1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23
24 /*
25 * Inode locking rules:
26 *
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode->i_sb->s_inode_list_lock protects:
32 * inode->i_sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
37 *
38 * Lock ordering:
39 *
40 * inode->i_sb->s_inode_list_lock
41 * inode->i_lock
42 * Inode LRU list locks
43 *
44 * bdi->wb.list_lock
45 * inode->i_lock
46 *
47 * inode_hash_lock
48 * inode->i_sb->s_inode_list_lock
49 * inode->i_lock
50 *
51 * iunique_lock
52 * inode_hash_lock
53 */
54
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59
60 /*
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
63 */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67
68 /*
69 * Statistics gathering..
70 */
71 struct inodes_stat_t inodes_stat;
72
73 static DEFINE_PER_CPU(unsigned long, nr_inodes);
74 static DEFINE_PER_CPU(unsigned long, nr_unused);
75
76 static struct kmem_cache *inode_cachep __read_mostly;
77
get_nr_inodes(void)78 static long get_nr_inodes(void)
79 {
80 int i;
81 long sum = 0;
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
85 }
86
get_nr_inodes_unused(void)87 static inline long get_nr_inodes_unused(void)
88 {
89 int i;
90 long sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
94 }
95
get_nr_dirty_inodes(void)96 long get_nr_dirty_inodes(void)
97 {
98 /* not actually dirty inodes, but a wild approximation */
99 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
101 }
102
103 /*
104 * Handle nr_inode sysctl
105 */
106 #ifdef CONFIG_SYSCTL
proc_nr_inodes(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)107 int proc_nr_inodes(struct ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 inodes_stat.nr_inodes = get_nr_inodes();
111 inodes_stat.nr_unused = get_nr_inodes_unused();
112 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
113 }
114 #endif
115
no_open(struct inode * inode,struct file * file)116 static int no_open(struct inode *inode, struct file *file)
117 {
118 return -ENXIO;
119 }
120
121 /**
122 * inode_init_always - perform inode structure intialisation
123 * @sb: superblock inode belongs to
124 * @inode: inode to initialise
125 *
126 * These are initializations that need to be done on every inode
127 * allocation as the fields are not initialised by slab allocation.
128 */
inode_init_always(struct super_block * sb,struct inode * inode)129 int inode_init_always(struct super_block *sb, struct inode *inode)
130 {
131 static const struct inode_operations empty_iops;
132 static const struct file_operations no_open_fops = {.open = no_open};
133 struct address_space *const mapping = &inode->i_data;
134
135 inode->i_sb = sb;
136 inode->i_blkbits = sb->s_blocksize_bits;
137 inode->i_flags = 0;
138 atomic64_set(&inode->i_sequence, 0);
139 atomic_set(&inode->i_count, 1);
140 inode->i_op = &empty_iops;
141 inode->i_fop = &no_open_fops;
142 inode->__i_nlink = 1;
143 inode->i_opflags = 0;
144 i_uid_write(inode, 0);
145 i_gid_write(inode, 0);
146 atomic_set(&inode->i_writecount, 0);
147 inode->i_size = 0;
148 inode->i_blocks = 0;
149 inode->i_bytes = 0;
150 inode->i_generation = 0;
151 inode->i_pipe = NULL;
152 inode->i_bdev = NULL;
153 inode->i_cdev = NULL;
154 inode->i_link = NULL;
155 inode->i_rdev = 0;
156 inode->dirtied_when = 0;
157
158 #ifdef CONFIG_CGROUP_WRITEBACK
159 inode->i_wb_frn_winner = 0;
160 inode->i_wb_frn_avg_time = 0;
161 inode->i_wb_frn_history = 0;
162 #endif
163
164 if (security_inode_alloc(inode))
165 goto out;
166 spin_lock_init(&inode->i_lock);
167 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
168
169 mutex_init(&inode->i_mutex);
170 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
171
172 atomic_set(&inode->i_dio_count, 0);
173
174 mapping->a_ops = &empty_aops;
175 mapping->host = inode;
176 mapping->flags = 0;
177 atomic_set(&mapping->i_mmap_writable, 0);
178 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
179 mapping->private_data = NULL;
180 mapping->writeback_index = 0;
181 inode->i_private = NULL;
182 inode->i_mapping = mapping;
183 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
184 #ifdef CONFIG_FS_POSIX_ACL
185 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
186 #endif
187
188 #ifdef CONFIG_FSNOTIFY
189 inode->i_fsnotify_mask = 0;
190 #endif
191 inode->i_flctx = NULL;
192 this_cpu_inc(nr_inodes);
193
194 return 0;
195 out:
196 return -ENOMEM;
197 }
198 EXPORT_SYMBOL(inode_init_always);
199
alloc_inode(struct super_block * sb)200 static struct inode *alloc_inode(struct super_block *sb)
201 {
202 struct inode *inode;
203
204 if (sb->s_op->alloc_inode)
205 inode = sb->s_op->alloc_inode(sb);
206 else
207 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
208
209 if (!inode)
210 return NULL;
211
212 if (unlikely(inode_init_always(sb, inode))) {
213 if (inode->i_sb->s_op->destroy_inode)
214 inode->i_sb->s_op->destroy_inode(inode);
215 else
216 kmem_cache_free(inode_cachep, inode);
217 return NULL;
218 }
219
220 return inode;
221 }
222
free_inode_nonrcu(struct inode * inode)223 void free_inode_nonrcu(struct inode *inode)
224 {
225 kmem_cache_free(inode_cachep, inode);
226 }
227 EXPORT_SYMBOL(free_inode_nonrcu);
228
__destroy_inode(struct inode * inode)229 void __destroy_inode(struct inode *inode)
230 {
231 BUG_ON(inode_has_buffers(inode));
232 inode_detach_wb(inode);
233 security_inode_free(inode);
234 fsnotify_inode_delete(inode);
235 locks_free_lock_context(inode->i_flctx);
236 if (!inode->i_nlink) {
237 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
238 atomic_long_dec(&inode->i_sb->s_remove_count);
239 }
240
241 #ifdef CONFIG_FS_POSIX_ACL
242 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
243 posix_acl_release(inode->i_acl);
244 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
245 posix_acl_release(inode->i_default_acl);
246 #endif
247 this_cpu_dec(nr_inodes);
248 }
249 EXPORT_SYMBOL(__destroy_inode);
250
i_callback(struct rcu_head * head)251 static void i_callback(struct rcu_head *head)
252 {
253 struct inode *inode = container_of(head, struct inode, i_rcu);
254 kmem_cache_free(inode_cachep, inode);
255 }
256
destroy_inode(struct inode * inode)257 static void destroy_inode(struct inode *inode)
258 {
259 BUG_ON(!list_empty(&inode->i_lru));
260 __destroy_inode(inode);
261 if (inode->i_sb->s_op->destroy_inode)
262 inode->i_sb->s_op->destroy_inode(inode);
263 else
264 call_rcu(&inode->i_rcu, i_callback);
265 }
266
267 /**
268 * drop_nlink - directly drop an inode's link count
269 * @inode: inode
270 *
271 * This is a low-level filesystem helper to replace any
272 * direct filesystem manipulation of i_nlink. In cases
273 * where we are attempting to track writes to the
274 * filesystem, a decrement to zero means an imminent
275 * write when the file is truncated and actually unlinked
276 * on the filesystem.
277 */
drop_nlink(struct inode * inode)278 void drop_nlink(struct inode *inode)
279 {
280 WARN_ON(inode->i_nlink == 0);
281 inode->__i_nlink--;
282 if (!inode->i_nlink)
283 atomic_long_inc(&inode->i_sb->s_remove_count);
284 }
285 EXPORT_SYMBOL(drop_nlink);
286
287 /**
288 * clear_nlink - directly zero an inode's link count
289 * @inode: inode
290 *
291 * This is a low-level filesystem helper to replace any
292 * direct filesystem manipulation of i_nlink. See
293 * drop_nlink() for why we care about i_nlink hitting zero.
