• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 #include <linux/freezer.h>
20 #include <linux/sched.h>
21 
22 #include "f2fs.h"
23 #include "segment.h"
24 #include "node.h"
25 #include "gc.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28 
29 #define __reverse_ffz(x) __reverse_ffs(~(x))
30 
31 static struct kmem_cache *discard_entry_slab;
32 static struct kmem_cache *discard_cmd_slab;
33 static struct kmem_cache *sit_entry_set_slab;
34 static struct kmem_cache *inmem_entry_slab;
35 
__reverse_ulong(unsigned char * str)36 static unsigned long __reverse_ulong(unsigned char *str)
37 {
38 	unsigned long tmp = 0;
39 	int shift = 24, idx = 0;
40 
41 #if BITS_PER_LONG == 64
42 	shift = 56;
43 #endif
44 	while (shift >= 0) {
45 		tmp |= (unsigned long)str[idx++] << shift;
46 		shift -= BITS_PER_BYTE;
47 	}
48 	return tmp;
49 }
50 
51 /*
52  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
53  * MSB and LSB are reversed in a byte by f2fs_set_bit.
54  */
__reverse_ffs(unsigned long word)55 static inline unsigned long __reverse_ffs(unsigned long word)
56 {
57 	int num = 0;
58 
59 #if BITS_PER_LONG == 64
60 	if ((word & 0xffffffff00000000UL) == 0)
61 		num += 32;
62 	else
63 		word >>= 32;
64 #endif
65 	if ((word & 0xffff0000) == 0)
66 		num += 16;
67 	else
68 		word >>= 16;
69 
70 	if ((word & 0xff00) == 0)
71 		num += 8;
72 	else
73 		word >>= 8;
74 
75 	if ((word & 0xf0) == 0)
76 		num += 4;
77 	else
78 		word >>= 4;
79 
80 	if ((word & 0xc) == 0)
81 		num += 2;
82 	else
83 		word >>= 2;
84 
85 	if ((word & 0x2) == 0)
86 		num += 1;
87 	return num;
88 }
89 
90 /*
91  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
92  * f2fs_set_bit makes MSB and LSB reversed in a byte.
93  * @size must be integral times of unsigned long.
94  * Example:
95  *                             MSB <--> LSB
96  *   f2fs_set_bit(0, bitmap) => 1000 0000
97  *   f2fs_set_bit(7, bitmap) => 0000 0001
98  */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)99 static unsigned long __find_rev_next_bit(const unsigned long *addr,
100 			unsigned long size, unsigned long offset)
101 {
102 	const unsigned long *p = addr + BIT_WORD(offset);
103 	unsigned long result = size;
104 	unsigned long tmp;
105 
106 	if (offset >= size)
107 		return size;
108 
109 	size -= (offset & ~(BITS_PER_LONG - 1));
110 	offset %= BITS_PER_LONG;
111 
112 	while (1) {
113 		if (*p == 0)
114 			goto pass;
115 
116 		tmp = __reverse_ulong((unsigned char *)p);
117 
118 		tmp &= ~0UL >> offset;
119 		if (size < BITS_PER_LONG)
120 			tmp &= (~0UL << (BITS_PER_LONG - size));
121 		if (tmp)
122 			goto found;
123 pass:
124 		if (size <= BITS_PER_LONG)
125 			break;
126 		size -= BITS_PER_LONG;
127 		offset = 0;
128 		p++;
129 	}
130 	return result;
131 found:
132 	return result - size + __reverse_ffs(tmp);
133 }
134 
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
136 			unsigned long size, unsigned long offset)
137 {
138 	const unsigned long *p = addr + BIT_WORD(offset);
139 	unsigned long result = size;
140 	unsigned long tmp;
141 
142 	if (offset >= size)
143 		return size;
144 
145 	size -= (offset & ~(BITS_PER_LONG - 1));
146 	offset %= BITS_PER_LONG;
147 
148 	while (1) {
149 		if (*p == ~0UL)
150 			goto pass;
151 
152 		tmp = __reverse_ulong((unsigned char *)p);
153 
154 		if (offset)
155 			tmp |= ~0UL << (BITS_PER_LONG - offset);
156 		if (size < BITS_PER_LONG)
157 			tmp |= ~0UL >> size;
158 		if (tmp != ~0UL)
159 			goto found;
160 pass:
161 		if (size <= BITS_PER_LONG)
162 			break;
163 		size -= BITS_PER_LONG;
164 		offset = 0;
165 		p++;
166 	}
167 	return result;
168 found:
169 	return result - size + __reverse_ffz(tmp);
170 }
171 
need_SSR(struct f2fs_sb_info * sbi)172 bool need_SSR(struct f2fs_sb_info *sbi)
173 {
174 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
175 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
176 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177 
178 	if (test_opt(sbi, LFS))
179 		return false;
180 	if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
181 		return true;
182 
183 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
184 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
185 }
186 
register_inmem_page(struct inode * inode,struct page * page)187 void register_inmem_page(struct inode *inode, struct page *page)
188 {
189 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 	struct inmem_pages *new;
192 
193 	f2fs_trace_pid(page);
194 
195 	set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
196 	SetPagePrivate(page);
197 
198 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
199 
200 	/* add atomic page indices to the list */
201 	new->page = page;
202 	INIT_LIST_HEAD(&new->list);
203 
204 	/* increase reference count with clean state */
205 	mutex_lock(&fi->inmem_lock);
206 	get_page(page);
207 	list_add_tail(&new->list, &fi->inmem_pages);
208 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
209 	if (list_empty(&fi->inmem_ilist))
210 		list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
211 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
212 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
213 	mutex_unlock(&fi->inmem_lock);
214 
215 	trace_f2fs_register_inmem_page(page, INMEM);
216 }
217 
__revoke_inmem_pages(struct inode * inode,struct list_head * head,bool drop,bool recover)218 static int __revoke_inmem_pages(struct inode *inode,
219 				struct list_head *head, bool drop, bool recover)
220 {
221 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222 	struct inmem_pages *cur, *tmp;
223 	int err = 0;
224 
225 	list_for_each_entry_safe(cur, tmp, head, list) {
226 		struct page *page = cur->page;
227 
228 		if (drop)
229 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
230 
231 		lock_page(page);
232 
233 		if (recover) {
234 			struct dnode_of_data dn;
235 			struct node_info ni;
236 
237 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
238 retry:
239 			set_new_dnode(&dn, inode, NULL, NULL, 0);
240 			err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
241 			if (err) {
242 				if (err == -ENOMEM) {
243 					congestion_wait(BLK_RW_ASYNC, HZ/50);
244 					cond_resched();
245 					goto retry;
246 				}
247 				err = -EAGAIN;
248 				goto next;
249 			}
250 			get_node_info(sbi, dn.nid, &ni);
251 			if (cur->old_addr == NEW_ADDR) {
252 				invalidate_blocks(sbi, dn.data_blkaddr);
253 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
254 			} else
255 				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
256 					cur->old_addr, ni.version, true, true);
257 			f2fs_put_dnode(&dn);
258 		}
259 next:
260 		/* we don't need to invalidate this in the sccessful status */
261 		if (drop || recover)
262 			ClearPageUptodate(page);
263 		set_page_private(page, 0);
264 		ClearPagePrivate(page);
265 		f2fs_put_page(page, 1);
266 
267 		list_del(&cur->list);
268 		kmem_cache_free(inmem_entry_slab, cur);
269 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
270 	}
271 	return err;
272 }
273 
drop_inmem_pages_all(struct f2fs_sb_info * sbi)274 void drop_inmem_pages_all(struct f2fs_sb_info *sbi)
275 {
276 	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
277 	struct inode *inode;
278 	struct f2fs_inode_info *fi;
279 next:
280 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
281 	if (list_empty(head)) {
282 		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
283 		return;
284 	}
285 	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
286 	inode = igrab(&fi->vfs_inode);
287 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
288 
289 	if (inode) {
290 		drop_inmem_pages(inode);
291 		iput(inode);
292 	}
293 	congestion_wait(BLK_RW_ASYNC, HZ/50);
294 	cond_resched();
295 	goto next;
296 }
297 
drop_inmem_pages(struct inode * inode)298 void drop_inmem_pages(struct inode *inode)
299 {
300 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
301 	struct f2fs_inode_info *fi = F2FS_I(inode);
302 
303 	mutex_lock(&fi->inmem_lock);
304 	__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
305 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
306 	if (!list_empty(&fi->inmem_ilist))
307 		list_del_init(&fi->inmem_ilist);
308 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
309 	mutex_unlock(&fi->inmem_lock);
310 
311 	clear_inode_flag(inode, FI_ATOMIC_FILE);
312 	clear_inode_flag(inode, FI_HOT_DATA);
313 	stat_dec_atomic_write(inode);
314 }
315 
drop_inmem_page(struct inode * inode,struct page * page)316 void drop_inmem_page(struct inode *inode, struct page *page)
317 {
318 	struct f2fs_inode_info *fi = F2FS_I(inode);
319 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
320 	struct list_head *head = &fi->inmem_pages;
321 	struct inmem_pages *cur = NULL;
322 
323 	f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
324 
325 	mutex_lock(&fi->inmem_lock);
326 	list_for_each_entry(cur, head, list) {
327 		if (cur->page == page)
328 			break;
329 	}
330 
331 	f2fs_bug_on(sbi, !cur || cur->page != page);
332 	list_del(&cur->list);
333 	mutex_unlock(&fi->inmem_lock);
334 
335 	dec_page_count(sbi, F2FS_INMEM_PAGES);
336 	kmem_cache_free(inmem_entry_slab, cur);
337 
338 	ClearPageUptodate(page);
339 	set_page_private(page, 0);
340 	ClearPagePrivate(page);
341 	f2fs_put_page(page, 0);
342 
343 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
344 }
345 
__commit_inmem_pages(struct inode * inode,struct list_head * revoke_list)346 static int __commit_inmem_pages(struct inode *inode,
347 					struct list_head *revoke_list)
348 {
349 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
350 	struct f2fs_inode_info *fi = F2FS_I(inode);
351 	struct inmem_pages *cur, *tmp;
352 	struct f2fs_io_info fio = {
353 		.sbi = sbi,
354 		.ino = inode->i_ino,
355 		.type = DATA,
356 		.op = REQ_OP_WRITE,
357 		.op_flags = REQ_SYNC | REQ_PRIO,
358 		.io_type = FS_DATA_IO,
359 	};
360 	pgoff_t last_idx = ULONG_MAX;
361 	int err = 0;
362 
363 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
364 		struct page *page = cur->page;
365 
366 		lock_page(page);
367 		if (page->mapping == inode->i_mapping) {
368 			trace_f2fs_commit_inmem_page(page, INMEM);
369 
370 			set_page_dirty(page);
371 			f2fs_wait_on_page_writeback(page, DATA, true);
372 			if (clear_page_dirty_for_io(page)) {
373 				inode_dec_dirty_pages(inode);
374 				remove_dirty_inode(inode);
375 			}
376 retry:
377 			fio.page = page;
378 			fio.old_blkaddr = NULL_ADDR;
379 			fio.encrypted_page = NULL;
380 			fio.need_lock = LOCK_DONE;
381 			err = do_write_data_page(&fio);
382 			if (err) {
383 				if (err == -ENOMEM) {
384 					congestion_wait(BLK_RW_ASYNC, HZ/50);
385 					cond_resched();
386 					goto retry;
387 				}
388 				unlock_page(page);
389 				break;
390 			}
391 			/* record old blkaddr for revoking */
392 			cur->old_addr = fio.old_blkaddr;
393 			last_idx = page->index;
394 		}
395 		unlock_page(page);
396 		list_move_tail(&cur->list, revoke_list);
397 	}
398 
399 	if (last_idx != ULONG_MAX)
400 		f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
401 
402 	if (!err)
403 		__revoke_inmem_pages(inode, revoke_list, false, false);
404 
405 	return err;
406 }
407 
commit_inmem_pages(struct inode * inode)408 int commit_inmem_pages(struct inode *inode)
409 {
410 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
411 	struct f2fs_inode_info *fi = F2FS_I(inode);
412 	struct list_head revoke_list;
413 	int err;
414 
415 	INIT_LIST_HEAD(&revoke_list);
416 	f2fs_balance_fs(sbi, true);
417 	f2fs_lock_op(sbi);
418 
419 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
420 
421 	mutex_lock(&fi->inmem_lock);
422 	err = __commit_inmem_pages(inode, &revoke_list);
423 	if (err) {
424 		int ret;
425 		/*
426 		 * try to revoke all committed pages, but still we could fail
427 		 * due to no memory or other reason, if that happened, EAGAIN
428 		 * will be returned, which means in such case, transaction is
429 		 * already not integrity, caller should use journal to do the
430 		 * recovery or rewrite & commit last transaction. For other
431 		 * error number, revoking was done by filesystem itself.
432 		 */
433 		ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
434 		if (ret)
435 			err = ret;
436 
437 		/* drop all uncommitted pages */
438 		__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
439 	}
440 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
441 	if (!list_empty(&fi->inmem_ilist))
442 		list_del_init(&fi->inmem_ilist);
443 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
444 	mutex_unlock(&fi->inmem_lock);
445 
446 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
447 
448 	f2fs_unlock_op(sbi);
449 	return err;
450 }
451 
452 /*
453  * This function balances dirty node and dentry pages.
454  * In addition, it controls garbage collection.
455  */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)456 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
457 {
458 #ifdef CONFIG_F2FS_FAULT_INJECTION
459 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
460 		f2fs_show_injection_info(FAULT_CHECKPOINT);
461 		f2fs_stop_checkpoint(sbi, false);
462 	}
463 #endif
464 
465 	/* balance_fs_bg is able to be pending */
466 	if (need && excess_cached_nats(sbi))
467 		f2fs_balance_fs_bg(sbi);
468 
469 	/*
470 	 * We should do GC or end up with checkpoint, if there are so many dirty
471 	 * dir/node pages without enough free segments.
