1 /**
2 * inode.c - NTFS kernel inode handling.
3 *
4 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
5 *
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <linux/buffer_head.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31
32 #include "aops.h"
33 #include "attrib.h"
34 #include "bitmap.h"
35 #include "dir.h"
36 #include "debug.h"
37 #include "inode.h"
38 #include "lcnalloc.h"
39 #include "malloc.h"
40 #include "mft.h"
41 #include "time.h"
42 #include "ntfs.h"
43
44 /**
45 * ntfs_test_inode - compare two (possibly fake) inodes for equality
46 * @vi: vfs inode which to test
47 * @na: ntfs attribute which is being tested with
48 *
49 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
50 * inode @vi for equality with the ntfs attribute @na.
51 *
52 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
53 * @na->name and @na->name_len are then ignored.
54 *
55 * Return 1 if the attributes match and 0 if not.
56 *
57 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
58 * allowed to sleep.
59 */
ntfs_test_inode(struct inode * vi,ntfs_attr * na)60 int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
61 {
62 ntfs_inode *ni;
63
64 if (vi->i_ino != na->mft_no)
65 return 0;
66 ni = NTFS_I(vi);
67 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
68 if (likely(!NInoAttr(ni))) {
69 /* If not looking for a normal inode this is a mismatch. */
70 if (unlikely(na->type != AT_UNUSED))
71 return 0;
72 } else {
73 /* A fake inode describing an attribute. */
74 if (ni->type != na->type)
75 return 0;
76 if (ni->name_len != na->name_len)
77 return 0;
78 if (na->name_len && memcmp(ni->name, na->name,
79 na->name_len * sizeof(ntfschar)))
80 return 0;
81 }
82 /* Match! */
83 return 1;
84 }
85
86 /**
87 * ntfs_init_locked_inode - initialize an inode
88 * @vi: vfs inode to initialize
89 * @na: ntfs attribute which to initialize @vi to
90 *
91 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
92 * order to enable ntfs_test_inode() to do its work.
93 *
94 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
95 * In that case, @na->name and @na->name_len should be set to NULL and 0,
96 * respectively. Although that is not strictly necessary as
97 * ntfs_read_locked_inode() will fill them in later.
98 *
99 * Return 0 on success and -errno on error.
100 *
101 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
102 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
103 */
ntfs_init_locked_inode(struct inode * vi,ntfs_attr * na)104 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
105 {
106 ntfs_inode *ni = NTFS_I(vi);
107
108 vi->i_ino = na->mft_no;
109
110 ni->type = na->type;
111 if (na->type == AT_INDEX_ALLOCATION)
112 NInoSetMstProtected(ni);
113
114 ni->name = na->name;
115 ni->name_len = na->name_len;
116
117 /* If initializing a normal inode, we are done. */
118 if (likely(na->type == AT_UNUSED)) {
119 BUG_ON(na->name);
120 BUG_ON(na->name_len);
121 return 0;
122 }
123
124 /* It is a fake inode. */
125 NInoSetAttr(ni);
126
127 /*
128 * We have I30 global constant as an optimization as it is the name
129 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
130 * allocation but that is ok. And most attributes are unnamed anyway,
131 * thus the fraction of named attributes with name != I30 is actually
132 * absolutely tiny.
133 */
134 if (na->name_len && na->name != I30) {
135 unsigned int i;
136
137 BUG_ON(!na->name);
138 i = na->name_len * sizeof(ntfschar);
139 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
140 if (!ni->name)
141 return -ENOMEM;
142 memcpy(ni->name, na->name, i);
143 ni->name[na->name_len] = 0;
144 }
145 return 0;
146 }
147
148 typedef int (*set_t)(struct inode *, void *);
149 static int ntfs_read_locked_inode(struct inode *vi);
150 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
151 static int ntfs_read_locked_index_inode(struct inode *base_vi,
152 struct inode *vi);
153
154 /**
155 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
156 * @sb: super block of mounted volume
157 * @mft_no: mft record number / inode number to obtain
158 *
159 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
160 * file or directory).
161 *
162 * If the inode is in the cache, it is just returned with an increased
163 * reference count. Otherwise, a new struct inode is allocated and initialized,
164 * and finally ntfs_read_locked_inode() is called to read in the inode and
165 * fill in the remainder of the inode structure.
166 *
167 * Return the struct inode on success. Check the return value with IS_ERR() and
168 * if true, the function failed and the error code is obtained from PTR_ERR().
169 */
ntfs_iget(struct super_block * sb,unsigned long mft_no)170 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
171 {
172 struct inode *vi;
173 int err;
174 ntfs_attr na;
175
176 na.mft_no = mft_no;
177 na.type = AT_UNUSED;
178 na.name = NULL;
179 na.name_len = 0;
180
181 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
182 (set_t)ntfs_init_locked_inode, &na);
183 if (unlikely(!vi))
184 return ERR_PTR(-ENOMEM);
185
186 err = 0;
187
188 /* If this is a freshly allocated inode, need to read it now. */
189 if (vi->i_state & I_NEW) {
190 err = ntfs_read_locked_inode(vi);
191 unlock_new_inode(vi);
192 }
193 /*
194 * There is no point in keeping bad inodes around if the failure was
195 * due to ENOMEM. We want to be able to retry again later.
196 */
197 if (unlikely(err == -ENOMEM)) {
198 iput(vi);
199 vi = ERR_PTR(err);
200 }
201 return vi;
202 }
203
204 /**
205 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
206 * @base_vi: vfs base inode containing the attribute
207 * @type: attribute type
208 * @name: Unicode name of the attribute (NULL if unnamed)
209 * @name_len: length of @name in Unicode characters (0 if unnamed)
210 *
211 * Obtain the (fake) struct inode corresponding to the attribute specified by
212 * @type, @name, and @name_len, which is present in the base mft record
213 * specified by the vfs inode @base_vi.
214 *
215 * If the attribute inode is in the cache, it is just returned with an
216 * increased reference count. Otherwise, a new struct inode is allocated and
217 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
218 * attribute and fill in the inode structure.
219 *
220 * Note, for index allocation attributes, you need to use ntfs_index_iget()
221 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
222 *
223 * Return the struct inode of the attribute inode on success. Check the return
224 * value with IS_ERR() and if true, the function failed and the error code is
225 * obtained from PTR_ERR().
226 */
ntfs_attr_iget(struct inode * base_vi,ATTR_TYPE type,ntfschar * name,u32 name_len)227 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
228 ntfschar *name, u32 name_len)
229 {
230 struct inode *vi;
231 int err;
232 ntfs_attr na;
233
234 /* Make sure no one calls ntfs_attr_iget() for indices. */
235 BUG_ON(type == AT_INDEX_ALLOCATION);
236
237 na.mft_no = base_vi->i_ino;
238 na.type = type;
239 na.name = name;
240 na.name_len = name_len;
241
242 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
243 (set_t)ntfs_init_locked_inode, &na);
244 if (unlikely(!vi))
245 return ERR_PTR(-ENOMEM);
246
247 err = 0;
248
249 /* If this is a freshly allocated inode, need to read it now. */
250 if (vi->i_state & I_NEW) {
251 err = ntfs_read_locked_attr_inode(base_vi, vi);
252 unlock_new_inode(vi);
253 }
254 /*
255 * There is no point in keeping bad attribute inodes around. This also
256 * simplifies things in that we never need to check for bad attribute
257 * inodes elsewhere.
258 */
259 if (unlikely(err)) {
260 iput(vi);
261 vi = ERR_PTR(err);
262 }
263 return vi;
264 }
265
266 /**
267 * ntfs_index_iget - obtain a struct inode corresponding to an index
268 * @base_vi: vfs base inode containing the index related attributes
269 * @name: Unicode name of the index
270 * @name_len: length of @name in Unicode characters
271 *
272 * Obtain the (fake) struct inode corresponding to the index specified by @name
273 * and @name_len, which is present in the base mft record specified by the vfs
274 * inode @base_vi.
275 *
276 * If the index inode is in the cache, it is just returned with an increased
277 * reference count. Otherwise, a new struct inode is allocated and
278 * initialized, and finally ntfs_read_locked_index_inode() is called to read
279 * the index related attributes and fill in the inode structure.
280 *
281 * Return the struct inode of the index inode on success. Check the return
282 * value with IS_ERR() and if true, the function failed and the error code is
283 * obtained from PTR_ERR().
284 */
ntfs_index_iget(struct inode * base_vi,ntfschar * name,u32 name_len)285 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
286 u32 name_len)
287 {
288 struct inode *vi;
289 int err;
290 ntfs_attr na;
291
292 na.mft_no = base_vi->i_ino;
293 na.type = AT_INDEX_ALLOCATION;
294 na.name = name;
295 na.name_len = name_len;
296
297 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
298 (set_t)ntfs_init_locked_inode, &na);
299 if (unlikely(!vi))
300 return ERR_PTR(-ENOMEM);
301
302 err = 0;
303
304 /* If this is a freshly allocated inode, need to read it now. */
305 if (vi->i_state & I_NEW) {
306 err = ntfs_read_locked_index_inode(base_vi, vi);
307 unlock_new_inode(vi);
308 }
309 /*
310 * There is no point in keeping bad index inodes around. This also
311 * simplifies things in that we never need to check for bad index
312 * inodes elsewhere.
313 */
314 if (unlikely(err)) {
315 iput(vi);
316 vi = ERR_PTR(err);
317 }
318 return vi;
319 }
320
ntfs_alloc_big_inode(struct super_block * sb)321 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
322 {
323 ntfs_inode *ni;
324
325 ntfs_debug("Entering.");
326 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
327 if (likely(ni != NULL)) {
328 ni->state = 0;
329 return VFS_I(ni);
330 }
331 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
332 return NULL;
333 }
334
ntfs_i_callback(struct rcu_head * head)335 static void ntfs_i_callback(struct rcu_head *head)
336 {
337 struct inode *inode = container_of(head, struct inode, i_rcu);
338 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
339 }
340
ntfs_destroy_big_inode(struct inode * inode)341 void ntfs_destroy_big_inode(struct inode *inode)
342 {
343 ntfs_inode *ni = NTFS_I(inode);
344
345 ntfs_debug("Entering.");
346 BUG_ON(ni->page);
347 if (!atomic_dec_and_test(&ni->count))
348 BUG();
349 call_rcu(&inode->i_rcu, ntfs_i_callback);
350 }
351
ntfs_alloc_extent_inode(void)352 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
353 {
354 ntfs_inode *ni;
355
356 ntfs_debug("Entering.");
357 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
358 if (likely(ni != NULL)) {
359 ni->state = 0;
360 return ni;
361 }
362 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
363 return NULL;
364 }
365
ntfs_destroy_extent_inode(ntfs_inode * ni)366 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
367 {
368 ntfs_debug("Entering.");
369 BUG_ON(ni->page);
370 if (!atomic_dec_and_test(&ni->count))
371 BUG();
372 kmem_cache_free(ntfs_inode_cache, ni);
373 }
374
375 /*
376 * The attribute runlist lock has separate locking rules from the
377 * normal runlist lock, so split the two lock-classes:
378 */
379 static struct lock_class_key attr_list_rl_lock_class;
380
381 /**
382 * __ntfs_init_inode - initialize ntfs specific part of an inode
383 * @sb: super block of mounted volume
384 * @ni: freshly allocated ntfs inode which to initialize
385 *
386 * Initialize an ntfs inode to defaults.
387 *
388 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
389 * untouched. Make sure to initialize them elsewhere.
390 *
391 * Return zero on success and -ENOMEM on error.
392 */
__ntfs_init_inode(struct super_block * sb,ntfs_inode * ni)393 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
394 {
395 ntfs_debug("Entering.");
396 rwlock_init(&ni->size_lock);
397 ni->initialized_size = ni->allocated_size = 0;
398 ni->seq_no = 0;
399 atomic_set(&ni->count, 1);
400 ni->vol = NTFS_SB(sb);
401 ntfs_init_runlist(&ni->runlist);
402 mutex_init(&ni->mrec_lock);
403 ni->page = NULL;
404 ni->page_ofs = 0;
405 ni->attr_list_size = 0;
406 ni->attr_list = NULL;
407 ntfs_init_runlist(&ni->attr_list_rl);
408 lockdep_set_class(&ni->attr_list_rl.lock,
409 &attr_list_rl_lock_class);
410 ni->itype.index.block_size = 0;
411 ni->itype.index.vcn_size = 0;
412 ni->itype.index.collation_rule = 0;
413 ni->itype.index.block_size_bits = 0;
414 ni->itype.index.vcn_size_bits = 0;
415 mutex_init(&ni->extent_lock);
416 ni->nr_extents = 0;
417 ni->ext.base_ntfs_ino = NULL;
418 }
419
420 /*
421 * Extent inodes get MFT-mapped in a nested way, while the base inode
422 * is still mapped. Teach this nesting to the lock validator by creating
423 * a separate class for nested inode's mrec_lock's:
424 */
425 static struct lock_class_key extent_inode_mrec_lock_key;
426
ntfs_new_extent_inode(struct super_block * sb,unsigned long mft_no)427 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
428 unsigned long mft_no)
429 {
430 ntfs_inode *ni = ntfs_alloc_extent_inode();
431
432 ntfs_debug("Entering.");
433 if (likely(ni != NULL)) {
434 __ntfs_init_inode(sb, ni);
435 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
436 ni->mft_no = mft_no;
437 ni->type = AT_UNUSED;
438 ni->name = NULL;
439 ni->name_len = 0;
440 }
441 return ni;
442 }
443
444 /**
445 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
446 * @ctx: initialized attribute search context
447 *
448 * Search all file name attributes in the inode described by the attribute
449 * search context @ctx and check if any of the names are in the $Extend system
450 * directory.
