex_lock(&epmutex);
756
757 /*
758 * Walks through the whole tree by unregistering poll callbacks.
759 */
760 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
761 epi = rb_entry(rbp, struct epitem, rbn);
762
763 ep_unregister_pollwait(ep, epi);
764 cond_resched();
765 }
766
767 /*
768 * Walks through the whole tree by freeing each "struct epitem". At this
769 * point we are sure no poll callbacks will be lingering around, and also by
770 * holding "epmutex" we can be sure that no file cleanup code will hit
771 * us during this operation. So we can avoid the lock on "ep->lock".
772 * We do not need to lock ep->mtx, either, we only do it to prevent
773 * a lockdep warning.
774 */
775 mutex_lock(&ep->mtx);
776 while ((rbp = rb_first(&ep->rbr)) != NULL) {
777 epi = rb_entry(rbp, struct epitem, rbn);
778 ep_remove(ep, epi);
779 cond_resched();
780 }
781 mutex_unlock(&ep->mtx);
782
783 mutex_unlock(&epmutex);
784 mutex_destroy(&ep->mtx);
785 free_uid(ep->user);
786 wakeup_source_unregister(ep->ws);
787 kfree(ep);
788 }
789
ep_eventpoll_release(struct inode * inode,struct file * file)790 static int ep_eventpoll_release(struct inode *inode, struct file *file)
791 {
792 struct eventpoll *ep = file->private_data;
793
794 if (ep)
795 ep_free(ep);
796
797 return 0;
798 }
799
ep_item_poll(struct epitem * epi,poll_table * pt)800 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
801 {
802 pt->_key = epi->event.events;
803
804 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
805 }
806
ep_read_events_proc(struct eventpoll * ep,struct list_head * head,void * priv)807 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
808 void *priv)
809 {
810 struct epitem *epi, *tmp;
811 poll_table pt;
812
813 init_poll_funcptr(&pt, NULL);
814
815 list_for_each_entry_safe(epi, tmp, head, rdllink) {
816 if (ep_item_poll(epi, &pt))
817 return POLLIN | POLLRDNORM;
818 else {
819 /*
820 * Item has been dropped into the ready list by the poll
821 * callback, but it's not actually ready, as far as
822 * caller requested events goes. We can remove it here.
823 */
824 __pm_relax(ep_wakeup_source(epi));
825 list_del_init(&epi->rdllink);
826 }
827 }
828
829 return 0;
830 }
831
832 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
833 poll_table *pt);
834
835 struct readyevents_arg {
836 struct eventpoll *ep;
837 bool locked;
838 };
839
ep_poll_readyevents_proc(void * priv,void * cookie,int call_nests)840 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
841 {
842 struct readyevents_arg *arg = priv;
843
844 return ep_scan_ready_list(arg->ep, ep_read_events_proc, NULL,
845 call_nests + 1, arg->locked);
846 }
847
ep_eventpoll_poll(struct file * file,poll_table * wait)848 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
849 {
850 int pollflags;
851 struct eventpoll *ep = file->private_data;
852 struct readyevents_arg arg;
853
854 /*
855 * During ep_insert() we already hold the ep->mtx for the tfile.
856 * Prevent re-aquisition.
857 */
858 arg.locked = wait && (wait->_qproc == ep_ptable_queue_proc);
859 arg.ep = ep;
860
861 /* Insert inside our poll wait queue */
862 poll_wait(file, &ep->poll_wait, wait);
863
864 /*
865 * Proceed to find out if wanted events are really available inside
866 * the ready list. This need to be done under ep_call_nested()
867 * supervision, since the call to f_op->poll() done on listed files
868 * could re-enter here.
869 */
870 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
871 ep_poll_readyevents_proc, &arg, ep, current);
872
873 return pollflags != -1 ? pollflags : 0;
874 }
875
876 #ifdef CONFIG_PROC_FS
ep_show_fdinfo(struct seq_file * m,struct file * f)877 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
878 {
879 struct eventpoll *ep = f->private_data;
880 struct rb_node *rbp;
881
882 mutex_lock(&ep->mtx);
883 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
884 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
885
886 seq_printf(m, "tfd: %8d events: %8x data: %16llx\n",
887 epi->ffd.fd, epi->event.events,
888 (long long)epi->event.data);
889 if (seq_has_overflowed(m))
890 break;
891 }
892 mutex_unlock(&ep->mtx);
893 }
894 #endif
895
896 /* File callbacks that implement the eventpoll file behaviour */
897 static const struct file_operations eventpoll_fops = {
898 #ifdef CONFIG_PROC_FS
899 .show_fdinfo = ep_show_fdinfo,
900 #endif
901 .release = ep_eventpoll_release,
902 .poll = ep_eventpoll_poll,
903 .llseek = noop_llseek,
904 };
905
906 /*
907 * This is called from eventpoll_release() to unlink files from the eventpoll
908 * interface. We need to have this facility to cleanup correctly files that are
909 * closed without being removed from the eventpoll interface.
910 */
eventpoll_release_file(struct file * file)911 void eventpoll_release_file(struct file *file)
912 {
913 struct eventpoll *ep;
914 struct epitem *epi, *next;
915
916 /*
917 * We don't want to get "file->f_lock" because it is not
918 * necessary. It is not necessary because we're in the "struct file"
919 * cleanup path, and this means that no one is using this file anymore.
920 * So, for example, epoll_ctl() cannot hit here since if we reach this
921 * point, the file counter already went to zero and fget() would fail.
922 * The only hit might come from ep_free() but by holding the mutex
923 * will correctly serialize the operation. We do need to acquire
924 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
925 * from anywhere but ep_free().
926 *
927 * Besides, ep_remove() acquires the lock, so we can't hold it here.
