1 /*
2 * linux/fs/ext4/indirect.c
3 *
4 * from
5 *
6 * linux/fs/ext4/inode.c
7 *
8 * Copyright (C) 1992, 1993, 1994, 1995
9 * Remy Card (card@masi.ibp.fr)
10 * Laboratoire MASI - Institut Blaise Pascal
11 * Universite Pierre et Marie Curie (Paris VI)
12 *
13 * from
14 *
15 * linux/fs/minix/inode.c
16 *
17 * Copyright (C) 1991, 1992 Linus Torvalds
18 *
19 * Goal-directed block allocation by Stephen Tweedie
20 * (sct@redhat.com), 1993, 1998
21 */
22
23 #include "ext4_jbd2.h"
24 #include "truncate.h"
25 #include <linux/dax.h>
26 #include <linux/uio.h>
27
28 #include <trace/events/ext4.h>
29
30 typedef struct {
31 __le32 *p;
32 __le32 key;
33 struct buffer_head *bh;
34 } Indirect;
35
add_chain(Indirect * p,struct buffer_head * bh,__le32 * v)36 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
37 {
38 p->key = *(p->p = v);
39 p->bh = bh;
40 }
41
42 /**
43 * ext4_block_to_path - parse the block number into array of offsets
44 * @inode: inode in question (we are only interested in its superblock)
45 * @i_block: block number to be parsed
46 * @offsets: array to store the offsets in
47 * @boundary: set this non-zero if the referred-to block is likely to be
48 * followed (on disk) by an indirect block.
49 *
50 * To store the locations of file's data ext4 uses a data structure common
51 * for UNIX filesystems - tree of pointers anchored in the inode, with
52 * data blocks at leaves and indirect blocks in intermediate nodes.
53 * This function translates the block number into path in that tree -
54 * return value is the path length and @offsets[n] is the offset of
55 * pointer to (n+1)th node in the nth one. If @block is out of range
56 * (negative or too large) warning is printed and zero returned.
57 *
58 * Note: function doesn't find node addresses, so no IO is needed. All
59 * we need to know is the capacity of indirect blocks (taken from the
60 * inode->i_sb).
61 */
62
63 /*
64 * Portability note: the last comparison (check that we fit into triple
65 * indirect block) is spelled differently, because otherwise on an
66 * architecture with 32-bit longs and 8Kb pages we might get into trouble
67 * if our filesystem had 8Kb blocks. We might use long long, but that would
68 * kill us on x86. Oh, well, at least the sign propagation does not matter -
69 * i_block would have to be negative in the very beginning, so we would not
70 * get there at all.
71 */
72
ext4_block_to_path(struct inode * inode,ext4_lblk_t i_block,ext4_lblk_t offsets[4],int * boundary)73 static int ext4_block_to_path(struct inode *inode,
74 ext4_lblk_t i_block,
75 ext4_lblk_t offsets[4], int *boundary)
76 {
77 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
78 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
79 const long direct_blocks = EXT4_NDIR_BLOCKS,
80 indirect_blocks = ptrs,
81 double_blocks = (1 << (ptrs_bits * 2));
82 int n = 0;
83 int final = 0;
84
85 if (i_block < direct_blocks) {
86 offsets[n++] = i_block;
87 final = direct_blocks;
88 } else if ((i_block -= direct_blocks) < indirect_blocks) {
89 offsets[n++] = EXT4_IND_BLOCK;
90 offsets[n++] = i_block;
91 final = ptrs;
92 } else if ((i_block -= indirect_blocks) < double_blocks) {
93 offsets[n++] = EXT4_DIND_BLOCK;
94 offsets[n++] = i_block >> ptrs_bits;
95 offsets[n++] = i_block & (ptrs - 1);
96 final = ptrs;
97 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
98 offsets[n++] = EXT4_TIND_BLOCK;
99 offsets[n++] = i_block >> (ptrs_bits * 2);
100 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
101 offsets[n++] = i_block & (ptrs - 1);
102 final = ptrs;
103 } else {
104 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
105 i_block + direct_blocks +
106 indirect_blocks + double_blocks, inode->i_ino);
107 }
108 if (boundary)
109 *boundary = final - 1 - (i_block & (ptrs - 1));
110 return n;
111 }
112
113 /**
114 * ext4_get_branch - read the chain of indirect blocks leading to data
115 * @inode: inode in question
116 * @depth: depth of the chain (1 - direct pointer, etc.)
117 * @offsets: offsets of pointers in inode/indirect blocks
118 * @chain: place to store the result
119 * @err: here we store the error value
120 *
121 * Function fills the array of triples <key, p, bh> and returns %NULL
122 * if everything went OK or the pointer to the last filled triple
123 * (incomplete one) otherwise. Upon the return chain[i].key contains
124 * the number of (i+1)-th block in the chain (as it is stored in memory,
125 * i.e. little-endian 32-bit), chain[i].p contains the address of that
126 * number (it points into struct inode for i==0 and into the bh->b_data
127 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
128 * block for i>0 and NULL for i==0. In other words, it holds the block
129 * numbers of the chain, addresses they were taken from (and where we can
130 * verify that chain did not change) and buffer_heads hosting these
131 * numbers.
132 *
133 * Function stops when it stumbles upon zero pointer (absent block)
134 * (pointer to last triple returned, *@err == 0)
135 * or when it gets an IO error reading an indirect block
136 * (ditto, *@err == -EIO)
137 * or when it reads all @depth-1 indirect blocks successfully and finds
138 * the whole chain, all way to the data (returns %NULL, *err == 0).
139 *
140 * Need to be called with
141 * down_read(&EXT4_I(inode)->i_data_sem)
142 */
ext4_get_branch(struct inode * inode,int depth,ext4_lblk_t * offsets,Indirect chain[4],int * err)143 static Indirect *ext4_get_branch(struct inode *inode, int depth,
144 ext4_lblk_t *offsets,
145 Indirect chain[4], int *err)
146 {
147 struct super_block *sb = inode->i_sb;
148 Indirect *p = chain;
149 struct buffer_head *bh;
150 int ret = -EIO;
151
152 *err = 0;
153 /* i_data is not going away, no lock needed */
154 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
155 if (!p->key)
156 goto no_block;
157 while (--depth) {
158 bh = sb_getblk(sb, le32_to_cpu(p->key));
159 if (unlikely(!bh)) {
160 ret = -ENOMEM;
161 goto failure;
162 }
163
164 if (!bh_uptodate_or_lock(bh)) {
165 if (bh_submit_read(bh) < 0) {
166 put_bh(bh);
167 goto failure;
168 }
169 /* validate block references */
170 if (ext4_check_indirect_blockref(inode, bh)) {
171 put_bh(bh);
172 goto failure;
173 }
174 }
175
176 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
177 /* Reader: end */
178 if (!p->key)
179 goto no_block;
180 }
181 return NULL;
182
183 failure:
184 *err = ret;
185 no_block:
186 return p;
187 }
188
189 /**
190 * ext4_find_near - find a place for allocation with sufficient locality
191 * @inode: owner
192 * @ind: descriptor of indirect block.
