• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002	Andrew Morton
10  *		Initial version
11  * 27Jun2002	axboe@suse.de
12  *		use bio_add_page() to build bio's just the right size
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/gfp.h>
20 #include <linux/bio.h>
21 #include <linux/fs.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24 #include <linux/highmem.h>
25 #include <linux/prefetch.h>
26 #include <linux/mpage.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/cleancache.h>
31 #include "internal.h"
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/android_fs.h>
35 
36 EXPORT_TRACEPOINT_SYMBOL(android_fs_datawrite_start);
37 EXPORT_TRACEPOINT_SYMBOL(android_fs_datawrite_end);
38 EXPORT_TRACEPOINT_SYMBOL(android_fs_dataread_start);
39 EXPORT_TRACEPOINT_SYMBOL(android_fs_dataread_end);
40 
41 /*
42  * I/O completion handler for multipage BIOs.
43  *
44  * The mpage code never puts partial pages into a BIO (except for end-of-file).
45  * If a page does not map to a contiguous run of blocks then it simply falls
46  * back to block_read_full_page().
47  *
48  * Why is this?  If a page's completion depends on a number of different BIOs
49  * which can complete in any order (or at the same time) then determining the
50  * status of that page is hard.  See end_buffer_async_read() for the details.
51  * There is no point in duplicating all that complexity.
52  */
mpage_end_io(struct bio * bio)53 static void mpage_end_io(struct bio *bio)
54 {
55 	struct bio_vec *bv;
56 	int i;
57 
58 	if (trace_android_fs_dataread_end_enabled() &&
59 	    (bio_data_dir(bio) == READ)) {
60 		struct page *first_page = bio->bi_io_vec[0].bv_page;
61 
62 		if (first_page != NULL)
63 			trace_android_fs_dataread_end(first_page->mapping->host,
64 						      page_offset(first_page),
65 						      bio->bi_iter.bi_size);
66 	}
67 
68 	bio_for_each_segment_all(bv, bio, i) {
69 		struct page *page = bv->bv_page;
70 		page_endio(page, bio_data_dir(bio), bio->bi_error);
71 	}
72 
73 	bio_put(bio);
74 }
75 
mpage_bio_submit(int rw,struct bio * bio)76 static struct bio *mpage_bio_submit(int rw, struct bio *bio)
77 {
78 	if (trace_android_fs_dataread_start_enabled() && (rw == READ)) {
79 		struct page *first_page = bio->bi_io_vec[0].bv_page;
80 
81 		if (first_page != NULL) {
82 			char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
83 
84 			path = android_fstrace_get_pathname(pathbuf,
85 						    MAX_TRACE_PATHBUF_LEN,
86 						    first_page->mapping->host);
87 			trace_android_fs_dataread_start(
88 				first_page->mapping->host,
89 				page_offset(first_page),
90 				bio->bi_iter.bi_size,
91 				current->pid,
92 				path,
93 				current->comm);
94 		}
95 	}
96 	bio->bi_end_io = mpage_end_io;
97 	guard_bio_eod(rw, bio);
98 	submit_bio(rw, bio);
99 	return NULL;
100 }
101 
102 static struct bio *
mpage_alloc(struct block_device * bdev,sector_t first_sector,int nr_vecs,gfp_t gfp_flags)103 mpage_alloc(struct block_device *bdev,
104 		sector_t first_sector, int nr_vecs,
105 		gfp_t gfp_flags)
106 {
107 	struct bio *bio;
108 
109 	bio = bio_alloc(gfp_flags, nr_vecs);
110 
111 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
112 		while (!bio && (nr_vecs /= 2))
113 			bio = bio_alloc(gfp_flags, nr_vecs);
114 	}
115 
116 	if (bio) {
117 		bio->bi_bdev = bdev;
118 		bio->bi_iter.bi_sector = first_sector;
119 	}
120 	return bio;
121 }
122 
123 /*
124  * support function for mpage_readpages.  The fs supplied get_block might
125  * return an up to date buffer.  This is used to map that buffer into
126  * the page, which allows readpage to avoid triggering a duplicate call
127  * to get_block.
128  *
129  * The idea is to avoid adding buffers to pages that don't already have
130  * them.  So when the buffer is up to date and the page size == block size,
131  * this marks the page up to date instead of adding new buffers.