928 */
929 mutex_lock(&epmutex);
930 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
931 ep = epi->ep;
932 mutex_lock_nested(&ep->mtx, 0);
933 ep_remove(ep, epi);
934 mutex_unlock(&ep->mtx);
935 }
936 mutex_unlock(&epmutex);
937 }
938
ep_alloc(struct eventpoll ** pep)939 static int ep_alloc(struct eventpoll **pep)
940 {
941 int error;
942 struct user_struct *user;
943 struct eventpoll *ep;
944
945 user = get_current_user();
946 error = -ENOMEM;
947 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
948 if (unlikely(!ep))
949 goto free_uid;
950
951 spin_lock_init(&ep->lock);
952 mutex_init(&ep->mtx);
953 init_waitqueue_head(&ep->wq);
954 init_waitqueue_head(&ep->poll_wait);
955 INIT_LIST_HEAD(&ep->rdllist);
956 ep->rbr = RB_ROOT;
957 ep->ovflist = EP_UNACTIVE_PTR;
958 ep->user = user;
959
960 *pep = ep;
961
962 return 0;
963
964 free_uid:
965 free_uid(user);
966 return error;
967 }
968
969 /*
970 * Search the file inside the eventpoll tree. The RB tree operations
971 * are protected by the "mtx" mutex, and ep_find() must be called with
972 * "mtx" held.
973 */
ep_find(struct eventpoll * ep,struct file * file,int fd)974 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
975 {
976 int kcmp;
977 struct rb_node *rbp;
978 struct epitem *epi, *epir = NULL;
979 struct epoll_filefd ffd;
980
981 ep_set_ffd(&ffd, file, fd);
982 for (rbp = ep->rbr.rb_node; rbp; ) {
983 epi = rb_entry(rbp, struct epitem, rbn);
984 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
985 if (kcmp > 0)
986 rbp = rbp->rb_right;
987 else if (kcmp < 0)
988 rbp = rbp->rb_left;
989 else {
990 epir = epi;
991 break;
992 }
993 }
994
995 return epir;
996 }
997
998 /*
999 * This is the callback that is passed to the wait queue wakeup
1000 * mechanism. It is called by the stored file descriptors when they
1001 * have events to report.
1002 */
ep_poll_callback(wait_queue_t * wait,unsigned mode,int sync,void * key)1003 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
1004 {
1005 int pwake = 0;
1006 unsigned long flags;
1007 struct epitem *epi = ep_item_from_wait(wait);
1008 struct eventpoll *ep = epi->ep;
1009
1010 spin_lock_irqsave(&ep->lock, flags);
1011
1012 /*
1013 * If the event mask does not contain any poll(2) event, we consider the
1014 * descriptor to be disabled. This condition is likely the effect of the
1015 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1016 * until the next EPOLL_CTL_MOD will be issued.
1017 */
1018 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1019 goto out_unlock;
1020
1021 /*
1022 * Check the events coming with the callback. At this stage, not
1023 * every device reports the events in the "key" parameter of the
1024 * callback. We need to be able to handle both cases here, hence the
1025 * test for "key" != NULL before the event match test.
1026 */
1027 if (key && !((unsigned long) key & epi->event.events))
1028 goto out_unlock;
1029
1030 /*
1031 * If we are transferring events to userspace, we can hold no locks
1032 * (because we're accessing user memory, and because of linux f_op->poll()
1033 * semantics). All the events that happen during that period of time are
1034 * chained in ep->ovflist and requeued later on.
1035 */
1036 if (ep->ovflist != EP_UNACTIVE_PTR) {
1037 if (epi->next == EP_UNACTIVE_PTR) {
1038 epi->next = ep->ovflist;
1039 ep->ovflist = epi;
1040 if (epi->ws) {
1041 /*
1042 * Activate ep->ws since epi->ws may get
1043 * deactivated at any time.
1044 */
1045 __pm_stay_awake(ep->ws);
1046 }
1047
1048 }
1049 goto out_unlock;
1050 }
1051
1052 /* If this file is already in the ready list we exit soon */
1053 if (!ep_is_linked(&epi->rdllink)) {
1054 list_add_tail(&epi->rdllink, &ep->rdllist);
1055 ep_pm_stay_awake_rcu(epi);
1056 }
1057
1058 /*
1059 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1060 * wait list.
1061 */
1062 if (waitqueue_active(&ep->wq))
1063 wake_up_locked(&ep->wq);
1064 if (waitqueue_active(&ep->poll_wait))
1065 pwake++;
1066
1067 out_unlock:
1068 spin_unlock_irqrestore(&ep->lock, flags);
1069
1070 /* We have to call this outside the lock */
1071 if (pwake)
1072 ep_poll_safewake(&ep->poll_wait);
1073
1074
1075 if ((unsigned long)key & POLLFREE) {
1076 /*
1077 * If we race with ep_remove_wait_queue() it can miss
1078 * ->whead = NULL and do another remove_wait_queue() after
1079 * us, so we can't use __remove_wait_queue().
1080 */
1081 list_del_init(&wait->task_list);
1082 /*
1083 * ->whead != NULL protects us from the race with ep_free()
1084 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1085 * held by the caller. Once we nullify it, nothing protects
1086 * ep/epi or even wait.
1087 */
1088 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1089 }
1090
1091 return 1;
1092 }
1093
1094 /*
1095 * This is the callback that is used to add our wait queue to the
1096 * target file wakeup lists.
