1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *inode_entry_slab; 28 f2fs_stop_checkpoint(struct f2fs_sb_info * sbi,bool end_io)29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 30 { 31 set_ckpt_flags(sbi, CP_ERROR_FLAG); 32 if (!end_io) 33 f2fs_flush_merged_writes(sbi); 34 } 35 36 /* 37 * We guarantee no failure on the returned page. 38 */ grab_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)39 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 40 { 41 struct address_space *mapping = META_MAPPING(sbi); 42 struct page *page = NULL; 43 repeat: 44 page = f2fs_grab_cache_page(mapping, index, false); 45 if (!page) { 46 cond_resched(); 47 goto repeat; 48 } 49 f2fs_wait_on_page_writeback(page, META, true); 50 if (!PageUptodate(page)) 51 SetPageUptodate(page); 52 return page; 53 } 54 55 /* 56 * We guarantee no failure on the returned page. 57 */ __get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index,bool is_meta)58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 59 bool is_meta) 60 { 61 struct address_space *mapping = META_MAPPING(sbi); 62 struct page *page; 63 struct f2fs_io_info fio = { 64 .sbi = sbi, 65 .type = META, 66 .op = REQ_OP_READ, 67 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 68 .old_blkaddr = index, 69 .new_blkaddr = index, 70 .encrypted_page = NULL, 71 .is_meta = is_meta, 72 }; 73 74 if (unlikely(!is_meta)) 75 fio.op_flags &= ~REQ_META; 76 repeat: 77 page = f2fs_grab_cache_page(mapping, index, false); 78 if (!page) { 79 cond_resched(); 80 goto repeat; 81 } 82 if (PageUptodate(page)) 83 goto out; 84 85 fio.page = page; 86 87 if (f2fs_submit_page_bio(&fio)) { 88 f2fs_put_page(page, 1); 89 goto repeat; 90 } 91 92 lock_page(page); 93 if (unlikely(page->mapping != mapping)) { 94 f2fs_put_page(page, 1); 95 goto repeat; 96 } 97 98 /* 99 * if there is any IO error when accessing device, make our filesystem 100 * readonly and make sure do not write checkpoint with non-uptodate 101 * meta page. 102 */ 103 if (unlikely(!PageUptodate(page))) 104 f2fs_stop_checkpoint(sbi, false); 105 out: 106 return page; 107 } 108 get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 110 { 111 return __get_meta_page(sbi, index, true); 112 } 113 114 /* for POR only */ get_tmp_page(struct f2fs_sb_info * sbi,pgoff_t index)115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 116 { 117 return __get_meta_page(sbi, index, false); 118 } 119 is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) 121 { 122 switch (type) { 123 case META_NAT: 124 break; 125 case META_SIT: 126 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 127 return false; 128 break; 129 case META_SSA: 130 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 131 blkaddr < SM_I(sbi)->ssa_blkaddr)) 132 return false; 133 break; 134 case META_CP: 135 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 136 blkaddr < __start_cp_addr(sbi))) 137 return false; 138 break; 139 case META_POR: 140 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 141 blkaddr < MAIN_BLKADDR(sbi))) 142 return false; 143 break; 144 default: 145 BUG(); 146 } 147 148 return true; 149 } 150 151 /* 152 * Readahead CP/NAT/SIT/SSA pages 153 */ ra_meta_pages(struct f2fs_sb_info * sbi,block_t start,int nrpages,int type,bool sync)154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 155 int type, bool sync) 156 { 157 struct page *page; 158 block_t blkno = start; 159 struct f2fs_io_info fio = { 160 .sbi = sbi, 161 .type = META, 162 .op = REQ_OP_READ, 163 .op_flags = sync ? (REQ_SYNC | REQ_META | REQ_PRIO) : 164 REQ_RAHEAD, 165 .encrypted_page = NULL, 166 .in_list = false, 167 .is_meta = (type != META_POR), 168 }; 169 struct blk_plug plug; 170 171 if (unlikely(type == META_POR)) 172 fio.op_flags &= ~REQ_META; 173 174 blk_start_plug(&plug); 175 for (; nrpages-- > 0; blkno++) { 176 177 if (!is_valid_blkaddr(sbi, blkno, type)) 178 goto out; 179 180 switch (type) { 181 case META_NAT: 182 if (unlikely(blkno >= 183 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 184 blkno = 0; 185 /* get nat block addr */ 186 fio.new_blkaddr = current_nat_addr(sbi, 187 blkno * NAT_ENTRY_PER_BLOCK); 188 break; 189 case META_SIT: 190 if (unlikely(blkno >= TOTAL_SEGS(sbi))) 191 goto out; 192 /* get sit block addr */ 193 fio.new_blkaddr = current_sit_addr(sbi, 194 blkno * SIT_ENTRY_PER_BLOCK); 195 break; 196 case META_SSA: 197 case META_CP: 198 case META_POR: 199 fio.new_blkaddr = blkno; 200 break; 201 default: 202 BUG(); 203 } 204 205 page = f2fs_grab_cache_page(META_MAPPING(sbi), 206 fio.new_blkaddr, false); 207 if (!page) 208 continue; 209 if (PageUptodate(page)) { 210 f2fs_put_page(page, 1); 211 continue; 212 } 213 214 fio.page = page; 215 f2fs_submit_page_bio(&fio); 216 f2fs_put_page(page, 0); 217 } 218 out: 219 blk_finish_plug(&plug); 220 return blkno - start; 221 } 222 ra_meta_pages_cond(struct f2fs_sb_info * sbi,pgoff_t index)223 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 224 { 225 struct page *page; 226 bool readahead = false; 227 228 page = find_get_page(META_MAPPING(sbi), index); 229 if (!page || !PageUptodate(page)) 230 readahead = true; 231 f2fs_put_page(page, 0); 232 233 if (readahead) 234 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true); 235 } 236 __f2fs_write_meta_page(struct page * page,struct writeback_control * wbc,enum iostat_type io_type)237 static int __f2fs_write_meta_page(struct page *page, 238 struct writeback_control *wbc, 239 enum iostat_type io_type) 