• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/fs/ext4/crypto_key.c
3  *
4  * Copyright (C) 2015, Google, Inc.
5  *
6  * This contains encryption key functions for ext4
7  *
8  * Written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar, 2015.
9  */
10 
11 #include <keys/encrypted-type.h>
12 #include <keys/user-type.h>
13 #include <linux/random.h>
14 #include <linux/scatterlist.h>
15 #include <uapi/linux/keyctl.h>
16 
17 #include "ext4.h"
18 #include "xattr.h"
19 
derive_crypt_complete(struct crypto_async_request * req,int rc)20 static void derive_crypt_complete(struct crypto_async_request *req, int rc)
21 {
22 	struct ext4_completion_result *ecr = req->data;
23 
24 	if (rc == -EINPROGRESS)
25 		return;
26 
27 	ecr->res = rc;
28 	complete(&ecr->completion);
29 }
30 
31 /**
32  * ext4_derive_key_v1() - Derive a key using AES-128-ECB
33  * @deriving_key: Encryption key used for derivation.
34  * @source_key:   Source key to which to apply derivation.
35  * @derived_key:  Derived key.
36  *
37  * Return: 0 on success, -errno on failure
38  */
ext4_derive_key_v1(const char deriving_key[EXT4_AES_128_ECB_KEY_SIZE],const char source_key[EXT4_AES_256_XTS_KEY_SIZE],char derived_key[EXT4_AES_256_XTS_KEY_SIZE])39 static int ext4_derive_key_v1(const char deriving_key[EXT4_AES_128_ECB_KEY_SIZE],
40 			      const char source_key[EXT4_AES_256_XTS_KEY_SIZE],
41 			      char derived_key[EXT4_AES_256_XTS_KEY_SIZE])
42 {
43 	int res = 0;
44 	struct ablkcipher_request *req = NULL;
45 	DECLARE_EXT4_COMPLETION_RESULT(ecr);
46 	struct scatterlist src_sg, dst_sg;
47 	struct crypto_ablkcipher *tfm = crypto_alloc_ablkcipher("ecb(aes)", 0,
48 								0);
49 
50 	if (IS_ERR(tfm)) {
51 		res = PTR_ERR(tfm);
52 		tfm = NULL;
53 		goto out;
54 	}
55 	crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
56 	req = ablkcipher_request_alloc(tfm, GFP_NOFS);
57 	if (!req) {
58 		res = -ENOMEM;
59 		goto out;
60 	}
61 	ablkcipher_request_set_callback(req,
62 			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
63 			derive_crypt_complete, &ecr);
64 	res = crypto_ablkcipher_setkey(tfm, deriving_key,
65 				       EXT4_AES_128_ECB_KEY_SIZE);
66 	if (res < 0)
67 		goto out;
68 	sg_init_one(&src_sg, source_key, EXT4_AES_256_XTS_KEY_SIZE);
69 	sg_init_one(&dst_sg, derived_key, EXT4_AES_256_XTS_KEY_SIZE);
70 	ablkcipher_request_set_crypt(req, &src_sg, &dst_sg,
71 				     EXT4_AES_256_XTS_KEY_SIZE, NULL);
72 	res = crypto_ablkcipher_encrypt(req);
73 	if (res == -EINPROGRESS || res == -EBUSY) {
74 		wait_for_completion(&ecr.completion);
75 		res = ecr.res;
76 	}
77 
78 out:
79 	if (req)
80 		ablkcipher_request_free(req);
81 	if (tfm)
82 		crypto_free_ablkcipher(tfm);
83 	return res;
84 }
85 
86 /**
87  * ext4_derive_key_v2() - Derive a key non-reversibly
88  * @nonce: the nonce associated with the file
89  * @master_key: the master key referenced by the file
90  * @derived_key: (output) the resulting derived key
91  *
92  * This function computes the following:
93  *	 derived_key[0:127]   = AES-256-ENCRYPT(master_key[0:255], nonce)
94  *	 derived_key[128:255] = AES-256-ENCRYPT(master_key[0:255], nonce ^ 0x01)
95  *	 derived_key[256:383] = AES-256-ENCRYPT(master_key[256:511], nonce)
96  *	 derived_key[384:511] = AES-256-ENCRYPT(master_key[256:511], nonce ^ 0x01)
97  *
98  * 'nonce ^ 0x01' denotes flipping the low order bit of the last byte.
