• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/freezer.h>
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/mman.h>
41 #include <linux/atomic.h>
42 #include <linux/proc_fs.h>
43 #include <linux/seq_file.h>
44 #include <linux/compat.h>
45 #include <linux/rculist.h>
46 
47 /*
48  * LOCKING:
49  * There are three level of locking required by epoll :
50  *
51  * 1) epmutex (mutex)
52  * 2) ep->mtx (mutex)
53  * 3) ep->lock (spinlock)
54  *
55  * The acquire order is the one listed above, from 1 to 3.
56  * We need a spinlock (ep->lock) because we manipulate objects
57  * from inside the poll callback, that might be triggered from
58  * a wake_up() that in turn might be called from IRQ context.
59  * So we can't sleep inside the poll callback and hence we need
60  * a spinlock. During the event transfer loop (from kernel to
61  * user space) we could end up sleeping due a copy_to_user(), so
62  * we need a lock that will allow us to sleep. This lock is a
63  * mutex (ep->mtx). It is acquired during the event transfer loop,
64  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
65  * Then we also need a global mutex to serialize eventpoll_release_file()
66  * and ep_free().
67  * This mutex is acquired by ep_free() during the epoll file
68  * cleanup path and it is also acquired by eventpoll_release_file()
69  * if a file has been pushed inside an epoll set and it is then
70  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
71  * It is also acquired when inserting an epoll fd onto another epoll
72  * fd. We do this so that we walk the epoll tree and ensure that this
73  * insertion does not create a cycle of epoll file descriptors, which
74  * could lead to deadlock. We need a global mutex to prevent two
75  * simultaneous inserts (A into B and B into A) from racing and
76  * constructing a cycle without either insert observing that it is
77  * going to.
78  * It is necessary to acquire multiple "ep->mtx"es at once in the
79  * case when one epoll fd is added to another. In this case, we
80  * always acquire the locks in the order of nesting (i.e. after
81  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
82  * before e2->mtx). Since we disallow cycles of epoll file
83  * descriptors, this ensures that the mutexes are well-ordered. In
84  * order to communicate this nesting to lockdep, when walking a tree
85  * of epoll file descriptors, we use the current recursion depth as
86  * the lockdep subkey.
87  * It is possible to drop the "ep->mtx" and to use the global
88  * mutex "epmutex" (together with "ep->lock") to have it working,
89  * but having "ep->mtx" will make the interface more scalable.
90  * Events that require holding "epmutex" are very rare, while for
91  * normal operations the epoll private "ep->mtx" will guarantee
92  * a better scalability.
93  */
94 
95 /* Epoll private bits inside the event mask */
96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET)
97 
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
100 
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102 
103 #define EP_UNACTIVE_PTR ((void *) -1L)
104 
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106 
107 struct epoll_filefd {
108 	struct file *file;
109 	int fd;
110 } __packed;
111 
112 /*
113  * Structure used to track possible nested calls, for too deep recursions
114  * and loop cycles.
115  */
116 struct nested_call_node {
117 	struct list_head llink;
118 	void *cookie;
119 	void *ctx;
120 };
121 
122 /*
123  * This structure is used as collector for nested calls, to check for
124  * maximum recursion dept and loop cycles.
125  */
126 struct nested_calls {
127 	struct list_head tasks_call_list;
128 	spinlock_t lock;
129 };
130 
131 /*
132  * Each file descriptor added to the eventpoll interface will
133  * have an entry of this type linked to the "rbr" RB tree.
134  * Avoid increasing the size of this struct, there can be many thousands
135  * of these on a server and we do not want this to take another cache line.
136  */
137 struct epitem {
138 	union {
139 		/* RB tree node links this structure to the eventpoll RB tree */
140 		struct rb_node rbn;
141 		/* Used to free the struct epitem */
142 		struct rcu_head rcu;
143 	};
144 
145 	/* List header used to link this structure to the eventpoll ready list */
146 	struct list_head rdllink;
147 
148 	/*
149 	 * Works together "struct eventpoll"->ovflist in keeping the
150 	 * single linked chain of items.
151 	 */
152 	struct epitem *next;
153 
154 	/* The file descriptor information this item refers to */
155 	struct epoll_filefd ffd;
156 
157 	/* Number of active wait queue attached to poll operations */
158 	int nwait;
159 
160 	/* List containing poll wait queues */
161 	struct list_head pwqlist;
162 
163 	/* The "container" of this item */
164 	struct eventpoll *ep;
165 
166 	/* List header used to link this item to the "struct file" items list */
167 	struct list_head fllink;
168 
169 	/* wakeup_source used when EPOLLWAKEUP is set */
170 	struct wakeup_source __rcu *ws;
171 
172 	/* The structure that describe the interested events and the source fd */
173 	struct epoll_event event;
174 };
175 
176 /*
177  * This structure is stored inside the "private_data" member of the file
178  * structure and represents the main data structure for the eventpoll
179  * interface.
180  */
181 struct eventpoll {
182 	/* Protect the access to this structure */
183 	spinlock_t lock;
184 
185 	/*
186 	 * This mutex is used to ensure that files are not removed
187 	 * while epoll is using them. This is held during the event
188 	 * collection loop, the file cleanup path, the epoll file exit
189 	 * code and the ctl operations.
190 	 */
191 	struct mutex mtx;
192 
193 	/* Wait queue used by sys_epoll_wait() */
194 	wait_queue_head_t wq;
195 
196 	/* Wait queue used by file->poll() */
197 	wait_queue_head_t poll_wait;
198 
199 	/* List of ready file descriptors */
200 	struct list_head rdllist;
201 
202 	/* RB tree root used to store monitored fd structs */
203 	struct rb_root rbr;
204 
205 	/*
206 	 * This is a single linked list that chains all the "struct epitem" that
207 	 * happened while transferring ready events to userspace w/out
208 	 * holding ->lock.
209 	 */
210 	struct epitem *ovflist;
211 
212 	/* wakeup_source used when ep_scan_ready_list is running */
213 	struct wakeup_source *ws;
214 
215 	/* The user that created the eventpoll descriptor */
216 	struct user_struct *user;
217 
218 	struct file *file;
219 
220 	/* used to optimize loop detection check */
221 	u64 gen;
222 };
223 
224 /* Wait structure used by the poll hooks */
225 struct eppoll_entry {
226 	/* List header used to link this structure to the "struct epitem" */
227 	struct list_head llink;
228 
229 	/* The "base" pointer is set to the container "struct epitem" */
230 	struct epitem *base;
231 
232 	/*
233 	 * Wait queue item that will be linked to the target file wait
234 	 * queue head.
235 	 */
236 	wait_queue_t wait;
237 
238 	/* The wait queue head that linked the "wait" wait queue item */
239 	wait_queue_head_t *whead;
240 };
241 
242 /* Wrapper struct used by poll queueing */
243 struct ep_pqueue {
244 	poll_table pt;
245 	struct epitem *epi;
246 };
247 
248 /* Used by the ep_send_events() function as callback private data */
249 struct ep_send_events_data {
250 	int maxevents;
251 	struct epoll_event __user *events;
252 };
253 
254 /*
255  * Configuration options available inside /proc/sys/fs/epoll/
256  */
257 /* Maximum number of epoll watched descriptors, per user */
258 static long max_user_watches __read_mostly;
259 
260 /*
261  * This mutex is used to serialize ep_free() and eventpoll_release_file().
262  */
263 static DEFINE_MUTEX(epmutex);
264 
265 static u64 loop_check_gen = 0;
266 
267 /* Used to check for epoll file descriptor inclusion loops */
268 static struct nested_calls poll_loop_ncalls;
269 
270 /* Used for safe wake up implementation */
271 static struct nested_calls poll_safewake_ncalls;
272 
273 /* Used to call file's f_op->poll() under the nested calls boundaries */
274 static struct nested_calls poll_readywalk_ncalls;
275 
276 /* Slab cache used to allocate "struct epitem" */
277 static struct kmem_cache *epi_cache __read_mostly;
278 
279 /* Slab cache used to allocate "struct eppoll_entry" */
280 static struct kmem_cache *pwq_cache __read_mostly;
281 
282 /*
283  * List of files with newly added links, where we may need to limit the number
284  * of emanating paths. Protected by the epmutex.