1097 */
ep_ptable_queue_proc(struct file * file,wait_queue_head_t * whead,poll_table * pt)1098 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1099 poll_table *pt)
1100 {
1101 struct epitem *epi = ep_item_from_epqueue(pt);
1102 struct eppoll_entry *pwq;
1103
1104 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1105 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1106 pwq->whead = whead;
1107 pwq->base = epi;
1108 add_wait_queue(whead, &pwq->wait);
1109 list_add_tail(&pwq->llink, &epi->pwqlist);
1110 epi->nwait++;
1111 } else {
1112 /* We have to signal that an error occurred */
1113 epi->nwait = -1;
1114 }
1115 }
1116
ep_rbtree_insert(struct eventpoll * ep,struct epitem * epi)1117 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1118 {
1119 int kcmp;
1120 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1121 struct epitem *epic;
1122
1123 while (*p) {
1124 parent = *p;
1125 epic = rb_entry(parent, struct epitem, rbn);
1126 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1127 if (kcmp > 0)
1128 p = &parent->rb_right;
1129 else
1130 p = &parent->rb_left;
1131 }
1132 rb_link_node(&epi->rbn, parent, p);
1133 rb_insert_color(&epi->rbn, &ep->rbr);
1134 }
1135
1136
1137
1138 #define PATH_ARR_SIZE 5
1139 /*
1140 * These are the number paths of length 1 to 5, that we are allowing to emanate
1141 * from a single file of interest. For example, we allow 1000 paths of length
1142 * 1, to emanate from each file of interest. This essentially represents the
1143 * potential wakeup paths, which need to be limited in order to avoid massive
1144 * uncontrolled wakeup storms. The common use case should be a single ep which
1145 * is connected to n file sources. In this case each file source has 1 path
1146 * of length 1. Thus, the numbers below should be more than sufficient. These
1147 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1148 * and delete can't add additional paths. Protected by the epmutex.
1149 */
1150 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1151 static int path_count[PATH_ARR_SIZE];
1152
path_count_inc(int nests)1153 static int path_count_inc(int nests)
1154 {
1155 /* Allow an arbitrary number of depth 1 paths */
1156 if (nests == 0)
1157 return 0;
1158
1159 if (++path_count[nests] > path_limits[nests])
1160 return -1;
1161 return 0;
1162 }
1163
path_count_init(void)1164 static void path_count_init(void)
1165 {
1166 int i;
1167
1168 for (i = 0; i < PATH_ARR_SIZE; i++)
1169 path_count[i] = 0;
1170 }
1171
reverse_path_check_proc(void * priv,void * cookie,int call_nests)1172 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1173 {
1174 int error = 0;
1175 struct file *file = priv;
1176 struct file *child_file;
1177 struct epitem *epi;
1178
1179 /* CTL_DEL can remove links here, but that can't increase our count */
1180 rcu_read_lock();
1181 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1182 child_file = epi->ep->file;
1183 if (is_file_epoll(child_file)) {
1184 if (list_empty(&child_file->f_ep_links)) {
1185 if (path_count_inc(call_nests)) {
1186 error = -1;
1187 break;
1188 }
1189 } else {
1190 error = ep_call_nested(&poll_loop_ncalls,
1191 EP_MAX_NESTS,
1192 reverse_path_check_proc,
1193 child_file, child_file,
1194 current);
1195 }
1196 if (error != 0)
1197 break;
1198 } else {
1199 printk(KERN_ERR "reverse_path_check_proc: "
1200 "file is not an ep!\n");
1201 }
1202 }
1203 rcu_read_unlock();
1204 return error;
1205 }
1206
1207 /**
1208 * reverse_path_check - The tfile_check_list is list of file *, which have
1209 * links that are proposed to be newly added. We need to
1210 * make sure that those added links don't add too many
1211 * paths such that we will spend all our time waking up
1212 * eventpoll objects.
1213 *
1214 * Returns: Returns zero if the proposed links don't create too many paths,
1215 * -1 otherwise.
1216 */
reverse_path_check(void)1217 static int reverse_path_check(void)
1218 {
1219 int error = 0;
1220 struct file *current_file;
1221
1222 /* let's call this for all tfiles */
1223 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1224 path_count_init();
1225 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1226 reverse_path_check_proc, current_file,
1227 current_file, current);
1228 if (error)
1229 break;
1230 }
1231 return error;
1232 }
1233
ep_create_wakeup_source(struct epitem * epi)1234 static int ep_create_wakeup_source(struct epitem *epi)
1235 {
1236 struct name_snapshot n;
1237 struct wakeup_source *ws;
1238
1239 if (!epi->ep->ws) {
1240 epi->ep->ws = wakeup_source_register("eventpoll");
1241 if (!epi->ep->ws)
1242 return -ENOMEM;
1243 }
1244
1245 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1246 ws = wakeup_source_register(n.name);
1247 release_dentry_name_snapshot(&n);
1248
1249 if (!ws)
1250 return -ENOMEM;
1251 rcu_assign_pointer(epi->ws, ws);
1252
1253 return 0;
1254 }
1255
1256 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
ep_destroy_wakeup_source(struct epitem * epi)1257 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1258 {
1259 struct wakeup_source *ws = ep_wakeup_source(epi);
1260
1261 RCU_INIT_POINTER(epi->ws, NULL);
1262
1263 /*
1264 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1265 * used internally by wakeup_source_remove, too (called by
1266 * wakeup_source_unregister), so we cannot use call_rcu
1267 */
1268 synchronize_rcu();
1269 wakeup_source_unregister(ws);
1270 }
1271
1272 /*
1273 * Must be called with "mtx" held.