294 */
clear_nlink(struct inode * inode)295 void clear_nlink(struct inode *inode)
296 {
297 if (inode->i_nlink) {
298 inode->__i_nlink = 0;
299 atomic_long_inc(&inode->i_sb->s_remove_count);
300 }
301 }
302 EXPORT_SYMBOL(clear_nlink);
303
304 /**
305 * set_nlink - directly set an inode's link count
306 * @inode: inode
307 * @nlink: new nlink (should be non-zero)
308 *
309 * This is a low-level filesystem helper to replace any
310 * direct filesystem manipulation of i_nlink.
311 */
set_nlink(struct inode * inode,unsigned int nlink)312 void set_nlink(struct inode *inode, unsigned int nlink)
313 {
314 if (!nlink) {
315 clear_nlink(inode);
316 } else {
317 /* Yes, some filesystems do change nlink from zero to one */
318 if (inode->i_nlink == 0)
319 atomic_long_dec(&inode->i_sb->s_remove_count);
320
321 inode->__i_nlink = nlink;
322 }
323 }
324 EXPORT_SYMBOL(set_nlink);
325
326 /**
327 * inc_nlink - directly increment an inode's link count
328 * @inode: inode
329 *
330 * This is a low-level filesystem helper to replace any
331 * direct filesystem manipulation of i_nlink. Currently,
332 * it is only here for parity with dec_nlink().
333 */
inc_nlink(struct inode * inode)334 void inc_nlink(struct inode *inode)
335 {
336 if (unlikely(inode->i_nlink == 0)) {
337 WARN_ON(!(inode->i_state & I_LINKABLE));
338 atomic_long_dec(&inode->i_sb->s_remove_count);
339 }
340
341 inode->__i_nlink++;
342 }
343 EXPORT_SYMBOL(inc_nlink);
344
address_space_init_once(struct address_space * mapping)345 void address_space_init_once(struct address_space *mapping)
346 {
347 memset(mapping, 0, sizeof(*mapping));
348 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
349 spin_lock_init(&mapping->tree_lock);
350 init_rwsem(&mapping->i_mmap_rwsem);
351 INIT_LIST_HEAD(&mapping->private_list);
352 spin_lock_init(&mapping->private_lock);
353 mapping->i_mmap = RB_ROOT;
354 }
355 EXPORT_SYMBOL(address_space_init_once);
356
357 /*
358 * These are initializations that only need to be done
359 * once, because the fields are idempotent across use
360 * of the inode, so let the slab aware of that.
361 */
inode_init_once(struct inode * inode)362 void inode_init_once(struct inode *inode)
363 {
364 memset(inode, 0, sizeof(*inode));
365 INIT_HLIST_NODE(&inode->i_hash);
366 INIT_LIST_HEAD(&inode->i_devices);
367 INIT_LIST_HEAD(&inode->i_io_list);
368 INIT_LIST_HEAD(&inode->i_lru);
369 address_space_init_once(&inode->i_data);
370 i_size_ordered_init(inode);
371 #ifdef CONFIG_FSNOTIFY
372 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
373 #endif
374 }
375 EXPORT_SYMBOL(inode_init_once);
376
init_once(void * foo)377 static void init_once(void *foo)
378 {
379 struct inode *inode = (struct inode *) foo;
380
381 inode_init_once(inode);
382 }
383
384 /*
385 * inode->i_lock must be held
386 */
__iget(struct inode * inode)387 void __iget(struct inode *inode)
388 {
389 atomic_inc(&inode->i_count);
390 }
391
392 /*
393 * get additional reference to inode; caller must already hold one.
394 */
ihold(struct inode * inode)395 void ihold(struct inode *inode)
396 {
397 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
398 }
399 EXPORT_SYMBOL(ihold);
400
inode_lru_list_add(struct inode * inode)401 static void inode_lru_list_add(struct inode *inode)
402 {
403 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
404 this_cpu_inc(nr_unused);
405 }
406
407 /*
408 * Add inode to LRU if needed (inode is unused and clean).
409 *
410 * Needs inode->i_lock held.
411 */
inode_add_lru(struct inode * inode)412 void inode_add_lru(struct inode *inode)
413 {
414 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
415 I_FREEING | I_WILL_FREE)) &&
416 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
417 inode_lru_list_add(inode);
418 }
419
420
inode_lru_list_del(struct inode * inode)421 static void inode_lru_list_del(struct inode *inode)
422 {
423
424 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
425 this_cpu_dec(nr_unused);
426 }
427
428 /**
429 * inode_sb_list_add - add inode to the superblock list of inodes
430 * @inode: inode to add
431 */
inode_sb_list_add(struct inode * inode)432 void inode_sb_list_add(struct inode *inode)
433 {
434 spin_lock(&inode->i_sb->s_inode_list_lock);
435 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
436 spin_unlock(&inode->i_sb->s_inode_list_lock);
437 }
438 EXPORT_SYMBOL_GPL(inode_sb_list_add);
439
inode_sb_list_del(struct inode * inode)440 static inline void inode_sb_list_del(struct inode *inode)
441 {
442 if (!list_empty(&inode->i_sb_list)) {
443 spin_lock(&inode->i_sb->s_inode_list_lock);
444 list_del_init(&inode->i_sb_list);
445 spin_unlock(&inode->i_sb->s_inode_list_lock);
446 }
447 }
448
hash(struct super_block * sb,unsigned long hashval)449 static unsigned long hash(struct super_block *sb, unsigned long hashval)
450 {
451 unsigned long tmp;
452
453 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
454 L1_CACHE_BYTES;
455 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
456 return tmp & i_hash_mask;
457 }
458
459 /**
460 * __insert_inode_hash - hash an inode
461 * @inode: unhashed inode
462 * @hashval: unsigned long value used to locate this object in the
463 * inode_hashtable.
464 *
465 * Add an inode to the inode hash for this superblock.
466 */
__insert_inode_hash(struct inode * inode,unsigned long hashval)467 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
468 {
469 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
470
471 spin_lock(&inode_hash_lock);
472 spin_lock(&inode->i_lock);
473 hlist_add_head(&inode->i_hash, b);
474 spin_unlock(&inode->i_lock);
475 spin_unlock(&inode_hash_lock);
476 }
477 EXPORT_SYMBOL(__insert_inode_hash);
478
479 /**
480 * __remove_inode_hash - remove an inode from the hash
481 * @inode: inode to unhash
482 *
483 * Remove an inode from the superblock.
484 */
__remove_inode_hash(struct inode * inode)485 void __remove_inode_hash(struct inode *inode)
486 {
487 spin_lock(&inode_hash_lock);
488 spin_lock(&inode->i_lock);
489 hlist_del_init(&inode->i_hash);
490 spin_unlock(&inode->i_lock);
491 spin_unlock(&inode_hash_lock);
492 }
493 EXPORT_SYMBOL(__remove_inode_hash);
494
clear_inode(struct inode * inode)495 void clear_inode(struct inode *inode)
496 {
497 might_sleep();
498 /*
499 * We have to cycle tree_lock here because reclaim can be still in the
500 * process of removing the last page (in __delete_from_page_cache())
501 * and we must not free mapping under it.
502 */
503 spin_lock_irq(&inode->i_data.tree_lock);
504 BUG_ON(inode->i_data.nrpages);
505 BUG_ON(inode->i_data.nrshadows);
506 spin_unlock_irq(&inode->i_data.tree_lock);
507 BUG_ON(!list_empty(&inode->i_data.private_list));
508 BUG_ON(!(inode->i_state & I_FREEING));
509 BUG_ON(inode->i_state & I_CLEAR);
510 /* don't need i_lock here, no concurrent mods to i_state */
511 inode->i_state = I_FREEING | I_CLEAR;
512 }
513 EXPORT_SYMBOL(clear_inode);
514
515 /*
516 * Free the inode passed in, removing it from the lists it is still connected
517 * to. We remove any pages still attached to the inode and wait for any IO that
518 * is still in progress before finally destroying the inode.
519 *
520 * An inode must already be marked I_FREEING so that we avoid the inode being
521 * moved back onto lists if we race with other code that manipulates the lists
522 * (e.g. writeback_single_inode). The caller is responsible for setting this.
523 *
524 * An inode must already be removed from the LRU list before being evicted from
525 * the cache. This should occur atomically with setting the I_FREEING state
526 * flag, so no inodes here should ever be on the LRU when being evicted.