285  */
286 static LIST_HEAD(tfile_check_list);
287 
288 #ifdef CONFIG_SYSCTL
289 
290 #include <linux/sysctl.h>
291 
292 static long zero;
293 static long long_max = LONG_MAX;
294 
295 struct ctl_table epoll_table[] = {
296 	{
297 		.procname	= "max_user_watches",
298 		.data		= &max_user_watches,
299 		.maxlen		= sizeof(max_user_watches),
300 		.mode		= 0644,
301 		.proc_handler	= proc_doulongvec_minmax,
302 		.extra1		= &zero,
303 		.extra2		= &long_max,
304 	},
305 	{ }
306 };
307 #endif /* CONFIG_SYSCTL */
308 
309 static const struct file_operations eventpoll_fops;
310 
is_file_epoll(struct file * f)311 static inline int is_file_epoll(struct file *f)
312 {
313 	return f->f_op == &eventpoll_fops;
314 }
315 
316 /* Setup the structure that is used as key for the RB tree */
ep_set_ffd(struct epoll_filefd * ffd,struct file * file,int fd)317 static inline void ep_set_ffd(struct epoll_filefd *ffd,
318 			      struct file *file, int fd)
319 {
320 	ffd->file = file;
321 	ffd->fd = fd;
322 }
323 
324 /* Compare RB tree keys */
ep_cmp_ffd(struct epoll_filefd * p1,struct epoll_filefd * p2)325 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
326 			     struct epoll_filefd *p2)
327 {
328 	return (p1->file > p2->file ? +1:
329 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
330 }
331 
332 /* Tells us if the item is currently linked */
ep_is_linked(struct list_head * p)333 static inline int ep_is_linked(struct list_head *p)
334 {
335 	return !list_empty(p);
336 }
337 
ep_pwq_from_wait(wait_queue_t * p)338 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
339 {
340 	return container_of(p, struct eppoll_entry, wait);
341 }
342 
343 /* Get the "struct epitem" from a wait queue pointer */
ep_item_from_wait(wait_queue_t * p)344 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
345 {
346 	return container_of(p, struct eppoll_entry, wait)->base;
347 }
348 
349 /* Get the "struct epitem" from an epoll queue wrapper */
ep_item_from_epqueue(poll_table * p)350 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
351 {
352 	return container_of(p, struct ep_pqueue, pt)->epi;
353 }
354 
355 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
ep_op_has_event(int op)356 static inline int ep_op_has_event(int op)
357 {
358 	return op != EPOLL_CTL_DEL;
359 }
360 
361 /* Initialize the poll safe wake up structure */
ep_nested_calls_init(struct nested_calls * ncalls)362 static void ep_nested_calls_init(struct nested_calls *ncalls)
363 {
364 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
365 	spin_lock_init(&ncalls->lock);
366 }
367 
368 /**
369  * ep_events_available - Checks if ready events might be available.
370  *
371  * @ep: Pointer to the eventpoll context.
372  *
373  * Returns: Returns a value different than zero if ready events are available,
374  *          or zero otherwise.
375  */
ep_events_available(struct eventpoll * ep)376 static inline int ep_events_available(struct eventpoll *ep)
377 {
378 	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
379 }
380 
381 /**
382  * ep_call_nested - Perform a bound (possibly) nested call, by checking
383  *                  that the recursion limit is not exceeded, and that
384  *                  the same nested call (by the meaning of same cookie) is
385  *                  no re-entered.
386  *
387  * @ncalls: Pointer to the nested_calls structure to be used for this call.
388  * @max_nests: Maximum number of allowed nesting calls.
389  * @nproc: Nested call core function pointer.
390  * @priv: Opaque data to be passed to the @nproc callback.
391  * @cookie: Cookie to be used to identify this nested call.
392  * @ctx: This instance context.
393  *
394  * Returns: Returns the code returned by the @nproc callback, or -1 if
395  *          the maximum recursion limit has been exceeded.
396  */
ep_call_nested(struct nested_calls * ncalls,int max_nests,int (* nproc)(void *,void *,int),void * priv,void * cookie,void * ctx)397 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
398 			  int (*nproc)(void *, void *, int), void *priv,
399 			  void *cookie, void *ctx)
400 {
401 	int error, call_nests = 0;
402 	unsigned long flags;
403 	struct list_head *lsthead = &ncalls->tasks_call_list;
404 	struct nested_call_node *tncur;
405 	struct nested_call_node tnode;
406 
407 	spin_lock_irqsave(&ncalls->lock, flags);
408 
409 	/*
410 	 * Try to see if the current task is already inside this wakeup call.
411 	 * We use a list here, since the population inside this set is always
412 	 * very much limited.
413 	 */
414 	list_for_each_entry(tncur, lsthead, llink) {
415 		if (tncur->ctx == ctx &&
416 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
417 			/*
418 			 * Ops ... loop detected or maximum nest level reached.
419 			 * We abort this wake by breaking the cycle itself.
420 			 */
421 			error = -1;
422 			goto out_unlock;
423 		}
424 	}
425 
426 	/* Add the current task and cookie to the list */
427 	tnode.ctx = ctx;
428 	tnode.cookie = cookie;
429 	list_add(&tnode.llink, lsthead);
430 
431 	spin_unlock_irqrestore(&ncalls->lock, flags);
432 
433 	/* Call the nested function */
434 	error = (*nproc)(priv, cookie, call_nests);
435 
436 	/* Remove the current task from the list */
437 	spin_lock_irqsave(&ncalls->lock, flags);
438 	list_del(&tnode.llink);
439 out_unlock:
440 	spin_unlock_irqrestore(&ncalls->lock, flags);
441 
442 	return error;
443 }
444 
445 /*
446  * As described in commit 0ccf831cb lockdep: annotate epoll
447  * the use of wait queues used by epoll is done in a very controlled
448  * manner. Wake ups can nest inside each other, but are never done
449  * with the same locking. For example:
450  *
451  *   dfd = socket(...);
452  *   efd1 = epoll_create();
453  *   efd2 = epoll_create();
454  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
455  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
456  *
457  * When a packet arrives to the device underneath "dfd", the net code will
458  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
459  * callback wakeup entry on that queue, and the wake_up() performed by the
460  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
461  * (efd1) notices that it may have some event ready, so it needs to wake up
462  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
463  * that ends up in another wake_up(), after having checked about the
464  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
465  * avoid stack blasting.
466  *
467  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
468  * this special case of epoll.
469  */
470 #ifdef CONFIG_DEBUG_LOCK_ALLOC
ep_wake_up_nested(wait_queue_head_t * wqueue,unsigned long events,int subclass)471 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
472 				     unsigned long events, int subclass)
473 {
474 	unsigned long flags;
475 
476 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
477 	wake_up_locked_poll(wqueue, events);
478 	spin_unlock_irqrestore(&wqueue->lock, flags);
479 }
480 #else
ep_wake_up_nested(wait_queue_head_t * wqueue,unsigned long events,int subclass)481 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
482 				     unsigned long events, int subclass)
483 {
484 	wake_up_poll(wqueue, events);
485 }
486 #endif
487 
ep_poll_wakeup_proc(void * priv,void * cookie,int call_nests)488 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
489 {
490 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
491 			  1 + call_nests);
492 	return 0;
493 }
494 
495 /*
496  * Perform a safe wake up of the poll wait list. The problem is that
497  * with the new callback'd wake up system, it is possible that the
498  * poll callback is reentered from inside the call to wake_up() done
499  * on the poll wait queue head. The rule is that we cannot reenter the
500  * wake up code from the same task more than EP_MAX_NESTS times,
501  * and we cannot reenter the same wait queue head at all. This will
502  * enable to have a hierarchy of epoll file descriptor of no more than
503  * EP_MAX_NESTS deep.
504  */
ep_poll_safewake(wait_queue_head_t * wq)505 static void ep_poll_safewake(wait_queue_head_t *wq)
506 {
507 	int this_cpu = get_cpu();
508 
509 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
510 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
511 
512 	put_cpu();
513 }
514 
ep_remove_wait_queue(struct eppoll_entry * pwq)515 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
516 {
517 	wait_queue_head_t *whead;
518 
519 	rcu_read_lock();
520 	/*
521 	 * If it is cleared by POLLFREE, it should be rcu-safe.
522 	 * If we read NULL we need a barrier paired with
523 	 * smp_store_release() in ep_poll_callback(), otherwise
524 	 * we rely on whead->lock.
525 	 */
526 	whead = smp_load_acquire(&pwq->whead);
527 	if (whead)
528 		remove_wait_queue(whead, &pwq->wait);
529 	rcu_read_unlock();
530 }
531 
532 /*
533  * This function unregisters poll callbacks from the associated file
534  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
535  * ep_free).
536  */
ep_unregister_pollwait(struct eventpoll * ep,struct epitem * epi)537 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
538 {
539 	struct list_head *lsthead = &epi->pwqlist;
540 	struct eppoll_entry *pwq;
541 
542 	while (!list_empty(lsthead)) {
543 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
544 
545 		list_del(&pwq->llink);
546 		ep_remove_wait_queue(pwq);
547 		kmem_cache_free(pwq_cache, pwq);
548 	}
549 }
550 
551 /* call only when ep->mtx is held */
ep_wakeup_source(struct epitem * epi)552 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
553 {
554 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
555 }
556 
557 /* call only when ep->mtx is held */
ep_pm_stay_awake(struct epitem * epi)558 static inline void ep_pm_stay_awake(struct epitem *epi)
559 {
560 	struct wakeup_source *ws = ep_wakeup_source(epi);
561 
562 	if (ws)
563 		__pm_stay_awake(ws);
564 }
565 
ep_has_wakeup_source(struct epitem * epi)566 static inline bool ep_has_wakeup_source(struct epitem *epi)
567 {
568 	return rcu_access_pointer(epi->ws) ? true : false;
569 }
570 
571 /* call when ep->mtx cannot be held (ep_poll_callback) */
ep_pm_stay_awake_rcu(struct epitem * epi)572 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
573 {
574 	struct wakeup_source *ws;
575 
576 	rcu_read_lock();
577 	ws = rcu_dereference(epi->ws);
578 	if (ws)
579 		__pm_stay_awake(ws);
580 	rcu_read_unlock();
581 }
582 
583 /**
584  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
585  *                      the scan code, to call f_op->poll(). Also allows for
586  *                      O(NumReady) performance.