472 	 */
473 	if (has_not_enough_free_secs(sbi, 0, 0)) {
474 		mutex_lock(&sbi->gc_mutex);
475 		f2fs_gc(sbi, false, false, NULL_SEGNO);
476 	}
477 }
478 
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi)479 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
480 {
481 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
482 		return;
483 
484 	/* try to shrink extent cache when there is no enough memory */
485 	if (!available_free_memory(sbi, EXTENT_CACHE))
486 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
487 
488 	/* check the # of cached NAT entries */
489 	if (!available_free_memory(sbi, NAT_ENTRIES))
490 		try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
491 
492 	if (!available_free_memory(sbi, FREE_NIDS))
493 		try_to_free_nids(sbi, MAX_FREE_NIDS);
494 	else
495 		build_free_nids(sbi, false, false);
496 
497 	if (!is_idle(sbi) && !excess_dirty_nats(sbi))
498 		return;
499 
500 	/* checkpoint is the only way to shrink partial cached entries */
501 	if (!available_free_memory(sbi, NAT_ENTRIES) ||
502 			!available_free_memory(sbi, INO_ENTRIES) ||
503 			excess_prefree_segs(sbi) ||
504 			excess_dirty_nats(sbi) ||
505 			f2fs_time_over(sbi, CP_TIME)) {
506 		if (test_opt(sbi, DATA_FLUSH)) {
507 			struct blk_plug plug;
508 
509 			blk_start_plug(&plug);
510 			sync_dirty_inodes(sbi, FILE_INODE);
511 			blk_finish_plug(&plug);
512 		}
513 		f2fs_sync_fs(sbi->sb, true);
514 		stat_inc_bg_cp_count(sbi->stat_info);
515 	}
516 }
517 
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)518 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
519 				struct block_device *bdev)
520 {
521 	struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
522 	int ret;
523 
524 	bio->bi_rw = REQ_OP_WRITE;
525 	bio->bi_bdev = bdev;
526 	ret = submit_bio_wait(WRITE_FLUSH, bio);
527 	bio_put(bio);
528 
529 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
530 				test_opt(sbi, FLUSH_MERGE), ret);
531 	return ret;
532 }
533 
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)534 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
535 {
536 	int ret = 0;
537 	int i;
538 
539 	if (!sbi->s_ndevs)
540 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
541 
542 	for (i = 0; i < sbi->s_ndevs; i++) {
543 		if (!is_dirty_device(sbi, ino, i, FLUSH_INO))
544 			continue;
545 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
546 		if (ret)
547 			break;
548 	}
549 	return ret;
550 }
551 
issue_flush_thread(void * data)552 static int issue_flush_thread(void *data)
553 {
554 	struct f2fs_sb_info *sbi = data;
555 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
556 	wait_queue_head_t *q = &fcc->flush_wait_queue;
557 repeat:
558 	if (kthread_should_stop())
559 		return 0;
560 
561 	sb_start_intwrite(sbi->sb);
562 
563 	if (!llist_empty(&fcc->issue_list)) {
564 		struct flush_cmd *cmd, *next;
565 		int ret;
566 
567 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
568 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
569 
570 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
571 
572 		ret = submit_flush_wait(sbi, cmd->ino);
573 		atomic_inc(&fcc->issued_flush);
574 
575 		llist_for_each_entry_safe(cmd, next,
576 					  fcc->dispatch_list, llnode) {
577 			cmd->ret = ret;
578 			complete(&cmd->wait);
579 		}
580 		fcc->dispatch_list = NULL;
581 	}
582 
583 	sb_end_intwrite(sbi->sb);
584 
585 	wait_event_interruptible(*q,
586 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
587 	goto repeat;
588 }
589 
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)590 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
591 {
592 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
593 	struct flush_cmd cmd;
594 	int ret;
595 
596 	if (test_opt(sbi, NOBARRIER))
597 		return 0;
598 
599 	if (!test_opt(sbi, FLUSH_MERGE)) {
600 		ret = submit_flush_wait(sbi, ino);
601 		atomic_inc(&fcc->issued_flush);
602 		return ret;
603 	}
604 
605 	if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
606 		ret = submit_flush_wait(sbi, ino);
607 		atomic_dec(&fcc->issing_flush);
608 
609 		atomic_inc(&fcc->issued_flush);
610 		return ret;
611 	}
612 
613 	cmd.ino = ino;
614 	init_completion(&cmd.wait);
615 
616 	llist_add(&cmd.llnode, &fcc->issue_list);
617 
618 	/* update issue_list before we wake up issue_flush thread */
619 	smp_mb();
620 
621 	if (waitqueue_active(&fcc->flush_wait_queue))
622 		wake_up(&fcc->flush_wait_queue);
623 
624 	if (fcc->f2fs_issue_flush) {
625 		wait_for_completion(&cmd.wait);
626 		atomic_dec(&fcc->issing_flush);
627 	} else {
628 		struct llist_node *list;
629 
630 		list = llist_del_all(&fcc->issue_list);
631 		if (!list) {
632 			wait_for_completion(&cmd.wait);
633 			atomic_dec(&fcc->issing_flush);
634 		} else {
635 			struct flush_cmd *tmp, *next;
636 
637 			ret = submit_flush_wait(sbi, ino);
638 
639 			llist_for_each_entry_safe(tmp, next, list, llnode) {
640 				if (tmp == &cmd) {
641 					cmd.ret = ret;
642 					atomic_dec(&fcc->issing_flush);
643 					continue;
644 				}
645 				tmp->ret = ret;
646 				complete(&tmp->wait);
647 			}
648 		}
649 	}
650 
651 	return cmd.ret;
652 }
653 
create_flush_cmd_control(struct f2fs_sb_info * sbi)654 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
655 {
656 	dev_t dev = sbi->sb->s_bdev->bd_dev;
657 	struct flush_cmd_control *fcc;
658 	int err = 0;
659 
660 	if (SM_I(sbi)->fcc_info) {
661 		fcc = SM_I(sbi)->fcc_info;
662 		if (fcc->f2fs_issue_flush)
663 			return err;
664 		goto init_thread;
665 	}
666 
667 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
668 	if (!fcc)
669 		return -ENOMEM;
670 	atomic_set(&fcc->issued_flush, 0);
671 	atomic_set(&fcc->issing_flush, 0);
672 	init_waitqueue_head(&fcc->flush_wait_queue);
673 	init_llist_head(&fcc->issue_list);
674 	SM_I(sbi)->fcc_info = fcc;
675 	if (!test_opt(sbi, FLUSH_MERGE))
676 		return err;
677 
678 init_thread:
679 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
680 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
681 	if (IS_ERR(fcc->f2fs_issue_flush)) {
682 		err = PTR_ERR(fcc->f2fs_issue_flush);
683 		kfree(fcc);
684 		SM_I(sbi)->fcc_info = NULL;
685 		return err;
686 	}
687 
688 	return err;
689 }
690 
destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)691 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
692 {
693 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
694 
695 	if (fcc && fcc->f2fs_issue_flush) {
696 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
697 
698 		fcc->f2fs_issue_flush = NULL;
699 		kthread_stop(flush_thread);
700 	}
701 	if (free) {
702 		kfree(fcc);
703 		SM_I(sbi)->fcc_info = NULL;
704 	}
705 }
706 
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)707 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
708 {
709 	int ret = 0, i;
710 
711 	if (!sbi->s_ndevs)
712 		return 0;
713 
714 	for (i = 1; i < sbi->s_ndevs; i++) {
715 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
716 			continue;
717 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
718 		if (ret)
719 			break;
720 
721 		spin_lock(&sbi->dev_lock);
722 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
723 		spin_unlock(&sbi->dev_lock);
724 	}
725 
726 	return ret;
727 }
728 
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)729 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
730 		enum dirty_type dirty_type)
731 {
732 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
733 
734 	/* need not be added */
735 	if (IS_CURSEG(sbi, segno))
736 		return;
737 
738 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
739 		dirty_i->nr_dirty[dirty_type]++;
740 
741 	if (dirty_type == DIRTY) {
742 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
743 		enum dirty_type t = sentry->type;
744 
745 		if (unlikely(t >= DIRTY)) {
746 			f2fs_bug_on(sbi, 1);
747 			return;
748 		}
749 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
750 			dirty_i->nr_dirty[t]++;
751 	}
752 }
753 
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)754 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
755 		enum dirty_type dirty_type)
756 {
757 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
758 
759 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
760 		dirty_i->nr_dirty[dirty_type]--;
761 
762 	if (dirty_type == DIRTY) {
763 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
764 		enum dirty_type t = sentry->type;
765 
766 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
767 			dirty_i->nr_dirty[t]--;
768 
769 		if (get_valid_blocks(sbi, segno, true) == 0)
770 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
771 						dirty_i->victim_secmap);
772 	}
773 }
774 
775 /*
776  * Should not occur error such as -ENOMEM.
777  * Adding dirty entry into seglist is not critical operation.
778  * If a given segment is one of current working segments, it won't be added.
779  */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)780 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
781 {
782 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
783 	unsigned short valid_blocks;
784 
785 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
786 		return;
787 
788 	mutex_lock(&dirty_i->seglist_lock);
789 
790 	valid_blocks = get_valid_blocks(sbi, segno, false);
791 
792 	if (valid_blocks == 0) {
793 		__locate_dirty_segment(sbi, segno, PRE);
794 		__remove_dirty_segment(sbi, segno, DIRTY);
795 	} else if (valid_blocks < sbi->blocks_per_seg) {
796 		__locate_dirty_segment(sbi, segno, DIRTY);
797 	} else {
798 		/* Recovery routine with SSR needs this */
799 		__remove_dirty_segment(sbi, segno, DIRTY);
800 	}
801 
802 	mutex_unlock(&dirty_i->seglist_lock);
803 }
804 
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)805 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
806 		struct block_device *bdev, block_t lstart,
807 		block_t start, block_t len)
808 {
809 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
810 	struct list_head *pend_list;
811 	struct discard_cmd *dc;
812 
813 	f2fs_bug_on(sbi, !len);
814 
815 	pend_list = &dcc->pend_list[plist_idx(len)];
816 
817 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
818 	INIT_LIST_HEAD(&dc->list);
819 	dc->bdev = bdev;
820 	dc->lstart = lstart;
821 	dc->start = start;
822 	dc->len = len;
823 	dc->ref = 0;
824 	dc->state = D_PREP;
825 	dc->error = 0;
826 	init_completion(&dc->wait);
827 	list_add_tail(&dc->list, pend_list);
828 	atomic_inc(&dcc->discard_cmd_cnt);
829 	dcc->undiscard_blks += len;
830 
831 	return dc;
832 }
833 
__attach_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node * parent,struct rb_node ** p)834 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
835 				struct block_device *bdev, block_t lstart,
836 				block_t start, block_t len,
837 				struct rb_node *parent, struct rb_node **p)
838 {
839 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
840 	struct discard_cmd *dc;
841 
842 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
843 
844 	rb_link_node(&dc->rb_node, parent, p);
845 	rb_insert_color(&dc->rb_node, &dcc->root);
846 
847 	return dc;
848 }
849 
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)850 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
851 							struct discard_cmd *dc)
852 {
853 	if (dc->state == D_DONE)
854 		atomic_dec(&dcc->issing_discard);
855 
856 	list_del(&dc->list);
857 	rb_erase(&dc->rb_node, &dcc->root);
858 	dcc->undiscard_blks -= dc->len;
859 
860 	kmem_cache_free(discard_cmd_slab, dc);
861 
862 	atomic_dec(&dcc->discard_cmd_cnt);
863 }
864 
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)865 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
866 							struct discard_cmd *dc)
867 {
868 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
869 
870 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
871 
872 	f2fs_bug_on(sbi, dc->ref);
873 
874 	if (dc->error == -EOPNOTSUPP)
875 		dc->error = 0;
876 
877 	if (dc->error)
878 		f2fs_msg(sbi->sb, KERN_INFO,
879 			"Issue discard(%u, %u, %u) failed, ret: %d",
880 			dc->lstart, dc->start, dc->len, dc->error);
881 	__detach_discard_cmd(dcc, dc);
882 }
883 
f2fs_submit_discard_endio(struct bio * bio)884 static void f2fs_submit_discard_endio(struct bio *bio)
885 {
886 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
887 
888 	dc->error = bio->bi_error;
889 	dc->state = D_DONE;
890 	complete_all(&dc->wait);
891 	bio_put(bio);
892 }
893 
894 /* copied from block/blk-lib.c in 4.10-rc1 */
__blkdev_issue_discard(struct block_device * bdev,sector_t sector,sector_t nr_sects,gfp_t gfp_mask,int flags,struct bio ** biop)895 static int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
896 		sector_t nr_sects, gfp_t gfp_mask, int flags,
897 		struct bio **biop)
898 {
899 	struct request_queue *q = bdev_get_queue(bdev);
900 	struct bio *bio = *biop;
901 	unsigned int granularity;
902 	int op = REQ_WRITE | REQ_DISCARD;
903 	int alignment;
904 	sector_t bs_mask;
905 
906 	if (!q)
907 		return -ENXIO;
908 
909 	if (!blk_queue_discard(q))
910 		return -EOPNOTSUPP;
911 
912 	if (flags & BLKDEV_DISCARD_SECURE) {
913 		if (!blk_queue_secdiscard(q))
914 			return -EOPNOTSUPP;
915 		op |= REQ_SECURE;
916 	}
917 
918 	bs_mask = (bdev_logical_block_size(bdev) >> 9) - 1;
919 	if ((sector | nr_sects) & bs_mask)
920 		return -EINVAL;
921 
922 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
923 	granularity = max(q->limits.discard_granularity >> 9, 1U);
924 	alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
925 
926 	while (nr_sects) {
927 		unsigned int req_sects;
928 		sector_t end_sect, tmp;
929 
930 		/* Make sure bi_size doesn't overflow */
931 		req_sects = min_t(sector_t, nr_sects, UINT_MAX >> 9);
932 
933 		/**
934 		 * If splitting a request, and the next starting sector would be
935 		 * misaligned, stop the discard at the previous aligned sector.
936 		 */
937 		end_sect = sector + req_sects;
938 		tmp = end_sect;
939 		if (req_sects < nr_sects &&
940 		    sector_div(tmp, granularity) != alignment) {
941 			end_sect = end_sect - alignment;
942 			sector_div(end_sect, granularity);
943 			end_sect = end_sect * granularity + alignment;
944 			req_sects = end_sect - sector;
945 		}
946 
947 		if (bio) {
948 			int ret = submit_bio_wait(op, bio);
949 			bio_put(bio);
950 			if (ret)
951 				return ret;
952 		}
953 		bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, 1);
954 		bio->bi_iter.bi_sector = sector;
955 		bio->bi_bdev = bdev;
956 		bio_set_op_attrs(bio, op, 0);
957 
958 		bio->bi_iter.bi_size = req_sects << 9;
959 		nr_sects -= req_sects;
960 		sector = end_sect;
961 
962 		/*
963 		 * We can loop for a long time in here, if someone does
964 		 * full device discards (like mkfs). Be nice and allow
965 		 * us to schedule out to avoid softlocking if preempt
966 		 * is disabled.
