• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   *  linux/fs/ext2/inode.c
3   *
4   * Copyright (C) 1992, 1993, 1994, 1995
5   * Remy Card (card@masi.ibp.fr)
6   * Laboratoire MASI - Institut Blaise Pascal
7   * Universite Pierre et Marie Curie (Paris VI)
8   *
9   *  from
10   *
11   *  linux/fs/minix/inode.c
12   *
13   *  Copyright (C) 1991, 1992  Linus Torvalds
14   *
15   *  Goal-directed block allocation by Stephen Tweedie
16   * 	(sct@dcs.ed.ac.uk), 1993, 1998
17   *  Big-endian to little-endian byte-swapping/bitmaps by
18   *        David S. Miller (davem@caip.rutgers.edu), 1995
19   *  64-bit file support on 64-bit platforms by Jakub Jelinek
20   * 	(jj@sunsite.ms.mff.cuni.cz)
21   *
22   *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23   */
24  
25  #include <linux/time.h>
26  #include <linux/highuid.h>
27  #include <linux/pagemap.h>
28  #include <linux/dax.h>
29  #include <linux/quotaops.h>
30  #include <linux/writeback.h>
31  #include <linux/buffer_head.h>
32  #include <linux/mpage.h>
33  #include <linux/fiemap.h>
34  #include <linux/namei.h>
35  #include <linux/uio.h>
36  #include "ext2.h"
37  #include "acl.h"
38  #include "xattr.h"
39  
40  static int __ext2_write_inode(struct inode *inode, int do_sync);
41  
42  /*
43   * Test whether an inode is a fast symlink.
44   */
ext2_inode_is_fast_symlink(struct inode * inode)45  static inline int ext2_inode_is_fast_symlink(struct inode *inode)
46  {
47  	int ea_blocks = EXT2_I(inode)->i_file_acl ?
48  		(inode->i_sb->s_blocksize >> 9) : 0;
49  
50  	return (S_ISLNK(inode->i_mode) &&
51  		inode->i_blocks - ea_blocks == 0);
52  }
53  
54  static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
55  
ext2_write_failed(struct address_space * mapping,loff_t to)56  static void ext2_write_failed(struct address_space *mapping, loff_t to)
57  {
58  	struct inode *inode = mapping->host;
59  
60  	if (to > inode->i_size) {
61  		truncate_pagecache(inode, inode->i_size);
62  		ext2_truncate_blocks(inode, inode->i_size);
63  	}
64  }
65  
66  /*
67   * Called at the last iput() if i_nlink is zero.
68   */
ext2_evict_inode(struct inode * inode)69  void ext2_evict_inode(struct inode * inode)
70  {
71  	struct ext2_block_alloc_info *rsv;
72  	int want_delete = 0;
73  
74  	if (!inode->i_nlink && !is_bad_inode(inode)) {
75  		want_delete = 1;
76  		dquot_initialize(inode);
77  	} else {
78  		dquot_drop(inode);
79  	}
80  
81  	truncate_inode_pages_final(&inode->i_data);
82  
83  	if (want_delete) {
84  		sb_start_intwrite(inode->i_sb);
85  		/* set dtime */
86  		EXT2_I(inode)->i_dtime	= get_seconds();
87  		mark_inode_dirty(inode);
88  		__ext2_write_inode(inode, inode_needs_sync(inode));
89  		/* truncate to 0 */
90  		inode->i_size = 0;
91  		if (inode->i_blocks)
92  			ext2_truncate_blocks(inode, 0);
93  		ext2_xattr_delete_inode(inode);
94  	}
95  
96  	invalidate_inode_buffers(inode);
97  	clear_inode(inode);
98  
99  	ext2_discard_reservation(inode);
100  	rsv = EXT2_I(inode)->i_block_alloc_info;
101  	EXT2_I(inode)->i_block_alloc_info = NULL;
102  	if (unlikely(rsv))
103  		kfree(rsv);
104  
105  	if (want_delete) {
106  		ext2_free_inode(inode);
107  		sb_end_intwrite(inode->i_sb);
108  	}
109  }
110  
111  typedef struct {
112  	__le32	*p;
113  	__le32	key;
114  	struct buffer_head *bh;
115  } Indirect;
116  
add_chain(Indirect * p,struct buffer_head * bh,__le32 * v)117  static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
118  {
119  	p->key = *(p->p = v);
120  	p->bh = bh;
121  }
122  
verify_chain(Indirect * from,Indirect * to)123  static inline int verify_chain(Indirect *from, Indirect *to)
124  {
125  	while (from <= to && from->key == *from->p)
126  		from++;
127  	return (from > to);
128  }
129  
130  /**
131   *	ext2_block_to_path - parse the block number into array of offsets
132   *	@inode: inode in question (we are only interested in its superblock)
133   *	@i_block: block number to be parsed
134   *	@offsets: array to store the offsets in
135   *      @boundary: set this non-zero if the referred-to block is likely to be
136   *             followed (on disk) by an indirect block.
137   *	To store the locations of file's data ext2 uses a data structure common
138   *	for UNIX filesystems - tree of pointers anchored in the inode, with
139   *	data blocks at leaves and indirect blocks in intermediate nodes.
140   *	This function translates the block number into path in that tree -
141   *	return value is the path length and @offsets[n] is the offset of
142   *	pointer to (n+1)th node in the nth one. If @block is out of range
143   *	(negative or too large) warning is printed and zero returned.
144   *
145   *	Note: function doesn't find node addresses, so no IO is needed. All
146   *	we need to know is the capacity of indirect blocks (taken from the
147   *	inode->i_sb).
148   */
149  
150  /*
151   * Portability note: the last comparison (check that we fit into triple
152   * indirect block) is spelled differently, because otherwise on an
153   * architecture with 32-bit longs and 8Kb pages we might get into trouble
154   * if our filesystem had 8Kb blocks. We might use long long, but that would
155   * kill us on x86. Oh, well, at least the sign propagation does not matter -
156   * i_block would have to be negative in the very beginning, so we would not
157   * get there at all.
158   */
159  
ext2_block_to_path(struct inode * inode,long i_block,int offsets[4],int * boundary)160  static int ext2_block_to_path(struct inode *inode,
161  			long i_block, int offsets[4], int *boundary)
162  {
163  	int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
164  	int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
165  	const long direct_blocks = EXT2_NDIR_BLOCKS,
166  		indirect_blocks = ptrs,
167  		double_blocks = (1 << (ptrs_bits * 2));
168  	int n = 0;
169  	int final = 0;
170  
171  	if (i_block < 0) {
172  		ext2_msg(inode->i_sb, KERN_WARNING,
173  			"warning: %s: block < 0", __func__);
174  	} else if (i_block < direct_blocks) {
175  		offsets[n++] = i_block;
176  		final = direct_blocks;
177  	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
178  		offsets[n++] = EXT2_IND_BLOCK;
179  		offsets[n++] = i_block;
180  		final = ptrs;
181  	} else if ((i_block -= indirect_blocks) < double_blocks) {
182  		offsets[n++] = EXT2_DIND_BLOCK;
183  		offsets[n++] = i_block >> ptrs_bits;
184  		offsets[n++] = i_block & (ptrs - 1);
185  		final = ptrs;
186  	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
187  		offsets[n++] = EXT2_TIND_BLOCK;
188  		offsets[n++] = i_block >> (ptrs_bits * 2);
189  		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
190  		offsets[n++] = i_block & (ptrs - 1);
191  		final = ptrs;
192  	} else {
193  		ext2_msg(inode->i_sb, KERN_WARNING,
194  			"warning: %s: block is too big", __func__);
195  	}
196  	if (boundary)
197  		*boundary = final - 1 - (i_block & (ptrs - 1));
198  
199  	return n;
200  }
201  
202  /**
203   *	ext2_get_branch - read the chain of indirect blocks leading to data
204   *	@inode: inode in question
205   *	@depth: depth of the chain (1 - direct pointer, etc.)