132  */
133 static void
map_buffer_to_page(struct page * page,struct buffer_head * bh,int page_block)134 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
135 {
136 	struct inode *inode = page->mapping->host;
137 	struct buffer_head *page_bh, *head;
138 	int block = 0;
139 
140 	if (!page_has_buffers(page)) {
141 		/*
142 		 * don't make any buffers if there is only one buffer on
143 		 * the page and the page just needs to be set up to date
144 		 */
145 		if (inode->i_blkbits == PAGE_CACHE_SHIFT &&
146 		    buffer_uptodate(bh)) {
147 			SetPageUptodate(page);
148 			return;
149 		}
150 		create_empty_buffers(page, i_blocksize(inode), 0);
151 	}
152 	head = page_buffers(page);
153 	page_bh = head;
154 	do {
155 		if (block == page_block) {
156 			page_bh->b_state = bh->b_state;
157 			page_bh->b_bdev = bh->b_bdev;
158 			page_bh->b_blocknr = bh->b_blocknr;
159 			break;
160 		}
161 		page_bh = page_bh->b_this_page;
162 		block++;
163 	} while (page_bh != head);
164 }
165 
166 /*
167  * This is the worker routine which does all the work of mapping the disk
168  * blocks and constructs largest possible bios, submits them for IO if the
169  * blocks are not contiguous on the disk.
170  *
171  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
172  * represent the validity of its disk mapping and to decide when to do the next
173  * get_block() call.
174  */
175 static struct bio *
do_mpage_readpage(struct bio * bio,struct page * page,unsigned nr_pages,sector_t * last_block_in_bio,struct buffer_head * map_bh,unsigned long * first_logical_block,get_block_t get_block,gfp_t gfp)176 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
177 		sector_t *last_block_in_bio, struct buffer_head *map_bh,
178 		unsigned long *first_logical_block, get_block_t get_block,
179 		gfp_t gfp)
180 {
181 	struct inode *inode = page->mapping->host;
182 	const unsigned blkbits = inode->i_blkbits;
183 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
184 	const unsigned blocksize = 1 << blkbits;
185 	sector_t block_in_file;
186 	sector_t last_block;
187 	sector_t last_block_in_file;
188 	sector_t blocks[MAX_BUF_PER_PAGE];
189 	unsigned page_block;
190 	unsigned first_hole = blocks_per_page;
191 	struct block_device *bdev = NULL;
192 	int length;
193 	int fully_mapped = 1;
194 	unsigned nblocks;
195 	unsigned relative_block;
196 
197 	if (page_has_buffers(page))
198 		goto confused;
199 
200 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
201 	last_block = block_in_file + nr_pages * blocks_per_page;
202 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
203 	if (last_block > last_block_in_file)
204 		last_block = last_block_in_file;
205 	page_block = 0;
206 
207 	/*
208 	 * Map blocks using the result from the previous get_blocks call first.
209 	 */
210 	nblocks = map_bh->b_size >> blkbits;
211 	if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
212 			block_in_file < (*first_logical_block + nblocks)) {
213 		unsigned map_offset = block_in_file - *first_logical_block;
214 		unsigned last = nblocks - map_offset;
215 
216 		for (relative_block = 0; ; relative_block++) {
217 			if (relative_block == last) {
218 				clear_buffer_mapped(map_bh);
219 				break;
220 			}
221 			if (page_block == blocks_per_page)
222 				break;
223 			blocks[page_block] = map_bh->b_blocknr + map_offset +
224 						relative_block;
225 			page_block++;
226 			block_in_file++;
227 		}
228 		bdev = map_bh->b_bdev;
229 	}
230 
231 	/*
232 	 * Then do more get_blocks calls until we are done with this page.