193 *
194 * This function returns the preferred place for block allocation.
195 * It is used when heuristic for sequential allocation fails.
196 * Rules are:
197 * + if there is a block to the left of our position - allocate near it.
198 * + if pointer will live in indirect block - allocate near that block.
199 * + if pointer will live in inode - allocate in the same
200 * cylinder group.
201 *
202 * In the latter case we colour the starting block by the callers PID to
203 * prevent it from clashing with concurrent allocations for a different inode
204 * in the same block group. The PID is used here so that functionally related
205 * files will be close-by on-disk.
206 *
207 * Caller must make sure that @ind is valid and will stay that way.
208 */
ext4_find_near(struct inode * inode,Indirect * ind)209 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
210 {
211 struct ext4_inode_info *ei = EXT4_I(inode);
212 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
213 __le32 *p;
214
215 /* Try to find previous block */
216 for (p = ind->p - 1; p >= start; p--) {
217 if (*p)
218 return le32_to_cpu(*p);
219 }
220
221 /* No such thing, so let's try location of indirect block */
222 if (ind->bh)
223 return ind->bh->b_blocknr;
224
225 /*
226 * It is going to be referred to from the inode itself? OK, just put it
227 * into the same cylinder group then.
228 */
229 return ext4_inode_to_goal_block(inode);
230 }
231
232 /**
233 * ext4_find_goal - find a preferred place for allocation.
234 * @inode: owner
235 * @block: block we want
236 * @partial: pointer to the last triple within a chain
237 *
238 * Normally this function find the preferred place for block allocation,
239 * returns it.
240 * Because this is only used for non-extent files, we limit the block nr
241 * to 32 bits.
242 */
ext4_find_goal(struct inode * inode,ext4_lblk_t block,Indirect * partial)243 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
244 Indirect *partial)
245 {
246 ext4_fsblk_t goal;
247
248 /*
249 * XXX need to get goal block from mballoc's data structures
250 */
251
252 goal = ext4_find_near(inode, partial);
253 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
254 return goal;
255 }
256
257 /**
258 * ext4_blks_to_allocate - Look up the block map and count the number
259 * of direct blocks need to be allocated for the given branch.
260 *
261 * @branch: chain of indirect blocks
262 * @k: number of blocks need for indirect blocks
263 * @blks: number of data blocks to be mapped.
264 * @blocks_to_boundary: the offset in the indirect block
265 *
266 * return the total number of blocks to be allocate, including the
267 * direct and indirect blocks.
268 */
ext4_blks_to_allocate(Indirect * branch,int k,unsigned int blks,int blocks_to_boundary)269 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
270 int blocks_to_boundary)
271 {
272 unsigned int count = 0;
273
274 /*
275 * Simple case, [t,d]Indirect block(s) has not allocated yet
276 * then it's clear blocks on that path have not allocated
277 */
278 if (k > 0) {
279 /* right now we don't handle cross boundary allocation */
280 if (blks < blocks_to_boundary + 1)
281 count += blks;
282 else
283 count += blocks_to_boundary + 1;
284 return count;
285 }
286
287 count++;
288 while (count < blks && count <= blocks_to_boundary &&
289 le32_to_cpu(*(branch[0].p + count)) == 0) {
290 count++;
291 }
292 return count;
293 }
294
295 /**
296 * ext4_alloc_branch - allocate and set up a chain of blocks.
297 * @handle: handle for this transaction
298 * @inode: owner
299 * @indirect_blks: number of allocated indirect blocks
300 * @blks: number of allocated direct blocks
301 * @goal: preferred place for allocation
302 * @offsets: offsets (in the blocks) to store the pointers to next.
303 * @branch: place to store the chain in.
304 *
305 * This function allocates blocks, zeroes out all but the last one,
306 * links them into chain and (if we are synchronous) writes them to disk.
307 * In other words, it prepares a branch that can be spliced onto the
308 * inode. It stores the information about that chain in the branch[], in
309 * the same format as ext4_get_branch() would do. We are calling it after
310 * we had read the existing part of chain and partial points to the last
311 * triple of that (one with zero ->key). Upon the exit we have the same
312 * picture as after the successful ext4_get_block(), except that in one
313 * place chain is disconnected - *branch->p is still zero (we did not
314 * set the last link), but branch->key contains the number that should
315 * be placed into *branch->p to fill that gap.
316 *
317 * If allocation fails we free all blocks we've allocated (and forget
318 * their buffer_heads) and return the error value the from failed
319 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
320 * as described above and return 0.
321 */
ext4_alloc_branch(handle_t * handle,struct ext4_allocation_request * ar,int indirect_blks,ext4_lblk_t * offsets,Indirect * branch)322 static int ext4_alloc_branch(handle_t *handle,
323 struct ext4_allocation_request *ar,
324 int indirect_blks, ext4_lblk_t *offsets,
325 Indirect *branch)
326 {
327 struct buffer_head * bh;
328 ext4_fsblk_t b, new_blocks[4];
329 __le32 *p;
330 int i, j, err, len = 1;
331
332 for (i = 0; i <= indirect_blks; i++) {
333 if (i == indirect_blks) {
334 new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
335 } else
336 ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
337 ar->inode, ar->goal,
338 ar->flags & EXT4_MB_DELALLOC_RESERVED,
339 NULL, &err);
340 if (err) {
341 i--;
342 goto failed;
343 }
344 branch[i].key = cpu_to_le32(new_blocks[i]);
345 if (i == 0)
346 continue;
347
348 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
349 if (unlikely(!bh)) {
350 err = -ENOMEM;
351 goto failed;
352 }
353 lock_buffer(bh);
354 BUFFER_TRACE(bh, "call get_create_access");
355 err = ext4_journal_get_create_access(handle, bh);
356 if (err) {
357 unlock_buffer(bh);
358 goto failed;
359 }
360
361 memset(bh->b_data, 0, bh->b_size);
362 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
363 b = new_blocks[i];
364
365 if (i == indirect_blks)
366 len = ar->len;
367 for (j = 0; j < len; j++)
368 *p++ = cpu_to_le32(b++);
369
370 BUFFER_TRACE(bh, "marking uptodate");
371 set_buffer_uptodate(bh);
372 unlock_buffer(bh);
373
374 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
375 err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
376 if (err)
377 goto failed;
378 }
379 return 0;
380 failed:
381 for (; i >= 0; i--) {
382 /*
383 * We want to ext4_forget() only freshly allocated indirect
384 * blocks. Buffer for new_blocks[i-1] is at branch[i].bh and
385 * buffer at branch[0].bh is indirect block / inode already
386 * existing before ext4_alloc_branch() was called.