527 */
evict(struct inode * inode)528 static void evict(struct inode *inode)
529 {
530 const struct super_operations *op = inode->i_sb->s_op;
531
532 BUG_ON(!(inode->i_state & I_FREEING));
533 BUG_ON(!list_empty(&inode->i_lru));
534
535 if (!list_empty(&inode->i_io_list))
536 inode_io_list_del(inode);
537
538 inode_sb_list_del(inode);
539
540 /*
541 * Wait for flusher thread to be done with the inode so that filesystem
542 * does not start destroying it while writeback is still running. Since
543 * the inode has I_FREEING set, flusher thread won't start new work on
544 * the inode. We just have to wait for running writeback to finish.
545 */
546 inode_wait_for_writeback(inode);
547
548 if (op->evict_inode) {
549 op->evict_inode(inode);
550 } else {
551 truncate_inode_pages_final(&inode->i_data);
552 clear_inode(inode);
553 }
554 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
555 bd_forget(inode);
556 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
557 cd_forget(inode);
558
559 remove_inode_hash(inode);
560
561 spin_lock(&inode->i_lock);
562 wake_up_bit(&inode->i_state, __I_NEW);
563 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
564 spin_unlock(&inode->i_lock);
565
566 destroy_inode(inode);
567 }
568
569 /*
570 * dispose_list - dispose of the contents of a local list
571 * @head: the head of the list to free
572 *
573 * Dispose-list gets a local list with local inodes in it, so it doesn't
574 * need to worry about list corruption and SMP locks.
575 */
dispose_list(struct list_head * head)576 static void dispose_list(struct list_head *head)
577 {
578 while (!list_empty(head)) {
579 struct inode *inode;
580
581 inode = list_first_entry(head, struct inode, i_lru);
582 list_del_init(&inode->i_lru);
583
584 evict(inode);
585 cond_resched();
586 }
587 }
588
589 /**
590 * evict_inodes - evict all evictable inodes for a superblock
591 * @sb: superblock to operate on
592 *
593 * Make sure that no inodes with zero refcount are retained. This is
594 * called by superblock shutdown after having MS_ACTIVE flag removed,
595 * so any inode reaching zero refcount during or after that call will
596 * be immediately evicted.
597 */
evict_inodes(struct super_block * sb)598 void evict_inodes(struct super_block *sb)
599 {
600 struct inode *inode, *next;
601 LIST_HEAD(dispose);
602
603 again:
604 spin_lock(&sb->s_inode_list_lock);
605 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
606 if (atomic_read(&inode->i_count))
607 continue;
608
609 spin_lock(&inode->i_lock);
610 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
611 spin_unlock(&inode->i_lock);
612 continue;
613 }
614
615 inode->i_state |= I_FREEING;
616 inode_lru_list_del(inode);
617 spin_unlock(&inode->i_lock);
618 list_add(&inode->i_lru, &dispose);
619
620 /*
621 * We can have a ton of inodes to evict at unmount time given
622 * enough memory, check to see if we need to go to sleep for a
623 * bit so we don't livelock.
624 */
625 if (need_resched()) {
626 spin_unlock(&sb->s_inode_list_lock);
627 cond_resched();
628 dispose_list(&dispose);
629 goto again;
630 }
631 }
632 spin_unlock(&sb->s_inode_list_lock);
633
634 dispose_list(&dispose);
635 }
636
637 /**
638 * invalidate_inodes - attempt to free all inodes on a superblock
639 * @sb: superblock to operate on
640 * @kill_dirty: flag to guide handling of dirty inodes
641 *
642 * Attempts to free all inodes for a given superblock. If there were any
643 * busy inodes return a non-zero value, else zero.
644 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
645 * them as busy.
646 */
invalidate_inodes(struct super_block * sb,bool kill_dirty)647 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
648 {
649 int busy = 0;
650 struct inode *inode, *next;
651 LIST_HEAD(dispose);
652
653 spin_lock(&sb->s_inode_list_lock);
654 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
655 spin_lock(&inode->i_lock);
656 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
657 spin_unlock(&inode->i_lock);
658 continue;
659 }
660 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
661 spin_unlock(&inode->i_lock);
662 busy = 1;
663 continue;
664 }
665 if (atomic_read(&inode->i_count)) {
666 spin_unlock(&inode->i_lock);
667 busy = 1;
668 continue;
669 }
670
671 inode->i_state |= I_FREEING;
672 inode_lru_list_del(inode);
673 spin_unlock(&inode->i_lock);
674 list_add(&inode->i_lru, &dispose);
675 }
676 spin_unlock(&sb->s_inode_list_lock);
677
678 dispose_list(&dispose);
679
680 return busy;
681 }
682
683 /*
684 * Isolate the inode from the LRU in preparation for freeing it.
685 *
686 * Any inodes which are pinned purely because of attached pagecache have their
687 * pagecache removed. If the inode has metadata buffers attached to
688 * mapping->private_list then try to remove them.
689 *
690 * If the inode has the I_REFERENCED flag set, then it means that it has been
691 * used recently - the flag is set in iput_final(). When we encounter such an
692 * inode, clear the flag and move it to the back of the LRU so it gets another
693 * pass through the LRU before it gets reclaimed. This is necessary because of
694 * the fact we are doing lazy LRU updates to minimise lock contention so the
695 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
696 * with this flag set because they are the inodes that are out of order.
697 */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)698 static enum lru_status inode_lru_isolate(struct list_head *item,
699 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
700 {
701 struct list_head *freeable = arg;
702 struct inode *inode = container_of(item, struct inode, i_lru);
703
704 /*
705 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
706 * If we fail to get the lock, just skip it.
707 */
708 if (!spin_trylock(&inode->i_lock))
709 return LRU_SKIP;
710
711 /*
712 * Referenced or dirty inodes are still in use. Give them another pass
713 * through the LRU as we canot reclaim them now.
714 */
715 if (atomic_read(&inode->i_count) ||
716 (inode->i_state & ~I_REFERENCED)) {
717 list_lru_isolate(lru, &inode->i_lru);
718 spin_unlock(&inode->i_lock);
719 this_cpu_dec(nr_unused);
720 return LRU_REMOVED;
721 }
722
723 /* recently referenced inodes get one more pass */
724 if (inode->i_state & I_REFERENCED) {
725 inode->i_state &= ~I_REFERENCED;
726 spin_unlock(&inode->i_lock);
727 return LRU_ROTATE;
728 }
729
730 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
731 __iget(inode);
732 spin_unlock(&inode->i_lock);
733 spin_unlock(lru_lock);
734 if (remove_inode_buffers(inode)) {
735 unsigned long reap;
736 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
737 if (current_is_kswapd())
738 __count_vm_events(KSWAPD_INODESTEAL, reap);
739 else
740 __count_vm_events(PGINODESTEAL, reap);
741 if (current->reclaim_state)
742 current->reclaim_state->reclaimed_slab += reap;
743 }
744 iput(inode);
745 spin_lock(lru_lock);
746 return LRU_RETRY;
747 }
748
749 WARN_ON(inode->i_state & I_NEW);
750 inode->i_state |= I_FREEING;
751 list_lru_isolate_move(lru, &inode->i_lru, freeable);
752 spin_unlock(&inode->i_lock);
753
754 this_cpu_dec(nr_unused);
755 return LRU_REMOVED;
756 }
757
758 /*
759 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
760 * This is called from the superblock shrinker function with a number of inodes
761 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
762 * then are freed outside inode_lock by dispose_list().
763 */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)764 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
765 {
766 LIST_HEAD(freeable);
767 long freed;
768
769 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
770 inode_lru_isolate, &freeable);
771 dispose_list(&freeable);
772 return freed;
773 }
774
775 static void __wait_on_freeing_inode(struct inode *inode);
776 /*
777 * Called with the inode lock held.
778 */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)779 static struct inode *find_inode(struct super_block *sb,
780 struct hlist_head *head,
781 int (*test)(struct inode *, void *),
782 void *data)
783 {
784 struct inode *inode = NULL;
785
786 repeat:
787 hlist_for_each_entry(inode, head, i_hash) {
788 if (inode->i_sb != sb)
789 continue;
790 if (!test(inode, data))
791 continue;
792 spin_lock(&inode->i_lock);
793 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
794 __wait_on_freeing_inode(inode);
795 goto repeat;
796 }
797 __iget(inode);
798 spin_unlock(&inode->i_lock);
799 return inode;
800 }
801 return NULL;
802 }
803
804 /*
805 * find_inode_fast is the fast path version of find_inode, see the comment at
806 * iget_locked for details.
