1 /*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/export.h>
8 #include <linux/pagemap.h>
9 #include <linux/slab.h>
10 #include <linux/mount.h>
11 #include <linux/vfs.h>
12 #include <linux/quotaops.h>
13 #include <linux/mutex.h>
14 #include <linux/namei.h>
15 #include <linux/exportfs.h>
16 #include <linux/writeback.h>
17 #include <linux/buffer_head.h> /* sync_mapping_buffers */
18
19 #include <asm/uaccess.h>
20
21 #include "internal.h"
22
simple_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)23 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
24 struct kstat *stat)
25 {
26 struct inode *inode = d_inode(dentry);
27 generic_fillattr(inode, stat);
28 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
29 return 0;
30 }
31 EXPORT_SYMBOL(simple_getattr);
32
simple_statfs(struct dentry * dentry,struct kstatfs * buf)33 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
34 {
35 buf->f_type = dentry->d_sb->s_magic;
36 buf->f_bsize = PAGE_CACHE_SIZE;
37 buf->f_namelen = NAME_MAX;
38 return 0;
39 }
40 EXPORT_SYMBOL(simple_statfs);
41
42 /*
43 * Retaining negative dentries for an in-memory filesystem just wastes
44 * memory and lookup time: arrange for them to be deleted immediately.
45 */
always_delete_dentry(const struct dentry * dentry)46 int always_delete_dentry(const struct dentry *dentry)
47 {
48 return 1;
49 }
50 EXPORT_SYMBOL(always_delete_dentry);
51
52 const struct dentry_operations simple_dentry_operations = {
53 .d_delete = always_delete_dentry,
54 };
55 EXPORT_SYMBOL(simple_dentry_operations);
56
57 /*
58 * Lookup the data. This is trivial - if the dentry didn't already
59 * exist, we know it is negative. Set d_op to delete negative dentries.
60 */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)61 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
62 {
63 if (dentry->d_name.len > NAME_MAX)
64 return ERR_PTR(-ENAMETOOLONG);
65 if (!dentry->d_sb->s_d_op)
66 d_set_d_op(dentry, &simple_dentry_operations);
67 d_add(dentry, NULL);
68 return NULL;
69 }
70 EXPORT_SYMBOL(simple_lookup);
71
dcache_dir_open(struct inode * inode,struct file * file)72 int dcache_dir_open(struct inode *inode, struct file *file)
73 {
74 static struct qstr cursor_name = QSTR_INIT(".", 1);
75
76 file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
77
78 return file->private_data ? 0 : -ENOMEM;
79 }
80 EXPORT_SYMBOL(dcache_dir_open);
81
dcache_dir_close(struct inode * inode,struct file * file)82 int dcache_dir_close(struct inode *inode, struct file *file)
83 {
84 dput(file->private_data);
85 return 0;
86 }
87 EXPORT_SYMBOL(dcache_dir_close);
88
dcache_dir_lseek(struct file * file,loff_t offset,int whence)89 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
90 {
91 struct dentry *dentry = file->f_path.dentry;
92 mutex_lock(&d_inode(dentry)->i_mutex);
93 switch (whence) {
94 case 1:
95 offset += file->f_pos;
96 case 0:
97 if (offset >= 0)
98 break;
99 default:
100 mutex_unlock(&d_inode(dentry)->i_mutex);
101 return -EINVAL;
102 }
103 if (offset != file->f_pos) {
104 file->f_pos = offset;
105 if (file->f_pos >= 2) {
106 struct list_head *p;
107 struct dentry *cursor = file->private_data;
108 loff_t n = file->f_pos - 2;
109
110 spin_lock(&dentry->d_lock);
111 /* d_lock not required for cursor */
112 list_del(&cursor->d_child);
113 p = dentry->d_subdirs.next;
114 while (n && p != &dentry->d_subdirs) {
115 struct dentry *next;
116 next = list_entry(p, struct dentry, d_child);
117 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
118 if (simple_positive(next))
119 n--;
120 spin_unlock(&next->d_lock);
121 p = p->next;
122 }
123 list_add_tail(&cursor->d_child, p);
124 spin_unlock(&dentry->d_lock);
125 }
126 }
127 mutex_unlock(&d_inode(dentry)->i_mutex);
128 return offset;
129 }
130 EXPORT_SYMBOL(dcache_dir_lseek);
131
132 /* Relationship between i_mode and the DT_xxx types */
dt_type(struct inode * inode)133 static inline unsigned char dt_type(struct inode *inode)
134 {
135 return (inode->i_mode >> 12) & 15;
136 }
137
138 /*
139 * Directory is locked and all positive dentries in it are safe, since
140 * for ramfs-type trees they can't go away without unlink() or rmdir(),
141 * both impossible due to the lock on directory.