206   *	@offsets: offsets of pointers in inode/indirect blocks
207   *	@chain: place to store the result
208   *	@err: here we store the error value
209   *
210   *	Function fills the array of triples <key, p, bh> and returns %NULL
211   *	if everything went OK or the pointer to the last filled triple
212   *	(incomplete one) otherwise. Upon the return chain[i].key contains
213   *	the number of (i+1)-th block in the chain (as it is stored in memory,
214   *	i.e. little-endian 32-bit), chain[i].p contains the address of that
215   *	number (it points into struct inode for i==0 and into the bh->b_data
216   *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
217   *	block for i>0 and NULL for i==0. In other words, it holds the block
218   *	numbers of the chain, addresses they were taken from (and where we can
219   *	verify that chain did not change) and buffer_heads hosting these
220   *	numbers.
221   *
222   *	Function stops when it stumbles upon zero pointer (absent block)
223   *		(pointer to last triple returned, *@err == 0)
224   *	or when it gets an IO error reading an indirect block
225   *		(ditto, *@err == -EIO)
226   *	or when it notices that chain had been changed while it was reading
227   *		(ditto, *@err == -EAGAIN)
228   *	or when it reads all @depth-1 indirect blocks successfully and finds
229   *	the whole chain, all way to the data (returns %NULL, *err == 0).
230   */
ext2_get_branch(struct inode * inode,int depth,int * offsets,Indirect chain[4],int * err)231  static Indirect *ext2_get_branch(struct inode *inode,
232  				 int depth,
233  				 int *offsets,
234  				 Indirect chain[4],
235  				 int *err)
236  {
237  	struct super_block *sb = inode->i_sb;
238  	Indirect *p = chain;
239  	struct buffer_head *bh;
240  
241  	*err = 0;
242  	/* i_data is not going away, no lock needed */
243  	add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
244  	if (!p->key)
245  		goto no_block;
246  	while (--depth) {
247  		bh = sb_bread(sb, le32_to_cpu(p->key));
248  		if (!bh)
249  			goto failure;
250  		read_lock(&EXT2_I(inode)->i_meta_lock);
251  		if (!verify_chain(chain, p))
252  			goto changed;
253  		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
254  		read_unlock(&EXT2_I(inode)->i_meta_lock);
255  		if (!p->key)
256  			goto no_block;
257  	}
258  	return NULL;
259  
260  changed:
261  	read_unlock(&EXT2_I(inode)->i_meta_lock);
262  	brelse(bh);
263  	*err = -EAGAIN;
264  	goto no_block;
265  failure:
266  	*err = -EIO;
267  no_block:
268  	return p;
269  }
270  
271  /**
272   *	ext2_find_near - find a place for allocation with sufficient locality
273   *	@inode: owner
274   *	@ind: descriptor of indirect block.
275   *
276   *	This function returns the preferred place for block allocation.
277   *	It is used when heuristic for sequential allocation fails.
278   *	Rules are:
279   *	  + if there is a block to the left of our position - allocate near it.
280   *	  + if pointer will live in indirect block - allocate near that block.
281   *	  + if pointer will live in inode - allocate in the same cylinder group.
282   *
283   * In the latter case we colour the starting block by the callers PID to
284   * prevent it from clashing with concurrent allocations for a different inode
285   * in the same block group.   The PID is used here so that functionally related
286   * files will be close-by on-disk.
287   *
288   *	Caller must make sure that @ind is valid and will stay that way.
289   */
290  
ext2_find_near(struct inode * inode,Indirect * ind)291  static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
292  {
293  	struct ext2_inode_info *ei = EXT2_I(inode);
294  	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
295  	__le32 *p;
296  	ext2_fsblk_t bg_start;
297  	ext2_fsblk_t colour;
298  
299  	/* Try to find previous block */
300  	for (p = ind->p - 1; p >= start; p--)
301  		if (*p)
302  			return le32_to_cpu(*p);
303  
304  	/* No such thing, so let's try location of indirect block */
305  	if (ind->bh)
306  		return ind->bh->b_blocknr;
307  
308  	/*
309  	 * It is going to be referred from inode itself? OK, just put it into
310  	 * the same cylinder group then.
311  	 */
312  	bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
313  	colour = (current->pid % 16) *
314  			(EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
315  	return bg_start + colour;
316  }
317  
318  /**
319   *	ext2_find_goal - find a preferred place for allocation.
320   *	@inode: owner
321   *	@block:  block we want
322   *	@partial: pointer to the last triple within a chain
323   *
324   *	Returns preferred place for a block (the goal).
325   */
326  
ext2_find_goal(struct inode * inode,long block,Indirect * partial)327  static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
328  					  Indirect *partial)
329  {
330  	struct ext2_block_alloc_info *block_i;
331  
332  	block_i = EXT2_I(inode)->i_block_alloc_info;
333  
334  	/*
335  	 * try the heuristic for sequential allocation,
336  	 * failing that at least try to get decent locality.
337  	 */
338  	if (block_i && (block == block_i->last_alloc_logical_block + 1)
339  		&& (block_i->last_alloc_physical_block != 0)) {
340  		return block_i->last_alloc_physical_block + 1;
341  	}
342  
343  	return ext2_find_near(inode, partial);
344  }
345  
346  /**
347   *	ext2_blks_to_allocate: Look up the block map and count the number
348   *	of direct blocks need to be allocated for the given branch.
349   *
350   * 	@branch: chain of indirect blocks
351   *	@k: number of blocks need for indirect blocks
352   *	@blks: number of data blocks to be mapped.
353   *	@blocks_to_boundary:  the offset in the indirect block
354   *
355   *	return the total number of blocks to be allocate, including the
356   *	direct and indirect blocks.
357   */
358  static int
ext2_blks_to_allocate(Indirect * branch,int k,unsigned long blks,int blocks_to_boundary)359  ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
360  		int blocks_to_boundary)
361  {
362  	unsigned long count = 0;
363  
364  	/*
365  	 * Simple case, [t,d]Indirect block(s) has not allocated yet
366  	 * then it's clear blocks on that path have not allocated
367  	 */
368  	if (k > 0) {
369  		/* right now don't hanel cross boundary allocation */
370  		if (blks < blocks_to_boundary + 1)
371  			count += blks;
372  		else
373  			count += blocks_to_boundary + 1;
374  		return count;
375  	}
376  
377  	count++;
378  	while (count < blks && count <= blocks_to_boundary
379  		&& le32_to_cpu(*(branch[0].p + count)) == 0) {
380  		count++;
381  	}
382  	return count;
383  }
384  
385  /**
386   *	ext2_alloc_blocks: multiple allocate blocks needed for a branch
387   *	@indirect_blks: the number of blocks need to allocate for indirect
388   *			blocks
389   *
390   *	@new_blocks: on return it will store the new block numbers for
391   *	the indirect blocks(if needed) and the first direct block,
392   *	@blks:	on return it will store the total number of allocated
393   *		direct blocks
394   */
ext2_alloc_blocks(struct inode * inode,ext2_fsblk_t goal,int indirect_blks,int blks,ext2_fsblk_t new_blocks[4],int * err)395  static int ext2_alloc_blocks(struct inode *inode,
396  			ext2_fsblk_t goal, int indirect_blks, int blks,
397  			ext2_fsblk_t new_blocks[4], int *err)
398  {
399  	int target, i;
400  	unsigned long count = 0;
401  	int index = 0;
402  	ext2_fsblk_t current_block = 0;
403  	int ret = 0;
404  
405  	/*
406  	 * Here we try to allocate the requested multiple blocks at once,
407  	 * on a best-effort basis.