807 */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)808 static struct inode *find_inode_fast(struct super_block *sb,
809 struct hlist_head *head, unsigned long ino)
810 {
811 struct inode *inode = NULL;
812
813 repeat:
814 hlist_for_each_entry(inode, head, i_hash) {
815 if (inode->i_ino != ino)
816 continue;
817 if (inode->i_sb != sb)
818 continue;
819 spin_lock(&inode->i_lock);
820 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
821 __wait_on_freeing_inode(inode);
822 goto repeat;
823 }
824 __iget(inode);
825 spin_unlock(&inode->i_lock);
826 return inode;
827 }
828 return NULL;
829 }
830
831 /*
832 * Each cpu owns a range of LAST_INO_BATCH numbers.
833 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
834 * to renew the exhausted range.
835 *
836 * This does not significantly increase overflow rate because every CPU can
837 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
838 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
839 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
840 * overflow rate by 2x, which does not seem too significant.
841 *
842 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
843 * error if st_ino won't fit in target struct field. Use 32bit counter
844 * here to attempt to avoid that.
845 */
846 #define LAST_INO_BATCH 1024
847 static DEFINE_PER_CPU(unsigned int, last_ino);
848
get_next_ino(void)849 unsigned int get_next_ino(void)
850 {
851 unsigned int *p = &get_cpu_var(last_ino);
852 unsigned int res = *p;
853
854 #ifdef CONFIG_SMP
855 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
856 static atomic_t shared_last_ino;
857 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
858
859 res = next - LAST_INO_BATCH;
860 }
861 #endif
862
863 res++;
864 /* get_next_ino should not provide a 0 inode number */
865 if (unlikely(!res))
866 res++;
867 *p = res;
868 put_cpu_var(last_ino);
869 return res;
870 }
871 EXPORT_SYMBOL(get_next_ino);
872
873 /**
874 * new_inode_pseudo - obtain an inode
875 * @sb: superblock
876 *
877 * Allocates a new inode for given superblock.
878 * Inode wont be chained in superblock s_inodes list
879 * This means :
880 * - fs can't be unmount
881 * - quotas, fsnotify, writeback can't work
882 */
new_inode_pseudo(struct super_block * sb)883 struct inode *new_inode_pseudo(struct super_block *sb)
884 {
885 struct inode *inode = alloc_inode(sb);
886
887 if (inode) {
888 spin_lock(&inode->i_lock);
889 inode->i_state = 0;
890 spin_unlock(&inode->i_lock);
891 INIT_LIST_HEAD(&inode->i_sb_list);
892 }
893 return inode;
894 }
895
896 /**
897 * new_inode - obtain an inode
898 * @sb: superblock
899 *
900 * Allocates a new inode for given superblock. The default gfp_mask
901 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
902 * If HIGHMEM pages are unsuitable or it is known that pages allocated
903 * for the page cache are not reclaimable or migratable,
904 * mapping_set_gfp_mask() must be called with suitable flags on the
905 * newly created inode's mapping
906 *
907 */
new_inode(struct super_block * sb)908 struct inode *new_inode(struct super_block *sb)
909 {
910 struct inode *inode;
911
912 spin_lock_prefetch(&sb->s_inode_list_lock);
913
914 inode = new_inode_pseudo(sb);
915 if (inode)
916 inode_sb_list_add(inode);
917 return inode;
918 }
919 EXPORT_SYMBOL(new_inode);
920
921 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)922 void lockdep_annotate_inode_mutex_key(struct inode *inode)
923 {
924 if (S_ISDIR(inode->i_mode)) {
925 struct file_system_type *type = inode->i_sb->s_type;
926
927 /* Set new key only if filesystem hasn't already changed it */
928 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
929 /*
930 * ensure nobody is actually holding i_mutex
931 */
932 mutex_destroy(&inode->i_mutex);
933 mutex_init(&inode->i_mutex);
934 lockdep_set_class(&inode->i_mutex,
935 &type->i_mutex_dir_key);
936 }
937 }
938 }
939 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
940 #endif
941
942 /**
943 * unlock_new_inode - clear the I_NEW state and wake up any waiters
944 * @inode: new inode to unlock
945 *
946 * Called when the inode is fully initialised to clear the new state of the
947 * inode and wake up anyone waiting for the inode to finish initialisation.
948 */
unlock_new_inode(struct inode * inode)949 void unlock_new_inode(struct inode *inode)
950 {
951 lockdep_annotate_inode_mutex_key(inode);
952 spin_lock(&inode->i_lock);
953 WARN_ON(!(inode->i_state & I_NEW));
954 inode->i_state &= ~I_NEW;
955 smp_mb();
956 wake_up_bit(&inode->i_state, __I_NEW);
957 spin_unlock(&inode->i_lock);
958 }
959 EXPORT_SYMBOL(unlock_new_inode);
960
961 /**
962 * lock_two_nondirectories - take two i_mutexes on non-directory objects
963 *
964 * Lock any non-NULL argument that is not a directory.
965 * Zero, one or two objects may be locked by this function.
966 *
967 * @inode1: first inode to lock
968 * @inode2: second inode to lock
969 */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)970 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
971 {
972 if (inode1 > inode2)
973 swap(inode1, inode2);
974
975 if (inode1 && !S_ISDIR(inode1->i_mode))
976 mutex_lock(&inode1->i_mutex);
977 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
978 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
979 }
980 EXPORT_SYMBOL(lock_two_nondirectories);
981
982 /**
983 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
984 * @inode1: first inode to unlock
985 * @inode2: second inode to unlock
986 */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)987 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
988 {
989 if (inode1 && !S_ISDIR(inode1->i_mode))
990 mutex_unlock(&inode1->i_mutex);
991 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
992 mutex_unlock(&inode2->i_mutex);
993 }
994 EXPORT_SYMBOL(unlock_two_nondirectories);
995
996 /**
997 * iget5_locked - obtain an inode from a mounted file system
998 * @sb: super block of file system
999 * @hashval: hash value (usually inode number) to get
1000 * @test: callback used for comparisons between inodes
1001 * @set: callback used to initialize a new struct inode
1002 * @data: opaque data pointer to pass to @test and @set
1003 *
1004 * Search for the inode specified by @hashval and @data in the inode cache,
1005 * and if present it is return it with an increased reference count. This is
1006 * a generalized version of iget_locked() for file systems where the inode
1007 * number is not sufficient for unique identification of an inode.
1008 *
1009 * If the inode is not in cache, allocate a new inode and return it locked,
1010 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1011 * before unlocking it via unlock_new_inode().
1012 *
1013 * Note both @test and @set are called with the inode_hash_lock held, so can't
1014 * sleep.
1015 */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1016 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1017 int (*test)(struct inode *, void *),
1018 int (*set)(struct inode *, void *), void *data)
1019 {
1020 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1021 struct inode *inode;
1022
1023 spin_lock(&inode_hash_lock);
1024 inode = find_inode(sb, head, test, data);
1025 spin_unlock(&inode_hash_lock);
1026
1027 if (inode) {
1028 wait_on_inode(inode);
1029 return inode;
1030 }
1031
1032 inode = alloc_inode(sb);
1033 if (inode) {
1034 struct inode *old;
1035
1036 spin_lock(&inode_hash_lock);
1037 /* We released the lock, so.. */
1038 old = find_inode(sb, head, test, data);
1039 if (!old) {
1040 if (set(inode, data))
1041 goto set_failed;
1042
1043 spin_lock(&inode->i_lock);
1044 inode->i_state = I_NEW;
1045 hlist_add_head(&inode->i_hash, head);
1046 spin_unlock(&inode->i_lock);
1047 inode_sb_list_add(inode);
1048 spin_unlock(&inode_hash_lock);
1049
1050 /* Return the locked inode with I_NEW set, the
1051 * caller is responsible for filling in the contents
1052 */
1053 return inode;
1054 }
1055
1056 /*
1057 * Uhhuh, somebody else created the same inode under
1058 * us. Use the old inode instead of the one we just
1059 * allocated.
