• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33 
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50 
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55 
ocfs2_symlink_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 				   struct buffer_head *bh_result, int create)
58 {
59 	int err = -EIO;
60 	int status;
61 	struct ocfs2_dinode *fe = NULL;
62 	struct buffer_head *bh = NULL;
63 	struct buffer_head *buffer_cache_bh = NULL;
64 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 	void *kaddr;
66 
67 	trace_ocfs2_symlink_get_block(
68 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
69 			(unsigned long long)iblock, bh_result, create);
70 
71 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72 
73 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 		     (unsigned long long)iblock);
76 		goto bail;
77 	}
78 
79 	status = ocfs2_read_inode_block(inode, &bh);
80 	if (status < 0) {
81 		mlog_errno(status);
82 		goto bail;
83 	}
84 	fe = (struct ocfs2_dinode *) bh->b_data;
85 
86 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 						    le32_to_cpu(fe->i_clusters))) {
88 		err = -ENOMEM;
89 		mlog(ML_ERROR, "block offset is outside the allocated size: "
90 		     "%llu\n", (unsigned long long)iblock);
91 		goto bail;
92 	}
93 
94 	/* We don't use the page cache to create symlink data, so if
95 	 * need be, copy it over from the buffer cache. */
96 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 			    iblock;
99 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 		if (!buffer_cache_bh) {
101 			err = -ENOMEM;
102 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 			goto bail;
104 		}
105 
106 		/* we haven't locked out transactions, so a commit
107 		 * could've happened. Since we've got a reference on
108 		 * the bh, even if it commits while we're doing the
109 		 * copy, the data is still good. */
110 		if (buffer_jbd(buffer_cache_bh)
111 		    && ocfs2_inode_is_new(inode)) {
112 			kaddr = kmap_atomic(bh_result->b_page);
113 			if (!kaddr) {
114 				mlog(ML_ERROR, "couldn't kmap!\n");
115 				goto bail;
116 			}
117 			memcpy(kaddr + (bh_result->b_size * iblock),
118 			       buffer_cache_bh->b_data,
119 			       bh_result->b_size);
120 			kunmap_atomic(kaddr);
121 			set_buffer_uptodate(bh_result);
122 		}
123 		brelse(buffer_cache_bh);
124 	}
125 
126 	map_bh(bh_result, inode->i_sb,
127 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128 
129 	err = 0;
130 
131 bail:
132 	brelse(bh);
133 
134 	return err;
135 }
136 
ocfs2_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 		    struct buffer_head *bh_result, int create)
139 {
140 	int err = 0;
141 	unsigned int ext_flags;
142 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 	u64 p_blkno, count, past_eof;
144 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145 
146 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 			      (unsigned long long)iblock, bh_result, create);
148 
149 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 		     inode, inode->i_ino);
152 
153 	if (S_ISLNK(inode->i_mode)) {
154 		/* this always does I/O for some reason. */
155 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 		goto bail;
157 	}
158 
159 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160 					  &ext_flags);
161 	if (err) {
162 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 		     (unsigned long long)p_blkno);
165 		goto bail;
166 	}
167 
168 	if (max_blocks < count)
169 		count = max_blocks;
170 
171 	/*
172 	 * ocfs2 never allocates in this function - the only time we
173 	 * need to use BH_New is when we're extending i_size on a file
174 	 * system which doesn't support holes, in which case BH_New
175 	 * allows __block_write_begin() to zero.
176 	 *
177 	 * If we see this on a sparse file system, then a truncate has
178 	 * raced us and removed the cluster. In this case, we clear
179 	 * the buffers dirty and uptodate bits and let the buffer code
180 	 * ignore it as a hole.