240 { 241 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 242 243 trace_f2fs_writepage(page, META); 244 245 if (unlikely(f2fs_cp_error(sbi))) { 246 dec_page_count(sbi, F2FS_DIRTY_META); 247 unlock_page(page); 248 return 0; 249 } 250 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 251 goto redirty_out; 252 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 253 goto redirty_out; 254 255 write_meta_page(sbi, page, io_type); 256 dec_page_count(sbi, F2FS_DIRTY_META); 257 258 if (wbc->for_reclaim) 259 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 260 0, page->index, META); 261 262 unlock_page(page); 263 264 if (unlikely(f2fs_cp_error(sbi))) 265 f2fs_submit_merged_write(sbi, META); 266 267 return 0; 268 269 redirty_out: 270 redirty_page_for_writepage(wbc, page); 271 return AOP_WRITEPAGE_ACTIVATE; 272 } 273 f2fs_write_meta_page(struct page * page,struct writeback_control * wbc)274 static int f2fs_write_meta_page(struct page *page, 275 struct writeback_control *wbc) 276 { 277 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 278 } 279 f2fs_write_meta_pages(struct address_space * mapping,struct writeback_control * wbc)280 static int f2fs_write_meta_pages(struct address_space *mapping, 281 struct writeback_control *wbc) 282 { 283 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 284 long diff, written; 285 286 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 287 goto skip_write; 288 289 /* collect a number of dirty meta pages and write together */ 290 if (wbc->for_kupdate || 291 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 292 goto skip_write; 293 294 /* if locked failed, cp will flush dirty pages instead */ 295 if (!mutex_trylock(&sbi->cp_mutex)) 296 goto skip_write; 297 298 trace_f2fs_writepages(mapping->host, wbc, META); 299 diff = nr_pages_to_write(sbi, META, wbc); 300 written = sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 301 mutex_unlock(&sbi->cp_mutex); 302 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 303 return 0; 304 305 skip_write: 306 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 307 trace_f2fs_writepages(mapping->host, wbc, META); 308 return 0; 309 } 310 sync_meta_pages(struct f2fs_sb_info * sbi,enum page_type type,long nr_to_write,enum iostat_type io_type)311 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 312 long nr_to_write, enum iostat_type io_type) 313 { 314 struct address_space *mapping = META_MAPPING(sbi); 315 pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX; 316 struct pagevec pvec; 317 long nwritten = 0; 318 struct writeback_control wbc = { 319 .for_reclaim = 0, 320 }; 321 struct blk_plug plug; 322 323 pagevec_init(&pvec, 0); 324 325 blk_start_plug(&plug); 326 327 while (index <= end) { 328 int i, nr_pages; 329 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 330 PAGECACHE_TAG_DIRTY, 331 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 332 if (unlikely(nr_pages == 0)) 333 break; 334 335 for (i = 0; i < nr_pages; i++) { 336 struct page *page = pvec.pages[i]; 337 338 if (prev == ULONG_MAX) 339 prev = page->index - 1; 340 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 341 pagevec_release(&pvec); 342 goto stop; 343 } 344 345 lock_page(page); 346 347 if (unlikely(page->mapping != mapping)) { 348 continue_unlock: 349 unlock_page(page); 350 continue; 351 } 352 if (!PageDirty(page)) { 353 /* someone wrote it for us */ 354 goto continue_unlock; 355 } 356 357 f2fs_wait_on_page_writeback(page, META, true); 358 359 BUG_ON(PageWriteback(page)); 360 if (!clear_page_dirty_for_io(page)) 361 goto continue_unlock; 362 363 if (__f2fs_write_meta_page(page, &wbc, io_type)) { 364 unlock_page(page); 365 break; 366 } 367 nwritten++; 368 prev = page->index; 369 if (unlikely(nwritten >= nr_to_write)) 370 break; 371 } 372 pagevec_release(&pvec); 373 cond_resched(); 374 } 375 stop: 376 if (nwritten) 377 f2fs_submit_merged_write(sbi, type); 378 379 blk_finish_plug(&plug); 380 381 return nwritten; 382 } 383 f2fs_set_meta_page_dirty(struct page * page)384 static int f2fs_set_meta_page_dirty(struct page *page) 385 { 386 trace_f2fs_set_page_dirty(page, META); 387 388 if (!PageUptodate(page)) 389 SetPageUptodate(page); 390 if (!PageDirty(page)) { 391 __set_page_dirty_nobuffers(page); 392 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 393 SetPagePrivate(page); 394 f2fs_trace_pid(page); 395 return 1; 396 } 397 return 0; 398 } 399 400 const struct address_space_operations f2fs_meta_aops = { 401 .writepage = f2fs_write_meta_page, 402 .writepages = f2fs_write_meta_pages, 403 .set_page_dirty = f2fs_set_meta_page_dirty, 404 .invalidatepage = f2fs_invalidate_page, 405 .releasepage = f2fs_release_page, 406 #ifdef CONFIG_MIGRATION 407 .migratepage = f2fs_migrate_page, 408 #endif 409 }; 410 __add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)411 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 412 unsigned int devidx, int type) 413 { 414 struct inode_management *im = &sbi->im[type]; 415 struct ino_entry *e, *tmp; 416 417 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 418 419 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 420 421 spin_lock(&im->ino_lock); 422 e = radix_tree_lookup(&im->ino_root, ino); 423 if (!e) { 424 e = tmp; 425 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 426 f2fs_bug_on(sbi, 1); 427 428 memset(e, 0, sizeof(struct ino_entry)); 429 e->ino = ino; 430 431 list_add_tail(&e->list, &im->ino_list); 432 if (type != ORPHAN_INO) 433 im->ino_num++; 434 } 435 436 if (type == FLUSH_INO) 437 f2fs_set_bit(devidx, (char *)&e->dirty_device); 438 439 spin_unlock(&im->ino_lock); 440 radix_tree_preload_end(); 441 442 if (e != tmp) 443 kmem_cache_free(ino_entry_slab, tmp); 444 } 445 __remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)446 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 447 { 448 struct inode_management *im = &sbi->im[type]; 449 struct ino_entry *e; 450 451 spin_lock(&im->ino_lock); 452 e = radix_tree_lookup(&im->ino_root, ino); 453 if (e) { 454 list_del(&e->list); 455 radix_tree_delete(&im->ino_root, ino); 456 im->ino_num--; 457 spin_unlock(&im->ino_lock); 458 kmem_cache_free(ino_entry_slab, e); 459 return; 460 } 461 spin_unlock(&im->ino_lock); 462 } 463 add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)464 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 465 { 466 /* add new dirty ino entry into list */ 467 __add_ino_entry(sbi, ino, 0, type); 468 } 469 remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)470 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 471 { 472 /* remove dirty ino entry from list */ 473 __remove_ino_entry(sbi, ino, type); 474 } 475 476 /* mode should be APPEND_INO or UPDATE_INO */ exist_written_data(struct f2fs_sb_info * sbi,nid_t ino,int mode)477 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 478 { 479 struct inode_management *im = &sbi->im[mode]; 480 struct ino_entry *e; 481 482 spin_lock(&im->ino_lock); 483 e = radix_tree_lookup(&im->ino_root, ino); 484 spin_unlock(&im->ino_lock); 485 return e ? true : false; 486 } 487 release_ino_entry(struct f2fs_sb_info * sbi,bool all)488 void release_ino_entry(struct f2fs_sb_info *sbi, bool all) 489 { 490 struct ino_entry *e, *tmp; 491 int i; 492 493 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 494 struct inode_management *im = &sbi->im[i]; 495 496 spin_lock(&im->ino_lock); 497 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 498 list_del(&e->list); 499 radix_tree_delete(&im->ino_root, e->ino); 500 kmem_cache_free(ino_entry_slab, e); 501 im->ino_num--; 502 } 503 spin_unlock(&im->ino_lock); 504 } 505 } 506 set_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)507 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 508 unsigned int devidx, int type) 509 { 510 __add_ino_entry(sbi, ino, devidx, type); 511 } 512 is_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)513 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 514 unsigned int devidx, int type) 515 { 516 struct inode_management *im = &sbi->im[type]; 517 struct ino_entry *e; 518 bool is_dirty = false; 519 520 spin_lock(&im->ino_lock); 521 e = radix_tree_lookup(&im->ino_root, ino); 522 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 523 is_dirty = true; 524 spin_unlock(&im->ino_lock); 525 return is_dirty; 526 } 527 acquire_orphan_inode(struct f2fs_sb_info * sbi)528 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 529 { 530 struct inode_management *im = &sbi->im[ORPHAN_INO]; 531 int err = 0; 532 533 spin_lock(&im->ino_lock); 534 535 #ifdef CONFIG_F2FS_FAULT_INJECTION 536 if (time_to_inject(sbi, FAULT_ORPHAN)) { 537 spin_unlock(&im->ino_lock); 538 f2fs_show_injection_info(FAULT_ORPHAN); 539 return -ENOSPC; 540 } 541 #endif 542 if (unlikely(im->ino_num >= sbi->max_orphans)) 543 err = -ENOSPC; 544 else 545 im->ino_num++; 546 spin_unlock(&im->ino_lock); 547 548 return err; 549 } 550 release_orphan_inode(struct f2fs_sb_info * sbi)551 void release_orphan_inode(struct f2fs_sb_info *sbi) 552 { 553 struct inode_management *im = &sbi->im[ORPHAN_INO]; 554 555 spin_lock(&im->ino_lock); 556 f2fs_bug_on(sbi, im->ino_num == 0); 557 im->ino_num--; 558 spin_unlock(&im->ino_lock); 559 } 560 add_orphan_inode(struct inode * inode)561 void add_orphan_inode(struct inode *inode) 562 { 563 /* add new orphan ino entry into list */ 564 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 565 update_inode_page(inode); 566 } 567 remove_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)568 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 569 { 570 /* remove orphan entry from orphan list */ 571 __remove_ino_entry(sbi, ino, ORPHAN_INO); 572 } 573 recover_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)574 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 575 { 576 struct inode *inode; 577 struct node_info ni; 578 int err = acquire_orphan_inode(sbi); 579 580 if (err) 581 goto err_out; 582 583 __add_ino_entry(sbi, ino, 0, ORPHAN_INO); 584 585 inode = f2fs_iget_retry(sbi->sb, ino); 586 if (IS_ERR(inode)) { 587 /* 588 * there should be a bug that we can't find the entry 589 * to orphan inode. 