387 */
388 if (i > 0 && i != indirect_blks && branch[i].bh)
389 ext4_forget(handle, 1, ar->inode, branch[i].bh,
390 branch[i].bh->b_blocknr);
391 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
392 (i == indirect_blks) ? ar->len : 1, 0);
393 }
394 return err;
395 }
396
397 /**
398 * ext4_splice_branch - splice the allocated branch onto inode.
399 * @handle: handle for this transaction
400 * @inode: owner
401 * @block: (logical) number of block we are adding
402 * @chain: chain of indirect blocks (with a missing link - see
403 * ext4_alloc_branch)
404 * @where: location of missing link
405 * @num: number of indirect blocks we are adding
406 * @blks: number of direct blocks we are adding
407 *
408 * This function fills the missing link and does all housekeeping needed in
409 * inode (->i_blocks, etc.). In case of success we end up with the full
410 * chain to new block and return 0.
411 */
ext4_splice_branch(handle_t * handle,struct ext4_allocation_request * ar,Indirect * where,int num)412 static int ext4_splice_branch(handle_t *handle,
413 struct ext4_allocation_request *ar,
414 Indirect *where, int num)
415 {
416 int i;
417 int err = 0;
418 ext4_fsblk_t current_block;
419
420 /*
421 * If we're splicing into a [td]indirect block (as opposed to the
422 * inode) then we need to get write access to the [td]indirect block
423 * before the splice.
424 */
425 if (where->bh) {
426 BUFFER_TRACE(where->bh, "get_write_access");
427 err = ext4_journal_get_write_access(handle, where->bh);
428 if (err)
429 goto err_out;
430 }
431 /* That's it */
432
433 *where->p = where->key;
434
435 /*
436 * Update the host buffer_head or inode to point to more just allocated
437 * direct blocks blocks
438 */
439 if (num == 0 && ar->len > 1) {
440 current_block = le32_to_cpu(where->key) + 1;
441 for (i = 1; i < ar->len; i++)
442 *(where->p + i) = cpu_to_le32(current_block++);
443 }
444
445 /* We are done with atomic stuff, now do the rest of housekeeping */
446 /* had we spliced it onto indirect block? */
447 if (where->bh) {
448 /*
449 * If we spliced it onto an indirect block, we haven't
450 * altered the inode. Note however that if it is being spliced
451 * onto an indirect block at the very end of the file (the
452 * file is growing) then we *will* alter the inode to reflect
453 * the new i_size. But that is not done here - it is done in
454 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
455 */
456 jbd_debug(5, "splicing indirect only\n");
457 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
458 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
459 if (err)
460 goto err_out;
461 } else {
462 /*
463 * OK, we spliced it into the inode itself on a direct block.
464 */
465 ext4_mark_inode_dirty(handle, ar->inode);
466 jbd_debug(5, "splicing direct\n");
467 }
468 return err;
469
470 err_out:
471 for (i = 1; i <= num; i++) {
472 /*
473 * branch[i].bh is newly allocated, so there is no
474 * need to revoke the block, which is why we don't
475 * need to set EXT4_FREE_BLOCKS_METADATA.
476 */
477 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
478 EXT4_FREE_BLOCKS_FORGET);
479 }
480 ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
481 ar->len, 0);
482
483 return err;
484 }
485
486 /*
487 * The ext4_ind_map_blocks() function handles non-extents inodes
488 * (i.e., using the traditional indirect/double-indirect i_blocks
489 * scheme) for ext4_map_blocks().
490 *
491 * Allocation strategy is simple: if we have to allocate something, we will
492 * have to go the whole way to leaf. So let's do it before attaching anything
493 * to tree, set linkage between the newborn blocks, write them if sync is
494 * required, recheck the path, free and repeat if check fails, otherwise
495 * set the last missing link (that will protect us from any truncate-generated
496 * removals - all blocks on the path are immune now) and possibly force the
497 * write on the parent block.
498 * That has a nice additional property: no special recovery from the failed
499 * allocations is needed - we simply release blocks and do not touch anything
500 * reachable from inode.
501 *
502 * `handle' can be NULL if create == 0.
503 *
504 * return > 0, # of blocks mapped or allocated.
505 * return = 0, if plain lookup failed.
506 * return < 0, error case.
507 *
508 * The ext4_ind_get_blocks() function should be called with
509 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
510 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
511 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
512 * blocks.
513 */
ext4_ind_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)514 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
515 struct ext4_map_blocks *map,
516 int flags)
517 {
518 struct ext4_allocation_request ar;
519 int err = -EIO;
520 ext4_lblk_t offsets[4];
521 Indirect chain[4];
522 Indirect *partial;
523 int indirect_blks;
524 int blocks_to_boundary = 0;
525 int depth;
526 int count = 0;
527 ext4_fsblk_t first_block = 0;
528
529 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
530 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
531 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
532 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
533 &blocks_to_boundary);
534
535 if (depth == 0)
536 goto out;
537
538 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
539
540 /* Simplest case - block found, no allocation needed */
541 if (!partial) {
542 first_block = le32_to_cpu(chain[depth - 1].key);
543 count++;
544 /*map more blocks*/
545 while (count < map->m_len && count <= blocks_to_boundary) {
546 ext4_fsblk_t blk;
547
548 blk = le32_to_cpu(*(chain[depth-1].p + count));
549
550 if (blk == first_block + count)
551 count++;
552 else
553 break;
554 }
555 goto got_it;
556 }
557
558 /* Next simple case - plain lookup or failed read of indirect block */
559 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
560 goto cleanup;
561
562 /*
563 * Okay, we need to do block allocation.