408  	 * To build a branch, we should allocate blocks for
409  	 * the indirect blocks(if not allocated yet), and at least
410  	 * the first direct block of this branch.  That's the
411  	 * minimum number of blocks need to allocate(required)
412  	 */
413  	target = blks + indirect_blks;
414  
415  	while (1) {
416  		count = target;
417  		/* allocating blocks for indirect blocks and direct blocks */
418  		current_block = ext2_new_blocks(inode,goal,&count,err);
419  		if (*err)
420  			goto failed_out;
421  
422  		target -= count;
423  		/* allocate blocks for indirect blocks */
424  		while (index < indirect_blks && count) {
425  			new_blocks[index++] = current_block++;
426  			count--;
427  		}
428  
429  		if (count > 0)
430  			break;
431  	}
432  
433  	/* save the new block number for the first direct block */
434  	new_blocks[index] = current_block;
435  
436  	/* total number of blocks allocated for direct blocks */
437  	ret = count;
438  	*err = 0;
439  	return ret;
440  failed_out:
441  	for (i = 0; i <index; i++)
442  		ext2_free_blocks(inode, new_blocks[i], 1);
443  	if (index)
444  		mark_inode_dirty(inode);
445  	return ret;
446  }
447  
448  /**
449   *	ext2_alloc_branch - allocate and set up a chain of blocks.
450   *	@inode: owner
451   *	@num: depth of the chain (number of blocks to allocate)
452   *	@offsets: offsets (in the blocks) to store the pointers to next.
453   *	@branch: place to store the chain in.
454   *
455   *	This function allocates @num blocks, zeroes out all but the last one,
456   *	links them into chain and (if we are synchronous) writes them to disk.
457   *	In other words, it prepares a branch that can be spliced onto the
458   *	inode. It stores the information about that chain in the branch[], in
459   *	the same format as ext2_get_branch() would do. We are calling it after
460   *	we had read the existing part of chain and partial points to the last
461   *	triple of that (one with zero ->key). Upon the exit we have the same
462   *	picture as after the successful ext2_get_block(), except that in one
463   *	place chain is disconnected - *branch->p is still zero (we did not
464   *	set the last link), but branch->key contains the number that should
465   *	be placed into *branch->p to fill that gap.
466   *
467   *	If allocation fails we free all blocks we've allocated (and forget
468   *	their buffer_heads) and return the error value the from failed
469   *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
470   *	as described above and return 0.
471   */
472  
ext2_alloc_branch(struct inode * inode,int indirect_blks,int * blks,ext2_fsblk_t goal,int * offsets,Indirect * branch)473  static int ext2_alloc_branch(struct inode *inode,
474  			int indirect_blks, int *blks, ext2_fsblk_t goal,
475  			int *offsets, Indirect *branch)
476  {
477  	int blocksize = inode->i_sb->s_blocksize;
478  	int i, n = 0;
479  	int err = 0;
480  	struct buffer_head *bh;
481  	int num;
482  	ext2_fsblk_t new_blocks[4];
483  	ext2_fsblk_t current_block;
484  
485  	num = ext2_alloc_blocks(inode, goal, indirect_blks,
486  				*blks, new_blocks, &err);
487  	if (err)
488  		return err;
489  
490  	branch[0].key = cpu_to_le32(new_blocks[0]);
491  	/*
492  	 * metadata blocks and data blocks are allocated.
493  	 */
494  	for (n = 1; n <= indirect_blks;  n++) {
495  		/*
496  		 * Get buffer_head for parent block, zero it out
497  		 * and set the pointer to new one, then send
498  		 * parent to disk.
499  		 */
500  		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
501  		if (unlikely(!bh)) {
502  			err = -ENOMEM;
503  			goto failed;
504  		}
505  		branch[n].bh = bh;
506  		lock_buffer(bh);
507  		memset(bh->b_data, 0, blocksize);
508  		branch[n].p = (__le32 *) bh->b_data + offsets[n];
509  		branch[n].key = cpu_to_le32(new_blocks[n]);
510  		*branch[n].p = branch[n].key;
511  		if ( n == indirect_blks) {
512  			current_block = new_blocks[n];
513  			/*
514  			 * End of chain, update the last new metablock of
515  			 * the chain to point to the new allocated
516  			 * data blocks numbers
517  			 */
518  			for (i=1; i < num; i++)
519  				*(branch[n].p + i) = cpu_to_le32(++current_block);
520  		}
521  		set_buffer_uptodate(bh);
522  		unlock_buffer(bh);
523  		mark_buffer_dirty_inode(bh, inode);
524  		/* We used to sync bh here if IS_SYNC(inode).
525  		 * But we now rely upon generic_write_sync()
526  		 * and b_inode_buffers.  But not for directories.
527  		 */
528  		if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
529  			sync_dirty_buffer(bh);
530  	}
531  	*blks = num;
532  	return err;
533  
534  failed:
535  	for (i = 1; i < n; i++)
536  		bforget(branch[i].bh);
537  	for (i = 0; i < indirect_blks; i++)
538  		ext2_free_blocks(inode, new_blocks[i], 1);
539  	ext2_free_blocks(inode, new_blocks[i], num);
540  	return err;
541  }
542  
543  /**
544   * ext2_splice_branch - splice the allocated branch onto inode.
545   * @inode: owner
546   * @block: (logical) number of block we are adding
547   * @where: location of missing link
548   * @num:   number of indirect blocks we are adding
549   * @blks:  number of direct blocks we are adding
550   *
551   * This function fills the missing link and does all housekeeping needed in
552   * inode (->i_blocks, etc.). In case of success we end up with the full
553   * chain to new block and return 0.