142 */
143
dcache_readdir(struct file * file,struct dir_context * ctx)144 int dcache_readdir(struct file *file, struct dir_context *ctx)
145 {
146 struct dentry *dentry = file->f_path.dentry;
147 struct dentry *cursor = file->private_data;
148 struct list_head *p, *q = &cursor->d_child;
149
150 if (!dir_emit_dots(file, ctx))
151 return 0;
152 spin_lock(&dentry->d_lock);
153 if (ctx->pos == 2)
154 list_move(q, &dentry->d_subdirs);
155
156 for (p = q->next; p != &dentry->d_subdirs; p = p->next) {
157 struct dentry *next = list_entry(p, struct dentry, d_child);
158 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
159 if (!simple_positive(next)) {
160 spin_unlock(&next->d_lock);
161 continue;
162 }
163
164 spin_unlock(&next->d_lock);
165 spin_unlock(&dentry->d_lock);
166 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
167 d_inode(next)->i_ino, dt_type(d_inode(next))))
168 return 0;
169 spin_lock(&dentry->d_lock);
170 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
171 /* next is still alive */
172 list_move(q, p);
173 spin_unlock(&next->d_lock);
174 p = q;
175 ctx->pos++;
176 }
177 spin_unlock(&dentry->d_lock);
178 return 0;
179 }
180 EXPORT_SYMBOL(dcache_readdir);
181
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)182 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
183 {
184 return -EISDIR;
185 }
186 EXPORT_SYMBOL(generic_read_dir);
187
188 const struct file_operations simple_dir_operations = {
189 .open = dcache_dir_open,
190 .release = dcache_dir_close,
191 .llseek = dcache_dir_lseek,
192 .read = generic_read_dir,
193 .iterate = dcache_readdir,
194 .fsync = noop_fsync,
195 };
196 EXPORT_SYMBOL(simple_dir_operations);
197
198 const struct inode_operations simple_dir_inode_operations = {
199 .lookup = simple_lookup,
200 };
201 EXPORT_SYMBOL(simple_dir_inode_operations);
202
203 static const struct super_operations simple_super_operations = {
204 .statfs = simple_statfs,
205 };
206
207 /*
208 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
209 * will never be mountable)
210 */
mount_pseudo(struct file_system_type * fs_type,char * name,const struct super_operations * ops,const struct dentry_operations * dops,unsigned long magic)211 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
212 const struct super_operations *ops,
213 const struct dentry_operations *dops, unsigned long magic)
214 {
215 struct super_block *s;
216 struct dentry *dentry;
217 struct inode *root;
218 struct qstr d_name = QSTR_INIT(name, strlen(name));
219
220 s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
221 if (IS_ERR(s))
222 return ERR_CAST(s);
223
224 s->s_maxbytes = MAX_LFS_FILESIZE;
225 s->s_blocksize = PAGE_SIZE;
226 s->s_blocksize_bits = PAGE_SHIFT;
227 s->s_magic = magic;
228 s->s_op = ops ? ops : &simple_super_operations;
229 s->s_time_gran = 1;
230 root = new_inode(s);
231 if (!root)
232 goto Enomem;
233 /*
234 * since this is the first inode, make it number 1. New inodes created
235 * after this must take care not to collide with it (by passing
236 * max_reserved of 1 to iunique).
237 */
238 root->i_ino = 1;
239 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
240 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
241 dentry = __d_alloc(s, &d_name);
242 if (!dentry) {
243 iput(root);
244 goto Enomem;
245 }
246 d_instantiate(dentry, root);
247 s->s_root = dentry;
248 s->s_d_op = dops;
249 s->s_flags |= MS_ACTIVE;
250 return dget(s->s_root);
251
252 Enomem:
253 deactivate_locked_super(s);
254 return ERR_PTR(-ENOMEM);
255 }
256 EXPORT_SYMBOL(mount_pseudo);
257
simple_open(struct inode * inode,struct file * file)258 int simple_open(struct inode *inode, struct file *file)
259 {
260 if (inode->i_private)
261 file->private_data = inode->i_private;
262 return 0;
263 }
264 EXPORT_SYMBOL(simple_open);
265
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)266 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
267 {
268 struct inode *inode = d_inode(old_dentry);
269
270 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
271 inc_nlink(inode);
272 ihold(inode);
273 dget(dentry);
274 d_instantiate(dentry, inode);
275 return 0;
276 }
277 EXPORT_SYMBOL(simple_link);
278
simple_empty(struct dentry * dentry)279 int simple_empty(struct dentry *dentry)
280 {
281 struct dentry *child;
282 int ret = 0;
283
284 spin_lock(&dentry->d_lock);
285 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
286 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
287 if (simple_positive(child)) {
288 spin_unlock(&child->d_lock);
289 goto out;
290 }
291 spin_unlock(&child->d_lock);
292 }
293 ret = 1;
294 out:
295 spin_unlock(&dentry->d_lock);
296 return ret;
297 }
298 EXPORT_SYMBOL(simple_empty);
299
simple_unlink(struct inode * dir,struct dentry * dentry)300 int simple_unlink(struct inode *dir, struct dentry *dentry)
301 {