564 */
565 if (ext4_has_feature_bigalloc(inode->i_sb)) {
566 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
567 "non-extent mapped inodes with bigalloc");
568 return -EFSCORRUPTED;
569 }
570
571 /* Set up for the direct block allocation */
572 memset(&ar, 0, sizeof(ar));
573 ar.inode = inode;
574 ar.logical = map->m_lblk;
575 if (S_ISREG(inode->i_mode))
576 ar.flags = EXT4_MB_HINT_DATA;
577 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
578 ar.flags |= EXT4_MB_DELALLOC_RESERVED;
579 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
580 ar.flags |= EXT4_MB_USE_RESERVED;
581
582 ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
583
584 /* the number of blocks need to allocate for [d,t]indirect blocks */
585 indirect_blks = (chain + depth) - partial - 1;
586
587 /*
588 * Next look up the indirect map to count the totoal number of
589 * direct blocks to allocate for this branch.
590 */
591 ar.len = ext4_blks_to_allocate(partial, indirect_blks,
592 map->m_len, blocks_to_boundary);
593
594 /*
595 * Block out ext4_truncate while we alter the tree
596 */
597 err = ext4_alloc_branch(handle, &ar, indirect_blks,
598 offsets + (partial - chain), partial);
599
600 /*
601 * The ext4_splice_branch call will free and forget any buffers
602 * on the new chain if there is a failure, but that risks using
603 * up transaction credits, especially for bitmaps where the
604 * credits cannot be returned. Can we handle this somehow? We
605 * may need to return -EAGAIN upwards in the worst case. --sct
606 */
607 if (!err)
608 err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
609 if (err)
610 goto cleanup;
611
612 map->m_flags |= EXT4_MAP_NEW;
613
614 ext4_update_inode_fsync_trans(handle, inode, 1);
615 count = ar.len;
616 got_it:
617 map->m_flags |= EXT4_MAP_MAPPED;
618 map->m_pblk = le32_to_cpu(chain[depth-1].key);
619 map->m_len = count;
620 if (count > blocks_to_boundary)
621 map->m_flags |= EXT4_MAP_BOUNDARY;
622 err = count;
623 /* Clean up and exit */
624 partial = chain + depth - 1; /* the whole chain */
625 cleanup:
626 while (partial > chain) {
627 BUFFER_TRACE(partial->bh, "call brelse");
628 brelse(partial->bh);
629 partial--;
630 }
631 out:
632 trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
633 return err;
634 }
635
636 /*
637 * O_DIRECT for ext3 (or indirect map) based files
638 *
639 * If the O_DIRECT write will extend the file then add this inode to the
640 * orphan list. So recovery will truncate it back to the original size
641 * if the machine crashes during the write.
642 *
643 * If the O_DIRECT write is intantiating holes inside i_size and the machine
644 * crashes then stale disk data _may_ be exposed inside the file. But current
645 * VFS code falls back into buffered path in that case so we are safe.
646 */
ext4_ind_direct_IO(struct kiocb * iocb,struct iov_iter * iter,loff_t offset)647 ssize_t ext4_ind_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
648 loff_t offset)
649 {
650 struct file *file = iocb->ki_filp;
651 struct inode *inode = file->f_mapping->host;
652 struct ext4_inode_info *ei = EXT4_I(inode);
653 handle_t *handle;
654 ssize_t ret;
655 int orphan = 0;
656 size_t count = iov_iter_count(iter);
657 int retries = 0;
658
659 if (iov_iter_rw(iter) == WRITE) {
660 loff_t final_size = offset + count;
661
662 if (final_size > inode->i_size) {
663 /* Credits for sb + inode write */
664 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
665 if (IS_ERR(handle)) {
666 ret = PTR_ERR(handle);
667 goto out;
668 }
669 ret = ext4_orphan_add(handle, inode);
670 if (ret) {
671 ext4_journal_stop(handle);
672 goto out;
673 }
674 orphan = 1;
675 ei->i_disksize = inode->i_size;
676 ext4_journal_stop(handle);
677 }
678 }
679
680 retry:
681 if (iov_iter_rw(iter) == READ && ext4_should_dioread_nolock(inode)) {
682 /*
683 * Nolock dioread optimization may be dynamically disabled
684 * via ext4_inode_block_unlocked_dio(). Check inode's state
685 * while holding extra i_dio_count ref.
686 */
687 inode_dio_begin(inode);
688 smp_mb();
689 if (unlikely(ext4_test_inode_state(inode,
690 EXT4_STATE_DIOREAD_LOCK))) {
691 inode_dio_end(inode);
692 goto locked;
693 }
694 if (IS_DAX(inode))
695 ret = dax_do_io(iocb, inode, iter, offset,
696 ext4_get_block, NULL, 0);
697 else
698 ret = __blockdev_direct_IO(iocb, inode,
699 inode->i_sb->s_bdev, iter,
700 offset, ext4_get_block, NULL,
701 NULL, 0);
702 inode_dio_end(inode);
703 } else {
704 locked:
705 if (IS_DAX(inode))
706 ret = dax_do_io(iocb, inode, iter, offset,
707 ext4_get_block, NULL, DIO_LOCKING);
708 else
709 ret = blockdev_direct_IO(iocb, inode, iter, offset,
710 ext4_get_block);
711
712 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
713 loff_t isize = i_size_read(inode);
714 loff_t end = offset + count;
715
716 if (end > isize)
717 ext4_truncate_failed_write(inode);
718 }
719 }
720 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
721 goto retry;
722
723 if (orphan) {
724 int err;
725
726 /* Credits for sb + inode write */
727 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
728 if (IS_ERR(handle)) {
729 /* This is really bad luck. We've written the data
730 * but cannot extend i_size. Bail out and pretend
731 * the write failed... */
732 ret = PTR_ERR(handle);
733 if (inode->i_nlink)
734 ext4_orphan_del(NULL, inode);
735
736 goto out;
737 }
738 if (inode->i_nlink)
739 ext4_orphan_del(handle, inode);
740 if (ret > 0) {
741 loff_t end = offset + ret;
742 if (end > inode->i_size) {
743 ei->i_disksize = end;
744 i_size_write(inode, end);
745 /*
746 * We're going to return a positive `ret'
747 * here due to non-zero-length I/O, so there's
748 * no way of reporting error returns from
749 * ext4_mark_inode_dirty() to userspace. So
750 * ignore it.