451 *
452 * Return values:
453 * 1: file is in $Extend directory
454 * 0: file is not in $Extend directory
455 * -errno: failed to determine if the file is in the $Extend directory
456 */
ntfs_is_extended_system_file(ntfs_attr_search_ctx * ctx)457 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
458 {
459 int nr_links, err;
460
461 /* Restart search. */
462 ntfs_attr_reinit_search_ctx(ctx);
463
464 /* Get number of hard links. */
465 nr_links = le16_to_cpu(ctx->mrec->link_count);
466
467 /* Loop through all hard links. */
468 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
469 ctx))) {
470 FILE_NAME_ATTR *file_name_attr;
471 ATTR_RECORD *attr = ctx->attr;
472 u8 *p, *p2;
473
474 nr_links--;
475 /*
476 * Maximum sanity checking as we are called on an inode that
477 * we suspect might be corrupt.
478 */
479 p = (u8*)attr + le32_to_cpu(attr->length);
480 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
481 le32_to_cpu(ctx->mrec->bytes_in_use)) {
482 err_corrupt_attr:
483 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
484 "attribute. You should run chkdsk.");
485 return -EIO;
486 }
487 if (attr->non_resident) {
488 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
489 "name. You should run chkdsk.");
490 return -EIO;
491 }
492 if (attr->flags) {
493 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
494 "invalid flags. You should run "
495 "chkdsk.");
496 return -EIO;
497 }
498 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
499 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
500 "name. You should run chkdsk.");
501 return -EIO;
502 }
503 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
504 le16_to_cpu(attr->data.resident.value_offset));
505 p2 = (u8 *)file_name_attr + le32_to_cpu(attr->data.resident.value_length);
506 if (p2 < (u8*)attr || p2 > p)
507 goto err_corrupt_attr;
508 /* This attribute is ok, but is it in the $Extend directory? */
509 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
510 return 1; /* YES, it's an extended system file. */
511 }
512 if (unlikely(err != -ENOENT))
513 return err;
514 if (unlikely(nr_links)) {
515 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
516 "doesn't match number of name attributes. You "
517 "should run chkdsk.");
518 return -EIO;
519 }
520 return 0; /* NO, it is not an extended system file. */
521 }
522
523 /**
524 * ntfs_read_locked_inode - read an inode from its device
525 * @vi: inode to read
526 *
527 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
528 * described by @vi into memory from the device.
529 *
530 * The only fields in @vi that we need to/can look at when the function is
531 * called are i_sb, pointing to the mounted device's super block, and i_ino,
532 * the number of the inode to load.
533 *
534 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
535 * for reading and sets up the necessary @vi fields as well as initializing
536 * the ntfs inode.
537 *
538 * Q: What locks are held when the function is called?
539 * A: i_state has I_NEW set, hence the inode is locked, also
540 * i_count is set to 1, so it is not going to go away
541 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
542 * is allowed to write to them. We should of course be honouring them but
543 * we need to do that using the IS_* macros defined in include/linux/fs.h.
544 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
545 *
546 * Return 0 on success and -errno on error. In the error case, the inode will
547 * have had make_bad_inode() executed on it.
548 */
ntfs_read_locked_inode(struct inode * vi)549 static int ntfs_read_locked_inode(struct inode *vi)
550 {
551 ntfs_volume *vol = NTFS_SB(vi->i_sb);
552 ntfs_inode *ni;
553 struct inode *bvi;
554 MFT_RECORD *m;
555 ATTR_RECORD *a;
556 STANDARD_INFORMATION *si;
557 ntfs_attr_search_ctx *ctx;
558 int err = 0;
559
560 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
561
562 /* Setup the generic vfs inode parts now. */
563
564 /*
565 * This is for checking whether an inode has changed w.r.t. a file so
566 * that the file can be updated if necessary (compare with f_version).
567 */
568 vi->i_version = 1;
569
570 vi->i_uid = vol->uid;
571 vi->i_gid = vol->gid;
572 vi->i_mode = 0;
573
574 /*
575 * Initialize the ntfs specific part of @vi special casing
576 * FILE_MFT which we need to do at mount time.
577 */
578 if (vi->i_ino != FILE_MFT)
579 ntfs_init_big_inode(vi);
580 ni = NTFS_I(vi);
581
582 m = map_mft_record(ni);
583 if (IS_ERR(m)) {
584 err = PTR_ERR(m);
585 goto err_out;
586 }
587 ctx = ntfs_attr_get_search_ctx(ni, m);
588 if (!ctx) {
589 err = -ENOMEM;
590 goto unm_err_out;
591 }
592
593 if (!(m->flags & MFT_RECORD_IN_USE)) {
594 ntfs_error(vi->i_sb, "Inode is not in use!");
595 goto unm_err_out;
596 }
597 if (m->base_mft_record) {
598 ntfs_error(vi->i_sb, "Inode is an extent inode!");
599 goto unm_err_out;
600 }
601
602 /* Transfer information from mft record into vfs and ntfs inodes. */
603 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
604
605 /*
606 * FIXME: Keep in mind that link_count is two for files which have both
607 * a long file name and a short file name as separate entries, so if
608 * we are hiding short file names this will be too high. Either we need
609 * to account for the short file names by subtracting them or we need
610 * to make sure we delete files even though i_nlink is not zero which
611 * might be tricky due to vfs interactions. Need to think about this
612 * some more when implementing the unlink command.
613 */
614 set_nlink(vi, le16_to_cpu(m->link_count));
615 /*
616 * FIXME: Reparse points can have the directory bit set even though
617 * they would be S_IFLNK. Need to deal with this further below when we
618 * implement reparse points / symbolic links but it will do for now.
619 * Also if not a directory, it could be something else, rather than
620 * a regular file. But again, will do for now.
621 */
622 /* Everyone gets all permissions. */
623 vi->i_mode |= S_IRWXUGO;
624 /* If read-only, no one gets write permissions. */
625 if (IS_RDONLY(vi))
626 vi->i_mode &= ~S_IWUGO;
627 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
628 vi->i_mode |= S_IFDIR;
629 /*
630 * Apply the directory permissions mask set in the mount
631 * options.
632 */
633 vi->i_mode &= ~vol->dmask;
634 /* Things break without this kludge! */
635 if (vi->i_nlink > 1)
636 set_nlink(vi, 1);
637 } else {
638 vi->i_mode |= S_IFREG;
639 /* Apply the file permissions mask set in the mount options. */
640 vi->i_mode &= ~vol->fmask;
641 }
642 /*
643 * Find the standard information attribute in the mft record. At this
644 * stage we haven't setup the attribute list stuff yet, so this could
645 * in fact fail if the standard information is in an extent record, but
646 * I don't think this actually ever happens.
647 */
648 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
649 ctx);
650 if (unlikely(err)) {
651 if (err == -ENOENT) {
652 /*
653 * TODO: We should be performing a hot fix here (if the
654 * recover mount option is set) by creating a new
655 * attribute.
656 */
657 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
658 "is missing.");
659 }
660 goto unm_err_out;
661 }
662 a = ctx->attr;
663 /* Get the standard information attribute value. */
664 if ((u8 *)a + le16_to_cpu(a->data.resident.value_offset)
665 + le32_to_cpu(a->data.resident.value_length) >
666 (u8 *)ctx->mrec + vol->mft_record_size) {
667 ntfs_error(vi->i_sb, "Corrupt standard information attribute in inode.");
668 goto unm_err_out;
669 }
670 si = (STANDARD_INFORMATION*)((u8*)a +
671 le16_to_cpu(a->data.resident.value_offset));
672
673 /* Transfer information from the standard information into vi. */
674 /*
675 * Note: The i_?times do not quite map perfectly onto the NTFS times,
676 * but they are close enough, and in the end it doesn't really matter
677 * that much...
678 */
679 /*
680 * mtime is the last change of the data within the file. Not changed
681 * when only metadata is changed, e.g. a rename doesn't affect mtime.
682 */
683 vi->i_mtime = ntfs2utc(si->last_data_change_time);
684 /*
685 * ctime is the last change of the metadata of the file. This obviously
686 * always changes, when mtime is changed. ctime can be changed on its
687 * own, mtime is then not changed, e.g. when a file is renamed.
688 */
689 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
690 /*
691 * Last access to the data within the file. Not changed during a rename
692 * for example but changed whenever the file is written to.
693 */
694 vi->i_atime = ntfs2utc(si->last_access_time);
695
696 /* Find the attribute list attribute if present. */
697 ntfs_attr_reinit_search_ctx(ctx);
698 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
699 if (err) {
700 if (unlikely(err != -ENOENT)) {
701 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
702 "attribute.");
703 goto unm_err_out;
704 }
705 } else /* if (!err) */ {
706 if (vi->i_ino == FILE_MFT)
707 goto skip_attr_list_load;
708 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
709 NInoSetAttrList(ni);
710 a = ctx->attr;
711 if (a->flags & ATTR_COMPRESSION_MASK) {
712 ntfs_error(vi->i_sb, "Attribute list attribute is "
713 "compressed.");
714 goto unm_err_out;
715 }
716 if (a->flags & ATTR_IS_ENCRYPTED ||
717 a->flags & ATTR_IS_SPARSE) {
718 if (a->non_resident) {
719 ntfs_error(vi->i_sb, "Non-resident attribute "
720 "list attribute is encrypted/"
721 "sparse.");
722 goto unm_err_out;
723 }
724 ntfs_warning(vi->i_sb, "Resident attribute list "
725 "attribute in inode 0x%lx is marked "
726 "encrypted/sparse which is not true. "
727 "However, Windows allows this and "
728 "chkdsk does not detect or correct it "
729 "so we will just ignore the invalid "
730 "flags and pretend they are not set.",
731 vi->i_ino);
732 }
733 /* Now allocate memory for the attribute list. */
734 ni->attr_list_size = (u32)ntfs_attr_size(a);
735 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
736 if (!ni->attr_list) {
737 ntfs_error(vi->i_sb, "Not enough memory to allocate "
738 "buffer for attribute list.");
739 err = -ENOMEM;
740 goto unm_err_out;
741 }
742 if (a->non_resident) {
743 NInoSetAttrListNonResident(ni);
744 if (a->data.non_resident.lowest_vcn) {
745 ntfs_error(vi->i_sb, "Attribute list has non "
746 "zero lowest_vcn.");
747 goto unm_err_out;
748 }
749 /*
750 * Setup the runlist. No need for locking as we have
751 * exclusive access to the inode at this time.
752 */
753 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
754 a, NULL);
755 if (IS_ERR(ni->attr_list_rl.rl)) {
756 err = PTR_ERR(ni->attr_list_rl.rl);
757 ni->attr_list_rl.rl = NULL;
758 ntfs_error(vi->i_sb, "Mapping pairs "
759 "decompression failed.");
760 goto unm_err_out;
761 }
762 /* Now load the attribute list. */
763 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
764 ni->attr_list, ni->attr_list_size,
765 sle64_to_cpu(a->data.non_resident.
766 initialized_size)))) {
767 ntfs_error(vi->i_sb, "Failed to load "
768 "attribute list attribute.");
769 goto unm_err_out;
770 }
771 } else /* if (!a->non_resident) */ {
772 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
773 + le32_to_cpu(
774 a->data.resident.value_length) >
775 (u8*)ctx->mrec + vol->mft_record_size) {
776 ntfs_error(vi->i_sb, "Corrupt attribute list "
777 "in inode.");
778 goto unm_err_out;
779 }
780 /* Now copy the attribute list. */
781 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
782 a->data.resident.value_offset),
783 le32_to_cpu(
784 a->data.resident.value_length));
785 }
786 }
787 skip_attr_list_load:
788 /*
789 * If an attribute list is present we now have the attribute list value
790 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
791 */
792 if (S_ISDIR(vi->i_mode)) {
793 loff_t bvi_size;
794 ntfs_inode *bni;
795 INDEX_ROOT *ir;
796 u8 *ir_end, *index_end;
797
798 /* It is a directory, find index root attribute. */
799 ntfs_attr_reinit_search_ctx(ctx);
800 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
801 0, NULL, 0, ctx);
802 if (unlikely(err)) {
803 if (err == -ENOENT) {
804 // FIXME: File is corrupt! Hot-fix with empty
805 // index root attribute if recovery option is
806 // set.
807 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
808 "is missing.");
809 }
810 goto unm_err_out;
811 }
812 a = ctx->attr;
813 /* Set up the state. */
814 if (unlikely(a->non_resident)) {
815 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
816 "resident.");
817 goto unm_err_out;
818 }
819 /* Ensure the attribute name is placed before the value. */
820 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
821 le16_to_cpu(a->data.resident.value_offset)))) {
822 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
823 "placed after the attribute value.");
824 goto unm_err_out;
825 }
826 /*
827 * Compressed/encrypted index root just means that the newly
828 * created files in that directory should be created compressed/
829 * encrypted. However index root cannot be both compressed and
830 * encrypted.