554   */
ext2_splice_branch(struct inode * inode,long block,Indirect * where,int num,int blks)555  static void ext2_splice_branch(struct inode *inode,
556  			long block, Indirect *where, int num, int blks)
557  {
558  	int i;
559  	struct ext2_block_alloc_info *block_i;
560  	ext2_fsblk_t current_block;
561  
562  	block_i = EXT2_I(inode)->i_block_alloc_info;
563  
564  	/* XXX LOCKING probably should have i_meta_lock ?*/
565  	/* That's it */
566  
567  	*where->p = where->key;
568  
569  	/*
570  	 * Update the host buffer_head or inode to point to more just allocated
571  	 * direct blocks blocks
572  	 */
573  	if (num == 0 && blks > 1) {
574  		current_block = le32_to_cpu(where->key) + 1;
575  		for (i = 1; i < blks; i++)
576  			*(where->p + i ) = cpu_to_le32(current_block++);
577  	}
578  
579  	/*
580  	 * update the most recently allocated logical & physical block
581  	 * in i_block_alloc_info, to assist find the proper goal block for next
582  	 * allocation
583  	 */
584  	if (block_i) {
585  		block_i->last_alloc_logical_block = block + blks - 1;
586  		block_i->last_alloc_physical_block =
587  				le32_to_cpu(where[num].key) + blks - 1;
588  	}
589  
590  	/* We are done with atomic stuff, now do the rest of housekeeping */
591  
592  	/* had we spliced it onto indirect block? */
593  	if (where->bh)
594  		mark_buffer_dirty_inode(where->bh, inode);
595  
596  	inode->i_ctime = CURRENT_TIME_SEC;
597  	mark_inode_dirty(inode);
598  }
599  
600  /*
601   * Allocation strategy is simple: if we have to allocate something, we will
602   * have to go the whole way to leaf. So let's do it before attaching anything
603   * to tree, set linkage between the newborn blocks, write them if sync is
604   * required, recheck the path, free and repeat if check fails, otherwise
605   * set the last missing link (that will protect us from any truncate-generated
606   * removals - all blocks on the path are immune now) and possibly force the
607   * write on the parent block.
608   * That has a nice additional property: no special recovery from the failed
609   * allocations is needed - we simply release blocks and do not touch anything
610   * reachable from inode.
611   *
612   * `handle' can be NULL if create == 0.
613   *
614   * return > 0, # of blocks mapped or allocated.
615   * return = 0, if plain lookup failed.
616   * return < 0, error case.
617   */
ext2_get_blocks(struct inode * inode,sector_t iblock,unsigned long maxblocks,struct buffer_head * bh_result,int create)618  static int ext2_get_blocks(struct inode *inode,
619  			   sector_t iblock, unsigned long maxblocks,
620  			   struct buffer_head *bh_result,
621  			   int create)
622  {
623  	int err = -EIO;
624  	int offsets[4];
625  	Indirect chain[4];
626  	Indirect *partial;
627  	ext2_fsblk_t goal;
628  	int indirect_blks;
629  	int blocks_to_boundary = 0;
630  	int depth;
631  	struct ext2_inode_info *ei = EXT2_I(inode);
632  	int count = 0;
633  	ext2_fsblk_t first_block = 0;
634  
635  	BUG_ON(maxblocks == 0);
636  
637  	depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
638  
639  	if (depth == 0)
640  		return (err);
641  
642  	partial = ext2_get_branch(inode, depth, offsets, chain, &err);
643  	/* Simplest case - block found, no allocation needed */
644  	if (!partial) {
645  		first_block = le32_to_cpu(chain[depth - 1].key);
646  		clear_buffer_new(bh_result); /* What's this do? */
647  		count++;
648  		/*map more blocks*/
649  		while (count < maxblocks && count <= blocks_to_boundary) {
650  			ext2_fsblk_t blk;
651  
652  			if (!verify_chain(chain, chain + depth - 1)) {
653  				/*
654  				 * Indirect block might be removed by
655  				 * truncate while we were reading it.
656  				 * Handling of that case: forget what we've
657  				 * got now, go to reread.
658  				 */
659  				err = -EAGAIN;
660  				count = 0;
661  				break;
662  			}
663  			blk = le32_to_cpu(*(chain[depth-1].p + count));
664  			if (blk == first_block + count)
665  				count++;
666  			else
667  				break;
668  		}
669  		if (err != -EAGAIN)
670  			goto got_it;
671  	}
672  
673  	/* Next simple case - plain lookup or failed read of indirect block */
674  	if (!create || err == -EIO)
675  		goto cleanup;
676  
677  	mutex_lock(&ei->truncate_mutex);
678  	/*
679  	 * If the indirect block is missing while we are reading
680  	 * the chain(ext2_get_branch() returns -EAGAIN err), or
681  	 * if the chain has been changed after we grab the semaphore,
682  	 * (either because another process truncated this branch, or
683  	 * another get_block allocated this branch) re-grab the chain to see if
684  	 * the request block has been allocated or not.
685  	 *
686  	 * Since we already block the truncate/other get_block
687  	 * at this point, we will have the current copy of the chain when we
688  	 * splice the branch into the tree.
689  	 */
690  	if (err == -EAGAIN || !verify_chain(chain, partial)) {
691  		while (partial > chain) {
692  			brelse(partial->bh);
693  			partial--;
694  		}
695  		partial = ext2_get_branch(inode, depth, offsets, chain, &err);
696  		if (!partial) {
697  			count++;
698  			mutex_unlock(&ei->truncate_mutex);
699  			if (err)
700  				goto cleanup;
701  			clear_buffer_new(bh_result);
702  			goto got_it;
703  		}
704  	}
705  
706  	/*
707  	 * Okay, we need to do block allocation.  Lazily initialize the block
708  	 * allocation info here if necessary
709  	*/
710  	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
711  		ext2_init_block_alloc_info(inode);
712  
713  	goal = ext2_find_goal(inode, iblock, partial);
714  
715  	/* the number of blocks need to allocate for [d,t]indirect blocks */
716  	indirect_blks = (chain + depth) - partial - 1;
717  	/*
718  	 * Next look up the indirect map to count the totoal number of
719  	 * direct blocks to allocate for this branch.