181 	 */
182 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 		clear_buffer_dirty(bh_result);
184 		clear_buffer_uptodate(bh_result);
185 		goto bail;
186 	}
187 
188 	/* Treat the unwritten extent as a hole for zeroing purposes. */
189 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190 		map_bh(bh_result, inode->i_sb, p_blkno);
191 
192 	bh_result->b_size = count << inode->i_blkbits;
193 
194 	if (!ocfs2_sparse_alloc(osb)) {
195 		if (p_blkno == 0) {
196 			err = -EIO;
197 			mlog(ML_ERROR,
198 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 			     (unsigned long long)iblock,
200 			     (unsigned long long)p_blkno,
201 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 			dump_stack();
204 			goto bail;
205 		}
206 	}
207 
208 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209 
210 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 				  (unsigned long long)past_eof);
212 	if (create && (iblock >= past_eof))
213 		set_buffer_new(bh_result);
214 
215 bail:
216 	if (err < 0)
217 		err = -EIO;
218 
219 	return err;
220 }
221 
ocfs2_read_inline_data(struct inode * inode,struct page * page,struct buffer_head * di_bh)222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 			   struct buffer_head *di_bh)
224 {
225 	void *kaddr;
226 	loff_t size;
227 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228 
229 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
231 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 		return -EROFS;
233 	}
234 
235 	size = i_size_read(inode);
236 
237 	if (size > PAGE_CACHE_SIZE ||
238 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239 		ocfs2_error(inode->i_sb,
240 			    "Inode %llu has with inline data has bad size: %Lu\n",
241 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 			    (unsigned long long)size);
243 		return -EROFS;
244 	}
245 
246 	kaddr = kmap_atomic(page);
247 	if (size)
248 		memcpy(kaddr, di->id2.i_data.id_data, size);
249 	/* Clear the remaining part of the page */
250 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251 	flush_dcache_page(page);
252 	kunmap_atomic(kaddr);
253 
254 	SetPageUptodate(page);
255 
256 	return 0;
257 }
258 
ocfs2_readpage_inline(struct inode * inode,struct page * page)259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261 	int ret;
262 	struct buffer_head *di_bh = NULL;
263 
264 	BUG_ON(!PageLocked(page));
265 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266 
267 	ret = ocfs2_read_inode_block(inode, &di_bh);
268 	if (ret) {
269 		mlog_errno(ret);
270 		goto out;
271 	}
272 
273 	ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275 	unlock_page(page);
276 
277 	brelse(di_bh);
278 	return ret;
279 }
280 
ocfs2_readpage(struct file * file,struct page * page)281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283 	struct inode *inode = page->mapping->host;
284 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
285 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286 	int ret, unlock = 1;
287 
288 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 			     (page ? page->index : 0));
290 
291 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292 	if (ret != 0) {
293 		if (ret == AOP_TRUNCATED_PAGE)
294 			unlock = 0;
295 		mlog_errno(ret);
296 		goto out;
297 	}
298 
299 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300 		/*
301 		 * Unlock the page and cycle ip_alloc_sem so that we don't
302 		 * busyloop waiting for ip_alloc_sem to unlock
303 		 */
304 		ret = AOP_TRUNCATED_PAGE;
305 		unlock_page(page);
306 		unlock = 0;
307 		down_read(&oi->ip_alloc_sem);
308 		up_read(&oi->ip_alloc_sem);
309 		goto out_inode_unlock;
310 	}
311 
312 	/*
313 	 * i_size might have just been updated as we grabed the meta lock.  We
314 	 * might now be discovering a truncate that hit on another node.
315 	 * block_read_full_page->get_block freaks out if it is asked to read
316 	 * beyond the end of a file, so we check here.  Callers
317 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 	 * and notice that the page they just read isn't needed.
319 	 *
320 	 * XXX sys_readahead() seems to get that wrong?
321 	 */
322 	if (start >= i_size_read(inode)) {
323 		zero_user(page, 0, PAGE_SIZE);
324 		SetPageUptodate(page);
325 		ret = 0;
326 		goto out_alloc;
327 	}
328 
329 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 		ret = ocfs2_readpage_inline(inode, page);
331 	else
332 		ret = block_read_full_page(page, ocfs2_get_block);
333 	unlock = 0;
334 
335 out_alloc:
336 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338 	ocfs2_inode_unlock(inode, 0);
339 out:
340 	if (unlock)
341 		unlock_page(page);
342 	return ret;
343 }
344 
345 /*
346  * This is used only for read-ahead. Failures or difficult to handle
347  * situations are safe to ignore.
348  *
349  * Right now, we don't bother with BH_Boundary - in-inode extent lists
350  * are quite large (243 extents on 4k blocks), so most inodes don't
351  * grow out to a tree. If need be, detecting boundary extents could
352  * trivially be added in a future version of ocfs2_get_block().