302 struct inode *inode = d_inode(dentry);
303
304 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
305 drop_nlink(inode);
306 dput(dentry);
307 return 0;
308 }
309 EXPORT_SYMBOL(simple_unlink);
310
simple_rmdir(struct inode * dir,struct dentry * dentry)311 int simple_rmdir(struct inode *dir, struct dentry *dentry)
312 {
313 if (!simple_empty(dentry))
314 return -ENOTEMPTY;
315
316 drop_nlink(d_inode(dentry));
317 simple_unlink(dir, dentry);
318 drop_nlink(dir);
319 return 0;
320 }
321 EXPORT_SYMBOL(simple_rmdir);
322
simple_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)323 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
324 struct inode *new_dir, struct dentry *new_dentry)
325 {
326 struct inode *inode = d_inode(old_dentry);
327 int they_are_dirs = d_is_dir(old_dentry);
328
329 if (!simple_empty(new_dentry))
330 return -ENOTEMPTY;
331
332 if (d_really_is_positive(new_dentry)) {
333 simple_unlink(new_dir, new_dentry);
334 if (they_are_dirs) {
335 drop_nlink(d_inode(new_dentry));
336 drop_nlink(old_dir);
337 }
338 } else if (they_are_dirs) {
339 drop_nlink(old_dir);
340 inc_nlink(new_dir);
341 }
342
343 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
344 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
345
346 return 0;
347 }
348 EXPORT_SYMBOL(simple_rename);
349
350 /**
351 * simple_setattr - setattr for simple filesystem
352 * @dentry: dentry
353 * @iattr: iattr structure
354 *
355 * Returns 0 on success, -error on failure.
356 *
357 * simple_setattr is a simple ->setattr implementation without a proper
358 * implementation of size changes.
359 *
360 * It can either be used for in-memory filesystems or special files
361 * on simple regular filesystems. Anything that needs to change on-disk
362 * or wire state on size changes needs its own setattr method.
363 */
simple_setattr(struct dentry * dentry,struct iattr * iattr)364 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
365 {
366 struct inode *inode = d_inode(dentry);
367 int error;
368
369 error = inode_change_ok(inode, iattr);
370 if (error)
371 return error;
372
373 if (iattr->ia_valid & ATTR_SIZE)
374 truncate_setsize(inode, iattr->ia_size);
375 setattr_copy(inode, iattr);
376 mark_inode_dirty(inode);
377 return 0;
378 }
379 EXPORT_SYMBOL(simple_setattr);
380
simple_readpage(struct file * file,struct page * page)381 int simple_readpage(struct file *file, struct page *page)
382 {
383 clear_highpage(page);
384 flush_dcache_page(page);
385 SetPageUptodate(page);
386 unlock_page(page);
387 return 0;
388 }
389 EXPORT_SYMBOL(simple_readpage);
390
simple_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)391 int simple_write_begin(struct file *file, struct address_space *mapping,
392 loff_t pos, unsigned len, unsigned flags,
393 struct page **pagep, void **fsdata)
394 {
395 struct page *page;
396 pgoff_t index;
397
398 index = pos >> PAGE_CACHE_SHIFT;
399
400 page = grab_cache_page_write_begin(mapping, index, flags);
401 if (!page)
402 return -ENOMEM;
403
404 *pagep = page;
405
406 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
407 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
408
409 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
410 }
411 return 0;
412 }
413 EXPORT_SYMBOL(simple_write_begin);
414
415 /**
416 * simple_write_end - .write_end helper for non-block-device FSes
417 * @available: See .write_end of address_space_operations
418 * @file: "
419 * @mapping: "
420 * @pos: "
421 * @len: "
422 * @copied: "
423 * @page: "
424 * @fsdata: "
425 *
426 * simple_write_end does the minimum needed for updating a page after writing is
427 * done. It has the same API signature as the .write_end of
428 * address_space_operations vector. So it can just be set onto .write_end for
429 * FSes that don't need any other processing. i_mutex is assumed to be held.
430 * Block based filesystems should use generic_write_end().
431 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
432 * is not called, so a filesystem that actually does store data in .write_inode
433 * should extend on what's done here with a call to mark_inode_dirty() in the
434 * case that i_size has changed.
435 */
simple_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)436 int simple_write_end(struct file *file, struct address_space *mapping,
437 loff_t pos, unsigned len, unsigned copied,
438 struct page *page, void *fsdata)
439 {
440 struct inode *inode = page->mapping->host;
441 loff_t last_pos = pos + copied;
442
443 /* zero the stale part of the page if we did a short copy */
444 if (copied < len) {
445 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
446
447 zero_user(page, from + copied, len - copied);
448 }
449
450 if (!PageUptodate(page))
451 SetPageUptodate(page);
452 /*
453 * No need to use i_size_read() here, the i_size
454 * cannot change under us because we hold the i_mutex.