99  *
100  * Unlike the v1 algorithm, the v2 algorithm is "non-reversible", meaning that
101  * compromising a derived key does not also compromise the master key.
102  *
103  * Return: 0 on success, -errno on failure
104  */
ext4_derive_key_v2(const char nonce[EXT4_KEY_DERIVATION_NONCE_SIZE],const char master_key[EXT4_MAX_KEY_SIZE],char derived_key[EXT4_MAX_KEY_SIZE])105 static int ext4_derive_key_v2(const char nonce[EXT4_KEY_DERIVATION_NONCE_SIZE],
106 			      const char master_key[EXT4_MAX_KEY_SIZE],
107 			      char derived_key[EXT4_MAX_KEY_SIZE])
108 {
109 	const int noncelen = EXT4_KEY_DERIVATION_NONCE_SIZE;
110 	struct crypto_cipher *tfm;
111 	int err;
112 	int i;
113 
114 	/*
115 	 * Since we only use each transform for a small number of encryptions,
116 	 * requesting just "aes" turns out to be significantly faster than
117 	 * "ecb(aes)", by about a factor of two.
118 	 */
119 	tfm = crypto_alloc_cipher("aes", 0, 0);
120 	if (IS_ERR(tfm))
121 		return PTR_ERR(tfm);
122 
123 	BUILD_BUG_ON(4 * EXT4_KEY_DERIVATION_NONCE_SIZE != EXT4_MAX_KEY_SIZE);
124 	BUILD_BUG_ON(2 * EXT4_AES_256_ECB_KEY_SIZE != EXT4_MAX_KEY_SIZE);
125 	for (i = 0; i < 2; i++) {
126 		memcpy(derived_key, nonce, noncelen);
127 		memcpy(derived_key + noncelen, nonce, noncelen);
128 		derived_key[2 * noncelen - 1] ^= 0x01;
129 		err = crypto_cipher_setkey(tfm, master_key,
130 					   EXT4_AES_256_ECB_KEY_SIZE);
131 		if (err)
132 			break;
133 		crypto_cipher_encrypt_one(tfm, derived_key, derived_key);
134 		crypto_cipher_encrypt_one(tfm, derived_key + noncelen,
135 					  derived_key + noncelen);
136 		master_key += EXT4_AES_256_ECB_KEY_SIZE;
137 		derived_key += 2 * noncelen;
138 	}
139 	crypto_free_cipher(tfm);
140 	return err;
141 }
142 
143 /**
144  * ext4_derive_key() - Derive a per-file key from a nonce and master key
145  * @ctx: the encryption context associated with the file
146  * @master_key: the master key referenced by the file
147  * @derived_key: (output) the resulting derived key
148  *
149  * Return: 0 on success, -errno on failure
150  */
ext4_derive_key(const struct ext4_encryption_context * ctx,const char master_key[EXT4_MAX_KEY_SIZE],char derived_key[EXT4_MAX_KEY_SIZE])151 static int ext4_derive_key(const struct ext4_encryption_context *ctx,
152 			   const char master_key[EXT4_MAX_KEY_SIZE],
153 			   char derived_key[EXT4_MAX_KEY_SIZE])
154 {
155 	BUILD_BUG_ON(EXT4_AES_128_ECB_KEY_SIZE != EXT4_KEY_DERIVATION_NONCE_SIZE);
156 	BUILD_BUG_ON(EXT4_AES_256_XTS_KEY_SIZE != EXT4_MAX_KEY_SIZE);
157 
158 	/*
159 	 * Although the key derivation algorithm is logically independent of the
160 	 * choice of encryption modes, in this kernel it is bundled with HEH
161 	 * encryption of filenames, which is another crypto improvement that
162 	 * requires an on-disk format change and requires userspace to specify
163 	 * different encryption policies.