233 	 */
234 	map_bh->b_page = page;
235 	while (page_block < blocks_per_page) {
236 		map_bh->b_state = 0;
237 		map_bh->b_size = 0;
238 
239 		if (block_in_file < last_block) {
240 			map_bh->b_size = (last_block-block_in_file) << blkbits;
241 			if (get_block(inode, block_in_file, map_bh, 0))
242 				goto confused;
243 			*first_logical_block = block_in_file;
244 		}
245 
246 		if (!buffer_mapped(map_bh)) {
247 			fully_mapped = 0;
248 			if (first_hole == blocks_per_page)
249 				first_hole = page_block;
250 			page_block++;
251 			block_in_file++;
252 			continue;
253 		}
254 
255 		/* some filesystems will copy data into the page during
256 		 * the get_block call, in which case we don't want to
257 		 * read it again.  map_buffer_to_page copies the data
258 		 * we just collected from get_block into the page's buffers
259 		 * so readpage doesn't have to repeat the get_block call
260 		 */
261 		if (buffer_uptodate(map_bh)) {
262 			map_buffer_to_page(page, map_bh, page_block);
263 			goto confused;
264 		}
265 
266 		if (first_hole != blocks_per_page)
267 			goto confused;		/* hole -> non-hole */
268 
269 		/* Contiguous blocks? */
270 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
271 			goto confused;
272 		nblocks = map_bh->b_size >> blkbits;
273 		for (relative_block = 0; ; relative_block++) {
274 			if (relative_block == nblocks) {
275 				clear_buffer_mapped(map_bh);
276 				break;
277 			} else if (page_block == blocks_per_page)
278 				break;
279 			blocks[page_block] = map_bh->b_blocknr+relative_block;
280 			page_block++;
281 			block_in_file++;
282 		}
283 		bdev = map_bh->b_bdev;
284 	}
285 
286 	if (first_hole != blocks_per_page) {
287 		zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
288 		if (first_hole == 0) {
289 			SetPageUptodate(page);
290 			unlock_page(page);
291 			goto out;
292 		}
293 	} else if (fully_mapped) {
294 		SetPageMappedToDisk(page);
295 	}
296 
297 	if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
298 	    cleancache_get_page(page) == 0) {
299 		SetPageUptodate(page);
300 		goto confused;
301 	}
302 
303 	/*
304 	 * This page will go to BIO.  Do we need to send this BIO off first?
305 	 */
306 	if (bio && (*last_block_in_bio != blocks[0] - 1))
307 		bio = mpage_bio_submit(READ, bio);
308 
309 alloc_new:
310 	if (bio == NULL) {
311 		if (first_hole == blocks_per_page) {
312 			if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
313 								page))
314 				goto out;
315 		}
316 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
317 				min_t(int, nr_pages, BIO_MAX_PAGES), gfp);
318 		if (bio == NULL)
319 			goto confused;
320 	}
321 
322 	length = first_hole << blkbits;
323 	if (bio_add_page(bio, page, length, 0) < length) {
324 		bio = mpage_bio_submit(READ, bio);
325 		goto alloc_new;
326 	}
327 
328 	relative_block = block_in_file - *first_logical_block;
329 	nblocks = map_bh->b_size >> blkbits;
330 	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
331 	    (first_hole != blocks_per_page))
332 		bio = mpage_bio_submit(READ, bio);
333 	else
334 		*last_block_in_bio = blocks[blocks_per_page - 1];
335 out:
336 	return bio;
337 
338 confused:
339 	if (bio)
340 		bio = mpage_bio_submit(READ, bio);
341 	if (!PageUptodate(page))
342 	        block_read_full_page(page, get_block);
343 	else
344 		unlock_page(page);
345 	goto out;
346 }
347 
348 /**
349  * mpage_readpages - populate an address space with some pages & start reads against them
350  * @mapping: the address_space
351  * @pages: The address of a list_head which contains the target pages.  These
352  *   pages have their ->index populated and are otherwise uninitialised.
353  *   The page at @pages->prev has the lowest file offset, and reads should be
354  *   issued in @pages->prev to @pages->next order.
355  * @nr_pages: The number of pages at *@pages
356  * @get_block: The filesystem's block mapper function.
357  *
358  * This function walks the pages and the blocks within each page, building and
359  * emitting large BIOs.
360  *
361  * If anything unusual happens, such as:
362  *
363  * - encountering a page which has buffers
364  * - encountering a page which has a non-hole after a hole
365  * - encountering a page with non-contiguous blocks
366  *
367  * then this code just gives up and calls the buffer_head-based read function.
368  * It does handle a page which has holes at the end - that is a common case:
369  * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
370  *
371  * BH_Boundary explanation:
372  *
373  * There is a problem.  The mpage read code assembles several pages, gets all
374  * their disk mappings, and then submits them all.  That's fine, but obtaining
375  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
376  *
377  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
378  * submitted in the following order:
379  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
380  *
381  * because the indirect block has to be read to get the mappings of blocks
382  * 13,14,15,16.  Obviously, this impacts performance.
383  *
384  * So what we do it to allow the filesystem's get_block() function to set
385  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
386  * after this one will require I/O against a block which is probably close to
387  * this one.  So you should push what I/O you have currently accumulated.
388  *
389  * This all causes the disk requests to be issued in the correct order.