1060 */
1061 spin_unlock(&inode_hash_lock);
1062 destroy_inode(inode);
1063 inode = old;
1064 wait_on_inode(inode);
1065 }
1066 return inode;
1067
1068 set_failed:
1069 spin_unlock(&inode_hash_lock);
1070 destroy_inode(inode);
1071 return NULL;
1072 }
1073 EXPORT_SYMBOL(iget5_locked);
1074
1075 /**
1076 * iget_locked - obtain an inode from a mounted file system
1077 * @sb: super block of file system
1078 * @ino: inode number to get
1079 *
1080 * Search for the inode specified by @ino in the inode cache and if present
1081 * return it with an increased reference count. This is for file systems
1082 * where the inode number is sufficient for unique identification of an inode.
1083 *
1084 * If the inode is not in cache, allocate a new inode and return it locked,
1085 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1086 * before unlocking it via unlock_new_inode().
1087 */
iget_locked(struct super_block * sb,unsigned long ino)1088 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1089 {
1090 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1091 struct inode *inode;
1092
1093 spin_lock(&inode_hash_lock);
1094 inode = find_inode_fast(sb, head, ino);
1095 spin_unlock(&inode_hash_lock);
1096 if (inode) {
1097 wait_on_inode(inode);
1098 return inode;
1099 }
1100
1101 inode = alloc_inode(sb);
1102 if (inode) {
1103 struct inode *old;
1104
1105 spin_lock(&inode_hash_lock);
1106 /* We released the lock, so.. */
1107 old = find_inode_fast(sb, head, ino);
1108 if (!old) {
1109 inode->i_ino = ino;
1110 spin_lock(&inode->i_lock);
1111 inode->i_state = I_NEW;
1112 hlist_add_head(&inode->i_hash, head);
1113 spin_unlock(&inode->i_lock);
1114 inode_sb_list_add(inode);
1115 spin_unlock(&inode_hash_lock);
1116
1117 /* Return the locked inode with I_NEW set, the
1118 * caller is responsible for filling in the contents
1119 */
1120 return inode;
1121 }
1122
1123 /*
1124 * Uhhuh, somebody else created the same inode under
1125 * us. Use the old inode instead of the one we just
1126 * allocated.
1127 */
1128 spin_unlock(&inode_hash_lock);
1129 destroy_inode(inode);
1130 inode = old;
1131 wait_on_inode(inode);
1132 }
1133 return inode;
1134 }
1135 EXPORT_SYMBOL(iget_locked);
1136
1137 /*
1138 * search the inode cache for a matching inode number.
1139 * If we find one, then the inode number we are trying to
1140 * allocate is not unique and so we should not use it.
1141 *
1142 * Returns 1 if the inode number is unique, 0 if it is not.
1143 */
test_inode_iunique(struct super_block * sb,unsigned long ino)1144 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1145 {
1146 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1147 struct inode *inode;
1148
1149 spin_lock(&inode_hash_lock);
1150 hlist_for_each_entry(inode, b, i_hash) {
1151 if (inode->i_ino == ino && inode->i_sb == sb) {
1152 spin_unlock(&inode_hash_lock);
1153 return 0;
1154 }
1155 }
1156 spin_unlock(&inode_hash_lock);
1157
1158 return 1;
1159 }
1160
1161 /**
1162 * iunique - get a unique inode number
1163 * @sb: superblock
1164 * @max_reserved: highest reserved inode number
1165 *
1166 * Obtain an inode number that is unique on the system for a given
1167 * superblock. This is used by file systems that have no natural
1168 * permanent inode numbering system. An inode number is returned that
1169 * is higher than the reserved limit but unique.
1170 *
1171 * BUGS:
1172 * With a large number of inodes live on the file system this function
1173 * currently becomes quite slow.
1174 */
iunique(struct super_block * sb,ino_t max_reserved)1175 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1176 {
1177 /*
1178 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1179 * error if st_ino won't fit in target struct field. Use 32bit counter
1180 * here to attempt to avoid that.
1181 */
1182 static DEFINE_SPINLOCK(iunique_lock);
1183 static unsigned int counter;
1184 ino_t res;
1185
1186 spin_lock(&iunique_lock);
1187 do {
1188 if (counter <= max_reserved)
1189 counter = max_reserved + 1;
1190 res = counter++;
1191 } while (!test_inode_iunique(sb, res));
1192 spin_unlock(&iunique_lock);
1193
1194 return res;
1195 }
1196 EXPORT_SYMBOL(iunique);
1197
igrab(struct inode * inode)1198 struct inode *igrab(struct inode *inode)
1199 {
1200 spin_lock(&inode->i_lock);
1201 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1202 __iget(inode);
1203 spin_unlock(&inode->i_lock);
1204 } else {
1205 spin_unlock(&inode->i_lock);
1206 /*
1207 * Handle the case where s_op->clear_inode is not been
1208 * called yet, and somebody is calling igrab
1209 * while the inode is getting freed.
1210 */
1211 inode = NULL;
1212 }
1213 return inode;
1214 }
1215 EXPORT_SYMBOL(igrab);
1216
1217 /**
1218 * ilookup5_nowait - search for an inode in the inode cache
1219 * @sb: super block of file system to search
1220 * @hashval: hash value (usually inode number) to search for
1221 * @test: callback used for comparisons between inodes
1222 * @data: opaque data pointer to pass to @test
1223 *
1224 * Search for the inode specified by @hashval and @data in the inode cache.
1225 * If the inode is in the cache, the inode is returned with an incremented
1226 * reference count.
1227 *
1228 * Note: I_NEW is not waited upon so you have to be very careful what you do
1229 * with the returned inode. You probably should be using ilookup5() instead.
1230 *
1231 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1232 */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1233 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1234 int (*test)(struct inode *, void *), void *data)
1235 {
1236 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1237 struct inode *inode;
1238
1239 spin_lock(&inode_hash_lock);
1240 inode = find_inode(sb, head, test, data);
1241 spin_unlock(&inode_hash_lock);
1242
1243 return inode;
1244 }
1245 EXPORT_SYMBOL(ilookup5_nowait);
1246
1247 /**
1248 * ilookup5 - search for an inode in the inode cache
1249 * @sb: super block of file system to search
1250 * @hashval: hash value (usually inode number) to search for
1251 * @test: callback used for comparisons between inodes
1252 * @data: opaque data pointer to pass to @test
1253 *
1254 * Search for the inode specified by @hashval and @data in the inode cache,
1255 * and if the inode is in the cache, return the inode with an incremented
1256 * reference count. Waits on I_NEW before returning the inode.
1257 * returned with an incremented reference count.
1258 *
1259 * This is a generalized version of ilookup() for file systems where the
1260 * inode number is not sufficient for unique identification of an inode.
1261 *
1262 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1263 */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1264 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1265 int (*test)(struct inode *, void *), void *data)
1266 {
1267 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1268
1269 if (inode)
1270 wait_on_inode(inode);
1271 return inode;
1272 }
1273 EXPORT_SYMBOL(ilookup5);
1274
1275 /**
1276 * ilookup - search for an inode in the inode cache
1277 * @sb: super block of file system to search
1278 * @ino: inode number to search for
1279 *
1280 * Search for the inode @ino in the inode cache, and if the inode is in the
1281 * cache, the inode is returned with an incremented reference count.
1282 */
ilookup(struct super_block * sb,unsigned long ino)1283 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1284 {
1285 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1286 struct inode *inode;
1287
1288 spin_lock(&inode_hash_lock);
1289 inode = find_inode_fast(sb, head, ino);
1290 spin_unlock(&inode_hash_lock);
1291
1292 if (inode)
1293 wait_on_inode(inode);
1294 return inode;
1295 }
1296 EXPORT_SYMBOL(ilookup);
1297
1298 /**
1299 * find_inode_nowait - find an inode in the inode cache
1300 * @sb: super block of file system to search
1301 * @hashval: hash value (usually inode number) to search for
1302 * @match: callback used for comparisons between inodes
1303 * @data: opaque data pointer to pass to @match
1304 *
1305 * Search for the inode specified by @hashval and @data in the inode
1306 * cache, where the helper function @match will return 0 if the inode
1307 * does not match, 1 if the inode does match, and -1 if the search
1308 * should be stopped. The @match function must be responsible for
1309 * taking the i_lock spin_lock and checking i_state for an inode being
1310 * freed or being initialized, and incrementing the reference count
1311 * before returning 1. It also must not sleep, since it is called with
1312 * the inode_hash_lock spinlock held.