455 */
456 if (last_pos > inode->i_size)
457 i_size_write(inode, last_pos);
458
459 set_page_dirty(page);
460 unlock_page(page);
461 page_cache_release(page);
462
463 return copied;
464 }
465 EXPORT_SYMBOL(simple_write_end);
466
467 /*
468 * the inodes created here are not hashed. If you use iunique to generate
469 * unique inode values later for this filesystem, then you must take care
470 * to pass it an appropriate max_reserved value to avoid collisions.
471 */
simple_fill_super(struct super_block * s,unsigned long magic,struct tree_descr * files)472 int simple_fill_super(struct super_block *s, unsigned long magic,
473 struct tree_descr *files)
474 {
475 struct inode *inode;
476 struct dentry *root;
477 struct dentry *dentry;
478 int i;
479
480 s->s_blocksize = PAGE_CACHE_SIZE;
481 s->s_blocksize_bits = PAGE_CACHE_SHIFT;
482 s->s_magic = magic;
483 s->s_op = &simple_super_operations;
484 s->s_time_gran = 1;
485
486 inode = new_inode(s);
487 if (!inode)
488 return -ENOMEM;
489 /*
490 * because the root inode is 1, the files array must not contain an
491 * entry at index 1
492 */
493 inode->i_ino = 1;
494 inode->i_mode = S_IFDIR | 0755;
495 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
496 inode->i_op = &simple_dir_inode_operations;
497 inode->i_fop = &simple_dir_operations;
498 set_nlink(inode, 2);
499 root = d_make_root(inode);
500 if (!root)
501 return -ENOMEM;
502 for (i = 0; !files->name || files->name[0]; i++, files++) {
503 if (!files->name)
504 continue;
505
506 /* warn if it tries to conflict with the root inode */
507 if (unlikely(i == 1))
508 printk(KERN_WARNING "%s: %s passed in a files array"
509 "with an index of 1!\n", __func__,
510 s->s_type->name);
511
512 dentry = d_alloc_name(root, files->name);
513 if (!dentry)
514 goto out;
515 inode = new_inode(s);
516 if (!inode) {
517 dput(dentry);
518 goto out;
519 }
520 inode->i_mode = S_IFREG | files->mode;
521 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
522 inode->i_fop = files->ops;
523 inode->i_ino = i;
524 d_add(dentry, inode);
525 }
526 s->s_root = root;
527 return 0;
528 out:
529 d_genocide(root);
530 shrink_dcache_parent(root);
531 dput(root);
532 return -ENOMEM;
533 }
534 EXPORT_SYMBOL(simple_fill_super);
535
536 static DEFINE_SPINLOCK(pin_fs_lock);
537
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)538 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
539 {
540 struct vfsmount *mnt = NULL;
541 spin_lock(&pin_fs_lock);
542 if (unlikely(!*mount)) {
543 spin_unlock(&pin_fs_lock);
544 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
545 if (IS_ERR(mnt))
546 return PTR_ERR(mnt);
547 spin_lock(&pin_fs_lock);
548 if (!*mount)
549 *mount = mnt;
550 }
551 mntget(*mount);
552 ++*count;
553 spin_unlock(&pin_fs_lock);
554 mntput(mnt);
555 return 0;
556 }
557 EXPORT_SYMBOL(simple_pin_fs);
558
simple_release_fs(struct vfsmount ** mount,int * count)559 void simple_release_fs(struct vfsmount **mount, int *count)
560 {
561 struct vfsmount *mnt;
562 spin_lock(&pin_fs_lock);
563 mnt = *mount;
564 if (!--*count)
565 *mount = NULL;
566 spin_unlock(&pin_fs_lock);
567 mntput(mnt);
568 }
569 EXPORT_SYMBOL(simple_release_fs);
570
571 /**
572 * simple_read_from_buffer - copy data from the buffer to user space
573 * @to: the user space buffer to read to
574 * @count: the maximum number of bytes to read
575 * @ppos: the current position in the buffer
576 * @from: the buffer to read from
577 * @available: the size of the buffer
578 *
579 * The simple_read_from_buffer() function reads up to @count bytes from the
580 * buffer @from at offset @ppos into the user space address starting at @to.
581 *
582 * On success, the number of bytes read is returned and the offset @ppos is
583 * advanced by this number, or negative value is returned on error.