720  	 */
721  	count = ext2_blks_to_allocate(partial, indirect_blks,
722  					maxblocks, blocks_to_boundary);
723  	/*
724  	 * XXX ???? Block out ext2_truncate while we alter the tree
725  	 */
726  	err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
727  				offsets + (partial - chain), partial);
728  
729  	if (err) {
730  		mutex_unlock(&ei->truncate_mutex);
731  		goto cleanup;
732  	}
733  
734  	if (IS_DAX(inode)) {
735  		/*
736  		 * block must be initialised before we put it in the tree
737  		 * so that it's not found by another thread before it's
738  		 * initialised
739  		 */
740  		err = dax_clear_blocks(inode, le32_to_cpu(chain[depth-1].key),
741  						1 << inode->i_blkbits);
742  		if (err) {
743  			mutex_unlock(&ei->truncate_mutex);
744  			goto cleanup;
745  		}
746  	}
747  
748  	ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
749  	mutex_unlock(&ei->truncate_mutex);
750  	set_buffer_new(bh_result);
751  got_it:
752  	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
753  	if (count > blocks_to_boundary)
754  		set_buffer_boundary(bh_result);
755  	err = count;
756  	/* Clean up and exit */
757  	partial = chain + depth - 1;	/* the whole chain */
758  cleanup:
759  	while (partial > chain) {
760  		brelse(partial->bh);
761  		partial--;
762  	}
763  	return err;
764  }
765  
ext2_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)766  int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
767  {
768  	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
769  	int ret = ext2_get_blocks(inode, iblock, max_blocks,
770  			      bh_result, create);
771  	if (ret > 0) {
772  		bh_result->b_size = (ret << inode->i_blkbits);
773  		ret = 0;
774  	}
775  	return ret;
776  
777  }
778  
ext2_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)779  int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
780  		u64 start, u64 len)
781  {
782  	return generic_block_fiemap(inode, fieinfo, start, len,
783  				    ext2_get_block);
784  }
785  
ext2_writepage(struct page * page,struct writeback_control * wbc)786  static int ext2_writepage(struct page *page, struct writeback_control *wbc)
787  {
788  	return block_write_full_page(page, ext2_get_block, wbc);
789  }
790  
ext2_readpage(struct file * file,struct page * page)791  static int ext2_readpage(struct file *file, struct page *page)
792  {
793  	return mpage_readpage(page, ext2_get_block);
794  }
795  
796  static int
ext2_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)797  ext2_readpages(struct file *file, struct address_space *mapping,
798  		struct list_head *pages, unsigned nr_pages)
799  {
800  	return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
801  }
802  
803  static int
ext2_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)804  ext2_write_begin(struct file *file, struct address_space *mapping,
805  		loff_t pos, unsigned len, unsigned flags,
806  		struct page **pagep, void **fsdata)
807  {
808  	int ret;
809  
810  	ret = block_write_begin(mapping, pos, len, flags, pagep,
811  				ext2_get_block);
812  	if (ret < 0)
813  		ext2_write_failed(mapping, pos + len);
814  	return ret;
815  }
816  
ext2_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)817  static int ext2_write_end(struct file *file, struct address_space *mapping,
818  			loff_t pos, unsigned len, unsigned copied,
819  			struct page *page, void *fsdata)
820  {
821  	int ret;
822  
823  	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
824  	if (ret < len)
825  		ext2_write_failed(mapping, pos + len);
826  	return ret;
827  }
828  
829  static int
ext2_nobh_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)830  ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
831  		loff_t pos, unsigned len, unsigned flags,
832  		struct page **pagep, void **fsdata)
833  {
834  	int ret;
835  
836  	ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
837  			       ext2_get_block);
838  	if (ret < 0)
839  		ext2_write_failed(mapping, pos + len);
840  	return ret;
841  }
842  
ext2_nobh_writepage(struct page * page,struct writeback_control * wbc)843  static int ext2_nobh_writepage(struct page *page,
844  			struct writeback_control *wbc)
845  {
846  	return nobh_writepage(page, ext2_get_block, wbc);
847  }
848  
ext2_bmap(struct address_space * mapping,sector_t block)849  static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
850  {
851  	return generic_block_bmap(mapping,block,ext2_get_block);
852  }
853  
854  static ssize_t
ext2_direct_IO(struct kiocb * iocb,struct iov_iter * iter,loff_t offset)855  ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
856  {
857  	struct file *file = iocb->ki_filp;
858  	struct address_space *mapping = file->f_mapping;
859  	struct inode *inode = mapping->host;
860  	size_t count = iov_iter_count(iter);
861  	ssize_t ret;
862  
863  	if (IS_DAX(inode))
864  		ret = dax_do_io(iocb, inode, iter, offset, ext2_get_block, NULL,
865  				DIO_LOCKING);
866  	else
867  		ret = blockdev_direct_IO(iocb, inode, iter, offset,
868  					 ext2_get_block);
869  	if (ret < 0 && iov_iter_rw(iter) == WRITE)
870  		ext2_write_failed(mapping, offset + count);
871  	return ret;
872  }
873  
874  static int
ext2_writepages(struct address_space * mapping,struct writeback_control * wbc)875  ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
876  {
877  	return mpage_writepages(mapping, wbc, ext2_get_block);
878  }
879  
880  const struct address_space_operations ext2_aops = {
881  	.readpage		= ext2_readpage,
882  	.readpages		= ext2_readpages,
883  	.writepage		= ext2_writepage,
884  	.write_begin		= ext2_write_begin,
885  	.write_end		= ext2_write_end,
886  	.bmap			= ext2_bmap,
887  	.direct_IO		= ext2_direct_IO,
888  	.writepages		= ext2_writepages,
889  	.migratepage		= buffer_migrate_page,
890  	.is_partially_uptodate	= block_is_partially_uptodate,
891  	.error_remove_page	= generic_error_remove_page,
892  };
893  
894  const struct address_space_operations ext2_nobh_aops = {
895  	.readpage		= ext2_readpage,
896  	.readpages		= ext2_readpages,
897  	.writepage		= ext2_nobh_writepage,
898  	.write_begin		= ext2_nobh_write_begin,
899  	.write_end		= nobh_write_end,
900  	.bmap			= ext2_bmap,
901  	.direct_IO		= ext2_direct_IO,
902  	.writepages		= ext2_writepages,
903  	.migratepage		= buffer_migrate_page,
904  	.error_remove_page	= generic_error_remove_page,
905  };
906  
907  /*
908   * Probably it should be a library function... search for first non-zero word
909   * or memcmp with zero_page, whatever is better for particular architecture.
910   * Linus?
911   */
all_zeroes(__le32 * p,__le32 * q)912  static inline int all_zeroes(__le32 *p, __le32 *q)
913  {
914  	while (p < q)
915  		if (*p++)
916  			return 0;
917  	return 1;
918  }
919  
920  /**
921   *	ext2_find_shared - find the indirect blocks for partial truncation.
922   *	@inode:	  inode in question
923   *	@depth:	  depth of the affected branch
924   *	@offsets: offsets of pointers in that branch (see ext2_block_to_path)
925   *	@chain:	  place to store the pointers to partial indirect blocks
926   *	@top:	  place to the (detached) top of branch
927   *
928   *	This is a helper function used by ext2_truncate().
929   *
930   *	When we do truncate() we may have to clean the ends of several indirect
931   *	blocks but leave the blocks themselves alive. Block is partially
932   *	truncated if some data below the new i_size is referred from it (and
933   *	it is on the path to the first completely truncated data block, indeed).
934   *	We have to free the top of that path along with everything to the right
935   *	of the path. Since no allocation past the truncation point is possible
936   *	until ext2_truncate() finishes, we may safely do the latter, but top
937   *	of branch may require special attention - pageout below the truncation
938   *	point might try to populate it.
939   *
940   *	We atomically detach the top of branch from the tree, store the block
941   *	number of its root in *@top, pointers to buffer_heads of partially
942   *	truncated blocks - in @chain[].bh and pointers to their last elements
943   *	that should not be removed - in @chain[].p. Return value is the pointer
944   *	to last filled element of @chain.
945   *
946   *	The work left to caller to do the actual freeing of subtrees:
947   *		a) free the subtree starting from *@top
948   *		b) free the subtrees whose roots are stored in
949   *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
950   *		c) free the subtrees growing from the inode past the @chain[0].p
951   *			(no partially truncated stuff there).
952   */
953  
ext2_find_shared(struct inode * inode,int depth,int offsets[4],Indirect chain[4],__le32 * top)954  static Indirect *ext2_find_shared(struct inode *inode,
955  				int depth,
956  				int offsets[4],
957  				Indirect chain[4],
958  				__le32 *top)
959  {
960  	Indirect *partial, *p;
961  	int k, err;
962  
963  	*top = 0;
964  	for (k = depth; k > 1 && !offsets[k-1]; k--)
965  		;
966  	partial = ext2_get_branch(inode, k, offsets, chain, &err);
967  	if (!partial)
968  		partial = chain + k-1;
969  	/*
970  	 * If the branch acquired continuation since we've looked at it -
971  	 * fine, it should all survive and (new) top doesn't belong to us.
972  	 */
973  	write_lock(&EXT2_I(inode)->i_meta_lock);
974  	if (!partial->key && *partial->p) {
975  		write_unlock(&EXT2_I(inode)->i_meta_lock);
976  		goto no_top;
977  	}
978  	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
979  		;
980  	/*
981  	 * OK, we've found the last block that must survive. The rest of our
982  	 * branch should be detached before unlocking. However, if that rest
983  	 * of branch is all ours and does not grow immediately from the inode
984  	 * it's easier to cheat and just decrement partial->p.