831 */
832 if (a->flags & ATTR_COMPRESSION_MASK)
833 NInoSetCompressed(ni);
834 if (a->flags & ATTR_IS_ENCRYPTED) {
835 if (a->flags & ATTR_COMPRESSION_MASK) {
836 ntfs_error(vi->i_sb, "Found encrypted and "
837 "compressed attribute.");
838 goto unm_err_out;
839 }
840 NInoSetEncrypted(ni);
841 }
842 if (a->flags & ATTR_IS_SPARSE)
843 NInoSetSparse(ni);
844 ir = (INDEX_ROOT*)((u8*)a +
845 le16_to_cpu(a->data.resident.value_offset));
846 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
847 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
848 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
849 "corrupt.");
850 goto unm_err_out;
851 }
852 index_end = (u8*)&ir->index +
853 le32_to_cpu(ir->index.index_length);
854 if (index_end > ir_end) {
855 ntfs_error(vi->i_sb, "Directory index is corrupt.");
856 goto unm_err_out;
857 }
858 if (ir->type != AT_FILE_NAME) {
859 ntfs_error(vi->i_sb, "Indexed attribute is not "
860 "$FILE_NAME.");
861 goto unm_err_out;
862 }
863 if (ir->collation_rule != COLLATION_FILE_NAME) {
864 ntfs_error(vi->i_sb, "Index collation rule is not "
865 "COLLATION_FILE_NAME.");
866 goto unm_err_out;
867 }
868 ni->itype.index.collation_rule = ir->collation_rule;
869 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
870 if (ni->itype.index.block_size &
871 (ni->itype.index.block_size - 1)) {
872 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
873 "power of two.",
874 ni->itype.index.block_size);
875 goto unm_err_out;
876 }
877 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
878 ntfs_error(vi->i_sb, "Index block size (%u) > "
879 "PAGE_CACHE_SIZE (%ld) is not "
880 "supported. Sorry.",
881 ni->itype.index.block_size,
882 PAGE_CACHE_SIZE);
883 err = -EOPNOTSUPP;
884 goto unm_err_out;
885 }
886 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
887 ntfs_error(vi->i_sb, "Index block size (%u) < "
888 "NTFS_BLOCK_SIZE (%i) is not "
889 "supported. Sorry.",
890 ni->itype.index.block_size,
891 NTFS_BLOCK_SIZE);
892 err = -EOPNOTSUPP;
893 goto unm_err_out;
894 }
895 ni->itype.index.block_size_bits =
896 ffs(ni->itype.index.block_size) - 1;
897 /* Determine the size of a vcn in the directory index. */
898 if (vol->cluster_size <= ni->itype.index.block_size) {
899 ni->itype.index.vcn_size = vol->cluster_size;
900 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
901 } else {
902 ni->itype.index.vcn_size = vol->sector_size;
903 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
904 }
905
906 /* Setup the index allocation attribute, even if not present. */
907 NInoSetMstProtected(ni);
908 ni->type = AT_INDEX_ALLOCATION;
909 ni->name = I30;
910 ni->name_len = 4;
911
912 if (!(ir->index.flags & LARGE_INDEX)) {
913 /* No index allocation. */
914 vi->i_size = ni->initialized_size =
915 ni->allocated_size = 0;
916 /* We are done with the mft record, so we release it. */
917 ntfs_attr_put_search_ctx(ctx);
918 unmap_mft_record(ni);
919 m = NULL;
920 ctx = NULL;
921 goto skip_large_dir_stuff;
922 } /* LARGE_INDEX: Index allocation present. Setup state. */
923 NInoSetIndexAllocPresent(ni);
924 /* Find index allocation attribute. */
925 ntfs_attr_reinit_search_ctx(ctx);
926 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
927 CASE_SENSITIVE, 0, NULL, 0, ctx);
928 if (unlikely(err)) {
929 if (err == -ENOENT)
930 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
931 "attribute is not present but "
932 "$INDEX_ROOT indicated it is.");
933 else
934 ntfs_error(vi->i_sb, "Failed to lookup "
935 "$INDEX_ALLOCATION "
936 "attribute.");
937 goto unm_err_out;
938 }
939 a = ctx->attr;
940 if (!a->non_resident) {
941 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
942 "is resident.");
943 goto unm_err_out;
944 }
945 /*
946 * Ensure the attribute name is placed before the mapping pairs
947 * array.
948 */
949 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
950 le16_to_cpu(
951 a->data.non_resident.mapping_pairs_offset)))) {
952 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
953 "is placed after the mapping pairs "
954 "array.");
955 goto unm_err_out;
956 }
957 if (a->flags & ATTR_IS_ENCRYPTED) {
958 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
959 "is encrypted.");
960 goto unm_err_out;
961 }
962 if (a->flags & ATTR_IS_SPARSE) {
963 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
964 "is sparse.");
965 goto unm_err_out;
966 }
967 if (a->flags & ATTR_COMPRESSION_MASK) {
968 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
969 "is compressed.");
970 goto unm_err_out;
971 }
972 if (a->data.non_resident.lowest_vcn) {
973 ntfs_error(vi->i_sb, "First extent of "
974 "$INDEX_ALLOCATION attribute has non "
975 "zero lowest_vcn.");
976 goto unm_err_out;
977 }
978 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
979 ni->initialized_size = sle64_to_cpu(
980 a->data.non_resident.initialized_size);
981 ni->allocated_size = sle64_to_cpu(
982 a->data.non_resident.allocated_size);
983 /*
984 * We are done with the mft record, so we release it. Otherwise
985 * we would deadlock in ntfs_attr_iget().
986 */
987 ntfs_attr_put_search_ctx(ctx);
988 unmap_mft_record(ni);
989 m = NULL;
990 ctx = NULL;
991 /* Get the index bitmap attribute inode. */
992 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
993 if (IS_ERR(bvi)) {
994 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
995 err = PTR_ERR(bvi);
996 goto unm_err_out;
997 }
998 bni = NTFS_I(bvi);
999 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1000 NInoSparse(bni)) {
1001 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
1002 "and/or encrypted and/or sparse.");
1003 goto iput_unm_err_out;
1004 }
1005 /* Consistency check bitmap size vs. index allocation size. */
1006 bvi_size = i_size_read(bvi);
1007 if ((bvi_size << 3) < (vi->i_size >>
1008 ni->itype.index.block_size_bits)) {
1009 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
1010 "for index allocation (0x%llx).",
1011 bvi_size << 3, vi->i_size);
1012 goto iput_unm_err_out;
1013 }
1014 /* No longer need the bitmap attribute inode. */
1015 iput(bvi);
1016 skip_large_dir_stuff:
1017 /* Setup the operations for this inode. */
1018 vi->i_op = &ntfs_dir_inode_ops;
1019 vi->i_fop = &ntfs_dir_ops;
1020 vi->i_mapping->a_ops = &ntfs_mst_aops;
1021 } else {
1022 /* It is a file. */
1023 ntfs_attr_reinit_search_ctx(ctx);
1024
1025 /* Setup the data attribute, even if not present. */
1026 ni->type = AT_DATA;
1027 ni->name = NULL;
1028 ni->name_len = 0;
1029
1030 /* Find first extent of the unnamed data attribute. */
1031 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1032 if (unlikely(err)) {
1033 vi->i_size = ni->initialized_size =
1034 ni->allocated_size = 0;
1035 if (err != -ENOENT) {
1036 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1037 "attribute.");
1038 goto unm_err_out;
1039 }
1040 /*
1041 * FILE_Secure does not have an unnamed $DATA
1042 * attribute, so we special case it here.
1043 */
1044 if (vi->i_ino == FILE_Secure)
1045 goto no_data_attr_special_case;
1046 /*
1047 * Most if not all the system files in the $Extend
1048 * system directory do not have unnamed data
1049 * attributes so we need to check if the parent
1050 * directory of the file is FILE_Extend and if it is
1051 * ignore this error. To do this we need to get the
1052 * name of this inode from the mft record as the name
1053 * contains the back reference to the parent directory.
1054 */
1055 if (ntfs_is_extended_system_file(ctx) > 0)
1056 goto no_data_attr_special_case;
1057 // FIXME: File is corrupt! Hot-fix with empty data
1058 // attribute if recovery option is set.
1059 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1060 goto unm_err_out;
1061 }
1062 a = ctx->attr;
1063 /* Setup the state. */
1064 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1065 if (a->flags & ATTR_COMPRESSION_MASK) {
1066 NInoSetCompressed(ni);
1067 if (vol->cluster_size > 4096) {
1068 ntfs_error(vi->i_sb, "Found "
1069 "compressed data but "
1070 "compression is "
1071 "disabled due to "
1072 "cluster size (%i) > "
1073 "4kiB.",
1074 vol->cluster_size);
1075 goto unm_err_out;
1076 }
1077 if ((a->flags & ATTR_COMPRESSION_MASK)
1078 != ATTR_IS_COMPRESSED) {
1079 ntfs_error(vi->i_sb, "Found unknown "
1080 "compression method "
1081 "or corrupt file.");
1082 goto unm_err_out;
1083 }
1084 }
1085 if (a->flags & ATTR_IS_SPARSE)
1086 NInoSetSparse(ni);
1087 }
1088 if (a->flags & ATTR_IS_ENCRYPTED) {
1089 if (NInoCompressed(ni)) {
1090 ntfs_error(vi->i_sb, "Found encrypted and "
1091 "compressed data.");
1092 goto unm_err_out;
1093 }
1094 NInoSetEncrypted(ni);
1095 }
1096 if (a->non_resident) {
1097 NInoSetNonResident(ni);
1098 if (NInoCompressed(ni) || NInoSparse(ni)) {
1099 if (NInoCompressed(ni) && a->data.non_resident.
1100 compression_unit != 4) {
1101 ntfs_error(vi->i_sb, "Found "
1102 "non-standard "
1103 "compression unit (%u "
1104 "instead of 4). "
1105 "Cannot handle this.",
1106 a->data.non_resident.
1107 compression_unit);
1108 err = -EOPNOTSUPP;
1109 goto unm_err_out;
1110 }
1111 if (a->data.non_resident.compression_unit) {
1112 ni->itype.compressed.block_size = 1U <<
1113 (a->data.non_resident.
1114 compression_unit +
1115 vol->cluster_size_bits);
1116 ni->itype.compressed.block_size_bits =
1117 ffs(ni->itype.
1118 compressed.
1119 block_size) - 1;
1120 ni->itype.compressed.block_clusters =
1121 1U << a->data.
1122 non_resident.
1123 compression_unit;
1124 } else {
1125 ni->itype.compressed.block_size = 0;
1126 ni->itype.compressed.block_size_bits =
1127 0;
1128 ni->itype.compressed.block_clusters =
1129 0;
1130 }
1131 ni->itype.compressed.size = sle64_to_cpu(
1132 a->data.non_resident.
1133 compressed_size);
1134 }
1135 if (a->data.non_resident.lowest_vcn) {
1136 ntfs_error(vi->i_sb, "First extent of $DATA "
1137 "attribute has non zero "
1138 "lowest_vcn.");
1139 goto unm_err_out;
1140 }
1141 vi->i_size = sle64_to_cpu(
1142 a->data.non_resident.data_size);
1143 ni->initialized_size = sle64_to_cpu(
1144 a->data.non_resident.initialized_size);
1145 ni->allocated_size = sle64_to_cpu(
1146 a->data.non_resident.allocated_size);
1147 } else { /* Resident attribute. */
1148 vi->i_size = ni->initialized_size = le32_to_cpu(
1149 a->data.resident.value_length);
1150 ni->allocated_size = le32_to_cpu(a->length) -
1151 le16_to_cpu(
1152 a->data.resident.value_offset);
1153 if (vi->i_size > ni->allocated_size) {
1154 ntfs_error(vi->i_sb, "Resident data attribute "
1155 "is corrupt (size exceeds "
1156 "allocation).");
1157 goto unm_err_out;
1158 }
1159 }
1160 no_data_attr_special_case:
1161 /* We are done with the mft record, so we release it. */
1162 ntfs_attr_put_search_ctx(ctx);
1163 unmap_mft_record(ni);
1164 m = NULL;
1165 ctx = NULL;
1166 /* Setup the operations for this inode. */
1167 vi->i_op = &ntfs_file_inode_ops;
1168 vi->i_fop = &ntfs_file_ops;
1169 vi->i_mapping->a_ops = &ntfs_normal_aops;
1170 if (NInoMstProtected(ni))
1171 vi->i_mapping->a_ops = &ntfs_mst_aops;
1172 else if (NInoCompressed(ni))
1173 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1174 }
1175 /*
1176 * The number of 512-byte blocks used on disk (for stat). This is in so
1177 * far inaccurate as it doesn't account for any named streams or other
1178 * special non-resident attributes, but that is how Windows works, too,
1179 * so we are at least consistent with Windows, if not entirely
1180 * consistent with the Linux Way. Doing it the Linux Way would cause a
1181 * significant slowdown as it would involve iterating over all
1182 * attributes in the mft record and adding the allocated/compressed
1183 * sizes of all non-resident attributes present to give us the Linux
1184 * correct size that should go into i_blocks (after division by 512).
1185 */
1186 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1187 vi->i_blocks = ni->itype.compressed.size >> 9;
1188 else
1189 vi->i_blocks = ni->allocated_size >> 9;
1190 ntfs_debug("Done.");
1191 return 0;
1192 iput_unm_err_out:
1193 iput(bvi);
1194 unm_err_out:
1195 if (!err)
1196 err = -EIO;
1197 if (ctx)
1198 ntfs_attr_put_search_ctx(ctx);
1199 if (m)
1200 unmap_mft_record(ni);
1201 err_out:
1202 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1203 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1204 make_bad_inode(vi);
1205 if (err != -EOPNOTSUPP && err != -ENOMEM)
1206 NVolSetErrors(vol);
1207 return err;
1208 }
1209
1210 /**
1211 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1212 * @base_vi: base inode
1213 * @vi: attribute inode to read
1214 *
1215 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1216 * attribute inode described by @vi into memory from the base mft record
1217 * described by @base_ni.
1218 *
1219 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1220 * reading and looks up the attribute described by @vi before setting up the
1221 * necessary fields in @vi as well as initializing the ntfs inode.
1222 *
1223 * Q: What locks are held when the function is called?
1224 * A: i_state has I_NEW set, hence the inode is locked, also
1225 * i_count is set to 1, so it is not going to go away
1226 *
1227 * Return 0 on success and -errno on error. In the error case, the inode will
1228 * have had make_bad_inode() executed on it.
1229 *
1230 * Note this cannot be called for AT_INDEX_ALLOCATION.
