1 /*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 #include <linux/freezer.h>
20 #include <linux/sched.h>
21
22 #include "f2fs.h"
23 #include "segment.h"
24 #include "node.h"
25 #include "gc.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28
29 #define __reverse_ffz(x) __reverse_ffs(~(x))
30
31 static struct kmem_cache *discard_entry_slab;
32 static struct kmem_cache *discard_cmd_slab;
33 static struct kmem_cache *sit_entry_set_slab;
34 static struct kmem_cache *inmem_entry_slab;
35
__reverse_ulong(unsigned char * str)36 static unsigned long __reverse_ulong(unsigned char *str)
37 {
38 unsigned long tmp = 0;
39 int shift = 24, idx = 0;
40
41 #if BITS_PER_LONG == 64
42 shift = 56;
43 #endif
44 while (shift >= 0) {
45 tmp |= (unsigned long)str[idx++] << shift;
46 shift -= BITS_PER_BYTE;
47 }
48 return tmp;
49 }
50
51 /*
52 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
53 * MSB and LSB are reversed in a byte by f2fs_set_bit.
54 */
__reverse_ffs(unsigned long word)55 static inline unsigned long __reverse_ffs(unsigned long word)
56 {
57 int num = 0;
58
59 #if BITS_PER_LONG == 64
60 if ((word & 0xffffffff00000000UL) == 0)
61 num += 32;
62 else
63 word >>= 32;
64 #endif
65 if ((word & 0xffff0000) == 0)
66 num += 16;
67 else
68 word >>= 16;
69
70 if ((word & 0xff00) == 0)
71 num += 8;
72 else
73 word >>= 8;
74
75 if ((word & 0xf0) == 0)
76 num += 4;
77 else
78 word >>= 4;
79
80 if ((word & 0xc) == 0)
81 num += 2;
82 else
83 word >>= 2;
84
85 if ((word & 0x2) == 0)
86 num += 1;
87 return num;
88 }
89
90 /*
91 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
92 * f2fs_set_bit makes MSB and LSB reversed in a byte.
93 * @size must be integral times of unsigned long.
94 * Example:
95 * MSB <--> LSB
96 * f2fs_set_bit(0, bitmap) => 1000 0000
97 * f2fs_set_bit(7, bitmap) => 0000 0001
98 */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)99 static unsigned long __find_rev_next_bit(const unsigned long *addr,
100 unsigned long size, unsigned long offset)
101 {
102 const unsigned long *p = addr + BIT_WORD(offset);
103 unsigned long result = size;
104 unsigned long tmp;
105
106 if (offset >= size)
107 return size;
108
109 size -= (offset & ~(BITS_PER_LONG - 1));
110 offset %= BITS_PER_LONG;
111
112 while (1) {
113 if (*p == 0)
114 goto pass;
115
116 tmp = __reverse_ulong((unsigned char *)p);
117
118 tmp &= ~0UL >> offset;
119 if (size < BITS_PER_LONG)
120 tmp &= (~0UL << (BITS_PER_LONG - size));
121 if (tmp)
122 goto found;
123 pass:
124 if (size <= BITS_PER_LONG)
125 break;
126 size -= BITS_PER_LONG;
127 offset = 0;
128 p++;
129 }
130 return result;
131 found:
132 return result - size + __reverse_ffs(tmp);
133 }
134
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
136 unsigned long size, unsigned long offset)
137 {
138 const unsigned long *p = addr + BIT_WORD(offset);
139 unsigned long result = size;
140 unsigned long tmp;
141
142 if (offset >= size)
143 return size;
144
145 size -= (offset & ~(BITS_PER_LONG - 1));
146 offset %= BITS_PER_LONG;
147
148 while (1) {
149 if (*p == ~0UL)
150 goto pass;
151
152 tmp = __reverse_ulong((unsigned char *)p);
153
154 if (offset)
155 tmp |= ~0UL << (BITS_PER_LONG - offset);
156 if (size < BITS_PER_LONG)
157 tmp |= ~0UL >> size;
158 if (tmp != ~0UL)
159 goto found;
160 pass:
161 if (size <= BITS_PER_LONG)
162 break;
163 size -= BITS_PER_LONG;
164 offset = 0;
165 p++;
166 }
167 return result;
168 found:
169 return result - size + __reverse_ffz(tmp);
170 }
171
need_SSR(struct f2fs_sb_info * sbi)172 bool need_SSR(struct f2fs_sb_info *sbi)
173 {
174 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
175 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
176 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177
178 if (test_opt(sbi, LFS))
179 return false;
180 if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
181 return true;
182
183 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
184 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
185 }
186
register_inmem_page(struct inode * inode,struct page * page)187 void register_inmem_page(struct inode *inode, struct page *page)
188 {
189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191 struct inmem_pages *new;
192
193 f2fs_trace_pid(page);
194
195 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
196 SetPagePrivate(page);
197
198 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
199
200 /* add atomic page indices to the list */
201 new->page = page;
202 INIT_LIST_HEAD(&new->list);
203
204 /* increase reference count with clean state */
205 mutex_lock(&fi->inmem_lock);
206 get_page(page);
207 list_add_tail(&new->list, &fi->inmem_pages);
208 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
209 if (list_empty(&fi->inmem_ilist))
210 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
211 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
212 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
213 mutex_unlock(&fi->inmem_lock);
214
215 trace_f2fs_register_inmem_page(page, INMEM);
216 }
217
__revoke_inmem_pages(struct inode * inode,struct list_head * head,bool drop,bool recover)218 static int __revoke_inmem_pages(struct inode *inode,
219 struct list_head *head, bool drop, bool recover)
220 {
221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222 struct inmem_pages *cur, *tmp;
223 int err = 0;
224
225 list_for_each_entry_safe(cur, tmp, head, list) {
226 struct page *page = cur->page;
227
228 if (drop)
229 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
230
231 lock_page(page);
232
233 if (recover) {
234 struct dnode_of_data dn;
235 struct node_info ni;
236
237 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
238 retry:
239 set_new_dnode(&dn, inode, NULL, NULL, 0);
240 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
241 if (err) {
242 if (err == -ENOMEM) {
243 congestion_wait(BLK_RW_ASYNC, HZ/50);
244 cond_resched();
245 goto retry;
246 }
247 err = -EAGAIN;
248 goto next;
249 }
250 get_node_info(sbi, dn.nid, &ni);
251 if (cur->old_addr == NEW_ADDR) {
252 invalidate_blocks(sbi, dn.data_blkaddr);
253 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
254 } else
255 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
256 cur->old_addr, ni.version, true, true);
257 f2fs_put_dnode(&dn);
258 }
259 next:
260 /* we don't need to invalidate this in the sccessful status */
261 if (drop || recover)
262 ClearPageUptodate(page);
263 set_page_private(page, 0);
264 ClearPagePrivate(page);
265 f2fs_put_page(page, 1);
266
267 list_del(&cur->list);
268 kmem_cache_free(inmem_entry_slab, cur);
269 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
270 }
271 return err;
272 }
273
drop_inmem_pages_all(struct f2fs_sb_info * sbi)274 void drop_inmem_pages_all(struct f2fs_sb_info *sbi)
275 {
276 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
277 struct inode *inode;
278 struct f2fs_inode_info *fi;
279 next:
280 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
281 if (list_empty(head)) {
282 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
283 return;
284 }
285 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
286 inode = igrab(&fi->vfs_inode);
287 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
288
289 if (inode) {
290 drop_inmem_pages(inode);
291 iput(inode);
292 }
293 congestion_wait(BLK_RW_ASYNC, HZ/50);
294 cond_resched();
295 goto next;
296 }
297
drop_inmem_pages(struct inode * inode)298 void drop_inmem_pages(struct inode *inode)
299 {
300 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
301 struct f2fs_inode_info *fi = F2FS_I(inode);
302
303 mutex_lock(&fi->inmem_lock);
304 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
305 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
306 if (!list_empty(&fi->inmem_ilist))
307 list_del_init(&fi->inmem_ilist);
308 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
309 mutex_unlock(&fi->inmem_lock);
310
311 clear_inode_flag(inode, FI_ATOMIC_FILE);
312 clear_inode_flag(inode, FI_HOT_DATA);
313 stat_dec_atomic_write(inode);
314 }
315
drop_inmem_page(struct inode * inode,struct page * page)316 void drop_inmem_page(struct inode *inode, struct page *page)
317 {
318 struct f2fs_inode_info *fi = F2FS_I(inode);
319 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
320 struct list_head *head = &fi->inmem_pages;
321 struct inmem_pages *cur = NULL;
322
323 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
324
325 mutex_lock(&fi->inmem_lock);
326 list_for_each_entry(cur, head, list) {
327 if (cur->page == page)
328 break;
329 }
330
331 f2fs_bug_on(sbi, !cur || cur->page != page);
332 list_del(&cur->list);
333 mutex_unlock(&fi->inmem_lock);
334
335 dec_page_count(sbi, F2FS_INMEM_PAGES);
336 kmem_cache_free(inmem_entry_slab, cur);
337
338 ClearPageUptodate(page);
339 set_page_private(page, 0);
340 ClearPagePrivate(page);
341 f2fs_put_page(page, 0);
342
343 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
344 }
345
__commit_inmem_pages(struct inode * inode,struct list_head * revoke_list)346 static int __commit_inmem_pages(struct inode *inode,
347 struct list_head *revoke_list)
348 {
349 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
350 struct f2fs_inode_info *fi = F2FS_I(inode);
351 struct inmem_pages *cur, *tmp;
352 struct f2fs_io_info fio = {
353 .sbi = sbi,
354 .ino = inode->i_ino,
355 .type = DATA,
356 .op = REQ_OP_WRITE,
357 .op_flags = REQ_SYNC | REQ_PRIO,
358 .io_type = FS_DATA_IO,
359 };
360 pgoff_t last_idx = ULONG_MAX;
361 int err = 0;
362
363 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
364 struct page *page = cur->page;
365
366 lock_page(page);
367 if (page->mapping == inode->i_mapping) {
368 trace_f2fs_commit_inmem_page(page, INMEM);
369
370 set_page_dirty(page);
371 f2fs_wait_on_page_writeback(page, DATA, true);
372 if (clear_page_dirty_for_io(page)) {
373 inode_dec_dirty_pages(inode);
374 remove_dirty_inode(inode);
375 }
376 retry:
377 fio.page = page;
378 fio.old_blkaddr = NULL_ADDR;
379 fio.encrypted_page = NULL;
380 fio.need_lock = LOCK_DONE;
381 err = do_write_data_page(&fio);
382 if (err) {
383 if (err == -ENOMEM) {
384 congestion_wait(BLK_RW_ASYNC, HZ/50);
385 cond_resched();
386 goto retry;
387 }
388 unlock_page(page);
389 break;
390 }
391 /* record old blkaddr for revoking */
392 cur->old_addr = fio.old_blkaddr;
393 last_idx = page->index;
394 }
395 unlock_page(page);
396 list_move_tail(&cur->list, revoke_list);
397 }
398
399 if (last_idx != ULONG_MAX)
400 f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
401
402 if (!err)
403 __revoke_inmem_pages(inode, revoke_list, false, false);
404
405 return err;
406 }
407
commit_inmem_pages(struct inode * inode)408 int commit_inmem_pages(struct inode *inode)
409 {
410 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
411 struct f2fs_inode_info *fi = F2FS_I(inode);
412 struct list_head revoke_list;
413 int err;
414
415 INIT_LIST_HEAD(&revoke_list);
416 f2fs_balance_fs(sbi, true);
417 f2fs_lock_op(sbi);
418
419 set_inode_flag(inode, FI_ATOMIC_COMMIT);
420
421 mutex_lock(&fi->inmem_lock);
422 err = __commit_inmem_pages(inode, &revoke_list);
423 if (err) {
424 int ret;
425 /*
426 * try to revoke all committed pages, but still we could fail
427 * due to no memory or other reason, if that happened, EAGAIN
428 * will be returned, which means in such case, transaction is
429 * already not integrity, caller should use journal to do the
430 * recovery or rewrite & commit last transaction. For other
431 * error number, revoking was done by filesystem itself.
432 */
433 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
434 if (ret)
435 err = ret;
436
437 /* drop all uncommitted pages */
438 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
439 }
440 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
441 if (!list_empty(&fi->inmem_ilist))
442 list_del_init(&fi->inmem_ilist);
443 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
444 mutex_unlock(&fi->inmem_lock);
445
446 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
447
448 f2fs_unlock_op(sbi);
449 return err;
450 }
451
452 /*
453 * This function balances dirty node and dentry pages.
454 * In addition, it controls garbage collection.
455 */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)456 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
457 {
458 #ifdef CONFIG_F2FS_FAULT_INJECTION
459 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
460 f2fs_show_injection_info(FAULT_CHECKPOINT);
461 f2fs_stop_checkpoint(sbi, false);
462 }
463 #endif
464
465 /* balance_fs_bg is able to be pending */
466 if (need && excess_cached_nats(sbi))
467 f2fs_balance_fs_bg(sbi);
468
469 /*
470 * We should do GC or end up with checkpoint, if there are so many dirty
471 * dir/node pages without enough free segments.