985  	 */
986  	if (p == chain + k - 1 && p > chain) {
987  		p->p--;
988  	} else {
989  		*top = *p->p;
990  		*p->p = 0;
991  	}
992  	write_unlock(&EXT2_I(inode)->i_meta_lock);
993  
994  	while(partial > p)
995  	{
996  		brelse(partial->bh);
997  		partial--;
998  	}
999  no_top:
1000  	return partial;
1001  }
1002  
1003  /**
1004   *	ext2_free_data - free a list of data blocks
1005   *	@inode:	inode we are dealing with
1006   *	@p:	array of block numbers
1007   *	@q:	points immediately past the end of array
1008   *
1009   *	We are freeing all blocks referred from that array (numbers are
1010   *	stored as little-endian 32-bit) and updating @inode->i_blocks
1011   *	appropriately.
1012   */
ext2_free_data(struct inode * inode,__le32 * p,__le32 * q)1013  static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1014  {
1015  	unsigned long block_to_free = 0, count = 0;
1016  	unsigned long nr;
1017  
1018  	for ( ; p < q ; p++) {
1019  		nr = le32_to_cpu(*p);
1020  		if (nr) {
1021  			*p = 0;
1022  			/* accumulate blocks to free if they're contiguous */
1023  			if (count == 0)
1024  				goto free_this;
1025  			else if (block_to_free == nr - count)
1026  				count++;
1027  			else {
1028  				ext2_free_blocks (inode, block_to_free, count);
1029  				mark_inode_dirty(inode);
1030  			free_this:
1031  				block_to_free = nr;
1032  				count = 1;
1033  			}
1034  		}
1035  	}
1036  	if (count > 0) {
1037  		ext2_free_blocks (inode, block_to_free, count);
1038  		mark_inode_dirty(inode);
1039  	}
1040  }
1041  
1042  /**
1043   *	ext2_free_branches - free an array of branches
1044   *	@inode:	inode we are dealing with
1045   *	@p:	array of block numbers
1046   *	@q:	pointer immediately past the end of array
1047   *	@depth:	depth of the branches to free
1048   *
1049   *	We are freeing all blocks referred from these branches (numbers are
1050   *	stored as little-endian 32-bit) and updating @inode->i_blocks
1051   *	appropriately.
1052   */
ext2_free_branches(struct inode * inode,__le32 * p,__le32 * q,int depth)1053  static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1054  {
1055  	struct buffer_head * bh;
1056  	unsigned long nr;
1057  
1058  	if (depth--) {
1059  		int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1060  		for ( ; p < q ; p++) {
1061  			nr = le32_to_cpu(*p);
1062  			if (!nr)
1063  				continue;
1064  			*p = 0;
1065  			bh = sb_bread(inode->i_sb, nr);
1066  			/*
1067  			 * A read failure? Report error and clear slot
1068  			 * (should be rare).
1069  			 */
1070  			if (!bh) {
1071  				ext2_error(inode->i_sb, "ext2_free_branches",
1072  					"Read failure, inode=%ld, block=%ld",
1073  					inode->i_ino, nr);
1074  				continue;
1075  			}
1076  			ext2_free_branches(inode,
1077  					   (__le32*)bh->b_data,
1078  					   (__le32*)bh->b_data + addr_per_block,
1079  					   depth);
1080  			bforget(bh);
1081  			ext2_free_blocks(inode, nr, 1);
1082  			mark_inode_dirty(inode);
1083  		}
1084  	} else
1085  		ext2_free_data(inode, p, q);
1086  }
1087  
1088  /* dax_sem must be held when calling this function */
__ext2_truncate_blocks(struct inode * inode,loff_t offset)1089  static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1090  {
1091  	__le32 *i_data = EXT2_I(inode)->i_data;
1092  	struct ext2_inode_info *ei = EXT2_I(inode);
1093  	int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1094  	int offsets[4];
1095  	Indirect chain[4];
1096  	Indirect *partial;
1097  	__le32 nr = 0;
1098  	int n;
1099  	long iblock;
1100  	unsigned blocksize;
1101  	blocksize = inode->i_sb->s_blocksize;
1102  	iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1103  
1104  #ifdef CONFIG_FS_DAX
1105  	WARN_ON(!rwsem_is_locked(&ei->dax_sem));
1106  #endif
1107  
1108  	n = ext2_block_to_path(inode, iblock, offsets, NULL);
1109  	if (n == 0)
1110  		return;
1111  
1112  	/*
1113  	 * From here we block out all ext2_get_block() callers who want to
1114  	 * modify the block allocation tree.
1115  	 */
1116  	mutex_lock(&ei->truncate_mutex);
1117  
1118  	if (n == 1) {
1119  		ext2_free_data(inode, i_data+offsets[0],
1120  					i_data + EXT2_NDIR_BLOCKS);
1121  		goto do_indirects;
1122  	}
1123  
1124  	partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1125  	/* Kill the top of shared branch (already detached) */
1126  	if (nr) {
1127  		if (partial == chain)
1128  			mark_inode_dirty(inode);
1129  		else
1130  			mark_buffer_dirty_inode(partial->bh, inode);
1131  		ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1132  	}
1133  	/* Clear the ends of indirect blocks on the shared branch */
1134  	while (partial > chain) {
1135  		ext2_free_branches(inode,
1136  				   partial->p + 1,
1137  				   (__le32*)partial->bh->b_data+addr_per_block,
1138  				   (chain+n-1) - partial);
1139  		mark_buffer_dirty_inode(partial->bh, inode);
1140  		brelse (partial->bh);
1141  		partial--;
1142  	}
1143  do_indirects:
1144  	/* Kill the remaining (whole) subtrees */
1145  	switch (offsets[0]) {
1146  		default:
1147  			nr = i_data[EXT2_IND_BLOCK];
1148  			if (nr) {
1149  				i_data[EXT2_IND_BLOCK] = 0;
1150  				mark_inode_dirty(inode);
1151  				ext2_free_branches(inode, &nr, &nr+1, 1);
1152  			}
1153  		case EXT2_IND_BLOCK:
1154  			nr = i_data[EXT2_DIND_BLOCK];
1155  			if (nr) {
1156  				i_data[EXT2_DIND_BLOCK] = 0;
1157  				mark_inode_dirty(inode);
1158  				ext2_free_branches(inode, &nr, &nr+1, 2);
1159  			}
1160  		case EXT2_DIND_BLOCK:
1161  			nr = i_data[EXT2_TIND_BLOCK];
1162  			if (nr) {
1163  				i_data[EXT2_TIND_BLOCK] = 0;
1164  				mark_inode_dirty(inode);
1165  				ext2_free_branches(inode, &nr, &nr+1, 3);
1166  			}
1167  		case EXT2_TIND_BLOCK:
1168  			;
1169  	}
1170  
1171  	ext2_discard_reservation(inode);
1172  
1173  	mutex_unlock(&ei->truncate_mutex);
1174  }
1175  
ext2_truncate_blocks(struct inode * inode,loff_t offset)1176  static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1177  {
1178  	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1179  	    S_ISLNK(inode->i_mode)))
1180  		return;
1181  	if (ext2_inode_is_fast_symlink(inode))
1182  		return;
1183  
1184  	dax_sem_down_write(EXT2_I(inode));
1185  	__ext2_truncate_blocks(inode, offset);
1186  	dax_sem_up_write(EXT2_I(inode));
1187  }
1188  
ext2_setsize(struct inode * inode,loff_t newsize)1189  static int ext2_setsize(struct inode *inode, loff_t newsize)
1190  {
1191  	int error;
1192  
1193  	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1194  	    S_ISLNK(inode->i_mode)))
1195  		return -EINVAL;
1196  	if (ext2_inode_is_fast_symlink(inode))
1197  		return -EINVAL;
1198  	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1199  		return -EPERM;