584 **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)585 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
586 const void *from, size_t available)
587 {
588 loff_t pos = *ppos;
589 size_t ret;
590
591 if (pos < 0)
592 return -EINVAL;
593 if (pos >= available || !count)
594 return 0;
595 if (count > available - pos)
596 count = available - pos;
597 ret = copy_to_user(to, from + pos, count);
598 if (ret == count)
599 return -EFAULT;
600 count -= ret;
601 *ppos = pos + count;
602 return count;
603 }
604 EXPORT_SYMBOL(simple_read_from_buffer);
605
606 /**
607 * simple_write_to_buffer - copy data from user space to the buffer
608 * @to: the buffer to write to
609 * @available: the size of the buffer
610 * @ppos: the current position in the buffer
611 * @from: the user space buffer to read from
612 * @count: the maximum number of bytes to read
613 *
614 * The simple_write_to_buffer() function reads up to @count bytes from the user
615 * space address starting at @from into the buffer @to at offset @ppos.
616 *
617 * On success, the number of bytes written is returned and the offset @ppos is
618 * advanced by this number, or negative value is returned on error.
619 **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)620 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
621 const void __user *from, size_t count)
622 {
623 loff_t pos = *ppos;
624 size_t res;
625
626 if (pos < 0)
627 return -EINVAL;
628 if (pos >= available || !count)
629 return 0;
630 if (count > available - pos)
631 count = available - pos;
632 res = copy_from_user(to + pos, from, count);
633 if (res == count)
634 return -EFAULT;
635 count -= res;
636 *ppos = pos + count;
637 return count;
638 }
639 EXPORT_SYMBOL(simple_write_to_buffer);
640
641 /**
642 * memory_read_from_buffer - copy data from the buffer
643 * @to: the kernel space buffer to read to
644 * @count: the maximum number of bytes to read
645 * @ppos: the current position in the buffer
646 * @from: the buffer to read from
647 * @available: the size of the buffer
648 *
649 * The memory_read_from_buffer() function reads up to @count bytes from the
650 * buffer @from at offset @ppos into the kernel space address starting at @to.
651 *
652 * On success, the number of bytes read is returned and the offset @ppos is
653 * advanced by this number, or negative value is returned on error.
654 **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)655 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
656 const void *from, size_t available)
657 {
658 loff_t pos = *ppos;
659
660 if (pos < 0)
661 return -EINVAL;
662 if (pos >= available)
663 return 0;
664 if (count > available - pos)
665 count = available - pos;
666 memcpy(to, from + pos, count);
667 *ppos = pos + count;
668
669 return count;
670 }
671 EXPORT_SYMBOL(memory_read_from_buffer);
672
673 /*
674 * Transaction based IO.
675 * The file expects a single write which triggers the transaction, and then
676 * possibly a read which collects the result - which is stored in a
677 * file-local buffer.
678 */
679
simple_transaction_set(struct file * file,size_t n)680 void simple_transaction_set(struct file *file, size_t n)
681 {
682 struct simple_transaction_argresp *ar = file->private_data;
683
684 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
685
686 /*
687 * The barrier ensures that ar->size will really remain zero until
688 * ar->data is ready for reading.
689 */
690 smp_mb();
691 ar->size = n;
692 }
693 EXPORT_SYMBOL(simple_transaction_set);
694
simple_transaction_get(struct file * file,const char __user * buf,size_t size)695 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
696 {
697 struct simple_transaction_argresp *ar;
698 static DEFINE_SPINLOCK(simple_transaction_lock);
699
700 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
701 return ERR_PTR(-EFBIG);
702
703 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
704 if (!ar)
705 return ERR_PTR(-ENOMEM);
706
707 spin_lock(&simple_transaction_lock);
708
709 /* only one write allowed per open */
710 if (file->private_data) {
711 spin_unlock(&simple_transaction_lock);
712 free_page((unsigned long)ar);
713 return ERR_PTR(-EBUSY);
714 }
715
716 file->private_data = ar;
717
718 spin_unlock(&simple_transaction_lock);
719
720 if (copy_from_user(ar->data, buf, size))
721 return ERR_PTR(-EFAULT);
722
723 return ar->data;
724 }
725 EXPORT_SYMBOL(simple_transaction_get);
726
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)727 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
728 {
729 struct simple_transaction_argresp *ar = file->private_data;
730
731 if (!ar)
732 return 0;
733 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
734 }
735 EXPORT_SYMBOL(simple_transaction_read);
736
simple_transaction_release(struct inode * inode,struct file * file)737 int simple_transaction_release(struct inode *inode, struct file *file)
738 {