472 */
473 if (has_not_enough_free_secs(sbi, 0, 0)) {
474 mutex_lock(&sbi->gc_mutex);
475 f2fs_gc(sbi, false, false, NULL_SEGNO);
476 }
477 }
478
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi)479 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
480 {
481 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
482 return;
483
484 /* try to shrink extent cache when there is no enough memory */
485 if (!available_free_memory(sbi, EXTENT_CACHE))
486 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
487
488 /* check the # of cached NAT entries */
489 if (!available_free_memory(sbi, NAT_ENTRIES))
490 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
491
492 if (!available_free_memory(sbi, FREE_NIDS))
493 try_to_free_nids(sbi, MAX_FREE_NIDS);
494 else
495 build_free_nids(sbi, false, false);
496
497 if (!is_idle(sbi) && !excess_dirty_nats(sbi))
498 return;
499
500 /* checkpoint is the only way to shrink partial cached entries */
501 if (!available_free_memory(sbi, NAT_ENTRIES) ||
502 !available_free_memory(sbi, INO_ENTRIES) ||
503 excess_prefree_segs(sbi) ||
504 excess_dirty_nats(sbi) ||
505 f2fs_time_over(sbi, CP_TIME)) {
506 if (test_opt(sbi, DATA_FLUSH)) {
507 struct blk_plug plug;
508
509 blk_start_plug(&plug);
510 sync_dirty_inodes(sbi, FILE_INODE);
511 blk_finish_plug(&plug);
512 }
513 f2fs_sync_fs(sbi->sb, true);
514 stat_inc_bg_cp_count(sbi->stat_info);
515 }
516 }
517
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)518 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
519 struct block_device *bdev)
520 {
521 struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
522 int ret;
523
524 bio->bi_rw = REQ_OP_WRITE;
525 bio->bi_bdev = bdev;
526 ret = submit_bio_wait(WRITE_FLUSH, bio);
527 bio_put(bio);
528
529 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
530 test_opt(sbi, FLUSH_MERGE), ret);
531 return ret;
532 }
533
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)534 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
535 {
536 int ret = 0;
537 int i;
538
539 if (!sbi->s_ndevs)
540 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
541
542 for (i = 0; i < sbi->s_ndevs; i++) {
543 if (!is_dirty_device(sbi, ino, i, FLUSH_INO))
544 continue;
545 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
546 if (ret)
547 break;
548 }
549 return ret;
550 }
551
issue_flush_thread(void * data)552 static int issue_flush_thread(void *data)
553 {
554 struct f2fs_sb_info *sbi = data;
555 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
556 wait_queue_head_t *q = &fcc->flush_wait_queue;
557 repeat:
558 if (kthread_should_stop())
559 return 0;
560
561 sb_start_intwrite(sbi->sb);
562
563 if (!llist_empty(&fcc->issue_list)) {
564 struct flush_cmd *cmd, *next;
565 int ret;
566
567 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
568 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
569
570 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
571
572 ret = submit_flush_wait(sbi, cmd->ino);
573 atomic_inc(&fcc->issued_flush);
574
575 llist_for_each_entry_safe(cmd, next,
576 fcc->dispatch_list, llnode) {
577 cmd->ret = ret;
578 complete(&cmd->wait);
579 }
580 fcc->dispatch_list = NULL;
581 }
582
583 sb_end_intwrite(sbi->sb);
584
585 wait_event_interruptible(*q,
586 kthread_should_stop() || !llist_empty(&fcc->issue_list));
587 goto repeat;
588 }
589
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)590 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
591 {
592 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
593 struct flush_cmd cmd;
594 int ret;
595
596 if (test_opt(sbi, NOBARRIER))
597 return 0;
598
599 if (!test_opt(sbi, FLUSH_MERGE)) {
600 ret = submit_flush_wait(sbi, ino);
601 atomic_inc(&fcc->issued_flush);
602 return ret;
603 }
604
605 if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
606 ret = submit_flush_wait(sbi, ino);
607 atomic_dec(&fcc->issing_flush);
608
609 atomic_inc(&fcc->issued_flush);
610 return ret;
611 }
612
613 cmd.ino = ino;
614 init_completion(&cmd.wait);
615
616 llist_add(&cmd.llnode, &fcc->issue_list);
617
618 /* update issue_list before we wake up issue_flush thread */
619 smp_mb();
620
621 if (waitqueue_active(&fcc->flush_wait_queue))
622 wake_up(&fcc->flush_wait_queue);
623
624 if (fcc->f2fs_issue_flush) {
625 wait_for_completion(&cmd.wait);
626 atomic_dec(&fcc->issing_flush);
627 } else {
628 struct llist_node *list;
629
630 list = llist_del_all(&fcc->issue_list);
631 if (!list) {
632 wait_for_completion(&cmd.wait);
633 atomic_dec(&fcc->issing_flush);
634 } else {
635 struct flush_cmd *tmp, *next;
636
637 ret = submit_flush_wait(sbi, ino);
638
639 llist_for_each_entry_safe(tmp, next, list, llnode) {
640 if (tmp == &cmd) {
641 cmd.ret = ret;
642 atomic_dec(&fcc->issing_flush);
643 continue;
644 }
645 tmp->ret = ret;
646 complete(&tmp->wait);
647 }
648 }
649 }
650
651 return cmd.ret;
652 }
653
create_flush_cmd_control(struct f2fs_sb_info * sbi)654 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
655 {
656 dev_t dev = sbi->sb->s_bdev->bd_dev;
657 struct flush_cmd_control *fcc;
658 int err = 0;
659
660 if (SM_I(sbi)->fcc_info) {
661 fcc = SM_I(sbi)->fcc_info;
662 if (fcc->f2fs_issue_flush)
663 return err;
664 goto init_thread;
665 }
666
667 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
668 if (!fcc)
669 return -ENOMEM;
670 atomic_set(&fcc->issued_flush, 0);
671 atomic_set(&fcc->issing_flush, 0);
672 init_waitqueue_head(&fcc->flush_wait_queue);
673 init_llist_head(&fcc->issue_list);
674 SM_I(sbi)->fcc_info = fcc;
675 if (!test_opt(sbi, FLUSH_MERGE))
676 return err;
677
678 init_thread:
679 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
680 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
681 if (IS_ERR(fcc->f2fs_issue_flush)) {
682 err = PTR_ERR(fcc->f2fs_issue_flush);
683 kfree(fcc);
684 SM_I(sbi)->fcc_info = NULL;
685 return err;
686 }
687
688 return err;
689 }
690
destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)691 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
692 {
693 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
694
695 if (fcc && fcc->f2fs_issue_flush) {
696 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
697
698 fcc->f2fs_issue_flush = NULL;
699 kthread_stop(flush_thread);
700 }
701 if (free) {
702 kfree(fcc);
703 SM_I(sbi)->fcc_info = NULL;
704 }
705 }
706
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)707 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
708 {
709 int ret = 0, i;
710
711 if (!sbi->s_ndevs)
712 return 0;
713
714 for (i = 1; i < sbi->s_ndevs; i++) {
715 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
716 continue;
717 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
718 if (ret)
719 break;
720
721 spin_lock(&sbi->dev_lock);
722 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
723 spin_unlock(&sbi->dev_lock);
724 }
725
726 return ret;
727 }
728
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)729 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
730 enum dirty_type dirty_type)
731 {
732 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
733
734 /* need not be added */
735 if (IS_CURSEG(sbi, segno))
736 return;
737
738 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
739 dirty_i->nr_dirty[dirty_type]++;
740
741 if (dirty_type == DIRTY) {
742 struct seg_entry *sentry = get_seg_entry(sbi, segno);
743 enum dirty_type t = sentry->type;
744
745 if (unlikely(t >= DIRTY)) {
746 f2fs_bug_on(sbi, 1);
747 return;
748 }
749 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
750 dirty_i->nr_dirty[t]++;
751 }
752 }
753
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)754 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
755 enum dirty_type dirty_type)
756 {
757 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
758
759 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
760 dirty_i->nr_dirty[dirty_type]--;
761
762 if (dirty_type == DIRTY) {
763 struct seg_entry *sentry = get_seg_entry(sbi, segno);
764 enum dirty_type t = sentry->type;
765
766 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
767 dirty_i->nr_dirty[t]--;
768
769 if (get_valid_blocks(sbi, segno, true) == 0)
770 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
771 dirty_i->victim_secmap);
772 }
773 }
774
775 /*
776 * Should not occur error such as -ENOMEM.
777 * Adding dirty entry into seglist is not critical operation.
778 * If a given segment is one of current working segments, it won't be added.
779 */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)780 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
781 {
782 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
783 unsigned short valid_blocks;
784
785 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
786 return;
787
788 mutex_lock(&dirty_i->seglist_lock);
789
790 valid_blocks = get_valid_blocks(sbi, segno, false);
791
792 if (valid_blocks == 0) {
793 __locate_dirty_segment(sbi, segno, PRE);
794 __remove_dirty_segment(sbi, segno, DIRTY);
795 } else if (valid_blocks < sbi->blocks_per_seg) {
796 __locate_dirty_segment(sbi, segno, DIRTY);
797 } else {
798 /* Recovery routine with SSR needs this */
799 __remove_dirty_segment(sbi, segno, DIRTY);
800 }
801
802 mutex_unlock(&dirty_i->seglist_lock);
803 }
804
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)805 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
806 struct block_device *bdev, block_t lstart,
807 block_t start, block_t len)
808 {
809 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
810 struct list_head *pend_list;
811 struct discard_cmd *dc;
812
813 f2fs_bug_on(sbi, !len);
814
815 pend_list = &dcc->pend_list[plist_idx(len)];
816
817 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
818 INIT_LIST_HEAD(&dc->list);
819 dc->bdev = bdev;
820 dc->lstart = lstart;
821 dc->start = start;
822 dc->len = len;
823 dc->ref = 0;
824 dc->state = D_PREP;
825 dc->error = 0;
826 init_completion(&dc->wait);
827 list_add_tail(&dc->list, pend_list);
828 atomic_inc(&dcc->discard_cmd_cnt);
829 dcc->undiscard_blks += len;
830
831 return dc;
832 }
833
__attach_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node * parent,struct rb_node ** p)834 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
835 struct block_device *bdev, block_t lstart,
836 block_t start, block_t len,
837 struct rb_node *parent, struct rb_node **p)
838 {
839 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
840 struct discard_cmd *dc;
841
842 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
843
844 rb_link_node(&dc->rb_node, parent, p);
845 rb_insert_color(&dc->rb_node, &dcc->root);
846
847 return dc;
848 }
849
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)850 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
851 struct discard_cmd *dc)
852 {
853 if (dc->state == D_DONE)
854 atomic_dec(&dcc->issing_discard);
855
856 list_del(&dc->list);
857 rb_erase(&dc->rb_node, &dcc->root);
858 dcc->undiscard_blks -= dc->len;
859
860 kmem_cache_free(discard_cmd_slab, dc);
861
862 atomic_dec(&dcc->discard_cmd_cnt);
863 }
864
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)865 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
866 struct discard_cmd *dc)
867 {
868 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
869
870 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
871
872 f2fs_bug_on(sbi, dc->ref);
873
874 if (dc->error == -EOPNOTSUPP)
875 dc->error = 0;
876
877 if (dc->error)
878 f2fs_msg(sbi->sb, KERN_INFO,
879 "Issue discard(%u, %u, %u) failed, ret: %d",
880 dc->lstart, dc->start, dc->len, dc->error);
881 __detach_discard_cmd(dcc, dc);
882 }
883
f2fs_submit_discard_endio(struct bio * bio)884 static void f2fs_submit_discard_endio(struct bio *bio)
885 {
886 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
887
888 dc->error = bio->bi_error;
889 dc->state = D_DONE;
890 complete_all(&dc->wait);
891 bio_put(bio);
892 }
893
894 /* copied from block/blk-lib.c in 4.10-rc1 */
__blkdev_issue_discard(struct block_device * bdev,sector_t sector,sector_t nr_sects,gfp_t gfp_mask,int flags,struct bio ** biop)895 static int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
896 sector_t nr_sects, gfp_t gfp_mask, int flags,
897 struct bio **biop)
898 {
899 struct request_queue *q = bdev_get_queue(bdev);
900 struct bio *bio = *biop;
901 unsigned int granularity;
902 int op = REQ_WRITE | REQ_DISCARD;
903 int alignment;
904 sector_t bs_mask;
905
906 if (!q)
907 return -ENXIO;
908
909 if (!blk_queue_discard(q))
910 return -EOPNOTSUPP;
911
912 if (flags & BLKDEV_DISCARD_SECURE) {
913 if (!blk_queue_secdiscard(q))
914 return -EOPNOTSUPP;
915 op |= REQ_SECURE;
916 }
917
918 bs_mask = (bdev_logical_block_size(bdev) >> 9) - 1;
919 if ((sector | nr_sects) & bs_mask)
920 return -EINVAL;
921
922 /* Zero-sector (unknown) and one-sector granularities are the same. */
923 granularity = max(q->limits.discard_granularity >> 9, 1U);
924 alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
925
926 while (nr_sects) {
927 unsigned int req_sects;
928 sector_t end_sect, tmp;
929
930 /* Make sure bi_size doesn't overflow */
931 req_sects = min_t(sector_t, nr_sects, UINT_MAX >> 9);
932
933 /**
934 * If splitting a request, and the next starting sector would be
935 * misaligned, stop the discard at the previous aligned sector.
936 */
937 end_sect = sector + req_sects;
938 tmp = end_sect;
939 if (req_sects < nr_sects &&
940 sector_div(tmp, granularity) != alignment) {
941 end_sect = end_sect - alignment;
942 sector_div(end_sect, granularity);
943 end_sect = end_sect * granularity + alignment;
944 req_sects = end_sect - sector;
945 }
946
947 if (bio) {
948 int ret = submit_bio_wait(op, bio);
949 bio_put(bio);
950 if (ret)
951 return ret;
952 }
953 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, 1);
954 bio->bi_iter.bi_sector = sector;
955 bio->bi_bdev = bdev;
956 bio_set_op_attrs(bio, op, 0);
957
958 bio->bi_iter.bi_size = req_sects << 9;
959 nr_sects -= req_sects;
960 sector = end_sect;
961
962 /*
963 * We can loop for a long time in here, if someone does
964 * full device discards (like mkfs). Be nice and allow
965 * us to schedule out to avoid softlocking if preempt
966 * is disabled.