967 		 */
968 		cond_resched();
969 	}
970 
971 	*biop = bio;
972 	return 0;
973 }
974 
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)975 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
976 				block_t start, block_t end)
977 {
978 #ifdef CONFIG_F2FS_CHECK_FS
979 	struct seg_entry *sentry;
980 	unsigned int segno;
981 	block_t blk = start;
982 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
983 	unsigned long *map;
984 
985 	while (blk < end) {
986 		segno = GET_SEGNO(sbi, blk);
987 		sentry = get_seg_entry(sbi, segno);
988 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
989 
990 		if (end < START_BLOCK(sbi, segno + 1))
991 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
992 		else
993 			size = max_blocks;
994 		map = (unsigned long *)(sentry->cur_valid_map);
995 		offset = __find_rev_next_bit(map, size, offset);
996 		f2fs_bug_on(sbi, offset != size);
997 		blk = START_BLOCK(sbi, segno + 1);
998 	}
999 #endif
1000 }
1001 
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1002 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1003 				struct discard_policy *dpolicy,
1004 				int discard_type, unsigned int granularity)
1005 {
1006 	/* common policy */
1007 	dpolicy->type = discard_type;
1008 	dpolicy->sync = true;
1009 	dpolicy->granularity = granularity;
1010 
1011 	dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1012 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1013 
1014 	if (discard_type == DPOLICY_BG) {
1015 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1016 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1017 		dpolicy->io_aware = true;
1018 		dpolicy->sync = false;
1019 		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1020 			dpolicy->granularity = 1;
1021 			dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1022 		}
1023 	} else if (discard_type == DPOLICY_FORCE) {
1024 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1025 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1026 		dpolicy->io_aware = false;
1027 	} else if (discard_type == DPOLICY_FSTRIM) {
1028 		dpolicy->io_aware = false;
1029 	} else if (discard_type == DPOLICY_UMOUNT) {
1030 		dpolicy->io_aware = false;
1031 	}
1032 }
1033 
1034 
1035 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc)1036 static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
1037 						struct discard_policy *dpolicy,
1038 						struct discard_cmd *dc)
1039 {
1040 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1041 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1042 					&(dcc->fstrim_list) : &(dcc->wait_list);
1043 	struct bio *bio = NULL;
1044 	int flag = dpolicy->sync ? REQ_SYNC : 0;
1045 
1046 	if (dc->state != D_PREP)
1047 		return;
1048 
1049 	trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
1050 
1051 	dc->error = __blkdev_issue_discard(dc->bdev,
1052 				SECTOR_FROM_BLOCK(dc->start),
1053 				SECTOR_FROM_BLOCK(dc->len),
1054 				GFP_NOFS, 0, &bio);
1055 	if (!dc->error) {
1056 		/* should keep before submission to avoid D_DONE right away */
1057 		dc->state = D_SUBMIT;
1058 		atomic_inc(&dcc->issued_discard);
1059 		atomic_inc(&dcc->issing_discard);
1060 		if (bio) {
1061 			bio->bi_private = dc;
1062 			bio->bi_end_io = f2fs_submit_discard_endio;
1063 			submit_bio(flag, bio);
1064 			list_move_tail(&dc->list, wait_list);
1065 			__check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
1066 
1067 			f2fs_update_iostat(sbi, FS_DISCARD, 1);
1068 		}
1069 	} else {
1070 		__remove_discard_cmd(sbi, dc);
1071 	}
1072 }
1073 
__insert_discard_tree(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node ** insert_p,struct rb_node * insert_parent)1074 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1075 				struct block_device *bdev, block_t lstart,
1076 				block_t start, block_t len,
1077 				struct rb_node **insert_p,
1078 				struct rb_node *insert_parent)
1079 {
1080 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1081 	struct rb_node **p;
1082 	struct rb_node *parent = NULL;
1083 	struct discard_cmd *dc = NULL;
1084 
1085 	if (insert_p && insert_parent) {
1086 		parent = insert_parent;
1087 		p = insert_p;
1088 		goto do_insert;
1089 	}
1090 
1091 	p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
1092 do_insert:
1093 	dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
1094 	if (!dc)
1095 		return NULL;
1096 
1097 	return dc;
1098 }
1099 
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1100 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1101 						struct discard_cmd *dc)
1102 {
1103 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1104 }
1105 
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1106 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1107 				struct discard_cmd *dc, block_t blkaddr)
1108 {
1109 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1110 	struct discard_info di = dc->di;
1111 	bool modified = false;
1112 
1113 	if (dc->state == D_DONE || dc->len == 1) {
1114 		__remove_discard_cmd(sbi, dc);
1115 		return;
1116 	}
1117 
1118 	dcc->undiscard_blks -= di.len;
1119 
1120 	if (blkaddr > di.lstart) {
1121 		dc->len = blkaddr - dc->lstart;
1122 		dcc->undiscard_blks += dc->len;
1123 		__relocate_discard_cmd(dcc, dc);
1124 		modified = true;
1125 	}
1126 
1127 	if (blkaddr < di.lstart + di.len - 1) {
1128 		if (modified) {
1129 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1130 					di.start + blkaddr + 1 - di.lstart,
1131 					di.lstart + di.len - 1 - blkaddr,
1132 					NULL, NULL);
1133 		} else {
1134 			dc->lstart++;
1135 			dc->len--;
1136 			dc->start++;
1137 			dcc->undiscard_blks += dc->len;
1138 			__relocate_discard_cmd(dcc, dc);
1139 		}
1140 	}
1141 }
1142 
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1143 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1144 				struct block_device *bdev, block_t lstart,
1145 				block_t start, block_t len)
1146 {
1147 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1148 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1149 	struct discard_cmd *dc;
1150 	struct discard_info di = {0};
1151 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1152 	block_t end = lstart + len;
1153 
1154 	mutex_lock(&dcc->cmd_lock);
1155 
1156 	dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
1157 					NULL, lstart,
1158 					(struct rb_entry **)&prev_dc,
1159 					(struct rb_entry **)&next_dc,
1160 					&insert_p, &insert_parent, true);
1161 	if (dc)
1162 		prev_dc = dc;
1163 
1164 	if (!prev_dc) {
1165 		di.lstart = lstart;
1166 		di.len = next_dc ? next_dc->lstart - lstart : len;
1167 		di.len = min(di.len, len);
1168 		di.start = start;
1169 	}
1170 
1171 	while (1) {
1172 		struct rb_node *node;
1173 		bool merged = false;
1174 		struct discard_cmd *tdc = NULL;
1175 
1176 		if (prev_dc) {
1177 			di.lstart = prev_dc->lstart + prev_dc->len;
1178 			if (di.lstart < lstart)
1179 				di.lstart = lstart;
1180 			if (di.lstart >= end)
1181 				break;
1182 
1183 			if (!next_dc || next_dc->lstart > end)
1184 				di.len = end - di.lstart;
1185 			else
1186 				di.len = next_dc->lstart - di.lstart;
1187 			di.start = start + di.lstart - lstart;
1188 		}
1189 
1190 		if (!di.len)
1191 			goto next;
1192 
1193 		if (prev_dc && prev_dc->state == D_PREP &&
1194 			prev_dc->bdev == bdev &&
1195 			__is_discard_back_mergeable(&di, &prev_dc->di)) {
1196 			prev_dc->di.len += di.len;
1197 			dcc->undiscard_blks += di.len;
1198 			__relocate_discard_cmd(dcc, prev_dc);
1199 			di = prev_dc->di;
1200 			tdc = prev_dc;
1201 			merged = true;
1202 		}
1203 
1204 		if (next_dc && next_dc->state == D_PREP &&
1205 			next_dc->bdev == bdev &&
1206 			__is_discard_front_mergeable(&di, &next_dc->di)) {
1207 			next_dc->di.lstart = di.lstart;
1208 			next_dc->di.len += di.len;
1209 			next_dc->di.start = di.start;
1210 			dcc->undiscard_blks += di.len;
1211 			__relocate_discard_cmd(dcc, next_dc);
1212 			if (tdc)
1213 				__remove_discard_cmd(sbi, tdc);
1214 			merged = true;
1215 		}
1216 
1217 		if (!merged) {
1218 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1219 							di.len, NULL, NULL);
1220 		}
1221  next:
1222 		prev_dc = next_dc;
1223 		if (!prev_dc)
1224 			break;
1225 
1226 		node = rb_next(&prev_dc->rb_node);
1227 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1228 	}
1229 
1230 	mutex_unlock(&dcc->cmd_lock);
1231 }
1232 
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1233 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1234 		struct block_device *bdev, block_t blkstart, block_t blklen)
1235 {
1236 	block_t lblkstart = blkstart;
1237 
1238 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1239 
1240 	if (sbi->s_ndevs) {
1241 		int devi = f2fs_target_device_index(sbi, blkstart);
1242 
1243 		blkstart -= FDEV(devi).start_blk;
1244 	}
1245 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1246 	return 0;
1247 }
1248 
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1249 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1250 					struct discard_policy *dpolicy)
1251 {
1252 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1253 	struct list_head *pend_list;
1254 	struct discard_cmd *dc, *tmp;
1255 	struct blk_plug plug;
1256 	int i, iter = 0, issued = 0;
1257 	bool io_interrupted = false;
1258 
1259 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1260 		if (i + 1 < dpolicy->granularity)
1261 			break;
1262 		pend_list = &dcc->pend_list[i];
1263 
1264 		mutex_lock(&dcc->cmd_lock);
1265 		if (list_empty(pend_list))
1266 			goto next;
1267 		f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
1268 		blk_start_plug(&plug);
1269 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1270 			f2fs_bug_on(sbi, dc->state != D_PREP);
1271 
1272 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1273 								!is_idle(sbi)) {
1274 				io_interrupted = true;
1275 				goto skip;
1276 			}
1277 
1278 			__submit_discard_cmd(sbi, dpolicy, dc);
1279 			issued++;
1280 skip:
1281 			if (++iter >= dpolicy->max_requests)
1282 				break;
1283 		}
1284 		blk_finish_plug(&plug);
1285 next:
1286 		mutex_unlock(&dcc->cmd_lock);
1287 
1288 		if (iter >= dpolicy->max_requests)
1289 			break;
1290 	}
1291 
1292 	if (!issued && io_interrupted)
1293 		issued = -1;
1294 
1295 	return issued;
1296 }
1297 
__drop_discard_cmd(struct f2fs_sb_info * sbi)1298 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1299 {
1300 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1301 	struct list_head *pend_list;
1302 	struct discard_cmd *dc, *tmp;
1303 	int i;
1304 	bool dropped = false;
1305 
1306 	mutex_lock(&dcc->cmd_lock);
1307 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1308 		pend_list = &dcc->pend_list[i];
1309 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1310 			f2fs_bug_on(sbi, dc->state != D_PREP);
1311 			__remove_discard_cmd(sbi, dc);
1312 			dropped = true;
1313 		}
1314 	}
1315 	mutex_unlock(&dcc->cmd_lock);
1316 
1317 	return dropped;
1318 }
1319 
drop_discard_cmd(struct f2fs_sb_info * sbi)1320 void drop_discard_cmd(struct f2fs_sb_info *sbi)
1321 {
1322 	__drop_discard_cmd(sbi);
1323 }
1324 
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1325 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1326 							struct discard_cmd *dc)
1327 {
1328 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1329 	unsigned int len = 0;
1330 
1331 	wait_for_completion_io(&dc->wait);
1332 	mutex_lock(&dcc->cmd_lock);
1333 	f2fs_bug_on(sbi, dc->state != D_DONE);
1334 	dc->ref--;
1335 	if (!dc->ref) {
1336 		if (!dc->error)
1337 			len = dc->len;
1338 		__remove_discard_cmd(sbi, dc);
1339 	}
1340 	mutex_unlock(&dcc->cmd_lock);
1341 
1342 	return len;
1343 }
1344 
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1345 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1346 						struct discard_policy *dpolicy,
1347 						block_t start, block_t end)
1348 {
1349 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1350 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1351 					&(dcc->fstrim_list) : &(dcc->wait_list);
1352 	struct discard_cmd *dc, *tmp;
1353 	bool need_wait;
1354 	unsigned int trimmed = 0;
1355 
1356 next:
1357 	need_wait = false;
1358 
1359 	mutex_lock(&dcc->cmd_lock);
1360 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1361 		if (dc->lstart + dc->len <= start || end <= dc->lstart)
1362 			continue;
1363 		if (dc->len < dpolicy->granularity)
1364 			continue;
1365 		if (dc->state == D_DONE && !dc->ref) {
1366 			wait_for_completion_io(&dc->wait);
1367 			if (!dc->error)
1368 				trimmed += dc->len;
1369 			__remove_discard_cmd(sbi, dc);
1370 		} else {
1371 			dc->ref++;
1372 			need_wait = true;
1373 			break;
1374 		}
1375 	}
1376 	mutex_unlock(&dcc->cmd_lock);
1377 
1378 	if (need_wait) {
1379 		trimmed += __wait_one_discard_bio(sbi, dc);
1380 		goto next;
1381 	}
1382 
1383 	return trimmed;
1384 }
1385 
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1386 static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1387 						struct discard_policy *dpolicy)
1388 {
1389 	struct discard_policy dp;
1390 
1391 	if (dpolicy) {
1392 		__wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1393 		return;
1394 	}
1395 
1396 	/* wait all */
1397 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1398 	__wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1399 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1400 	__wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1401 }
1402 
1403 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1404 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1405 {
1406 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1407 	struct discard_cmd *dc;
1408 	bool need_wait = false;
1409 
1410 	mutex_lock(&dcc->cmd_lock);
1411 	dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
1412 	if (dc) {
1413 		if (dc->state == D_PREP) {
1414 			__punch_discard_cmd(sbi, dc, blkaddr);
1415 		} else {
1416 			dc->ref++;
1417 			need_wait = true;
1418 		}
1419 	}
1420 	mutex_unlock(&dcc->cmd_lock);
1421 
1422 	if (need_wait)
1423 		__wait_one_discard_bio(sbi, dc);
1424 }
1425 
stop_discard_thread(struct f2fs_sb_info * sbi)1426 void stop_discard_thread(struct f2fs_sb_info *sbi)
1427 {
1428 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1429 
1430 	if (dcc && dcc->f2fs_issue_discard) {
1431 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1432 
1433 		dcc->f2fs_issue_discard = NULL;
1434 		kthread_stop(discard_thread);
1435 	}
1436 }
1437 
1438 /* This comes from f2fs_put_super */
f2fs_wait_discard_bios(struct f2fs_sb_info * sbi)1439 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1440 {
1441 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1442 	struct discard_policy dpolicy;
1443 	bool dropped;
1444 
1445 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1446 					dcc->discard_granularity);
1447 	__issue_discard_cmd(sbi, &dpolicy);
1448 	dropped = __drop_discard_cmd(sbi);
1449 
1450 	/* just to make sure there is no pending discard commands */
1451 	__wait_all_discard_cmd(sbi, NULL);
1452 	return dropped;
1453 }
1454 
issue_discard_thread(void * data)1455 static int issue_discard_thread(void *data)
1456 {
1457 	struct f2fs_sb_info *sbi = data;
1458 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1459 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1460 	struct discard_policy dpolicy;
1461 	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1462 	int issued;
1463 
1464 	set_freezable();
1465 
1466 	do {
1467 		__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1468 					dcc->discard_granularity);
1469 
1470 		wait_event_interruptible_timeout(*q,
1471 				kthread_should_stop() || freezing(current) ||
1472 				dcc->discard_wake,
1473 				msecs_to_jiffies(wait_ms));
1474 		if (try_to_freeze())
1475 			continue;
1476 		if (f2fs_readonly(sbi->sb))
1477 			continue;
1478 		if (kthread_should_stop())
1479 			return 0;
1480 
1481 		if (dcc->discard_wake)
1482 			dcc->discard_wake = 0;
1483 
1484 		if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
1485 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1486 
1487 		sb_start_intwrite(sbi->sb);
1488 
1489 		issued = __issue_discard_cmd(sbi, &dpolicy);
1490 		if (issued) {
1491 			__wait_all_discard_cmd(sbi, &dpolicy);
1492 			wait_ms = dpolicy.min_interval;
1493 		} else {
1494 			wait_ms = dpolicy.max_interval;
1495 		}
1496 
1497 		sb_end_intwrite(sbi->sb);
1498 
1499 	} while (!kthread_should_stop());
1500 	return 0;
1501 }
1502 
1503 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1504 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1505 		struct block_device *bdev, block_t blkstart, block_t blklen)
1506 {
1507 	sector_t sector, nr_sects;
1508 	block_t lblkstart = blkstart;
1509 	int devi = 0;
1510 
1511 	if (sbi->s_ndevs) {
1512 		devi = f2fs_target_device_index(sbi, blkstart);
1513 		blkstart -= FDEV(devi).start_blk;
1514 	}
1515 
1516 	/*
1517 	 * We need to know the type of the zone: for conventional zones,
1518 	 * use regular discard if the drive supports it. For sequential
1519 	 * zones, reset the zone write pointer.
1520 	 */
1521 	switch (get_blkz_type(sbi, bdev, blkstart)) {
1522 
1523 	case BLK_ZONE_TYPE_CONVENTIONAL:
1524 		if (!blk_queue_discard(bdev_get_queue(bdev)))
1525 			return 0;
1526 		return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1527 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1528 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1529 		sector = SECTOR_FROM_BLOCK(blkstart);
1530 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1531 
1532 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1533 				nr_sects != bdev_zone_sectors(bdev)) {
1534 			f2fs_msg(sbi->sb, KERN_INFO,
1535 				"(%d) %s: Unaligned discard attempted (block %x + %x)",
1536 				devi, sbi->s_ndevs ? FDEV(devi).path: "",
1537 				blkstart, blklen);
1538 			return -EIO;
1539 		}
1540 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1541 		return blkdev_reset_zones(bdev, sector,
1542 					  nr_sects, GFP_NOFS);
1543 	default:
1544 		/* Unknown zone type: broken device ? */
1545 		return -EIO;
1546 	}
1547 }
1548 #endif
1549 
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1550 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1551 		struct block_device *bdev, block_t blkstart, block_t blklen)
1552 {
1553 #ifdef CONFIG_BLK_DEV_ZONED
1554 	if (f2fs_sb_has_blkzoned(sbi->sb) &&
1555 				bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1556 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1557 #endif
1558 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1559 }
1560 
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)1561 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1562 				block_t blkstart, block_t blklen)
1563 {
1564 	sector_t start = blkstart, len = 0;
1565 	struct block_device *bdev;
1566 	struct seg_entry *se;
1567 	unsigned int offset;
1568 	block_t i;
1569 	int err = 0;
1570 
1571 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1572 
1573 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1574 		if (i != start) {
1575 			struct block_device *bdev2 =
1576 				f2fs_target_device(sbi, i, NULL);
1577 
1578 			if (bdev2 != bdev) {
1579 				err = __issue_discard_async(sbi, bdev,
1580 						start, len);
1581 				if (err)
1582 					return err;
1583 				bdev = bdev2;
1584 				start = i;
1585 				len = 0;
1586 			}
1587 		}
1588 
1589 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1590 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1591 
1592 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
1593 			sbi->discard_blks--;
1594 	}
1595 
1596 	if (len)
1597 		err = __issue_discard_async(sbi, bdev, start, len);
1598 	return err;
1599 }
1600 
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)1601 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1602 							bool check_only)
1603 {
1604 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1605 	int max_blocks = sbi->blocks_per_seg;
1606 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1607 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1608 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1609 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1610 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1611 	unsigned int start = 0, end = -1;
1612 	bool force = (cpc->reason & CP_DISCARD);
1613 	struct discard_entry *de = NULL;
1614 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1615 	int i;
1616 
1617 	if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1618 		return false;
1619 
1620 	if (!force) {
1621 		if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1622 			SM_I(sbi)->dcc_info->nr_discards >=
1623 				SM_I(sbi)->dcc_info->max_discards)
1624 			return false;
1625 	}
1626 
1627 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1628 	for (i = 0; i < entries; i++)
1629 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1630 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1631 
1632 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1633 				SM_I(sbi)->dcc_info->max_discards) {
1634 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1635 		if (start >= max_blocks)
1636 			break;
1637 
1638 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1639 		if (force && start && end != max_blocks
1640 					&& (end - start) < cpc->trim_minlen)
1641 			continue;
1642 
1643 		if (check_only)
1644 			return true;
1645 
1646 		if (!de) {
1647 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1648 								GFP_F2FS_ZERO);
1649 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1650 			list_add_tail(&de->list, head);
1651 		}
1652 
1653 		for (i = start; i < end; i++)
1654 			__set_bit_le(i, (void *)de->discard_map);
1655 
1656 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1657 	}
1658 	return false;
1659 }
1660 
release_discard_addrs(struct f2fs_sb_info * sbi)1661 void release_discard_addrs(struct f2fs_sb_info *sbi)
1662 {
1663 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1664 	struct discard_entry *entry, *this;
1665 
1666 	/* drop caches */
1667 	list_for_each_entry_safe(entry, this, head, list) {
1668 		list_del(&entry->list);
1669 		kmem_cache_free(discard_entry_slab, entry);
1670 	}
1671 }
1672 
1673 /*
1674  * Should call clear_prefree_segments after checkpoint is done.