587  *
588  * @ep: Pointer to the epoll private data structure.
589  * @sproc: Pointer to the scan callback.
590  * @priv: Private opaque data passed to the @sproc callback.
591  * @depth: The current depth of recursive f_op->poll calls.
592  * @ep_locked: caller already holds ep->mtx
593  *
594  * Returns: The same integer error code returned by the @sproc callback.
595  */
ep_scan_ready_list(struct eventpoll * ep,int (* sproc)(struct eventpoll *,struct list_head *,void *),void * priv,int depth,bool ep_locked)596 static int ep_scan_ready_list(struct eventpoll *ep,
597 			      int (*sproc)(struct eventpoll *,
598 					   struct list_head *, void *),
599 			      void *priv, int depth, bool ep_locked)
600 {
601 	int error, pwake = 0;
602 	unsigned long flags;
603 	struct epitem *epi, *nepi;
604 	LIST_HEAD(txlist);
605 
606 	/*
607 	 * We need to lock this because we could be hit by
608 	 * eventpoll_release_file() and epoll_ctl().
609 	 */
610 
611 	if (!ep_locked)
612 		mutex_lock_nested(&ep->mtx, depth);
613 
614 	/*
615 	 * Steal the ready list, and re-init the original one to the
616 	 * empty list. Also, set ep->ovflist to NULL so that events
617 	 * happening while looping w/out locks, are not lost. We cannot
618 	 * have the poll callback to queue directly on ep->rdllist,
619 	 * because we want the "sproc" callback to be able to do it
620 	 * in a lockless way.
621 	 */
622 	spin_lock_irqsave(&ep->lock, flags);
623 	list_splice_init(&ep->rdllist, &txlist);
624 	ep->ovflist = NULL;
625 	spin_unlock_irqrestore(&ep->lock, flags);
626 
627 	/*
628 	 * Now call the callback function.
629 	 */
630 	error = (*sproc)(ep, &txlist, priv);
631 
632 	spin_lock_irqsave(&ep->lock, flags);
633 	/*
634 	 * During the time we spent inside the "sproc" callback, some
635 	 * other events might have been queued by the poll callback.
636 	 * We re-insert them inside the main ready-list here.
637 	 */
638 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
639 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
640 		/*
641 		 * We need to check if the item is already in the list.
642 		 * During the "sproc" callback execution time, items are
643 		 * queued into ->ovflist but the "txlist" might already
644 		 * contain them, and the list_splice() below takes care of them.
645 		 */
646 		if (!ep_is_linked(&epi->rdllink)) {
647 			list_add_tail(&epi->rdllink, &ep->rdllist);
648 			ep_pm_stay_awake(epi);
649 		}
650 	}
651 	/*
652 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
653 	 * releasing the lock, events will be queued in the normal way inside
654 	 * ep->rdllist.
655 	 */
656 	ep->ovflist = EP_UNACTIVE_PTR;
657 
658 	/*
659 	 * Quickly re-inject items left on "txlist".
660 	 */
661 	list_splice(&txlist, &ep->rdllist);
662 	__pm_relax(ep->ws);
663 
664 	if (!list_empty(&ep->rdllist)) {
665 		/*
666 		 * Wake up (if active) both the eventpoll wait list and
667 		 * the ->poll() wait list (delayed after we release the lock).
668 		 */
669 		if (waitqueue_active(&ep->wq))
670 			wake_up_locked(&ep->wq);
671 		if (waitqueue_active(&ep->poll_wait))
672 			pwake++;
673 	}
674 	spin_unlock_irqrestore(&ep->lock, flags);
675 
676 	if (!ep_locked)
677 		mutex_unlock(&ep->mtx);
678 
679 	/* We have to call this outside the lock */
680 	if (pwake)
681 		ep_poll_safewake(&ep->poll_wait);
682 
683 	return error;
684 }
685 
epi_rcu_free(struct rcu_head * head)686 static void epi_rcu_free(struct rcu_head *head)
687 {
688 	struct epitem *epi = container_of(head, struct epitem, rcu);
689 	kmem_cache_free(epi_cache, epi);
690 }
691 
692 /*
693  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
694  * all the associated resources. Must be called with "mtx" held.
695  */
ep_remove(struct eventpoll * ep,struct epitem * epi)696 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
697 {
698 	unsigned long flags;
699 	struct file *file = epi->ffd.file;
700 
701 	/*
702 	 * Removes poll wait queue hooks. We _have_ to do this without holding
703 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
704 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
705 	 * queue head lock when unregistering the wait queue. The wakeup callback
706 	 * will run by holding the wait queue head lock and will call our callback
707 	 * that will try to get "ep->lock".
708 	 */
709 	ep_unregister_pollwait(ep, epi);
710 
711 	/* Remove the current item from the list of epoll hooks */
712 	spin_lock(&file->f_lock);
713 	list_del_rcu(&epi->fllink);
714 	spin_unlock(&file->f_lock);
715 
716 	rb_erase(&epi->rbn, &ep->rbr);
717 
718 	spin_lock_irqsave(&ep->lock, flags);
719 	if (ep_is_linked(&epi->rdllink))
720 		list_del_init(&epi->rdllink);
721 	spin_unlock_irqrestore(&ep->lock, flags);
722 
723 	wakeup_source_unregister(ep_wakeup_source(epi));
724 	/*
725 	 * At this point it is safe to free the eventpoll item. Use the union
726 	 * field epi->rcu, since we are trying to minimize the size of
727 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
728 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
729 	 * use of the rbn field.
730 	 */
731 	call_rcu(&epi->rcu, epi_rcu_free);
732 
733 	atomic_long_dec(&ep->user->epoll_watches);
734 
735 	return 0;
736 }
737 
ep_free(struct eventpoll * ep)738 static void ep_free(struct eventpoll *ep)
739 {
740 	struct rb_node *rbp;
741 	struct epitem *epi;
742 
743 	/* We need to release all tasks waiting for these file */
744 	if (waitqueue_active(&ep->poll_wait))
745 		ep_poll_safewake(&ep->poll_wait);
746 
747 	/*
748 	 * We need to lock this because we could be hit by
749 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
750 	 * We do not need to hold "ep->mtx" here because the epoll file
751 	 * is on the way to be removed and no one has references to it
752 	 * anymore. The only hit might come from eventpoll_release_file() but
753 	 * holding "epmutex" is sufficient here.
754 	 */
755 	mutex_lock(&epmutex);
756 
757 	/*
758 	 * Walks through the whole tree by unregistering poll callbacks.
759 	 */
760 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
761 		epi = rb_entry(rbp, struct epitem, rbn);
762 
763 		ep_unregister_pollwait(ep, epi);
764 		cond_resched();
765 	}
766 
767 	/*
768 	 * Walks through the whole tree by freeing each "struct epitem". At this
769 	 * point we are sure no poll callbacks will be lingering around, and also by
770 	 * holding "epmutex" we can be sure that no file cleanup code will hit
771 	 * us during this operation. So we can avoid the lock on "ep->lock".
772 	 * We do not need to lock ep->mtx, either, we only do it to prevent
773 	 * a lockdep warning.
774 	 */
775 	mutex_lock(&ep->mtx);
776 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
777 		epi = rb_entry(rbp, struct epitem, rbn);
778 		ep_remove(ep, epi);
779 		cond_resched();
780 	}
781 	mutex_unlock(&ep->mtx);
782 
783 	mutex_unlock(&epmutex);
784 	mutex_destroy(&ep->mtx);
785 	free_uid(ep->user);
786 	wakeup_source_unregister(ep->ws);
787 	kfree(ep);
788 }
789 
ep_eventpoll_release(struct inode * inode,struct file * file)790 static int ep_eventpoll_release(struct inode *inode, struct file *file)
791 {
792 	struct eventpoll *ep = file->private_data;
793 
794 	if (ep)
795 		ep_free(ep);
796 
797 	return 0;
798 }
799 
ep_item_poll(struct epitem * epi,poll_table * pt)800 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
801 {
802 	pt->_key = epi->event.events;
803 
804 	return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
805 }
806 
ep_read_events_proc(struct eventpoll * ep,struct list_head * head,void * priv)807 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
808 			       void *priv)
809 {
810 	struct epitem *epi, *tmp;
811 	poll_table pt;
812 
813 	init_poll_funcptr(&pt, NULL);
814 
815 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
816 		if (ep_item_poll(epi, &pt))
817 			return POLLIN | POLLRDNORM;
818 		else {
819 			/*
820 			 * Item has been dropped into the ready list by the poll
821 			 * callback, but it's not actually ready, as far as
822 			 * caller requested events goes. We can remove it here.