967 */
968 cond_resched();
969 }
970
971 *biop = bio;
972 return 0;
973 }
974
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)975 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
976 block_t start, block_t end)
977 {
978 #ifdef CONFIG_F2FS_CHECK_FS
979 struct seg_entry *sentry;
980 unsigned int segno;
981 block_t blk = start;
982 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
983 unsigned long *map;
984
985 while (blk < end) {
986 segno = GET_SEGNO(sbi, blk);
987 sentry = get_seg_entry(sbi, segno);
988 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
989
990 if (end < START_BLOCK(sbi, segno + 1))
991 size = GET_BLKOFF_FROM_SEG0(sbi, end);
992 else
993 size = max_blocks;
994 map = (unsigned long *)(sentry->cur_valid_map);
995 offset = __find_rev_next_bit(map, size, offset);
996 f2fs_bug_on(sbi, offset != size);
997 blk = START_BLOCK(sbi, segno + 1);
998 }
999 #endif
1000 }
1001
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1002 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1003 struct discard_policy *dpolicy,
1004 int discard_type, unsigned int granularity)
1005 {
1006 /* common policy */
1007 dpolicy->type = discard_type;
1008 dpolicy->sync = true;
1009 dpolicy->granularity = granularity;
1010
1011 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1012 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1013
1014 if (discard_type == DPOLICY_BG) {
1015 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1016 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1017 dpolicy->io_aware = true;
1018 dpolicy->sync = false;
1019 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1020 dpolicy->granularity = 1;
1021 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1022 }
1023 } else if (discard_type == DPOLICY_FORCE) {
1024 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1025 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1026 dpolicy->io_aware = false;
1027 } else if (discard_type == DPOLICY_FSTRIM) {
1028 dpolicy->io_aware = false;
1029 } else if (discard_type == DPOLICY_UMOUNT) {
1030 dpolicy->io_aware = false;
1031 }
1032 }
1033
1034
1035 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc)1036 static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
1037 struct discard_policy *dpolicy,
1038 struct discard_cmd *dc)
1039 {
1040 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1041 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1042 &(dcc->fstrim_list) : &(dcc->wait_list);
1043 struct bio *bio = NULL;
1044 int flag = dpolicy->sync ? REQ_SYNC : 0;
1045
1046 if (dc->state != D_PREP)
1047 return;
1048
1049 trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
1050
1051 dc->error = __blkdev_issue_discard(dc->bdev,
1052 SECTOR_FROM_BLOCK(dc->start),
1053 SECTOR_FROM_BLOCK(dc->len),
1054 GFP_NOFS, 0, &bio);
1055 if (!dc->error) {
1056 /* should keep before submission to avoid D_DONE right away */
1057 dc->state = D_SUBMIT;
1058 atomic_inc(&dcc->issued_discard);
1059 atomic_inc(&dcc->issing_discard);
1060 if (bio) {
1061 bio->bi_private = dc;
1062 bio->bi_end_io = f2fs_submit_discard_endio;
1063 submit_bio(flag, bio);
1064 list_move_tail(&dc->list, wait_list);
1065 __check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
1066
1067 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1068 }
1069 } else {
1070 __remove_discard_cmd(sbi, dc);
1071 }
1072 }
1073
__insert_discard_tree(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node ** insert_p,struct rb_node * insert_parent)1074 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1075 struct block_device *bdev, block_t lstart,
1076 block_t start, block_t len,
1077 struct rb_node **insert_p,
1078 struct rb_node *insert_parent)
1079 {
1080 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1081 struct rb_node **p;
1082 struct rb_node *parent = NULL;
1083 struct discard_cmd *dc = NULL;
1084
1085 if (insert_p && insert_parent) {
1086 parent = insert_parent;
1087 p = insert_p;
1088 goto do_insert;
1089 }
1090
1091 p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
1092 do_insert:
1093 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
1094 if (!dc)
1095 return NULL;
1096
1097 return dc;
1098 }
1099
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1100 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1101 struct discard_cmd *dc)
1102 {
1103 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1104 }
1105
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1106 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1107 struct discard_cmd *dc, block_t blkaddr)
1108 {
1109 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1110 struct discard_info di = dc->di;
1111 bool modified = false;
1112
1113 if (dc->state == D_DONE || dc->len == 1) {
1114 __remove_discard_cmd(sbi, dc);
1115 return;
1116 }
1117
1118 dcc->undiscard_blks -= di.len;
1119
1120 if (blkaddr > di.lstart) {
1121 dc->len = blkaddr - dc->lstart;
1122 dcc->undiscard_blks += dc->len;
1123 __relocate_discard_cmd(dcc, dc);
1124 modified = true;
1125 }
1126
1127 if (blkaddr < di.lstart + di.len - 1) {
1128 if (modified) {
1129 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1130 di.start + blkaddr + 1 - di.lstart,
1131 di.lstart + di.len - 1 - blkaddr,
1132 NULL, NULL);
1133 } else {
1134 dc->lstart++;
1135 dc->len--;
1136 dc->start++;
1137 dcc->undiscard_blks += dc->len;
1138 __relocate_discard_cmd(dcc, dc);
1139 }
1140 }
1141 }
1142
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1143 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1144 struct block_device *bdev, block_t lstart,
1145 block_t start, block_t len)
1146 {
1147 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1148 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1149 struct discard_cmd *dc;
1150 struct discard_info di = {0};
1151 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1152 block_t end = lstart + len;
1153
1154 mutex_lock(&dcc->cmd_lock);
1155
1156 dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
1157 NULL, lstart,
1158 (struct rb_entry **)&prev_dc,
1159 (struct rb_entry **)&next_dc,
1160 &insert_p, &insert_parent, true);
1161 if (dc)
1162 prev_dc = dc;
1163
1164 if (!prev_dc) {
1165 di.lstart = lstart;
1166 di.len = next_dc ? next_dc->lstart - lstart : len;
1167 di.len = min(di.len, len);
1168 di.start = start;
1169 }
1170
1171 while (1) {
1172 struct rb_node *node;
1173 bool merged = false;
1174 struct discard_cmd *tdc = NULL;
1175
1176 if (prev_dc) {
1177 di.lstart = prev_dc->lstart + prev_dc->len;
1178 if (di.lstart < lstart)
1179 di.lstart = lstart;
1180 if (di.lstart >= end)
1181 break;
1182
1183 if (!next_dc || next_dc->lstart > end)
1184 di.len = end - di.lstart;
1185 else
1186 di.len = next_dc->lstart - di.lstart;
1187 di.start = start + di.lstart - lstart;
1188 }
1189
1190 if (!di.len)
1191 goto next;
1192
1193 if (prev_dc && prev_dc->state == D_PREP &&
1194 prev_dc->bdev == bdev &&
1195 __is_discard_back_mergeable(&di, &prev_dc->di)) {
1196 prev_dc->di.len += di.len;
1197 dcc->undiscard_blks += di.len;
1198 __relocate_discard_cmd(dcc, prev_dc);
1199 di = prev_dc->di;
1200 tdc = prev_dc;
1201 merged = true;
1202 }
1203
1204 if (next_dc && next_dc->state == D_PREP &&
1205 next_dc->bdev == bdev &&
1206 __is_discard_front_mergeable(&di, &next_dc->di)) {
1207 next_dc->di.lstart = di.lstart;
1208 next_dc->di.len += di.len;
1209 next_dc->di.start = di.start;
1210 dcc->undiscard_blks += di.len;
1211 __relocate_discard_cmd(dcc, next_dc);
1212 if (tdc)
1213 __remove_discard_cmd(sbi, tdc);
1214 merged = true;
1215 }
1216
1217 if (!merged) {
1218 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1219 di.len, NULL, NULL);
1220 }
1221 next:
1222 prev_dc = next_dc;
1223 if (!prev_dc)
1224 break;
1225
1226 node = rb_next(&prev_dc->rb_node);
1227 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1228 }
1229
1230 mutex_unlock(&dcc->cmd_lock);
1231 }
1232
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1233 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1234 struct block_device *bdev, block_t blkstart, block_t blklen)
1235 {
1236 block_t lblkstart = blkstart;
1237
1238 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1239
1240 if (sbi->s_ndevs) {
1241 int devi = f2fs_target_device_index(sbi, blkstart);
1242
1243 blkstart -= FDEV(devi).start_blk;
1244 }
1245 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1246 return 0;
1247 }
1248
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1249 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1250 struct discard_policy *dpolicy)
1251 {
1252 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1253 struct list_head *pend_list;
1254 struct discard_cmd *dc, *tmp;
1255 struct blk_plug plug;
1256 int i, iter = 0, issued = 0;
1257 bool io_interrupted = false;
1258
1259 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1260 if (i + 1 < dpolicy->granularity)
1261 break;
1262 pend_list = &dcc->pend_list[i];
1263
1264 mutex_lock(&dcc->cmd_lock);
1265 if (list_empty(pend_list))
1266 goto next;
1267 f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
1268 blk_start_plug(&plug);
1269 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1270 f2fs_bug_on(sbi, dc->state != D_PREP);
1271
1272 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1273 !is_idle(sbi)) {
1274 io_interrupted = true;
1275 goto skip;
1276 }
1277
1278 __submit_discard_cmd(sbi, dpolicy, dc);
1279 issued++;
1280 skip:
1281 if (++iter >= dpolicy->max_requests)
1282 break;
1283 }
1284 blk_finish_plug(&plug);
1285 next:
1286 mutex_unlock(&dcc->cmd_lock);
1287
1288 if (iter >= dpolicy->max_requests)
1289 break;
1290 }
1291
1292 if (!issued && io_interrupted)
1293 issued = -1;
1294
1295 return issued;
1296 }
1297
__drop_discard_cmd(struct f2fs_sb_info * sbi)1298 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1299 {
1300 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1301 struct list_head *pend_list;
1302 struct discard_cmd *dc, *tmp;
1303 int i;
1304 bool dropped = false;
1305
1306 mutex_lock(&dcc->cmd_lock);
1307 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1308 pend_list = &dcc->pend_list[i];
1309 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1310 f2fs_bug_on(sbi, dc->state != D_PREP);
1311 __remove_discard_cmd(sbi, dc);
1312 dropped = true;
1313 }
1314 }
1315 mutex_unlock(&dcc->cmd_lock);
1316
1317 return dropped;
1318 }
1319
drop_discard_cmd(struct f2fs_sb_info * sbi)1320 void drop_discard_cmd(struct f2fs_sb_info *sbi)
1321 {
1322 __drop_discard_cmd(sbi);
1323 }
1324
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1325 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1326 struct discard_cmd *dc)
1327 {
1328 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1329 unsigned int len = 0;
1330
1331 wait_for_completion_io(&dc->wait);
1332 mutex_lock(&dcc->cmd_lock);
1333 f2fs_bug_on(sbi, dc->state != D_DONE);
1334 dc->ref--;
1335 if (!dc->ref) {
1336 if (!dc->error)
1337 len = dc->len;
1338 __remove_discard_cmd(sbi, dc);
1339 }
1340 mutex_unlock(&dcc->cmd_lock);
1341
1342 return len;
1343 }
1344
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1345 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1346 struct discard_policy *dpolicy,
1347 block_t start, block_t end)
1348 {
1349 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1350 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1351 &(dcc->fstrim_list) : &(dcc->wait_list);
1352 struct discard_cmd *dc, *tmp;
1353 bool need_wait;
1354 unsigned int trimmed = 0;
1355
1356 next:
1357 need_wait = false;
1358
1359 mutex_lock(&dcc->cmd_lock);
1360 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1361 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1362 continue;
1363 if (dc->len < dpolicy->granularity)
1364 continue;
1365 if (dc->state == D_DONE && !dc->ref) {
1366 wait_for_completion_io(&dc->wait);
1367 if (!dc->error)
1368 trimmed += dc->len;
1369 __remove_discard_cmd(sbi, dc);
1370 } else {
1371 dc->ref++;
1372 need_wait = true;
1373 break;
1374 }
1375 }
1376 mutex_unlock(&dcc->cmd_lock);
1377
1378 if (need_wait) {
1379 trimmed += __wait_one_discard_bio(sbi, dc);
1380 goto next;
1381 }
1382
1383 return trimmed;
1384 }
1385
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1386 static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1387 struct discard_policy *dpolicy)
1388 {
1389 struct discard_policy dp;
1390
1391 if (dpolicy) {
1392 __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1393 return;
1394 }
1395
1396 /* wait all */
1397 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1398 __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1399 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1400 __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1401 }
1402
1403 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1404 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1405 {
1406 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1407 struct discard_cmd *dc;
1408 bool need_wait = false;
1409
1410 mutex_lock(&dcc->cmd_lock);
1411 dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
1412 if (dc) {
1413 if (dc->state == D_PREP) {
1414 __punch_discard_cmd(sbi, dc, blkaddr);
1415 } else {
1416 dc->ref++;
1417 need_wait = true;
1418 }
1419 }
1420 mutex_unlock(&dcc->cmd_lock);
1421
1422 if (need_wait)
1423 __wait_one_discard_bio(sbi, dc);
1424 }
1425
stop_discard_thread(struct f2fs_sb_info * sbi)1426 void stop_discard_thread(struct f2fs_sb_info *sbi)
1427 {
1428 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1429
1430 if (dcc && dcc->f2fs_issue_discard) {
1431 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1432
1433 dcc->f2fs_issue_discard = NULL;
1434 kthread_stop(discard_thread);
1435 }
1436 }
1437
1438 /* This comes from f2fs_put_super */
f2fs_wait_discard_bios(struct f2fs_sb_info * sbi)1439 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1440 {
1441 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1442 struct discard_policy dpolicy;
1443 bool dropped;
1444
1445 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1446 dcc->discard_granularity);
1447 __issue_discard_cmd(sbi, &dpolicy);
1448 dropped = __drop_discard_cmd(sbi);
1449
1450 /* just to make sure there is no pending discard commands */
1451 __wait_all_discard_cmd(sbi, NULL);
1452 return dropped;
1453 }
1454
issue_discard_thread(void * data)1455 static int issue_discard_thread(void *data)
1456 {
1457 struct f2fs_sb_info *sbi = data;
1458 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1459 wait_queue_head_t *q = &dcc->discard_wait_queue;
1460 struct discard_policy dpolicy;
1461 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1462 int issued;
1463
1464 set_freezable();
1465
1466 do {
1467 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1468 dcc->discard_granularity);
1469
1470 wait_event_interruptible_timeout(*q,
1471 kthread_should_stop() || freezing(current) ||
1472 dcc->discard_wake,
1473 msecs_to_jiffies(wait_ms));
1474 if (try_to_freeze())
1475 continue;
1476 if (f2fs_readonly(sbi->sb))
1477 continue;
1478 if (kthread_should_stop())
1479 return 0;
1480
1481 if (dcc->discard_wake)
1482 dcc->discard_wake = 0;
1483
1484 if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
1485 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1486
1487 sb_start_intwrite(sbi->sb);
1488
1489 issued = __issue_discard_cmd(sbi, &dpolicy);
1490 if (issued) {
1491 __wait_all_discard_cmd(sbi, &dpolicy);
1492 wait_ms = dpolicy.min_interval;
1493 } else {
1494 wait_ms = dpolicy.max_interval;
1495 }
1496
1497 sb_end_intwrite(sbi->sb);
1498
1499 } while (!kthread_should_stop());
1500 return 0;
1501 }
1502
1503 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1504 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1505 struct block_device *bdev, block_t blkstart, block_t blklen)
1506 {
1507 sector_t sector, nr_sects;
1508 block_t lblkstart = blkstart;
1509 int devi = 0;
1510
1511 if (sbi->s_ndevs) {
1512 devi = f2fs_target_device_index(sbi, blkstart);
1513 blkstart -= FDEV(devi).start_blk;
1514 }
1515
1516 /*
1517 * We need to know the type of the zone: for conventional zones,
1518 * use regular discard if the drive supports it. For sequential
1519 * zones, reset the zone write pointer.
1520 */
1521 switch (get_blkz_type(sbi, bdev, blkstart)) {
1522
1523 case BLK_ZONE_TYPE_CONVENTIONAL:
1524 if (!blk_queue_discard(bdev_get_queue(bdev)))
1525 return 0;
1526 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1527 case BLK_ZONE_TYPE_SEQWRITE_REQ:
1528 case BLK_ZONE_TYPE_SEQWRITE_PREF:
1529 sector = SECTOR_FROM_BLOCK(blkstart);
1530 nr_sects = SECTOR_FROM_BLOCK(blklen);
1531
1532 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1533 nr_sects != bdev_zone_sectors(bdev)) {
1534 f2fs_msg(sbi->sb, KERN_INFO,
1535 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1536 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1537 blkstart, blklen);
1538 return -EIO;
1539 }
1540 trace_f2fs_issue_reset_zone(bdev, blkstart);
1541 return blkdev_reset_zones(bdev, sector,
1542 nr_sects, GFP_NOFS);
1543 default:
1544 /* Unknown zone type: broken device ? */
1545 return -EIO;
1546 }
1547 }
1548 #endif
1549
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1550 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1551 struct block_device *bdev, block_t blkstart, block_t blklen)
1552 {
1553 #ifdef CONFIG_BLK_DEV_ZONED
1554 if (f2fs_sb_has_blkzoned(sbi->sb) &&
1555 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1556 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1557 #endif
1558 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1559 }
1560
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)1561 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1562 block_t blkstart, block_t blklen)
1563 {
1564 sector_t start = blkstart, len = 0;
1565 struct block_device *bdev;
1566 struct seg_entry *se;
1567 unsigned int offset;
1568 block_t i;
1569 int err = 0;
1570
1571 bdev = f2fs_target_device(sbi, blkstart, NULL);
1572
1573 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1574 if (i != start) {
1575 struct block_device *bdev2 =
1576 f2fs_target_device(sbi, i, NULL);
1577
1578 if (bdev2 != bdev) {
1579 err = __issue_discard_async(sbi, bdev,
1580 start, len);
1581 if (err)
1582 return err;
1583 bdev = bdev2;
1584 start = i;
1585 len = 0;
1586 }
1587 }
1588
1589 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1590 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1591
1592 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1593 sbi->discard_blks--;
1594 }
1595
1596 if (len)
1597 err = __issue_discard_async(sbi, bdev, start, len);
1598 return err;
1599 }
1600
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)1601 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1602 bool check_only)
1603 {
1604 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1605 int max_blocks = sbi->blocks_per_seg;
1606 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1607 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1608 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1609 unsigned long *discard_map = (unsigned long *)se->discard_map;
1610 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1611 unsigned int start = 0, end = -1;
1612 bool force = (cpc->reason & CP_DISCARD);
1613 struct discard_entry *de = NULL;
1614 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1615 int i;
1616
1617 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1618 return false;
1619
1620 if (!force) {
1621 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1622 SM_I(sbi)->dcc_info->nr_discards >=
1623 SM_I(sbi)->dcc_info->max_discards)
1624 return false;
1625 }
1626
1627 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1628 for (i = 0; i < entries; i++)
1629 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1630 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1631
1632 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1633 SM_I(sbi)->dcc_info->max_discards) {
1634 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1635 if (start >= max_blocks)
1636 break;
1637
1638 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1639 if (force && start && end != max_blocks
1640 && (end - start) < cpc->trim_minlen)
1641 continue;
1642
1643 if (check_only)
1644 return true;
1645
1646 if (!de) {
1647 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1648 GFP_F2FS_ZERO);
1649 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1650 list_add_tail(&de->list, head);
1651 }
1652
1653 for (i = start; i < end; i++)
1654 __set_bit_le(i, (void *)de->discard_map);
1655
1656 SM_I(sbi)->dcc_info->nr_discards += end - start;
1657 }
1658 return false;
1659 }
1660
release_discard_addrs(struct f2fs_sb_info * sbi)1661 void release_discard_addrs(struct f2fs_sb_info *sbi)
1662 {
1663 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1664 struct discard_entry *entry, *this;
1665
1666 /* drop caches */
1667 list_for_each_entry_safe(entry, this, head, list) {
1668 list_del(&entry->list);
1669 kmem_cache_free(discard_entry_slab, entry);
1670 }
1671 }
1672
1673 /*
1674 * Should call clear_prefree_segments after checkpoint is done.