1231 */
ntfs_read_locked_attr_inode(struct inode * base_vi,struct inode * vi)1232 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1233 {
1234 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1235 ntfs_inode *ni, *base_ni;
1236 MFT_RECORD *m;
1237 ATTR_RECORD *a;
1238 ntfs_attr_search_ctx *ctx;
1239 int err = 0;
1240
1241 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1242
1243 ntfs_init_big_inode(vi);
1244
1245 ni = NTFS_I(vi);
1246 base_ni = NTFS_I(base_vi);
1247
1248 /* Just mirror the values from the base inode. */
1249 vi->i_version = base_vi->i_version;
1250 vi->i_uid = base_vi->i_uid;
1251 vi->i_gid = base_vi->i_gid;
1252 set_nlink(vi, base_vi->i_nlink);
1253 vi->i_mtime = base_vi->i_mtime;
1254 vi->i_ctime = base_vi->i_ctime;
1255 vi->i_atime = base_vi->i_atime;
1256 vi->i_generation = ni->seq_no = base_ni->seq_no;
1257
1258 /* Set inode type to zero but preserve permissions. */
1259 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1260
1261 m = map_mft_record(base_ni);
1262 if (IS_ERR(m)) {
1263 err = PTR_ERR(m);
1264 goto err_out;
1265 }
1266 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1267 if (!ctx) {
1268 err = -ENOMEM;
1269 goto unm_err_out;
1270 }
1271 /* Find the attribute. */
1272 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1273 CASE_SENSITIVE, 0, NULL, 0, ctx);
1274 if (unlikely(err))
1275 goto unm_err_out;
1276 a = ctx->attr;
1277 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1278 if (a->flags & ATTR_COMPRESSION_MASK) {
1279 NInoSetCompressed(ni);
1280 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1281 ni->name_len)) {
1282 ntfs_error(vi->i_sb, "Found compressed "
1283 "non-data or named data "
1284 "attribute. Please report "
1285 "you saw this message to "
1286 "linux-ntfs-dev@lists."
1287 "sourceforge.net");
1288 goto unm_err_out;
1289 }
1290 if (vol->cluster_size > 4096) {
1291 ntfs_error(vi->i_sb, "Found compressed "
1292 "attribute but compression is "
1293 "disabled due to cluster size "
1294 "(%i) > 4kiB.",
1295 vol->cluster_size);
1296 goto unm_err_out;
1297 }
1298 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1299 ATTR_IS_COMPRESSED) {
1300 ntfs_error(vi->i_sb, "Found unknown "
1301 "compression method.");
1302 goto unm_err_out;
1303 }
1304 }
1305 /*
1306 * The compressed/sparse flag set in an index root just means
1307 * to compress all files.
1308 */
1309 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1310 ntfs_error(vi->i_sb, "Found mst protected attribute "
1311 "but the attribute is %s. Please "
1312 "report you saw this message to "
1313 "linux-ntfs-dev@lists.sourceforge.net",
1314 NInoCompressed(ni) ? "compressed" :
1315 "sparse");
1316 goto unm_err_out;
1317 }
1318 if (a->flags & ATTR_IS_SPARSE)
1319 NInoSetSparse(ni);
1320 }
1321 if (a->flags & ATTR_IS_ENCRYPTED) {
1322 if (NInoCompressed(ni)) {
1323 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1324 "data.");
1325 goto unm_err_out;
1326 }
1327 /*
1328 * The encryption flag set in an index root just means to
1329 * encrypt all files.
1330 */
1331 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1332 ntfs_error(vi->i_sb, "Found mst protected attribute "
1333 "but the attribute is encrypted. "
1334 "Please report you saw this message "
1335 "to linux-ntfs-dev@lists.sourceforge."
1336 "net");
1337 goto unm_err_out;
1338 }
1339 if (ni->type != AT_DATA) {
1340 ntfs_error(vi->i_sb, "Found encrypted non-data "
1341 "attribute.");
1342 goto unm_err_out;
1343 }
1344 NInoSetEncrypted(ni);
1345 }
1346 if (!a->non_resident) {
1347 /* Ensure the attribute name is placed before the value. */
1348 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1349 le16_to_cpu(a->data.resident.value_offset)))) {
1350 ntfs_error(vol->sb, "Attribute name is placed after "
1351 "the attribute value.");
1352 goto unm_err_out;
1353 }
1354 if (NInoMstProtected(ni)) {
1355 ntfs_error(vi->i_sb, "Found mst protected attribute "
1356 "but the attribute is resident. "
1357 "Please report you saw this message to "
1358 "linux-ntfs-dev@lists.sourceforge.net");
1359 goto unm_err_out;
1360 }
1361 vi->i_size = ni->initialized_size = le32_to_cpu(
1362 a->data.resident.value_length);
1363 ni->allocated_size = le32_to_cpu(a->length) -
1364 le16_to_cpu(a->data.resident.value_offset);
1365 if (vi->i_size > ni->allocated_size) {
1366 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1367 "(size exceeds allocation).");
1368 goto unm_err_out;
1369 }
1370 } else {
1371 NInoSetNonResident(ni);
1372 /*
1373 * Ensure the attribute name is placed before the mapping pairs
1374 * array.
1375 */
1376 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1377 le16_to_cpu(
1378 a->data.non_resident.mapping_pairs_offset)))) {
1379 ntfs_error(vol->sb, "Attribute name is placed after "
1380 "the mapping pairs array.");
1381 goto unm_err_out;
1382 }
1383 if (NInoCompressed(ni) || NInoSparse(ni)) {
1384 if (NInoCompressed(ni) && a->data.non_resident.
1385 compression_unit != 4) {
1386 ntfs_error(vi->i_sb, "Found non-standard "
1387 "compression unit (%u instead "
1388 "of 4). Cannot handle this.",
1389 a->data.non_resident.
1390 compression_unit);
1391 err = -EOPNOTSUPP;
1392 goto unm_err_out;
1393 }
1394 if (a->data.non_resident.compression_unit) {
1395 ni->itype.compressed.block_size = 1U <<
1396 (a->data.non_resident.
1397 compression_unit +
1398 vol->cluster_size_bits);
1399 ni->itype.compressed.block_size_bits =
1400 ffs(ni->itype.compressed.
1401 block_size) - 1;
1402 ni->itype.compressed.block_clusters = 1U <<
1403 a->data.non_resident.
1404 compression_unit;
1405 } else {
1406 ni->itype.compressed.block_size = 0;
1407 ni->itype.compressed.block_size_bits = 0;
1408 ni->itype.compressed.block_clusters = 0;
1409 }
1410 ni->itype.compressed.size = sle64_to_cpu(
1411 a->data.non_resident.compressed_size);
1412 }
1413 if (a->data.non_resident.lowest_vcn) {
1414 ntfs_error(vi->i_sb, "First extent of attribute has "
1415 "non-zero lowest_vcn.");
1416 goto unm_err_out;
1417 }
1418 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1419 ni->initialized_size = sle64_to_cpu(
1420 a->data.non_resident.initialized_size);
1421 ni->allocated_size = sle64_to_cpu(
1422 a->data.non_resident.allocated_size);
1423 }
1424 vi->i_mapping->a_ops = &ntfs_normal_aops;
1425 if (NInoMstProtected(ni))
1426 vi->i_mapping->a_ops = &ntfs_mst_aops;
1427 else if (NInoCompressed(ni))
1428 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1429 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1430 vi->i_blocks = ni->itype.compressed.size >> 9;
1431 else
1432 vi->i_blocks = ni->allocated_size >> 9;
1433 /*
1434 * Make sure the base inode does not go away and attach it to the
1435 * attribute inode.
1436 */
1437 igrab(base_vi);
1438 ni->ext.base_ntfs_ino = base_ni;
1439 ni->nr_extents = -1;
1440
1441 ntfs_attr_put_search_ctx(ctx);
1442 unmap_mft_record(base_ni);
1443
1444 ntfs_debug("Done.");
1445 return 0;
1446
1447 unm_err_out:
1448 if (!err)
1449 err = -EIO;
1450 if (ctx)
1451 ntfs_attr_put_search_ctx(ctx);
1452 unmap_mft_record(base_ni);
1453 err_out:
1454 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1455 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1456 "Marking corrupt inode and base inode 0x%lx as bad. "
1457 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1458 base_vi->i_ino);
1459 make_bad_inode(vi);
1460 if (err != -ENOMEM)
1461 NVolSetErrors(vol);
1462 return err;
1463 }
1464
1465 /**
1466 * ntfs_read_locked_index_inode - read an index inode from its base inode
1467 * @base_vi: base inode
1468 * @vi: index inode to read
1469 *
1470 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1471 * index inode described by @vi into memory from the base mft record described
1472 * by @base_ni.
1473 *
1474 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1475 * reading and looks up the attributes relating to the index described by @vi
1476 * before setting up the necessary fields in @vi as well as initializing the
1477 * ntfs inode.
1478 *
1479 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1480 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1481 * are setup like directory inodes since directories are a special case of
1482 * indices ao they need to be treated in much the same way. Most importantly,
1483 * for small indices the index allocation attribute might not actually exist.
1484 * However, the index root attribute always exists but this does not need to
1485 * have an inode associated with it and this is why we define a new inode type
1486 * index. Also, like for directories, we need to have an attribute inode for
1487 * the bitmap attribute corresponding to the index allocation attribute and we
1488 * can store this in the appropriate field of the inode, just like we do for
1489 * normal directory inodes.
1490 *
1491 * Q: What locks are held when the function is called?
1492 * A: i_state has I_NEW set, hence the inode is locked, also
1493 * i_count is set to 1, so it is not going to go away
1494 *
1495 * Return 0 on success and -errno on error. In the error case, the inode will
1496 * have had make_bad_inode() executed on it.
1497 */
ntfs_read_locked_index_inode(struct inode * base_vi,struct inode * vi)1498 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1499 {
1500 loff_t bvi_size;
1501 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1502 ntfs_inode *ni, *base_ni, *bni;
1503 struct inode *bvi;
1504 MFT_RECORD *m;
1505 ATTR_RECORD *a;
1506 ntfs_attr_search_ctx *ctx;
1507 INDEX_ROOT *ir;
1508 u8 *ir_end, *index_end;
1509 int err = 0;
1510
1511 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1512 ntfs_init_big_inode(vi);
1513 ni = NTFS_I(vi);
1514 base_ni = NTFS_I(base_vi);
1515 /* Just mirror the values from the base inode. */
1516 vi->i_version = base_vi->i_version;
1517 vi->i_uid = base_vi->i_uid;
1518 vi->i_gid = base_vi->i_gid;
1519 set_nlink(vi, base_vi->i_nlink);
1520 vi->i_mtime = base_vi->i_mtime;
1521 vi->i_ctime = base_vi->i_ctime;
1522 vi->i_atime = base_vi->i_atime;
1523 vi->i_generation = ni->seq_no = base_ni->seq_no;
1524 /* Set inode type to zero but preserve permissions. */
1525 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1526 /* Map the mft record for the base inode. */
1527 m = map_mft_record(base_ni);
1528 if (IS_ERR(m)) {
1529 err = PTR_ERR(m);
1530 goto err_out;
1531 }
1532 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1533 if (!ctx) {
1534 err = -ENOMEM;
1535 goto unm_err_out;
1536 }
1537 /* Find the index root attribute. */
1538 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1539 CASE_SENSITIVE, 0, NULL, 0, ctx);
1540 if (unlikely(err)) {
1541 if (err == -ENOENT)
1542 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1543 "missing.");
1544 goto unm_err_out;
1545 }
1546 a = ctx->attr;
1547 /* Set up the state. */
1548 if (unlikely(a->non_resident)) {
1549 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1550 goto unm_err_out;
1551 }
1552 /* Ensure the attribute name is placed before the value. */
1553 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1554 le16_to_cpu(a->data.resident.value_offset)))) {
1555 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1556 "after the attribute value.");
1557 goto unm_err_out;
1558 }
1559 /*
1560 * Compressed/encrypted/sparse index root is not allowed, except for
1561 * directories of course but those are not dealt with here.
1562 */
1563 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1564 ATTR_IS_SPARSE)) {
1565 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1566 "root attribute.");
1567 goto unm_err_out;
1568 }
1569 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1570 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1571 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1572 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1573 goto unm_err_out;
1574 }
1575 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1576 if (index_end > ir_end) {
1577 ntfs_error(vi->i_sb, "Index is corrupt.");
1578 goto unm_err_out;
1579 }
1580 if (ir->type) {
1581 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1582 le32_to_cpu(ir->type));
1583 goto unm_err_out;
1584 }
1585 ni->itype.index.collation_rule = ir->collation_rule;
1586 ntfs_debug("Index collation rule is 0x%x.",
1587 le32_to_cpu(ir->collation_rule));
1588 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1589 if (!is_power_of_2(ni->itype.index.block_size)) {
1590 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1591 "two.", ni->itype.index.block_size);
1592 goto unm_err_out;
1593 }
1594 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
1595 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE "
1596 "(%ld) is not supported. Sorry.",
1597 ni->itype.index.block_size, PAGE_CACHE_SIZE);
1598 err = -EOPNOTSUPP;
1599 goto unm_err_out;
1600 }
1601 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1602 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1603 "(%i) is not supported. Sorry.",
1604 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1605 err = -EOPNOTSUPP;
1606 goto unm_err_out;
1607 }
1608 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1609 /* Determine the size of a vcn in the index. */
1610 if (vol->cluster_size <= ni->itype.index.block_size) {
1611 ni->itype.index.vcn_size = vol->cluster_size;
1612 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1613 } else {
1614 ni->itype.index.vcn_size = vol->sector_size;
1615 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1616 }
1617 /* Check for presence of index allocation attribute. */
1618 if (!(ir->index.flags & LARGE_INDEX)) {
1619 /* No index allocation. */
1620 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1621 /* We are done with the mft record, so we release it. */
1622 ntfs_attr_put_search_ctx(ctx);
1623 unmap_mft_record(base_ni);
1624 m = NULL;
1625 ctx = NULL;
1626 goto skip_large_index_stuff;
1627 } /* LARGE_INDEX: Index allocation present. Setup state. */
1628 NInoSetIndexAllocPresent(ni);
1629 /* Find index allocation attribute. */
1630 ntfs_attr_reinit_search_ctx(ctx);
1631 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1632 CASE_SENSITIVE, 0, NULL, 0, ctx);
1633 if (unlikely(err)) {
1634 if (err == -ENOENT)
1635 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1636 "not present but $INDEX_ROOT "
1637 "indicated it is.");
1638 else
1639 ntfs_error(vi->i_sb, "Failed to lookup "
1640 "$INDEX_ALLOCATION attribute.");
1641 goto unm_err_out;
1642 }
1643 a = ctx->attr;
1644 if (!a->non_resident) {
1645 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1646 "resident.");
1647 goto unm_err_out;
1648 }
1649 /*
1650 * Ensure the attribute name is placed before the mapping pairs array.