823 			 */
824 			__pm_relax(ep_wakeup_source(epi));
825 			list_del_init(&epi->rdllink);
826 		}
827 	}
828 
829 	return 0;
830 }
831 
832 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
833 				 poll_table *pt);
834 
835 struct readyevents_arg {
836 	struct eventpoll *ep;
837 	bool locked;
838 };
839 
ep_poll_readyevents_proc(void * priv,void * cookie,int call_nests)840 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
841 {
842 	struct readyevents_arg *arg = priv;
843 
844 	return ep_scan_ready_list(arg->ep, ep_read_events_proc, NULL,
845 				  call_nests + 1, arg->locked);
846 }
847 
ep_eventpoll_poll(struct file * file,poll_table * wait)848 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
849 {
850 	int pollflags;
851 	struct eventpoll *ep = file->private_data;
852 	struct readyevents_arg arg;
853 
854 	/*
855 	 * During ep_insert() we already hold the ep->mtx for the tfile.
856 	 * Prevent re-aquisition.
857 	 */
858 	arg.locked = wait && (wait->_qproc == ep_ptable_queue_proc);
859 	arg.ep = ep;
860 
861 	/* Insert inside our poll wait queue */
862 	poll_wait(file, &ep->poll_wait, wait);
863 
864 	/*
865 	 * Proceed to find out if wanted events are really available inside
866 	 * the ready list. This need to be done under ep_call_nested()
867 	 * supervision, since the call to f_op->poll() done on listed files
868 	 * could re-enter here.
869 	 */
870 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
871 				   ep_poll_readyevents_proc, &arg, ep, current);
872 
873 	return pollflags != -1 ? pollflags : 0;
874 }
875 
876 #ifdef CONFIG_PROC_FS
ep_show_fdinfo(struct seq_file * m,struct file * f)877 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
878 {
879 	struct eventpoll *ep = f->private_data;
880 	struct rb_node *rbp;
881 
882 	mutex_lock(&ep->mtx);
883 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
884 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
885 
886 		seq_printf(m, "tfd: %8d events: %8x data: %16llx\n",
887 			   epi->ffd.fd, epi->event.events,
888 			   (long long)epi->event.data);
889 		if (seq_has_overflowed(m))
890 			break;
891 	}
892 	mutex_unlock(&ep->mtx);
893 }
894 #endif
895 
896 /* File callbacks that implement the eventpoll file behaviour */
897 static const struct file_operations eventpoll_fops = {
898 #ifdef CONFIG_PROC_FS
899 	.show_fdinfo	= ep_show_fdinfo,
900 #endif
901 	.release	= ep_eventpoll_release,
902 	.poll		= ep_eventpoll_poll,
903 	.llseek		= noop_llseek,
904 };
905 
906 /*
907  * This is called from eventpoll_release() to unlink files from the eventpoll
908  * interface. We need to have this facility to cleanup correctly files that are
909  * closed without being removed from the eventpoll interface.
910  */
eventpoll_release_file(struct file * file)911 void eventpoll_release_file(struct file *file)
912 {
913 	struct eventpoll *ep;
914 	struct epitem *epi, *next;
915 
916 	/*
917 	 * We don't want to get "file->f_lock" because it is not
918 	 * necessary. It is not necessary because we're in the "struct file"
919 	 * cleanup path, and this means that no one is using this file anymore.
920 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
921 	 * point, the file counter already went to zero and fget() would fail.
922 	 * The only hit might come from ep_free() but by holding the mutex
923 	 * will correctly serialize the operation. We do need to acquire
924 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
925 	 * from anywhere but ep_free().
926 	 *
927 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
928 	 */
929 	mutex_lock(&epmutex);
930 	list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
931 		ep = epi->ep;
932 		mutex_lock_nested(&ep->mtx, 0);
933 		ep_remove(ep, epi);
934 		mutex_unlock(&ep->mtx);
935 	}
936 	mutex_unlock(&epmutex);
937 }
938 
ep_alloc(struct eventpoll ** pep)939 static int ep_alloc(struct eventpoll **pep)
940 {
941 	int error;
942 	struct user_struct *user;
943 	struct eventpoll *ep;
944 
945 	user = get_current_user();
946 	error = -ENOMEM;
947 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
948 	if (unlikely(!ep))
949 		goto free_uid;
950 
951 	spin_lock_init(&ep->lock);
952 	mutex_init(&ep->mtx);
953 	init_waitqueue_head(&ep->wq);
954 	init_waitqueue_head(&ep->poll_wait);
955 	INIT_LIST_HEAD(&ep->rdllist);
956 	ep->rbr = RB_ROOT;
957 	ep->ovflist = EP_UNACTIVE_PTR;
958 	ep->user = user;
959 
960 	*pep = ep;
961 
962 	return 0;
963 
964 free_uid:
965 	free_uid(user);
966 	return error;
967 }
968 
969 /*
970  * Search the file inside the eventpoll tree. The RB tree operations
971  * are protected by the "mtx" mutex, and ep_find() must be called with
972  * "mtx" held.
973  */
ep_find(struct eventpoll * ep,struct file * file,int fd)974 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
975 {
976 	int kcmp;
977 	struct rb_node *rbp;
978 	struct epitem *epi, *epir = NULL;
979 	struct epoll_filefd ffd;
980 
981 	ep_set_ffd(&ffd, file, fd);
982 	for (rbp = ep->rbr.rb_node; rbp; ) {
983 		epi = rb_entry(rbp, struct epitem, rbn);
984 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
985 		if (kcmp > 0)
986 			rbp = rbp->rb_right;
987 		else if (kcmp < 0)
988 			rbp = rbp->rb_left;
989 		else {
990 			epir = epi;
991 			break;
992 		}
993 	}
994 
995 	return epir;
996 }
997 
998 /*
999  * This is the callback that is passed to the wait queue wakeup
1000  * mechanism. It is called by the stored file descriptors when they
1001  * have events to report.
1002  */
ep_poll_callback(wait_queue_t * wait,unsigned mode,int sync,void * key)1003 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
1004 {
1005 	int pwake = 0;
1006 	unsigned long flags;
1007 	struct epitem *epi = ep_item_from_wait(wait);
1008 	struct eventpoll *ep = epi->ep;
1009 
1010 	spin_lock_irqsave(&ep->lock, flags);
1011 
1012 	/*
1013 	 * If the event mask does not contain any poll(2) event, we consider the
1014 	 * descriptor to be disabled. This condition is likely the effect of the
1015 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1016 	 * until the next EPOLL_CTL_MOD will be issued.
1017 	 */
1018 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1019 		goto out_unlock;
1020 
1021 	/*
1022 	 * Check the events coming with the callback. At this stage, not
1023 	 * every device reports the events in the "key" parameter of the
1024 	 * callback. We need to be able to handle both cases here, hence the
1025 	 * test for "key" != NULL before the event match test.
1026 	 */
1027 	if (key && !((unsigned long) key & epi->event.events))
1028 		goto out_unlock;
1029 
1030 	/*
1031 	 * If we are transferring events to userspace, we can hold no locks
1032 	 * (because we're accessing user memory, and because of linux f_op->poll()
1033 	 * semantics). All the events that happen during that period of time are
1034 	 * chained in ep->ovflist and requeued later on.
1035 	 */
1036 	if (ep->ovflist != EP_UNACTIVE_PTR) {
1037 		if (epi->next == EP_UNACTIVE_PTR) {
1038 			epi->next = ep->ovflist;
1039 			ep->ovflist = epi;
1040 			if (epi->ws) {
1041 				/*
1042 				 * Activate ep->ws since epi->ws may get
1043 				 * deactivated at any time.
1044 				 */
1045 				__pm_stay_awake(ep->ws);
1046 			}
1047 
1048 		}
1049 		goto out_unlock;
1050 	}
1051 
1052 	/* If this file is already in the ready list we exit soon */
1053 	if (!ep_is_linked(&epi->rdllink)) {
1054 		list_add_tail(&epi->rdllink, &ep->rdllist);
1055 		ep_pm_stay_awake_rcu(epi);
1056 	}
1057 
1058 	/*
1059 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1060 	 * wait list.
1061 	 */
1062 	if (waitqueue_active(&ep->wq))
1063 		wake_up_locked(&ep->wq);
1064 	if (waitqueue_active(&ep->poll_wait))
1065 		pwake++;
1066 
1067 out_unlock:
1068 	spin_unlock_irqrestore(&ep->lock, flags);
1069 
1070 	/* We have to call this outside the lock */
1071 	if (pwake)
1072 		ep_poll_safewake(&ep->poll_wait);
1073 
1074 
1075 	if ((unsigned long)key & POLLFREE) {
1076 		/*
1077 		 * If we race with ep_remove_wait_queue() it can miss
1078 		 * ->whead = NULL and do another remove_wait_queue() after
1079 		 * us, so we can't use __remove_wait_queue().
1080 		 */
1081 		list_del_init(&wait->task_list);
1082 		/*
1083 		 * ->whead != NULL protects us from the race with ep_free()
1084 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1085 		 * held by the caller. Once we nullify it, nothing protects
1086 		 * ep/epi or even wait.
1087 		 */
1088 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1089 	}
1090 
1091 	return 1;
1092 }
1093 
1094 /*
1095  * This is the callback that is used to add our wait queue to the
1096  * target file wakeup lists.