590 */ 591 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 592 return PTR_ERR(inode); 593 } 594 595 err = dquot_initialize(inode); 596 if (err) 597 goto err_out; 598 599 dquot_initialize(inode); 600 clear_nlink(inode); 601 602 /* truncate all the data during iput */ 603 iput(inode); 604 605 get_node_info(sbi, ino, &ni); 606 607 /* ENOMEM was fully retried in f2fs_evict_inode. */ 608 if (ni.blk_addr != NULL_ADDR) { 609 err = -EIO; 610 goto err_out; 611 } 612 __remove_ino_entry(sbi, ino, ORPHAN_INO); 613 return 0; 614 615 err_out: 616 set_sbi_flag(sbi, SBI_NEED_FSCK); 617 f2fs_msg(sbi->sb, KERN_WARNING, 618 "%s: orphan failed (ino=%x), run fsck to fix.", 619 __func__, ino); 620 return err; 621 } 622 recover_orphan_inodes(struct f2fs_sb_info * sbi)623 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 624 { 625 block_t start_blk, orphan_blocks, i, j; 626 unsigned int s_flags = sbi->sb->s_flags; 627 int err = 0; 628 #ifdef CONFIG_QUOTA 629 int quota_enabled; 630 #endif 631 632 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 633 return 0; 634 635 if (s_flags & MS_RDONLY) { 636 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs"); 637 sbi->sb->s_flags &= ~MS_RDONLY; 638 } 639 640 #ifdef CONFIG_QUOTA 641 /* Needed for iput() to work correctly and not trash data */ 642 sbi->sb->s_flags |= MS_ACTIVE; 643 644 /* Turn on quotas so that they are updated correctly */ 645 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & MS_RDONLY); 646 #endif 647 648 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 649 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 650 651 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 652 653 for (i = 0; i < orphan_blocks; i++) { 654 struct page *page = get_meta_page(sbi, start_blk + i); 655 struct f2fs_orphan_block *orphan_blk; 656 657 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 658 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 659 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 660 err = recover_orphan_inode(sbi, ino); 661 if (err) { 662 f2fs_put_page(page, 1); 663 goto out; 664 } 665 } 666 f2fs_put_page(page, 1); 667 } 668 /* clear Orphan Flag */ 669 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 670 out: 671 #ifdef CONFIG_QUOTA 672 /* Turn quotas off */ 673 if (quota_enabled) 674 f2fs_quota_off_umount(sbi->sb); 675 #endif 676 sbi->sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 677 678 return err; 679 } 680 write_orphan_inodes(struct f2fs_sb_info * sbi,block_t start_blk)681 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 682 { 683 struct list_head *head; 684 struct f2fs_orphan_block *orphan_blk = NULL; 685 unsigned int nentries = 0; 686 unsigned short index = 1; 687 unsigned short orphan_blocks; 688 struct page *page = NULL; 689 struct ino_entry *orphan = NULL; 690 struct inode_management *im = &sbi->im[ORPHAN_INO]; 691 692 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 693 694 /* 695 * we don't need to do spin_lock(&im->ino_lock) here, since all the 696 * orphan inode operations are covered under f2fs_lock_op(). 697 * And, spin_lock should be avoided due to page operations below. 698 */ 699 head = &im->ino_list; 700 701 /* loop for each orphan inode entry and write them in Jornal block */ 702 list_for_each_entry(orphan, head, list) { 703 if (!page) { 704 page = grab_meta_page(sbi, start_blk++); 705 orphan_blk = 706 (struct f2fs_orphan_block *)page_address(page); 707 memset(orphan_blk, 0, sizeof(*orphan_blk)); 708 } 709 710 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 711 712 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 713 /* 714 * an orphan block is full of 1020 entries, 715 * then we need to flush current orphan blocks 716 * and bring another one in memory 717 */ 718 orphan_blk->blk_addr = cpu_to_le16(index); 719 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 720 orphan_blk->entry_count = cpu_to_le32(nentries); 721 set_page_dirty(page); 722 f2fs_put_page(page, 1); 723 index++; 724 nentries = 0; 725 page = NULL; 726 } 727 } 728 729 if (page) { 730 orphan_blk->blk_addr = cpu_to_le16(index); 731 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 732 orphan_blk->entry_count = cpu_to_le32(nentries); 733 set_page_dirty(page); 734 f2fs_put_page(page, 1); 735 } 736 } 737 get_checkpoint_version(struct f2fs_sb_info * sbi,block_t cp_addr,struct f2fs_checkpoint ** cp_block,struct page ** cp_page,unsigned long long * version)738 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 739 struct f2fs_checkpoint **cp_block, struct page **cp_page, 740 unsigned long long *version) 741 { 742 unsigned long blk_size = sbi->blocksize; 743 size_t crc_offset = 0; 744 __u32 crc = 0; 745 746 *cp_page = get_meta_page(sbi, cp_addr); 747 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 748 749 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 750 if (crc_offset > (blk_size - sizeof(__le32))) { 751 f2fs_msg(sbi->sb, KERN_WARNING, 752 "invalid crc_offset: %zu", crc_offset); 753 return -EINVAL; 754 } 755 756 crc = cur_cp_crc(*cp_block); 757 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) { 758 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value"); 759 return -EINVAL; 760 } 761 762 *version = cur_cp_version(*cp_block); 763 return 0; 764 } 765 validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)766 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 767 block_t cp_addr, unsigned long long *version) 768 { 769 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 770 struct f2fs_checkpoint *cp_block = NULL; 771 unsigned long long cur_version = 0, pre_version = 0; 772 int err; 773 774 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 775 &cp_page_1, version); 776 if (err) 777 goto invalid_cp1; 778 pre_version = *version; 779 780 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 781 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 782 &cp_page_2, version); 783 if (err) 784 goto invalid_cp2; 785 cur_version = *version; 786 787 if (cur_version == pre_version) { 788 *version = cur_version; 789 f2fs_put_page(cp_page_2, 1); 790 return cp_page_1; 791 } 792 invalid_cp2: 793 f2fs_put_page(cp_page_2, 1); 794 invalid_cp1: 795 f2fs_put_page(cp_page_1, 1); 796 return NULL; 797 } 798 