1651 */
1652 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1653 le16_to_cpu(
1654 a->data.non_resident.mapping_pairs_offset)))) {
1655 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1656 "placed after the mapping pairs array.");
1657 goto unm_err_out;
1658 }
1659 if (a->flags & ATTR_IS_ENCRYPTED) {
1660 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1661 "encrypted.");
1662 goto unm_err_out;
1663 }
1664 if (a->flags & ATTR_IS_SPARSE) {
1665 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1666 goto unm_err_out;
1667 }
1668 if (a->flags & ATTR_COMPRESSION_MASK) {
1669 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1670 "compressed.");
1671 goto unm_err_out;
1672 }
1673 if (a->data.non_resident.lowest_vcn) {
1674 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1675 "attribute has non zero lowest_vcn.");
1676 goto unm_err_out;
1677 }
1678 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1679 ni->initialized_size = sle64_to_cpu(
1680 a->data.non_resident.initialized_size);
1681 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1682 /*
1683 * We are done with the mft record, so we release it. Otherwise
1684 * we would deadlock in ntfs_attr_iget().
1685 */
1686 ntfs_attr_put_search_ctx(ctx);
1687 unmap_mft_record(base_ni);
1688 m = NULL;
1689 ctx = NULL;
1690 /* Get the index bitmap attribute inode. */
1691 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1692 if (IS_ERR(bvi)) {
1693 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1694 err = PTR_ERR(bvi);
1695 goto unm_err_out;
1696 }
1697 bni = NTFS_I(bvi);
1698 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1699 NInoSparse(bni)) {
1700 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1701 "encrypted and/or sparse.");
1702 goto iput_unm_err_out;
1703 }
1704 /* Consistency check bitmap size vs. index allocation size. */
1705 bvi_size = i_size_read(bvi);
1706 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1707 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1708 "index allocation (0x%llx).", bvi_size << 3,
1709 vi->i_size);
1710 goto iput_unm_err_out;
1711 }
1712 iput(bvi);
1713 skip_large_index_stuff:
1714 /* Setup the operations for this index inode. */
1715 vi->i_mapping->a_ops = &ntfs_mst_aops;
1716 vi->i_blocks = ni->allocated_size >> 9;
1717 /*
1718 * Make sure the base inode doesn't go away and attach it to the
1719 * index inode.
1720 */
1721 igrab(base_vi);
1722 ni->ext.base_ntfs_ino = base_ni;
1723 ni->nr_extents = -1;
1724
1725 ntfs_debug("Done.");
1726 return 0;
1727 iput_unm_err_out:
1728 iput(bvi);
1729 unm_err_out:
1730 if (!err)
1731 err = -EIO;
1732 if (ctx)
1733 ntfs_attr_put_search_ctx(ctx);
1734 if (m)
1735 unmap_mft_record(base_ni);
1736 err_out:
1737 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1738 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1739 ni->name_len);
1740 make_bad_inode(vi);
1741 if (err != -EOPNOTSUPP && err != -ENOMEM)
1742 NVolSetErrors(vol);
1743 return err;
1744 }
1745
1746 /*
1747 * The MFT inode has special locking, so teach the lock validator
1748 * about this by splitting off the locking rules of the MFT from
1749 * the locking rules of other inodes. The MFT inode can never be
1750 * accessed from the VFS side (or even internally), only by the
1751 * map_mft functions.
1752 */
1753 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1754
1755 /**
1756 * ntfs_read_inode_mount - special read_inode for mount time use only
1757 * @vi: inode to read
1758 *
1759 * Read inode FILE_MFT at mount time, only called with super_block lock
1760 * held from within the read_super() code path.
1761 *
1762 * This function exists because when it is called the page cache for $MFT/$DATA
1763 * is not initialized and hence we cannot get at the contents of mft records
1764 * by calling map_mft_record*().
1765 *
1766 * Further it needs to cope with the circular references problem, i.e. cannot
1767 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1768 * we do not know where the other extent mft records are yet and again, because
1769 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1770 * attribute list is actually present in $MFT inode.
1771 *
1772 * We solve these problems by starting with the $DATA attribute before anything
1773 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1774 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1775 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1776 * sufficient information for the next step to complete.
1777 *
1778 * This should work but there are two possible pit falls (see inline comments
1779 * below), but only time will tell if they are real pits or just smoke...
1780 */
ntfs_read_inode_mount(struct inode * vi)1781 int ntfs_read_inode_mount(struct inode *vi)
1782 {
1783 VCN next_vcn, last_vcn, highest_vcn;
1784 s64 block;
1785 struct super_block *sb = vi->i_sb;
1786 ntfs_volume *vol = NTFS_SB(sb);
1787 struct buffer_head *bh;
1788 ntfs_inode *ni;
1789 MFT_RECORD *m = NULL;
1790 ATTR_RECORD *a;
1791 ntfs_attr_search_ctx *ctx;
1792 unsigned int i, nr_blocks;
1793 int err;
1794
1795 ntfs_debug("Entering.");
1796
1797 /* Initialize the ntfs specific part of @vi. */
1798 ntfs_init_big_inode(vi);
1799
1800 ni = NTFS_I(vi);
1801
1802 /* Setup the data attribute. It is special as it is mst protected. */
1803 NInoSetNonResident(ni);
1804 NInoSetMstProtected(ni);
1805 NInoSetSparseDisabled(ni);
1806 ni->type = AT_DATA;
1807 ni->name = NULL;
1808 ni->name_len = 0;
1809 /*
1810 * This sets up our little cheat allowing us to reuse the async read io
1811 * completion handler for directories.
1812 */
1813 ni->itype.index.block_size = vol->mft_record_size;
1814 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1815
1816 /* Very important! Needed to be able to call map_mft_record*(). */
1817 vol->mft_ino = vi;
1818
1819 /* Allocate enough memory to read the first mft record. */
1820 if (vol->mft_record_size > 64 * 1024) {
1821 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1822 vol->mft_record_size);
1823 goto err_out;
1824 }
1825 i = vol->mft_record_size;
1826 if (i < sb->s_blocksize)
1827 i = sb->s_blocksize;
1828 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1829 if (!m) {
1830 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1831 goto err_out;
1832 }
1833
1834 /* Determine the first block of the $MFT/$DATA attribute. */
1835 block = vol->mft_lcn << vol->cluster_size_bits >>
1836 sb->s_blocksize_bits;
1837 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1838 if (!nr_blocks)
1839 nr_blocks = 1;
1840
1841 /* Load $MFT/$DATA's first mft record. */
1842 for (i = 0; i < nr_blocks; i++) {
1843 bh = sb_bread(sb, block++);
1844 if (!bh) {
1845 ntfs_error(sb, "Device read failed.");
1846 goto err_out;
1847 }
1848 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1849 sb->s_blocksize);
1850 brelse(bh);
1851 }
1852
1853 if (le32_to_cpu(m->bytes_allocated) != vol->mft_record_size) {
1854 ntfs_error(sb, "Incorrect mft record size %u in superblock, should be %u.",
1855 le32_to_cpu(m->bytes_allocated), vol->mft_record_size);
1856 goto err_out;
1857 }
1858
1859 /* Apply the mst fixups. */
1860 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1861 /* FIXME: Try to use the $MFTMirr now. */
1862 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1863 goto err_out;
1864 }
1865
1866 /* Need this to sanity check attribute list references to $MFT. */
1867 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1868
1869 /* Provides readpage() and sync_page() for map_mft_record(). */
1870 vi->i_mapping->a_ops = &ntfs_mst_aops;
1871
1872 ctx = ntfs_attr_get_search_ctx(ni, m);
1873 if (!ctx) {
1874 err = -ENOMEM;
1875 goto err_out;
1876 }
1877
1878 /* Find the attribute list attribute if present. */
1879 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1880 if (err) {
1881 if (unlikely(err != -ENOENT)) {
1882 ntfs_error(sb, "Failed to lookup attribute list "
1883 "attribute. You should run chkdsk.");
1884 goto put_err_out;
1885 }
1886 } else /* if (!err) */ {
1887 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1888 u8 *al_end;
1889 static const char *es = " Not allowed. $MFT is corrupt. "
1890 "You should run chkdsk.";
1891
1892 ntfs_debug("Attribute list attribute found in $MFT.");
1893 NInoSetAttrList(ni);
1894 a = ctx->attr;
1895 if (a->flags & ATTR_COMPRESSION_MASK) {
1896 ntfs_error(sb, "Attribute list attribute is "
1897 "compressed.%s", es);
1898 goto put_err_out;
1899 }
1900 if (a->flags & ATTR_IS_ENCRYPTED ||
1901 a->flags & ATTR_IS_SPARSE) {
1902 if (a->non_resident) {
1903 ntfs_error(sb, "Non-resident attribute list "
1904 "attribute is encrypted/"
1905 "sparse.%s", es);
1906 goto put_err_out;
1907 }
1908 ntfs_warning(sb, "Resident attribute list attribute "
1909 "in $MFT system file is marked "
1910 "encrypted/sparse which is not true. "
1911 "However, Windows allows this and "
1912 "chkdsk does not detect or correct it "
1913 "so we will just ignore the invalid "
1914 "flags and pretend they are not set.");
1915 }
1916 /* Now allocate memory for the attribute list. */
1917 ni->attr_list_size = (u32)ntfs_attr_size(a);
1918 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1919 if (!ni->attr_list) {
1920 ntfs_error(sb, "Not enough memory to allocate buffer "
1921 "for attribute list.");
1922 goto put_err_out;
1923 }
1924 if (a->non_resident) {
1925 NInoSetAttrListNonResident(ni);
1926 if (a->data.non_resident.lowest_vcn) {
1927 ntfs_error(sb, "Attribute list has non zero "
1928 "lowest_vcn. $MFT is corrupt. "
1929 "You should run chkdsk.");
1930 goto put_err_out;
1931 }
1932 /* Setup the runlist. */
1933 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1934 a, NULL);
1935 if (IS_ERR(ni->attr_list_rl.rl)) {
1936 err = PTR_ERR(ni->attr_list_rl.rl);
1937 ni->attr_list_rl.rl = NULL;
1938 ntfs_error(sb, "Mapping pairs decompression "
1939 "failed with error code %i.",
1940 -err);
1941 goto put_err_out;
1942 }
1943 /* Now load the attribute list. */
1944 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1945 ni->attr_list, ni->attr_list_size,
1946 sle64_to_cpu(a->data.
1947 non_resident.initialized_size)))) {
1948 ntfs_error(sb, "Failed to load attribute list "
1949 "attribute with error code %i.",
1950 -err);
1951 goto put_err_out;
1952 }
1953 } else /* if (!ctx.attr->non_resident) */ {
1954 if ((u8*)a + le16_to_cpu(
1955 a->data.resident.value_offset) +
1956 le32_to_cpu(
1957 a->data.resident.value_length) >
1958 (u8*)ctx->mrec + vol->mft_record_size) {
1959 ntfs_error(sb, "Corrupt attribute list "
1960 "attribute.");
1961 goto put_err_out;
1962 }
1963 /* Now copy the attribute list. */
1964 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1965 a->data.resident.value_offset),
1966 le32_to_cpu(
1967 a->data.resident.value_length));
1968 }
1969 /* The attribute list is now setup in memory. */
1970 /*
1971 * FIXME: I don't know if this case is actually possible.
1972 * According to logic it is not possible but I have seen too
1973 * many weird things in MS software to rely on logic... Thus we
1974 * perform a manual search and make sure the first $MFT/$DATA
1975 * extent is in the base inode. If it is not we abort with an
1976 * error and if we ever see a report of this error we will need
1977 * to do some magic in order to have the necessary mft record
1978 * loaded and in the right place in the page cache. But
1979 * hopefully logic will prevail and this never happens...
1980 */
1981 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1982 al_end = (u8*)al_entry + ni->attr_list_size;
1983 for (;; al_entry = next_al_entry) {
1984 /* Out of bounds check. */
1985 if ((u8*)al_entry < ni->attr_list ||
1986 (u8*)al_entry > al_end)
1987 goto em_put_err_out;
1988 /* Catch the end of the attribute list. */
1989 if ((u8*)al_entry == al_end)
1990 goto em_put_err_out;
1991 if (!al_entry->length)
1992 goto em_put_err_out;
1993 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1994 le16_to_cpu(al_entry->length) > al_end)
1995 goto em_put_err_out;
1996 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1997 le16_to_cpu(al_entry->length));
1998 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1999 goto em_put_err_out;
2000 if (AT_DATA != al_entry->type)
2001 continue;
2002 /* We want an unnamed attribute. */
2003 if (al_entry->name_length)
2004 goto em_put_err_out;
2005 /* Want the first entry, i.e. lowest_vcn == 0. */
2006 if (al_entry->lowest_vcn)
2007 goto em_put_err_out;
2008 /* First entry has to be in the base mft record. */
2009 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
2010 /* MFT references do not match, logic fails. */
2011 ntfs_error(sb, "BUG: The first $DATA extent "
2012 "of $MFT is not in the base "
2013 "mft record. Please report "
2014 "you saw this message to "
2015 "linux-ntfs-dev@lists."