739 free_page((unsigned long)file->private_data);
740 return 0;
741 }
742 EXPORT_SYMBOL(simple_transaction_release);
743
744 /* Simple attribute files */
745
746 struct simple_attr {
747 int (*get)(void *, u64 *);
748 int (*set)(void *, u64);
749 char get_buf[24]; /* enough to store a u64 and "\n\0" */
750 char set_buf[24];
751 void *data;
752 const char *fmt; /* format for read operation */
753 struct mutex mutex; /* protects access to these buffers */
754 };
755
756 /* simple_attr_open is called by an actual attribute open file operation
757 * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)758 int simple_attr_open(struct inode *inode, struct file *file,
759 int (*get)(void *, u64 *), int (*set)(void *, u64),
760 const char *fmt)
761 {
762 struct simple_attr *attr;
763
764 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
765 if (!attr)
766 return -ENOMEM;
767
768 attr->get = get;
769 attr->set = set;
770 attr->data = inode->i_private;
771 attr->fmt = fmt;
772 mutex_init(&attr->mutex);
773
774 file->private_data = attr;
775
776 return nonseekable_open(inode, file);
777 }
778 EXPORT_SYMBOL_GPL(simple_attr_open);
779
simple_attr_release(struct inode * inode,struct file * file)780 int simple_attr_release(struct inode *inode, struct file *file)
781 {
782 kfree(file->private_data);
783 return 0;
784 }
785 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
786
787 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)788 ssize_t simple_attr_read(struct file *file, char __user *buf,
789 size_t len, loff_t *ppos)
790 {
791 struct simple_attr *attr;
792 size_t size;
793 ssize_t ret;
794
795 attr = file->private_data;
796
797 if (!attr->get)
798 return -EACCES;
799
800 ret = mutex_lock_interruptible(&attr->mutex);
801 if (ret)
802 return ret;
803
804 if (*ppos && attr->get_buf[0]) {
805 /* continued read */
806 size = strlen(attr->get_buf);
807 } else {
808 /* first read */
809 u64 val;
810 ret = attr->get(attr->data, &val);
811 if (ret)
812 goto out;
813
814 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
815 attr->fmt, (unsigned long long)val);
816 }
817
818 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
819 out:
820 mutex_unlock(&attr->mutex);
821 return ret;
822 }
823 EXPORT_SYMBOL_GPL(simple_attr_read);
824
825 /* interpret the buffer as a number to call the set function with */
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)826 ssize_t simple_attr_write(struct file *file, const char __user *buf,
827 size_t len, loff_t *ppos)
828 {
829 struct simple_attr *attr;
830 unsigned long long val;
831 size_t size;
832 ssize_t ret;
833
834 attr = file->private_data;
835 if (!attr->set)
836 return -EACCES;
837
838 ret = mutex_lock_interruptible(&attr->mutex);
839 if (ret)
840 return ret;
841
842 ret = -EFAULT;
843 size = min(sizeof(attr->set_buf) - 1, len);
844 if (copy_from_user(attr->set_buf, buf, size))
845 goto out;
846
847 attr->set_buf[size] = '\0';
848 ret = kstrtoull(attr->set_buf, 0, &val);
849 if (ret)
850 goto out;
851 ret = attr->set(attr->data, val);
852 if (ret == 0)
853 ret = len; /* on success, claim we got the whole input */
854 out:
855 mutex_unlock(&attr->mutex);
856 return ret;
857 }
858 EXPORT_SYMBOL_GPL(simple_attr_write);
859
860 /**
861 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
862 * @sb: filesystem to do the file handle conversion on
863 * @fid: file handle to convert
864 * @fh_len: length of the file handle in bytes
865 * @fh_type: type of file handle
866 * @get_inode: filesystem callback to retrieve inode
867 *
868 * This function decodes @fid as long as it has one of the well-known
869 * Linux filehandle types and calls @get_inode on it to retrieve the
870 * inode for the object specified in the file handle.
871 */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))872 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
873 int fh_len, int fh_type, struct inode *(*get_inode)
874 (struct super_block *sb, u64 ino, u32 gen))
875 {
876 struct inode *inode = NULL;
877
878 if (fh_len < 2)
879 return NULL;
880
881 switch (fh_type) {
882 case FILEID_INO32_GEN:
883 case FILEID_INO32_GEN_PARENT:
884 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
885 break;
886 }
887
888 return d_obtain_alias(inode);
889 }
890 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
891
892 /**
893 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
894 * @sb: filesystem to do the file handle conversion on
895 * @fid: file handle to convert
896 * @fh_len: length of the file handle in bytes
897 * @fh_type: type of file handle
898 * @get_inode: filesystem callback to retrieve inode
899 *
900 * This function decodes @fid as long as it has one of the well-known
901 * Linux filehandle types and calls @get_inode on it to retrieve the
902 * inode for the _parent_ object specified in the file handle if it
903 * is specified in the file handle, or NULL otherwise.