751 */
752 ext4_mark_inode_dirty(handle, inode);
753 }
754 }
755 err = ext4_journal_stop(handle);
756 if (ret == 0)
757 ret = err;
758 }
759 out:
760 return ret;
761 }
762
763 /*
764 * Calculate the number of metadata blocks need to reserve
765 * to allocate a new block at @lblocks for non extent file based file
766 */
ext4_ind_calc_metadata_amount(struct inode * inode,sector_t lblock)767 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
768 {
769 struct ext4_inode_info *ei = EXT4_I(inode);
770 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
771 int blk_bits;
772
773 if (lblock < EXT4_NDIR_BLOCKS)
774 return 0;
775
776 lblock -= EXT4_NDIR_BLOCKS;
777
778 if (ei->i_da_metadata_calc_len &&
779 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
780 ei->i_da_metadata_calc_len++;
781 return 0;
782 }
783 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
784 ei->i_da_metadata_calc_len = 1;
785 blk_bits = order_base_2(lblock);
786 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
787 }
788
789 /*
790 * Calculate number of indirect blocks touched by mapping @nrblocks logically
791 * contiguous blocks
792 */
ext4_ind_trans_blocks(struct inode * inode,int nrblocks)793 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
794 {
795 /*
796 * With N contiguous data blocks, we need at most
797 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
798 * 2 dindirect blocks, and 1 tindirect block
799 */
800 return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
801 }
802
803 /*
804 * Truncate transactions can be complex and absolutely huge. So we need to
805 * be able to restart the transaction at a conventient checkpoint to make
806 * sure we don't overflow the journal.
807 *
808 * Try to extend this transaction for the purposes of truncation. If
809 * extend fails, we need to propagate the failure up and restart the
810 * transaction in the top-level truncate loop. --sct
811 *
812 * Returns 0 if we managed to create more room. If we can't create more
813 * room, and the transaction must be restarted we return 1.
814 */
try_to_extend_transaction(handle_t * handle,struct inode * inode)815 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
816 {
817 if (!ext4_handle_valid(handle))
818 return 0;
819 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
820 return 0;
821 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
822 return 0;
823 return 1;
824 }
825
826 /*
827 * Probably it should be a library function... search for first non-zero word
828 * or memcmp with zero_page, whatever is better for particular architecture.
829 * Linus?
830 */
all_zeroes(__le32 * p,__le32 * q)831 static inline int all_zeroes(__le32 *p, __le32 *q)
832 {
833 while (p < q)
834 if (*p++)
835 return 0;
836 return 1;
837 }
838
839 /**
840 * ext4_find_shared - find the indirect blocks for partial truncation.
841 * @inode: inode in question
842 * @depth: depth of the affected branch
843 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
844 * @chain: place to store the pointers to partial indirect blocks
845 * @top: place to the (detached) top of branch
846 *
847 * This is a helper function used by ext4_truncate().
848 *
849 * When we do truncate() we may have to clean the ends of several
850 * indirect blocks but leave the blocks themselves alive. Block is
851 * partially truncated if some data below the new i_size is referred
852 * from it (and it is on the path to the first completely truncated
853 * data block, indeed). We have to free the top of that path along
854 * with everything to the right of the path. Since no allocation
855 * past the truncation point is possible until ext4_truncate()
856 * finishes, we may safely do the latter, but top of branch may
857 * require special attention - pageout below the truncation point
858 * might try to populate it.
859 *
860 * We atomically detach the top of branch from the tree, store the
861 * block number of its root in *@top, pointers to buffer_heads of
862 * partially truncated blocks - in @chain[].bh and pointers to
863 * their last elements that should not be removed - in
864 * @chain[].p. Return value is the pointer to last filled element
865 * of @chain.
866 *
867 * The work left to caller to do the actual freeing of subtrees:
868 * a) free the subtree starting from *@top
869 * b) free the subtrees whose roots are stored in
870 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
871 * c) free the subtrees growing from the inode past the @chain[0].
872 * (no partially truncated stuff there). */
873
ext4_find_shared(struct inode * inode,int depth,ext4_lblk_t offsets[4],Indirect chain[4],__le32 * top)874 static Indirect *ext4_find_shared(struct inode *inode, int depth,
875 ext4_lblk_t offsets[4], Indirect chain[4],
876 __le32 *top)
877 {
878 Indirect *partial, *p;
879 int k, err;
880
881 *top = 0;
882 /* Make k index the deepest non-null offset + 1 */
883 for (k = depth; k > 1 && !offsets[k-1]; k--)
884 ;
885 partial = ext4_get_branch(inode, k, offsets, chain, &err);
886 /* Writer: pointers */
887 if (!partial)
888 partial = chain + k-1;
889 /*
890 * If the branch acquired continuation since we've looked at it -
891 * fine, it should all survive and (new) top doesn't belong to us.
892 */
893 if (!partial->key && *partial->p)
894 /* Writer: end */
895 goto no_top;
896 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
897 ;
898 /*
899 * OK, we've found the last block that must survive. The rest of our
900 * branch should be detached before unlocking. However, if that rest
901 * of branch is all ours and does not grow immediately from the inode
902 * it's easier to cheat and just decrement partial->p.
903 */
904 if (p == chain + k - 1 && p > chain) {
905 p->p--;
906 } else {
907 *top = *p->p;
908 /* Nope, don't do this in ext4. Must leave the tree intact */
909 #if 0
910 *p->p = 0;
911 #endif
912 }
913 /* Writer: end */
914
915 while (partial > p) {
916 brelse(partial->bh);
917 partial--;
918 }
919 no_top:
920 return partial;
921 }
922
923 /*
924 * Zero a number of block pointers in either an inode or an indirect block.
925 * If we restart the transaction we must again get write access to the
926 * indirect block for further modification.
927 *
928 * We release `count' blocks on disk, but (last - first) may be greater
929 * than `count' because there can be holes in there.
930 *
931 * Return 0 on success, 1 on invalid block range
932 * and < 0 on fatal error.
933 */
ext4_clear_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block_to_free,unsigned long count,__le32 * first,__le32 * last)934 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
935 struct buffer_head *bh,
936 ext4_fsblk_t block_to_free,
937 unsigned long count, __le32 *first,
938 __le32 *last)
939 {
940 __le32 *p;
941 int flags = EXT4_FREE_BLOCKS_VALIDATED;
942 int err;
943
944 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
945 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
946 else if (ext4_should_journal_data(inode))
947 flags |= EXT4_FREE_BLOCKS_FORGET;
948
949 if (!ext4_inode_block_valid(inode, block_to_free, count)) {
950 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
951 "blocks %llu len %lu",
952 (unsigned long long) block_to_free, count);
953 return 1;
954 }
955
956 if (try_to_extend_transaction(handle, inode)) {
957 if (bh) {
958 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
959 err = ext4_handle_dirty_metadata(handle, inode, bh);
960 if (unlikely(err))
961 goto out_err;
962 }
963 err = ext4_mark_inode_dirty(handle, inode);
964 if (unlikely(err))
965 goto out_err;
966 err = ext4_truncate_restart_trans(handle, inode,
967 ext4_blocks_for_truncate(inode));
968 if (unlikely(err))
969 goto out_err;
970 if (bh) {
971 BUFFER_TRACE(bh, "retaking write access");
972 err = ext4_journal_get_write_access(handle, bh);
973 if (unlikely(err))
974 goto out_err;
975 }
976 }
977
978 for (p = first; p < last; p++)
979 *p = 0;
980
981 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
982 return 0;
983 out_err:
984 ext4_std_error(inode->i_sb, err);
985 return err;
986 }
987
988 /**
989 * ext4_free_data - free a list of data blocks
990 * @handle: handle for this transaction
991 * @inode: inode we are dealing with
992 * @this_bh: indirect buffer_head which contains *@first and *@last
993 * @first: array of block numbers
994 * @last: points immediately past the end of array
995 *
996 * We are freeing all blocks referred from that array (numbers are stored as
997 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
998 *
999 * We accumulate contiguous runs of blocks to free. Conveniently, if these
1000 * blocks are contiguous then releasing them at one time will only affect one
1001 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1002 * actually use a lot of journal space.