2016 "sourceforge.net");
2017 goto put_err_out;
2018 } else {
2019 /* Sequence numbers must match. */
2020 if (MSEQNO_LE(al_entry->mft_reference) !=
2021 ni->seq_no)
2022 goto em_put_err_out;
2023 /* Got it. All is ok. We can stop now. */
2024 break;
2025 }
2026 }
2027 }
2028
2029 ntfs_attr_reinit_search_ctx(ctx);
2030
2031 /* Now load all attribute extents. */
2032 a = NULL;
2033 next_vcn = last_vcn = highest_vcn = 0;
2034 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2035 ctx))) {
2036 runlist_element *nrl;
2037
2038 /* Cache the current attribute. */
2039 a = ctx->attr;
2040 /* $MFT must be non-resident. */
2041 if (!a->non_resident) {
2042 ntfs_error(sb, "$MFT must be non-resident but a "
2043 "resident extent was found. $MFT is "
2044 "corrupt. Run chkdsk.");
2045 goto put_err_out;
2046 }
2047 /* $MFT must be uncompressed and unencrypted. */
2048 if (a->flags & ATTR_COMPRESSION_MASK ||
2049 a->flags & ATTR_IS_ENCRYPTED ||
2050 a->flags & ATTR_IS_SPARSE) {
2051 ntfs_error(sb, "$MFT must be uncompressed, "
2052 "non-sparse, and unencrypted but a "
2053 "compressed/sparse/encrypted extent "
2054 "was found. $MFT is corrupt. Run "
2055 "chkdsk.");
2056 goto put_err_out;
2057 }
2058 /*
2059 * Decompress the mapping pairs array of this extent and merge
2060 * the result into the existing runlist. No need for locking
2061 * as we have exclusive access to the inode at this time and we
2062 * are a mount in progress task, too.
2063 */
2064 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2065 if (IS_ERR(nrl)) {
2066 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2067 "failed with error code %ld. $MFT is "
2068 "corrupt.", PTR_ERR(nrl));
2069 goto put_err_out;
2070 }
2071 ni->runlist.rl = nrl;
2072
2073 /* Are we in the first extent? */
2074 if (!next_vcn) {
2075 if (a->data.non_resident.lowest_vcn) {
2076 ntfs_error(sb, "First extent of $DATA "
2077 "attribute has non zero "
2078 "lowest_vcn. $MFT is corrupt. "
2079 "You should run chkdsk.");
2080 goto put_err_out;
2081 }
2082 /* Get the last vcn in the $DATA attribute. */
2083 last_vcn = sle64_to_cpu(
2084 a->data.non_resident.allocated_size)
2085 >> vol->cluster_size_bits;
2086 /* Fill in the inode size. */
2087 vi->i_size = sle64_to_cpu(
2088 a->data.non_resident.data_size);
2089 ni->initialized_size = sle64_to_cpu(
2090 a->data.non_resident.initialized_size);
2091 ni->allocated_size = sle64_to_cpu(
2092 a->data.non_resident.allocated_size);
2093 /*
2094 * Verify the number of mft records does not exceed
2095 * 2^32 - 1.
2096 */
2097 if ((vi->i_size >> vol->mft_record_size_bits) >=
2098 (1ULL << 32)) {
2099 ntfs_error(sb, "$MFT is too big! Aborting.");
2100 goto put_err_out;
2101 }
2102 /*
2103 * We have got the first extent of the runlist for
2104 * $MFT which means it is now relatively safe to call
2105 * the normal ntfs_read_inode() function.
2106 * Complete reading the inode, this will actually
2107 * re-read the mft record for $MFT, this time entering
2108 * it into the page cache with which we complete the
2109 * kick start of the volume. It should be safe to do
2110 * this now as the first extent of $MFT/$DATA is
2111 * already known and we would hope that we don't need
2112 * further extents in order to find the other
2113 * attributes belonging to $MFT. Only time will tell if
2114 * this is really the case. If not we will have to play
2115 * magic at this point, possibly duplicating a lot of
2116 * ntfs_read_inode() at this point. We will need to
2117 * ensure we do enough of its work to be able to call
2118 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2119 * hope this never happens...
2120 */
2121 ntfs_read_locked_inode(vi);
2122 if (is_bad_inode(vi)) {
2123 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2124 "failed. BUG or corrupt $MFT. "
2125 "Run chkdsk and if no errors "
2126 "are found, please report you "
2127 "saw this message to "
2128 "linux-ntfs-dev@lists."
2129 "sourceforge.net");
2130 ntfs_attr_put_search_ctx(ctx);
2131 /* Revert to the safe super operations. */
2132 ntfs_free(m);
2133 return -1;
2134 }
2135 /*
2136 * Re-initialize some specifics about $MFT's inode as
2137 * ntfs_read_inode() will have set up the default ones.
2138 */
2139 /* Set uid and gid to root. */
2140 vi->i_uid = GLOBAL_ROOT_UID;
2141 vi->i_gid = GLOBAL_ROOT_GID;
2142 /* Regular file. No access for anyone. */
2143 vi->i_mode = S_IFREG;
2144 /* No VFS initiated operations allowed for $MFT. */
2145 vi->i_op = &ntfs_empty_inode_ops;
2146 vi->i_fop = &ntfs_empty_file_ops;
2147 }
2148
2149 /* Get the lowest vcn for the next extent. */
2150 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2151 next_vcn = highest_vcn + 1;
2152
2153 /* Only one extent or error, which we catch below. */
2154 if (next_vcn <= 0)
2155 break;
2156
2157 /* Avoid endless loops due to corruption. */
2158 if (next_vcn < sle64_to_cpu(
2159 a->data.non_resident.lowest_vcn)) {
2160 ntfs_error(sb, "$MFT has corrupt attribute list "
2161 "attribute. Run chkdsk.");
2162 goto put_err_out;
2163 }
2164 }
2165 if (err != -ENOENT) {
2166 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2167 "$MFT is corrupt. Run chkdsk.");
2168 goto put_err_out;
2169 }
2170 if (!a) {
2171 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2172 "corrupt. Run chkdsk.");
2173 goto put_err_out;
2174 }
2175 if (highest_vcn && highest_vcn != last_vcn - 1) {
2176 ntfs_error(sb, "Failed to load the complete runlist for "
2177 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2178 "Run chkdsk.");
2179 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2180 (unsigned long long)highest_vcn,
2181 (unsigned long long)last_vcn - 1);
2182 goto put_err_out;
2183 }
2184 ntfs_attr_put_search_ctx(ctx);
2185 ntfs_debug("Done.");
2186 ntfs_free(m);
2187
2188 /*
2189 * Split the locking rules of the MFT inode from the
2190 * locking rules of other inodes:
2191 */
2192 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2193 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2194
2195 return 0;
2196
2197 em_put_err_out:
2198 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2199 "attribute list. $MFT is corrupt. Run chkdsk.");
2200 put_err_out:
2201 ntfs_attr_put_search_ctx(ctx);
2202 err_out:
2203 ntfs_error(sb, "Failed. Marking inode as bad.");
2204 make_bad_inode(vi);
2205 ntfs_free(m);
2206 return -1;
2207 }
2208
__ntfs_clear_inode(ntfs_inode * ni)2209 static void __ntfs_clear_inode(ntfs_inode *ni)
2210 {
2211 /* Free all alocated memory. */
2212 down_write(&ni->runlist.lock);
2213 if (ni->runlist.rl) {
2214 ntfs_free(ni->runlist.rl);
2215 ni->runlist.rl = NULL;
2216 }
2217 up_write(&ni->runlist.lock);
2218
2219 if (ni->attr_list) {
2220 ntfs_free(ni->attr_list);
2221 ni->attr_list = NULL;
2222 }
2223
2224 down_write(&ni->attr_list_rl.lock);
2225 if (ni->attr_list_rl.rl) {
2226 ntfs_free(ni->attr_list_rl.rl);
2227 ni->attr_list_rl.rl = NULL;
2228 }
2229 up_write(&ni->attr_list_rl.lock);
2230
2231 if (ni->name_len && ni->name != I30) {
2232 /* Catch bugs... */
2233 BUG_ON(!ni->name);
2234 kfree(ni->name);
2235 }
2236 }
2237
ntfs_clear_extent_inode(ntfs_inode * ni)2238 void ntfs_clear_extent_inode(ntfs_inode *ni)
2239 {
2240 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2241
2242 BUG_ON(NInoAttr(ni));
2243 BUG_ON(ni->nr_extents != -1);
2244
2245 #ifdef NTFS_RW
2246 if (NInoDirty(ni)) {
2247 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2248 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2249 "Losing data! This is a BUG!!!");
2250 // FIXME: Do something!!!
2251 }
2252 #endif /* NTFS_RW */
2253
2254 __ntfs_clear_inode(ni);
2255
2256 /* Bye, bye... */
2257 ntfs_destroy_extent_inode(ni);
2258 }
2259
2260 /**
2261 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2262 * @vi: vfs inode pending annihilation
2263 *
2264 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2265 * is called, which deallocates all memory belonging to the NTFS specific part
2266 * of the inode and returns.
2267 *
2268 * If the MFT record is dirty, we commit it before doing anything else.
2269 */
ntfs_evict_big_inode(struct inode * vi)2270 void ntfs_evict_big_inode(struct inode *vi)
2271 {
2272 ntfs_inode *ni = NTFS_I(vi);
2273
2274 truncate_inode_pages_final(&vi->i_data);
2275 clear_inode(vi);
2276
2277 #ifdef NTFS_RW
2278 if (NInoDirty(ni)) {
2279 bool was_bad = (is_bad_inode(vi));
2280
2281 /* Committing the inode also commits all extent inodes. */
2282 ntfs_commit_inode(vi);
2283
2284 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2285 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2286 "0x%lx. Losing data!", vi->i_ino);
2287 // FIXME: Do something!!!
2288 }
2289 }
2290 #endif /* NTFS_RW */
2291
2292 /* No need to lock at this stage as no one else has a reference. */
2293 if (ni->nr_extents > 0) {
2294 int i;
2295
2296 for (i = 0; i < ni->nr_extents; i++)
2297 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2298 kfree(ni->ext.extent_ntfs_inos);
2299 }
2300
2301 __ntfs_clear_inode(ni);
2302
2303 if (NInoAttr(ni)) {
2304 /* Release the base inode if we are holding it. */
2305 if (ni->nr_extents == -1) {
2306 iput(VFS_I(ni->ext.base_ntfs_ino));
2307 ni->nr_extents = 0;
2308 ni->ext.base_ntfs_ino = NULL;
2309 }
2310 }
2311 return;
2312 }
2313
2314 /**
2315 * ntfs_show_options - show mount options in /proc/mounts
2316 * @sf: seq_file in which to write our mount options
2317 * @root: root of the mounted tree whose mount options to display
2318 *
2319 * Called by the VFS once for each mounted ntfs volume when someone reads
2320 * /proc/mounts in order to display the NTFS specific mount options of each
2321 * mount. The mount options of fs specified by @root are written to the seq file
2322 * @sf and success is returned.
2323 */
ntfs_show_options(struct seq_file * sf,struct dentry * root)2324 int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2325 {
2326 ntfs_volume *vol = NTFS_SB(root->d_sb);
2327 int i;
2328
2329 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2330 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2331 if (vol->fmask == vol->dmask)
2332 seq_printf(sf, ",umask=0%o", vol->fmask);
2333 else {
2334 seq_printf(sf, ",fmask=0%o", vol->fmask);
2335 seq_printf(sf, ",dmask=0%o", vol->dmask);
2336 }
2337 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2338 if (NVolCaseSensitive(vol))
2339 seq_printf(sf, ",case_sensitive");
2340 if (NVolShowSystemFiles(vol))
2341 seq_printf(sf, ",show_sys_files");
2342 if (!NVolSparseEnabled(vol))
2343 seq_printf(sf, ",disable_sparse");
2344 for (i = 0; on_errors_arr[i].val; i++) {
2345 if (on_errors_arr[i].val & vol->on_errors)
2346 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2347 }
2348 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2349 return 0;
2350 }
2351
2352 #ifdef NTFS_RW
2353
2354 static const char *es = " Leaving inconsistent metadata. Unmount and run "
2355 "chkdsk.";
2356
2357 /**
2358 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2359 * @vi: inode for which the i_size was changed
2360 *
2361 * We only support i_size changes for normal files at present, i.e. not
2362 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2363 * below.
2364 *
2365 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2366 * that the change is allowed.
2367 *
2368 * This implies for us that @vi is a file inode rather than a directory, index,
2369 * or attribute inode as well as that @vi is a base inode.
2370 *
2371 * Returns 0 on success or -errno on error.
2372 *
2373 * Called with ->i_mutex held.
2374 */
ntfs_truncate(struct inode * vi)2375 int ntfs_truncate(struct inode *vi)
2376 {
2377 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2378 VCN highest_vcn;
2379 unsigned long flags;
2380 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2381 ntfs_volume *vol = ni->vol;
2382 ntfs_attr_search_ctx *ctx;
2383 MFT_RECORD *m;
2384 ATTR_RECORD *a;
2385 const char *te = " Leaving file length out of sync with i_size.";
2386 int err, mp_size, size_change, alloc_change;
2387 u32 attr_len;
2388
2389 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2390 BUG_ON(NInoAttr(ni));
2391 BUG_ON(S_ISDIR(vi->i_mode));
2392 BUG_ON(NInoMstProtected(ni));
2393 BUG_ON(ni->nr_extents < 0);
2394 retry_truncate:
2395 /*
2396 * Lock the runlist for writing and map the mft record to ensure it is
2397 * safe to mess with the attribute runlist and sizes.