1675  */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)1676 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1677 {
1678 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1679 	unsigned int segno;
1680 
1681 	mutex_lock(&dirty_i->seglist_lock);
1682 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1683 		__set_test_and_free(sbi, segno);
1684 	mutex_unlock(&dirty_i->seglist_lock);
1685 }
1686 
clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)1687 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1688 {
1689 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1690 	struct list_head *head = &dcc->entry_list;
1691 	struct discard_entry *entry, *this;
1692 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1693 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1694 	unsigned int start = 0, end = -1;
1695 	unsigned int secno, start_segno;
1696 	bool force = (cpc->reason & CP_DISCARD);
1697 
1698 	mutex_lock(&dirty_i->seglist_lock);
1699 
1700 	while (1) {
1701 		int i;
1702 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1703 		if (start >= MAIN_SEGS(sbi))
1704 			break;
1705 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1706 								start + 1);
1707 
1708 		for (i = start; i < end; i++)
1709 			clear_bit(i, prefree_map);
1710 
1711 		dirty_i->nr_dirty[PRE] -= end - start;
1712 
1713 		if (!test_opt(sbi, DISCARD))
1714 			continue;
1715 
1716 		if (force && start >= cpc->trim_start &&
1717 					(end - 1) <= cpc->trim_end)
1718 				continue;
1719 
1720 		if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1721 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1722 				(end - start) << sbi->log_blocks_per_seg);
1723 			continue;
1724 		}
1725 next:
1726 		secno = GET_SEC_FROM_SEG(sbi, start);
1727 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
1728 		if (!IS_CURSEC(sbi, secno) &&
1729 			!get_valid_blocks(sbi, start, true))
1730 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1731 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
1732 
1733 		start = start_segno + sbi->segs_per_sec;
1734 		if (start < end)
1735 			goto next;
1736 		else
1737 			end = start - 1;
1738 	}
1739 	mutex_unlock(&dirty_i->seglist_lock);
1740 
1741 	/* send small discards */
1742 	list_for_each_entry_safe(entry, this, head, list) {
1743 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1744 		bool is_valid = test_bit_le(0, entry->discard_map);
1745 
1746 find_next:
1747 		if (is_valid) {
1748 			next_pos = find_next_zero_bit_le(entry->discard_map,
1749 					sbi->blocks_per_seg, cur_pos);
1750 			len = next_pos - cur_pos;
1751 
1752 			if (f2fs_sb_has_blkzoned(sbi->sb) ||
1753 			    (force && len < cpc->trim_minlen))
1754 				goto skip;
1755 
1756 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1757 									len);
1758 			total_len += len;
1759 		} else {
1760 			next_pos = find_next_bit_le(entry->discard_map,
1761 					sbi->blocks_per_seg, cur_pos);
1762 		}
1763 skip:
1764 		cur_pos = next_pos;
1765 		is_valid = !is_valid;
1766 
1767 		if (cur_pos < sbi->blocks_per_seg)
1768 			goto find_next;
1769 
1770 		list_del(&entry->list);
1771 		dcc->nr_discards -= total_len;
1772 		kmem_cache_free(discard_entry_slab, entry);
1773 	}
1774 
1775 	wake_up_discard_thread(sbi, false);
1776 }
1777 
create_discard_cmd_control(struct f2fs_sb_info * sbi)1778 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1779 {
1780 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1781 	struct discard_cmd_control *dcc;
1782 	int err = 0, i;
1783 
1784 	if (SM_I(sbi)->dcc_info) {
1785 		dcc = SM_I(sbi)->dcc_info;
1786 		goto init_thread;
1787 	}
1788 
1789 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
1790 	if (!dcc)
1791 		return -ENOMEM;
1792 
1793 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1794 	INIT_LIST_HEAD(&dcc->entry_list);
1795 	for (i = 0; i < MAX_PLIST_NUM; i++)
1796 		INIT_LIST_HEAD(&dcc->pend_list[i]);
1797 	INIT_LIST_HEAD(&dcc->wait_list);
1798 	INIT_LIST_HEAD(&dcc->fstrim_list);
1799 	mutex_init(&dcc->cmd_lock);
1800 	atomic_set(&dcc->issued_discard, 0);
1801 	atomic_set(&dcc->issing_discard, 0);
1802 	atomic_set(&dcc->discard_cmd_cnt, 0);
1803 	dcc->nr_discards = 0;
1804 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1805 	dcc->undiscard_blks = 0;
1806 	dcc->root = RB_ROOT;
1807 
1808 	init_waitqueue_head(&dcc->discard_wait_queue);
1809 	SM_I(sbi)->dcc_info = dcc;
1810 init_thread:
1811 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1812 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1813 	if (IS_ERR(dcc->f2fs_issue_discard)) {
1814 		err = PTR_ERR(dcc->f2fs_issue_discard);
1815 		kfree(dcc);
1816 		SM_I(sbi)->dcc_info = NULL;
1817 		return err;
1818 	}
1819 
1820 	return err;
1821 }
1822 
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)1823 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1824 {
1825 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1826 
1827 	if (!dcc)
1828 		return;
1829 
1830 	stop_discard_thread(sbi);
1831 
1832 	kfree(dcc);
1833 	SM_I(sbi)->dcc_info = NULL;
1834 }
1835 
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)1836 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1837 {
1838 	struct sit_info *sit_i = SIT_I(sbi);
1839 
1840 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1841 		sit_i->dirty_sentries++;
1842 		return false;
1843 	}
1844 
1845 	return true;
1846 }
1847 
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)1848 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1849 					unsigned int segno, int modified)
1850 {
1851 	struct seg_entry *se = get_seg_entry(sbi, segno);
1852 	se->type = type;
1853 	if (modified)
1854 		__mark_sit_entry_dirty(sbi, segno);
1855 }
1856 
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)1857 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1858 {
1859 	struct seg_entry *se;
1860 	unsigned int segno, offset;
1861 	long int new_vblocks;
1862 	bool exist;
1863 #ifdef CONFIG_F2FS_CHECK_FS
1864 	bool mir_exist;
1865 #endif
1866 
1867 	segno = GET_SEGNO(sbi, blkaddr);
1868 
1869 	se = get_seg_entry(sbi, segno);
1870 	new_vblocks = se->valid_blocks + del;
1871 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1872 
1873 	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1874 				(new_vblocks > sbi->blocks_per_seg)));
1875 
1876 	se->valid_blocks = new_vblocks;
1877 	se->mtime = get_mtime(sbi);
1878 	SIT_I(sbi)->max_mtime = se->mtime;
1879 
1880 	/* Update valid block bitmap */
1881 	if (del > 0) {
1882 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
1883 #ifdef CONFIG_F2FS_CHECK_FS
1884 		mir_exist = f2fs_test_and_set_bit(offset,
1885 						se->cur_valid_map_mir);
1886 		if (unlikely(exist != mir_exist)) {
1887 			f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1888 				"when setting bitmap, blk:%u, old bit:%d",
1889 				blkaddr, exist);
1890 			f2fs_bug_on(sbi, 1);
1891 		}
1892 #endif
1893 		if (unlikely(exist)) {
1894 			f2fs_msg(sbi->sb, KERN_ERR,
1895 				"Bitmap was wrongly set, blk:%u", blkaddr);
1896 			f2fs_bug_on(sbi, 1);
1897 			se->valid_blocks--;
1898 			del = 0;
1899 		}
1900 
1901 		if (f2fs_discard_en(sbi) &&
1902 			!f2fs_test_and_set_bit(offset, se->discard_map))
1903 			sbi->discard_blks--;
1904 
1905 		/* don't overwrite by SSR to keep node chain */
1906 		if (IS_NODESEG(se->type)) {
1907 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
1908 				se->ckpt_valid_blocks++;
1909 		}
1910 	} else {
1911 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
1912 #ifdef CONFIG_F2FS_CHECK_FS
1913 		mir_exist = f2fs_test_and_clear_bit(offset,
1914 						se->cur_valid_map_mir);
1915 		if (unlikely(exist != mir_exist)) {
1916 			f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1917 				"when clearing bitmap, blk:%u, old bit:%d",
1918 				blkaddr, exist);
1919 			f2fs_bug_on(sbi, 1);
1920 		}
1921 #endif
1922 		if (unlikely(!exist)) {
1923 			f2fs_msg(sbi->sb, KERN_ERR,
1924 				"Bitmap was wrongly cleared, blk:%u", blkaddr);
1925 			f2fs_bug_on(sbi, 1);
1926 			se->valid_blocks++;
1927 			del = 0;
1928 		}
1929 
1930 		if (f2fs_discard_en(sbi) &&
1931 			f2fs_test_and_clear_bit(offset, se->discard_map))
1932 			sbi->discard_blks++;
1933 	}
1934 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1935 		se->ckpt_valid_blocks += del;
1936 
1937 	__mark_sit_entry_dirty(sbi, segno);
1938 
1939 	/* update total number of valid blocks to be written in ckpt area */
1940 	SIT_I(sbi)->written_valid_blocks += del;
1941 
1942 	if (sbi->segs_per_sec > 1)
1943 		get_sec_entry(sbi, segno)->valid_blocks += del;
1944 }
1945 
invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr)1946 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1947 {
1948 	unsigned int segno = GET_SEGNO(sbi, addr);
1949 	struct sit_info *sit_i = SIT_I(sbi);
1950 
1951 	f2fs_bug_on(sbi, addr == NULL_ADDR);
1952 	if (addr == NEW_ADDR)
1953 		return;
1954 
1955 	/* add it into sit main buffer */
1956 	down_write(&sit_i->sentry_lock);
1957 
1958 	update_sit_entry(sbi, addr, -1);
1959 
1960 	/* add it into dirty seglist */
1961 	locate_dirty_segment(sbi, segno);
1962 
1963 	up_write(&sit_i->sentry_lock);
1964 }
1965 
is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)1966 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1967 {
1968 	struct sit_info *sit_i = SIT_I(sbi);
1969 	unsigned int segno, offset;
1970 	struct seg_entry *se;
1971 	bool is_cp = false;
1972 
1973 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1974 		return true;
1975 
1976 	down_read(&sit_i->sentry_lock);
1977 
1978 	segno = GET_SEGNO(sbi, blkaddr);
1979 	se = get_seg_entry(sbi, segno);
1980 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1981 
1982 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
1983 		is_cp = true;
1984 
1985 	up_read(&sit_i->sentry_lock);
1986 
1987 	return is_cp;
1988 }
1989 
1990 /*
1991  * This function should be resided under the curseg_mutex lock
1992  */
__add_sum_entry(struct f2fs_sb_info * sbi,int type,struct f2fs_summary * sum)1993 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1994 					struct f2fs_summary *sum)
1995 {
1996 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1997 	void *addr = curseg->sum_blk;
1998 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1999 	memcpy(addr, sum, sizeof(struct f2fs_summary));
2000 }
2001 
2002 /*
2003  * Calculate the number of current summary pages for writing
2004  */
npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2005 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2006 {
2007 	int valid_sum_count = 0;
2008 	int i, sum_in_page;
2009 
2010 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2011 		if (sbi->ckpt->alloc_type[i] == SSR)
2012 			valid_sum_count += sbi->blocks_per_seg;
2013 		else {
2014 			if (for_ra)
2015 				valid_sum_count += le16_to_cpu(
2016 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2017 			else
2018 				valid_sum_count += curseg_blkoff(sbi, i);
2019 		}
2020 	}
2021 
2022 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2023 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2024 	if (valid_sum_count <= sum_in_page)
2025 		return 1;
2026 	else if ((valid_sum_count - sum_in_page) <=
2027 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2028 		return 2;
2029 	return 3;
2030 }
2031 
2032 /*
2033  * Caller should put this summary page
2034  */
get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2035 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2036 {
2037 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
2038 }
2039 
update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2040 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
2041 {
2042 	struct page *page = grab_meta_page(sbi, blk_addr);
2043 
2044 	memcpy(page_address(page), src, PAGE_SIZE);
2045 	set_page_dirty(page);
2046 	f2fs_put_page(page, 1);
2047 }
2048 
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2049 static void write_sum_page(struct f2fs_sb_info *sbi,
2050 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2051 {
2052 	update_meta_page(sbi, (void *)sum_blk, blk_addr);
2053 }
2054 
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2055 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2056 						int type, block_t blk_addr)
2057 {
2058 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2059 	struct page *page = grab_meta_page(sbi, blk_addr);
2060 	struct f2fs_summary_block *src = curseg->sum_blk;
2061 	struct f2fs_summary_block *dst;
2062 
2063 	dst = (struct f2fs_summary_block *)page_address(page);
2064 
2065 	mutex_lock(&curseg->curseg_mutex);
2066 
2067 	down_read(&curseg->journal_rwsem);
2068 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2069 	up_read(&curseg->journal_rwsem);
2070 
2071 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2072 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2073 
2074 	mutex_unlock(&curseg->curseg_mutex);
2075 
2076 	set_page_dirty(page);
2077 	f2fs_put_page(page, 1);
2078 }
2079 
is_next_segment_free(struct f2fs_sb_info * sbi,int type)2080 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2081 {
2082 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2083 	unsigned int segno = curseg->segno + 1;
2084 	struct free_segmap_info *free_i = FREE_I(sbi);
2085 
2086 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2087 		return !test_bit(segno, free_i->free_segmap);
2088 	return 0;
2089 }
2090 
2091 /*
2092  * Find a new segment from the free segments bitmap to right order
2093  * This function should be returned with success, otherwise BUG
2094  */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,int dir)2095 static void get_new_segment(struct f2fs_sb_info *sbi,
2096 			unsigned int *newseg, bool new_sec, int dir)
2097 {
2098 	struct free_segmap_info *free_i = FREE_I(sbi);
2099 	unsigned int segno, secno, zoneno;
2100 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2101 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2102 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2103 	unsigned int left_start = hint;
2104 	bool init = true;
2105 	int go_left = 0;
2106 	int i;
2107 
2108 	spin_lock(&free_i->segmap_lock);
2109 
2110 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2111 		segno = find_next_zero_bit(free_i->free_segmap,
2112 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2113 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2114 			goto got_it;
2115 	}
2116 find_other_zone:
2117 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2118 	if (secno >= MAIN_SECS(sbi)) {
2119 		if (dir == ALLOC_RIGHT) {
2120 			secno = find_next_zero_bit(free_i->free_secmap,
2121 							MAIN_SECS(sbi), 0);
2122 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2123 		} else {
2124 			go_left = 1;
2125 			left_start = hint - 1;
2126 		}
2127 	}
2128 	if (go_left == 0)
2129 		goto skip_left;
2130 
2131 	while (test_bit(left_start, free_i->free_secmap)) {
2132 		if (left_start > 0) {
2133 			left_start--;
2134 			continue;
2135 		}
2136 		left_start = find_next_zero_bit(free_i->free_secmap,
2137 							MAIN_SECS(sbi), 0);
2138 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2139 		break;
2140 	}
2141 	secno = left_start;
2142 skip_left:
2143 	segno = GET_SEG_FROM_SEC(sbi, secno);
2144 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2145 
2146 	/* give up on finding another zone */
2147 	if (!init)
2148 		goto got_it;
2149 	if (sbi->secs_per_zone == 1)
2150 		goto got_it;
2151 	if (zoneno == old_zoneno)
2152 		goto got_it;
2153 	if (dir == ALLOC_LEFT) {
2154 		if (!go_left && zoneno + 1 >= total_zones)
2155 			goto got_it;
2156 		if (go_left && zoneno == 0)
2157 			goto got_it;
2158 	}
2159 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2160 		if (CURSEG_I(sbi, i)->zone == zoneno)
2161 			break;
2162 
2163 	if (i < NR_CURSEG_TYPE) {
2164 		/* zone is in user, try another */
2165 		if (go_left)
2166 			hint = zoneno * sbi->secs_per_zone - 1;
2167 		else if (zoneno + 1 >= total_zones)
2168 			hint = 0;
2169 		else
2170 			hint = (zoneno + 1) * sbi->secs_per_zone;
2171 		init = false;
2172 		goto find_other_zone;
2173 	}
2174 got_it:
2175 	/* set it as dirty segment in free segmap */
2176 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2177 	__set_inuse(sbi, segno);
2178 	*newseg = segno;
2179 	spin_unlock(&free_i->segmap_lock);
2180 }
2181 
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2182 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2183 {
2184 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2185 	struct summary_footer *sum_footer;
2186 
2187 	curseg->segno = curseg->next_segno;
2188 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2189 	curseg->next_blkoff = 0;
2190 	curseg->next_segno = NULL_SEGNO;
2191 
2192 	sum_footer = &(curseg->sum_blk->footer);
2193 	memset(sum_footer, 0, sizeof(struct summary_footer));
2194 	if (IS_DATASEG(type))
2195 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2196 	if (IS_NODESEG(type))
2197 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2198 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
2199 }
2200 
__get_next_segno(struct f2fs_sb_info * sbi,int type)2201 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2202 {
2203 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2204 	if (sbi->segs_per_sec != 1)
2205 		return CURSEG_I(sbi, type)->segno;
2206 
2207 	if (test_opt(sbi, NOHEAP) &&
2208 		(type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2209 		return 0;
2210 
2211 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2212 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2213 
2214 	/* find segments from 0 to reuse freed segments */
2215 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2216 		return 0;
2217 
2218 	return CURSEG_I(sbi, type)->segno;
2219 }
2220 
2221 /*
2222  * Allocate a current working segment.