1003 *
1004 * @this_bh will be %NULL if @first and @last point into the inode's direct
1005 * block pointers.
1006 */
ext4_free_data(handle_t * handle,struct inode * inode,struct buffer_head * this_bh,__le32 * first,__le32 * last)1007 static void ext4_free_data(handle_t *handle, struct inode *inode,
1008 struct buffer_head *this_bh,
1009 __le32 *first, __le32 *last)
1010 {
1011 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
1012 unsigned long count = 0; /* Number of blocks in the run */
1013 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
1014 corresponding to
1015 block_to_free */
1016 ext4_fsblk_t nr; /* Current block # */
1017 __le32 *p; /* Pointer into inode/ind
1018 for current block */
1019 int err = 0;
1020
1021 if (this_bh) { /* For indirect block */
1022 BUFFER_TRACE(this_bh, "get_write_access");
1023 err = ext4_journal_get_write_access(handle, this_bh);
1024 /* Important: if we can't update the indirect pointers
1025 * to the blocks, we can't free them. */
1026 if (err)
1027 return;
1028 }
1029
1030 for (p = first; p < last; p++) {
1031 nr = le32_to_cpu(*p);
1032 if (nr) {
1033 /* accumulate blocks to free if they're contiguous */
1034 if (count == 0) {
1035 block_to_free = nr;
1036 block_to_free_p = p;
1037 count = 1;
1038 } else if (nr == block_to_free + count) {
1039 count++;
1040 } else {
1041 err = ext4_clear_blocks(handle, inode, this_bh,
1042 block_to_free, count,
1043 block_to_free_p, p);
1044 if (err)
1045 break;
1046 block_to_free = nr;
1047 block_to_free_p = p;
1048 count = 1;
1049 }
1050 }
1051 }
1052
1053 if (!err && count > 0)
1054 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1055 count, block_to_free_p, p);
1056 if (err < 0)
1057 /* fatal error */
1058 return;
1059
1060 if (this_bh) {
1061 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1062
1063 /*
1064 * The buffer head should have an attached journal head at this
1065 * point. However, if the data is corrupted and an indirect
1066 * block pointed to itself, it would have been detached when
1067 * the block was cleared. Check for this instead of OOPSing.
1068 */
1069 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1070 ext4_handle_dirty_metadata(handle, inode, this_bh);
1071 else
1072 EXT4_ERROR_INODE(inode,
1073 "circular indirect block detected at "
1074 "block %llu",
1075 (unsigned long long) this_bh->b_blocknr);
1076 }
1077 }
1078
1079 /**
1080 * ext4_free_branches - free an array of branches
1081 * @handle: JBD handle for this transaction
1082 * @inode: inode we are dealing with
1083 * @parent_bh: the buffer_head which contains *@first and *@last
1084 * @first: array of block numbers
1085 * @last: pointer immediately past the end of array
1086 * @depth: depth of the branches to free
1087 *
1088 * We are freeing all blocks referred from these branches (numbers are
1089 * stored as little-endian 32-bit) and updating @inode->i_blocks
1090 * appropriately.
1091 */
ext4_free_branches(handle_t * handle,struct inode * inode,struct buffer_head * parent_bh,__le32 * first,__le32 * last,int depth)1092 static void ext4_free_branches(handle_t *handle, struct inode *inode,
1093 struct buffer_head *parent_bh,
1094 __le32 *first, __le32 *last, int depth)
1095 {
1096 ext4_fsblk_t nr;
1097 __le32 *p;
1098
1099 if (ext4_handle_is_aborted(handle))
1100 return;
1101
1102 if (depth--) {
1103 struct buffer_head *bh;
1104 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1105 p = last;
1106 while (--p >= first) {
1107 nr = le32_to_cpu(*p);
1108 if (!nr)
1109 continue; /* A hole */
1110
1111 if (!ext4_inode_block_valid(inode, nr, 1)) {
1112 EXT4_ERROR_INODE(inode,
1113 "invalid indirect mapped "
1114 "block %lu (level %d)",
1115 (unsigned long) nr, depth);
1116 break;
1117 }
1118
1119 /* Go read the buffer for the next level down */
1120 bh = sb_bread(inode->i_sb, nr);
1121
1122 /*
1123 * A read failure? Report error and clear slot
1124 * (should be rare).
1125 */
1126 if (!bh) {
1127 EXT4_ERROR_INODE_BLOCK(inode, nr,
1128 "Read failure");
1129 continue;
1130 }
1131
1132 /* This zaps the entire block. Bottom up. */
1133 BUFFER_TRACE(bh, "free child branches");
1134 ext4_free_branches(handle, inode, bh,
1135 (__le32 *) bh->b_data,
1136 (__le32 *) bh->b_data + addr_per_block,
1137 depth);
1138 brelse(bh);
1139
1140 /*
1141 * Everything below this this pointer has been
1142 * released. Now let this top-of-subtree go.
1143 *
1144 * We want the freeing of this indirect block to be
1145 * atomic in the journal with the updating of the
1146 * bitmap block which owns it. So make some room in
1147 * the journal.
1148 *
1149 * We zero the parent pointer *after* freeing its
1150 * pointee in the bitmaps, so if extend_transaction()
1151 * for some reason fails to put the bitmap changes and
1152 * the release into the same transaction, recovery
1153 * will merely complain about releasing a free block,
1154 * rather than leaking blocks.