2398 */
2399 down_write(&ni->runlist.lock);
2400 if (!NInoAttr(ni))
2401 base_ni = ni;
2402 else
2403 base_ni = ni->ext.base_ntfs_ino;
2404 m = map_mft_record(base_ni);
2405 if (IS_ERR(m)) {
2406 err = PTR_ERR(m);
2407 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2408 "(error code %d).%s", vi->i_ino, err, te);
2409 ctx = NULL;
2410 m = NULL;
2411 goto old_bad_out;
2412 }
2413 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2414 if (unlikely(!ctx)) {
2415 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2416 "inode 0x%lx (not enough memory).%s",
2417 vi->i_ino, te);
2418 err = -ENOMEM;
2419 goto old_bad_out;
2420 }
2421 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2422 CASE_SENSITIVE, 0, NULL, 0, ctx);
2423 if (unlikely(err)) {
2424 if (err == -ENOENT) {
2425 ntfs_error(vi->i_sb, "Open attribute is missing from "
2426 "mft record. Inode 0x%lx is corrupt. "
2427 "Run chkdsk.%s", vi->i_ino, te);
2428 err = -EIO;
2429 } else
2430 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2431 "inode 0x%lx (error code %d).%s",
2432 vi->i_ino, err, te);
2433 goto old_bad_out;
2434 }
2435 m = ctx->mrec;
2436 a = ctx->attr;
2437 /*
2438 * The i_size of the vfs inode is the new size for the attribute value.
2439 */
2440 new_size = i_size_read(vi);
2441 /* The current size of the attribute value is the old size. */
2442 old_size = ntfs_attr_size(a);
2443 /* Calculate the new allocated size. */
2444 if (NInoNonResident(ni))
2445 new_alloc_size = (new_size + vol->cluster_size - 1) &
2446 ~(s64)vol->cluster_size_mask;
2447 else
2448 new_alloc_size = (new_size + 7) & ~7;
2449 /* The current allocated size is the old allocated size. */
2450 read_lock_irqsave(&ni->size_lock, flags);
2451 old_alloc_size = ni->allocated_size;
2452 read_unlock_irqrestore(&ni->size_lock, flags);
2453 /*
2454 * The change in the file size. This will be 0 if no change, >0 if the
2455 * size is growing, and <0 if the size is shrinking.
2456 */
2457 size_change = -1;
2458 if (new_size - old_size >= 0) {
2459 size_change = 1;
2460 if (new_size == old_size)
2461 size_change = 0;
2462 }
2463 /* As above for the allocated size. */
2464 alloc_change = -1;
2465 if (new_alloc_size - old_alloc_size >= 0) {
2466 alloc_change = 1;
2467 if (new_alloc_size == old_alloc_size)
2468 alloc_change = 0;
2469 }
2470 /*
2471 * If neither the size nor the allocation are being changed there is
2472 * nothing to do.
2473 */
2474 if (!size_change && !alloc_change)
2475 goto unm_done;
2476 /* If the size is changing, check if new size is allowed in $AttrDef. */
2477 if (size_change) {
2478 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2479 if (unlikely(err)) {
2480 if (err == -ERANGE) {
2481 ntfs_error(vol->sb, "Truncate would cause the "
2482 "inode 0x%lx to %simum size "
2483 "for its attribute type "
2484 "(0x%x). Aborting truncate.",
2485 vi->i_ino,
2486 new_size > old_size ? "exceed "
2487 "the max" : "go under the min",
2488 le32_to_cpu(ni->type));
2489 err = -EFBIG;
2490 } else {
2491 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2492 "attribute type 0x%x. "
2493 "Aborting truncate.",
2494 vi->i_ino,
2495 le32_to_cpu(ni->type));
2496 err = -EIO;
2497 }
2498 /* Reset the vfs inode size to the old size. */
2499 i_size_write(vi, old_size);
2500 goto err_out;
2501 }
2502 }
2503 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2504 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2505 "supported yet for %s files, ignoring.",
2506 NInoCompressed(ni) ? "compressed" :
2507 "encrypted");
2508 err = -EOPNOTSUPP;
2509 goto bad_out;
2510 }
2511 if (a->non_resident)
2512 goto do_non_resident_truncate;
2513 BUG_ON(NInoNonResident(ni));
2514 /* Resize the attribute record to best fit the new attribute size. */
2515 if (new_size < vol->mft_record_size &&
2516 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2517 /* The resize succeeded! */
2518 flush_dcache_mft_record_page(ctx->ntfs_ino);
2519 mark_mft_record_dirty(ctx->ntfs_ino);
2520 write_lock_irqsave(&ni->size_lock, flags);
2521 /* Update the sizes in the ntfs inode and all is done. */
2522 ni->allocated_size = le32_to_cpu(a->length) -
2523 le16_to_cpu(a->data.resident.value_offset);
2524 /*
2525 * Note ntfs_resident_attr_value_resize() has already done any
2526 * necessary data clearing in the attribute record. When the
2527 * file is being shrunk vmtruncate() will already have cleared
2528 * the top part of the last partial page, i.e. since this is
2529 * the resident case this is the page with index 0. However,
2530 * when the file is being expanded, the page cache page data
2531 * between the old data_size, i.e. old_size, and the new_size
2532 * has not been zeroed. Fortunately, we do not need to zero it
2533 * either since on one hand it will either already be zero due
2534 * to both readpage and writepage clearing partial page data
2535 * beyond i_size in which case there is nothing to do or in the
2536 * case of the file being mmap()ped at the same time, POSIX
2537 * specifies that the behaviour is unspecified thus we do not
2538 * have to do anything. This means that in our implementation
2539 * in the rare case that the file is mmap()ped and a write
2540 * occurred into the mmap()ped region just beyond the file size
2541 * and writepage has not yet been called to write out the page
2542 * (which would clear the area beyond the file size) and we now
2543 * extend the file size to incorporate this dirty region
2544 * outside the file size, a write of the page would result in
2545 * this data being written to disk instead of being cleared.
2546 * Given both POSIX and the Linux mmap(2) man page specify that
2547 * this corner case is undefined, we choose to leave it like
2548 * that as this is much simpler for us as we cannot lock the
2549 * relevant page now since we are holding too many ntfs locks
2550 * which would result in a lock reversal deadlock.
2551 */
2552 ni->initialized_size = new_size;
2553 write_unlock_irqrestore(&ni->size_lock, flags);
2554 goto unm_done;
2555 }
2556 /* If the above resize failed, this must be an attribute extension. */
2557 BUG_ON(size_change < 0);
2558 /*
2559 * We have to drop all the locks so we can call
2560 * ntfs_attr_make_non_resident(). This could be optimised by try-
2561 * locking the first page cache page and only if that fails dropping
2562 * the locks, locking the page, and redoing all the locking and
2563 * lookups. While this would be a huge optimisation, it is not worth
2564 * it as this is definitely a slow code path as it only ever can happen
2565 * once for any given file.
2566 */
2567 ntfs_attr_put_search_ctx(ctx);
2568 unmap_mft_record(base_ni);
2569 up_write(&ni->runlist.lock);
2570 /*
2571 * Not enough space in the mft record, try to make the attribute
2572 * non-resident and if successful restart the truncation process.
2573 */
2574 err = ntfs_attr_make_non_resident(ni, old_size);
2575 if (likely(!err))
2576 goto retry_truncate;
2577 /*
2578 * Could not make non-resident. If this is due to this not being
2579 * permitted for this attribute type or there not being enough space,
2580 * try to make other attributes non-resident. Otherwise fail.
2581 */
2582 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2583 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2584 "type 0x%x, because the conversion from "
2585 "resident to non-resident attribute failed "
2586 "with error code %i.", vi->i_ino,
2587 (unsigned)le32_to_cpu(ni->type), err);
2588 if (err != -ENOMEM)
2589 err = -EIO;
2590 goto conv_err_out;
2591 }
2592 /* TODO: Not implemented from here, abort. */
2593 if (err == -ENOSPC)
2594 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2595 "disk for the non-resident attribute value. "
2596 "This case is not implemented yet.");
2597 else /* if (err == -EPERM) */
2598 ntfs_error(vol->sb, "This attribute type may not be "
2599 "non-resident. This case is not implemented "
2600 "yet.");
2601 err = -EOPNOTSUPP;
2602 goto conv_err_out;
2603 #if 0
2604 // TODO: Attempt to make other attributes non-resident.
2605 if (!err)
2606 goto do_resident_extend;
2607 /*
2608 * Both the attribute list attribute and the standard information
2609 * attribute must remain in the base inode. Thus, if this is one of
2610 * these attributes, we have to try to move other attributes out into
2611 * extent mft records instead.
2612 */
2613 if (ni->type == AT_ATTRIBUTE_LIST ||
2614 ni->type == AT_STANDARD_INFORMATION) {
2615 // TODO: Attempt to move other attributes into extent mft
2616 // records.
2617 err = -EOPNOTSUPP;
2618 if (!err)
2619 goto do_resident_extend;
2620 goto err_out;
2621 }
2622 // TODO: Attempt to move this attribute to an extent mft record, but
2623 // only if it is not already the only attribute in an mft record in
2624 // which case there would be nothing to gain.
2625 err = -EOPNOTSUPP;
2626 if (!err)
2627 goto do_resident_extend;
2628 /* There is nothing we can do to make enough space. )-: */
2629 goto err_out;
2630 #endif
2631 do_non_resident_truncate:
2632 BUG_ON(!NInoNonResident(ni));
2633 if (alloc_change < 0) {
2634 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2635 if (highest_vcn > 0 &&
2636 old_alloc_size >> vol->cluster_size_bits >
2637 highest_vcn + 1) {
2638 /*
2639 * This attribute has multiple extents. Not yet
2640 * supported.
2641 */
2642 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2643 "attribute type 0x%x, because the "
2644 "attribute is highly fragmented (it "
2645 "consists of multiple extents) and "
2646 "this case is not implemented yet.",
2647 vi->i_ino,
2648 (unsigned)le32_to_cpu(ni->type));
2649 err = -EOPNOTSUPP;
2650 goto bad_out;
2651 }
2652 }
2653 /*
2654 * If the size is shrinking, need to reduce the initialized_size and
2655 * the data_size before reducing the allocation.
2656 */
2657 if (size_change < 0) {
2658 /*
2659 * Make the valid size smaller (i_size is already up-to-date).
2660 */
2661 write_lock_irqsave(&ni->size_lock, flags);
2662 if (new_size < ni->initialized_size) {
2663 ni->initialized_size = new_size;
2664 a->data.non_resident.initialized_size =
2665 cpu_to_sle64(new_size);
2666 }
2667 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2668 write_unlock_irqrestore(&ni->size_lock, flags);
2669 flush_dcache_mft_record_page(ctx->ntfs_ino);
2670 mark_mft_record_dirty(ctx->ntfs_ino);
2671 /* If the allocated size is not changing, we are done. */
2672 if (!alloc_change)
2673 goto unm_done;
2674 /*
2675 * If the size is shrinking it makes no sense for the
2676 * allocation to be growing.
2677 */
2678 BUG_ON(alloc_change > 0);
2679 } else /* if (size_change >= 0) */ {
2680 /*
2681 * The file size is growing or staying the same but the
2682 * allocation can be shrinking, growing or staying the same.
2683 */
2684 if (alloc_change > 0) {
2685 /*
2686 * We need to extend the allocation and possibly update
2687 * the data size. If we are updating the data size,
2688 * since we are not touching the initialized_size we do
2689 * not need to worry about the actual data on disk.
2690 * And as far as the page cache is concerned, there
2691 * will be no pages beyond the old data size and any
2692 * partial region in the last page between the old and
2693 * new data size (or the end of the page if the new
2694 * data size is outside the page) does not need to be
2695 * modified as explained above for the resident
2696 * attribute truncate case. To do this, we simply drop
2697 * the locks we hold and leave all the work to our
2698 * friendly helper ntfs_attr_extend_allocation().
2699 */
2700 ntfs_attr_put_search_ctx(ctx);
2701 unmap_mft_record(base_ni);
2702 up_write(&ni->runlist.lock);
2703 err = ntfs_attr_extend_allocation(ni, new_size,
2704 size_change > 0 ? new_size : -1, -1);
2705 /*
2706 * ntfs_attr_extend_allocation() will have done error
2707 * output already.
2708 */
2709 goto done;
2710 }
2711 if (!alloc_change)
2712 goto alloc_done;
2713 }
2714 /* alloc_change < 0 */
2715 /* Free the clusters. */
2716 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2717 vol->cluster_size_bits, -1, ctx);
2718 m = ctx->mrec;
2719 a = ctx->attr;
2720 if (unlikely(nr_freed < 0)) {
2721 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2722 "%lli). Unmount and run chkdsk to recover "
2723 "the lost cluster(s).", (long long)nr_freed);
2724 NVolSetErrors(vol);
2725 nr_freed = 0;
2726 }
2727 /* Truncate the runlist. */
2728 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2729 new_alloc_size >> vol->cluster_size_bits);
2730 /*
2731 * If the runlist truncation failed and/or the search context is no
2732 * longer valid, we cannot resize the attribute record or build the
2733 * mapping pairs array thus we mark the inode bad so that no access to
2734 * the freed clusters can happen.
2735 */
2736 if (unlikely(err || IS_ERR(m))) {
2737 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2738 IS_ERR(m) ?
2739 "restore attribute search context" :
2740 "truncate attribute runlist",
2741 IS_ERR(m) ? PTR_ERR(m) : err, es);
2742 err = -EIO;
2743 goto bad_out;
2744 }
2745 /* Get the size for the shrunk mapping pairs array for the runlist. */
2746 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2747 if (unlikely(mp_size <= 0)) {
2748 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2749 "attribute type 0x%x, because determining the "
2750 "size for the mapping pairs failed with error "
2751 "code %i.%s", vi->i_ino,
2752 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2753 err = -EIO;
2754 goto bad_out;
2755 }
2756 /*
2757 * Shrink the attribute record for the new mapping pairs array. Note,
2758 * this cannot fail since we are making the attribute smaller thus by
2759 * definition there is enough space to do so.