1274 */
ep_insert(struct eventpoll * ep,struct epoll_event * event,struct file * tfile,int fd,int full_check)1275 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1276 struct file *tfile, int fd, int full_check)
1277 {
1278 int error, revents, pwake = 0;
1279 unsigned long flags;
1280 long user_watches;
1281 struct epitem *epi;
1282 struct ep_pqueue epq;
1283
1284 user_watches = atomic_long_read(&ep->user->epoll_watches);
1285 if (unlikely(user_watches >= max_user_watches))
1286 return -ENOSPC;
1287 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1288 return -ENOMEM;
1289
1290 /* Item initialization follow here ... */
1291 INIT_LIST_HEAD(&epi->rdllink);
1292 INIT_LIST_HEAD(&epi->fllink);
1293 INIT_LIST_HEAD(&epi->pwqlist);
1294 epi->ep = ep;
1295 ep_set_ffd(&epi->ffd, tfile, fd);
1296 epi->event = *event;
1297 epi->nwait = 0;
1298 epi->next = EP_UNACTIVE_PTR;
1299 if (epi->event.events & EPOLLWAKEUP) {
1300 error = ep_create_wakeup_source(epi);
1301 if (error)
1302 goto error_create_wakeup_source;
1303 } else {
1304 RCU_INIT_POINTER(epi->ws, NULL);
1305 }
1306
1307 /* Add the current item to the list of active epoll hook for this file */
1308 spin_lock(&tfile->f_lock);
1309 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1310 spin_unlock(&tfile->f_lock);
1311
1312 /*
1313 * Add the current item to the RB tree. All RB tree operations are
1314 * protected by "mtx", and ep_insert() is called with "mtx" held.
1315 */
1316 ep_rbtree_insert(ep, epi);
1317
1318 /* now check if we've created too many backpaths */
1319 error = -EINVAL;
1320 if (full_check && reverse_path_check())
1321 goto error_remove_epi;
1322
1323 /* Initialize the poll table using the queue callback */
1324 epq.epi = epi;
1325 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1326
1327 /*
1328 * Attach the item to the poll hooks and get current event bits.
1329 * We can safely use the file* here because its usage count has
1330 * been increased by the caller of this function. Note that after
1331 * this operation completes, the poll callback can start hitting
1332 * the new item.
1333 */
1334 revents = ep_item_poll(epi, &epq.pt);
1335
1336 /*
1337 * We have to check if something went wrong during the poll wait queue
1338 * install process. Namely an allocation for a wait queue failed due
1339 * high memory pressure.
1340 */
1341 error = -ENOMEM;
1342 if (epi->nwait < 0)
1343 goto error_unregister;
1344
1345 /* We have to drop the new item inside our item list to keep track of it */
1346 spin_lock_irqsave(&ep->lock, flags);
1347
1348 /* If the file is already "ready" we drop it inside the ready list */
1349 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1350 list_add_tail(&epi->rdllink, &ep->rdllist);
1351 ep_pm_stay_awake(epi);
1352
1353 /* Notify waiting tasks that events are available */
1354 if (waitqueue_active(&ep->wq))
1355 wake_up_locked(&ep->wq);
1356 if (waitqueue_active(&ep->poll_wait))
1357 pwake++;
1358 }
1359
1360 spin_unlock_irqrestore(&ep->lock, flags);
1361
1362 atomic_long_inc(&ep->user->epoll_watches);
1363
1364 /* We have to call this outside the lock */
1365 if (pwake)
1366 ep_poll_safewake(&ep->poll_wait);
1367
1368 return 0;
1369
1370 error_unregister:
1371 ep_unregister_pollwait(ep, epi);
1372 error_remove_epi:
1373 spin_lock(&tfile->f_lock);
1374 list_del_rcu(&epi->fllink);
1375 spin_unlock(&tfile->f_lock);
1376
1377 rb_erase(&epi->rbn, &ep->rbr);
1378
1379 /*
1380 * We need to do this because an event could have been arrived on some
1381 * allocated wait queue. Note that we don't care about the ep->ovflist
1382 * list, since that is used/cleaned only inside a section bound by "mtx".
1383 * And ep_insert() is called with "mtx" held.
1384 */
1385 spin_lock_irqsave(&ep->lock, flags);
1386 if (ep_is_linked(&epi->rdllink))
1387 list_del_init(&epi->rdllink);
1388 spin_unlock_irqrestore(&ep->lock, flags);
1389
1390 wakeup_source_unregister(ep_wakeup_source(epi));
1391
1392 error_create_wakeup_source:
1393 kmem_cache_free(epi_cache, epi);
1394
1395 return error;
1396 }
1397
1398 /*
1399 * Modify the interest event mask by dropping an event if the new mask
1400 * has a match in the current file status. Must be called with "mtx" held.
1401 */
ep_modify(struct eventpoll * ep,struct epitem * epi,struct epoll_event * event)1402 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1403 {
1404 int pwake = 0;
1405 unsigned int revents;
1406 poll_table pt;
1407
1408 init_poll_funcptr(&pt, NULL);
1409
1410 /*
1411 * Set the new event interest mask before calling f_op->poll();
1412 * otherwise we might miss an event that happens between the
1413 * f_op->poll() call and the new event set registering.
1414 */
1415 epi->event.events = event->events; /* need barrier below */
1416 epi->event.data = event->data; /* protected by mtx */
1417 if (epi->event.events & EPOLLWAKEUP) {
1418 if (!ep_has_wakeup_source(epi))
1419 ep_create_wakeup_source(epi);
1420 } else if (ep_has_wakeup_source(epi)) {
1421 ep_destroy_wakeup_source(epi);
1422 }
1423
1424 /*
1425 * The following barrier has two effects:
1426 *
1427 * 1) Flush epi changes above to other CPUs. This ensures
1428 * we do not miss events from ep_poll_callback if an
1429 * event occurs immediately after we call f_op->poll().
1430 * We need this because we did not take ep->lock while
1431 * changing epi above (but ep_poll_callback does take
1432 * ep->lock).
1433 *
1434 * 2) We also need to ensure we do not miss _past_ events
1435 * when calling f_op->poll(). This barrier also
1436 * pairs with the barrier in wq_has_sleeper (see
1437 * comments for wq_has_sleeper).
1438 *
1439 * This barrier will now guarantee ep_poll_callback or f_op->poll
1440 * (or both) will notice the readiness of an item.
1441 */
1442 smp_mb();
1443
1444 /*
1445 * Get current event bits. We can safely use the file* here because
1446 * its usage count has been increased by the caller of this function.
1447 */
1448 revents = ep_item_poll(epi, &pt);
1449
1450 /*
1451 * If the item is "hot" and it is not registered inside the ready
1452 * list, push it inside.