get_valid_checkpoint(struct f2fs_sb_info * sbi)799 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 800 { 801 struct f2fs_checkpoint *cp_block; 802 struct f2fs_super_block *fsb = sbi->raw_super; 803 struct page *cp1, *cp2, *cur_page; 804 unsigned long blk_size = sbi->blocksize; 805 unsigned long long cp1_version = 0, cp2_version = 0; 806 unsigned long long cp_start_blk_no; 807 unsigned int cp_blks = 1 + __cp_payload(sbi); 808 block_t cp_blk_no; 809 int i; 810 811 sbi->ckpt = f2fs_kzalloc(sbi, cp_blks * blk_size, GFP_KERNEL); 812 if (!sbi->ckpt) 813 return -ENOMEM; 814 /* 815 * Finding out valid cp block involves read both 816 * sets( cp pack1 and cp pack 2) 817 */ 818 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 819 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 820 821 /* The second checkpoint pack should start at the next segment */ 822 cp_start_blk_no += ((unsigned long long)1) << 823 le32_to_cpu(fsb->log_blocks_per_seg); 824 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 825 826 if (cp1 && cp2) { 827 if (ver_after(cp2_version, cp1_version)) 828 cur_page = cp2; 829 else 830 cur_page = cp1; 831 } else if (cp1) { 832 cur_page = cp1; 833 } else if (cp2) { 834 cur_page = cp2; 835 } else { 836 goto fail_no_cp; 837 } 838 839 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 840 memcpy(sbi->ckpt, cp_block, blk_size); 841 842 /* Sanity checking of checkpoint */ 843 if (sanity_check_ckpt(sbi)) 844 goto free_fail_no_cp; 845 846 if (cur_page == cp1) 847 sbi->cur_cp_pack = 1; 848 else 849 sbi->cur_cp_pack = 2; 850 851 if (cp_blks <= 1) 852 goto done; 853 854 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 855 if (cur_page == cp2) 856 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 857 858 for (i = 1; i < cp_blks; i++) { 859 void *sit_bitmap_ptr; 860 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 861 862 cur_page = get_meta_page(sbi, cp_blk_no + i); 863 sit_bitmap_ptr = page_address(cur_page); 864 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 865 f2fs_put_page(cur_page, 1); 866 } 867 done: 868 f2fs_put_page(cp1, 1); 869 f2fs_put_page(cp2, 1); 870 return 0; 871 872 free_fail_no_cp: 873 f2fs_put_page(cp1, 1); 874 f2fs_put_page(cp2, 1); 875 fail_no_cp: 876 kfree(sbi->ckpt); 877 return -EINVAL; 878 } 879 __add_dirty_inode(struct inode * inode,enum inode_type type)880 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 881 { 882 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 883 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 884 885 if (is_inode_flag_set(inode, flag)) 886 return; 887 888 set_inode_flag(inode, flag); 889 if (!f2fs_is_volatile_file(inode)) 890 list_add_tail(&F2FS_I(inode)->dirty_list, 891 &sbi->inode_list[type]); 892 stat_inc_dirty_inode(sbi, type); 893 } 894 __remove_dirty_inode(struct inode * inode,enum inode_type type)895 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 896 { 897 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 898 899 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 900 return; 901 902 list_del_init(&F2FS_I(inode)->dirty_list); 903 clear_inode_flag(inode, flag); 904 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 905 } 906 update_dirty_page(struct inode * inode,struct page * page)907 void update_dirty_page(struct inode *inode, struct page *page) 908 { 909 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 910 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 911 912 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 913 !S_ISLNK(inode->i_mode)) 914 return; 915 916 spin_lock(&sbi->inode_lock[type]); 917 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 918 __add_dirty_inode(inode, type); 919 inode_inc_dirty_pages(inode); 920 spin_unlock(&sbi->inode_lock[type]); 921 922 SetPagePrivate(page); 923 f2fs_trace_pid(page); 924 } 925 remove_dirty_inode(struct inode * inode)926 void remove_dirty_inode(struct inode *inode) 927 { 928 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 929 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 930 931 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 932 !S_ISLNK(inode->i_mode)) 933 return; 934 935 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 936 return; 937 938 spin_lock(&sbi->inode_lock[type]); 939 __remove_dirty_inode(inode, type); 940 spin_unlock(&sbi->inode_lock[type]); 941 } 942 sync_dirty_inodes(struct f2fs_sb_info * sbi,enum inode_type type)943 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 944 { 945 struct list_head *head; 946 struct inode *inode; 947 struct f2fs_inode_info *fi; 948 bool is_dir = (type == DIR_INODE); 949 unsigned long ino = 0; 950 951 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 952 get_pages(sbi, is_dir ? 953 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 954 retry: 955 if (unlikely(f2fs_cp_error(sbi))) 956 return -EIO; 957 958 spin_lock(&sbi->inode_lock[type]); 959 960 head = &sbi->inode_list[type]; 961 if (list_empty(head)) { 962 spin_unlock(&sbi->inode_lock[type]); 963 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 964 get_pages(sbi, is_dir ? 