353  */
ocfs2_readpages(struct file * filp,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 			   struct list_head *pages, unsigned nr_pages)
356 {
357 	int ret, err = -EIO;
358 	struct inode *inode = mapping->host;
359 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 	loff_t start;
361 	struct page *last;
362 
363 	/*
364 	 * Use the nonblocking flag for the dlm code to avoid page
365 	 * lock inversion, but don't bother with retrying.
366 	 */
367 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 	if (ret)
369 		return err;
370 
371 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 		ocfs2_inode_unlock(inode, 0);
373 		return err;
374 	}
375 
376 	/*
377 	 * Don't bother with inline-data. There isn't anything
378 	 * to read-ahead in that case anyway...
379 	 */
380 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 		goto out_unlock;
382 
383 	/*
384 	 * Check whether a remote node truncated this file - we just
385 	 * drop out in that case as it's not worth handling here.
386 	 */
387 	last = list_entry(pages->prev, struct page, lru);
388 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389 	if (start >= i_size_read(inode))
390 		goto out_unlock;
391 
392 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393 
394 out_unlock:
395 	up_read(&oi->ip_alloc_sem);
396 	ocfs2_inode_unlock(inode, 0);
397 
398 	return err;
399 }
400 
401 /* Note: Because we don't support holes, our allocation has
402  * already happened (allocation writes zeros to the file data)
403  * so we don't have to worry about ordered writes in
404  * ocfs2_writepage.
405  *
406  * ->writepage is called during the process of invalidating the page cache
407  * during blocked lock processing.  It can't block on any cluster locks
408  * to during block mapping.  It's relying on the fact that the block
409  * mapping can't have disappeared under the dirty pages that it is
410  * being asked to write back.
411  */
ocfs2_writepage(struct page * page,struct writeback_control * wbc)412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414 	trace_ocfs2_writepage(
415 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 		page->index);
417 
418 	return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420 
421 /* Taken from ext3. We don't necessarily need the full blown
422  * functionality yet, but IMHO it's better to cut and paste the whole
423  * thing so we can avoid introducing our own bugs (and easily pick up
424  * their fixes when they happen) --Mark */
walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))425 int walk_page_buffers(	handle_t *handle,
426 			struct buffer_head *head,
427 			unsigned from,
428 			unsigned to,
429 			int *partial,
430 			int (*fn)(	handle_t *handle,
431 					struct buffer_head *bh))
432 {
433 	struct buffer_head *bh;
434 	unsigned block_start, block_end;
435 	unsigned blocksize = head->b_size;
436 	int err, ret = 0;
437 	struct buffer_head *next;
438 
439 	for (	bh = head, block_start = 0;
440 		ret == 0 && (bh != head || !block_start);
441 	    	block_start = block_end, bh = next)
442 	{
443 		next = bh->b_this_page;
444 		block_end = block_start + blocksize;
445 		if (block_end <= from || block_start >= to) {
446 			if (partial && !buffer_uptodate(bh))
447 				*partial = 1;
448 			continue;
449 		}
450 		err = (*fn)(handle, bh);
451 		if (!ret)
452 			ret = err;
453 	}
454 	return ret;
455 }
456 
ocfs2_bmap(struct address_space * mapping,sector_t block)457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459 	sector_t status;
460 	u64 p_blkno = 0;
461 	int err = 0;
462 	struct inode *inode = mapping->host;
463 
464 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 			 (unsigned long long)block);
466 
467 	/* We don't need to lock journal system files, since they aren't
468 	 * accessed concurrently from multiple nodes.
469 	 */
470 	if (!INODE_JOURNAL(inode)) {
471 		err = ocfs2_inode_lock(inode, NULL, 0);
472 		if (err) {
473 			if (err != -ENOENT)
474 				mlog_errno(err);
475 			goto bail;
476 		}
477 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
478 	}
479 
480 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 						  NULL);
483 
484 	if (!INODE_JOURNAL(inode)) {
485 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
486 		ocfs2_inode_unlock(inode, 0);
487 	}
488 
489 	if (err) {
490 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 		     (unsigned long long)block);
492 		mlog_errno(err);
493 		goto bail;
494 	}
495 
496 bail:
497 	status = err ? 0 : p_blkno;
498 
499 	return status;
500 }
501 
502 /*
503  * TODO: Make this into a generic get_blocks function.