1313 *
1314 * This is a even more generalized version of ilookup5() when the
1315 * function must never block --- find_inode() can block in
1316 * __wait_on_freeing_inode() --- or when the caller can not increment
1317 * the reference count because the resulting iput() might cause an
1318 * inode eviction. The tradeoff is that the @match funtion must be
1319 * very carefully implemented.
1320 */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1321 struct inode *find_inode_nowait(struct super_block *sb,
1322 unsigned long hashval,
1323 int (*match)(struct inode *, unsigned long,
1324 void *),
1325 void *data)
1326 {
1327 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1328 struct inode *inode, *ret_inode = NULL;
1329 int mval;
1330
1331 spin_lock(&inode_hash_lock);
1332 hlist_for_each_entry(inode, head, i_hash) {
1333 if (inode->i_sb != sb)
1334 continue;
1335 mval = match(inode, hashval, data);
1336 if (mval == 0)
1337 continue;
1338 if (mval == 1)
1339 ret_inode = inode;
1340 goto out;
1341 }
1342 out:
1343 spin_unlock(&inode_hash_lock);
1344 return ret_inode;
1345 }
1346 EXPORT_SYMBOL(find_inode_nowait);
1347
insert_inode_locked(struct inode * inode)1348 int insert_inode_locked(struct inode *inode)
1349 {
1350 struct super_block *sb = inode->i_sb;
1351 ino_t ino = inode->i_ino;
1352 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1353
1354 while (1) {
1355 struct inode *old = NULL;
1356 spin_lock(&inode_hash_lock);
1357 hlist_for_each_entry(old, head, i_hash) {
1358 if (old->i_ino != ino)
1359 continue;
1360 if (old->i_sb != sb)
1361 continue;
1362 spin_lock(&old->i_lock);
1363 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1364 spin_unlock(&old->i_lock);
1365 continue;
1366 }
1367 break;
1368 }
1369 if (likely(!old)) {
1370 spin_lock(&inode->i_lock);
1371 inode->i_state |= I_NEW;
1372 hlist_add_head(&inode->i_hash, head);
1373 spin_unlock(&inode->i_lock);
1374 spin_unlock(&inode_hash_lock);
1375 return 0;
1376 }
1377 __iget(old);
1378 spin_unlock(&old->i_lock);
1379 spin_unlock(&inode_hash_lock);
1380 wait_on_inode(old);
1381 if (unlikely(!inode_unhashed(old))) {
1382 iput(old);
1383 return -EBUSY;
1384 }
1385 iput(old);
1386 }
1387 }
1388 EXPORT_SYMBOL(insert_inode_locked);
1389
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1390 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1391 int (*test)(struct inode *, void *), void *data)
1392 {
1393 struct super_block *sb = inode->i_sb;
1394 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1395
1396 while (1) {
1397 struct inode *old = NULL;
1398
1399 spin_lock(&inode_hash_lock);
1400 hlist_for_each_entry(old, head, i_hash) {
1401 if (old->i_sb != sb)
1402 continue;
1403 if (!test(old, data))
1404 continue;
1405 spin_lock(&old->i_lock);
1406 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1407 spin_unlock(&old->i_lock);
1408 continue;
1409 }
1410 break;
1411 }
1412 if (likely(!old)) {
1413 spin_lock(&inode->i_lock);
1414 inode->i_state |= I_NEW;
1415 hlist_add_head(&inode->i_hash, head);
1416 spin_unlock(&inode->i_lock);
1417 spin_unlock(&inode_hash_lock);
1418 return 0;
1419 }
1420 __iget(old);
1421 spin_unlock(&old->i_lock);
1422 spin_unlock(&inode_hash_lock);
1423 wait_on_inode(old);
1424 if (unlikely(!inode_unhashed(old))) {
1425 iput(old);
1426 return -EBUSY;
1427 }
1428 iput(old);
1429 }
1430 }
1431 EXPORT_SYMBOL(insert_inode_locked4);
1432
1433
generic_delete_inode(struct inode * inode)1434 int generic_delete_inode(struct inode *inode)
1435 {
1436 return 1;
1437 }
1438 EXPORT_SYMBOL(generic_delete_inode);
1439
1440 /*
1441 * Called when we're dropping the last reference
1442 * to an inode.
1443 *
1444 * Call the FS "drop_inode()" function, defaulting to
1445 * the legacy UNIX filesystem behaviour. If it tells
1446 * us to evict inode, do so. Otherwise, retain inode
1447 * in cache if fs is alive, sync and evict if fs is
1448 * shutting down.
1449 */
iput_final(struct inode * inode)1450 static void iput_final(struct inode *inode)
1451 {
1452 struct super_block *sb = inode->i_sb;
1453 const struct super_operations *op = inode->i_sb->s_op;
1454 int drop;
1455
1456 WARN_ON(inode->i_state & I_NEW);
1457
1458 if (op->drop_inode)
1459 drop = op->drop_inode(inode);
1460 else
1461 drop = generic_drop_inode(inode);
1462
1463 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1464 inode->i_state |= I_REFERENCED;
1465 inode_add_lru(inode);
1466 spin_unlock(&inode->i_lock);
1467 return;
1468 }
1469
1470 if (!drop) {
1471 inode->i_state |= I_WILL_FREE;
1472 spin_unlock(&inode->i_lock);
1473 write_inode_now(inode, 1);
1474 spin_lock(&inode->i_lock);
1475 WARN_ON(inode->i_state & I_NEW);
1476 inode->i_state &= ~I_WILL_FREE;
1477 }
1478
1479 inode->i_state |= I_FREEING;
1480 if (!list_empty(&inode->i_lru))
1481 inode_lru_list_del(inode);
1482 spin_unlock(&inode->i_lock);
1483
1484 evict(inode);
1485 }
1486
1487 /**
1488 * iput - put an inode
1489 * @inode: inode to put
1490 *
1491 * Puts an inode, dropping its usage count. If the inode use count hits
1492 * zero, the inode is then freed and may also be destroyed.
1493 *
1494 * Consequently, iput() can sleep.
1495 */
iput(struct inode * inode)1496 void iput(struct inode *inode)
1497 {
1498 if (!inode)
1499 return;
1500 BUG_ON(inode->i_state & I_CLEAR);
1501 retry:
1502 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1503 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1504 atomic_inc(&inode->i_count);
1505 inode->i_state &= ~I_DIRTY_TIME;
1506 spin_unlock(&inode->i_lock);
1507 trace_writeback_lazytime_iput(inode);
1508 mark_inode_dirty_sync(inode);
1509 goto retry;
1510 }
1511 iput_final(inode);
1512 }
1513 }
1514 EXPORT_SYMBOL(iput);
1515
1516 /**
1517 * bmap - find a block number in a file
1518 * @inode: inode of file
1519 * @block: block to find
1520 *
1521 * Returns the block number on the device holding the inode that
1522 * is the disk block number for the block of the file requested.
1523 * That is, asked for block 4 of inode 1 the function will return the
1524 * disk block relative to the disk start that holds that block of the
1525 * file.
1526 */
bmap(struct inode * inode,sector_t block)1527 sector_t bmap(struct inode *inode, sector_t block)
1528 {
1529 sector_t res = 0;
1530 if (inode->i_mapping->a_ops->bmap)
1531 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1532 return res;
1533 }
1534 EXPORT_SYMBOL(bmap);
1535
1536 /*
1537 * With relative atime, only update atime if the previous atime is
1538 * earlier than either the ctime or mtime or if at least a day has
1539 * passed since the last atime update.