965 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 966 return 0; 967 } 968 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 969 inode = igrab(&fi->vfs_inode); 970 spin_unlock(&sbi->inode_lock[type]); 971 if (inode) { 972 unsigned long cur_ino = inode->i_ino; 973 974 if (is_dir) 975 F2FS_I(inode)->cp_task = current; 976 977 filemap_fdatawrite(inode->i_mapping); 978 979 if (is_dir) 980 F2FS_I(inode)->cp_task = NULL; 981 982 iput(inode); 983 /* We need to give cpu to another writers. */ 984 if (ino == cur_ino) { 985 congestion_wait(BLK_RW_ASYNC, HZ/50); 986 cond_resched(); 987 } else { 988 ino = cur_ino; 989 } 990 } else { 991 /* 992 * We should submit bio, since it exists several 993 * wribacking dentry pages in the freeing inode. 994 */ 995 f2fs_submit_merged_write(sbi, DATA); 996 cond_resched(); 997 } 998 goto retry; 999 } 1000 f2fs_sync_inode_meta(struct f2fs_sb_info * sbi)1001 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1002 { 1003 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1004 struct inode *inode; 1005 struct f2fs_inode_info *fi; 1006 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1007 1008 while (total--) { 1009 if (unlikely(f2fs_cp_error(sbi))) 1010 return -EIO; 1011 1012 spin_lock(&sbi->inode_lock[DIRTY_META]); 1013 if (list_empty(head)) { 1014 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1015 return 0; 1016 } 1017 fi = list_first_entry(head, struct f2fs_inode_info, 1018 gdirty_list); 1019 inode = igrab(&fi->vfs_inode); 1020 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1021 if (inode) { 1022 sync_inode_metadata(inode, 0); 1023 1024 /* it's on eviction */ 1025 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1026 update_inode_page(inode); 1027 iput(inode); 1028 } 1029 } 1030 return 0; 1031 } 1032 __prepare_cp_block(struct f2fs_sb_info * sbi)1033 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1034 { 1035 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1036 struct f2fs_nm_info *nm_i = NM_I(sbi); 1037 nid_t last_nid = nm_i->next_scan_nid; 1038 1039 next_free_nid(sbi, &last_nid); 1040 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1041 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1042 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1043 ckpt->next_free_nid = cpu_to_le32(last_nid); 1044 } 1045 1046 /* 1047 * Freeze all the FS-operations for checkpoint. 1048 */ block_operations(struct f2fs_sb_info * sbi)1049 static int block_operations(struct f2fs_sb_info *sbi) 1050 { 1051 struct writeback_control wbc = { 1052 .sync_mode = WB_SYNC_ALL, 1053 .nr_to_write = LONG_MAX, 1054 .for_reclaim = 0, 1055 }; 1056 struct blk_plug plug; 1057 int err = 0; 1058 1059 blk_start_plug(&plug); 1060 1061 retry_flush_dents: 1062 f2fs_lock_all(sbi); 1063 /* write all the dirty dentry pages */ 1064 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1065 f2fs_unlock_all(sbi); 1066 err = sync_dirty_inodes(sbi, DIR_INODE); 1067 if (err) 1068 goto out; 1069 cond_resched(); 1070 goto retry_flush_dents; 1071 } 1072 1073 /* 1074 * POR: we should ensure that there are no dirty node pages 1075 * until finishing nat/sit flush. inode->i_blocks can be updated. 1076 */ 1077 down_write(&sbi->node_change); 1078 1079 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1080 up_write(&sbi->node_change); 1081 f2fs_unlock_all(sbi); 1082 err = f2fs_sync_inode_meta(sbi); 1083 if (err) 1084 goto out; 1085 cond_resched(); 1086 goto retry_flush_dents; 1087 } 1088 1089 retry_flush_nodes: 1090 down_write(&sbi->node_write); 1091 1092 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1093 up_write(&sbi->node_write); 1094 err = sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1095 if (err) { 1096 up_write(&sbi->node_change); 1097 f2fs_unlock_all(sbi); 1098 goto out; 1099 } 1100 cond_resched(); 1101 goto retry_flush_nodes; 1102 } 1103 1104 /* 1105 * sbi->node_change is used only for AIO write_begin path which produces 1106 * dirty node blocks and some checkpoint values by block allocation. 1107 */ 1108 __prepare_cp_block(sbi); 1109 up_write(&sbi->node_change); 1110 out: 1111 blk_finish_plug(&plug); 1112 return err; 1113 } 1114 unblock_operations(struct f2fs_sb_info * sbi)1115 static void unblock_operations(struct f2fs_sb_info *sbi) 1116 { 1117 up_write(&sbi->node_write); 1118 f2fs_unlock_all(sbi); 1119 } 1120 wait_on_all_pages_writeback(struct f2fs_sb_info * sbi)1121 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 1122 { 1123 DEFINE_WAIT(wait); 1124 1125 for (;;) { 1126 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1127 1128 if (!get_pages(sbi, F2FS_WB_CP_DATA)) 1129 break; 1130 1131 io_schedule_timeout(5*HZ); 1132 } 1133 finish_wait(&sbi->cp_wait, &wait); 1134 } 1135 update_ckpt_flags(struct f2fs_sb_info * sbi,struct cp_control * cpc)1136 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1137 { 1138 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1139 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1140 unsigned long flags; 1141 1142 spin_lock_irqsave(&sbi->cp_lock, flags); 1143 1144 if ((cpc->reason & CP_UMOUNT) && 1145 le32_to_cpu(ckpt->cp_pack_total_block_count) > 1146 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) 1147 disable_nat_bits(sbi, false); 1148 1149 if (cpc->reason & CP_TRIMMED) 1150 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1151 else 1152 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1153 1154 if (cpc->reason & CP_UMOUNT) 1155 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1156 else 1157 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1158 1159 if (cpc->reason & CP_FASTBOOT) 1160 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1161 else 1162 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1163 1164 if (orphan_num) 1165 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1166 