1200  
1201  	inode_dio_wait(inode);
1202  
1203  	if (IS_DAX(inode))
1204  		error = dax_truncate_page(inode, newsize, ext2_get_block);
1205  	else if (test_opt(inode->i_sb, NOBH))
1206  		error = nobh_truncate_page(inode->i_mapping,
1207  				newsize, ext2_get_block);
1208  	else
1209  		error = block_truncate_page(inode->i_mapping,
1210  				newsize, ext2_get_block);
1211  	if (error)
1212  		return error;
1213  
1214  	dax_sem_down_write(EXT2_I(inode));
1215  	truncate_setsize(inode, newsize);
1216  	__ext2_truncate_blocks(inode, newsize);
1217  	dax_sem_up_write(EXT2_I(inode));
1218  
1219  	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1220  	if (inode_needs_sync(inode)) {
1221  		sync_mapping_buffers(inode->i_mapping);
1222  		sync_inode_metadata(inode, 1);
1223  	} else {
1224  		mark_inode_dirty(inode);
1225  	}
1226  
1227  	return 0;
1228  }
1229  
ext2_get_inode(struct super_block * sb,ino_t ino,struct buffer_head ** p)1230  static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1231  					struct buffer_head **p)
1232  {
1233  	struct buffer_head * bh;
1234  	unsigned long block_group;
1235  	unsigned long block;
1236  	unsigned long offset;
1237  	struct ext2_group_desc * gdp;
1238  
1239  	*p = NULL;
1240  	if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1241  	    ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1242  		goto Einval;
1243  
1244  	block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1245  	gdp = ext2_get_group_desc(sb, block_group, NULL);
1246  	if (!gdp)
1247  		goto Egdp;
1248  	/*
1249  	 * Figure out the offset within the block group inode table
1250  	 */
1251  	offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1252  	block = le32_to_cpu(gdp->bg_inode_table) +
1253  		(offset >> EXT2_BLOCK_SIZE_BITS(sb));
1254  	if (!(bh = sb_bread(sb, block)))
1255  		goto Eio;
1256  
1257  	*p = bh;
1258  	offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1259  	return (struct ext2_inode *) (bh->b_data + offset);
1260  
1261  Einval:
1262  	ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1263  		   (unsigned long) ino);
1264  	return ERR_PTR(-EINVAL);
1265  Eio:
1266  	ext2_error(sb, "ext2_get_inode",
1267  		   "unable to read inode block - inode=%lu, block=%lu",
1268  		   (unsigned long) ino, block);
1269  Egdp:
1270  	return ERR_PTR(-EIO);
1271  }
1272  
ext2_set_inode_flags(struct inode * inode)1273  void ext2_set_inode_flags(struct inode *inode)
1274  {
1275  	unsigned int flags = EXT2_I(inode)->i_flags;
1276  
1277  	inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1278  				S_DIRSYNC | S_DAX);
1279  	if (flags & EXT2_SYNC_FL)
1280  		inode->i_flags |= S_SYNC;
1281  	if (flags & EXT2_APPEND_FL)
1282  		inode->i_flags |= S_APPEND;
1283  	if (flags & EXT2_IMMUTABLE_FL)
1284  		inode->i_flags |= S_IMMUTABLE;
1285  	if (flags & EXT2_NOATIME_FL)
1286  		inode->i_flags |= S_NOATIME;
1287  	if (flags & EXT2_DIRSYNC_FL)
1288  		inode->i_flags |= S_DIRSYNC;
1289  	if (test_opt(inode->i_sb, DAX))
1290  		inode->i_flags |= S_DAX;
1291  }
1292  
1293  /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
ext2_get_inode_flags(struct ext2_inode_info * ei)1294  void ext2_get_inode_flags(struct ext2_inode_info *ei)
1295  {
1296  	unsigned int flags = ei->vfs_inode.i_flags;
1297  
1298  	ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1299  			EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1300  	if (flags & S_SYNC)
1301  		ei->i_flags |= EXT2_SYNC_FL;
1302  	if (flags & S_APPEND)
1303  		ei->i_flags |= EXT2_APPEND_FL;
1304  	if (flags & S_IMMUTABLE)
1305  		ei->i_flags |= EXT2_IMMUTABLE_FL;
1306  	if (flags & S_NOATIME)
1307  		ei->i_flags |= EXT2_NOATIME_FL;
1308  	if (flags & S_DIRSYNC)
1309  		ei->i_flags |= EXT2_DIRSYNC_FL;
1310  }
1311  
ext2_iget(struct super_block * sb,unsigned long ino)1312  struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1313  {
1314  	struct ext2_inode_info *ei;
1315  	struct buffer_head * bh;
1316  	struct ext2_inode *raw_inode;
1317  	struct inode *inode;
1318  	long ret = -EIO;
1319  	int n;
1320  	uid_t i_uid;
1321  	gid_t i_gid;
1322  
1323  	inode = iget_locked(sb, ino);
1324  	if (!inode)
1325  		return ERR_PTR(-ENOMEM);
1326  	if (!(inode->i_state & I_NEW))
1327  		return inode;
1328  
1329  	ei = EXT2_I(inode);
1330  	ei->i_block_alloc_info = NULL;
1331  
1332  	raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1333  	if (IS_ERR(raw_inode)) {
1334  		ret = PTR_ERR(raw_inode);
1335   		goto bad_inode;
1336  	}
1337  
1338  	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1339  	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1340  	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1341  	if (!(test_opt (inode->i_sb, NO_UID32))) {
1342  		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1343  		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1344  	}
1345  	i_uid_write(inode, i_uid);
1346  	i_gid_write(inode, i_gid);
1347  	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1348  	inode->i_size = le32_to_cpu(raw_inode->i_size);
1349  	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1350  	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1351  	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1352  	inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1353  	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1354  	/* We now have enough fields to check if the inode was active or not.
1355  	 * This is needed because nfsd might try to access dead inodes
1356  	 * the test is that same one that e2fsck uses
1357  	 * NeilBrown 1999oct15
1358  	 */
1359  	if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1360  		/* this inode is deleted */
1361  		brelse (bh);
1362  		ret = -ESTALE;
1363  		goto bad_inode;
1364  	}
1365  	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1366  	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1367  	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1368  	ei->i_frag_no = raw_inode->i_frag;
1369  	ei->i_frag_size = raw_inode->i_fsize;
1370  	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1371  	ei->i_dir_acl = 0;
1372  	if (S_ISREG(inode->i_mode))
1373  		inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1374  	else
1375  		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1376  	ei->i_dtime = 0;
1377  	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1378  	ei->i_state = 0;
1379  	ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1380  	ei->i_dir_start_lookup = 0;
1381  
1382  	/*
1383  	 * NOTE! The in-memory inode i_data array is in little-endian order
1384  	 * even on big-endian machines: we do NOT byteswap the block numbers!