1097  */
ep_ptable_queue_proc(struct file * file,wait_queue_head_t * whead,poll_table * pt)1098 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1099 				 poll_table *pt)
1100 {
1101 	struct epitem *epi = ep_item_from_epqueue(pt);
1102 	struct eppoll_entry *pwq;
1103 
1104 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1105 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1106 		pwq->whead = whead;
1107 		pwq->base = epi;
1108 		add_wait_queue(whead, &pwq->wait);
1109 		list_add_tail(&pwq->llink, &epi->pwqlist);
1110 		epi->nwait++;
1111 	} else {
1112 		/* We have to signal that an error occurred */
1113 		epi->nwait = -1;
1114 	}
1115 }
1116 
ep_rbtree_insert(struct eventpoll * ep,struct epitem * epi)1117 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1118 {
1119 	int kcmp;
1120 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1121 	struct epitem *epic;
1122 
1123 	while (*p) {
1124 		parent = *p;
1125 		epic = rb_entry(parent, struct epitem, rbn);
1126 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1127 		if (kcmp > 0)
1128 			p = &parent->rb_right;
1129 		else
1130 			p = &parent->rb_left;
1131 	}
1132 	rb_link_node(&epi->rbn, parent, p);
1133 	rb_insert_color(&epi->rbn, &ep->rbr);
1134 }
1135 
1136 
1137 
1138 #define PATH_ARR_SIZE 5
1139 /*
1140  * These are the number paths of length 1 to 5, that we are allowing to emanate
1141  * from a single file of interest. For example, we allow 1000 paths of length
1142  * 1, to emanate from each file of interest. This essentially represents the
1143  * potential wakeup paths, which need to be limited in order to avoid massive
1144  * uncontrolled wakeup storms. The common use case should be a single ep which
1145  * is connected to n file sources. In this case each file source has 1 path
1146  * of length 1. Thus, the numbers below should be more than sufficient. These
1147  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1148  * and delete can't add additional paths. Protected by the epmutex.
1149  */
1150 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1151 static int path_count[PATH_ARR_SIZE];
1152 
path_count_inc(int nests)1153 static int path_count_inc(int nests)
1154 {
1155 	/* Allow an arbitrary number of depth 1 paths */
1156 	if (nests == 0)
1157 		return 0;
1158 
1159 	if (++path_count[nests] > path_limits[nests])
1160 		return -1;
1161 	return 0;
1162 }
1163 
path_count_init(void)1164 static void path_count_init(void)
1165 {
1166 	int i;
1167 
1168 	for (i = 0; i < PATH_ARR_SIZE; i++)
1169 		path_count[i] = 0;
1170 }
1171 
reverse_path_check_proc(void * priv,void * cookie,int call_nests)1172 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1173 {
1174 	int error = 0;
1175 	struct file *file = priv;
1176 	struct file *child_file;
1177 	struct epitem *epi;
1178 
1179 	/* CTL_DEL can remove links here, but that can't increase our count */
1180 	rcu_read_lock();
1181 	list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1182 		child_file = epi->ep->file;
1183 		if (is_file_epoll(child_file)) {
1184 			if (list_empty(&child_file->f_ep_links)) {
1185 				if (path_count_inc(call_nests)) {
1186 					error = -1;
1187 					break;
1188 				}
1189 			} else {
1190 				error = ep_call_nested(&poll_loop_ncalls,
1191 							EP_MAX_NESTS,
1192 							reverse_path_check_proc,
1193 							child_file, child_file,
1194 							current);
1195 			}
1196 			if (error != 0)
1197 				break;
1198 		} else {
1199 			printk(KERN_ERR "reverse_path_check_proc: "
1200 				"file is not an ep!\n");
1201 		}
1202 	}
1203 	rcu_read_unlock();
1204 	return error;
1205 }
1206 
1207 /**
1208  * reverse_path_check - The tfile_check_list is list of file *, which have
1209  *                      links that are proposed to be newly added. We need to
1210  *                      make sure that those added links don't add too many
1211  *                      paths such that we will spend all our time waking up
1212  *                      eventpoll objects.
1213  *
1214  * Returns: Returns zero if the proposed links don't create too many paths,
1215  *	    -1 otherwise.
1216  */
reverse_path_check(void)1217 static int reverse_path_check(void)
1218 {
1219 	int error = 0;
1220 	struct file *current_file;
1221 
1222 	/* let's call this for all tfiles */
1223 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1224 		path_count_init();
1225 		error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1226 					reverse_path_check_proc, current_file,
1227 					current_file, current);
1228 		if (error)
1229 			break;
1230 	}
1231 	return error;
1232 }
1233 
ep_create_wakeup_source(struct epitem * epi)1234 static int ep_create_wakeup_source(struct epitem *epi)
1235 {
1236 	struct name_snapshot n;
1237 	struct wakeup_source *ws;
1238 
1239 	if (!epi->ep->ws) {
1240 		epi->ep->ws = wakeup_source_register("eventpoll");
1241 		if (!epi->ep->ws)
1242 			return -ENOMEM;
1243 	}
1244 
1245 	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1246 	ws = wakeup_source_register(n.name);
1247 	release_dentry_name_snapshot(&n);
1248 
1249 	if (!ws)
1250 		return -ENOMEM;
1251 	rcu_assign_pointer(epi->ws, ws);
1252 
1253 	return 0;
1254 }
1255 
1256 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
ep_destroy_wakeup_source(struct epitem * epi)1257 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1258 {
1259 	struct wakeup_source *ws = ep_wakeup_source(epi);
1260 
1261 	RCU_INIT_POINTER(epi->ws, NULL);
1262 
1263 	/*
1264 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1265 	 * used internally by wakeup_source_remove, too (called by
1266 	 * wakeup_source_unregister), so we cannot use call_rcu
1267 	 */
1268 	synchronize_rcu();
1269 	wakeup_source_unregister(ws);
1270 }
1271 
1272 /*
1273  * Must be called with "mtx" held.
1274  */
ep_insert(struct eventpoll * ep,struct epoll_event * event,struct file * tfile,int fd,int full_check)1275 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1276 		     struct file *tfile, int fd, int full_check)
1277 {
1278 	int error, revents, pwake = 0;
1279 	unsigned long flags;
1280 	long user_watches;
1281 	struct epitem *epi;
1282 	struct ep_pqueue epq;
1283 
1284 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1285 	if (unlikely(user_watches >= max_user_watches))
1286 		return -ENOSPC;
1287 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1288 		return -ENOMEM;
1289 
1290 	/* Item initialization follow here ... */
1291 	INIT_LIST_HEAD(&epi->rdllink);
1292 	INIT_LIST_HEAD(&epi->fllink);
1293 	INIT_LIST_HEAD(&epi->pwqlist);
1294 	epi->ep = ep;
1295 	ep_set_ffd(&epi->ffd, tfile, fd);
1296 	epi->event = *event;
1297 	epi->nwait = 0;
1298 	epi->next = EP_UNACTIVE_PTR;
1299 	if (epi->event.events & EPOLLWAKEUP) {
1300 		error = ep_create_wakeup_source(epi);
1301 		if (error)
1302 			goto error_create_wakeup_source;
1303 	} else {
1304 		RCU_INIT_POINTER(epi->ws, NULL);
1305 	}
1306 
1307 	/* Add the current item to the list of active epoll hook for this file */
1308 	spin_lock(&tfile->f_lock);
1309 	list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1310 	spin_unlock(&tfile->f_lock);
1311 
1312 	/*
1313 	 * Add the current item to the RB tree. All RB tree operations are
1314 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1315 	 */
1316 	ep_rbtree_insert(ep, epi);
1317 
1318 	/* now check if we've created too many backpaths */
1319 	error = -EINVAL;
1320 	if (full_check && reverse_path_check())
1321 		goto error_remove_epi;
1322 
1323 	/* Initialize the poll table using the queue callback */
1324 	epq.epi = epi;
1325 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1326 
1327 	/*
1328 	 * Attach the item to the poll hooks and get current event bits.
1329 	 * We can safely use the file* here because its usage count has
1330 	 * been increased by the caller of this function. Note that after
1331 	 * this operation completes, the poll callback can start hitting
1332 	 * the new item.
1333 	 */
1334 	revents = ep_item_poll(epi, &epq.pt);
1335 
1336 	/*
1337 	 * We have to check if something went wrong during the poll wait queue
1338 	 * install process. Namely an allocation for a wait queue failed due
1339 	 * high memory pressure.
1340 	 */
1341 	error = -ENOMEM;
1342 	if (epi->nwait < 0)
1343 		goto error_unregister;
1344 
1345 	/* We have to drop the new item inside our item list to keep track of it */
1346 	spin_lock_irqsave(&ep->lock, flags);
1347 
1348 	/* If the file is already "ready" we drop it inside the ready list */
1349 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1350 		list_add_tail(&epi->rdllink, &ep->rdllist);
1351 		ep_pm_stay_awake(epi);
1352 
1353 		/* Notify waiting tasks that events are available */
1354 		if (waitqueue_active(&ep->wq))
1355 			wake_up_locked(&ep->wq);
1356 		if (waitqueue_active(&ep->poll_wait))
1357 			pwake++;
1358 	}
1359 
1360 	spin_unlock_irqrestore(&ep->lock, flags);
1361 
1362 	atomic_long_inc(&ep->user->epoll_watches);
1363 
1364 	/* We have to call this outside the lock */
1365 	if (pwake)
1366 		ep_poll_safewake(&ep->poll_wait);
1367 
1368 	return 0;
1369 
1370 error_unregister:
1371 	ep_unregister_pollwait(ep, epi);
1372 error_remove_epi:
1373 	spin_lock(&tfile->f_lock);
1374 	list_del_rcu(&epi->fllink);
1375 	spin_unlock(&tfile->f_lock);
1376 
1377 	rb_erase(&epi->rbn, &ep->rbr);
1378 
1379 	/*
1380 	 * We need to do this because an event could have been arrived on some
1381 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1382 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1383 	 * And ep_insert() is called with "mtx" held.