1675 */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)1676 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1677 {
1678 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1679 unsigned int segno;
1680
1681 mutex_lock(&dirty_i->seglist_lock);
1682 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1683 __set_test_and_free(sbi, segno);
1684 mutex_unlock(&dirty_i->seglist_lock);
1685 }
1686
clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)1687 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1688 {
1689 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1690 struct list_head *head = &dcc->entry_list;
1691 struct discard_entry *entry, *this;
1692 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1693 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1694 unsigned int start = 0, end = -1;
1695 unsigned int secno, start_segno;
1696 bool force = (cpc->reason & CP_DISCARD);
1697
1698 mutex_lock(&dirty_i->seglist_lock);
1699
1700 while (1) {
1701 int i;
1702 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1703 if (start >= MAIN_SEGS(sbi))
1704 break;
1705 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1706 start + 1);
1707
1708 for (i = start; i < end; i++)
1709 clear_bit(i, prefree_map);
1710
1711 dirty_i->nr_dirty[PRE] -= end - start;
1712
1713 if (!test_opt(sbi, DISCARD))
1714 continue;
1715
1716 if (force && start >= cpc->trim_start &&
1717 (end - 1) <= cpc->trim_end)
1718 continue;
1719
1720 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1721 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1722 (end - start) << sbi->log_blocks_per_seg);
1723 continue;
1724 }
1725 next:
1726 secno = GET_SEC_FROM_SEG(sbi, start);
1727 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1728 if (!IS_CURSEC(sbi, secno) &&
1729 !get_valid_blocks(sbi, start, true))
1730 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1731 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1732
1733 start = start_segno + sbi->segs_per_sec;
1734 if (start < end)
1735 goto next;
1736 else
1737 end = start - 1;
1738 }
1739 mutex_unlock(&dirty_i->seglist_lock);
1740
1741 /* send small discards */
1742 list_for_each_entry_safe(entry, this, head, list) {
1743 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1744 bool is_valid = test_bit_le(0, entry->discard_map);
1745
1746 find_next:
1747 if (is_valid) {
1748 next_pos = find_next_zero_bit_le(entry->discard_map,
1749 sbi->blocks_per_seg, cur_pos);
1750 len = next_pos - cur_pos;
1751
1752 if (f2fs_sb_has_blkzoned(sbi->sb) ||
1753 (force && len < cpc->trim_minlen))
1754 goto skip;
1755
1756 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1757 len);
1758 total_len += len;
1759 } else {
1760 next_pos = find_next_bit_le(entry->discard_map,
1761 sbi->blocks_per_seg, cur_pos);
1762 }
1763 skip:
1764 cur_pos = next_pos;
1765 is_valid = !is_valid;
1766
1767 if (cur_pos < sbi->blocks_per_seg)
1768 goto find_next;
1769
1770 list_del(&entry->list);
1771 dcc->nr_discards -= total_len;
1772 kmem_cache_free(discard_entry_slab, entry);
1773 }
1774
1775 wake_up_discard_thread(sbi, false);
1776 }
1777
create_discard_cmd_control(struct f2fs_sb_info * sbi)1778 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1779 {
1780 dev_t dev = sbi->sb->s_bdev->bd_dev;
1781 struct discard_cmd_control *dcc;
1782 int err = 0, i;
1783
1784 if (SM_I(sbi)->dcc_info) {
1785 dcc = SM_I(sbi)->dcc_info;
1786 goto init_thread;
1787 }
1788
1789 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
1790 if (!dcc)
1791 return -ENOMEM;
1792
1793 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1794 INIT_LIST_HEAD(&dcc->entry_list);
1795 for (i = 0; i < MAX_PLIST_NUM; i++)
1796 INIT_LIST_HEAD(&dcc->pend_list[i]);
1797 INIT_LIST_HEAD(&dcc->wait_list);
1798 INIT_LIST_HEAD(&dcc->fstrim_list);
1799 mutex_init(&dcc->cmd_lock);
1800 atomic_set(&dcc->issued_discard, 0);
1801 atomic_set(&dcc->issing_discard, 0);
1802 atomic_set(&dcc->discard_cmd_cnt, 0);
1803 dcc->nr_discards = 0;
1804 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1805 dcc->undiscard_blks = 0;
1806 dcc->root = RB_ROOT;
1807
1808 init_waitqueue_head(&dcc->discard_wait_queue);
1809 SM_I(sbi)->dcc_info = dcc;
1810 init_thread:
1811 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1812 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1813 if (IS_ERR(dcc->f2fs_issue_discard)) {
1814 err = PTR_ERR(dcc->f2fs_issue_discard);
1815 kfree(dcc);
1816 SM_I(sbi)->dcc_info = NULL;
1817 return err;
1818 }
1819
1820 return err;
1821 }
1822
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)1823 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1824 {
1825 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1826
1827 if (!dcc)
1828 return;
1829
1830 stop_discard_thread(sbi);
1831
1832 kfree(dcc);
1833 SM_I(sbi)->dcc_info = NULL;
1834 }
1835
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)1836 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1837 {
1838 struct sit_info *sit_i = SIT_I(sbi);
1839
1840 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1841 sit_i->dirty_sentries++;
1842 return false;
1843 }
1844
1845 return true;
1846 }
1847
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)1848 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1849 unsigned int segno, int modified)
1850 {
1851 struct seg_entry *se = get_seg_entry(sbi, segno);
1852 se->type = type;
1853 if (modified)
1854 __mark_sit_entry_dirty(sbi, segno);
1855 }
1856
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)1857 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1858 {
1859 struct seg_entry *se;
1860 unsigned int segno, offset;
1861 long int new_vblocks;
1862 bool exist;
1863 #ifdef CONFIG_F2FS_CHECK_FS
1864 bool mir_exist;
1865 #endif
1866
1867 segno = GET_SEGNO(sbi, blkaddr);
1868
1869 se = get_seg_entry(sbi, segno);
1870 new_vblocks = se->valid_blocks + del;
1871 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1872
1873 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1874 (new_vblocks > sbi->blocks_per_seg)));
1875
1876 se->valid_blocks = new_vblocks;
1877 se->mtime = get_mtime(sbi);
1878 SIT_I(sbi)->max_mtime = se->mtime;
1879
1880 /* Update valid block bitmap */
1881 if (del > 0) {
1882 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
1883 #ifdef CONFIG_F2FS_CHECK_FS
1884 mir_exist = f2fs_test_and_set_bit(offset,
1885 se->cur_valid_map_mir);
1886 if (unlikely(exist != mir_exist)) {
1887 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1888 "when setting bitmap, blk:%u, old bit:%d",
1889 blkaddr, exist);
1890 f2fs_bug_on(sbi, 1);
1891 }
1892 #endif
1893 if (unlikely(exist)) {
1894 f2fs_msg(sbi->sb, KERN_ERR,
1895 "Bitmap was wrongly set, blk:%u", blkaddr);
1896 f2fs_bug_on(sbi, 1);
1897 se->valid_blocks--;
1898 del = 0;
1899 }
1900
1901 if (f2fs_discard_en(sbi) &&
1902 !f2fs_test_and_set_bit(offset, se->discard_map))
1903 sbi->discard_blks--;
1904
1905 /* don't overwrite by SSR to keep node chain */
1906 if (IS_NODESEG(se->type)) {
1907 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
1908 se->ckpt_valid_blocks++;
1909 }
1910 } else {
1911 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
1912 #ifdef CONFIG_F2FS_CHECK_FS
1913 mir_exist = f2fs_test_and_clear_bit(offset,
1914 se->cur_valid_map_mir);
1915 if (unlikely(exist != mir_exist)) {
1916 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1917 "when clearing bitmap, blk:%u, old bit:%d",
1918 blkaddr, exist);
1919 f2fs_bug_on(sbi, 1);
1920 }
1921 #endif
1922 if (unlikely(!exist)) {
1923 f2fs_msg(sbi->sb, KERN_ERR,
1924 "Bitmap was wrongly cleared, blk:%u", blkaddr);
1925 f2fs_bug_on(sbi, 1);
1926 se->valid_blocks++;
1927 del = 0;
1928 }
1929
1930 if (f2fs_discard_en(sbi) &&
1931 f2fs_test_and_clear_bit(offset, se->discard_map))
1932 sbi->discard_blks++;
1933 }
1934 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1935 se->ckpt_valid_blocks += del;
1936
1937 __mark_sit_entry_dirty(sbi, segno);
1938
1939 /* update total number of valid blocks to be written in ckpt area */
1940 SIT_I(sbi)->written_valid_blocks += del;
1941
1942 if (sbi->segs_per_sec > 1)
1943 get_sec_entry(sbi, segno)->valid_blocks += del;
1944 }
1945
invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr)1946 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1947 {
1948 unsigned int segno = GET_SEGNO(sbi, addr);
1949 struct sit_info *sit_i = SIT_I(sbi);
1950
1951 f2fs_bug_on(sbi, addr == NULL_ADDR);
1952 if (addr == NEW_ADDR)
1953 return;
1954
1955 /* add it into sit main buffer */
1956 down_write(&sit_i->sentry_lock);
1957
1958 update_sit_entry(sbi, addr, -1);
1959
1960 /* add it into dirty seglist */
1961 locate_dirty_segment(sbi, segno);
1962
1963 up_write(&sit_i->sentry_lock);
1964 }
1965
is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)1966 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1967 {
1968 struct sit_info *sit_i = SIT_I(sbi);
1969 unsigned int segno, offset;
1970 struct seg_entry *se;
1971 bool is_cp = false;
1972
1973 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1974 return true;
1975
1976 down_read(&sit_i->sentry_lock);
1977
1978 segno = GET_SEGNO(sbi, blkaddr);
1979 se = get_seg_entry(sbi, segno);
1980 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1981
1982 if (f2fs_test_bit(offset, se->ckpt_valid_map))
1983 is_cp = true;
1984
1985 up_read(&sit_i->sentry_lock);
1986
1987 return is_cp;
1988 }
1989
1990 /*
1991 * This function should be resided under the curseg_mutex lock
1992 */
__add_sum_entry(struct f2fs_sb_info * sbi,int type,struct f2fs_summary * sum)1993 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1994 struct f2fs_summary *sum)
1995 {
1996 struct curseg_info *curseg = CURSEG_I(sbi, type);
1997 void *addr = curseg->sum_blk;
1998 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1999 memcpy(addr, sum, sizeof(struct f2fs_summary));
2000 }
2001
2002 /*
2003 * Calculate the number of current summary pages for writing
2004 */
npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2005 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2006 {
2007 int valid_sum_count = 0;
2008 int i, sum_in_page;
2009
2010 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2011 if (sbi->ckpt->alloc_type[i] == SSR)
2012 valid_sum_count += sbi->blocks_per_seg;
2013 else {
2014 if (for_ra)
2015 valid_sum_count += le16_to_cpu(
2016 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2017 else
2018 valid_sum_count += curseg_blkoff(sbi, i);
2019 }
2020 }
2021
2022 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2023 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2024 if (valid_sum_count <= sum_in_page)
2025 return 1;
2026 else if ((valid_sum_count - sum_in_page) <=
2027 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2028 return 2;
2029 return 3;
2030 }
2031
2032 /*
2033 * Caller should put this summary page
2034 */
get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2035 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2036 {
2037 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
2038 }
2039
update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2040 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
2041 {
2042 struct page *page = grab_meta_page(sbi, blk_addr);
2043
2044 memcpy(page_address(page), src, PAGE_SIZE);
2045 set_page_dirty(page);
2046 f2fs_put_page(page, 1);
2047 }
2048
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2049 static void write_sum_page(struct f2fs_sb_info *sbi,
2050 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2051 {
2052 update_meta_page(sbi, (void *)sum_blk, blk_addr);
2053 }
2054
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2055 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2056 int type, block_t blk_addr)
2057 {
2058 struct curseg_info *curseg = CURSEG_I(sbi, type);
2059 struct page *page = grab_meta_page(sbi, blk_addr);
2060 struct f2fs_summary_block *src = curseg->sum_blk;
2061 struct f2fs_summary_block *dst;
2062
2063 dst = (struct f2fs_summary_block *)page_address(page);
2064
2065 mutex_lock(&curseg->curseg_mutex);
2066
2067 down_read(&curseg->journal_rwsem);
2068 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2069 up_read(&curseg->journal_rwsem);
2070
2071 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2072 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2073
2074 mutex_unlock(&curseg->curseg_mutex);
2075
2076 set_page_dirty(page);
2077 f2fs_put_page(page, 1);
2078 }
2079
is_next_segment_free(struct f2fs_sb_info * sbi,int type)2080 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2081 {
2082 struct curseg_info *curseg = CURSEG_I(sbi, type);
2083 unsigned int segno = curseg->segno + 1;
2084 struct free_segmap_info *free_i = FREE_I(sbi);
2085
2086 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2087 return !test_bit(segno, free_i->free_segmap);
2088 return 0;
2089 }
2090
2091 /*
2092 * Find a new segment from the free segments bitmap to right order
2093 * This function should be returned with success, otherwise BUG
2094 */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,int dir)2095 static void get_new_segment(struct f2fs_sb_info *sbi,
2096 unsigned int *newseg, bool new_sec, int dir)
2097 {
2098 struct free_segmap_info *free_i = FREE_I(sbi);
2099 unsigned int segno, secno, zoneno;
2100 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2101 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2102 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2103 unsigned int left_start = hint;
2104 bool init = true;
2105 int go_left = 0;
2106 int i;
2107
2108 spin_lock(&free_i->segmap_lock);
2109
2110 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2111 segno = find_next_zero_bit(free_i->free_segmap,
2112 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2113 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2114 goto got_it;
2115 }
2116 find_other_zone:
2117 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2118 if (secno >= MAIN_SECS(sbi)) {
2119 if (dir == ALLOC_RIGHT) {
2120 secno = find_next_zero_bit(free_i->free_secmap,
2121 MAIN_SECS(sbi), 0);
2122 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2123 } else {
2124 go_left = 1;
2125 left_start = hint - 1;
2126 }
2127 }
2128 if (go_left == 0)
2129 goto skip_left;
2130
2131 while (test_bit(left_start, free_i->free_secmap)) {
2132 if (left_start > 0) {
2133 left_start--;
2134 continue;
2135 }
2136 left_start = find_next_zero_bit(free_i->free_secmap,
2137 MAIN_SECS(sbi), 0);
2138 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2139 break;
2140 }
2141 secno = left_start;
2142 skip_left:
2143 segno = GET_SEG_FROM_SEC(sbi, secno);
2144 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2145
2146 /* give up on finding another zone */
2147 if (!init)
2148 goto got_it;
2149 if (sbi->secs_per_zone == 1)
2150 goto got_it;
2151 if (zoneno == old_zoneno)
2152 goto got_it;
2153 if (dir == ALLOC_LEFT) {
2154 if (!go_left && zoneno + 1 >= total_zones)
2155 goto got_it;
2156 if (go_left && zoneno == 0)
2157 goto got_it;
2158 }
2159 for (i = 0; i < NR_CURSEG_TYPE; i++)
2160 if (CURSEG_I(sbi, i)->zone == zoneno)
2161 break;
2162
2163 if (i < NR_CURSEG_TYPE) {
2164 /* zone is in user, try another */
2165 if (go_left)
2166 hint = zoneno * sbi->secs_per_zone - 1;
2167 else if (zoneno + 1 >= total_zones)
2168 hint = 0;
2169 else
2170 hint = (zoneno + 1) * sbi->secs_per_zone;
2171 init = false;
2172 goto find_other_zone;
2173 }
2174 got_it:
2175 /* set it as dirty segment in free segmap */
2176 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2177 __set_inuse(sbi, segno);
2178 *newseg = segno;
2179 spin_unlock(&free_i->segmap_lock);
2180 }
2181
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2182 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2183 {
2184 struct curseg_info *curseg = CURSEG_I(sbi, type);
2185 struct summary_footer *sum_footer;
2186
2187 curseg->segno = curseg->next_segno;
2188 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2189 curseg->next_blkoff = 0;
2190 curseg->next_segno = NULL_SEGNO;
2191
2192 sum_footer = &(curseg->sum_blk->footer);
2193 memset(sum_footer, 0, sizeof(struct summary_footer));
2194 if (IS_DATASEG(type))
2195 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2196 if (IS_NODESEG(type))
2197 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2198 __set_sit_entry_type(sbi, type, curseg->segno, modified);
2199 }
2200
__get_next_segno(struct f2fs_sb_info * sbi,int type)2201 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2202 {
2203 /* if segs_per_sec is large than 1, we need to keep original policy. */
2204 if (sbi->segs_per_sec != 1)
2205 return CURSEG_I(sbi, type)->segno;
2206
2207 if (test_opt(sbi, NOHEAP) &&
2208 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2209 return 0;
2210
2211 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2212 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2213
2214 /* find segments from 0 to reuse freed segments */
2215 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2216 return 0;
2217
2218 return CURSEG_I(sbi, type)->segno;
2219 }
2220
2221 /*
2222 * Allocate a current working segment.