1453 */
1454 if (revents & event->events) {
1455 spin_lock_irq(&ep->lock);
1456 if (!ep_is_linked(&epi->rdllink)) {
1457 list_add_tail(&epi->rdllink, &ep->rdllist);
1458 ep_pm_stay_awake(epi);
1459
1460 /* Notify waiting tasks that events are available */
1461 if (waitqueue_active(&ep->wq))
1462 wake_up_locked(&ep->wq);
1463 if (waitqueue_active(&ep->poll_wait))
1464 pwake++;
1465 }
1466 spin_unlock_irq(&ep->lock);
1467 }
1468
1469 /* We have to call this outside the lock */
1470 if (pwake)
1471 ep_poll_safewake(&ep->poll_wait);
1472
1473 return 0;
1474 }
1475
ep_send_events_proc(struct eventpoll * ep,struct list_head * head,void * priv)1476 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1477 void *priv)
1478 {
1479 struct ep_send_events_data *esed = priv;
1480 int eventcnt;
1481 unsigned int revents;
1482 struct epitem *epi;
1483 struct epoll_event __user *uevent;
1484 struct wakeup_source *ws;
1485 poll_table pt;
1486
1487 init_poll_funcptr(&pt, NULL);
1488
1489 /*
1490 * We can loop without lock because we are passed a task private list.
1491 * Items cannot vanish during the loop because ep_scan_ready_list() is
1492 * holding "mtx" during this call.
1493 */
1494 for (eventcnt = 0, uevent = esed->events;
1495 !list_empty(head) && eventcnt < esed->maxevents;) {
1496 epi = list_first_entry(head, struct epitem, rdllink);
1497
1498 /*
1499 * Activate ep->ws before deactivating epi->ws to prevent
1500 * triggering auto-suspend here (in case we reactive epi->ws
1501 * below).
1502 *
1503 * This could be rearranged to delay the deactivation of epi->ws
1504 * instead, but then epi->ws would temporarily be out of sync
1505 * with ep_is_linked().
1506 */
1507 ws = ep_wakeup_source(epi);
1508 if (ws) {
1509 if (ws->active)
1510 __pm_stay_awake(ep->ws);
1511 __pm_relax(ws);
1512 }
1513
1514 list_del_init(&epi->rdllink);
1515
1516 revents = ep_item_poll(epi, &pt);
1517
1518 /*
1519 * If the event mask intersect the caller-requested one,
1520 * deliver the event to userspace. Again, ep_scan_ready_list()
1521 * is holding "mtx", so no operations coming from userspace
1522 * can change the item.
1523 */
1524 if (revents) {
1525 if (__put_user(revents, &uevent->events) ||
1526 __put_user(epi->event.data, &uevent->data)) {
1527 list_add(&epi->rdllink, head);
1528 ep_pm_stay_awake(epi);
1529 return eventcnt ? eventcnt : -EFAULT;
1530 }
1531 eventcnt++;
1532 uevent++;
1533 if (epi->event.events & EPOLLONESHOT)
1534 epi->event.events &= EP_PRIVATE_BITS;
1535 else if (!(epi->event.events & EPOLLET)) {
1536 /*
1537 * If this file has been added with Level
1538 * Trigger mode, we need to insert back inside
1539 * the ready list, so that the next call to
1540 * epoll_wait() will check again the events
1541 * availability. At this point, no one can insert
1542 * into ep->rdllist besides us. The epoll_ctl()
1543 * callers are locked out by
1544 * ep_scan_ready_list() holding "mtx" and the
1545 * poll callback will queue them in ep->ovflist.
1546 */
1547 list_add_tail(&epi->rdllink, &ep->rdllist);
1548 ep_pm_stay_awake(epi);
1549 }
1550 }
1551 }
1552
1553 return eventcnt;
1554 }
1555
ep_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1556 static int ep_send_events(struct eventpoll *ep,
1557 struct epoll_event __user *events, int maxevents)
1558 {
1559 struct ep_send_events_data esed;
1560
1561 esed.maxevents = maxevents;
1562 esed.events = events;
1563
1564 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1565 }
1566
ep_set_mstimeout(long ms)1567 static inline struct timespec ep_set_mstimeout(long ms)
1568 {
1569 struct timespec now, ts = {
1570 .tv_sec = ms / MSEC_PER_SEC,
1571 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1572 };
1573
1574 ktime_get_ts(&now);
1575 return timespec_add_safe(now, ts);
1576 }
1577
1578 /**
1579 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1580 * event buffer.
1581 *
1582 * @ep: Pointer to the eventpoll context.
1583 * @events: Pointer to the userspace buffer where the ready events should be
1584 * stored.
1585 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1586 * @timeout: Maximum timeout for the ready events fetch operation, in
1587 * milliseconds. If the @timeout is zero, the function will not block,
1588 * while if the @timeout is less than zero, the function will block
1589 * until at least one event has been retrieved (or an error
1590 * occurred).
1591 *
1592 * Returns: Returns the number of ready events which have been fetched, or an
1593 * error code, in case of error.
1594 */
ep_poll(struct eventpoll * ep,struct epoll_event __user * events,int maxevents,long timeout)1595 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1596 int maxevents, long timeout)
1597 {
1598 int res = 0, eavail, timed_out = 0;
1599 unsigned long flags;
1600 u64 slack = 0;
1601 wait_queue_t wait;
1602 ktime_t expires, *to = NULL;
1603
1604 if (timeout > 0) {
1605 struct timespec end_time = ep_set_mstimeout(timeout);
1606
1607 slack = select_estimate_accuracy(&end_time);
1608 to = &expires;
1609 *to = timespec_to_ktime(end_time);
1610 } else if (timeout == 0) {
1611 /*
1612 * Avoid the unnecessary trip to the wait queue loop, if the
1613 * caller specified a non blocking operation.