1540 */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec now)1541 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1542 struct timespec now)
1543 {
1544
1545 if (!(mnt->mnt_flags & MNT_RELATIME))
1546 return 1;
1547 /*
1548 * Is mtime younger than atime? If yes, update atime:
1549 */
1550 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1551 return 1;
1552 /*
1553 * Is ctime younger than atime? If yes, update atime:
1554 */
1555 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1556 return 1;
1557
1558 /*
1559 * Is the previous atime value older than a day? If yes,
1560 * update atime:
1561 */
1562 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1563 return 1;
1564 /*
1565 * Good, we can skip the atime update:
1566 */
1567 return 0;
1568 }
1569
generic_update_time(struct inode * inode,struct timespec * time,int flags)1570 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1571 {
1572 int iflags = I_DIRTY_TIME;
1573
1574 if (flags & S_ATIME)
1575 inode->i_atime = *time;
1576 if (flags & S_VERSION)
1577 inode_inc_iversion(inode);
1578 if (flags & S_CTIME)
1579 inode->i_ctime = *time;
1580 if (flags & S_MTIME)
1581 inode->i_mtime = *time;
1582
1583 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1584 iflags |= I_DIRTY_SYNC;
1585 __mark_inode_dirty(inode, iflags);
1586 return 0;
1587 }
1588 EXPORT_SYMBOL(generic_update_time);
1589
1590 /*
1591 * This does the actual work of updating an inodes time or version. Must have
1592 * had called mnt_want_write() before calling this.
1593 */
update_time(struct inode * inode,struct timespec * time,int flags)1594 static int update_time(struct inode *inode, struct timespec *time, int flags)
1595 {
1596 int (*update_time)(struct inode *, struct timespec *, int);
1597
1598 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1599 generic_update_time;
1600
1601 return update_time(inode, time, flags);
1602 }
1603
1604 /**
1605 * touch_atime - update the access time
1606 * @path: the &struct path to update
1607 * @inode: inode to update
1608 *
1609 * Update the accessed time on an inode and mark it for writeback.
1610 * This function automatically handles read only file systems and media,
1611 * as well as the "noatime" flag and inode specific "noatime" markers.
1612 */
atime_needs_update(const struct path * path,struct inode * inode)1613 bool atime_needs_update(const struct path *path, struct inode *inode)
1614 {
1615 struct vfsmount *mnt = path->mnt;
1616 struct timespec now;
1617
1618 if (inode->i_flags & S_NOATIME)
1619 return false;
1620 if (IS_NOATIME(inode))
1621 return false;
1622 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1623 return false;
1624
1625 if (mnt->mnt_flags & MNT_NOATIME)
1626 return false;
1627 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1628 return false;
1629
1630 now = current_fs_time(inode->i_sb);
1631
1632 if (!relatime_need_update(mnt, inode, now))
1633 return false;
1634
1635 if (timespec_equal(&inode->i_atime, &now))
1636 return false;
1637
1638 return true;
1639 }
1640
touch_atime(const struct path * path)1641 void touch_atime(const struct path *path)
1642 {
1643 struct vfsmount *mnt = path->mnt;
1644 struct inode *inode = d_inode(path->dentry);
1645 struct timespec now;
1646
1647 if (!atime_needs_update(path, inode))
1648 return;
1649
1650 if (!sb_start_write_trylock(inode->i_sb))
1651 return;
1652
1653 if (__mnt_want_write(mnt) != 0)
1654 goto skip_update;
1655 /*
1656 * File systems can error out when updating inodes if they need to
1657 * allocate new space to modify an inode (such is the case for
1658 * Btrfs), but since we touch atime while walking down the path we
1659 * really don't care if we failed to update the atime of the file,
1660 * so just ignore the return value.
1661 * We may also fail on filesystems that have the ability to make parts
1662 * of the fs read only, e.g. subvolumes in Btrfs.
1663 */
1664 now = current_fs_time(inode->i_sb);
1665 update_time(inode, &now, S_ATIME);
1666 __mnt_drop_write(mnt);
1667 skip_update:
1668 sb_end_write(inode->i_sb);
1669 }
1670 EXPORT_SYMBOL(touch_atime);
1671
1672 /*
1673 * The logic we want is
1674 *
1675 * if suid or (sgid and xgrp)
1676 * remove privs
1677 */
should_remove_suid(struct dentry * dentry)1678 int should_remove_suid(struct dentry *dentry)
1679 {
1680 umode_t mode = d_inode(dentry)->i_mode;
1681 int kill = 0;
1682
1683 /* suid always must be killed */
1684 if (unlikely(mode & S_ISUID))
1685 kill = ATTR_KILL_SUID;
1686
1687 /*
1688 * sgid without any exec bits is just a mandatory locking mark; leave
1689 * it alone. If some exec bits are set, it's a real sgid; kill it.
1690 */
1691 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1692 kill |= ATTR_KILL_SGID;
1693
1694 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1695 return kill;
1696
1697 return 0;
1698 }
1699 EXPORT_SYMBOL(should_remove_suid);
1700
1701 /*
1702 * Return mask of changes for notify_change() that need to be done as a
1703 * response to write or truncate. Return 0 if nothing has to be changed.
1704 * Negative value on error (change should be denied).
1705 */
dentry_needs_remove_privs(struct dentry * dentry)1706 int dentry_needs_remove_privs(struct dentry *dentry)
1707 {
1708 struct inode *inode = d_inode(dentry);
1709 int mask = 0;
1710 int ret;
1711
1712 if (IS_NOSEC(inode))
1713 return 0;
1714
1715 mask = should_remove_suid(dentry);
1716 ret = security_inode_need_killpriv(dentry);
1717 if (ret < 0)
1718 return ret;
1719 if (ret)
1720 mask |= ATTR_KILL_PRIV;
1721 return mask;
1722 }
1723 EXPORT_SYMBOL(dentry_needs_remove_privs);
1724
__remove_privs(struct vfsmount * mnt,struct dentry * dentry,int kill)1725 static int __remove_privs(struct vfsmount *mnt, struct dentry *dentry, int kill)
1726 {
1727 struct iattr newattrs;
1728
1729 newattrs.ia_valid = ATTR_FORCE | kill;
1730 /*
1731 * Note we call this on write, so notify_change will not
1732 * encounter any conflicting delegations:
1733 */
1734 return notify_change2(mnt, dentry, &newattrs, NULL);
1735 }
1736
1737 /*
1738 * Remove special file priviledges (suid, capabilities) when file is written
1739 * to or truncated.
1740 */
file_remove_privs(struct file * file)1741 int file_remove_privs(struct file *file)
1742 {
1743 struct dentry *dentry = file_dentry(file);
1744 struct inode *inode = file_inode(file);
1745 int kill;
1746 int error = 0;
1747
1748 /*
1749 * Fast path for nothing security related.
1750 * As well for non-regular files, e.g. blkdev inodes.
1751 * For example, blkdev_write_iter() might get here
1752 * trying to remove privs which it is not allowed to.
1753 */
1754 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1755 return 0;
1756
1757 kill = dentry_needs_remove_privs(dentry);
1758 if (kill < 0)
1759 return kill;
1760 if (kill)
1761 error = __remove_privs(file->f_path.mnt, dentry, kill);
1762 if (!error)
1763 inode_has_no_xattr(inode);
1764
1765 return error;
1766 }
1767 EXPORT_SYMBOL(file_remove_privs);
1768
1769 /**
1770 * file_update_time - update mtime and ctime time
1771 * @file: file accessed
1772 *
1773 * Update the mtime and ctime members of an inode and mark the inode
1774 * for writeback. Note that this function is meant exclusively for
1775 * usage in the file write path of filesystems, and filesystems may
1776 * choose to explicitly ignore update via this function with the
1777 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1778 * timestamps are handled by the server. This can return an error for
1779 * file systems who need to allocate space in order to update an inode.