904 */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))905 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
906 int fh_len, int fh_type, struct inode *(*get_inode)
907 (struct super_block *sb, u64 ino, u32 gen))
908 {
909 struct inode *inode = NULL;
910
911 if (fh_len <= 2)
912 return NULL;
913
914 switch (fh_type) {
915 case FILEID_INO32_GEN_PARENT:
916 inode = get_inode(sb, fid->i32.parent_ino,
917 (fh_len > 3 ? fid->i32.parent_gen : 0));
918 break;
919 }
920
921 return d_obtain_alias(inode);
922 }
923 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
924
925 /**
926 * __generic_file_fsync - generic fsync implementation for simple filesystems
927 *
928 * @file: file to synchronize
929 * @start: start offset in bytes
930 * @end: end offset in bytes (inclusive)
931 * @datasync: only synchronize essential metadata if true
932 *
933 * This is a generic implementation of the fsync method for simple
934 * filesystems which track all non-inode metadata in the buffers list
935 * hanging off the address_space structure.
936 */
__generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)937 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
938 int datasync)
939 {
940 struct inode *inode = file->f_mapping->host;
941 int err;
942 int ret;
943
944 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
945 if (err)
946 return err;
947
948 mutex_lock(&inode->i_mutex);
949 ret = sync_mapping_buffers(inode->i_mapping);
950 if (!(inode->i_state & I_DIRTY_ALL))
951 goto out;
952 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
953 goto out;
954
955 err = sync_inode_metadata(inode, 1);
956 if (ret == 0)
957 ret = err;
958
959 out:
960 mutex_unlock(&inode->i_mutex);
961 return ret;
962 }
963 EXPORT_SYMBOL(__generic_file_fsync);
964
965 /**
966 * generic_file_fsync - generic fsync implementation for simple filesystems
967 * with flush
968 * @file: file to synchronize
969 * @start: start offset in bytes
970 * @end: end offset in bytes (inclusive)
971 * @datasync: only synchronize essential metadata if true
972 *
973 */
974
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)975 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
976 int datasync)
977 {
978 struct inode *inode = file->f_mapping->host;
979 int err;
980
981 err = __generic_file_fsync(file, start, end, datasync);
982 if (err)
983 return err;
984 return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
985 }
986 EXPORT_SYMBOL(generic_file_fsync);
987
988 /**
989 * generic_check_addressable - Check addressability of file system
990 * @blocksize_bits: log of file system block size
991 * @num_blocks: number of blocks in file system
992 *
993 * Determine whether a file system with @num_blocks blocks (and a
994 * block size of 2**@blocksize_bits) is addressable by the sector_t
995 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
996 */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)997 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
998 {
999 u64 last_fs_block = num_blocks - 1;
1000 u64 last_fs_page =
1001 last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
1002
1003 if (unlikely(num_blocks == 0))
1004 return 0;
1005
1006 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
1007 return -EINVAL;
1008
1009 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1010 (last_fs_page > (pgoff_t)(~0ULL))) {
1011 return -EFBIG;
1012 }
1013 return 0;
1014 }
1015 EXPORT_SYMBOL(generic_check_addressable);
1016
1017 /*
1018 * No-op implementation of ->fsync for in-memory filesystems.
1019 */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)1020 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1021 {
1022 return 0;
1023 }
1024 EXPORT_SYMBOL(noop_fsync);
1025
kfree_put_link(struct inode * unused,void * cookie)1026 void kfree_put_link(struct inode *unused, void *cookie)
1027 {
1028 kfree(cookie);
1029 }
1030 EXPORT_SYMBOL(kfree_put_link);
1031
free_page_put_link(struct inode * unused,void * cookie)1032 void free_page_put_link(struct inode *unused, void *cookie)
1033 {
1034 free_page((unsigned long) cookie);
1035 }
1036 EXPORT_SYMBOL(free_page_put_link);
1037
1038 /*
1039 * nop .set_page_dirty method so that people can use .page_mkwrite on
1040 * anon inodes.
1041 */
anon_set_page_dirty(struct page * page)1042 static int anon_set_page_dirty(struct page *page)
1043 {
1044 return 0;
1045 };
1046
1047 /*
1048 * A single inode exists for all anon_inode files. Contrary to pipes,
1049 * anon_inode inodes have no associated per-instance data, so we need
1050 * only allocate one of them.
1051 */
alloc_anon_inode(struct super_block * s)1052 struct inode *alloc_anon_inode(struct super_block *s)
1053 {
1054 static const struct address_space_operations anon_aops = {
1055 .set_page_dirty = anon_set_page_dirty,
1056 };
1057 struct inode *inode = new_inode_pseudo(s);
1058
1059 if (!inode)
1060 return ERR_PTR(-ENOMEM);
1061
1062 inode->i_ino = get_next_ino();
1063 inode->i_mapping->a_ops = &anon_aops;
1064
1065 /*
1066 * Mark the inode dirty from the very beginning,
1067 * that way it will never be moved to the dirty
1068 * list because mark_inode_dirty() will think
1069 * that it already _is_ on the dirty list.