504  *
505  * From do_direct_io in direct-io.c:
506  *  "So what we do is to permit the ->get_blocks function to populate
507  *   bh.b_size with the size of IO which is permitted at this offset and
508  *   this i_blkbits."
509  *
510  * This function is called directly from get_more_blocks in direct-io.c.
511  *
512  * called like this: dio->get_blocks(dio->inode, fs_startblk,
513  * 					fs_count, map_bh, dio->rw == WRITE);
514  */
ocfs2_direct_IO_get_blocks(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516 				     struct buffer_head *bh_result, int create)
517 {
518 	int ret;
519 	u32 cpos = 0;
520 	int alloc_locked = 0;
521 	u64 p_blkno, inode_blocks, contig_blocks;
522 	unsigned int ext_flags;
523 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525 	unsigned long len = bh_result->b_size;
526 	unsigned int clusters_to_alloc = 0, contig_clusters = 0;
527 
528 	cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
529 
530 	/* This function won't even be called if the request isn't all
531 	 * nicely aligned and of the right size, so there's no need
532 	 * for us to check any of that. */
533 
534 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
535 
536 	down_read(&OCFS2_I(inode)->ip_alloc_sem);
537 
538 	/* This figures out the size of the next contiguous block, and
539 	 * our logical offset */
540 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
541 					  &contig_blocks, &ext_flags);
542 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
543 
544 	if (ret) {
545 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
546 		     (unsigned long long)iblock);
547 		ret = -EIO;
548 		goto bail;
549 	}
550 
551 	/* We should already CoW the refcounted extent in case of create. */
552 	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
553 
554 	/* allocate blocks if no p_blkno is found, and create == 1 */
555 	if (!p_blkno && create) {
556 		ret = ocfs2_inode_lock(inode, NULL, 1);
557 		if (ret < 0) {
558 			mlog_errno(ret);
559 			goto bail;
560 		}
561 
562 		alloc_locked = 1;
563 
564 		down_write(&OCFS2_I(inode)->ip_alloc_sem);
565 
566 		/* fill hole, allocate blocks can't be larger than the size
567 		 * of the hole */
568 		clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
569 		contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb,
570 				contig_blocks);
571 		if (clusters_to_alloc > contig_clusters)
572 			clusters_to_alloc = contig_clusters;
573 
574 		/* allocate extent and insert them into the extent tree */
575 		ret = ocfs2_extend_allocation(inode, cpos,
576 				clusters_to_alloc, 0);
577 		if (ret < 0) {
578 			up_write(&OCFS2_I(inode)->ip_alloc_sem);
579 			mlog_errno(ret);
580 			goto bail;
581 		}
582 
583 		ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
584 				&contig_blocks, &ext_flags);
585 		if (ret < 0) {
586 			up_write(&OCFS2_I(inode)->ip_alloc_sem);
587 			mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
588 					(unsigned long long)iblock);
589 			ret = -EIO;
590 			goto bail;
591 		}
592 		set_buffer_new(bh_result);
593 		up_write(&OCFS2_I(inode)->ip_alloc_sem);
594 	}
595 
596 	/*
597 	 * get_more_blocks() expects us to describe a hole by clearing
598 	 * the mapped bit on bh_result().
599 	 *
600 	 * Consider an unwritten extent as a hole.
601 	 */
602 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
603 		map_bh(bh_result, inode->i_sb, p_blkno);
604 	else
605 		clear_buffer_mapped(bh_result);
606 
607 	/* make sure we don't map more than max_blocks blocks here as
608 	   that's all the kernel will handle at this point. */
609 	if (max_blocks < contig_blocks)
610 		contig_blocks = max_blocks;
611 	bh_result->b_size = contig_blocks << blocksize_bits;
612 bail:
613 	if (alloc_locked)
614 		ocfs2_inode_unlock(inode, 1);
615 	return ret;
616 }
617 
618 /*
619  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
620  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
621  * to protect io on one node from truncation on another.