2223 * This function always allocates a free segment in LFS manner.
2224 */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2225 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2226 {
2227 struct curseg_info *curseg = CURSEG_I(sbi, type);
2228 unsigned int segno = curseg->segno;
2229 int dir = ALLOC_LEFT;
2230
2231 write_sum_page(sbi, curseg->sum_blk,
2232 GET_SUM_BLOCK(sbi, segno));
2233 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2234 dir = ALLOC_RIGHT;
2235
2236 if (test_opt(sbi, NOHEAP))
2237 dir = ALLOC_RIGHT;
2238
2239 segno = __get_next_segno(sbi, type);
2240 get_new_segment(sbi, &segno, new_sec, dir);
2241 curseg->next_segno = segno;
2242 reset_curseg(sbi, type, 1);
2243 curseg->alloc_type = LFS;
2244 }
2245
__next_free_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg,block_t start)2246 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2247 struct curseg_info *seg, block_t start)
2248 {
2249 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2250 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2251 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2252 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2253 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2254 int i, pos;
2255
2256 for (i = 0; i < entries; i++)
2257 target_map[i] = ckpt_map[i] | cur_map[i];
2258
2259 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2260
2261 seg->next_blkoff = pos;
2262 }
2263
2264 /*
2265 * If a segment is written by LFS manner, next block offset is just obtained
2266 * by increasing the current block offset. However, if a segment is written by
2267 * SSR manner, next block offset obtained by calling __next_free_blkoff
2268 */
__refresh_next_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg)2269 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2270 struct curseg_info *seg)
2271 {
2272 if (seg->alloc_type == SSR)
2273 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2274 else
2275 seg->next_blkoff++;
2276 }
2277
2278 /*
2279 * This function always allocates a used segment(from dirty seglist) by SSR
2280 * manner, so it should recover the existing segment information of valid blocks
2281 */
change_curseg(struct f2fs_sb_info * sbi,int type)2282 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2283 {
2284 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2285 struct curseg_info *curseg = CURSEG_I(sbi, type);
2286 unsigned int new_segno = curseg->next_segno;
2287 struct f2fs_summary_block *sum_node;
2288 struct page *sum_page;
2289
2290 write_sum_page(sbi, curseg->sum_blk,
2291 GET_SUM_BLOCK(sbi, curseg->segno));
2292 __set_test_and_inuse(sbi, new_segno);
2293
2294 mutex_lock(&dirty_i->seglist_lock);
2295 __remove_dirty_segment(sbi, new_segno, PRE);
2296 __remove_dirty_segment(sbi, new_segno, DIRTY);
2297 mutex_unlock(&dirty_i->seglist_lock);
2298
2299 reset_curseg(sbi, type, 1);
2300 curseg->alloc_type = SSR;
2301 __next_free_blkoff(sbi, curseg, 0);
2302
2303 sum_page = get_sum_page(sbi, new_segno);
2304 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2305 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2306 f2fs_put_page(sum_page, 1);
2307 }
2308
get_ssr_segment(struct f2fs_sb_info * sbi,int type)2309 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2310 {
2311 struct curseg_info *curseg = CURSEG_I(sbi, type);
2312 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2313 unsigned segno = NULL_SEGNO;
2314 int i, cnt;
2315 bool reversed = false;
2316
2317 /* need_SSR() already forces to do this */
2318 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2319 curseg->next_segno = segno;
2320 return 1;
2321 }
2322
2323 /* For node segments, let's do SSR more intensively */
2324 if (IS_NODESEG(type)) {
2325 if (type >= CURSEG_WARM_NODE) {
2326 reversed = true;
2327 i = CURSEG_COLD_NODE;
2328 } else {
2329 i = CURSEG_HOT_NODE;
2330 }
2331 cnt = NR_CURSEG_NODE_TYPE;
2332 } else {
2333 if (type >= CURSEG_WARM_DATA) {
2334 reversed = true;
2335 i = CURSEG_COLD_DATA;
2336 } else {
2337 i = CURSEG_HOT_DATA;
2338 }
2339 cnt = NR_CURSEG_DATA_TYPE;
2340 }
2341
2342 for (; cnt-- > 0; reversed ? i-- : i++) {
2343 if (i == type)
2344 continue;
2345 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2346 curseg->next_segno = segno;
2347 return 1;
2348 }
2349 }
2350 return 0;
2351 }
2352
2353 /*
2354 * flush out current segment and replace it with new segment
2355 * This function should be returned with success, otherwise BUG
2356 */
allocate_segment_by_default(struct f2fs_sb_info * sbi,int type,bool force)2357 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2358 int type, bool force)
2359 {
2360 struct curseg_info *curseg = CURSEG_I(sbi, type);
2361
2362 if (force)
2363 new_curseg(sbi, type, true);
2364 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2365 type == CURSEG_WARM_NODE)
2366 new_curseg(sbi, type, false);
2367 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
2368 new_curseg(sbi, type, false);
2369 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
2370 change_curseg(sbi, type);
2371 else
2372 new_curseg(sbi, type, false);
2373
2374 stat_inc_seg_type(sbi, curseg);
2375 }
2376
allocate_new_segments(struct f2fs_sb_info * sbi)2377 void allocate_new_segments(struct f2fs_sb_info *sbi)
2378 {
2379 struct curseg_info *curseg;
2380 unsigned int old_segno;
2381 int i;
2382
2383 down_write(&SIT_I(sbi)->sentry_lock);
2384
2385 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2386 curseg = CURSEG_I(sbi, i);
2387 old_segno = curseg->segno;
2388 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2389 locate_dirty_segment(sbi, old_segno);
2390 }
2391
2392 up_write(&SIT_I(sbi)->sentry_lock);
2393 }
2394
2395 static const struct segment_allocation default_salloc_ops = {
2396 .allocate_segment = allocate_segment_by_default,
2397 };
2398
exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)2399 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2400 {
2401 __u64 trim_start = cpc->trim_start;
2402 bool has_candidate = false;
2403
2404 down_write(&SIT_I(sbi)->sentry_lock);
2405 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2406 if (add_discard_addrs(sbi, cpc, true)) {
2407 has_candidate = true;
2408 break;
2409 }
2410 }
2411 up_write(&SIT_I(sbi)->sentry_lock);
2412
2413 cpc->trim_start = trim_start;
2414 return has_candidate;
2415 }
2416
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)2417 static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2418 struct discard_policy *dpolicy,
2419 unsigned int start, unsigned int end)
2420 {
2421 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2422 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2423 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2424 struct discard_cmd *dc;
2425 struct blk_plug plug;
2426 int issued;
2427
2428 next:
2429 issued = 0;
2430
2431 mutex_lock(&dcc->cmd_lock);
2432 f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
2433
2434 dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
2435 NULL, start,
2436 (struct rb_entry **)&prev_dc,
2437 (struct rb_entry **)&next_dc,
2438 &insert_p, &insert_parent, true);
2439 if (!dc)
2440 dc = next_dc;
2441
2442 blk_start_plug(&plug);
2443
2444 while (dc && dc->lstart <= end) {
2445 struct rb_node *node;
2446
2447 if (dc->len < dpolicy->granularity)
2448 goto skip;
2449
2450 if (dc->state != D_PREP) {
2451 list_move_tail(&dc->list, &dcc->fstrim_list);
2452 goto skip;
2453 }
2454
2455 __submit_discard_cmd(sbi, dpolicy, dc);
2456
2457 if (++issued >= dpolicy->max_requests) {
2458 start = dc->lstart + dc->len;
2459
2460 blk_finish_plug(&plug);
2461 mutex_unlock(&dcc->cmd_lock);
2462 __wait_all_discard_cmd(sbi, NULL);
2463 congestion_wait(BLK_RW_ASYNC, HZ/50);
2464 goto next;
2465 }
2466 skip:
2467 node = rb_next(&dc->rb_node);
2468 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2469
2470 if (fatal_signal_pending(current))
2471 break;
2472 }
2473
2474 blk_finish_plug(&plug);
2475 mutex_unlock(&dcc->cmd_lock);
2476 }
2477
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)2478 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2479 {
2480 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2481 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2482 unsigned int start_segno, end_segno;
2483 block_t start_block, end_block;
2484 struct cp_control cpc;
2485 struct discard_policy dpolicy;
2486 unsigned long long trimmed = 0;
2487 int err = 0;
2488
2489 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2490 return -EINVAL;
2491
2492 if (end <= MAIN_BLKADDR(sbi))
2493 goto out;
2494
2495 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2496 f2fs_msg(sbi->sb, KERN_WARNING,
2497 "Found FS corruption, run fsck to fix.");
2498 goto out;
2499 }
2500
2501 /* start/end segment number in main_area */
2502 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2503 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2504 GET_SEGNO(sbi, end);
2505
2506 cpc.reason = CP_DISCARD;
2507 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2508 cpc.trim_start = start_segno;
2509 cpc.trim_end = end_segno;
2510
2511 if (sbi->discard_blks == 0)
2512 goto out;
2513
2514 mutex_lock(&sbi->gc_mutex);
2515 err = write_checkpoint(sbi, &cpc);
2516 mutex_unlock(&sbi->gc_mutex);
2517 if (err)
2518 goto out;
2519
2520 start_block = START_BLOCK(sbi, start_segno);
2521 end_block = START_BLOCK(sbi, end_segno + 1);
2522
2523 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2524 __issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block);
2525
2526 /*
2527 * We filed discard candidates, but actually we don't need to wait for
2528 * all of them, since they'll be issued in idle time along with runtime
2529 * discard option. User configuration looks like using runtime discard
2530 * or periodic fstrim instead of it.
2531 */
2532 if (!test_opt(sbi, DISCARD)) {
2533 trimmed = __wait_discard_cmd_range(sbi, &dpolicy,
2534 start_block, end_block);
2535 range->len = F2FS_BLK_TO_BYTES(trimmed);
2536 }
2537 out:
2538 return err;
2539 }
2540
__has_curseg_space(struct f2fs_sb_info * sbi,int type)2541 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2542 {
2543 struct curseg_info *curseg = CURSEG_I(sbi, type);
2544 if (curseg->next_blkoff < sbi->blocks_per_seg)
2545 return true;
2546 return false;
2547 }
2548
rw_hint_to_seg_type(enum rw_hint hint)2549 int rw_hint_to_seg_type(enum rw_hint hint)
2550 {
2551 switch (hint) {
2552 case WRITE_LIFE_SHORT:
2553 return CURSEG_HOT_DATA;
2554 case WRITE_LIFE_EXTREME:
2555 return CURSEG_COLD_DATA;
2556 default:
2557 return CURSEG_WARM_DATA;
2558 }
2559 }
2560
2561 /* This returns write hints for each segment type. This hints will be
2562 * passed down to block layer. There are mapping tables which depend on
2563 * the mount option 'whint_mode'.