2760 */
2761 attr_len = le32_to_cpu(a->length);
2762 err = ntfs_attr_record_resize(m, a, mp_size +
2763 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2764 BUG_ON(err);
2765 /*
2766 * Generate the mapping pairs array directly into the attribute record.
2767 */
2768 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2769 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2770 mp_size, ni->runlist.rl, 0, -1, NULL);
2771 if (unlikely(err)) {
2772 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2773 "attribute type 0x%x, because building the "
2774 "mapping pairs failed with error code %i.%s",
2775 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2776 err, es);
2777 err = -EIO;
2778 goto bad_out;
2779 }
2780 /* Update the allocated/compressed size as well as the highest vcn. */
2781 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2782 vol->cluster_size_bits) - 1);
2783 write_lock_irqsave(&ni->size_lock, flags);
2784 ni->allocated_size = new_alloc_size;
2785 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2786 if (NInoSparse(ni) || NInoCompressed(ni)) {
2787 if (nr_freed) {
2788 ni->itype.compressed.size -= nr_freed <<
2789 vol->cluster_size_bits;
2790 BUG_ON(ni->itype.compressed.size < 0);
2791 a->data.non_resident.compressed_size = cpu_to_sle64(
2792 ni->itype.compressed.size);
2793 vi->i_blocks = ni->itype.compressed.size >> 9;
2794 }
2795 } else
2796 vi->i_blocks = new_alloc_size >> 9;
2797 write_unlock_irqrestore(&ni->size_lock, flags);
2798 /*
2799 * We have shrunk the allocation. If this is a shrinking truncate we
2800 * have already dealt with the initialized_size and the data_size above
2801 * and we are done. If the truncate is only changing the allocation
2802 * and not the data_size, we are also done. If this is an extending
2803 * truncate, need to extend the data_size now which is ensured by the
2804 * fact that @size_change is positive.
2805 */
2806 alloc_done:
2807 /*
2808 * If the size is growing, need to update it now. If it is shrinking,
2809 * we have already updated it above (before the allocation change).
2810 */
2811 if (size_change > 0)
2812 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2813 /* Ensure the modified mft record is written out. */
2814 flush_dcache_mft_record_page(ctx->ntfs_ino);
2815 mark_mft_record_dirty(ctx->ntfs_ino);
2816 unm_done:
2817 ntfs_attr_put_search_ctx(ctx);
2818 unmap_mft_record(base_ni);
2819 up_write(&ni->runlist.lock);
2820 done:
2821 /* Update the mtime and ctime on the base inode. */
2822 /* normally ->truncate shouldn't update ctime or mtime,
2823 * but ntfs did before so it got a copy & paste version
2824 * of file_update_time. one day someone should fix this
2825 * for real.
2826 */
2827 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2828 struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb);
2829 int sync_it = 0;
2830
2831 if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2832 !timespec_equal(&VFS_I(base_ni)->i_ctime, &now))
2833 sync_it = 1;
2834 VFS_I(base_ni)->i_mtime = now;
2835 VFS_I(base_ni)->i_ctime = now;
2836
2837 if (sync_it)
2838 mark_inode_dirty_sync(VFS_I(base_ni));
2839 }
2840
2841 if (likely(!err)) {
2842 NInoClearTruncateFailed(ni);
2843 ntfs_debug("Done.");
2844 }
2845 return err;
2846 old_bad_out:
2847 old_size = -1;
2848 bad_out:
2849 if (err != -ENOMEM && err != -EOPNOTSUPP)
2850 NVolSetErrors(vol);
2851 if (err != -EOPNOTSUPP)
2852 NInoSetTruncateFailed(ni);
2853 else if (old_size >= 0)
2854 i_size_write(vi, old_size);
2855 err_out:
2856 if (ctx)
2857 ntfs_attr_put_search_ctx(ctx);
2858 if (m)
2859 unmap_mft_record(base_ni);
2860 up_write(&ni->runlist.lock);
2861 out:
2862 ntfs_debug("Failed. Returning error code %i.", err);
2863 return err;
2864 conv_err_out:
2865 if (err != -ENOMEM && err != -EOPNOTSUPP)
2866 NVolSetErrors(vol);
2867 if (err != -EOPNOTSUPP)
2868 NInoSetTruncateFailed(ni);
2869 else
2870 i_size_write(vi, old_size);
2871 goto out;
2872 }
2873
2874 /**
2875 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2876 * @vi: inode for which the i_size was changed
2877 *
2878 * Wrapper for ntfs_truncate() that has no return value.
2879 *
2880 * See ntfs_truncate() description above for details.
2881 */
2882 #ifdef NTFS_RW
ntfs_truncate_vfs(struct inode * vi)2883 void ntfs_truncate_vfs(struct inode *vi) {
2884 ntfs_truncate(vi);
2885 }
2886 #endif
2887
2888 /**
2889 * ntfs_setattr - called from notify_change() when an attribute is being changed
2890 * @dentry: dentry whose attributes to change
2891 * @attr: structure describing the attributes and the changes
2892 *
2893 * We have to trap VFS attempts to truncate the file described by @dentry as
2894 * soon as possible, because we do not implement changes in i_size yet. So we
2895 * abort all i_size changes here.
2896 *
2897 * We also abort all changes of user, group, and mode as we do not implement
2898 * the NTFS ACLs yet.
2899 *
2900 * Called with ->i_mutex held.
2901 */
ntfs_setattr(struct dentry * dentry,struct iattr * attr)2902 int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2903 {
2904 struct inode *vi = d_inode(dentry);
2905 int err;
2906 unsigned int ia_valid = attr->ia_valid;
2907
2908 err = inode_change_ok(vi, attr);
2909 if (err)
2910 goto out;
2911 /* We do not support NTFS ACLs yet. */
2912 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2913 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2914 "supported yet, ignoring.");
2915 err = -EOPNOTSUPP;
2916 goto out;
2917 }
2918 if (ia_valid & ATTR_SIZE) {
2919 if (attr->ia_size != i_size_read(vi)) {
2920 ntfs_inode *ni = NTFS_I(vi);
2921 /*
2922 * FIXME: For now we do not support resizing of
2923 * compressed or encrypted files yet.
2924 */
2925 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2926 ntfs_warning(vi->i_sb, "Changes in inode size "
2927 "are not supported yet for "
2928 "%s files, ignoring.",
2929 NInoCompressed(ni) ?
2930 "compressed" : "encrypted");
2931 err = -EOPNOTSUPP;
2932 } else {
2933 truncate_setsize(vi, attr->ia_size);
2934 ntfs_truncate_vfs(vi);
2935 }
2936 if (err || ia_valid == ATTR_SIZE)
2937 goto out;
2938 } else {
2939 /*
2940 * We skipped the truncate but must still update
2941 * timestamps.
2942 */
2943 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2944 }
2945 }
2946 if (ia_valid & ATTR_ATIME)
2947 vi->i_atime = timespec_trunc(attr->ia_atime,
2948 vi->i_sb->s_time_gran);
2949 if (ia_valid & ATTR_MTIME)
2950 vi->i_mtime = timespec_trunc(attr->ia_mtime,
2951 vi->i_sb->s_time_gran);
2952 if (ia_valid & ATTR_CTIME)
2953 vi->i_ctime = timespec_trunc(attr->ia_ctime,
2954 vi->i_sb->s_time_gran);
2955 mark_inode_dirty(vi);
2956 out:
2957 return err;
2958 }
2959
2960 /**
2961 * ntfs_write_inode - write out a dirty inode
2962 * @vi: inode to write out
2963 * @sync: if true, write out synchronously
2964 *
2965 * Write out a dirty inode to disk including any extent inodes if present.
2966 *
2967 * If @sync is true, commit the inode to disk and wait for io completion. This
2968 * is done using write_mft_record().
2969 *
2970 * If @sync is false, just schedule the write to happen but do not wait for i/o
2971 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2972 * marking the page (and in this case mft record) dirty but we do not implement
2973 * this yet as write_mft_record() largely ignores the @sync parameter and
2974 * always performs synchronous writes.
2975 *
2976 * Return 0 on success and -errno on error.
2977 */
__ntfs_write_inode(struct inode * vi,int sync)2978 int __ntfs_write_inode(struct inode *vi, int sync)
2979 {
2980 sle64 nt;
2981 ntfs_inode *ni = NTFS_I(vi);
2982 ntfs_attr_search_ctx *ctx;
2983 MFT_RECORD *m;
2984 STANDARD_INFORMATION *si;
2985 int err = 0;
2986 bool modified = false;
2987
2988 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2989 vi->i_ino);
2990 /*
2991 * Dirty attribute inodes are written via their real inodes so just
2992 * clean them here. Access time updates are taken care off when the
2993 * real inode is written.
2994 */
2995 if (NInoAttr(ni)) {
2996 NInoClearDirty(ni);
2997 ntfs_debug("Done.");
2998 return 0;
2999 }
3000 /* Map, pin, and lock the mft record belonging to the inode. */
3001 m = map_mft_record(ni);
3002 if (IS_ERR(m)) {
3003 err = PTR_ERR(m);
3004 goto err_out;
3005 }
3006 /* Update the access times in the standard information attribute. */
3007 ctx = ntfs_attr_get_search_ctx(ni, m);
3008 if (unlikely(!ctx)) {
3009 err = -ENOMEM;
3010 goto unm_err_out;
3011 }
3012 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
3013 CASE_SENSITIVE, 0, NULL, 0, ctx);
3014 if (unlikely(err)) {
3015 ntfs_attr_put_search_ctx(ctx);
3016 goto unm_err_out;
3017 }
3018 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
3019 le16_to_cpu(ctx->attr->data.resident.value_offset));
3020 /* Update the access times if they have changed. */
3021 nt = utc2ntfs(vi->i_mtime);
3022 if (si->last_data_change_time != nt) {
3023 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3024 "new = 0x%llx", vi->i_ino, (long long)
3025 sle64_to_cpu(si->last_data_change_time),
3026 (long long)sle64_to_cpu(nt));
3027 si->last_data_change_time = nt;
3028 modified = true;
3029 }
3030 nt = utc2ntfs(vi->i_ctime);
3031 if (si->last_mft_change_time != nt) {
3032 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3033 "new = 0x%llx", vi->i_ino, (long long)
3034 sle64_to_cpu(si->last_mft_change_time),
3035 (long long)sle64_to_cpu(nt));
3036 si->last_mft_change_time = nt;
3037 modified = true;
3038 }
3039 nt = utc2ntfs(vi->i_atime);
3040 if (si->last_access_time != nt) {
3041 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3042 "new = 0x%llx", vi->i_ino,
3043 (long long)sle64_to_cpu(si->last_access_time),
3044 (long long)sle64_to_cpu(nt));
3045 si->last_access_time = nt;
3046 modified = true;
3047 }
3048 /*
3049 * If we just modified the standard information attribute we need to
3050 * mark the mft record it is in dirty. We do this manually so that
3051 * mark_inode_dirty() is not called which would redirty the inode and
3052 * hence result in an infinite loop of trying to write the inode.
3053 * There is no need to mark the base inode nor the base mft record
3054 * dirty, since we are going to write this mft record below in any case
3055 * and the base mft record may actually not have been modified so it
3056 * might not need to be written out.
3057 * NOTE: It is not a problem when the inode for $MFT itself is being
3058 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3059 * on the $MFT inode and hence ntfs_write_inode() will not be
3060 * re-invoked because of it which in turn is ok since the dirtied mft
3061 * record will be cleaned and written out to disk below, i.e. before
3062 * this function returns.
3063 */
3064 if (modified) {
3065 flush_dcache_mft_record_page(ctx->ntfs_ino);
3066 if (!NInoTestSetDirty(ctx->ntfs_ino))
3067 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3068 ctx->ntfs_ino->page_ofs);
3069 }
3070 ntfs_attr_put_search_ctx(ctx);
3071 /* Now the access times are updated, write the base mft record. */
3072 if (NInoDirty(ni))
3073 err = write_mft_record(ni, m, sync);
3074 /* Write all attached extent mft records. */
3075 mutex_lock(&ni->extent_lock);
3076 if (ni->nr_extents > 0) {
3077 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3078 int i;
3079
3080 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3081 for (i = 0; i < ni->nr_extents; i++) {
3082 ntfs_inode *tni = extent_nis[i];
3083
3084 if (NInoDirty(tni)) {
3085 MFT_RECORD *tm = map_mft_record(tni);
3086 int ret;
3087
3088 if (IS_ERR(tm)) {
3089 if (!err || err == -ENOMEM)
3090 err = PTR_ERR(tm);
3091 continue;
3092 }
3093 ret = write_mft_record(tni, tm, sync);
3094 unmap_mft_record(tni);
3095 if (unlikely(ret)) {
3096 if (!err || err == -ENOMEM)
3097 err = ret;
3098 }
3099 }
3100 }
3101 }
3102 mutex_unlock(&ni->extent_lock);
3103 unmap_mft_record(ni);
3104 if (unlikely(err))
3105 goto err_out;
3106 ntfs_debug("Done.");
3107 return 0;
3108 unm_err_out:
3109 unmap_mft_record(ni);
3110 err_out:
3111 if (err == -ENOMEM) {
3112 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3113 "Marking the inode dirty again, so the VFS "
3114 "retries later.");
3115 mark_inode_dirty(vi);
3116 } else {
3117 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
3118 NVolSetErrors(ni->vol);
3119 }
3120 return err;
3121 }
3122
3123 #endif /* NTFS_RW */
3124