1384 	 */
1385 	spin_lock_irqsave(&ep->lock, flags);
1386 	if (ep_is_linked(&epi->rdllink))
1387 		list_del_init(&epi->rdllink);
1388 	spin_unlock_irqrestore(&ep->lock, flags);
1389 
1390 	wakeup_source_unregister(ep_wakeup_source(epi));
1391 
1392 error_create_wakeup_source:
1393 	kmem_cache_free(epi_cache, epi);
1394 
1395 	return error;
1396 }
1397 
1398 /*
1399  * Modify the interest event mask by dropping an event if the new mask
1400  * has a match in the current file status. Must be called with "mtx" held.
1401  */
ep_modify(struct eventpoll * ep,struct epitem * epi,struct epoll_event * event)1402 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1403 {
1404 	int pwake = 0;
1405 	unsigned int revents;
1406 	poll_table pt;
1407 
1408 	init_poll_funcptr(&pt, NULL);
1409 
1410 	/*
1411 	 * Set the new event interest mask before calling f_op->poll();
1412 	 * otherwise we might miss an event that happens between the
1413 	 * f_op->poll() call and the new event set registering.
1414 	 */
1415 	epi->event.events = event->events; /* need barrier below */
1416 	epi->event.data = event->data; /* protected by mtx */
1417 	if (epi->event.events & EPOLLWAKEUP) {
1418 		if (!ep_has_wakeup_source(epi))
1419 			ep_create_wakeup_source(epi);
1420 	} else if (ep_has_wakeup_source(epi)) {
1421 		ep_destroy_wakeup_source(epi);
1422 	}
1423 
1424 	/*
1425 	 * The following barrier has two effects:
1426 	 *
1427 	 * 1) Flush epi changes above to other CPUs.  This ensures
1428 	 *    we do not miss events from ep_poll_callback if an
1429 	 *    event occurs immediately after we call f_op->poll().
1430 	 *    We need this because we did not take ep->lock while
1431 	 *    changing epi above (but ep_poll_callback does take
1432 	 *    ep->lock).
1433 	 *
1434 	 * 2) We also need to ensure we do not miss _past_ events
1435 	 *    when calling f_op->poll().  This barrier also
1436 	 *    pairs with the barrier in wq_has_sleeper (see
1437 	 *    comments for wq_has_sleeper).
1438 	 *
1439 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1440 	 * (or both) will notice the readiness of an item.
1441 	 */
1442 	smp_mb();
1443 
1444 	/*
1445 	 * Get current event bits. We can safely use the file* here because
1446 	 * its usage count has been increased by the caller of this function.
1447 	 */
1448 	revents = ep_item_poll(epi, &pt);
1449 
1450 	/*
1451 	 * If the item is "hot" and it is not registered inside the ready
1452 	 * list, push it inside.
1453 	 */
1454 	if (revents & event->events) {
1455 		spin_lock_irq(&ep->lock);
1456 		if (!ep_is_linked(&epi->rdllink)) {
1457 			list_add_tail(&epi->rdllink, &ep->rdllist);
1458 			ep_pm_stay_awake(epi);
1459 
1460 			/* Notify waiting tasks that events are available */
1461 			if (waitqueue_active(&ep->wq))
1462 				wake_up_locked(&ep->wq);
1463 			if (waitqueue_active(&ep->poll_wait))
1464 				pwake++;
1465 		}
1466 		spin_unlock_irq(&ep->lock);
1467 	}
1468 
1469 	/* We have to call this outside the lock */
1470 	if (pwake)
1471 		ep_poll_safewake(&ep->poll_wait);
1472 
1473 	return 0;
1474 }
1475 
ep_send_events_proc(struct eventpoll * ep,struct list_head * head,void * priv)1476 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1477 			       void *priv)
1478 {
1479 	struct ep_send_events_data *esed = priv;
1480 	int eventcnt;
1481 	unsigned int revents;
1482 	struct epitem *epi;
1483 	struct epoll_event __user *uevent;
1484 	struct wakeup_source *ws;
1485 	poll_table pt;
1486 
1487 	init_poll_funcptr(&pt, NULL);
1488 
1489 	/*
1490 	 * We can loop without lock because we are passed a task private list.
1491 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1492 	 * holding "mtx" during this call.
1493 	 */
1494 	for (eventcnt = 0, uevent = esed->events;
1495 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1496 		epi = list_first_entry(head, struct epitem, rdllink);
1497 
1498 		/*
1499 		 * Activate ep->ws before deactivating epi->ws to prevent
1500 		 * triggering auto-suspend here (in case we reactive epi->ws
1501 		 * below).
1502 		 *
1503 		 * This could be rearranged to delay the deactivation of epi->ws
1504 		 * instead, but then epi->ws would temporarily be out of sync
1505 		 * with ep_is_linked().
1506 		 */
1507 		ws = ep_wakeup_source(epi);
1508 		if (ws) {
1509 			if (ws->active)
1510 				__pm_stay_awake(ep->ws);
1511 			__pm_relax(ws);
1512 		}
1513 
1514 		list_del_init(&epi->rdllink);
1515 
1516 		revents = ep_item_poll(epi, &pt);
1517 
1518 		/*
1519 		 * If the event mask intersect the caller-requested one,
1520 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1521 		 * is holding "mtx", so no operations coming from userspace
1522 		 * can change the item.
1523 		 */
1524 		if (revents) {
1525 			if (__put_user(revents, &uevent->events) ||
1526 			    __put_user(epi->event.data, &uevent->data)) {
1527 				list_add(&epi->rdllink, head);
1528 				ep_pm_stay_awake(epi);
1529 				return eventcnt ? eventcnt : -EFAULT;
1530 			}
1531 			eventcnt++;
1532 			uevent++;
1533 			if (epi->event.events & EPOLLONESHOT)
1534 				epi->event.events &= EP_PRIVATE_BITS;
1535 			else if (!(epi->event.events & EPOLLET)) {
1536 				/*
1537 				 * If this file has been added with Level
1538 				 * Trigger mode, we need to insert back inside
1539 				 * the ready list, so that the next call to
1540 				 * epoll_wait() will check again the events
1541 				 * availability. At this point, no one can insert
1542 				 * into ep->rdllist besides us. The epoll_ctl()
1543 				 * callers are locked out by
1544 				 * ep_scan_ready_list() holding "mtx" and the
1545 				 * poll callback will queue them in ep->ovflist.
1546 				 */
1547 				list_add_tail(&epi->rdllink, &ep->rdllist);
1548 				ep_pm_stay_awake(epi);
1549 			}
1550 		}
1551 	}
1552 
1553 	return eventcnt;
1554 }
1555 
ep_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1556 static int ep_send_events(struct eventpoll *ep,
1557 			  struct epoll_event __user *events, int maxevents)
1558 {
1559 	struct ep_send_events_data esed;
1560 
1561 	esed.maxevents = maxevents;
1562 	esed.events = events;
1563 
1564 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1565 }
1566 
ep_set_mstimeout(long ms)1567 static inline struct timespec ep_set_mstimeout(long ms)
1568 {
1569 	struct timespec now, ts = {
1570 		.tv_sec = ms / MSEC_PER_SEC,
1571 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1572 	};
1573 
1574 	ktime_get_ts(&now);
1575 	return timespec_add_safe(now, ts);
1576 }
1577 
1578 /**
1579  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1580  *           event buffer.
1581  *
1582  * @ep: Pointer to the eventpoll context.
1583  * @events: Pointer to the userspace buffer where the ready events should be
1584  *          stored.
1585  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1586  * @timeout: Maximum timeout for the ready events fetch operation, in
1587  *           milliseconds. If the @timeout is zero, the function will not block,
1588  *           while if the @timeout is less than zero, the function will block
1589  *           until at least one event has been retrieved (or an error
1590  *           occurred).
1591  *
1592  * Returns: Returns the number of ready events which have been fetched, or an
1593  *          error code, in case of error.
1594  */
ep_poll(struct eventpoll * ep,struct epoll_event __user * events,int maxevents,long timeout)1595 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1596 		   int maxevents, long timeout)
1597 {
1598 	int res = 0, eavail, timed_out = 0;
1599 	unsigned long flags;
1600 	u64 slack = 0;
1601 	wait_queue_t wait;
1602 	ktime_t expires, *to = NULL;
1603 
1604 	if (timeout > 0) {
1605 		struct timespec end_time = ep_set_mstimeout(timeout);
1606 
1607 		slack = select_estimate_accuracy(&end_time);
1608 		to = &expires;
1609 		*to = timespec_to_ktime(end_time);
1610 	} else if (timeout == 0) {
1611 		/*
1612 		 * Avoid the unnecessary trip to the wait queue loop, if the
1613 		 * caller specified a non blocking operation.