2223  * This function always allocates a free segment in LFS manner.
2224  */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2225 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2226 {
2227 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2228 	unsigned int segno = curseg->segno;
2229 	int dir = ALLOC_LEFT;
2230 
2231 	write_sum_page(sbi, curseg->sum_blk,
2232 				GET_SUM_BLOCK(sbi, segno));
2233 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2234 		dir = ALLOC_RIGHT;
2235 
2236 	if (test_opt(sbi, NOHEAP))
2237 		dir = ALLOC_RIGHT;
2238 
2239 	segno = __get_next_segno(sbi, type);
2240 	get_new_segment(sbi, &segno, new_sec, dir);
2241 	curseg->next_segno = segno;
2242 	reset_curseg(sbi, type, 1);
2243 	curseg->alloc_type = LFS;
2244 }
2245 
__next_free_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg,block_t start)2246 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2247 			struct curseg_info *seg, block_t start)
2248 {
2249 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2250 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2251 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2252 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2253 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2254 	int i, pos;
2255 
2256 	for (i = 0; i < entries; i++)
2257 		target_map[i] = ckpt_map[i] | cur_map[i];
2258 
2259 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2260 
2261 	seg->next_blkoff = pos;
2262 }
2263 
2264 /*
2265  * If a segment is written by LFS manner, next block offset is just obtained
2266  * by increasing the current block offset. However, if a segment is written by
2267  * SSR manner, next block offset obtained by calling __next_free_blkoff
2268  */
__refresh_next_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg)2269 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2270 				struct curseg_info *seg)
2271 {
2272 	if (seg->alloc_type == SSR)
2273 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2274 	else
2275 		seg->next_blkoff++;
2276 }
2277 
2278 /*
2279  * This function always allocates a used segment(from dirty seglist) by SSR
2280  * manner, so it should recover the existing segment information of valid blocks
2281  */
change_curseg(struct f2fs_sb_info * sbi,int type)2282 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2283 {
2284 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2285 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2286 	unsigned int new_segno = curseg->next_segno;
2287 	struct f2fs_summary_block *sum_node;
2288 	struct page *sum_page;
2289 
2290 	write_sum_page(sbi, curseg->sum_blk,
2291 				GET_SUM_BLOCK(sbi, curseg->segno));
2292 	__set_test_and_inuse(sbi, new_segno);
2293 
2294 	mutex_lock(&dirty_i->seglist_lock);
2295 	__remove_dirty_segment(sbi, new_segno, PRE);
2296 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2297 	mutex_unlock(&dirty_i->seglist_lock);
2298 
2299 	reset_curseg(sbi, type, 1);
2300 	curseg->alloc_type = SSR;
2301 	__next_free_blkoff(sbi, curseg, 0);
2302 
2303 	sum_page = get_sum_page(sbi, new_segno);
2304 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2305 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2306 	f2fs_put_page(sum_page, 1);
2307 }
2308 
get_ssr_segment(struct f2fs_sb_info * sbi,int type)2309 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2310 {
2311 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2312 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2313 	unsigned segno = NULL_SEGNO;
2314 	int i, cnt;
2315 	bool reversed = false;
2316 
2317 	/* need_SSR() already forces to do this */
2318 	if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2319 		curseg->next_segno = segno;
2320 		return 1;
2321 	}
2322 
2323 	/* For node segments, let's do SSR more intensively */
2324 	if (IS_NODESEG(type)) {
2325 		if (type >= CURSEG_WARM_NODE) {
2326 			reversed = true;
2327 			i = CURSEG_COLD_NODE;
2328 		} else {
2329 			i = CURSEG_HOT_NODE;
2330 		}
2331 		cnt = NR_CURSEG_NODE_TYPE;
2332 	} else {
2333 		if (type >= CURSEG_WARM_DATA) {
2334 			reversed = true;
2335 			i = CURSEG_COLD_DATA;
2336 		} else {
2337 			i = CURSEG_HOT_DATA;
2338 		}
2339 		cnt = NR_CURSEG_DATA_TYPE;
2340 	}
2341 
2342 	for (; cnt-- > 0; reversed ? i-- : i++) {
2343 		if (i == type)
2344 			continue;
2345 		if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2346 			curseg->next_segno = segno;
2347 			return 1;
2348 		}
2349 	}
2350 	return 0;
2351 }
2352 
2353 /*
2354  * flush out current segment and replace it with new segment
2355  * This function should be returned with success, otherwise BUG
2356  */
allocate_segment_by_default(struct f2fs_sb_info * sbi,int type,bool force)2357 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2358 						int type, bool force)
2359 {
2360 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2361 
2362 	if (force)
2363 		new_curseg(sbi, type, true);
2364 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2365 					type == CURSEG_WARM_NODE)
2366 		new_curseg(sbi, type, false);
2367 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
2368 		new_curseg(sbi, type, false);
2369 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
2370 		change_curseg(sbi, type);
2371 	else
2372 		new_curseg(sbi, type, false);
2373 
2374 	stat_inc_seg_type(sbi, curseg);
2375 }
2376 
allocate_new_segments(struct f2fs_sb_info * sbi)2377 void allocate_new_segments(struct f2fs_sb_info *sbi)
2378 {
2379 	struct curseg_info *curseg;
2380 	unsigned int old_segno;
2381 	int i;
2382 
2383 	down_write(&SIT_I(sbi)->sentry_lock);
2384 
2385 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2386 		curseg = CURSEG_I(sbi, i);
2387 		old_segno = curseg->segno;
2388 		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2389 		locate_dirty_segment(sbi, old_segno);
2390 	}
2391 
2392 	up_write(&SIT_I(sbi)->sentry_lock);
2393 }
2394 
2395 static const struct segment_allocation default_salloc_ops = {
2396 	.allocate_segment = allocate_segment_by_default,
2397 };
2398 
exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)2399 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2400 {
2401 	__u64 trim_start = cpc->trim_start;
2402 	bool has_candidate = false;
2403 
2404 	down_write(&SIT_I(sbi)->sentry_lock);
2405 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2406 		if (add_discard_addrs(sbi, cpc, true)) {
2407 			has_candidate = true;
2408 			break;
2409 		}
2410 	}
2411 	up_write(&SIT_I(sbi)->sentry_lock);
2412 
2413 	cpc->trim_start = trim_start;
2414 	return has_candidate;
2415 }
2416 
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)2417 static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2418 					struct discard_policy *dpolicy,
2419 					unsigned int start, unsigned int end)
2420 {
2421 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2422 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2423 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
2424 	struct discard_cmd *dc;
2425 	struct blk_plug plug;
2426 	int issued;
2427 
2428 next:
2429 	issued = 0;
2430 
2431 	mutex_lock(&dcc->cmd_lock);
2432 	f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
2433 
2434 	dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
2435 					NULL, start,
2436 					(struct rb_entry **)&prev_dc,
2437 					(struct rb_entry **)&next_dc,
2438 					&insert_p, &insert_parent, true);
2439 	if (!dc)
2440 		dc = next_dc;
2441 
2442 	blk_start_plug(&plug);
2443 
2444 	while (dc && dc->lstart <= end) {
2445 		struct rb_node *node;
2446 
2447 		if (dc->len < dpolicy->granularity)
2448 			goto skip;
2449 
2450 		if (dc->state != D_PREP) {
2451 			list_move_tail(&dc->list, &dcc->fstrim_list);
2452 			goto skip;
2453 		}
2454 
2455 		__submit_discard_cmd(sbi, dpolicy, dc);
2456 
2457 		if (++issued >= dpolicy->max_requests) {
2458 			start = dc->lstart + dc->len;
2459 
2460 			blk_finish_plug(&plug);
2461 			mutex_unlock(&dcc->cmd_lock);
2462 			__wait_all_discard_cmd(sbi, NULL);
2463 			congestion_wait(BLK_RW_ASYNC, HZ/50);
2464 			goto next;
2465 		}
2466 skip:
2467 		node = rb_next(&dc->rb_node);
2468 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2469 
2470 		if (fatal_signal_pending(current))
2471 			break;
2472 	}
2473 
2474 	blk_finish_plug(&plug);
2475 	mutex_unlock(&dcc->cmd_lock);
2476 }
2477 
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)2478 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2479 {
2480 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
2481 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2482 	unsigned int start_segno, end_segno;
2483 	block_t start_block, end_block;
2484 	struct cp_control cpc;
2485 	struct discard_policy dpolicy;
2486 	unsigned long long trimmed = 0;
2487 	int err = 0;
2488 
2489 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2490 		return -EINVAL;
2491 
2492 	if (end <= MAIN_BLKADDR(sbi))
2493 		goto out;
2494 
2495 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2496 		f2fs_msg(sbi->sb, KERN_WARNING,
2497 			"Found FS corruption, run fsck to fix.");
2498 		goto out;
2499 	}
2500 
2501 	/* start/end segment number in main_area */
2502 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2503 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2504 						GET_SEGNO(sbi, end);
2505 
2506 	cpc.reason = CP_DISCARD;
2507 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2508 	cpc.trim_start = start_segno;
2509 	cpc.trim_end = end_segno;
2510 
2511 	if (sbi->discard_blks == 0)
2512 		goto out;
2513 
2514 	mutex_lock(&sbi->gc_mutex);
2515 	err = write_checkpoint(sbi, &cpc);
2516 	mutex_unlock(&sbi->gc_mutex);
2517 	if (err)
2518 		goto out;
2519 
2520 	start_block = START_BLOCK(sbi, start_segno);
2521 	end_block = START_BLOCK(sbi, end_segno + 1);
2522 
2523 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2524 	__issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block);
2525 
2526 	/*
2527 	 * We filed discard candidates, but actually we don't need to wait for
2528 	 * all of them, since they'll be issued in idle time along with runtime
2529 	 * discard option. User configuration looks like using runtime discard
2530 	 * or periodic fstrim instead of it.
2531 	 */
2532 	if (!test_opt(sbi, DISCARD)) {
2533 		trimmed = __wait_discard_cmd_range(sbi, &dpolicy,
2534 					start_block, end_block);
2535 		range->len = F2FS_BLK_TO_BYTES(trimmed);
2536 	}
2537 out:
2538 	return err;
2539 }
2540 
__has_curseg_space(struct f2fs_sb_info * sbi,int type)2541 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2542 {
2543 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2544 	if (curseg->next_blkoff < sbi->blocks_per_seg)
2545 		return true;
2546 	return false;
2547 }
2548 
rw_hint_to_seg_type(enum rw_hint hint)2549 int rw_hint_to_seg_type(enum rw_hint hint)
2550 {
2551 	switch (hint) {
2552 	case WRITE_LIFE_SHORT:
2553 		return CURSEG_HOT_DATA;
2554 	case WRITE_LIFE_EXTREME:
2555 		return CURSEG_COLD_DATA;
2556 	default:
2557 		return CURSEG_WARM_DATA;
2558 	}
2559 }
2560 
2561 /* This returns write hints for each segment type. This hints will be
2562  * passed down to block layer. There are mapping tables which depend on
2563  * the mount option 'whint_mode'.
2564  *
2565  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2566  *
2567  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2568  *
2569  * User                  F2FS                     Block
2570  * ----                  ----                     -----
2571  *                       META                     WRITE_LIFE_NOT_SET
2572  *                       HOT_NODE                 "
2573  *                       WARM_NODE                "
2574  *                       COLD_NODE                "
2575  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2576  * extension list        "                        "
2577  *
2578  * -- buffered io
2579  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2580  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2581  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2582  * WRITE_LIFE_NONE       "                        "
2583  * WRITE_LIFE_MEDIUM     "                        "
2584  * WRITE_LIFE_LONG       "                        "
2585  *
2586  * -- direct io
2587  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2588  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2589  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2590  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2591  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2592  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2593  *
2594  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2595  *
2596  * User                  F2FS                     Block
2597  * ----                  ----                     -----
2598  *                       META                     WRITE_LIFE_MEDIUM;
2599  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2600  *                       WARM_NODE                "
2601  *                       COLD_NODE                WRITE_LIFE_NONE
2602  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2603  * extension list        "                        "
2604  *
2605  * -- buffered io
2606  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2607  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2608  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2609  * WRITE_LIFE_NONE       "                        "
2610  * WRITE_LIFE_MEDIUM     "                        "
2611  * WRITE_LIFE_LONG       "                        "
2612  *
2613  * -- direct io
2614  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2615  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2616  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2617  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2618  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2619  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2620  */
2621 
io_type_to_rw_hint(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)2622 enum rw_hint io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2623 				enum page_type type, enum temp_type temp)
2624 {
2625 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2626 		if (type == DATA) {
2627 			if (temp == WARM)
2628 				return WRITE_LIFE_NOT_SET;
2629 			else if (temp == HOT)
2630 				return WRITE_LIFE_SHORT;
2631 			else if (temp == COLD)
2632 				return WRITE_LIFE_EXTREME;
2633 		} else {
2634 			return WRITE_LIFE_NOT_SET;
2635 		}
2636 	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2637 		if (type == DATA) {
2638 			if (temp == WARM)
2639 				return WRITE_LIFE_LONG;
2640 			else if (temp == HOT)
2641 				return WRITE_LIFE_SHORT;
2642 			else if (temp == COLD)
2643 				return WRITE_LIFE_EXTREME;
2644 		} else if (type == NODE) {
2645 			if (temp == WARM || temp == HOT)
2646 				return WRITE_LIFE_NOT_SET;
2647 			else if (temp == COLD)
2648 				return WRITE_LIFE_NONE;
2649 		} else if (type == META) {
2650 			return WRITE_LIFE_MEDIUM;
2651 		}
2652 	}
2653 	return WRITE_LIFE_NOT_SET;
2654 }
2655 
__get_segment_type_2(struct f2fs_io_info * fio)2656 static int __get_segment_type_2(struct f2fs_io_info *fio)
2657 {
2658 	if (fio->type == DATA)
2659 		return CURSEG_HOT_DATA;
2660 	else
2661 		return CURSEG_HOT_NODE;
2662 }
2663 
__get_segment_type_4(struct f2fs_io_info * fio)2664 static int __get_segment_type_4(struct f2fs_io_info *fio)
2665 {
2666 	if (fio->type == DATA) {
2667 		struct inode *inode = fio->page->mapping->host;
2668 
2669 		if (S_ISDIR(inode->i_mode))
2670 			return CURSEG_HOT_DATA;
2671 		else
2672 			return CURSEG_COLD_DATA;
2673 	} else {
2674 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2675 			return CURSEG_WARM_NODE;
2676 		else
2677 			return CURSEG_COLD_NODE;
2678 	}
2679 }
2680 
__get_segment_type_6(struct f2fs_io_info * fio)2681 static int __get_segment_type_6(struct f2fs_io_info *fio)
2682 {
2683 	if (fio->type == DATA) {
2684 		struct inode *inode = fio->page->mapping->host;
2685 
2686 		if (is_cold_data(fio->page) || file_is_cold(inode))
2687 			return CURSEG_COLD_DATA;
2688 		if (file_is_hot(inode) ||
2689 				is_inode_flag_set(inode, FI_HOT_DATA))
2690 			return CURSEG_HOT_DATA;
2691 		/* rw_hint_to_seg_type(inode->i_write_hint); */
2692 		return CURSEG_WARM_DATA;
2693 	} else {
2694 		if (IS_DNODE(fio->page))
2695 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2696 						CURSEG_HOT_NODE;
2697 		return CURSEG_COLD_NODE;
2698 	}
2699 }
2700 
__get_segment_type(struct f2fs_io_info * fio)2701 static int __get_segment_type(struct f2fs_io_info *fio)
2702 {
2703 	int type = 0;
2704 
2705 	switch (F2FS_OPTION(fio->sbi).active_logs) {
2706 	case 2:
2707 		type = __get_segment_type_2(fio);
2708 		break;
2709 	case 4:
2710 		type = __get_segment_type_4(fio);
2711 		break;
2712 	case 6:
2713 		type = __get_segment_type_6(fio);
2714 		break;
2715 	default:
2716 		f2fs_bug_on(fio->sbi, true);
2717 	}
2718 
2719 	if (IS_HOT(type))
2720 		fio->temp = HOT;
2721 	else if (IS_WARM(type))
2722 		fio->temp = WARM;
2723 	else
2724 		fio->temp = COLD;
2725 	return type;
2726 }
2727 
allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio,bool add_list)2728 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2729 		block_t old_blkaddr, block_t *new_blkaddr,
2730 		struct f2fs_summary *sum, int type,
2731 		struct f2fs_io_info *fio, bool add_list)
2732 {
2733 	struct sit_info *sit_i = SIT_I(sbi);
2734 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2735 
2736 	down_read(&SM_I(sbi)->curseg_lock);
2737 
2738 	mutex_lock(&curseg->curseg_mutex);
2739 	down_write(&sit_i->sentry_lock);
2740 
2741 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2742 
2743 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
2744 
2745 	/*
2746 	 * __add_sum_entry should be resided under the curseg_mutex
2747 	 * because, this function updates a summary entry in the
2748 	 * current summary block.