2564 *
2565 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2566 *
2567 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2568 *
2569 * User F2FS Block
2570 * ---- ---- -----
2571 * META WRITE_LIFE_NOT_SET
2572 * HOT_NODE "
2573 * WARM_NODE "
2574 * COLD_NODE "
2575 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2576 * extension list " "
2577 *
2578 * -- buffered io
2579 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2580 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2581 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2582 * WRITE_LIFE_NONE " "
2583 * WRITE_LIFE_MEDIUM " "
2584 * WRITE_LIFE_LONG " "
2585 *
2586 * -- direct io
2587 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2588 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2589 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2590 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2591 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2592 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2593 *
2594 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2595 *
2596 * User F2FS Block
2597 * ---- ---- -----
2598 * META WRITE_LIFE_MEDIUM;
2599 * HOT_NODE WRITE_LIFE_NOT_SET
2600 * WARM_NODE "
2601 * COLD_NODE WRITE_LIFE_NONE
2602 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2603 * extension list " "
2604 *
2605 * -- buffered io
2606 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2607 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2608 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
2609 * WRITE_LIFE_NONE " "
2610 * WRITE_LIFE_MEDIUM " "
2611 * WRITE_LIFE_LONG " "
2612 *
2613 * -- direct io
2614 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2615 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2616 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2617 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2618 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2619 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2620 */
2621
io_type_to_rw_hint(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)2622 enum rw_hint io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2623 enum page_type type, enum temp_type temp)
2624 {
2625 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2626 if (type == DATA) {
2627 if (temp == WARM)
2628 return WRITE_LIFE_NOT_SET;
2629 else if (temp == HOT)
2630 return WRITE_LIFE_SHORT;
2631 else if (temp == COLD)
2632 return WRITE_LIFE_EXTREME;
2633 } else {
2634 return WRITE_LIFE_NOT_SET;
2635 }
2636 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2637 if (type == DATA) {
2638 if (temp == WARM)
2639 return WRITE_LIFE_LONG;
2640 else if (temp == HOT)
2641 return WRITE_LIFE_SHORT;
2642 else if (temp == COLD)
2643 return WRITE_LIFE_EXTREME;
2644 } else if (type == NODE) {
2645 if (temp == WARM || temp == HOT)
2646 return WRITE_LIFE_NOT_SET;
2647 else if (temp == COLD)
2648 return WRITE_LIFE_NONE;
2649 } else if (type == META) {
2650 return WRITE_LIFE_MEDIUM;
2651 }
2652 }
2653 return WRITE_LIFE_NOT_SET;
2654 }
2655
__get_segment_type_2(struct f2fs_io_info * fio)2656 static int __get_segment_type_2(struct f2fs_io_info *fio)
2657 {
2658 if (fio->type == DATA)
2659 return CURSEG_HOT_DATA;
2660 else
2661 return CURSEG_HOT_NODE;
2662 }
2663
__get_segment_type_4(struct f2fs_io_info * fio)2664 static int __get_segment_type_4(struct f2fs_io_info *fio)
2665 {
2666 if (fio->type == DATA) {
2667 struct inode *inode = fio->page->mapping->host;
2668
2669 if (S_ISDIR(inode->i_mode))
2670 return CURSEG_HOT_DATA;
2671 else
2672 return CURSEG_COLD_DATA;
2673 } else {
2674 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2675 return CURSEG_WARM_NODE;
2676 else
2677 return CURSEG_COLD_NODE;
2678 }
2679 }
2680
__get_segment_type_6(struct f2fs_io_info * fio)2681 static int __get_segment_type_6(struct f2fs_io_info *fio)
2682 {
2683 if (fio->type == DATA) {
2684 struct inode *inode = fio->page->mapping->host;
2685
2686 if (is_cold_data(fio->page) || file_is_cold(inode))
2687 return CURSEG_COLD_DATA;
2688 if (file_is_hot(inode) ||
2689 is_inode_flag_set(inode, FI_HOT_DATA))
2690 return CURSEG_HOT_DATA;
2691 /* rw_hint_to_seg_type(inode->i_write_hint); */
2692 return CURSEG_WARM_DATA;
2693 } else {
2694 if (IS_DNODE(fio->page))
2695 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2696 CURSEG_HOT_NODE;
2697 return CURSEG_COLD_NODE;
2698 }
2699 }
2700
__get_segment_type(struct f2fs_io_info * fio)2701 static int __get_segment_type(struct f2fs_io_info *fio)
2702 {
2703 int type = 0;
2704
2705 switch (F2FS_OPTION(fio->sbi).active_logs) {
2706 case 2:
2707 type = __get_segment_type_2(fio);
2708 break;
2709 case 4:
2710 type = __get_segment_type_4(fio);
2711 break;
2712 case 6:
2713 type = __get_segment_type_6(fio);
2714 break;
2715 default:
2716 f2fs_bug_on(fio->sbi, true);
2717 }
2718
2719 if (IS_HOT(type))
2720 fio->temp = HOT;
2721 else if (IS_WARM(type))
2722 fio->temp = WARM;
2723 else
2724 fio->temp = COLD;
2725 return type;
2726 }
2727
allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio,bool add_list)2728 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2729 block_t old_blkaddr, block_t *new_blkaddr,
2730 struct f2fs_summary *sum, int type,
2731 struct f2fs_io_info *fio, bool add_list)
2732 {
2733 struct sit_info *sit_i = SIT_I(sbi);
2734 struct curseg_info *curseg = CURSEG_I(sbi, type);
2735
2736 down_read(&SM_I(sbi)->curseg_lock);
2737
2738 mutex_lock(&curseg->curseg_mutex);
2739 down_write(&sit_i->sentry_lock);
2740
2741 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2742
2743 f2fs_wait_discard_bio(sbi, *new_blkaddr);
2744
2745 /*
2746 * __add_sum_entry should be resided under the curseg_mutex
2747 * because, this function updates a summary entry in the
2748 * current summary block.
2749 */
2750 __add_sum_entry(sbi, type, sum);
2751
2752 __refresh_next_blkoff(sbi, curseg);
2753
2754 stat_inc_block_count(sbi, curseg);
2755
2756 /*
2757 * SIT information should be updated before segment allocation,
2758 * since SSR needs latest valid block information.
2759 */
2760 update_sit_entry(sbi, *new_blkaddr, 1);
2761 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2762 update_sit_entry(sbi, old_blkaddr, -1);
2763
2764 if (!__has_curseg_space(sbi, type))
2765 sit_i->s_ops->allocate_segment(sbi, type, false);
2766
2767 /*
2768 * segment dirty status should be updated after segment allocation,
2769 * so we just need to update status only one time after previous
2770 * segment being closed.
2771 */
2772 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2773 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
2774
2775 up_write(&sit_i->sentry_lock);
2776
2777 if (page && IS_NODESEG(type)) {
2778 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2779
2780 f2fs_inode_chksum_set(sbi, page);
2781 }
2782
2783 if (add_list) {
2784 struct f2fs_bio_info *io;
2785
2786 INIT_LIST_HEAD(&fio->list);
2787 fio->in_list = true;
2788 io = sbi->write_io[fio->type] + fio->temp;
2789 spin_lock(&io->io_lock);
2790 list_add_tail(&fio->list, &io->io_list);
2791 spin_unlock(&io->io_lock);
2792 }
2793
2794 mutex_unlock(&curseg->curseg_mutex);
2795
2796 up_read(&SM_I(sbi)->curseg_lock);
2797 }
2798
update_device_state(struct f2fs_io_info * fio)2799 static void update_device_state(struct f2fs_io_info *fio)
2800 {
2801 struct f2fs_sb_info *sbi = fio->sbi;
2802 unsigned int devidx;
2803
2804 if (!sbi->s_ndevs)
2805 return;
2806
2807 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
2808
2809 /* update device state for fsync */
2810 set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
2811
2812 /* update device state for checkpoint */
2813 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
2814 spin_lock(&sbi->dev_lock);
2815 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
2816 spin_unlock(&sbi->dev_lock);
2817 }
2818 }
2819
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)2820 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2821 {
2822 int type = __get_segment_type(fio);
2823 int err;
2824
2825 reallocate:
2826 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2827 &fio->new_blkaddr, sum, type, fio, true);
2828
2829 /* writeout dirty page into bdev */
2830 err = f2fs_submit_page_write(fio);
2831 if (err == -EAGAIN) {
2832 fio->old_blkaddr = fio->new_blkaddr;
2833 goto reallocate;
2834 } else if (!err) {
2835 update_device_state(fio);
2836 }
2837 }
2838
write_meta_page(struct f2fs_sb_info * sbi,struct page * page,enum iostat_type io_type)2839 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2840 enum iostat_type io_type)
2841 {
2842 struct f2fs_io_info fio = {
2843 .sbi = sbi,
2844 .type = META,
2845 .temp = HOT,
2846 .op = REQ_OP_WRITE,
2847 .op_flags = REQ_SYNC | REQ_NOIDLE | REQ_META | REQ_PRIO,
2848 .old_blkaddr = page->index,
2849 .new_blkaddr = page->index,
2850 .page = page,
2851 .encrypted_page = NULL,
2852 .in_list = false,
2853 };
2854
2855 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
2856 fio.op_flags &= ~REQ_META;
2857
2858 set_page_writeback(page);
2859 ClearPageError(page);
2860 f2fs_submit_page_write(&fio);
2861
2862 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
2863 }
2864
write_node_page(unsigned int nid,struct f2fs_io_info * fio)2865 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
2866 {
2867 struct f2fs_summary sum;
2868
2869 set_summary(&sum, nid, 0, 0);
2870 do_write_page(&sum, fio);
2871
2872 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2873 }
2874
write_data_page(struct dnode_of_data * dn,struct f2fs_io_info * fio)2875 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
2876 {
2877 struct f2fs_sb_info *sbi = fio->sbi;
2878 struct f2fs_summary sum;
2879 struct node_info ni;
2880
2881 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
2882 get_node_info(sbi, dn->nid, &ni);
2883 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
2884 do_write_page(&sum, fio);
2885 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
2886
2887 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
2888 }
2889
rewrite_data_page(struct f2fs_io_info * fio)2890 int rewrite_data_page(struct f2fs_io_info *fio)
2891 {
2892 int err;
2893 struct f2fs_sb_info *sbi = fio->sbi;
2894
2895 fio->new_blkaddr = fio->old_blkaddr;
2896 /* i/o temperature is needed for passing down write hints */
2897 __get_segment_type(fio);
2898
2899 f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
2900 GET_SEGNO(sbi, fio->new_blkaddr))->type));
2901
2902 stat_inc_inplace_blocks(fio->sbi);
2903
2904 err = f2fs_submit_page_bio(fio);
2905 if (!err)
2906 update_device_state(fio);
2907
2908 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2909
2910 return err;
2911 }
2912
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)2913 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
2914 unsigned int segno)
2915 {
2916 int i;
2917
2918 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
2919 if (CURSEG_I(sbi, i)->segno == segno)
2920 break;
2921 }
2922 return i;
2923 }
2924
__f2fs_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr)2925 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2926 block_t old_blkaddr, block_t new_blkaddr,
2927 bool recover_curseg, bool recover_newaddr)
2928 {
2929 struct sit_info *sit_i = SIT_I(sbi);
2930 struct curseg_info *curseg;
2931 unsigned int segno, old_cursegno;
2932 struct seg_entry *se;
2933 int type;
2934 unsigned short old_blkoff;
2935
2936 segno = GET_SEGNO(sbi, new_blkaddr);
2937 se = get_seg_entry(sbi, segno);
2938 type = se->type;
2939
2940 down_write(&SM_I(sbi)->curseg_lock);
2941
2942 if (!recover_curseg) {
2943 /* for recovery flow */
2944 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
2945 if (old_blkaddr == NULL_ADDR)
2946 type = CURSEG_COLD_DATA;
2947 else
2948 type = CURSEG_WARM_DATA;
2949 }
2950 } else {
2951 if (IS_CURSEG(sbi, segno)) {
2952 /* se->type is volatile as SSR allocation */
2953 type = __f2fs_get_curseg(sbi, segno);
2954 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
2955 } else {
2956 type = CURSEG_WARM_DATA;
2957 }
2958 }
2959
2960 f2fs_bug_on(sbi, !IS_DATASEG(type));
2961 curseg = CURSEG_I(sbi, type);
2962
2963 mutex_lock(&curseg->curseg_mutex);
2964 down_write(&sit_i->sentry_lock);
2965
2966 old_cursegno = curseg->segno;
2967 old_blkoff = curseg->next_blkoff;
2968
2969 /* change the current segment */
2970 if (segno != curseg->segno) {
2971 curseg->next_segno = segno;
2972 change_curseg(sbi, type);
2973 }
2974
2975 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
2976 __add_sum_entry(sbi, type, sum);
2977
2978 if (!recover_curseg || recover_newaddr)
2979 update_sit_entry(sbi, new_blkaddr, 1);
2980 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2981 update_sit_entry(sbi, old_blkaddr, -1);
2982
2983 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2984 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
2985
2986 locate_dirty_segment(sbi, old_cursegno);
2987
2988 if (recover_curseg) {
2989 if (old_cursegno != curseg->segno) {
2990 curseg->next_segno = old_cursegno;
2991 change_curseg(sbi, type);
2992 }
2993 curseg->next_blkoff = old_blkoff;
2994 }
2995
2996 up_write(&sit_i->sentry_lock);
2997 mutex_unlock(&curseg->curseg_mutex);
2998 up_write(&SM_I(sbi)->curseg_lock);
2999 }
3000
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)3001 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3002 block_t old_addr, block_t new_addr,
3003 unsigned char version, bool recover_curseg,
3004 bool recover_newaddr)
3005 {
3006 struct f2fs_summary sum;
3007
3008 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3009
3010 __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
3011 recover_curseg, recover_newaddr);
3012
3013 f2fs_update_data_blkaddr(dn, new_addr);
3014 }
3015
f2fs_wait_on_page_writeback(struct page * page,enum page_type type,bool ordered)3016 void f2fs_wait_on_page_writeback(struct page *page,
3017 enum page_type type, bool ordered)
3018 {
3019 if (PageWriteback(page)) {
3020 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3021
3022 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
3023 0, page->index, type);
3024 if (ordered)
3025 wait_on_page_writeback(page);
3026 else
3027 wait_for_stable_page(page);
3028 }
3029 }
3030
f2fs_wait_on_block_writeback(struct f2fs_sb_info * sbi,block_t blkaddr)3031 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
3032 {
3033 struct page *cpage;
3034
3035 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
3036 return;
3037
3038 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3039 if (cpage) {
3040 f2fs_wait_on_page_writeback(cpage, DATA, true);
3041 f2fs_put_page(cpage, 1);
3042 }
3043 }
3044
read_compacted_summaries(struct f2fs_sb_info * sbi)3045 static void read_compacted_summaries(struct f2fs_sb_info *sbi)
3046 {
3047 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3048 struct curseg_info *seg_i;
3049 unsigned char *kaddr;
3050 struct page *page;
3051 block_t start;
3052 int i, j, offset;
3053
3054 start = start_sum_block(sbi);
3055
3056 page = get_meta_page(sbi, start++);
3057 kaddr = (unsigned char *)page_address(page);
3058
3059 /* Step 1: restore nat cache */
3060 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3061 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3062
3063 /* Step 2: restore sit cache */
3064 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3065 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3066 offset = 2 * SUM_JOURNAL_SIZE;
3067
3068 /* Step 3: restore summary entries */
3069 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3070 unsigned short blk_off;
3071 unsigned int segno;
3072
3073 seg_i = CURSEG_I(sbi, i);
3074 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3075 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3076 seg_i->next_segno = segno;
3077 reset_curseg(sbi, i, 0);
3078 seg_i->alloc_type = ckpt->alloc_type[i];
3079 seg_i->next_blkoff = blk_off;
3080
3081 if (seg_i->alloc_type == SSR)
3082 blk_off = sbi->blocks_per_seg;
3083
3084 for (j = 0; j < blk_off; j++) {
3085 struct f2fs_summary *s;
3086 s = (struct f2fs_summary *)(kaddr + offset);
3087 seg_i->sum_blk->entries[j] = *s;
3088 offset += SUMMARY_SIZE;
3089 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3090 SUM_FOOTER_SIZE)
3091 continue;