1614 		 */
1615 		timed_out = 1;
1616 		spin_lock_irqsave(&ep->lock, flags);
1617 		goto check_events;
1618 	}
1619 
1620 fetch_events:
1621 	spin_lock_irqsave(&ep->lock, flags);
1622 
1623 	if (!ep_events_available(ep)) {
1624 		/*
1625 		 * We don't have any available event to return to the caller.
1626 		 * We need to sleep here, and we will be wake up by
1627 		 * ep_poll_callback() when events will become available.
1628 		 */
1629 		init_waitqueue_entry(&wait, current);
1630 		__add_wait_queue_exclusive(&ep->wq, &wait);
1631 
1632 		for (;;) {
1633 			/*
1634 			 * We don't want to sleep if the ep_poll_callback() sends us
1635 			 * a wakeup in between. That's why we set the task state
1636 			 * to TASK_INTERRUPTIBLE before doing the checks.
1637 			 */
1638 			set_current_state(TASK_INTERRUPTIBLE);
1639 			if (ep_events_available(ep) || timed_out)
1640 				break;
1641 			if (signal_pending(current)) {
1642 				res = -EINTR;
1643 				break;
1644 			}
1645 
1646 			spin_unlock_irqrestore(&ep->lock, flags);
1647 			if (!freezable_schedule_hrtimeout_range(to, slack,
1648 								HRTIMER_MODE_ABS))
1649 				timed_out = 1;
1650 
1651 			spin_lock_irqsave(&ep->lock, flags);
1652 		}
1653 
1654 		__remove_wait_queue(&ep->wq, &wait);
1655 		__set_current_state(TASK_RUNNING);
1656 	}
1657 check_events:
1658 	/* Is it worth to try to dig for events ? */
1659 	eavail = ep_events_available(ep);
1660 
1661 	spin_unlock_irqrestore(&ep->lock, flags);
1662 
1663 	/*
1664 	 * Try to transfer events to user space. In case we get 0 events and
1665 	 * there's still timeout left over, we go trying again in search of
1666 	 * more luck.
1667 	 */
1668 	if (!res && eavail &&
1669 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1670 		goto fetch_events;
1671 
1672 	return res;
1673 }
1674 
1675 /**
1676  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1677  *                      API, to verify that adding an epoll file inside another
1678  *                      epoll structure, does not violate the constraints, in
1679  *                      terms of closed loops, or too deep chains (which can
1680  *                      result in excessive stack usage).
1681  *
1682  * @priv: Pointer to the epoll file to be currently checked.
1683  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1684  *          data structure pointer.
1685  * @call_nests: Current dept of the @ep_call_nested() call stack.
1686  *
1687  * Returns: Returns zero if adding the epoll @file inside current epoll
1688  *          structure @ep does not violate the constraints, or -1 otherwise.
1689  */
ep_loop_check_proc(void * priv,void * cookie,int call_nests)1690 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1691 {
1692 	int error = 0;
1693 	struct file *file = priv;
1694 	struct eventpoll *ep = file->private_data;
1695 	struct eventpoll *ep_tovisit;
1696 	struct rb_node *rbp;
1697 	struct epitem *epi;
1698 
1699 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1700 	ep->gen = loop_check_gen;
1701 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1702 		epi = rb_entry(rbp, struct epitem, rbn);
1703 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1704 			ep_tovisit = epi->ffd.file->private_data;
1705 			if (ep_tovisit->gen == loop_check_gen)
1706 				continue;
1707 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1708 					ep_loop_check_proc, epi->ffd.file,
1709 					ep_tovisit, current);
1710 			if (error != 0)
1711 				break;
1712 		} else {
1713 			/*
1714 			 * If we've reached a file that is not associated with
1715 			 * an ep, then we need to check if the newly added
1716 			 * links are going to add too many wakeup paths. We do
1717 			 * this by adding it to the tfile_check_list, if it's
1718 			 * not already there, and calling reverse_path_check()
1719 			 * during ep_insert().
1720 			 */
1721 			if (list_empty(&epi->ffd.file->f_tfile_llink)) {
1722 				if (get_file_rcu(epi->ffd.file))
1723 					list_add(&epi->ffd.file->f_tfile_llink,
1724 						 &tfile_check_list);
1725 			}
1726 		}
1727 	}
1728 	mutex_unlock(&ep->mtx);
1729 
1730 	return error;
1731 }
1732 
1733 /**
1734  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1735  *                 another epoll file (represented by @ep) does not create
1736  *                 closed loops or too deep chains.
1737  *
1738  * @ep: Pointer to the epoll private data structure.
1739  * @file: Pointer to the epoll file to be checked.
1740  *
1741  * Returns: Returns zero if adding the epoll @file inside current epoll
1742  *          structure @ep does not violate the constraints, or -1 otherwise.
1743  */
ep_loop_check(struct eventpoll * ep,struct file * file)1744 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1745 {
1746 	return ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1747 			      ep_loop_check_proc, file, ep, current);
1748 }
1749 
clear_tfile_check_list(void)1750 static void clear_tfile_check_list(void)
1751 {
1752 	struct file *file;
1753 
1754 	/* first clear the tfile_check_list */
1755 	while (!list_empty(&tfile_check_list)) {
1756 		file = list_first_entry(&tfile_check_list, struct file,
1757 					f_tfile_llink);
1758 		list_del_init(&file->f_tfile_llink);
1759 		fput(file);
1760 	}
1761 	INIT_LIST_HEAD(&tfile_check_list);
1762 }
1763 
1764 /*
1765  * Open an eventpoll file descriptor.
1766  */
SYSCALL_DEFINE1(epoll_create1,int,flags)1767 SYSCALL_DEFINE1(epoll_create1, int, flags)
1768 {
1769 	int error, fd;
1770 	struct eventpoll *ep = NULL;
1771 	struct file *file;
1772 
1773 	/* Check the EPOLL_* constant for consistency.  */
1774 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1775 
1776 	if (flags & ~EPOLL_CLOEXEC)
1777 		return -EINVAL;
1778 	/*
1779 	 * Create the internal data structure ("struct eventpoll").
1780 	 */
1781 	error = ep_alloc(&ep);
1782 	if (error < 0)
1783 		return error;
1784 	/*
1785 	 * Creates all the items needed to setup an eventpoll file. That is,
1786 	 * a file structure and a free file descriptor.
1787 	 */
1788 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1789 	if (fd < 0) {
1790 		error = fd;
1791 		goto out_free_ep;
1792 	}
1793 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1794 				 O_RDWR | (flags & O_CLOEXEC));
1795 	if (IS_ERR(file)) {
1796 		error = PTR_ERR(file);
1797 		goto out_free_fd;
1798 	}
1799 	ep->file = file;
1800 	fd_install(fd, file);
1801 	return fd;
1802 
1803 out_free_fd:
1804 	put_unused_fd(fd);
1805 out_free_ep:
1806 	ep_free(ep);
1807 	return error;
1808 }
1809 
SYSCALL_DEFINE1(epoll_create,int,size)1810 SYSCALL_DEFINE1(epoll_create, int, size)
1811 {
1812 	if (size <= 0)
1813 		return -EINVAL;
1814 
1815 	return sys_epoll_create1(0);
1816 }
1817 
1818 /*
1819  * The following function implements the controller interface for
1820  * the eventpoll file that enables the insertion/removal/change of
1821  * file descriptors inside the interest set.
1822  */
SYSCALL_DEFINE4(epoll_ctl,int,epfd,int,op,int,fd,struct epoll_event __user *,event)1823 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1824 		struct epoll_event __user *, event)
1825 {
1826 	int error;
1827 	int full_check = 0;
1828 	struct fd f, tf;
1829 	struct eventpoll *ep;
1830 	struct epitem *epi;
1831 	struct epoll_event epds;
1832 	struct eventpoll *tep = NULL;
1833 
1834 	error = -EFAULT;
1835 	if (ep_op_has_event(op) &&
1836 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1837 		goto error_return;
1838 
1839 	error = -EBADF;
1840 	f = fdget(epfd);
1841 	if (!f.file)
1842 		goto error_return;
1843 
1844 	/* Get the "struct file *" for the target file */
1845 	tf = fdget(fd);
1846 	if (!tf.file)
1847 		goto error_fput;
1848 
1849 	/* The target file descriptor must support poll */
1850 	error = -EPERM;
1851 	if (!tf.file->f_op->poll)
1852 		goto error_tgt_fput;
1853 
1854 	/* Check if EPOLLWAKEUP is allowed */
1855 	if (ep_op_has_event(op))
1856 		ep_take_care_of_epollwakeup(&epds);
1857 
1858 	/*
1859 	 * We have to check that the file structure underneath the file descriptor
1860 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1861 	 * adding an epoll file descriptor inside itself.
1862 	 */
1863 	error = -EINVAL;
1864 	if (f.file == tf.file || !is_file_epoll(f.file))
1865 		goto error_tgt_fput;
1866 
1867 	/*
1868 	 * At this point it is safe to assume that the "private_data" contains
1869 	 * our own data structure.