2749 	 */
2750 	__add_sum_entry(sbi, type, sum);
2751 
2752 	__refresh_next_blkoff(sbi, curseg);
2753 
2754 	stat_inc_block_count(sbi, curseg);
2755 
2756 	/*
2757 	 * SIT information should be updated before segment allocation,
2758 	 * since SSR needs latest valid block information.
2759 	 */
2760 	update_sit_entry(sbi, *new_blkaddr, 1);
2761 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2762 		update_sit_entry(sbi, old_blkaddr, -1);
2763 
2764 	if (!__has_curseg_space(sbi, type))
2765 		sit_i->s_ops->allocate_segment(sbi, type, false);
2766 
2767 	/*
2768 	 * segment dirty status should be updated after segment allocation,
2769 	 * so we just need to update status only one time after previous
2770 	 * segment being closed.
2771 	 */
2772 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2773 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
2774 
2775 	up_write(&sit_i->sentry_lock);
2776 
2777 	if (page && IS_NODESEG(type)) {
2778 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2779 
2780 		f2fs_inode_chksum_set(sbi, page);
2781 	}
2782 
2783 	if (add_list) {
2784 		struct f2fs_bio_info *io;
2785 
2786 		INIT_LIST_HEAD(&fio->list);
2787 		fio->in_list = true;
2788 		io = sbi->write_io[fio->type] + fio->temp;
2789 		spin_lock(&io->io_lock);
2790 		list_add_tail(&fio->list, &io->io_list);
2791 		spin_unlock(&io->io_lock);
2792 	}
2793 
2794 	mutex_unlock(&curseg->curseg_mutex);
2795 
2796 	up_read(&SM_I(sbi)->curseg_lock);
2797 }
2798 
update_device_state(struct f2fs_io_info * fio)2799 static void update_device_state(struct f2fs_io_info *fio)
2800 {
2801 	struct f2fs_sb_info *sbi = fio->sbi;
2802 	unsigned int devidx;
2803 
2804 	if (!sbi->s_ndevs)
2805 		return;
2806 
2807 	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
2808 
2809 	/* update device state for fsync */
2810 	set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
2811 
2812 	/* update device state for checkpoint */
2813 	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
2814 		spin_lock(&sbi->dev_lock);
2815 		f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
2816 		spin_unlock(&sbi->dev_lock);
2817 	}
2818 }
2819 
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)2820 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2821 {
2822 	int type = __get_segment_type(fio);
2823 	int err;
2824 
2825 reallocate:
2826 	allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2827 			&fio->new_blkaddr, sum, type, fio, true);
2828 
2829 	/* writeout dirty page into bdev */
2830 	err = f2fs_submit_page_write(fio);
2831 	if (err == -EAGAIN) {
2832 		fio->old_blkaddr = fio->new_blkaddr;
2833 		goto reallocate;
2834 	} else if (!err) {
2835 		update_device_state(fio);
2836 	}
2837 }
2838 
write_meta_page(struct f2fs_sb_info * sbi,struct page * page,enum iostat_type io_type)2839 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2840 					enum iostat_type io_type)
2841 {
2842 	struct f2fs_io_info fio = {
2843 		.sbi = sbi,
2844 		.type = META,
2845 		.temp = HOT,
2846 		.op = REQ_OP_WRITE,
2847 		.op_flags = REQ_SYNC | REQ_NOIDLE | REQ_META | REQ_PRIO,
2848 		.old_blkaddr = page->index,
2849 		.new_blkaddr = page->index,
2850 		.page = page,
2851 		.encrypted_page = NULL,
2852 		.in_list = false,
2853 	};
2854 
2855 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
2856 		fio.op_flags &= ~REQ_META;
2857 
2858 	set_page_writeback(page);
2859 	ClearPageError(page);
2860 	f2fs_submit_page_write(&fio);
2861 
2862 	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
2863 }
2864 
write_node_page(unsigned int nid,struct f2fs_io_info * fio)2865 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
2866 {
2867 	struct f2fs_summary sum;
2868 
2869 	set_summary(&sum, nid, 0, 0);
2870 	do_write_page(&sum, fio);
2871 
2872 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2873 }
2874 
write_data_page(struct dnode_of_data * dn,struct f2fs_io_info * fio)2875 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
2876 {
2877 	struct f2fs_sb_info *sbi = fio->sbi;
2878 	struct f2fs_summary sum;
2879 	struct node_info ni;
2880 
2881 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
2882 	get_node_info(sbi, dn->nid, &ni);
2883 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
2884 	do_write_page(&sum, fio);
2885 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
2886 
2887 	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
2888 }
2889 
rewrite_data_page(struct f2fs_io_info * fio)2890 int rewrite_data_page(struct f2fs_io_info *fio)
2891 {
2892 	int err;
2893 	struct f2fs_sb_info *sbi = fio->sbi;
2894 
2895 	fio->new_blkaddr = fio->old_blkaddr;
2896 	/* i/o temperature is needed for passing down write hints */
2897 	__get_segment_type(fio);
2898 
2899 	f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
2900 			GET_SEGNO(sbi, fio->new_blkaddr))->type));
2901 
2902 	stat_inc_inplace_blocks(fio->sbi);
2903 
2904 	err = f2fs_submit_page_bio(fio);
2905 	if (!err)
2906 		update_device_state(fio);
2907 
2908 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2909 
2910 	return err;
2911 }
2912 
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)2913 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
2914 						unsigned int segno)
2915 {
2916 	int i;
2917 
2918 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
2919 		if (CURSEG_I(sbi, i)->segno == segno)
2920 			break;
2921 	}
2922 	return i;
2923 }
2924 
__f2fs_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr)2925 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2926 				block_t old_blkaddr, block_t new_blkaddr,
2927 				bool recover_curseg, bool recover_newaddr)
2928 {
2929 	struct sit_info *sit_i = SIT_I(sbi);
2930 	struct curseg_info *curseg;
2931 	unsigned int segno, old_cursegno;
2932 	struct seg_entry *se;
2933 	int type;
2934 	unsigned short old_blkoff;
2935 
2936 	segno = GET_SEGNO(sbi, new_blkaddr);
2937 	se = get_seg_entry(sbi, segno);
2938 	type = se->type;
2939 
2940 	down_write(&SM_I(sbi)->curseg_lock);
2941 
2942 	if (!recover_curseg) {
2943 		/* for recovery flow */
2944 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
2945 			if (old_blkaddr == NULL_ADDR)
2946 				type = CURSEG_COLD_DATA;
2947 			else
2948 				type = CURSEG_WARM_DATA;
2949 		}
2950 	} else {
2951 		if (IS_CURSEG(sbi, segno)) {
2952 			/* se->type is volatile as SSR allocation */
2953 			type = __f2fs_get_curseg(sbi, segno);
2954 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
2955 		} else {
2956 			type = CURSEG_WARM_DATA;
2957 		}
2958 	}
2959 
2960 	f2fs_bug_on(sbi, !IS_DATASEG(type));
2961 	curseg = CURSEG_I(sbi, type);
2962 
2963 	mutex_lock(&curseg->curseg_mutex);
2964 	down_write(&sit_i->sentry_lock);
2965 
2966 	old_cursegno = curseg->segno;
2967 	old_blkoff = curseg->next_blkoff;
2968 
2969 	/* change the current segment */
2970 	if (segno != curseg->segno) {
2971 		curseg->next_segno = segno;
2972 		change_curseg(sbi, type);
2973 	}
2974 
2975 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
2976 	__add_sum_entry(sbi, type, sum);
2977 
2978 	if (!recover_curseg || recover_newaddr)
2979 		update_sit_entry(sbi, new_blkaddr, 1);
2980 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2981 		update_sit_entry(sbi, old_blkaddr, -1);
2982 
2983 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2984 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
2985 
2986 	locate_dirty_segment(sbi, old_cursegno);
2987 
2988 	if (recover_curseg) {
2989 		if (old_cursegno != curseg->segno) {
2990 			curseg->next_segno = old_cursegno;
2991 			change_curseg(sbi, type);
2992 		}
2993 		curseg->next_blkoff = old_blkoff;
2994 	}
2995 
2996 	up_write(&sit_i->sentry_lock);
2997 	mutex_unlock(&curseg->curseg_mutex);
2998 	up_write(&SM_I(sbi)->curseg_lock);
2999 }
3000 
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)3001 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3002 				block_t old_addr, block_t new_addr,
3003 				unsigned char version, bool recover_curseg,
3004 				bool recover_newaddr)
3005 {
3006 	struct f2fs_summary sum;
3007 
3008 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3009 
3010 	__f2fs_replace_block(sbi, &sum, old_addr, new_addr,
3011 					recover_curseg, recover_newaddr);
3012 
3013 	f2fs_update_data_blkaddr(dn, new_addr);
3014 }
3015 
f2fs_wait_on_page_writeback(struct page * page,enum page_type type,bool ordered)3016 void f2fs_wait_on_page_writeback(struct page *page,
3017 				enum page_type type, bool ordered)
3018 {
3019 	if (PageWriteback(page)) {
3020 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3021 
3022 		f2fs_submit_merged_write_cond(sbi, page->mapping->host,
3023 						0, page->index, type);
3024 		if (ordered)
3025 			wait_on_page_writeback(page);
3026 		else
3027 			wait_for_stable_page(page);
3028 	}
3029 }
3030 
f2fs_wait_on_block_writeback(struct f2fs_sb_info * sbi,block_t blkaddr)3031 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
3032 {
3033 	struct page *cpage;
3034 
3035 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
3036 		return;
3037 
3038 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3039 	if (cpage) {
3040 		f2fs_wait_on_page_writeback(cpage, DATA, true);
3041 		f2fs_put_page(cpage, 1);
3042 	}
3043 }
3044 
read_compacted_summaries(struct f2fs_sb_info * sbi)3045 static void read_compacted_summaries(struct f2fs_sb_info *sbi)
3046 {
3047 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3048 	struct curseg_info *seg_i;
3049 	unsigned char *kaddr;
3050 	struct page *page;
3051 	block_t start;
3052 	int i, j, offset;
3053 
3054 	start = start_sum_block(sbi);
3055 
3056 	page = get_meta_page(sbi, start++);
3057 	kaddr = (unsigned char *)page_address(page);
3058 
3059 	/* Step 1: restore nat cache */
3060 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3061 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3062 
3063 	/* Step 2: restore sit cache */
3064 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3065 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3066 	offset = 2 * SUM_JOURNAL_SIZE;
3067 
3068 	/* Step 3: restore summary entries */
3069 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3070 		unsigned short blk_off;
3071 		unsigned int segno;
3072 
3073 		seg_i = CURSEG_I(sbi, i);
3074 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3075 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3076 		seg_i->next_segno = segno;
3077 		reset_curseg(sbi, i, 0);
3078 		seg_i->alloc_type = ckpt->alloc_type[i];
3079 		seg_i->next_blkoff = blk_off;
3080 
3081 		if (seg_i->alloc_type == SSR)
3082 			blk_off = sbi->blocks_per_seg;
3083 
3084 		for (j = 0; j < blk_off; j++) {
3085 			struct f2fs_summary *s;
3086 			s = (struct f2fs_summary *)(kaddr + offset);
3087 			seg_i->sum_blk->entries[j] = *s;
3088 			offset += SUMMARY_SIZE;
3089 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3090 						SUM_FOOTER_SIZE)
3091 				continue;
3092 
3093 			f2fs_put_page(page, 1);
3094 			page = NULL;
3095 
3096 			page = get_meta_page(sbi, start++);
3097 			kaddr = (unsigned char *)page_address(page);
3098 			offset = 0;
3099 		}
3100 	}
3101 	f2fs_put_page(page, 1);
3102 }
3103 
read_normal_summaries(struct f2fs_sb_info * sbi,int type)3104 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3105 {
3106 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3107 	struct f2fs_summary_block *sum;
3108 	struct curseg_info *curseg;
3109 	struct page *new;
3110 	unsigned short blk_off;
3111 	unsigned int segno = 0;
3112 	block_t blk_addr = 0;
3113 
3114 	/* get segment number and block addr */
3115 	if (IS_DATASEG(type)) {
3116 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3117 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3118 							CURSEG_HOT_DATA]);
3119 		if (__exist_node_summaries(sbi))
3120 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3121 		else
3122 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3123 	} else {
3124 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3125 							CURSEG_HOT_NODE]);
3126 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3127 							CURSEG_HOT_NODE]);
3128 		if (__exist_node_summaries(sbi))
3129 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3130 							type - CURSEG_HOT_NODE);
3131 		else
3132 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3133 	}
3134 
3135 	new = get_meta_page(sbi, blk_addr);
3136 	sum = (struct f2fs_summary_block *)page_address(new);
3137 
3138 	if (IS_NODESEG(type)) {
3139 		if (__exist_node_summaries(sbi)) {
3140 			struct f2fs_summary *ns = &sum->entries[0];
3141 			int i;
3142 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3143 				ns->version = 0;
3144 				ns->ofs_in_node = 0;
3145 			}
3146 		} else {
3147 			restore_node_summary(sbi, segno, sum);
3148 		}
3149 	}
3150 
3151 	/* set uncompleted segment to curseg */
3152 	curseg = CURSEG_I(sbi, type);
3153 	mutex_lock(&curseg->curseg_mutex);
3154 
3155 	/* update journal info */
3156 	down_write(&curseg->journal_rwsem);
3157 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3158 	up_write(&curseg->journal_rwsem);
3159 
3160 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3161 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3162 	curseg->next_segno = segno;
3163 	reset_curseg(sbi, type, 0);
3164 	curseg->alloc_type = ckpt->alloc_type[type];
3165 	curseg->next_blkoff = blk_off;
3166 	mutex_unlock(&curseg->curseg_mutex);
3167 	f2fs_put_page(new, 1);
3168 	return 0;
3169 }
3170 
restore_curseg_summaries(struct f2fs_sb_info * sbi)3171 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3172 {
3173 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3174 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3175 	int type = CURSEG_HOT_DATA;
3176 	int err;
3177 
3178 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3179 		int npages = npages_for_summary_flush(sbi, true);
3180 
3181 		if (npages >= 2)
3182 			ra_meta_pages(sbi, start_sum_block(sbi), npages,
3183 							META_CP, true);
3184 
3185 		/* restore for compacted data summary */
3186 		read_compacted_summaries(sbi);
3187 		type = CURSEG_HOT_NODE;
3188 	}
3189 
3190 	if (__exist_node_summaries(sbi))
3191 		ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3192 					NR_CURSEG_TYPE - type, META_CP, true);
3193 
3194 	for (; type <= CURSEG_COLD_NODE; type++) {
3195 		err = read_normal_summaries(sbi, type);
3196 		if (err)
3197 			return err;
3198 	}
3199 
3200 	/* sanity check for summary blocks */
3201 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3202 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
3203 		return -EINVAL;
3204 
3205 	return 0;
3206 }
3207 
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)3208 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3209 {
3210 	struct page *page;
3211 	unsigned char *kaddr;
3212 	struct f2fs_summary *summary;
3213 	struct curseg_info *seg_i;
3214 	int written_size = 0;
3215 	int i, j;
3216 
3217 	page = grab_meta_page(sbi, blkaddr++);
3218 	kaddr = (unsigned char *)page_address(page);