3092
3093 f2fs_put_page(page, 1);
3094 page = NULL;
3095
3096 page = get_meta_page(sbi, start++);
3097 kaddr = (unsigned char *)page_address(page);
3098 offset = 0;
3099 }
3100 }
3101 f2fs_put_page(page, 1);
3102 }
3103
read_normal_summaries(struct f2fs_sb_info * sbi,int type)3104 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3105 {
3106 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3107 struct f2fs_summary_block *sum;
3108 struct curseg_info *curseg;
3109 struct page *new;
3110 unsigned short blk_off;
3111 unsigned int segno = 0;
3112 block_t blk_addr = 0;
3113
3114 /* get segment number and block addr */
3115 if (IS_DATASEG(type)) {
3116 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3117 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3118 CURSEG_HOT_DATA]);
3119 if (__exist_node_summaries(sbi))
3120 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3121 else
3122 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3123 } else {
3124 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3125 CURSEG_HOT_NODE]);
3126 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3127 CURSEG_HOT_NODE]);
3128 if (__exist_node_summaries(sbi))
3129 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3130 type - CURSEG_HOT_NODE);
3131 else
3132 blk_addr = GET_SUM_BLOCK(sbi, segno);
3133 }
3134
3135 new = get_meta_page(sbi, blk_addr);
3136 sum = (struct f2fs_summary_block *)page_address(new);
3137
3138 if (IS_NODESEG(type)) {
3139 if (__exist_node_summaries(sbi)) {
3140 struct f2fs_summary *ns = &sum->entries[0];
3141 int i;
3142 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3143 ns->version = 0;
3144 ns->ofs_in_node = 0;
3145 }
3146 } else {
3147 restore_node_summary(sbi, segno, sum);
3148 }
3149 }
3150
3151 /* set uncompleted segment to curseg */
3152 curseg = CURSEG_I(sbi, type);
3153 mutex_lock(&curseg->curseg_mutex);
3154
3155 /* update journal info */
3156 down_write(&curseg->journal_rwsem);
3157 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3158 up_write(&curseg->journal_rwsem);
3159
3160 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3161 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3162 curseg->next_segno = segno;
3163 reset_curseg(sbi, type, 0);
3164 curseg->alloc_type = ckpt->alloc_type[type];
3165 curseg->next_blkoff = blk_off;
3166 mutex_unlock(&curseg->curseg_mutex);
3167 f2fs_put_page(new, 1);
3168 return 0;
3169 }
3170
restore_curseg_summaries(struct f2fs_sb_info * sbi)3171 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3172 {
3173 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3174 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3175 int type = CURSEG_HOT_DATA;
3176 int err;
3177
3178 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3179 int npages = npages_for_summary_flush(sbi, true);
3180
3181 if (npages >= 2)
3182 ra_meta_pages(sbi, start_sum_block(sbi), npages,
3183 META_CP, true);
3184
3185 /* restore for compacted data summary */
3186 read_compacted_summaries(sbi);
3187 type = CURSEG_HOT_NODE;
3188 }
3189
3190 if (__exist_node_summaries(sbi))
3191 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3192 NR_CURSEG_TYPE - type, META_CP, true);
3193
3194 for (; type <= CURSEG_COLD_NODE; type++) {
3195 err = read_normal_summaries(sbi, type);
3196 if (err)
3197 return err;
3198 }
3199
3200 /* sanity check for summary blocks */
3201 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3202 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
3203 return -EINVAL;
3204
3205 return 0;
3206 }
3207
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)3208 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3209 {
3210 struct page *page;
3211 unsigned char *kaddr;
3212 struct f2fs_summary *summary;
3213 struct curseg_info *seg_i;
3214 int written_size = 0;
3215 int i, j;
3216
3217 page = grab_meta_page(sbi, blkaddr++);
3218 kaddr = (unsigned char *)page_address(page);
3219
3220 /* Step 1: write nat cache */
3221 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3222 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3223 written_size += SUM_JOURNAL_SIZE;
3224
3225 /* Step 2: write sit cache */
3226 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3227 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3228 written_size += SUM_JOURNAL_SIZE;
3229
3230 /* Step 3: write summary entries */
3231 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3232 unsigned short blkoff;
3233 seg_i = CURSEG_I(sbi, i);
3234 if (sbi->ckpt->alloc_type[i] == SSR)
3235 blkoff = sbi->blocks_per_seg;
3236 else
3237 blkoff = curseg_blkoff(sbi, i);
3238
3239 for (j = 0; j < blkoff; j++) {
3240 if (!page) {
3241 page = grab_meta_page(sbi, blkaddr++);
3242 kaddr = (unsigned char *)page_address(page);
3243 written_size = 0;
3244 }
3245 summary = (struct f2fs_summary *)(kaddr + written_size);
3246 *summary = seg_i->sum_blk->entries[j];
3247 written_size += SUMMARY_SIZE;
3248
3249 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3250 SUM_FOOTER_SIZE)
3251 continue;
3252
3253 set_page_dirty(page);
3254 f2fs_put_page(page, 1);
3255 page = NULL;
3256 }
3257 }
3258 if (page) {
3259 set_page_dirty(page);
3260 f2fs_put_page(page, 1);
3261 }
3262 }
3263
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3264 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3265 block_t blkaddr, int type)
3266 {
3267 int i, end;
3268 if (IS_DATASEG(type))
3269 end = type + NR_CURSEG_DATA_TYPE;
3270 else
3271 end = type + NR_CURSEG_NODE_TYPE;
3272
3273 for (i = type; i < end; i++)
3274 write_current_sum_page(sbi, i, blkaddr + (i - type));
3275 }
3276
write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)3277 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3278 {
3279 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3280 write_compacted_summaries(sbi, start_blk);
3281 else
3282 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3283 }
3284
write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)3285 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3286 {
3287 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3288 }
3289
lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)3290 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3291 unsigned int val, int alloc)
3292 {
3293 int i;
3294
3295 if (type == NAT_JOURNAL) {
3296 for (i = 0; i < nats_in_cursum(journal); i++) {
3297 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3298 return i;
3299 }
3300 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3301 return update_nats_in_cursum(journal, 1);
3302 } else if (type == SIT_JOURNAL) {
3303 for (i = 0; i < sits_in_cursum(journal); i++)
3304 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3305 return i;
3306 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3307 return update_sits_in_cursum(journal, 1);
3308 }
3309 return -1;
3310 }
3311
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)3312 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3313 unsigned int segno)
3314 {
3315 return get_meta_page(sbi, current_sit_addr(sbi, segno));
3316 }
3317
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)3318 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3319 unsigned int start)
3320 {
3321 struct sit_info *sit_i = SIT_I(sbi);
3322 struct page *page;
3323 pgoff_t src_off, dst_off;
3324
3325 src_off = current_sit_addr(sbi, start);
3326 dst_off = next_sit_addr(sbi, src_off);
3327
3328 page = grab_meta_page(sbi, dst_off);
3329 seg_info_to_sit_page(sbi, page, start);
3330
3331 set_page_dirty(page);
3332 set_to_next_sit(sit_i, start);
3333
3334 return page;
3335 }
3336
grab_sit_entry_set(void)3337 static struct sit_entry_set *grab_sit_entry_set(void)
3338 {
3339 struct sit_entry_set *ses =
3340 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3341
3342 ses->entry_cnt = 0;
3343 INIT_LIST_HEAD(&ses->set_list);
3344 return ses;
3345 }
3346
release_sit_entry_set(struct sit_entry_set * ses)3347 static void release_sit_entry_set(struct sit_entry_set *ses)
3348 {
3349 list_del(&ses->set_list);
3350 kmem_cache_free(sit_entry_set_slab, ses);
3351 }
3352
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)3353 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3354 struct list_head *head)
3355 {
3356 struct sit_entry_set *next = ses;
3357
3358 if (list_is_last(&ses->set_list, head))
3359 return;
3360
3361 list_for_each_entry_continue(next, head, set_list)
3362 if (ses->entry_cnt <= next->entry_cnt)
3363 break;
3364
3365 list_move_tail(&ses->set_list, &next->set_list);
3366 }
3367
add_sit_entry(unsigned int segno,struct list_head * head)3368 static void add_sit_entry(unsigned int segno, struct list_head *head)
3369 {
3370 struct sit_entry_set *ses;
3371 unsigned int start_segno = START_SEGNO(segno);
3372
3373 list_for_each_entry(ses, head, set_list) {
3374 if (ses->start_segno == start_segno) {
3375 ses->entry_cnt++;
3376 adjust_sit_entry_set(ses, head);
3377 return;
3378 }
3379 }
3380
3381 ses = grab_sit_entry_set();
3382
3383 ses->start_segno = start_segno;
3384 ses->entry_cnt++;
3385 list_add(&ses->set_list, head);
3386 }
3387
add_sits_in_set(struct f2fs_sb_info * sbi)3388 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3389 {
3390 struct f2fs_sm_info *sm_info = SM_I(sbi);
3391 struct list_head *set_list = &sm_info->sit_entry_set;
3392 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3393 unsigned int segno;
3394
3395 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3396 add_sit_entry(segno, set_list);
3397 }
3398
remove_sits_in_journal(struct f2fs_sb_info * sbi)3399 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3400 {
3401 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3402 struct f2fs_journal *journal = curseg->journal;
3403 int i;
3404
3405 down_write(&curseg->journal_rwsem);
3406 for (i = 0; i < sits_in_cursum(journal); i++) {
3407 unsigned int segno;
3408 bool dirtied;
3409
3410 segno = le32_to_cpu(segno_in_journal(journal, i));
3411 dirtied = __mark_sit_entry_dirty(sbi, segno);
3412
3413 if (!dirtied)
3414 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3415 }
3416 update_sits_in_cursum(journal, -i);
3417 up_write(&curseg->journal_rwsem);
3418 }
3419
3420 /*
3421 * CP calls this function, which flushes SIT entries including sit_journal,
3422 * and moves prefree segs to free segs.
3423 */
flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)3424 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3425 {
3426 struct sit_info *sit_i = SIT_I(sbi);
3427 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3428 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3429 struct f2fs_journal *journal = curseg->journal;
3430 struct sit_entry_set *ses, *tmp;
3431 struct list_head *head = &SM_I(sbi)->sit_entry_set;
3432 bool to_journal = true;
3433 struct seg_entry *se;
3434
3435 down_write(&sit_i->sentry_lock);
3436
3437 if (!sit_i->dirty_sentries)
3438 goto out;
3439
3440 /*
3441 * add and account sit entries of dirty bitmap in sit entry
3442 * set temporarily
3443 */
3444 add_sits_in_set(sbi);
3445
3446 /*
3447 * if there are no enough space in journal to store dirty sit
3448 * entries, remove all entries from journal and add and account
3449 * them in sit entry set.
3450 */
3451 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3452 remove_sits_in_journal(sbi);
3453
3454 /*
3455 * there are two steps to flush sit entries:
3456 * #1, flush sit entries to journal in current cold data summary block.
3457 * #2, flush sit entries to sit page.
3458 */
3459 list_for_each_entry_safe(ses, tmp, head, set_list) {
3460 struct page *page = NULL;
3461 struct f2fs_sit_block *raw_sit = NULL;
3462 unsigned int start_segno = ses->start_segno;
3463 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3464 (unsigned long)MAIN_SEGS(sbi));
3465 unsigned int segno = start_segno;
3466
3467 if (to_journal &&
3468 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3469 to_journal = false;
3470
3471 if (to_journal) {
3472 down_write(&curseg->journal_rwsem);
3473 } else {
3474 page = get_next_sit_page(sbi, start_segno);
3475 raw_sit = page_address(page);
3476 }
3477
3478 /* flush dirty sit entries in region of current sit set */
3479 for_each_set_bit_from(segno, bitmap, end) {
3480 int offset, sit_offset;
3481
3482 se = get_seg_entry(sbi, segno);
3483
3484 /* add discard candidates */
3485 if (!(cpc->reason & CP_DISCARD)) {
3486 cpc->trim_start = segno;
3487 add_discard_addrs(sbi, cpc, false);
3488 }
3489
3490 if (to_journal) {
3491 offset = lookup_journal_in_cursum(journal,
3492 SIT_JOURNAL, segno, 1);
3493 f2fs_bug_on(sbi, offset < 0);
3494 segno_in_journal(journal, offset) =
3495 cpu_to_le32(segno);
3496 seg_info_to_raw_sit(se,
3497 &sit_in_journal(journal, offset));
3498 } else {
3499 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3500 seg_info_to_raw_sit(se,
3501 &raw_sit->entries[sit_offset]);
3502 }
3503
3504 __clear_bit(segno, bitmap);
3505 sit_i->dirty_sentries--;
3506 ses->entry_cnt--;
3507 }
3508
3509 if (to_journal)
3510 up_write(&curseg->journal_rwsem);
3511 else
3512 f2fs_put_page(page, 1);
3513
3514 f2fs_bug_on(sbi, ses->entry_cnt);
3515 release_sit_entry_set(ses);
3516 }
3517
3518 f2fs_bug_on(sbi, !list_empty(head));
3519 f2fs_bug_on(sbi, sit_i->dirty_sentries);
3520 out:
3521 if (cpc->reason & CP_DISCARD) {
3522 __u64 trim_start = cpc->trim_start;
3523
3524 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3525 add_discard_addrs(sbi, cpc, false);
3526
3527 cpc->trim_start = trim_start;
3528 }
3529 up_write(&sit_i->sentry_lock);
3530
3531 set_prefree_as_free_segments(sbi);
3532 }
3533
build_sit_info(struct f2fs_sb_info * sbi)3534 static int build_sit_info(struct f2fs_sb_info *sbi)
3535 {
3536 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3537 struct sit_info *sit_i;
3538 unsigned int sit_segs, start;
3539 char *src_bitmap;
3540 unsigned int bitmap_size;
3541
3542 /* allocate memory for SIT information */
3543 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3544 if (!sit_i)
3545 return -ENOMEM;
3546
3547 SM_I(sbi)->sit_info = sit_i;
3548
3549 sit_i->sentries = f2fs_kvzalloc(sbi, MAIN_SEGS(sbi) *
3550 sizeof(struct seg_entry), GFP_KERNEL);
3551 if (!sit_i->sentries)
3552 return -ENOMEM;
3553
3554 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3555 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3556 GFP_KERNEL);
3557 if (!sit_i->dirty_sentries_bitmap)
3558 return -ENOMEM;
3559
3560 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3561 sit_i->sentries[start].cur_valid_map
3562 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3563 sit_i->sentries[start].ckpt_valid_map
3564 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3565 if (!sit_i->sentries[start].cur_valid_map ||
3566 !sit_i->sentries[start].ckpt_valid_map)
3567 return -ENOMEM;
3568
3569 #ifdef CONFIG_F2FS_CHECK_FS
3570 sit_i->sentries[start].cur_valid_map_mir
3571 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3572 if (!sit_i->sentries[start].cur_valid_map_mir)
3573 return -ENOMEM;
3574 #endif
3575
3576 if (f2fs_discard_en(sbi)) {
3577 sit_i->sentries[start].discard_map
3578 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3579 GFP_KERNEL);
3580 if (!sit_i->sentries[start].discard_map)
3581 return -ENOMEM;
3582 }
3583 }
3584
3585 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3586 if (!sit_i->tmp_map)
3587 return -ENOMEM;
3588
3589 if (sbi->segs_per_sec > 1) {
3590 sit_i->sec_entries = f2fs_kvzalloc(sbi, MAIN_SECS(sbi) *
3591 sizeof(struct sec_entry), GFP_KERNEL);
3592 if (!sit_i->sec_entries)
3593 return -ENOMEM;
3594 }
3595
3596 /* get information related with SIT */
3597 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3598
3599 /* setup SIT bitmap from ckeckpoint pack */
3600 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3601 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3602
3603 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3604 if (!sit_i->sit_bitmap)
3605 return -ENOMEM;
3606
3607 #ifdef CONFIG_F2FS_CHECK_FS
3608 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3609 if (!sit_i->sit_bitmap_mir)
3610 return -ENOMEM;
3611 #endif
3612
3613 /* init SIT information */
3614 sit_i->s_ops = &default_salloc_ops;
3615
3616 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3617 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3618 sit_i->written_valid_blocks = 0;