1870 	 */
1871 	ep = f.file->private_data;
1872 
1873 	/*
1874 	 * When we insert an epoll file descriptor, inside another epoll file
1875 	 * descriptor, there is the change of creating closed loops, which are
1876 	 * better be handled here, than in more critical paths. While we are
1877 	 * checking for loops we also determine the list of files reachable
1878 	 * and hang them on the tfile_check_list, so we can check that we
1879 	 * haven't created too many possible wakeup paths.
1880 	 *
1881 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
1882 	 * the epoll file descriptor is attaching directly to a wakeup source,
1883 	 * unless the epoll file descriptor is nested. The purpose of taking the
1884 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
1885 	 * deep wakeup paths from forming in parallel through multiple
1886 	 * EPOLL_CTL_ADD operations.
1887 	 */
1888 	mutex_lock_nested(&ep->mtx, 0);
1889 	if (op == EPOLL_CTL_ADD) {
1890 		if (!list_empty(&f.file->f_ep_links) ||
1891 				ep->gen == loop_check_gen ||
1892 						is_file_epoll(tf.file)) {
1893 			full_check = 1;
1894 			mutex_unlock(&ep->mtx);
1895 			mutex_lock(&epmutex);
1896 			if (is_file_epoll(tf.file)) {
1897 				error = -ELOOP;
1898 				if (ep_loop_check(ep, tf.file) != 0)
1899 					goto error_tgt_fput;
1900 			} else {
1901 				get_file(tf.file);
1902 				list_add(&tf.file->f_tfile_llink,
1903 							&tfile_check_list);
1904 			}
1905 			mutex_lock_nested(&ep->mtx, 0);
1906 			if (is_file_epoll(tf.file)) {
1907 				tep = tf.file->private_data;
1908 				mutex_lock_nested(&tep->mtx, 1);
1909 			}
1910 		}
1911 	}
1912 
1913 	/*
1914 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1915 	 * above, we can be sure to be able to use the item looked up by
1916 	 * ep_find() till we release the mutex.
1917 	 */
1918 	epi = ep_find(ep, tf.file, fd);
1919 
1920 	error = -EINVAL;
1921 	switch (op) {
1922 	case EPOLL_CTL_ADD:
1923 		if (!epi) {
1924 			epds.events |= POLLERR | POLLHUP;
1925 			error = ep_insert(ep, &epds, tf.file, fd, full_check);
1926 		} else
1927 			error = -EEXIST;
1928 		break;
1929 	case EPOLL_CTL_DEL:
1930 		if (epi)
1931 			error = ep_remove(ep, epi);
1932 		else
1933 			error = -ENOENT;
1934 		break;
1935 	case EPOLL_CTL_MOD:
1936 		if (epi) {
1937 			epds.events |= POLLERR | POLLHUP;
1938 			error = ep_modify(ep, epi, &epds);
1939 		} else
1940 			error = -ENOENT;
1941 		break;
1942 	}
1943 	if (tep != NULL)
1944 		mutex_unlock(&tep->mtx);
1945 	mutex_unlock(&ep->mtx);
1946 
1947 error_tgt_fput:
1948 	if (full_check) {
1949 		clear_tfile_check_list();
1950 		loop_check_gen++;
1951 		mutex_unlock(&epmutex);
1952 	}
1953 
1954 	fdput(tf);
1955 error_fput:
1956 	fdput(f);
1957 error_return:
1958 
1959 	return error;
1960 }
1961 
1962 /*
1963  * Implement the event wait interface for the eventpoll file. It is the kernel
1964  * part of the user space epoll_wait(2).
1965  */
SYSCALL_DEFINE4(epoll_wait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout)1966 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1967 		int, maxevents, int, timeout)
1968 {
1969 	int error;
1970 	struct fd f;
1971 	struct eventpoll *ep;
1972 
1973 	/* The maximum number of event must be greater than zero */
1974 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1975 		return -EINVAL;
1976 
1977 	/* Verify that the area passed by the user is writeable */
1978 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
1979 		return -EFAULT;
1980 
1981 	/* Get the "struct file *" for the eventpoll file */
1982 	f = fdget(epfd);
1983 	if (!f.file)
1984 		return -EBADF;
1985 
1986 	/*
1987 	 * We have to check that the file structure underneath the fd
1988 	 * the user passed to us _is_ an eventpoll file.
1989 	 */
1990 	error = -EINVAL;
1991 	if (!is_file_epoll(f.file))
1992 		goto error_fput;
1993 
1994 	/*
1995 	 * At this point it is safe to assume that the "private_data" contains
1996 	 * our own data structure.
1997 	 */
1998 	ep = f.file->private_data;
1999 
2000 	/* Time to fish for events ... */
2001 	error = ep_poll(ep, events, maxevents, timeout);
2002 
2003 error_fput:
2004 	fdput(f);
2005 	return error;
2006 }
2007 
2008 /*
2009  * Implement the event wait interface for the eventpoll file. It is the kernel
2010  * part of the user space epoll_pwait(2).
2011  */
SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2012 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2013 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2014 		size_t, sigsetsize)
2015 {
2016 	int error;
2017 	sigset_t ksigmask, sigsaved;
2018 
2019 	/*
2020 	 * If the caller wants a certain signal mask to be set during the wait,
2021 	 * we apply it here.
2022 	 */
2023 	if (sigmask) {
2024 		if (sigsetsize != sizeof(sigset_t))
2025 			return -EINVAL;
2026 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2027 			return -EFAULT;
2028 		sigsaved = current->blocked;
2029 		set_current_blocked(&ksigmask);
2030 	}
2031 
2032 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
2033 
2034 	/*
2035 	 * If we changed the signal mask, we need to restore the original one.
2036 	 * In case we've got a signal while waiting, we do not restore the
2037 	 * signal mask yet, and we allow do_signal() to deliver the signal on
2038 	 * the way back to userspace, before the signal mask is restored.
2039 	 */
2040 	if (sigmask) {
2041 		if (error == -EINTR) {
2042 			memcpy(&current->saved_sigmask, &sigsaved,
2043 			       sizeof(sigsaved));
2044 			set_restore_sigmask();
2045 		} else
2046 			set_current_blocked(&sigsaved);
2047 	}
2048 
2049 	return error;
2050 }
2051 
2052 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2053 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2054 			struct epoll_event __user *, events,
2055 			int, maxevents, int, timeout,
2056 			const compat_sigset_t __user *, sigmask,
2057 			compat_size_t, sigsetsize)
2058 {
2059 	long err;
2060 	compat_sigset_t csigmask;
2061 	sigset_t ksigmask, sigsaved;
2062 
2063 	/*
2064 	 * If the caller wants a certain signal mask to be set during the wait,
2065 	 * we apply it here.
2066 	 */
2067 	if (sigmask) {
2068 		if (sigsetsize != sizeof(compat_sigset_t))
2069 			return -EINVAL;
2070 		if (copy_from_user(&csigmask, sigmask, sizeof(csigmask)))
2071 			return -EFAULT;
2072 		sigset_from_compat(&ksigmask, &csigmask);
2073 		sigsaved = current->blocked;
2074 		set_current_blocked(&ksigmask);
2075 	}
2076 
2077 	err = sys_epoll_wait(epfd, events, maxevents, timeout);
2078 
2079 	/*
2080 	 * If we changed the signal mask, we need to restore the original one.
2081 	 * In case we've got a signal while waiting, we do not restore the
2082 	 * signal mask yet, and we allow do_signal() to deliver the signal on
2083 	 * the way back to userspace, before the signal mask is restored.
2084 	 */
2085 	if (sigmask) {
2086 		if (err == -EINTR) {
2087 			memcpy(&current->saved_sigmask, &sigsaved,
2088 			       sizeof(sigsaved));
2089 			set_restore_sigmask();
2090 		} else
2091 			set_current_blocked(&sigsaved);
2092 	}
2093 
2094 	return err;
2095 }
2096 #endif
2097 
eventpoll_init(void)2098 static int __init eventpoll_init(void)
2099 {
2100 	struct sysinfo si;
2101 
2102 	si_meminfo(&si);
2103 	/*
2104 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2105 	 */
2106 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2107 		EP_ITEM_COST;
2108 	BUG_ON(max_user_watches < 0);
2109 
2110 	/*
2111 	 * Initialize the structure used to perform epoll file descriptor
2112 	 * inclusion loops checks.
2113 	 */
2114 	ep_nested_calls_init(&poll_loop_ncalls);
2115 
2116 	/* Initialize the structure used to perform safe poll wait head wake ups */
2117 	ep_nested_calls_init(&poll_safewake_ncalls);
2118 
2119 	/* Initialize the structure used to perform file's f_op->poll() calls */
2120 	ep_nested_calls_init(&poll_readywalk_ncalls);
2121 
2122 	/*
2123 	 * We can have many thousands of epitems, so prevent this from
2124 	 * using an extra cache line on 64-bit (and smaller) CPUs
2125 	 */
2126 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2127 
2128 	/* Allocates slab cache used to allocate "struct epitem" items */
2129 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2130 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2131 
2132 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2133 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2134 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2135 
2136 	return 0;
2137 }
2138 fs_initcall(eventpoll_init);
2139