390  */
391 int
mpage_readpages(struct address_space * mapping,struct list_head * pages,unsigned nr_pages,get_block_t get_block)392 mpage_readpages(struct address_space *mapping, struct list_head *pages,
393 				unsigned nr_pages, get_block_t get_block)
394 {
395 	struct bio *bio = NULL;
396 	unsigned page_idx;
397 	sector_t last_block_in_bio = 0;
398 	struct buffer_head map_bh;
399 	unsigned long first_logical_block = 0;
400 	gfp_t gfp = mapping_gfp_constraint(mapping, GFP_KERNEL);
401 
402 	map_bh.b_state = 0;
403 	map_bh.b_size = 0;
404 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
405 		struct page *page = list_entry(pages->prev, struct page, lru);
406 
407 		prefetchw(&page->flags);
408 		list_del(&page->lru);
409 		if (!add_to_page_cache_lru(page, mapping,
410 					page->index,
411 					gfp)) {
412 			bio = do_mpage_readpage(bio, page,
413 					nr_pages - page_idx,
414 					&last_block_in_bio, &map_bh,
415 					&first_logical_block,
416 					get_block, gfp);
417 		}
418 		page_cache_release(page);
419 	}
420 	BUG_ON(!list_empty(pages));
421 	if (bio)
422 		mpage_bio_submit(READ, bio);
423 	return 0;
424 }
425 EXPORT_SYMBOL(mpage_readpages);
426 
427 /*
428  * This isn't called much at all
429  */
mpage_readpage(struct page * page,get_block_t get_block)430 int mpage_readpage(struct page *page, get_block_t get_block)
431 {
432 	struct bio *bio = NULL;
433 	sector_t last_block_in_bio = 0;
434 	struct buffer_head map_bh;
435 	unsigned long first_logical_block = 0;
436 	gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
437 
438 	map_bh.b_state = 0;
439 	map_bh.b_size = 0;
440 	bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
441 			&map_bh, &first_logical_block, get_block, gfp);
442 	if (bio)
443 		mpage_bio_submit(READ, bio);
444 	return 0;
445 }
446 EXPORT_SYMBOL(mpage_readpage);
447 
448 /*
449  * Writing is not so simple.
450  *
451  * If the page has buffers then they will be used for obtaining the disk
452  * mapping.  We only support pages which are fully mapped-and-dirty, with a
453  * special case for pages which are unmapped at the end: end-of-file.
454  *
455  * If the page has no buffers (preferred) then the page is mapped here.
456  *
457  * If all blocks are found to be contiguous then the page can go into the
458  * BIO.  Otherwise fall back to the mapping's writepage().
459  *
460  * FIXME: This code wants an estimate of how many pages are still to be
461  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
462  * just allocate full-size (16-page) BIOs.
463  */
464 
465 struct mpage_data {
466 	struct bio *bio;
467 	sector_t last_block_in_bio;
468 	get_block_t *get_block;
469 	unsigned use_writepage;
470 };
471 
472 /*
473  * We have our BIO, so we can now mark the buffers clean.  Make
474  * sure to only clean buffers which we know we'll be writing.
475  */
clean_buffers(struct page * page,unsigned first_unmapped)476 static void clean_buffers(struct page *page, unsigned first_unmapped)
477 {
478 	unsigned buffer_counter = 0;
479 	struct buffer_head *bh, *head;
480 	if (!page_has_buffers(page))
481 		return;
482 	head = page_buffers(page);
483 	bh = head;
484 
485 	do {
486 		if (buffer_counter++ == first_unmapped)
487 			break;
488 		clear_buffer_dirty(bh);
489 		bh = bh->b_this_page;
490 	} while (bh != head);
491 
492 	/*
493 	 * we cannot drop the bh if the page is not uptodate or a concurrent
494 	 * readpage would fail to serialize with the bh and it would read from
495 	 * disk before we reach the platter.