1070 */
1071 inode->i_state = I_DIRTY;
1072 inode->i_mode = S_IRUSR | S_IWUSR;
1073 inode->i_uid = current_fsuid();
1074 inode->i_gid = current_fsgid();
1075 inode->i_flags |= S_PRIVATE;
1076 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1077 return inode;
1078 }
1079 EXPORT_SYMBOL(alloc_anon_inode);
1080
1081 /**
1082 * simple_nosetlease - generic helper for prohibiting leases
1083 * @filp: file pointer
1084 * @arg: type of lease to obtain
1085 * @flp: new lease supplied for insertion
1086 * @priv: private data for lm_setup operation
1087 *
1088 * Generic helper for filesystems that do not wish to allow leases to be set.
1089 * All arguments are ignored and it just returns -EINVAL.
1090 */
1091 int
simple_nosetlease(struct file * filp,long arg,struct file_lock ** flp,void ** priv)1092 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1093 void **priv)
1094 {
1095 return -EINVAL;
1096 }
1097 EXPORT_SYMBOL(simple_nosetlease);
1098
simple_follow_link(struct dentry * dentry,void ** cookie)1099 const char *simple_follow_link(struct dentry *dentry, void **cookie)
1100 {
1101 return d_inode(dentry)->i_link;
1102 }
1103 EXPORT_SYMBOL(simple_follow_link);
1104
1105 const struct inode_operations simple_symlink_inode_operations = {
1106 .follow_link = simple_follow_link,
1107 .readlink = generic_readlink
1108 };
1109 EXPORT_SYMBOL(simple_symlink_inode_operations);
1110
1111 /*
1112 * Operations for a permanently empty directory.
1113 */
empty_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1114 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1115 {
1116 return ERR_PTR(-ENOENT);
1117 }
1118
empty_dir_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)1119 static int empty_dir_getattr(struct vfsmount *mnt, struct dentry *dentry,
1120 struct kstat *stat)
1121 {
1122 struct inode *inode = d_inode(dentry);
1123 generic_fillattr(inode, stat);
1124 return 0;
1125 }
1126
empty_dir_setattr(struct dentry * dentry,struct iattr * attr)1127 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1128 {
1129 return -EPERM;
1130 }
1131
empty_dir_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)1132 static int empty_dir_setxattr(struct dentry *dentry, const char *name,
1133 const void *value, size_t size, int flags)
1134 {
1135 return -EOPNOTSUPP;
1136 }
1137
empty_dir_getxattr(struct dentry * dentry,const char * name,void * value,size_t size)1138 static ssize_t empty_dir_getxattr(struct dentry *dentry, const char *name,
1139 void *value, size_t size)
1140 {
1141 return -EOPNOTSUPP;
1142 }
1143
empty_dir_removexattr(struct dentry * dentry,const char * name)1144 static int empty_dir_removexattr(struct dentry *dentry, const char *name)
1145 {
1146 return -EOPNOTSUPP;
1147 }
1148
empty_dir_listxattr(struct dentry * dentry,char * list,size_t size)1149 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1150 {
1151 return -EOPNOTSUPP;
1152 }
1153
1154 static const struct inode_operations empty_dir_inode_operations = {
1155 .lookup = empty_dir_lookup,
1156 .permission = generic_permission,
1157 .setattr = empty_dir_setattr,
1158 .getattr = empty_dir_getattr,
1159 .setxattr = empty_dir_setxattr,
1160 .getxattr = empty_dir_getxattr,
1161 .removexattr = empty_dir_removexattr,
1162 .listxattr = empty_dir_listxattr,
1163 };
1164
empty_dir_llseek(struct file * file,loff_t offset,int whence)1165 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1166 {
1167 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1168 return generic_file_llseek_size(file, offset, whence, 2, 2);
1169 }
1170
empty_dir_readdir(struct file * file,struct dir_context * ctx)1171 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1172 {
1173 dir_emit_dots(file, ctx);
1174 return 0;
1175 }
1176
1177 static const struct file_operations empty_dir_operations = {
1178 .llseek = empty_dir_llseek,
1179 .read = generic_read_dir,
1180 .iterate = empty_dir_readdir,
1181 .fsync = noop_fsync,
1182 };
1183
1184
make_empty_dir_inode(struct inode * inode)1185 void make_empty_dir_inode(struct inode *inode)
1186 {
1187 set_nlink(inode, 2);
1188 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1189 inode->i_uid = GLOBAL_ROOT_UID;
1190 inode->i_gid = GLOBAL_ROOT_GID;
1191 inode->i_rdev = 0;
1192 inode->i_size = 0;
1193 inode->i_blkbits = PAGE_SHIFT;
1194 inode->i_blocks = 0;
1195
1196 inode->i_op = &empty_dir_inode_operations;
1197 inode->i_fop = &empty_dir_operations;
1198 }
1199
is_empty_dir_inode(struct inode * inode)1200 bool is_empty_dir_inode(struct inode *inode)
1201 {
1202 return (inode->i_fop == &empty_dir_operations) &&
1203 (inode->i_op == &empty_dir_inode_operations);
1204 }
1205