3219 
3220 	/* Step 1: write nat cache */
3221 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3222 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3223 	written_size += SUM_JOURNAL_SIZE;
3224 
3225 	/* Step 2: write sit cache */
3226 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3227 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3228 	written_size += SUM_JOURNAL_SIZE;
3229 
3230 	/* Step 3: write summary entries */
3231 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3232 		unsigned short blkoff;
3233 		seg_i = CURSEG_I(sbi, i);
3234 		if (sbi->ckpt->alloc_type[i] == SSR)
3235 			blkoff = sbi->blocks_per_seg;
3236 		else
3237 			blkoff = curseg_blkoff(sbi, i);
3238 
3239 		for (j = 0; j < blkoff; j++) {
3240 			if (!page) {
3241 				page = grab_meta_page(sbi, blkaddr++);
3242 				kaddr = (unsigned char *)page_address(page);
3243 				written_size = 0;
3244 			}
3245 			summary = (struct f2fs_summary *)(kaddr + written_size);
3246 			*summary = seg_i->sum_blk->entries[j];
3247 			written_size += SUMMARY_SIZE;
3248 
3249 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3250 							SUM_FOOTER_SIZE)
3251 				continue;
3252 
3253 			set_page_dirty(page);
3254 			f2fs_put_page(page, 1);
3255 			page = NULL;
3256 		}
3257 	}
3258 	if (page) {
3259 		set_page_dirty(page);
3260 		f2fs_put_page(page, 1);
3261 	}
3262 }
3263 
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3264 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3265 					block_t blkaddr, int type)
3266 {
3267 	int i, end;
3268 	if (IS_DATASEG(type))
3269 		end = type + NR_CURSEG_DATA_TYPE;
3270 	else
3271 		end = type + NR_CURSEG_NODE_TYPE;
3272 
3273 	for (i = type; i < end; i++)
3274 		write_current_sum_page(sbi, i, blkaddr + (i - type));
3275 }
3276 
write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)3277 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3278 {
3279 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3280 		write_compacted_summaries(sbi, start_blk);
3281 	else
3282 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3283 }
3284 
write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)3285 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3286 {
3287 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3288 }
3289 
lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)3290 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3291 					unsigned int val, int alloc)
3292 {
3293 	int i;
3294 
3295 	if (type == NAT_JOURNAL) {
3296 		for (i = 0; i < nats_in_cursum(journal); i++) {
3297 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3298 				return i;
3299 		}
3300 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3301 			return update_nats_in_cursum(journal, 1);
3302 	} else if (type == SIT_JOURNAL) {
3303 		for (i = 0; i < sits_in_cursum(journal); i++)
3304 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3305 				return i;
3306 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3307 			return update_sits_in_cursum(journal, 1);
3308 	}
3309 	return -1;
3310 }
3311 
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)3312 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3313 					unsigned int segno)
3314 {
3315 	return get_meta_page(sbi, current_sit_addr(sbi, segno));
3316 }
3317 
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)3318 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3319 					unsigned int start)
3320 {
3321 	struct sit_info *sit_i = SIT_I(sbi);
3322 	struct page *page;
3323 	pgoff_t src_off, dst_off;
3324 
3325 	src_off = current_sit_addr(sbi, start);
3326 	dst_off = next_sit_addr(sbi, src_off);
3327 
3328 	page = grab_meta_page(sbi, dst_off);
3329 	seg_info_to_sit_page(sbi, page, start);
3330 
3331 	set_page_dirty(page);
3332 	set_to_next_sit(sit_i, start);
3333 
3334 	return page;
3335 }
3336 
grab_sit_entry_set(void)3337 static struct sit_entry_set *grab_sit_entry_set(void)
3338 {
3339 	struct sit_entry_set *ses =
3340 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3341 
3342 	ses->entry_cnt = 0;
3343 	INIT_LIST_HEAD(&ses->set_list);
3344 	return ses;
3345 }
3346 
release_sit_entry_set(struct sit_entry_set * ses)3347 static void release_sit_entry_set(struct sit_entry_set *ses)
3348 {
3349 	list_del(&ses->set_list);
3350 	kmem_cache_free(sit_entry_set_slab, ses);
3351 }
3352 
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)3353 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3354 						struct list_head *head)
3355 {
3356 	struct sit_entry_set *next = ses;
3357 
3358 	if (list_is_last(&ses->set_list, head))
3359 		return;
3360 
3361 	list_for_each_entry_continue(next, head, set_list)
3362 		if (ses->entry_cnt <= next->entry_cnt)
3363 			break;
3364 
3365 	list_move_tail(&ses->set_list, &next->set_list);
3366 }
3367 
add_sit_entry(unsigned int segno,struct list_head * head)3368 static void add_sit_entry(unsigned int segno, struct list_head *head)
3369 {
3370 	struct sit_entry_set *ses;
3371 	unsigned int start_segno = START_SEGNO(segno);
3372 
3373 	list_for_each_entry(ses, head, set_list) {
3374 		if (ses->start_segno == start_segno) {
3375 			ses->entry_cnt++;
3376 			adjust_sit_entry_set(ses, head);
3377 			return;
3378 		}
3379 	}
3380 
3381 	ses = grab_sit_entry_set();
3382 
3383 	ses->start_segno = start_segno;
3384 	ses->entry_cnt++;
3385 	list_add(&ses->set_list, head);
3386 }
3387 
add_sits_in_set(struct f2fs_sb_info * sbi)3388 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3389 {
3390 	struct f2fs_sm_info *sm_info = SM_I(sbi);
3391 	struct list_head *set_list = &sm_info->sit_entry_set;
3392 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3393 	unsigned int segno;
3394 
3395 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3396 		add_sit_entry(segno, set_list);
3397 }
3398 
remove_sits_in_journal(struct f2fs_sb_info * sbi)3399 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3400 {
3401 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3402 	struct f2fs_journal *journal = curseg->journal;
3403 	int i;
3404 
3405 	down_write(&curseg->journal_rwsem);
3406 	for (i = 0; i < sits_in_cursum(journal); i++) {
3407 		unsigned int segno;
3408 		bool dirtied;
3409 
3410 		segno = le32_to_cpu(segno_in_journal(journal, i));
3411 		dirtied = __mark_sit_entry_dirty(sbi, segno);
3412 
3413 		if (!dirtied)
3414 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3415 	}
3416 	update_sits_in_cursum(journal, -i);
3417 	up_write(&curseg->journal_rwsem);
3418 }
3419 
3420 /*
3421  * CP calls this function, which flushes SIT entries including sit_journal,
3422  * and moves prefree segs to free segs.
3423  */
flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)3424 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3425 {
3426 	struct sit_info *sit_i = SIT_I(sbi);
3427 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3428 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3429 	struct f2fs_journal *journal = curseg->journal;
3430 	struct sit_entry_set *ses, *tmp;
3431 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
3432 	bool to_journal = true;
3433 	struct seg_entry *se;
3434 
3435 	down_write(&sit_i->sentry_lock);
3436 
3437 	if (!sit_i->dirty_sentries)
3438 		goto out;
3439 
3440 	/*
3441 	 * add and account sit entries of dirty bitmap in sit entry
3442 	 * set temporarily
3443 	 */
3444 	add_sits_in_set(sbi);
3445 
3446 	/*
3447 	 * if there are no enough space in journal to store dirty sit
3448 	 * entries, remove all entries from journal and add and account
3449 	 * them in sit entry set.
3450 	 */
3451 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3452 		remove_sits_in_journal(sbi);
3453 
3454 	/*
3455 	 * there are two steps to flush sit entries:
3456 	 * #1, flush sit entries to journal in current cold data summary block.
3457 	 * #2, flush sit entries to sit page.
3458 	 */
3459 	list_for_each_entry_safe(ses, tmp, head, set_list) {
3460 		struct page *page = NULL;
3461 		struct f2fs_sit_block *raw_sit = NULL;
3462 		unsigned int start_segno = ses->start_segno;
3463 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3464 						(unsigned long)MAIN_SEGS(sbi));
3465 		unsigned int segno = start_segno;
3466 
3467 		if (to_journal &&
3468 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3469 			to_journal = false;
3470 
3471 		if (to_journal) {
3472 			down_write(&curseg->journal_rwsem);
3473 		} else {
3474 			page = get_next_sit_page(sbi, start_segno);
3475 			raw_sit = page_address(page);
3476 		}
3477 
3478 		/* flush dirty sit entries in region of current sit set */
3479 		for_each_set_bit_from(segno, bitmap, end) {
3480 			int offset, sit_offset;
3481 
3482 			se = get_seg_entry(sbi, segno);
3483 
3484 			/* add discard candidates */
3485 			if (!(cpc->reason & CP_DISCARD)) {
3486 				cpc->trim_start = segno;
3487 				add_discard_addrs(sbi, cpc, false);
3488 			}
3489 
3490 			if (to_journal) {
3491 				offset = lookup_journal_in_cursum(journal,
3492 							SIT_JOURNAL, segno, 1);
3493 				f2fs_bug_on(sbi, offset < 0);
3494 				segno_in_journal(journal, offset) =
3495 							cpu_to_le32(segno);
3496 				seg_info_to_raw_sit(se,
3497 					&sit_in_journal(journal, offset));
3498 			} else {
3499 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3500 				seg_info_to_raw_sit(se,
3501 						&raw_sit->entries[sit_offset]);
3502 			}
3503 
3504 			__clear_bit(segno, bitmap);
3505 			sit_i->dirty_sentries--;
3506 			ses->entry_cnt--;
3507 		}
3508 
3509 		if (to_journal)
3510 			up_write(&curseg->journal_rwsem);
3511 		else
3512 			f2fs_put_page(page, 1);
3513 
3514 		f2fs_bug_on(sbi, ses->entry_cnt);
3515 		release_sit_entry_set(ses);
3516 	}
3517 
3518 	f2fs_bug_on(sbi, !list_empty(head));
3519 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
3520 out:
3521 	if (cpc->reason & CP_DISCARD) {
3522 		__u64 trim_start = cpc->trim_start;
3523 
3524 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3525 			add_discard_addrs(sbi, cpc, false);
3526 
3527 		cpc->trim_start = trim_start;
3528 	}
3529 	up_write(&sit_i->sentry_lock);
3530 
3531 	set_prefree_as_free_segments(sbi);
3532 }
3533 
build_sit_info(struct f2fs_sb_info * sbi)3534 static int build_sit_info(struct f2fs_sb_info *sbi)
3535 {
3536 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3537 	struct sit_info *sit_i;
3538 	unsigned int sit_segs, start;
3539 	char *src_bitmap;
3540 	unsigned int bitmap_size;
3541 
3542 	/* allocate memory for SIT information */
3543 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3544 	if (!sit_i)
3545 		return -ENOMEM;
3546 
3547 	SM_I(sbi)->sit_info = sit_i;
3548 
3549 	sit_i->sentries = f2fs_kvzalloc(sbi, MAIN_SEGS(sbi) *
3550 					sizeof(struct seg_entry), GFP_KERNEL);
3551 	if (!sit_i->sentries)
3552 		return -ENOMEM;
3553 
3554 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3555 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3556 								GFP_KERNEL);
3557 	if (!sit_i->dirty_sentries_bitmap)
3558 		return -ENOMEM;
3559 
3560 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
3561 		sit_i->sentries[start].cur_valid_map
3562 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3563 		sit_i->sentries[start].ckpt_valid_map
3564 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3565 		if (!sit_i->sentries[start].cur_valid_map ||
3566 				!sit_i->sentries[start].ckpt_valid_map)
3567 			return -ENOMEM;
3568 
3569 #ifdef CONFIG_F2FS_CHECK_FS
3570 		sit_i->sentries[start].cur_valid_map_mir
3571 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3572 		if (!sit_i->sentries[start].cur_valid_map_mir)
3573 			return -ENOMEM;
3574 #endif
3575 
3576 		if (f2fs_discard_en(sbi)) {
3577 			sit_i->sentries[start].discard_map
3578 				= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3579 								GFP_KERNEL);
3580 			if (!sit_i->sentries[start].discard_map)
3581 				return -ENOMEM;
3582 		}
3583 	}
3584 
3585 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3586 	if (!sit_i->tmp_map)
3587 		return -ENOMEM;
3588 
3589 	if (sbi->segs_per_sec > 1) {
3590 		sit_i->sec_entries = f2fs_kvzalloc(sbi, MAIN_SECS(sbi) *
3591 					sizeof(struct sec_entry), GFP_KERNEL);
3592 		if (!sit_i->sec_entries)
3593 			return -ENOMEM;
3594 	}
3595 
3596 	/* get information related with SIT */
3597 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3598 
3599 	/* setup SIT bitmap from ckeckpoint pack */
3600 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3601 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3602 
3603 	sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3604 	if (!sit_i->sit_bitmap)
3605 		return -ENOMEM;
3606 
3607 #ifdef CONFIG_F2FS_CHECK_FS
3608 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3609 	if (!sit_i->sit_bitmap_mir)
3610 		return -ENOMEM;
3611 #endif
3612 
3613 	/* init SIT information */
3614 	sit_i->s_ops = &default_salloc_ops;
3615 
3616 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3617 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3618 	sit_i->written_valid_blocks = 0;
3619 	sit_i->bitmap_size = bitmap_size;
3620 	sit_i->dirty_sentries = 0;
3621 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3622 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3623 	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
3624 	init_rwsem(&sit_i->sentry_lock);
3625 	return 0;
3626 }
3627 
build_free_segmap(struct f2fs_sb_info * sbi)3628 static int build_free_segmap(struct f2fs_sb_info *sbi)
3629 {
3630 	struct free_segmap_info *free_i;
3631 	unsigned int bitmap_size, sec_bitmap_size;
3632 
3633 	/* allocate memory for free segmap information */
3634 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3635 	if (!free_i)
3636 		return -ENOMEM;
3637 
3638 	SM_I(sbi)->free_info = free_i;
3639 
3640 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3641 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3642 	if (!free_i->free_segmap)
3643 		return -ENOMEM;
3644 
3645 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3646 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3647 	if (!free_i->free_secmap)
3648 		return -ENOMEM;
3649 
3650 	/* set all segments as dirty temporarily */
3651 	memset(free_i->free_segmap, 0xff, bitmap_size);
3652 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3653 
3654 	/* init free segmap information */
3655 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3656 	free_i->free_segments = 0;
3657 	free_i->free_sections = 0;
3658 	spin_lock_init(&free_i->segmap_lock);
3659 	return 0;
3660 }
3661 
build_curseg(struct f2fs_sb_info * sbi)3662 static int build_curseg(struct f2fs_sb_info *sbi)
3663 {
3664 	struct curseg_info *array;
3665 	int i;
3666 
3667 	array = f2fs_kzalloc(sbi, sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
3668 	if (!array)
3669 		return -ENOMEM;
3670 
3671 	SM_I(sbi)->curseg_array = array;
3672 
3673 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
3674 		mutex_init(&array[i].curseg_mutex);
3675 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