1780 */
1781
file_update_time(struct file * file)1782 int file_update_time(struct file *file)
1783 {
1784 struct inode *inode = file_inode(file);
1785 struct timespec now;
1786 int sync_it = 0;
1787 int ret;
1788
1789 /* First try to exhaust all avenues to not sync */
1790 if (IS_NOCMTIME(inode))
1791 return 0;
1792
1793 now = current_fs_time(inode->i_sb);
1794 if (!timespec_equal(&inode->i_mtime, &now))
1795 sync_it = S_MTIME;
1796
1797 if (!timespec_equal(&inode->i_ctime, &now))
1798 sync_it |= S_CTIME;
1799
1800 if (IS_I_VERSION(inode))
1801 sync_it |= S_VERSION;
1802
1803 if (!sync_it)
1804 return 0;
1805
1806 /* Finally allowed to write? Takes lock. */
1807 if (__mnt_want_write_file(file))
1808 return 0;
1809
1810 ret = update_time(inode, &now, sync_it);
1811 __mnt_drop_write_file(file);
1812
1813 return ret;
1814 }
1815 EXPORT_SYMBOL(file_update_time);
1816
inode_needs_sync(struct inode * inode)1817 int inode_needs_sync(struct inode *inode)
1818 {
1819 if (IS_SYNC(inode))
1820 return 1;
1821 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1822 return 1;
1823 return 0;
1824 }
1825 EXPORT_SYMBOL(inode_needs_sync);
1826
1827 /*
1828 * If we try to find an inode in the inode hash while it is being
1829 * deleted, we have to wait until the filesystem completes its
1830 * deletion before reporting that it isn't found. This function waits
1831 * until the deletion _might_ have completed. Callers are responsible
1832 * to recheck inode state.
1833 *
1834 * It doesn't matter if I_NEW is not set initially, a call to
1835 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1836 * will DTRT.
1837 */
__wait_on_freeing_inode(struct inode * inode)1838 static void __wait_on_freeing_inode(struct inode *inode)
1839 {
1840 wait_queue_head_t *wq;
1841 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1842 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1843 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1844 spin_unlock(&inode->i_lock);
1845 spin_unlock(&inode_hash_lock);
1846 schedule();
1847 finish_wait(wq, &wait.wait);
1848 spin_lock(&inode_hash_lock);
1849 }
1850
1851 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)1852 static int __init set_ihash_entries(char *str)
1853 {
1854 if (!str)
1855 return 0;
1856 ihash_entries = simple_strtoul(str, &str, 0);
1857 return 1;
1858 }
1859 __setup("ihash_entries=", set_ihash_entries);
1860
1861 /*
1862 * Initialize the waitqueues and inode hash table.
1863 */
inode_init_early(void)1864 void __init inode_init_early(void)
1865 {
1866 unsigned int loop;
1867
1868 /* If hashes are distributed across NUMA nodes, defer
1869 * hash allocation until vmalloc space is available.
1870 */
1871 if (hashdist)
1872 return;
1873
1874 inode_hashtable =
1875 alloc_large_system_hash("Inode-cache",
1876 sizeof(struct hlist_head),
1877 ihash_entries,
1878 14,
1879 HASH_EARLY,
1880 &i_hash_shift,
1881 &i_hash_mask,
1882 0,
1883 0);
1884
1885 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1886 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1887 }
1888
inode_init(void)1889 void __init inode_init(void)
1890 {
1891 unsigned int loop;
1892
1893 /* inode slab cache */
1894 inode_cachep = kmem_cache_create("inode_cache",
1895 sizeof(struct inode),
1896 0,
1897 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1898 SLAB_MEM_SPREAD),
1899 init_once);
1900
1901 /* Hash may have been set up in inode_init_early */
1902 if (!hashdist)
1903 return;
1904
1905 inode_hashtable =
1906 alloc_large_system_hash("Inode-cache",
1907 sizeof(struct hlist_head),
1908 ihash_entries,
1909 14,
1910 0,
1911 &i_hash_shift,
1912 &i_hash_mask,
1913 0,
1914 0);
1915
1916 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1917 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1918 }
1919
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)1920 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1921 {
1922 inode->i_mode = mode;
1923 if (S_ISCHR(mode)) {
1924 inode->i_fop = &def_chr_fops;
1925 inode->i_rdev = rdev;
1926 } else if (S_ISBLK(mode)) {
1927 inode->i_fop = &def_blk_fops;
1928 inode->i_rdev = rdev;
1929 } else if (S_ISFIFO(mode))
1930 inode->i_fop = &pipefifo_fops;
1931 else if (S_ISSOCK(mode))
1932 ; /* leave it no_open_fops */
1933 else
1934 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1935 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1936 inode->i_ino);
1937 }
1938 EXPORT_SYMBOL(init_special_inode);
1939
1940 /**
1941 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1942 * @inode: New inode
1943 * @dir: Directory inode
1944 * @mode: mode of the new inode
1945 */
inode_init_owner(struct inode * inode,const struct inode * dir,umode_t mode)1946 void inode_init_owner(struct inode *inode, const struct inode *dir,
1947 umode_t mode)
1948 {
1949 inode->i_uid = current_fsuid();
1950 if (dir && dir->i_mode & S_ISGID) {
1951 inode->i_gid = dir->i_gid;
1952
1953 /* Directories are special, and always inherit S_ISGID */
1954 if (S_ISDIR(mode))
1955 mode |= S_ISGID;
1956 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
1957 !in_group_p(inode->i_gid) &&
1958 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
1959 mode &= ~S_ISGID;
1960 } else
1961 inode->i_gid = current_fsgid();
1962 inode->i_mode = mode;
1963 }
1964 EXPORT_SYMBOL(inode_init_owner);
1965
1966 /**
1967 * inode_owner_or_capable - check current task permissions to inode
1968 * @inode: inode being checked
1969 *
1970 * Return true if current either has CAP_FOWNER in a namespace with the
1971 * inode owner uid mapped, or owns the file.
1972 */
inode_owner_or_capable(const struct inode * inode)1973 bool inode_owner_or_capable(const struct inode *inode)
1974 {
1975 struct user_namespace *ns;
1976
1977 if (uid_eq(current_fsuid(), inode->i_uid))
1978 return true;
1979
1980 ns = current_user_ns();
1981 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1982 return true;
1983 return false;
1984 }
1985 EXPORT_SYMBOL(inode_owner_or_capable);
1986
1987 /*
1988 * Direct i/o helper functions
1989 */
__inode_dio_wait(struct inode * inode)1990 static void __inode_dio_wait(struct inode *inode)
1991 {
1992 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1993 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1994
1995 do {
1996 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1997 if (atomic_read(&inode->i_dio_count))
1998 schedule();
1999 } while (atomic_read(&inode->i_dio_count));
2000 finish_wait(wq, &q.wait);
2001 }
2002
2003 /**
2004 * inode_dio_wait - wait for outstanding DIO requests to finish
2005 * @inode: inode to wait for
2006 *
2007 * Waits for all pending direct I/O requests to finish so that we can
2008 * proceed with a truncate or equivalent operation.
2009 *
2010 * Must be called under a lock that serializes taking new references
2011 * to i_dio_count, usually by inode->i_mutex.
2012 */
inode_dio_wait(struct inode * inode)2013 void inode_dio_wait(struct inode *inode)
2014 {
2015 if (atomic_read(&inode->i_dio_count))
2016 __inode_dio_wait(inode);
2017 }
2018 EXPORT_SYMBOL(inode_dio_wait);
2019
2020 /*
2021 * inode_set_flags - atomically set some inode flags
2022 *
2023 * Note: the caller should be holding i_mutex, or else be sure that
2024 * they have exclusive access to the inode structure (i.e., while the
2025 * inode is being instantiated). The reason for the cmpxchg() loop
2026 * --- which wouldn't be necessary if all code paths which modify
2027 * i_flags actually followed this rule, is that there is at least one
2028 * code path which doesn't today so we use cmpxchg() out of an abundance
2029 * of caution.
2030 *
2031 * In the long run, i_mutex is overkill, and we should probably look
2032 * at using the i_lock spinlock to protect i_flags, and then make sure
2033 * it is so documented in include/linux/fs.h and that all code follows
2034 * the locking convention!!
2035 */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2036 void inode_set_flags(struct inode *inode, unsigned int flags,
2037 unsigned int mask)
2038 {
2039 unsigned int old_flags, new_flags;
2040
2041 WARN_ON_ONCE(flags & ~mask);
2042 do {
2043 old_flags = ACCESS_ONCE(inode->i_flags);
2044 new_flags = (old_flags & ~mask) | flags;
2045 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2046 new_flags) != old_flags));
2047 }
2048 EXPORT_SYMBOL(inode_set_flags);
2049
inode_nohighmem(struct inode * inode)2050 void inode_nohighmem(struct inode *inode)
2051 {
2052 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2053 }
2054 EXPORT_SYMBOL(inode_nohighmem);
2055