496 	 */
497 	if (buffer_heads_over_limit && PageUptodate(page))
498 		try_to_free_buffers(page);
499 }
500 
__mpage_writepage(struct page * page,struct writeback_control * wbc,void * data)501 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
502 		      void *data)
503 {
504 	struct mpage_data *mpd = data;
505 	struct bio *bio = mpd->bio;
506 	struct address_space *mapping = page->mapping;
507 	struct inode *inode = page->mapping->host;
508 	const unsigned blkbits = inode->i_blkbits;
509 	unsigned long end_index;
510 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
511 	sector_t last_block;
512 	sector_t block_in_file;
513 	sector_t blocks[MAX_BUF_PER_PAGE];
514 	unsigned page_block;
515 	unsigned first_unmapped = blocks_per_page;
516 	struct block_device *bdev = NULL;
517 	int boundary = 0;
518 	sector_t boundary_block = 0;
519 	struct block_device *boundary_bdev = NULL;
520 	int length;
521 	struct buffer_head map_bh;
522 	loff_t i_size = i_size_read(inode);
523 	int ret = 0;
524 	int wr = (wbc->sync_mode == WB_SYNC_ALL ?  WRITE_SYNC : WRITE);
525 
526 	if (page_has_buffers(page)) {
527 		struct buffer_head *head = page_buffers(page);
528 		struct buffer_head *bh = head;
529 
530 		/* If they're all mapped and dirty, do it */
531 		page_block = 0;
532 		do {
533 			BUG_ON(buffer_locked(bh));
534 			if (!buffer_mapped(bh)) {
535 				/*
536 				 * unmapped dirty buffers are created by
537 				 * __set_page_dirty_buffers -> mmapped data
538 				 */
539 				if (buffer_dirty(bh))
540 					goto confused;
541 				if (first_unmapped == blocks_per_page)
542 					first_unmapped = page_block;
543 				continue;
544 			}
545 
546 			if (first_unmapped != blocks_per_page)
547 				goto confused;	/* hole -> non-hole */
548 
549 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
550 				goto confused;
551 			if (page_block) {
552 				if (bh->b_blocknr != blocks[page_block-1] + 1)
553 					goto confused;
554 			}
555 			blocks[page_block++] = bh->b_blocknr;
556 			boundary = buffer_boundary(bh);
557 			if (boundary) {
558 				boundary_block = bh->b_blocknr;
559 				boundary_bdev = bh->b_bdev;
560 			}
561 			bdev = bh->b_bdev;
562 		} while ((bh = bh->b_this_page) != head);
563 
564 		if (first_unmapped)
565 			goto page_is_mapped;
566 
567 		/*
568 		 * Page has buffers, but they are all unmapped. The page was
569 		 * created by pagein or read over a hole which was handled by
570 		 * block_read_full_page().  If this address_space is also
571 		 * using mpage_readpages then this can rarely happen.
572 		 */
573 		goto confused;
574 	}
575 
576 	/*
577 	 * The page has no buffers: map it to disk
578 	 */
579 	BUG_ON(!PageUptodate(page));
580 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
581 	last_block = (i_size - 1) >> blkbits;
582 	map_bh.b_page = page;
583 	for (page_block = 0; page_block < blocks_per_page; ) {
584 
585 		map_bh.b_state = 0;
586 		map_bh.b_size = 1 << blkbits;
587 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
588 			goto confused;
589 		if (buffer_new(&map_bh))
590 			unmap_underlying_metadata(map_bh.b_bdev,
591 						map_bh.b_blocknr);
592 		if (buffer_boundary(&map_bh)) {
593 			boundary_block = map_bh.b_blocknr;
594 			boundary_bdev = map_bh.b_bdev;
595 		}
596 		if (page_block) {
597 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
598 				goto confused;
599 		}
600 		blocks[page_block++] = map_bh.b_blocknr;
601 		boundary = buffer_boundary(&map_bh);
602 		bdev = map_bh.b_bdev;
603 		if (block_in_file == last_block)
604 			break;
605 		block_in_file++;
606 	}
607 	BUG_ON(page_block == 0);
608 
609 	first_unmapped = page_block;
610 
611 page_is_mapped:
612 	end_index = i_size >> PAGE_CACHE_SHIFT;
613 	if (page->index >= end_index) {
614 		/*
615 		 * The page straddles i_size.  It must be zeroed out on each
616 		 * and every writepage invocation because it may be mmapped.
617 		 * "A file is mapped in multiples of the page size.  For a file
618 		 * that is not a multiple of the page size, the remaining memory
619 		 * is zeroed when mapped, and writes to that region are not
620 		 * written out to the file."
621 		 */
622 		unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
623 
624 		if (page->index > end_index || !offset)
625 			goto confused;
626 		zero_user_segment(page, offset, PAGE_CACHE_SIZE);
627 	}
628 
629 	/*
630 	 * This page will go to BIO.  Do we need to send this BIO off first?