else 1167 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1168 1169 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1170 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1171 1172 /* set this flag to activate crc|cp_ver for recovery */ 1173 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1174 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1175 1176 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1177 } 1178 commit_checkpoint(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)1179 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1180 void *src, block_t blk_addr) 1181 { 1182 struct writeback_control wbc = { 1183 .for_reclaim = 0, 1184 }; 1185 1186 /* 1187 * pagevec_lookup_tag and lock_page again will take 1188 * some extra time. Therefore, update_meta_pages and 1189 * sync_meta_pages are combined in this function. 1190 */ 1191 struct page *page = grab_meta_page(sbi, blk_addr); 1192 int err; 1193 1194 memcpy(page_address(page), src, PAGE_SIZE); 1195 set_page_dirty(page); 1196 1197 f2fs_wait_on_page_writeback(page, META, true); 1198 f2fs_bug_on(sbi, PageWriteback(page)); 1199 if (unlikely(!clear_page_dirty_for_io(page))) 1200 f2fs_bug_on(sbi, 1); 1201 1202 /* writeout cp pack 2 page */ 1203 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1204 f2fs_bug_on(sbi, err); 1205 1206 f2fs_put_page(page, 0); 1207 1208 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1209 f2fs_submit_merged_write(sbi, META_FLUSH); 1210 } 1211 do_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1212 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1213 { 1214 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1215 struct f2fs_nm_info *nm_i = NM_I(sbi); 1216 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1217 block_t start_blk; 1218 unsigned int data_sum_blocks, orphan_blocks; 1219 __u32 crc32 = 0; 1220 int i; 1221 int cp_payload_blks = __cp_payload(sbi); 1222 struct super_block *sb = sbi->sb; 1223 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1224 u64 kbytes_written; 1225 int err; 1226 1227 /* Flush all the NAT/SIT pages */ 1228 while (get_pages(sbi, F2FS_DIRTY_META)) { 1229 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1230 if (unlikely(f2fs_cp_error(sbi))) 1231 return -EIO; 1232 } 1233 1234 /* 1235 * modify checkpoint 1236 * version number is already updated 1237 */ 1238 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 1239 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1240 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1241 ckpt->cur_node_segno[i] = 1242 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1243 ckpt->cur_node_blkoff[i] = 1244 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1245 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1246 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1247 } 1248 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1249 ckpt->cur_data_segno[i] = 1250 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1251 ckpt->cur_data_blkoff[i] = 1252 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1253 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1254 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1255 } 1256 1257 /* 2 cp + n data seg summary + orphan inode blocks */ 1258 data_sum_blocks = npages_for_summary_flush(sbi, false); 1259 spin_lock_irqsave(&sbi->cp_lock, flags); 1260 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1261 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1262 else 1263 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1264 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1265 1266 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1267 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1268 orphan_blocks); 1269 1270 if (__remain_node_summaries(cpc->reason)) 1271 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1272 cp_payload_blks + data_sum_blocks + 1273 orphan_blocks + NR_CURSEG_NODE_TYPE); 1274 else 1275 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1276 cp_payload_blks + data_sum_blocks + 1277 orphan_blocks); 1278 1279 /* update ckpt flag for checkpoint */ 1280 update_ckpt_flags(sbi, cpc); 1281 1282 /* update SIT/NAT bitmap */ 1283 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1284 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1285 1286 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset)); 1287 *((__le32 *)((unsigned char *)ckpt + 1288 le32_to_cpu(ckpt->checksum_offset))) 1289 = cpu_to_le32(crc32); 1290 1291 start_blk = __start_cp_next_addr(sbi); 1292 1293 /* write nat bits */ 1294 if (enabled_nat_bits(sbi, cpc)) { 1295 __u64 cp_ver = cur_cp_version(ckpt); 1296 block_t blk; 1297 1298 cp_ver |= ((__u64)crc32 << 32); 1299 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1300 1301 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1302 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1303 update_meta_page(sbi, nm_i->nat_bits + 1304 (i << F2FS_BLKSIZE_BITS), blk + i); 1305 1306 /* Flush all the NAT BITS pages */ 1307 while (get_pages(sbi, F2FS_DIRTY_META)) { 1308 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1309 if (unlikely(f2fs_cp_error(sbi))) 1310 return -EIO; 1311 } 1312 } 1313 1314 /* write out checkpoint buffer at block 0 */ 1315 update_meta_page(sbi, ckpt, start_blk++); 1316 1317 for (i = 1; i < 1 + cp_payload_blks; i++) 1318 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1319 start_blk++); 1320 1321 if (orphan_num) { 