1614 */
1615 timed_out = 1;
1616 spin_lock_irqsave(&ep->lock, flags);
1617 goto check_events;
1618 }
1619
1620 fetch_events:
1621 spin_lock_irqsave(&ep->lock, flags);
1622
1623 if (!ep_events_available(ep)) {
1624 /*
1625 * We don't have any available event to return to the caller.
1626 * We need to sleep here, and we will be wake up by
1627 * ep_poll_callback() when events will become available.
1628 */
1629 init_waitqueue_entry(&wait, current);
1630 __add_wait_queue_exclusive(&ep->wq, &wait);
1631
1632 for (;;) {
1633 /*
1634 * We don't want to sleep if the ep_poll_callback() sends us
1635 * a wakeup in between. That's why we set the task state
1636 * to TASK_INTERRUPTIBLE before doing the checks.
1637 */
1638 set_current_state(TASK_INTERRUPTIBLE);
1639 if (ep_events_available(ep) || timed_out)
1640 break;
1641 if (signal_pending(current)) {
1642 res = -EINTR;
1643 break;
1644 }
1645
1646 spin_unlock_irqrestore(&ep->lock, flags);
1647 if (!freezable_schedule_hrtimeout_range(to, slack,
1648 HRTIMER_MODE_ABS))
1649 timed_out = 1;
1650
1651 spin_lock_irqsave(&ep->lock, flags);
1652 }
1653
1654 __remove_wait_queue(&ep->wq, &wait);
1655 __set_current_state(TASK_RUNNING);
1656 }
1657 check_events:
1658 /* Is it worth to try to dig for events ? */
1659 eavail = ep_events_available(ep);
1660
1661 spin_unlock_irqrestore(&ep->lock, flags);
1662
1663 /*
1664 * Try to transfer events to user space. In case we get 0 events and
1665 * there's still timeout left over, we go trying again in search of
1666 * more luck.
1667 */
1668 if (!res && eavail &&
1669 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1670 goto fetch_events;
1671
1672 return res;
1673 }
1674
1675 /**
1676 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1677 * API, to verify that adding an epoll file inside another
1678 * epoll structure, does not violate the constraints, in
1679 * terms of closed loops, or too deep chains (which can
1680 * result in excessive stack usage).
1681 *
1682 * @priv: Pointer to the epoll file to be currently checked.
1683 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1684 * data structure pointer.
1685 * @call_nests: Current dept of the @ep_call_nested() call stack.
1686 *
1687 * Returns: Returns zero if adding the epoll @file inside current epoll
1688 * structure @ep does not violate the constraints, or -1 otherwise.
1689 */
ep_loop_check_proc(void * priv,void * cookie,int call_nests)1690 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1691 {
1692 int error = 0;
1693 struct file *file = priv;
1694 struct eventpoll *ep = file->private_data;
1695 struct eventpoll *ep_tovisit;
1696 struct rb_node *rbp;
1697 struct epitem *epi;
1698
1699 mutex_lock_nested(&ep->mtx, call_nests + 1);
1700 ep->gen = loop_check_gen;
1701 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1702 epi = rb_entry(rbp, struct epitem, rbn);
1703 if (unlikely(is_file_epoll(epi->ffd.file))) {
1704 ep_tovisit = epi->ffd.file->private_data;
1705 if (ep_tovisit->gen == loop_check_gen)
1706 continue;
1707 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1708 ep_loop_check_proc, epi->ffd.file,
1709 ep_tovisit, current);
1710 if (error != 0)
1711 break;
1712 } else {
1713 /*
1714 * If we've reached a file that is not associated with
1715 * an ep, then we need to check if the newly added
1716 * links are going to add too many wakeup paths. We do
1717 * this by adding it to the tfile_check_list, if it's
1718 * not already there, and calling reverse_path_check()
1719 * during ep_insert().
1720 */
1721 if (list_empty(&epi->ffd.file->f_tfile_llink)) {
1722 if (get_file_rcu(epi->ffd.file))
1723 list_add(&epi->ffd.file->f_tfile_llink,
1724 &tfile_check_list);
1725 }
1726 }
1727 }
1728 mutex_unlock(&ep->mtx);
1729
1730 return error;
1731 }
1732
1733 /**
1734 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1735 * another epoll file (represented by @ep) does not create
1736 * closed loops or too deep chains.
1737 *
1738 * @ep: Pointer to the epoll private data structure.
1739 * @file: Pointer to the epoll file to be checked.
1740 *
1741 * Returns: Returns zero if adding the epoll @file inside current epoll
1742 * structure @ep does not violate the constraints, or -1 otherwise.
1743 */
ep_loop_check(struct eventpoll * ep,struct file * file)1744 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1745 {
1746 return ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1747 ep_loop_check_proc, file, ep, current);
1748 }
1749
clear_tfile_check_list(void)1750 static void clear_tfile_check_list(void)
1751 {
1752 struct file *file;
1753
1754 /* first clear the tfile_check_list */
1755 while (!list_empty(&tfile_check_list)) {
1756 file = list_first_entry(&tfile_check_list, struct file,
1757 f_tfile_llink);
1758 list_del_init(&file->f_tfile_llink);
1759 fput(file);
1760 }
1761 INIT_LIST_HEAD(&tfile_check_list);
1762 }
1763
1764 /*
1765 * Open an eventpoll file descriptor.
1766 */
SYSCALL_DEFINE1(epoll_create1,int,flags)1767 SYSCALL_DEFINE1(epoll_create1, int, flags)
1768 {
1769 int error, fd;
1770 struct eventpoll *ep = NULL;
1771 struct file *file;
1772
1773 /* Check the EPOLL_* constant for consistency. */
1774 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1775
1776 if (flags & ~EPOLL_CLOEXEC)
1777 return -EINVAL;
1778 /*
1779 * Create the internal data structure ("struct eventpoll").