631 	 */
632 	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
633 		bio = mpage_bio_submit(wr, bio);
634 
635 alloc_new:
636 	if (bio == NULL) {
637 		if (first_unmapped == blocks_per_page) {
638 			if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
639 								page, wbc)) {
640 				clean_buffers(page, first_unmapped);
641 				goto out;
642 			}
643 		}
644 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
645 				BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
646 		if (bio == NULL)
647 			goto confused;
648 
649 		wbc_init_bio(wbc, bio);
650 	}
651 
652 	/*
653 	 * Must try to add the page before marking the buffer clean or
654 	 * the confused fail path above (OOM) will be very confused when
655 	 * it finds all bh marked clean (i.e. it will not write anything)
656 	 */
657 	wbc_account_io(wbc, page, PAGE_SIZE);
658 	length = first_unmapped << blkbits;
659 	if (bio_add_page(bio, page, length, 0) < length) {
660 		bio = mpage_bio_submit(wr, bio);
661 		goto alloc_new;
662 	}
663 
664 	clean_buffers(page, first_unmapped);
665 
666 	BUG_ON(PageWriteback(page));
667 	set_page_writeback(page);
668 	unlock_page(page);
669 	if (boundary || (first_unmapped != blocks_per_page)) {
670 		bio = mpage_bio_submit(wr, bio);
671 		if (boundary_block) {
672 			write_boundary_block(boundary_bdev,
673 					boundary_block, 1 << blkbits);
674 		}
675 	} else {
676 		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
677 	}
678 	goto out;
679 
680 confused:
681 	if (bio)
682 		bio = mpage_bio_submit(wr, bio);
683 
684 	if (mpd->use_writepage) {
685 		ret = mapping->a_ops->writepage(page, wbc);
686 	} else {
687 		ret = -EAGAIN;
688 		goto out;
689 	}
690 	/*
691 	 * The caller has a ref on the inode, so *mapping is stable
692 	 */
693 	mapping_set_error(mapping, ret);
694 out:
695 	mpd->bio = bio;
696 	return ret;
697 }
698 
699 /**
700  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
701  * @mapping: address space structure to write
702  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
703  * @get_block: the filesystem's block mapper function.
704  *             If this is NULL then use a_ops->writepage.  Otherwise, go
705  *             direct-to-BIO.
706  *
707  * This is a library function, which implements the writepages()
708  * address_space_operation.
709  *
710  * If a page is already under I/O, generic_writepages() skips it, even
711  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
712  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
713  * and msync() need to guarantee that all the data which was dirty at the time
714  * the call was made get new I/O started against them.  If wbc->sync_mode is
715  * WB_SYNC_ALL then we were called for data integrity and we must wait for
716  * existing IO to complete.
717  */
718 int
mpage_writepages(struct address_space * mapping,struct writeback_control * wbc,get_block_t get_block)719 mpage_writepages(struct address_space *mapping,
720 		struct writeback_control *wbc, get_block_t get_block)
721 {
722 	struct blk_plug plug;
723 	int ret;
724 
725 	blk_start_plug(&plug);
726 
727 	if (!get_block)
728 		ret = generic_writepages(mapping, wbc);
729 	else {
730 		struct mpage_data mpd = {
731 			.bio = NULL,
732 			.last_block_in_bio = 0,
733 			.get_block = get_block,
734 			.use_writepage = 1,
735 		};
736 
737 		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
738 		if (mpd.bio) {
739 			int wr = (wbc->sync_mode == WB_SYNC_ALL ?
740 				  WRITE_SYNC : WRITE);
741 			mpage_bio_submit(wr, mpd.bio);
742 		}
743 	}
744 	blk_finish_plug(&plug);
745 	return ret;
746 }
747 EXPORT_SYMBOL(mpage_writepages);
748 
mpage_writepage(struct page * page,get_block_t get_block,struct writeback_control * wbc)749 int mpage_writepage(struct page *page, get_block_t get_block,
750 	struct writeback_control *wbc)
751 {
752 	struct mpage_data mpd = {
753 		.bio = NULL,
754 		.last_block_in_bio = 0,
755 		.get_block = get_block,
756 		.use_writepage = 0,
757 	};
758 	int ret = __mpage_writepage(page, wbc, &mpd);
759 	if (mpd.bio) {
760 		int wr = (wbc->sync_mode == WB_SYNC_ALL ?
761 			  WRITE_SYNC : WRITE);
762 		mpage_bio_submit(wr, mpd.bio);
763 	}
764 	return ret;
765 }
766 EXPORT_SYMBOL(mpage_writepage);
767