1155 */
1156 if (ext4_handle_is_aborted(handle))
1157 return;
1158 if (try_to_extend_transaction(handle, inode)) {
1159 ext4_mark_inode_dirty(handle, inode);
1160 ext4_truncate_restart_trans(handle, inode,
1161 ext4_blocks_for_truncate(inode));
1162 }
1163
1164 /*
1165 * The forget flag here is critical because if
1166 * we are journaling (and not doing data
1167 * journaling), we have to make sure a revoke
1168 * record is written to prevent the journal
1169 * replay from overwriting the (former)
1170 * indirect block if it gets reallocated as a
1171 * data block. This must happen in the same
1172 * transaction where the data blocks are
1173 * actually freed.
1174 */
1175 ext4_free_blocks(handle, inode, NULL, nr, 1,
1176 EXT4_FREE_BLOCKS_METADATA|
1177 EXT4_FREE_BLOCKS_FORGET);
1178
1179 if (parent_bh) {
1180 /*
1181 * The block which we have just freed is
1182 * pointed to by an indirect block: journal it
1183 */
1184 BUFFER_TRACE(parent_bh, "get_write_access");
1185 if (!ext4_journal_get_write_access(handle,
1186 parent_bh)){
1187 *p = 0;
1188 BUFFER_TRACE(parent_bh,
1189 "call ext4_handle_dirty_metadata");
1190 ext4_handle_dirty_metadata(handle,
1191 inode,
1192 parent_bh);
1193 }
1194 }
1195 }
1196 } else {
1197 /* We have reached the bottom of the tree. */
1198 BUFFER_TRACE(parent_bh, "free data blocks");
1199 ext4_free_data(handle, inode, parent_bh, first, last);
1200 }
1201 }
1202
ext4_ind_truncate(handle_t * handle,struct inode * inode)1203 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1204 {
1205 struct ext4_inode_info *ei = EXT4_I(inode);
1206 __le32 *i_data = ei->i_data;
1207 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1208 ext4_lblk_t offsets[4];
1209 Indirect chain[4];
1210 Indirect *partial;
1211 __le32 nr = 0;
1212 int n = 0;
1213 ext4_lblk_t last_block, max_block;
1214 unsigned blocksize = inode->i_sb->s_blocksize;
1215
1216 last_block = (inode->i_size + blocksize-1)
1217 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1218 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1219 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1220
1221 if (last_block != max_block) {
1222 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1223 if (n == 0)
1224 return;
1225 }
1226
1227 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1228
1229 /*
1230 * The orphan list entry will now protect us from any crash which
1231 * occurs before the truncate completes, so it is now safe to propagate
1232 * the new, shorter inode size (held for now in i_size) into the
1233 * on-disk inode. We do this via i_disksize, which is the value which
1234 * ext4 *really* writes onto the disk inode.
1235 */
1236 ei->i_disksize = inode->i_size;
1237
1238 if (last_block == max_block) {
1239 /*
1240 * It is unnecessary to free any data blocks if last_block is
1241 * equal to the indirect block limit.
1242 */
1243 return;
1244 } else if (n == 1) { /* direct blocks */
1245 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1246 i_data + EXT4_NDIR_BLOCKS);
1247 goto do_indirects;
1248 }
1249
1250 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1251 /* Kill the top of shared branch (not detached) */
1252 if (nr) {
1253 if (partial == chain) {
1254 /* Shared branch grows from the inode */
1255 ext4_free_branches(handle, inode, NULL,
1256 &nr, &nr+1, (chain+n-1) - partial);
1257 *partial->p = 0;
1258 /*
1259 * We mark the inode dirty prior to restart,
1260 * and prior to stop. No need for it here.
1261 */
1262 } else {
1263 /* Shared branch grows from an indirect block */
1264 BUFFER_TRACE(partial->bh, "get_write_access");
1265 ext4_free_branches(handle, inode, partial->bh,
1266 partial->p,
1267 partial->p+1, (chain+n-1) - partial);
1268 }
1269 }
1270 /* Clear the ends of indirect blocks on the shared branch */
1271 while (partial > chain) {
1272 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1273 (__le32*)partial->bh->b_data+addr_per_block,
1274 (chain+n-1) - partial);
1275 BUFFER_TRACE(partial->bh, "call brelse");
1276 brelse(partial->bh);
1277 partial--;
1278 }
1279 do_indirects:
1280 /* Kill the remaining (whole) subtrees */
1281 switch (offsets[0]) {
1282 default:
1283 nr = i_data[EXT4_IND_BLOCK];
1284 if (nr) {
1285 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1286 i_data[EXT4_IND_BLOCK] = 0;
1287 }
1288 case EXT4_IND_BLOCK:
1289 nr = i_data[EXT4_DIND_BLOCK];
1290 if (nr) {
1291 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1292 i_data[EXT4_DIND_BLOCK] = 0;
1293 }
1294 case EXT4_DIND_BLOCK:
1295 nr = i_data[EXT4_TIND_BLOCK];
1296 if (nr) {
1297 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1298 i_data[EXT4_TIND_BLOCK] = 0;
1299 }
1300 case EXT4_TIND_BLOCK:
1301 ;
1302 }
1303 }
1304
1305 /**
1306 * ext4_ind_remove_space - remove space from the range
1307 * @handle: JBD handle for this transaction
1308 * @inode: inode we are dealing with
1309 * @start: First block to remove
1310 * @end: One block after the last block to remove (exclusive)
1311 *
1312 * Free the blocks in the defined range (end is exclusive endpoint of
1313 * range). This is used by ext4_punch_hole().
1314 */
ext4_ind_remove_space(handle_t * handle,struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)1315 int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1316 ext4_lblk_t start, ext4_lblk_t end)
1317 {
1318 struct ext4_inode_info *ei = EXT4_I(inode);
1319 __le32 *i_data = ei->i_data;
1320 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1321 ext4_lblk_t offsets[4], offsets2[4];
1322 Indirect chain[4], chain2[4];
1323 Indirect *partial, *partial2;
1324 Indirect *p = NULL, *p2 = NULL;
1325 ext4_lblk_t max_block;
1326 __le32 nr = 0, nr2 = 0;
1327 int n = 0, n2 = 0;
1328 unsigned blocksize = inode->i_sb->s_blocksize;
1329
1330 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1331 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1332 if (end >= max_block)
1333 end = max_block;
1334 if ((start >= end) || (start > max_block))
1335 return 0;
1336
1337 n = ext4_block_to_path(inode, start, offsets, NULL);
1338 n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1339
1340 BUG_ON(n > n2);
1341
1342 if ((n == 1) && (n == n2)) {
1343 /* We're punching only within direct block range */
1344 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1345 i_data + offsets2[0]);
1346 return 0;
1347 } else if (n2 > n) {
1348 /*
1349 * Start and end are on a different levels so we're going to
1350 * free partial block at start, and partial block at end of
1351 * the range. If there are some levels in between then
1352 * do_indirects label will take care of that.