3676 		if (!array[i].sum_blk)
3677 			return -ENOMEM;
3678 		init_rwsem(&array[i].journal_rwsem);
3679 		array[i].journal = f2fs_kzalloc(sbi,
3680 				sizeof(struct f2fs_journal), GFP_KERNEL);
3681 		if (!array[i].journal)
3682 			return -ENOMEM;
3683 		array[i].segno = NULL_SEGNO;
3684 		array[i].next_blkoff = 0;
3685 	}
3686 	return restore_curseg_summaries(sbi);
3687 }
3688 
build_sit_entries(struct f2fs_sb_info * sbi)3689 static int build_sit_entries(struct f2fs_sb_info *sbi)
3690 {
3691 	struct sit_info *sit_i = SIT_I(sbi);
3692 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3693 	struct f2fs_journal *journal = curseg->journal;
3694 	struct seg_entry *se;
3695 	struct f2fs_sit_entry sit;
3696 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
3697 	unsigned int i, start, end;
3698 	unsigned int readed, start_blk = 0;
3699 	int err = 0;
3700 
3701 	do {
3702 		readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
3703 							META_SIT, true);
3704 
3705 		start = start_blk * sit_i->sents_per_block;
3706 		end = (start_blk + readed) * sit_i->sents_per_block;
3707 
3708 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
3709 			struct f2fs_sit_block *sit_blk;
3710 			struct page *page;
3711 
3712 			se = &sit_i->sentries[start];
3713 			page = get_current_sit_page(sbi, start);
3714 			sit_blk = (struct f2fs_sit_block *)page_address(page);
3715 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3716 			f2fs_put_page(page, 1);
3717 
3718 			err = check_block_count(sbi, start, &sit);
3719 			if (err)
3720 				return err;
3721 			seg_info_from_raw_sit(se, &sit);
3722 
3723 			/* build discard map only one time */
3724 			if (f2fs_discard_en(sbi)) {
3725 				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3726 					memset(se->discard_map, 0xff,
3727 						SIT_VBLOCK_MAP_SIZE);
3728 				} else {
3729 					memcpy(se->discard_map,
3730 						se->cur_valid_map,
3731 						SIT_VBLOCK_MAP_SIZE);
3732 					sbi->discard_blks +=
3733 						sbi->blocks_per_seg -
3734 						se->valid_blocks;
3735 				}
3736 			}
3737 
3738 			if (sbi->segs_per_sec > 1)
3739 				get_sec_entry(sbi, start)->valid_blocks +=
3740 							se->valid_blocks;
3741 		}
3742 		start_blk += readed;
3743 	} while (start_blk < sit_blk_cnt);
3744 
3745 	down_read(&curseg->journal_rwsem);
3746 	for (i = 0; i < sits_in_cursum(journal); i++) {
3747 		unsigned int old_valid_blocks;
3748 
3749 		start = le32_to_cpu(segno_in_journal(journal, i));
3750 		se = &sit_i->sentries[start];
3751 		sit = sit_in_journal(journal, i);
3752 
3753 		old_valid_blocks = se->valid_blocks;
3754 
3755 		err = check_block_count(sbi, start, &sit);
3756 		if (err)
3757 			break;
3758 		seg_info_from_raw_sit(se, &sit);
3759 
3760 		if (f2fs_discard_en(sbi)) {
3761 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3762 				memset(se->discard_map, 0xff,
3763 							SIT_VBLOCK_MAP_SIZE);
3764 			} else {
3765 				memcpy(se->discard_map, se->cur_valid_map,
3766 							SIT_VBLOCK_MAP_SIZE);
3767 				sbi->discard_blks += old_valid_blocks -
3768 							se->valid_blocks;
3769 			}
3770 		}
3771 
3772 		if (sbi->segs_per_sec > 1)
3773 			get_sec_entry(sbi, start)->valid_blocks +=
3774 				se->valid_blocks - old_valid_blocks;
3775 	}
3776 	up_read(&curseg->journal_rwsem);
3777 	return err;
3778 }
3779 
init_free_segmap(struct f2fs_sb_info * sbi)3780 static void init_free_segmap(struct f2fs_sb_info *sbi)
3781 {
3782 	unsigned int start;
3783 	int type;
3784 
3785 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
3786 		struct seg_entry *sentry = get_seg_entry(sbi, start);
3787 		if (!sentry->valid_blocks)
3788 			__set_free(sbi, start);
3789 		else
3790 			SIT_I(sbi)->written_valid_blocks +=
3791 						sentry->valid_blocks;
3792 	}
3793 
3794 	/* set use the current segments */
3795 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
3796 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
3797 		__set_test_and_inuse(sbi, curseg_t->segno);
3798 	}
3799 }
3800 
init_dirty_segmap(struct f2fs_sb_info * sbi)3801 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
3802 {
3803 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3804 	struct free_segmap_info *free_i = FREE_I(sbi);
3805 	unsigned int segno = 0, offset = 0;
3806 	unsigned short valid_blocks;
3807 
3808 	while (1) {
3809 		/* find dirty segment based on free segmap */
3810 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
3811 		if (segno >= MAIN_SEGS(sbi))
3812 			break;
3813 		offset = segno + 1;
3814 		valid_blocks = get_valid_blocks(sbi, segno, false);
3815 		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
3816 			continue;
3817 		if (valid_blocks > sbi->blocks_per_seg) {
3818 			f2fs_bug_on(sbi, 1);
3819 			continue;
3820 		}
3821 		mutex_lock(&dirty_i->seglist_lock);
3822 		__locate_dirty_segment(sbi, segno, DIRTY);
3823 		mutex_unlock(&dirty_i->seglist_lock);
3824 	}
3825 }
3826 
init_victim_secmap(struct f2fs_sb_info * sbi)3827 static int init_victim_secmap(struct f2fs_sb_info *sbi)
3828 {
3829 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3830 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3831 
3832 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
3833 	if (!dirty_i->victim_secmap)
3834 		return -ENOMEM;
3835 	return 0;
3836 }
3837 
build_dirty_segmap(struct f2fs_sb_info * sbi)3838 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
3839 {
3840 	struct dirty_seglist_info *dirty_i;
3841 	unsigned int bitmap_size, i;
3842 
3843 	/* allocate memory for dirty segments list information */
3844 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
3845 								GFP_KERNEL);
3846 	if (!dirty_i)
3847 		return -ENOMEM;
3848 
3849 	SM_I(sbi)->dirty_info = dirty_i;
3850 	mutex_init(&dirty_i->seglist_lock);
3851 
3852 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3853 
3854 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
3855 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
3856 								GFP_KERNEL);
3857 		if (!dirty_i->dirty_segmap[i])
3858 			return -ENOMEM;
3859 	}
3860 
3861 	init_dirty_segmap(sbi);
3862 	return init_victim_secmap(sbi);
3863 }
3864 
sanity_check_curseg(struct f2fs_sb_info * sbi)3865 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
3866 {
3867 	int i;
3868 
3869 	/*
3870 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
3871 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
3872 	 */
3873 	for (i = 0; i < NO_CHECK_TYPE; i++) {
3874 		struct curseg_info *curseg = CURSEG_I(sbi, i);
3875 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
3876 		unsigned int blkofs = curseg->next_blkoff;
3877 
3878 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
3879 			goto out;
3880 
3881 		if (curseg->alloc_type == SSR)
3882 			continue;
3883 
3884 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
3885 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
3886 				continue;
3887 out:
3888 			f2fs_msg(sbi->sb, KERN_ERR,
3889 				"Current segment's next free block offset is "
3890 				"inconsistent with bitmap, logtype:%u, "
3891 				"segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
3892 				i, curseg->segno, curseg->alloc_type,
3893 				curseg->next_blkoff, blkofs);
3894 			return -EINVAL;
3895 		}
3896 	}
3897 	return 0;
3898 }
3899 
3900 /*
3901  * Update min, max modified time for cost-benefit GC algorithm
3902  */
init_min_max_mtime(struct f2fs_sb_info * sbi)3903 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
3904 {
3905 	struct sit_info *sit_i = SIT_I(sbi);
3906 	unsigned int segno;
3907 
3908 	down_write(&sit_i->sentry_lock);
3909 
3910 	sit_i->min_mtime = LLONG_MAX;
3911 
3912 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
3913 		unsigned int i;
3914 		unsigned long long mtime = 0;
3915 
3916 		for (i = 0; i < sbi->segs_per_sec; i++)
3917 			mtime += get_seg_entry(sbi, segno + i)->mtime;
3918 
3919 		mtime = div_u64(mtime, sbi->segs_per_sec);
3920 
3921 		if (sit_i->min_mtime > mtime)
3922 			sit_i->min_mtime = mtime;
3923 	}
3924 	sit_i->max_mtime = get_mtime(sbi);
3925 	up_write(&sit_i->sentry_lock);
3926 }
3927 
build_segment_manager(struct f2fs_sb_info * sbi)3928 int build_segment_manager(struct f2fs_sb_info *sbi)
3929 {
3930 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3931 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3932 	struct f2fs_sm_info *sm_info;
3933 	int err;
3934 
3935 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
3936 	if (!sm_info)
3937 		return -ENOMEM;
3938 
3939 	/* init sm info */
3940 	sbi->sm_info = sm_info;
3941 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3942 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3943 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
3944 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3945 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3946 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
3947 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3948 	sm_info->rec_prefree_segments = sm_info->main_segments *
3949 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
3950 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
3951 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
3952 
3953 	if (!test_opt(sbi, LFS))
3954 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
3955 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
3956 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
3957 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
3958 	sm_info->min_ssr_sections = reserved_sections(sbi);
3959 
3960 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
3961 
3962 	init_rwsem(&sm_info->curseg_lock);
3963 
3964 	if (!f2fs_readonly(sbi->sb)) {
3965 		err = create_flush_cmd_control(sbi);
3966 		if (err)
3967 			return err;
3968 	}
3969 
3970 	err = create_discard_cmd_control(sbi);
3971 	if (err)
3972 		return err;
3973 
3974 	err = build_sit_info(sbi);
3975 	if (err)
3976 		return err;
3977 	err = build_free_segmap(sbi);
3978 	if (err)
3979 		return err;
3980 	err = build_curseg(sbi);
3981 	if (err)
3982 		return err;
3983 
3984 	/* reinit free segmap based on SIT */
3985 	err = build_sit_entries(sbi);
3986 	if (err)
3987 		return err;
3988 
3989 	init_free_segmap(sbi);
3990 	err = build_dirty_segmap(sbi);
3991 	if (err)
3992 		return err;
3993 
3994 	err = sanity_check_curseg(sbi);
3995 	if (err)
3996 		return err;
3997 
3998 	init_min_max_mtime(sbi);
3999 	return 0;
4000 }
4001 
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)4002 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4003 		enum dirty_type dirty_type)
4004 {
4005 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4006 
4007 	mutex_lock(&dirty_i->seglist_lock);
4008 	kvfree(dirty_i->dirty_segmap[dirty_type]);
4009 	dirty_i->nr_dirty[dirty_type] = 0;
4010 	mutex_unlock(&dirty_i->seglist_lock);
4011 }
4012 
destroy_victim_secmap(struct f2fs_sb_info * sbi)4013 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4014 {
4015 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4016 	kvfree(dirty_i->victim_secmap);
4017 }
4018 
destroy_dirty_segmap(struct f2fs_sb_info * sbi)4019 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4020 {
4021 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4022 	int i;
4023 
4024 	if (!dirty_i)
4025 		return;
4026 
4027 	/* discard pre-free/dirty segments list */
4028 	for (i = 0; i < NR_DIRTY_TYPE; i++)
4029 		discard_dirty_segmap(sbi, i);
4030 
4031 	destroy_victim_secmap(sbi);
4032 	SM_I(sbi)->dirty_info = NULL;
4033 	kfree(dirty_i);
4034 }
4035 
destroy_curseg(struct f2fs_sb_info * sbi)4036 static void destroy_curseg(struct f2fs_sb_info *sbi)
4037 {
4038 	struct curseg_info *array = SM_I(sbi)->curseg_array;
4039 	int i;
4040 
4041 	if (!array)
4042 		return;
4043 	SM_I(sbi)->curseg_array = NULL;
4044 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
4045 		kfree(array[i].sum_blk);
4046 		kfree(array[i].journal);
4047 	}
4048 	kfree(array);
4049 }
4050 
destroy_free_segmap(struct f2fs_sb_info * sbi)4051 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4052 {
4053 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4054 	if (!free_i)
4055 		return;
4056 	SM_I(sbi)->free_info = NULL;
4057 	kvfree(free_i->free_segmap);
4058 	kvfree(free_i->free_secmap);
4059 	kfree(free_i);
4060 }
4061 
destroy_sit_info(struct f2fs_sb_info * sbi)4062 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4063 {
4064 	struct sit_info *sit_i = SIT_I(sbi);
4065 	unsigned int start;
4066 
4067 	if (!sit_i)
4068 		return;
4069 
4070 	if (sit_i->sentries) {
4071 		for (start = 0; start < MAIN_SEGS(sbi); start++) {
4072 			kfree(sit_i->sentries[start].cur_valid_map);
4073 #ifdef CONFIG_F2FS_CHECK_FS
4074 			kfree(sit_i->sentries[start].cur_valid_map_mir);
4075 #endif
4076 			kfree(sit_i->sentries[start].ckpt_valid_map);
4077 			kfree(sit_i->sentries[start].discard_map);
4078 		}
4079 	}
4080 	kfree(sit_i->tmp_map);
4081 
4082 	kvfree(sit_i->sentries);
4083 	kvfree(sit_i->sec_entries);
4084 	kvfree(sit_i->dirty_sentries_bitmap);
4085 
4086 	SM_I(sbi)->sit_info = NULL;
4087 	kfree(sit_i->sit_bitmap);
4088 #ifdef CONFIG_F2FS_CHECK_FS
4089 	kfree(sit_i->sit_bitmap_mir);
4090 #endif
4091 	kfree(sit_i);
4092 }
4093 
destroy_segment_manager(struct f2fs_sb_info * sbi)4094 void destroy_segment_manager(struct f2fs_sb_info *sbi)
4095 {
4096 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4097 
4098 	if (!sm_info)
4099 		return;
4100 	destroy_flush_cmd_control(sbi, true);
4101 	destroy_discard_cmd_control(sbi);
4102 	destroy_dirty_segmap(sbi);
4103 	destroy_curseg(sbi);
4104 	destroy_free_segmap(sbi);
4105 	destroy_sit_info(sbi);
4106 	sbi->sm_info = NULL;
4107 	kfree(sm_info);
4108 }
4109 
create_segment_manager_caches(void)4110 int __init create_segment_manager_caches(void)
4111 {
4112 	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4113 			sizeof(struct discard_entry));
4114 	if (!discard_entry_slab)
4115 		goto fail;
4116 
4117 	discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4118 			sizeof(struct discard_cmd));
4119 	if (!discard_cmd_slab)
4120 		goto destroy_discard_entry;
4121 
4122 	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4123 			sizeof(struct sit_entry_set));
4124 	if (!sit_entry_set_slab)
4125 		goto destroy_discard_cmd;
4126 
4127 	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4128 			sizeof(struct inmem_pages));
4129 	if (!inmem_entry_slab)
4130 		goto destroy_sit_entry_set;
4131 	return 0;
4132 
4133 destroy_sit_entry_set:
4134 	kmem_cache_destroy(sit_entry_set_slab);
4135 destroy_discard_cmd:
4136 	kmem_cache_destroy(discard_cmd_slab);
4137 destroy_discard_entry:
4138 	kmem_cache_destroy(discard_entry_slab);
4139 fail:
4140 	return -ENOMEM;
4141 }
4142 
destroy_segment_manager_caches(void)4143 void destroy_segment_manager_caches(void)
4144 {
4145 	kmem_cache_destroy(sit_entry_set_slab);
4146 	kmem_cache_destroy(discard_cmd_slab);
4147 	kmem_cache_destroy(discard_entry_slab);
4148 	kmem_cache_destroy(inmem_entry_slab);
4149 }
4150