164 	 */
165 	if (ctx->filenames_encryption_mode == EXT4_ENCRYPTION_MODE_AES_256_HEH)
166 		return ext4_derive_key_v2(ctx->nonce, master_key, derived_key);
167 	else
168 		return ext4_derive_key_v1(ctx->nonce, master_key, derived_key);
169 }
170 
ext4_free_crypt_info(struct ext4_crypt_info * ci)171 void ext4_free_crypt_info(struct ext4_crypt_info *ci)
172 {
173 	if (!ci)
174 		return;
175 
176 	crypto_free_ablkcipher(ci->ci_ctfm);
177 	kmem_cache_free(ext4_crypt_info_cachep, ci);
178 }
179 
ext4_free_encryption_info(struct inode * inode,struct ext4_crypt_info * ci)180 void ext4_free_encryption_info(struct inode *inode,
181 			       struct ext4_crypt_info *ci)
182 {
183 	struct ext4_inode_info *ei = EXT4_I(inode);
184 	struct ext4_crypt_info *prev;
185 
186 	if (ci == NULL)
187 		ci = ACCESS_ONCE(ei->i_crypt_info);
188 	if (ci == NULL)
189 		return;
190 	prev = cmpxchg(&ei->i_crypt_info, ci, NULL);
191 	if (prev != ci)
192 		return;
193 
194 	ext4_free_crypt_info(ci);
195 }
196 
ext4_get_encryption_info(struct inode * inode)197 int ext4_get_encryption_info(struct inode *inode)
198 {
199 	struct ext4_inode_info *ei = EXT4_I(inode);
200 	struct ext4_crypt_info *crypt_info;
201 	char full_key_descriptor[EXT4_KEY_DESC_PREFIX_SIZE +
202 				 (EXT4_KEY_DESCRIPTOR_SIZE * 2) + 1];
203 	struct key *keyring_key = NULL;
204 	struct ext4_encryption_key *master_key;
205 	struct ext4_encryption_context ctx;
206 	const struct user_key_payload *ukp;
207 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
208 	struct crypto_ablkcipher *ctfm;
209 	const char *cipher_str;
210 	char raw_key[EXT4_MAX_KEY_SIZE];
211 	char mode;
212 	int res;
213 
214 	if (ei->i_crypt_info)
215 		return 0;
216 
217 	res = ext4_init_crypto();
218 	if (res)
219 		return res;
220 
221 	res = ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
222 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
223 				 &ctx, sizeof(ctx));
224 	if (res < 0) {
225 		if (!DUMMY_ENCRYPTION_ENABLED(sbi))
226 			return res;
227 		ctx.contents_encryption_mode = EXT4_ENCRYPTION_MODE_AES_256_XTS;
228 		ctx.filenames_encryption_mode =
229 			EXT4_ENCRYPTION_MODE_AES_256_CTS;
230 		ctx.flags = 0;
231 	} else if (res != sizeof(ctx))
232 		return -EINVAL;
233 	res = 0;
234 
235 	crypt_info = kmem_cache_alloc(ext4_crypt_info_cachep, GFP_KERNEL);
236 	if (!crypt_info)
237 		return -ENOMEM;
238 
239 	crypt_info->ci_flags = ctx.flags;
240 	crypt_info->ci_data_mode = ctx.contents_encryption_mode;
241 	crypt_info->ci_filename_mode = ctx.filenames_encryption_mode;
242 	crypt_info->ci_ctfm = NULL;
243 	memcpy(crypt_info->ci_master_key, ctx.master_key_descriptor,
244 	       sizeof(crypt_info->ci_master_key));
245 	if (S_ISREG(inode->i_mode))
246 		mode = crypt_info->ci_data_mode;
247 	else if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
248 		mode = crypt_info->ci_filename_mode;
249 	else
250 		BUG();
251 	switch (mode) {
252 	case EXT4_ENCRYPTION_MODE_AES_256_XTS:
253 		cipher_str = "xts(aes)";
254 		break;
255 	case EXT4_ENCRYPTION_MODE_AES_256_CTS:
256 		cipher_str = "cts(cbc(aes))";
257 		break;
258 	case EXT4_ENCRYPTION_MODE_AES_256_HEH:
259 		cipher_str = "heh(aes)";
260 		break;