1780 */
1781 error = ep_alloc(&ep);
1782 if (error < 0)
1783 return error;
1784 /*
1785 * Creates all the items needed to setup an eventpoll file. That is,
1786 * a file structure and a free file descriptor.
1787 */
1788 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1789 if (fd < 0) {
1790 error = fd;
1791 goto out_free_ep;
1792 }
1793 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1794 O_RDWR | (flags & O_CLOEXEC));
1795 if (IS_ERR(file)) {
1796 error = PTR_ERR(file);
1797 goto out_free_fd;
1798 }
1799 ep->file = file;
1800 fd_install(fd, file);
1801 return fd;
1802
1803 out_free_fd:
1804 put_unused_fd(fd);
1805 out_free_ep:
1806 ep_free(ep);
1807 return error;
1808 }
1809
SYSCALL_DEFINE1(epoll_create,int,size)1810 SYSCALL_DEFINE1(epoll_create, int, size)
1811 {
1812 if (size <= 0)
1813 return -EINVAL;
1814
1815 return sys_epoll_create1(0);
1816 }
1817
1818 /*
1819 * The following function implements the controller interface for
1820 * the eventpoll file that enables the insertion/removal/change of
1821 * file descriptors inside the interest set.
1822 */
SYSCALL_DEFINE4(epoll_ctl,int,epfd,int,op,int,fd,struct epoll_event __user *,event)1823 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1824 struct epoll_event __user *, event)
1825 {
1826 int error;
1827 int full_check = 0;
1828 struct fd f, tf;
1829 struct eventpoll *ep;
1830 struct epitem *epi;
1831 struct epoll_event epds;
1832 struct eventpoll *tep = NULL;
1833
1834 error = -EFAULT;
1835 if (ep_op_has_event(op) &&
1836 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1837 goto error_return;
1838
1839 error = -EBADF;
1840 f = fdget(epfd);
1841 if (!f.file)
1842 goto error_return;
1843
1844 /* Get the "struct file *" for the target file */
1845 tf = fdget(fd);
1846 if (!tf.file)
1847 goto error_fput;
1848
1849 /* The target file descriptor must support poll */
1850 error = -EPERM;
1851 if (!tf.file->f_op->poll)
1852 goto error_tgt_fput;
1853
1854 /* Check if EPOLLWAKEUP is allowed */
1855 if (ep_op_has_event(op))
1856 ep_take_care_of_epollwakeup(&epds);
1857
1858 /*
1859 * We have to check that the file structure underneath the file descriptor
1860 * the user passed to us _is_ an eventpoll file. And also we do not permit
1861 * adding an epoll file descriptor inside itself.
1862 */
1863 error = -EINVAL;
1864 if (f.file == tf.file || !is_file_epoll(f.file))
1865 goto error_tgt_fput;
1866
1867 /*
1868 * At this point it is safe to assume that the "private_data" contains
1869 * our own data structure.
1870 */
1871 ep = f.file->private_data;
1872
1873 /*
1874 * When we insert an epoll file descriptor, inside another epoll file
1875 * descriptor, there is the change of creating closed loops, which are
1876 * better be handled here, than in more critical paths. While we are
1877 * checking for loops we also determine the list of files reachable
1878 * and hang them on the tfile_check_list, so we can check that we
1879 * haven't created too many possible wakeup paths.
1880 *
1881 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
1882 * the epoll file descriptor is attaching directly to a wakeup source,
1883 * unless the epoll file descriptor is nested. The purpose of taking the
1884 * 'epmutex' on add is to prevent complex toplogies such as loops and
1885 * deep wakeup paths from forming in parallel through multiple
1886 * EPOLL_CTL_ADD operations.
1887 */
1888 mutex_lock_nested(&ep->mtx, 0);
1889 if (op == EPOLL_CTL_ADD) {
1890 if (!list_empty(&f.file->f_ep_links) ||
1891 ep->gen == loop_check_gen ||
1892 is_file_epoll(tf.file)) {
1893 full_check = 1;
1894 mutex_unlock(&ep->mtx);
1895 mutex_lock(&epmutex);
1896 if (is_file_epoll(tf.file)) {
1897 error = -ELOOP;
1898 if (ep_loop_check(ep, tf.file) != 0)
1899 goto error_tgt_fput;
1900 } else {
1901 get_file(tf.file);
1902 list_add(&tf.file->f_tfile_llink,
1903 &tfile_check_list);
1904 }
1905 mutex_lock_nested(&ep->mtx, 0);
1906 if (is_file_epoll(tf.file)) {
1907 tep = tf.file->private_data;
1908 mutex_lock_nested(&tep->mtx, 1);
1909 }
1910 }
1911 }
1912
1913 /*
1914 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1915 * above, we can be sure to be able to use the item looked up by
1916 * ep_find() till we release the mutex.
1917 */
1918 epi = ep_find(ep, tf.file, fd);
1919
1920 error = -EINVAL;
1921 switch (op) {
1922 case EPOLL_CTL_ADD:
1923 if (!epi) {
1924 epds.events |= POLLERR | POLLHUP;
1925 error = ep_insert(ep, &epds, tf.file, fd, full_check);
1926 } else
1927 error = -EEXIST;
1928 break;
1929 case EPOLL_CTL_DEL:
1930 if (epi)
1931 error = ep_remove(ep, epi);
1932 else
1933 error = -ENOENT;
1934 break;
1935 case EPOLL_CTL_MOD:
1936 if (epi) {
1937 epds.events |= POLLERR | POLLHUP;
1938 error = ep_modify(ep, epi, &epds);
1939 } else
1940 error = -ENOENT;
1941 break;
1942 }
1943 if (tep != NULL)
1944 mutex_unlock(&tep->mtx);
1945 mutex_unlock(&ep->mtx);
1946
1947 error_tgt_fput:
1948 if (full_check) {
1949 clear_tfile_check_list();
1950 loop_check_gen++;
1951 mutex_unlock(&epmutex);
1952 }
1953
1954 fdput(tf);
1955 error_fput:
1956 fdput(f);
1957 error_return:
1958
1959 return error;
1960 }
1961
1962 /*
1963 * Implement the event wait interface for the eventpoll file. It is the kernel
1964 * part of the user space epoll_wait(2).