1322 write_orphan_inodes(sbi, start_blk); 1323 start_blk += orphan_blocks; 1324 } 1325 1326 write_data_summaries(sbi, start_blk); 1327 start_blk += data_sum_blocks; 1328 1329 /* Record write statistics in the hot node summary */ 1330 kbytes_written = sbi->kbytes_written; 1331 if (sb->s_bdev->bd_part) 1332 kbytes_written += BD_PART_WRITTEN(sbi); 1333 1334 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1335 1336 if (__remain_node_summaries(cpc->reason)) { 1337 write_node_summaries(sbi, start_blk); 1338 start_blk += NR_CURSEG_NODE_TYPE; 1339 } 1340 1341 /* update user_block_counts */ 1342 sbi->last_valid_block_count = sbi->total_valid_block_count; 1343 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1344 1345 /* Here, we have one bio having CP pack except cp pack 2 page */ 1346 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1347 1348 /* wait for previous submitted meta pages writeback */ 1349 wait_on_all_pages_writeback(sbi); 1350 1351 if (unlikely(f2fs_cp_error(sbi))) 1352 return -EIO; 1353 1354 /* flush all device cache */ 1355 err = f2fs_flush_device_cache(sbi); 1356 if (err) 1357 return err; 1358 1359 /* barrier and flush checkpoint cp pack 2 page if it can */ 1360 commit_checkpoint(sbi, ckpt, start_blk); 1361 wait_on_all_pages_writeback(sbi); 1362 1363 release_ino_entry(sbi, false); 1364 1365 if (unlikely(f2fs_cp_error(sbi))) 1366 return -EIO; 1367 1368 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1369 clear_sbi_flag(sbi, SBI_NEED_CP); 1370 __set_cp_next_pack(sbi); 1371 1372 /* 1373 * redirty superblock if metadata like node page or inode cache is 1374 * updated during writing checkpoint. 1375 */ 1376 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1377 get_pages(sbi, F2FS_DIRTY_IMETA)) 1378 set_sbi_flag(sbi, SBI_IS_DIRTY); 1379 1380 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1381 1382 return 0; 1383 } 1384 1385 /* 1386 * We guarantee that this checkpoint procedure will not fail. 1387 */ write_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1388 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1389 { 1390 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1391 unsigned long long ckpt_ver; 1392 int err = 0; 1393 1394 mutex_lock(&sbi->cp_mutex); 1395 1396 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1397 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1398 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1399 goto out; 1400 if (unlikely(f2fs_cp_error(sbi))) { 1401 err = -EIO; 1402 goto out; 1403 } 1404 if (f2fs_readonly(sbi->sb)) { 1405 err = -EROFS; 1406 goto out; 1407 } 1408 1409 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1410 1411 err = block_operations(sbi); 1412 if (err) 1413 goto out; 1414 1415 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1416 1417 f2fs_flush_merged_writes(sbi); 1418 1419 /* this is the case of multiple fstrims without any changes */ 1420 if (cpc->reason & CP_DISCARD) { 1421 if (!exist_trim_candidates(sbi, cpc)) { 1422 unblock_operations(sbi); 1423 goto out; 1424 } 1425 1426 if (NM_I(sbi)->dirty_nat_cnt == 0 && 1427 SIT_I(sbi)->dirty_sentries == 0 && 1428 prefree_segments(sbi) == 0) { 1429 flush_sit_entries(sbi, cpc); 1430 clear_prefree_segments(sbi, cpc); 1431 unblock_operations(sbi); 1432 goto out; 1433 } 1434 } 1435 1436 /* 1437 * update checkpoint pack index 1438 * Increase the version number so that 1439 * SIT entries and seg summaries are written at correct place 1440 */ 1441 ckpt_ver = cur_cp_version(ckpt); 1442 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1443 1444 /* write cached NAT/SIT entries to NAT/SIT area */ 1445 flush_nat_entries(sbi, cpc); 1446 flush_sit_entries(sbi, cpc); 1447 1448 /* unlock all the fs_lock[] in do_checkpoint() */ 1449 err = do_checkpoint(sbi, cpc); 1450 if (err) 1451 release_discard_addrs(sbi); 1452 else 1453 clear_prefree_segments(sbi, cpc); 1454 1455 unblock_operations(sbi); 1456 stat_inc_cp_count(sbi->stat_info); 1457 1458 if (cpc->reason & CP_RECOVERY) 1459 f2fs_msg(sbi->sb, KERN_NOTICE, 1460 "checkpoint: version = %llx", ckpt_ver); 1461 1462 /* do checkpoint periodically */ 1463 f2fs_update_time(sbi, CP_TIME); 1464 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1465 out: 1466 mutex_unlock(&sbi->cp_mutex); 1467 return err; 1468 } 1469 init_ino_entry_info(struct f2fs_sb_info * sbi)1470 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1471 { 1472 int i; 1473 1474 for (i = 0; i < MAX_INO_ENTRY; i++) { 1475 struct inode_management *im = &sbi->im[i]; 1476 1477 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1478 spin_lock_init(&im->ino_lock); 1479 INIT_LIST_HEAD(&im->ino_list); 1480 im->ino_num = 0; 1481 } 1482 1483 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1484 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1485 F2FS_ORPHANS_PER_BLOCK; 1486 } 1487 create_checkpoint_caches(void)1488 int __init create_checkpoint_caches(void) 1489 { 1490 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1491 sizeof(struct ino_entry)); 1492 if (!ino_entry_slab) 1493 return -ENOMEM; 1494 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1495 sizeof(struct inode_entry)); 1496 if (!inode_entry_slab) { 1497 kmem_cache_destroy(ino_entry_slab); 1498 return -ENOMEM; 1499 } 1500 return 0; 1501 } 1502 destroy_checkpoint_caches(void)1503 void destroy_checkpoint_caches(void) 1504 { 1505 kmem_cache_destroy(ino_entry_slab); 1506 kmem_cache_destroy(inode_entry_slab); 1507 } 1508