261 	case EXT4_ENCRYPTION_MODE_SPECK128_256_XTS:
262 		cipher_str = "xts(speck128)";
263 		break;
264 	case EXT4_ENCRYPTION_MODE_SPECK128_256_CTS:
265 		cipher_str = "cts(cbc(speck128))";
266 		break;
267 	default:
268 		printk_once(KERN_WARNING
269 			    "ext4: unsupported key mode %d (ino %u)\n",
270 			    mode, (unsigned) inode->i_ino);
271 		res = -ENOKEY;
272 		goto out;
273 	}
274 	if (DUMMY_ENCRYPTION_ENABLED(sbi)) {
275 		memset(raw_key, 0x42, EXT4_AES_256_XTS_KEY_SIZE);
276 		goto got_key;
277 	}
278 	memcpy(full_key_descriptor, EXT4_KEY_DESC_PREFIX,
279 	       EXT4_KEY_DESC_PREFIX_SIZE);
280 	sprintf(full_key_descriptor + EXT4_KEY_DESC_PREFIX_SIZE,
281 		"%*phN", EXT4_KEY_DESCRIPTOR_SIZE,
282 		ctx.master_key_descriptor);
283 	full_key_descriptor[EXT4_KEY_DESC_PREFIX_SIZE +
284 			    (2 * EXT4_KEY_DESCRIPTOR_SIZE)] = '\0';
285 	keyring_key = request_key(&key_type_logon, full_key_descriptor, NULL);
286 	if (IS_ERR(keyring_key)) {
287 		res = PTR_ERR(keyring_key);
288 		keyring_key = NULL;
289 		goto out;
290 	}
291 	if (keyring_key->type != &key_type_logon) {
292 		printk_once(KERN_WARNING
293 			    "ext4: key type must be logon\n");
294 		res = -ENOKEY;
295 		goto out;
296 	}
297 	down_read(&keyring_key->sem);
298 	ukp = user_key_payload(keyring_key);
299 	if (!ukp) {
300 		/* key was revoked before we acquired its semaphore */
301 		res = -EKEYREVOKED;
302 		up_read(&keyring_key->sem);
303 		goto out;
304 	}
305 	if (ukp->datalen != sizeof(struct ext4_encryption_key)) {
306 		res = -EINVAL;
307 		up_read(&keyring_key->sem);
308 		goto out;
309 	}
310 	master_key = (struct ext4_encryption_key *)ukp->data;
311 	BUILD_BUG_ON(EXT4_AES_128_ECB_KEY_SIZE !=
312 		     EXT4_KEY_DERIVATION_NONCE_SIZE);
313 	if (master_key->size != EXT4_AES_256_XTS_KEY_SIZE) {
314 		printk_once(KERN_WARNING
315 			    "ext4: key size incorrect: %d\n",
316 			    master_key->size);
317 		res = -ENOKEY;
318 		up_read(&keyring_key->sem);
319 		goto out;
320 	}
321 	res = ext4_derive_key(&ctx, master_key->raw, raw_key);
322 	up_read(&keyring_key->sem);
323 	if (res)
324 		goto out;
325 got_key:
326 	ctfm = crypto_alloc_ablkcipher(cipher_str, 0, 0);
327 	if (!ctfm || IS_ERR(ctfm)) {
328 		res = ctfm ? PTR_ERR(ctfm) : -ENOMEM;
329 		printk(KERN_DEBUG
330 		       "%s: error %d (inode %u) allocating crypto tfm\n",
331 		       __func__, res, (unsigned) inode->i_ino);
332 		goto out;
333 	}
334 	crypt_info->ci_ctfm = ctfm;
335 	crypto_ablkcipher_clear_flags(ctfm, ~0);
336 	crypto_tfm_set_flags(crypto_ablkcipher_tfm(ctfm),
337 			     CRYPTO_TFM_REQ_WEAK_KEY);
338 	res = crypto_ablkcipher_setkey(ctfm, raw_key,
339 				       ext4_encryption_key_size(mode));
340 	if (res)
341 		goto out;
342 
343 	if (cmpxchg(&ei->i_crypt_info, NULL, crypt_info) == NULL)
344 		crypt_info = NULL;
345 out:
346 	if (res == -ENOKEY)
347 		res = 0;
348 	key_put(keyring_key);
349 	ext4_free_crypt_info(crypt_info);
350 	memzero_explicit(raw_key, sizeof(raw_key));
351 	return res;
352 }
353 
ext4_has_encryption_key(struct inode * inode)354 int ext4_has_encryption_key(struct inode *inode)
355 {
356 	struct ext4_inode_info *ei = EXT4_I(inode);
357 
358 	return (ei->i_crypt_info != NULL);
359 }
360