1353 */
1354
1355 if (n == 1) {
1356 /*
1357 * Start is at the direct block level, free
1358 * everything to the end of the level.
1359 */
1360 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1361 i_data + EXT4_NDIR_BLOCKS);
1362 goto end_range;
1363 }
1364
1365
1366 partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1367 if (nr) {
1368 if (partial == chain) {
1369 /* Shared branch grows from the inode */
1370 ext4_free_branches(handle, inode, NULL,
1371 &nr, &nr+1, (chain+n-1) - partial);
1372 *partial->p = 0;
1373 } else {
1374 /* Shared branch grows from an indirect block */
1375 BUFFER_TRACE(partial->bh, "get_write_access");
1376 ext4_free_branches(handle, inode, partial->bh,
1377 partial->p,
1378 partial->p+1, (chain+n-1) - partial);
1379 }
1380 }
1381
1382 /*
1383 * Clear the ends of indirect blocks on the shared branch
1384 * at the start of the range
1385 */
1386 while (partial > chain) {
1387 ext4_free_branches(handle, inode, partial->bh,
1388 partial->p + 1,
1389 (__le32 *)partial->bh->b_data+addr_per_block,
1390 (chain+n-1) - partial);
1391 partial--;
1392 }
1393
1394 end_range:
1395 partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1396 if (nr2) {
1397 if (partial2 == chain2) {
1398 /*
1399 * Remember, end is exclusive so here we're at
1400 * the start of the next level we're not going
1401 * to free. Everything was covered by the start
1402 * of the range.
1403 */
1404 goto do_indirects;
1405 }
1406 } else {
1407 /*
1408 * ext4_find_shared returns Indirect structure which
1409 * points to the last element which should not be
1410 * removed by truncate. But this is end of the range
1411 * in punch_hole so we need to point to the next element
1412 */
1413 partial2->p++;
1414 }
1415
1416 /*
1417 * Clear the ends of indirect blocks on the shared branch
1418 * at the end of the range
1419 */
1420 while (partial2 > chain2) {
1421 ext4_free_branches(handle, inode, partial2->bh,
1422 (__le32 *)partial2->bh->b_data,
1423 partial2->p,
1424 (chain2+n2-1) - partial2);
1425 partial2--;
1426 }
1427 goto do_indirects;
1428 }
1429
1430 /* Punch happened within the same level (n == n2) */
1431 partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1432 partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1433
1434 /* Free top, but only if partial2 isn't its subtree. */
1435 if (nr) {
1436 int level = min(partial - chain, partial2 - chain2);
1437 int i;
1438 int subtree = 1;
1439
1440 for (i = 0; i <= level; i++) {
1441 if (offsets[i] != offsets2[i]) {
1442 subtree = 0;
1443 break;
1444 }
1445 }
1446
1447 if (!subtree) {
1448 if (partial == chain) {
1449 /* Shared branch grows from the inode */
1450 ext4_free_branches(handle, inode, NULL,
1451 &nr, &nr+1,
1452 (chain+n-1) - partial);
1453 *partial->p = 0;
1454 } else {
1455 /* Shared branch grows from an indirect block */
1456 BUFFER_TRACE(partial->bh, "get_write_access");
1457 ext4_free_branches(handle, inode, partial->bh,
1458 partial->p,
1459 partial->p+1,
1460 (chain+n-1) - partial);
1461 }
1462 }
1463 }
1464
1465 if (!nr2) {
1466 /*
1467 * ext4_find_shared returns Indirect structure which
1468 * points to the last element which should not be
1469 * removed by truncate. But this is end of the range
1470 * in punch_hole so we need to point to the next element
1471 */
1472 partial2->p++;
1473 }
1474
1475 while (partial > chain || partial2 > chain2) {
1476 int depth = (chain+n-1) - partial;
1477 int depth2 = (chain2+n2-1) - partial2;
1478
1479 if (partial > chain && partial2 > chain2 &&
1480 partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1481 /*
1482 * We've converged on the same block. Clear the range,
1483 * then we're done.
1484 */
1485 ext4_free_branches(handle, inode, partial->bh,
1486 partial->p + 1,
1487 partial2->p,
1488 (chain+n-1) - partial);
1489 goto cleanup;
1490 }
1491
1492 /*
1493 * The start and end partial branches may not be at the same
1494 * level even though the punch happened within one level. So, we
1495 * give them a chance to arrive at the same level, then walk
1496 * them in step with each other until we converge on the same
1497 * block.
1498 */
1499 if (partial > chain && depth <= depth2) {
1500 ext4_free_branches(handle, inode, partial->bh,
1501 partial->p + 1,
1502 (__le32 *)partial->bh->b_data+addr_per_block,
1503 (chain+n-1) - partial);
1504 partial--;
1505 }
1506 if (partial2 > chain2 && depth2 <= depth) {
1507 ext4_free_branches(handle, inode, partial2->bh,
1508 (__le32 *)partial2->bh->b_data,
1509 partial2->p,
1510 (chain2+n2-1) - partial2);
1511 partial2--;
1512 }
1513 }
1514
1515 cleanup:
1516 while (p && p > chain) {
1517 BUFFER_TRACE(p->bh, "call brelse");
1518 brelse(p->bh);
1519 p--;
1520 }
1521 while (p2 && p2 > chain2) {
1522 BUFFER_TRACE(p2->bh, "call brelse");
1523 brelse(p2->bh);
1524 p2--;
1525 }
1526 return 0;
1527
1528 do_indirects:
1529 /* Kill the remaining (whole) subtrees */
1530 switch (offsets[0]) {
1531 default:
1532 if (++n >= n2)
1533 break;
1534 nr = i_data[EXT4_IND_BLOCK];
1535 if (nr) {
1536 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1537 i_data[EXT4_IND_BLOCK] = 0;
1538 }
1539 case EXT4_IND_BLOCK:
1540 if (++n >= n2)
1541 break;
1542 nr = i_data[EXT4_DIND_BLOCK];
1543 if (nr) {
1544 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1545 i_data[EXT4_DIND_BLOCK] = 0;
1546 }
1547 case EXT4_DIND_BLOCK:
1548 if (++n >= n2)
1549 break;
1550 nr = i_data[EXT4_TIND_BLOCK];
1551 if (nr) {
1552 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1553 i_data[EXT4_TIND_BLOCK] = 0;
1554 }
1555 case EXT4_TIND_BLOCK:
1556 ;
1557 }
1558 goto cleanup;
1559 }
1560