3619 sit_i->bitmap_size = bitmap_size;
3620 sit_i->dirty_sentries = 0;
3621 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3622 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3623 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
3624 init_rwsem(&sit_i->sentry_lock);
3625 return 0;
3626 }
3627
build_free_segmap(struct f2fs_sb_info * sbi)3628 static int build_free_segmap(struct f2fs_sb_info *sbi)
3629 {
3630 struct free_segmap_info *free_i;
3631 unsigned int bitmap_size, sec_bitmap_size;
3632
3633 /* allocate memory for free segmap information */
3634 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3635 if (!free_i)
3636 return -ENOMEM;
3637
3638 SM_I(sbi)->free_info = free_i;
3639
3640 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3641 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3642 if (!free_i->free_segmap)
3643 return -ENOMEM;
3644
3645 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3646 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3647 if (!free_i->free_secmap)
3648 return -ENOMEM;
3649
3650 /* set all segments as dirty temporarily */
3651 memset(free_i->free_segmap, 0xff, bitmap_size);
3652 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3653
3654 /* init free segmap information */
3655 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3656 free_i->free_segments = 0;
3657 free_i->free_sections = 0;
3658 spin_lock_init(&free_i->segmap_lock);
3659 return 0;
3660 }
3661
build_curseg(struct f2fs_sb_info * sbi)3662 static int build_curseg(struct f2fs_sb_info *sbi)
3663 {
3664 struct curseg_info *array;
3665 int i;
3666
3667 array = f2fs_kzalloc(sbi, sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
3668 if (!array)
3669 return -ENOMEM;
3670
3671 SM_I(sbi)->curseg_array = array;
3672
3673 for (i = 0; i < NR_CURSEG_TYPE; i++) {
3674 mutex_init(&array[i].curseg_mutex);
3675 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
3676 if (!array[i].sum_blk)
3677 return -ENOMEM;
3678 init_rwsem(&array[i].journal_rwsem);
3679 array[i].journal = f2fs_kzalloc(sbi,
3680 sizeof(struct f2fs_journal), GFP_KERNEL);
3681 if (!array[i].journal)
3682 return -ENOMEM;
3683 array[i].segno = NULL_SEGNO;
3684 array[i].next_blkoff = 0;
3685 }
3686 return restore_curseg_summaries(sbi);
3687 }
3688
build_sit_entries(struct f2fs_sb_info * sbi)3689 static int build_sit_entries(struct f2fs_sb_info *sbi)
3690 {
3691 struct sit_info *sit_i = SIT_I(sbi);
3692 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3693 struct f2fs_journal *journal = curseg->journal;
3694 struct seg_entry *se;
3695 struct f2fs_sit_entry sit;
3696 int sit_blk_cnt = SIT_BLK_CNT(sbi);
3697 unsigned int i, start, end;
3698 unsigned int readed, start_blk = 0;
3699 int err = 0;
3700
3701 do {
3702 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
3703 META_SIT, true);
3704
3705 start = start_blk * sit_i->sents_per_block;
3706 end = (start_blk + readed) * sit_i->sents_per_block;
3707
3708 for (; start < end && start < MAIN_SEGS(sbi); start++) {
3709 struct f2fs_sit_block *sit_blk;
3710 struct page *page;
3711
3712 se = &sit_i->sentries[start];
3713 page = get_current_sit_page(sbi, start);
3714 sit_blk = (struct f2fs_sit_block *)page_address(page);
3715 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3716 f2fs_put_page(page, 1);
3717
3718 err = check_block_count(sbi, start, &sit);
3719 if (err)
3720 return err;
3721 seg_info_from_raw_sit(se, &sit);
3722
3723 /* build discard map only one time */
3724 if (f2fs_discard_en(sbi)) {
3725 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3726 memset(se->discard_map, 0xff,
3727 SIT_VBLOCK_MAP_SIZE);
3728 } else {
3729 memcpy(se->discard_map,
3730 se->cur_valid_map,
3731 SIT_VBLOCK_MAP_SIZE);
3732 sbi->discard_blks +=
3733 sbi->blocks_per_seg -
3734 se->valid_blocks;
3735 }
3736 }
3737
3738 if (sbi->segs_per_sec > 1)
3739 get_sec_entry(sbi, start)->valid_blocks +=
3740 se->valid_blocks;
3741 }
3742 start_blk += readed;
3743 } while (start_blk < sit_blk_cnt);
3744
3745 down_read(&curseg->journal_rwsem);
3746 for (i = 0; i < sits_in_cursum(journal); i++) {
3747 unsigned int old_valid_blocks;
3748
3749 start = le32_to_cpu(segno_in_journal(journal, i));
3750 se = &sit_i->sentries[start];
3751 sit = sit_in_journal(journal, i);
3752
3753 old_valid_blocks = se->valid_blocks;
3754
3755 err = check_block_count(sbi, start, &sit);
3756 if (err)
3757 break;
3758 seg_info_from_raw_sit(se, &sit);
3759
3760 if (f2fs_discard_en(sbi)) {
3761 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3762 memset(se->discard_map, 0xff,
3763 SIT_VBLOCK_MAP_SIZE);
3764 } else {
3765 memcpy(se->discard_map, se->cur_valid_map,
3766 SIT_VBLOCK_MAP_SIZE);
3767 sbi->discard_blks += old_valid_blocks -
3768 se->valid_blocks;
3769 }
3770 }
3771
3772 if (sbi->segs_per_sec > 1)
3773 get_sec_entry(sbi, start)->valid_blocks +=
3774 se->valid_blocks - old_valid_blocks;
3775 }
3776 up_read(&curseg->journal_rwsem);
3777 return err;
3778 }
3779
init_free_segmap(struct f2fs_sb_info * sbi)3780 static void init_free_segmap(struct f2fs_sb_info *sbi)
3781 {
3782 unsigned int start;
3783 int type;
3784
3785 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3786 struct seg_entry *sentry = get_seg_entry(sbi, start);
3787 if (!sentry->valid_blocks)
3788 __set_free(sbi, start);
3789 else
3790 SIT_I(sbi)->written_valid_blocks +=
3791 sentry->valid_blocks;
3792 }
3793
3794 /* set use the current segments */
3795 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
3796 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
3797 __set_test_and_inuse(sbi, curseg_t->segno);
3798 }
3799 }
3800
init_dirty_segmap(struct f2fs_sb_info * sbi)3801 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
3802 {
3803 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3804 struct free_segmap_info *free_i = FREE_I(sbi);
3805 unsigned int segno = 0, offset = 0;
3806 unsigned short valid_blocks;
3807
3808 while (1) {
3809 /* find dirty segment based on free segmap */
3810 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
3811 if (segno >= MAIN_SEGS(sbi))
3812 break;
3813 offset = segno + 1;
3814 valid_blocks = get_valid_blocks(sbi, segno, false);
3815 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
3816 continue;
3817 if (valid_blocks > sbi->blocks_per_seg) {
3818 f2fs_bug_on(sbi, 1);
3819 continue;
3820 }
3821 mutex_lock(&dirty_i->seglist_lock);
3822 __locate_dirty_segment(sbi, segno, DIRTY);
3823 mutex_unlock(&dirty_i->seglist_lock);
3824 }
3825 }
3826
init_victim_secmap(struct f2fs_sb_info * sbi)3827 static int init_victim_secmap(struct f2fs_sb_info *sbi)
3828 {
3829 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3830 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3831
3832 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
3833 if (!dirty_i->victim_secmap)
3834 return -ENOMEM;
3835 return 0;
3836 }
3837
build_dirty_segmap(struct f2fs_sb_info * sbi)3838 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
3839 {
3840 struct dirty_seglist_info *dirty_i;
3841 unsigned int bitmap_size, i;
3842
3843 /* allocate memory for dirty segments list information */
3844 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
3845 GFP_KERNEL);
3846 if (!dirty_i)
3847 return -ENOMEM;
3848
3849 SM_I(sbi)->dirty_info = dirty_i;
3850 mutex_init(&dirty_i->seglist_lock);
3851
3852 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3853
3854 for (i = 0; i < NR_DIRTY_TYPE; i++) {
3855 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
3856 GFP_KERNEL);
3857 if (!dirty_i->dirty_segmap[i])
3858 return -ENOMEM;
3859 }
3860
3861 init_dirty_segmap(sbi);
3862 return init_victim_secmap(sbi);
3863 }
3864
sanity_check_curseg(struct f2fs_sb_info * sbi)3865 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
3866 {
3867 int i;
3868
3869 /*
3870 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
3871 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
3872 */
3873 for (i = 0; i < NO_CHECK_TYPE; i++) {
3874 struct curseg_info *curseg = CURSEG_I(sbi, i);
3875 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
3876 unsigned int blkofs = curseg->next_blkoff;
3877
3878 if (f2fs_test_bit(blkofs, se->cur_valid_map))
3879 goto out;
3880
3881 if (curseg->alloc_type == SSR)
3882 continue;
3883
3884 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
3885 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
3886 continue;
3887 out:
3888 f2fs_msg(sbi->sb, KERN_ERR,
3889 "Current segment's next free block offset is "
3890 "inconsistent with bitmap, logtype:%u, "
3891 "segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
3892 i, curseg->segno, curseg->alloc_type,
3893 curseg->next_blkoff, blkofs);
3894 return -EINVAL;
3895 }
3896 }
3897 return 0;
3898 }
3899
3900 /*
3901 * Update min, max modified time for cost-benefit GC algorithm
3902 */
init_min_max_mtime(struct f2fs_sb_info * sbi)3903 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
3904 {
3905 struct sit_info *sit_i = SIT_I(sbi);
3906 unsigned int segno;
3907
3908 down_write(&sit_i->sentry_lock);
3909
3910 sit_i->min_mtime = LLONG_MAX;
3911
3912 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
3913 unsigned int i;
3914 unsigned long long mtime = 0;
3915
3916 for (i = 0; i < sbi->segs_per_sec; i++)
3917 mtime += get_seg_entry(sbi, segno + i)->mtime;
3918
3919 mtime = div_u64(mtime, sbi->segs_per_sec);
3920
3921 if (sit_i->min_mtime > mtime)
3922 sit_i->min_mtime = mtime;
3923 }
3924 sit_i->max_mtime = get_mtime(sbi);
3925 up_write(&sit_i->sentry_lock);
3926 }
3927
build_segment_manager(struct f2fs_sb_info * sbi)3928 int build_segment_manager(struct f2fs_sb_info *sbi)
3929 {
3930 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3931 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3932 struct f2fs_sm_info *sm_info;
3933 int err;
3934
3935 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
3936 if (!sm_info)
3937 return -ENOMEM;
3938
3939 /* init sm info */
3940 sbi->sm_info = sm_info;
3941 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3942 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3943 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
3944 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3945 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3946 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
3947 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3948 sm_info->rec_prefree_segments = sm_info->main_segments *
3949 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
3950 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
3951 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
3952
3953 if (!test_opt(sbi, LFS))
3954 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
3955 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
3956 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
3957 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
3958 sm_info->min_ssr_sections = reserved_sections(sbi);
3959
3960 INIT_LIST_HEAD(&sm_info->sit_entry_set);
3961
3962 init_rwsem(&sm_info->curseg_lock);
3963
3964 if (!f2fs_readonly(sbi->sb)) {
3965 err = create_flush_cmd_control(sbi);
3966 if (err)
3967 return err;
3968 }
3969
3970 err = create_discard_cmd_control(sbi);
3971 if (err)
3972 return err;
3973
3974 err = build_sit_info(sbi);
3975 if (err)
3976 return err;
3977 err = build_free_segmap(sbi);
3978 if (err)
3979 return err;
3980 err = build_curseg(sbi);
3981 if (err)
3982 return err;
3983
3984 /* reinit free segmap based on SIT */
3985 err = build_sit_entries(sbi);
3986 if (err)
3987 return err;
3988
3989 init_free_segmap(sbi);
3990 err = build_dirty_segmap(sbi);
3991 if (err)
3992 return err;
3993
3994 err = sanity_check_curseg(sbi);
3995 if (err)
3996 return err;
3997
3998 init_min_max_mtime(sbi);
3999 return 0;
4000 }
4001
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)4002 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4003 enum dirty_type dirty_type)
4004 {
4005 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4006
4007 mutex_lock(&dirty_i->seglist_lock);
4008 kvfree(dirty_i->dirty_segmap[dirty_type]);
4009 dirty_i->nr_dirty[dirty_type] = 0;
4010 mutex_unlock(&dirty_i->seglist_lock);
4011 }
4012
destroy_victim_secmap(struct f2fs_sb_info * sbi)4013 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4014 {
4015 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4016 kvfree(dirty_i->victim_secmap);
4017 }
4018
destroy_dirty_segmap(struct f2fs_sb_info * sbi)4019 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4020 {
4021 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4022 int i;
4023
4024 if (!dirty_i)
4025 return;
4026
4027 /* discard pre-free/dirty segments list */
4028 for (i = 0; i < NR_DIRTY_TYPE; i++)
4029 discard_dirty_segmap(sbi, i);
4030
4031 destroy_victim_secmap(sbi);
4032 SM_I(sbi)->dirty_info = NULL;
4033 kfree(dirty_i);
4034 }
4035
destroy_curseg(struct f2fs_sb_info * sbi)4036 static void destroy_curseg(struct f2fs_sb_info *sbi)
4037 {
4038 struct curseg_info *array = SM_I(sbi)->curseg_array;
4039 int i;
4040
4041 if (!array)
4042 return;
4043 SM_I(sbi)->curseg_array = NULL;
4044 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4045 kfree(array[i].sum_blk);
4046 kfree(array[i].journal);
4047 }
4048 kfree(array);
4049 }
4050
destroy_free_segmap(struct f2fs_sb_info * sbi)4051 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4052 {
4053 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4054 if (!free_i)
4055 return;
4056 SM_I(sbi)->free_info = NULL;
4057 kvfree(free_i->free_segmap);
4058 kvfree(free_i->free_secmap);
4059 kfree(free_i);
4060 }
4061
destroy_sit_info(struct f2fs_sb_info * sbi)4062 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4063 {
4064 struct sit_info *sit_i = SIT_I(sbi);
4065 unsigned int start;
4066
4067 if (!sit_i)
4068 return;
4069
4070 if (sit_i->sentries) {
4071 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4072 kfree(sit_i->sentries[start].cur_valid_map);
4073 #ifdef CONFIG_F2FS_CHECK_FS
4074 kfree(sit_i->sentries[start].cur_valid_map_mir);
4075 #endif
4076 kfree(sit_i->sentries[start].ckpt_valid_map);
4077 kfree(sit_i->sentries[start].discard_map);
4078 }
4079 }
4080 kfree(sit_i->tmp_map);
4081
4082 kvfree(sit_i->sentries);
4083 kvfree(sit_i->sec_entries);
4084 kvfree(sit_i->dirty_sentries_bitmap);
4085
4086 SM_I(sbi)->sit_info = NULL;
4087 kfree(sit_i->sit_bitmap);
4088 #ifdef CONFIG_F2FS_CHECK_FS
4089 kfree(sit_i->sit_bitmap_mir);
4090 #endif
4091 kfree(sit_i);
4092 }
4093
destroy_segment_manager(struct f2fs_sb_info * sbi)4094 void destroy_segment_manager(struct f2fs_sb_info *sbi)
4095 {
4096 struct f2fs_sm_info *sm_info = SM_I(sbi);
4097
4098 if (!sm_info)
4099 return;
4100 destroy_flush_cmd_control(sbi, true);
4101 destroy_discard_cmd_control(sbi);
4102 destroy_dirty_segmap(sbi);
4103 destroy_curseg(sbi);
4104 destroy_free_segmap(sbi);
4105 destroy_sit_info(sbi);
4106 sbi->sm_info = NULL;
4107 kfree(sm_info);
4108 }
4109
create_segment_manager_caches(void)4110 int __init create_segment_manager_caches(void)
4111 {
4112 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4113 sizeof(struct discard_entry));
4114 if (!discard_entry_slab)
4115 goto fail;
4116
4117 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4118 sizeof(struct discard_cmd));
4119 if (!discard_cmd_slab)
4120 goto destroy_discard_entry;
4121
4122 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4123 sizeof(struct sit_entry_set));
4124 if (!sit_entry_set_slab)
4125 goto destroy_discard_cmd;
4126
4127 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4128 sizeof(struct inmem_pages));
4129 if (!inmem_entry_slab)
4130 goto destroy_sit_entry_set;
4131 return 0;
4132
4133 destroy_sit_entry_set:
4134 kmem_cache_destroy(sit_entry_set_slab);
4135 destroy_discard_cmd:
4136 kmem_cache_destroy(discard_cmd_slab);
4137 destroy_discard_entry:
4138 kmem_cache_destroy(discard_entry_slab);
4139 fail:
4140 return -ENOMEM;
4141 }
4142
destroy_segment_manager_caches(void)4143 void destroy_segment_manager_caches(void)
4144 {
4145 kmem_cache_destroy(sit_entry_set_slab);
4146 kmem_cache_destroy(discard_cmd_slab);
4147 kmem_cache_destroy(discard_entry_slab);
4148 kmem_cache_destroy(inmem_entry_slab);
4149 }
4150