1385  	 */
1386  	for (n = 0; n < EXT2_N_BLOCKS; n++)
1387  		ei->i_data[n] = raw_inode->i_block[n];
1388  
1389  	if (S_ISREG(inode->i_mode)) {
1390  		inode->i_op = &ext2_file_inode_operations;
1391  		if (test_opt(inode->i_sb, NOBH)) {
1392  			inode->i_mapping->a_ops = &ext2_nobh_aops;
1393  			inode->i_fop = &ext2_file_operations;
1394  		} else {
1395  			inode->i_mapping->a_ops = &ext2_aops;
1396  			inode->i_fop = &ext2_file_operations;
1397  		}
1398  	} else if (S_ISDIR(inode->i_mode)) {
1399  		inode->i_op = &ext2_dir_inode_operations;
1400  		inode->i_fop = &ext2_dir_operations;
1401  		if (test_opt(inode->i_sb, NOBH))
1402  			inode->i_mapping->a_ops = &ext2_nobh_aops;
1403  		else
1404  			inode->i_mapping->a_ops = &ext2_aops;
1405  	} else if (S_ISLNK(inode->i_mode)) {
1406  		if (ext2_inode_is_fast_symlink(inode)) {
1407  			inode->i_link = (char *)ei->i_data;
1408  			inode->i_op = &ext2_fast_symlink_inode_operations;
1409  			nd_terminate_link(ei->i_data, inode->i_size,
1410  				sizeof(ei->i_data) - 1);
1411  		} else {
1412  			inode->i_op = &ext2_symlink_inode_operations;
1413  			if (test_opt(inode->i_sb, NOBH))
1414  				inode->i_mapping->a_ops = &ext2_nobh_aops;
1415  			else
1416  				inode->i_mapping->a_ops = &ext2_aops;
1417  		}
1418  	} else {
1419  		inode->i_op = &ext2_special_inode_operations;
1420  		if (raw_inode->i_block[0])
1421  			init_special_inode(inode, inode->i_mode,
1422  			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1423  		else
1424  			init_special_inode(inode, inode->i_mode,
1425  			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1426  	}
1427  	brelse (bh);
1428  	ext2_set_inode_flags(inode);
1429  	unlock_new_inode(inode);
1430  	return inode;
1431  
1432  bad_inode:
1433  	iget_failed(inode);
1434  	return ERR_PTR(ret);
1435  }
1436  
__ext2_write_inode(struct inode * inode,int do_sync)1437  static int __ext2_write_inode(struct inode *inode, int do_sync)
1438  {
1439  	struct ext2_inode_info *ei = EXT2_I(inode);
1440  	struct super_block *sb = inode->i_sb;
1441  	ino_t ino = inode->i_ino;
1442  	uid_t uid = i_uid_read(inode);
1443  	gid_t gid = i_gid_read(inode);
1444  	struct buffer_head * bh;
1445  	struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1446  	int n;
1447  	int err = 0;
1448  
1449  	if (IS_ERR(raw_inode))
1450   		return -EIO;
1451  
1452  	/* For fields not not tracking in the in-memory inode,
1453  	 * initialise them to zero for new inodes. */
1454  	if (ei->i_state & EXT2_STATE_NEW)
1455  		memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1456  
1457  	ext2_get_inode_flags(ei);
1458  	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1459  	if (!(test_opt(sb, NO_UID32))) {
1460  		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1461  		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1462  /*
1463   * Fix up interoperability with old kernels. Otherwise, old inodes get
1464   * re-used with the upper 16 bits of the uid/gid intact
1465   */
1466  		if (!ei->i_dtime) {
1467  			raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1468  			raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1469  		} else {
1470  			raw_inode->i_uid_high = 0;
1471  			raw_inode->i_gid_high = 0;
1472  		}
1473  	} else {
1474  		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1475  		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1476  		raw_inode->i_uid_high = 0;
1477  		raw_inode->i_gid_high = 0;
1478  	}
1479  	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1480  	raw_inode->i_size = cpu_to_le32(inode->i_size);
1481  	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1482  	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1483  	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1484  
1485  	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1486  	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1487  	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1488  	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1489  	raw_inode->i_frag = ei->i_frag_no;
1490  	raw_inode->i_fsize = ei->i_frag_size;
1491  	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1492  	if (!S_ISREG(inode->i_mode))
1493  		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1494  	else {
1495  		raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1496  		if (inode->i_size > 0x7fffffffULL) {
1497  			if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1498  					EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1499  			    EXT2_SB(sb)->s_es->s_rev_level ==
1500  					cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1501  			       /* If this is the first large file
1502  				* created, add a flag to the superblock.
1503  				*/
1504  				spin_lock(&EXT2_SB(sb)->s_lock);
1505  				ext2_update_dynamic_rev(sb);
1506  				EXT2_SET_RO_COMPAT_FEATURE(sb,
1507  					EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1508  				spin_unlock(&EXT2_SB(sb)->s_lock);
1509  				ext2_write_super(sb);
1510  			}
1511  		}
1512  	}
1513  
1514  	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1515  	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1516  		if (old_valid_dev(inode->i_rdev)) {
1517  			raw_inode->i_block[0] =
1518  				cpu_to_le32(old_encode_dev(inode->i_rdev));
1519  			raw_inode->i_block[1] = 0;
1520  		} else {
1521  			raw_inode->i_block[0] = 0;
1522  			raw_inode->i_block[1] =
1523  				cpu_to_le32(new_encode_dev(inode->i_rdev));
1524  			raw_inode->i_block[2] = 0;
1525  		}
1526  	} else for (n = 0; n < EXT2_N_BLOCKS; n++)
1527  		raw_inode->i_block[n] = ei->i_data[n];
1528  	mark_buffer_dirty(bh);
1529  	if (do_sync) {
1530  		sync_dirty_buffer(bh);
1531  		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1532  			printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1533  				sb->s_id, (unsigned long) ino);
1534  			err = -EIO;
1535  		}
1536  	}
1537  	ei->i_state &= ~EXT2_STATE_NEW;
1538  	brelse (bh);
1539  	return err;
1540  }
1541  
ext2_write_inode(struct inode * inode,struct writeback_control * wbc)1542  int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1543  {
1544  	return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1545  }
1546  
ext2_setattr(struct dentry * dentry,struct iattr * iattr)1547  int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1548  {
1549  	struct inode *inode = d_inode(dentry);
1550  	int error;
1551  
1552  	error = inode_change_ok(inode, iattr);
1553  	if (error)
1554  		return error;
1555  
1556  	if (is_quota_modification(inode, iattr)) {
1557  		error = dquot_initialize(inode);
1558  		if (error)
1559  			return error;
1560  	}
1561  	if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1562  	    (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1563  		error = dquot_transfer(inode, iattr);
1564  		if (error)
1565  			return error;
1566  	}
1567  	if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1568  		error = ext2_setsize(inode, iattr->ia_size);
1569  		if (error)
1570  			return error;
1571  	}
1572  	setattr_copy(inode, iattr);
1573  	if (iattr->ia_valid & ATTR_MODE)
1574  		error = posix_acl_chmod(inode, inode->i_mode);
1575  	mark_inode_dirty(inode);
1576  
1577  	return error;
1578  }
1579