1965 */
SYSCALL_DEFINE4(epoll_wait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout)1966 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1967 int, maxevents, int, timeout)
1968 {
1969 int error;
1970 struct fd f;
1971 struct eventpoll *ep;
1972
1973 /* The maximum number of event must be greater than zero */
1974 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1975 return -EINVAL;
1976
1977 /* Verify that the area passed by the user is writeable */
1978 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
1979 return -EFAULT;
1980
1981 /* Get the "struct file *" for the eventpoll file */
1982 f = fdget(epfd);
1983 if (!f.file)
1984 return -EBADF;
1985
1986 /*
1987 * We have to check that the file structure underneath the fd
1988 * the user passed to us _is_ an eventpoll file.
1989 */
1990 error = -EINVAL;
1991 if (!is_file_epoll(f.file))
1992 goto error_fput;
1993
1994 /*
1995 * At this point it is safe to assume that the "private_data" contains
1996 * our own data structure.
1997 */
1998 ep = f.file->private_data;
1999
2000 /* Time to fish for events ... */
2001 error = ep_poll(ep, events, maxevents, timeout);
2002
2003 error_fput:
2004 fdput(f);
2005 return error;
2006 }
2007
2008 /*
2009 * Implement the event wait interface for the eventpoll file. It is the kernel
2010 * part of the user space epoll_pwait(2).
2011 */
SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2012 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2013 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2014 size_t, sigsetsize)
2015 {
2016 int error;
2017 sigset_t ksigmask, sigsaved;
2018
2019 /*
2020 * If the caller wants a certain signal mask to be set during the wait,
2021 * we apply it here.
2022 */
2023 if (sigmask) {
2024 if (sigsetsize != sizeof(sigset_t))
2025 return -EINVAL;
2026 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2027 return -EFAULT;
2028 sigsaved = current->blocked;
2029 set_current_blocked(&ksigmask);
2030 }
2031
2032 error = sys_epoll_wait(epfd, events, maxevents, timeout);
2033
2034 /*
2035 * If we changed the signal mask, we need to restore the original one.
2036 * In case we've got a signal while waiting, we do not restore the
2037 * signal mask yet, and we allow do_signal() to deliver the signal on
2038 * the way back to userspace, before the signal mask is restored.
2039 */
2040 if (sigmask) {
2041 if (error == -EINTR) {
2042 memcpy(¤t->saved_sigmask, &sigsaved,
2043 sizeof(sigsaved));
2044 set_restore_sigmask();
2045 } else
2046 set_current_blocked(&sigsaved);
2047 }
2048
2049 return error;
2050 }
2051
2052 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2053 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2054 struct epoll_event __user *, events,
2055 int, maxevents, int, timeout,
2056 const compat_sigset_t __user *, sigmask,
2057 compat_size_t, sigsetsize)
2058 {
2059 long err;
2060 compat_sigset_t csigmask;
2061 sigset_t ksigmask, sigsaved;
2062
2063 /*
2064 * If the caller wants a certain signal mask to be set during the wait,
2065 * we apply it here.
2066 */
2067 if (sigmask) {
2068 if (sigsetsize != sizeof(compat_sigset_t))
2069 return -EINVAL;
2070 if (copy_from_user(&csigmask, sigmask, sizeof(csigmask)))
2071 return -EFAULT;
2072 sigset_from_compat(&ksigmask, &csigmask);
2073 sigsaved = current->blocked;
2074 set_current_blocked(&ksigmask);
2075 }
2076
2077 err = sys_epoll_wait(epfd, events, maxevents, timeout);
2078
2079 /*
2080 * If we changed the signal mask, we need to restore the original one.
2081 * In case we've got a signal while waiting, we do not restore the
2082 * signal mask yet, and we allow do_signal() to deliver the signal on
2083 * the way back to userspace, before the signal mask is restored.
2084 */
2085 if (sigmask) {
2086 if (err == -EINTR) {
2087 memcpy(¤t->saved_sigmask, &sigsaved,
2088 sizeof(sigsaved));
2089 set_restore_sigmask();
2090 } else
2091 set_current_blocked(&sigsaved);
2092 }
2093
2094 return err;
2095 }
2096 #endif
2097
eventpoll_init(void)2098 static int __init eventpoll_init(void)
2099 {
2100 struct sysinfo si;
2101
2102 si_meminfo(&si);
2103 /*
2104 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2105 */
2106 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2107 EP_ITEM_COST;
2108 BUG_ON(max_user_watches < 0);
2109
2110 /*
2111 * Initialize the structure used to perform epoll file descriptor
2112 * inclusion loops checks.
2113 */
2114 ep_nested_calls_init(&poll_loop_ncalls);
2115
2116 /* Initialize the structure used to perform safe poll wait head wake ups */
2117 ep_nested_calls_init(&poll_safewake_ncalls);
2118
2119 /* Initialize the structure used to perform file's f_op->poll() calls */
2120 ep_nested_calls_init(&poll_readywalk_ncalls);
2121
2122 /*
2123 * We can have many thousands of epitems, so prevent this from
2124 * using an extra cache line on 64-bit (and smaller) CPUs
2125 */
2126 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2127
2128 /* Allocates slab cache used to allocate "struct epitem" items */
2129 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2130 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2131
2132 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2133 pwq_cache = kmem_cache_create("eventpoll_pwq",
2134 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2135
2136 return 0;
2137 }
2138 fs_initcall(eventpoll_init);
2139