622  */
ocfs2_dio_end_io(struct kiocb * iocb,loff_t offset,ssize_t bytes,void * private)623 static void ocfs2_dio_end_io(struct kiocb *iocb,
624 			     loff_t offset,
625 			     ssize_t bytes,
626 			     void *private)
627 {
628 	struct inode *inode = file_inode(iocb->ki_filp);
629 	int level;
630 
631 	/* this io's submitter should not have unlocked this before we could */
632 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
633 
634 	if (ocfs2_iocb_is_unaligned_aio(iocb)) {
635 		ocfs2_iocb_clear_unaligned_aio(iocb);
636 
637 		mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
638 	}
639 
640 	/* Let rw unlock to be done later to protect append direct io write */
641 	if (offset + bytes <= i_size_read(inode)) {
642 		ocfs2_iocb_clear_rw_locked(iocb);
643 
644 		level = ocfs2_iocb_rw_locked_level(iocb);
645 		ocfs2_rw_unlock(inode, level);
646 	}
647 }
648 
ocfs2_releasepage(struct page * page,gfp_t wait)649 static int ocfs2_releasepage(struct page *page, gfp_t wait)
650 {
651 	if (!page_has_buffers(page))
652 		return 0;
653 	return try_to_free_buffers(page);
654 }
655 
ocfs2_is_overwrite(struct ocfs2_super * osb,struct inode * inode,loff_t offset)656 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
657 		struct inode *inode, loff_t offset)
658 {
659 	int ret = 0;
660 	u32 v_cpos = 0;
661 	u32 p_cpos = 0;
662 	unsigned int num_clusters = 0;
663 	unsigned int ext_flags = 0;
664 
665 	v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
666 	ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
667 			&num_clusters, &ext_flags);
668 	if (ret < 0) {
669 		mlog_errno(ret);
670 		return ret;
671 	}
672 
673 	if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
674 		return 1;
675 
676 	return 0;
677 }
678 
ocfs2_direct_IO_zero_extend(struct ocfs2_super * osb,struct inode * inode,loff_t offset,u64 zero_len,int cluster_align)679 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
680 		struct inode *inode, loff_t offset,
681 		u64 zero_len, int cluster_align)
682 {
683 	u32 p_cpos = 0;
684 	u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
685 	unsigned int num_clusters = 0;
686 	unsigned int ext_flags = 0;
687 	int ret = 0;
688 
689 	if (offset <= i_size_read(inode) || cluster_align)
690 		return 0;
691 
692 	ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
693 			&ext_flags);
694 	if (ret < 0) {
695 		mlog_errno(ret);
696 		return ret;
697 	}
698 
699 	if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
700 		u64 s = i_size_read(inode);
701 		sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
702 			(do_div(s, osb->s_clustersize) >> 9);
703 
704 		ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
705 				zero_len >> 9, GFP_NOFS, false);
706 		if (ret < 0)
707 			mlog_errno(ret);
708 	}
709 
710 	return ret;
711 }
712 
ocfs2_direct_IO_extend_no_holes(struct ocfs2_super * osb,struct inode * inode,loff_t offset)713 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
714 		struct inode *inode, loff_t offset)
715 {
716 	u64 zero_start, zero_len, total_zero_len;
717 	u32 p_cpos = 0, clusters_to_add;
718 	u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
719 	unsigned int num_clusters = 0;
720 	unsigned int ext_flags = 0;
721 	u32 size_div, offset_div;
722 	int ret = 0;
723 
724 	{
725 		u64 o = offset;
726 		u64 s = i_size_read(inode);
727 
728 		offset_div = do_div(o, osb->s_clustersize);
729 		size_div = do_div(s, osb->s_clustersize);
730 	}
731 
732 	if (offset <= i_size_read(inode))
733 		return 0;
734 
735 	clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
736 		ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
737 	total_zero_len = offset - i_size_read(inode);
738 	if (clusters_to_add)
739 		total_zero_len -= offset_div;
740 
741 	/* Allocate clusters to fill out holes, and this is only needed
742 	 * when we add more than one clusters. Otherwise the cluster will
743 	 * be allocated during direct IO */
744 	if (clusters_to_add > 1) {
745 		ret = ocfs2_extend_allocation(inode,
746 				OCFS2_I(inode)->ip_clusters,
747 				clusters_to_add - 1, 0);
748 		if (ret) {
749 			mlog_errno(ret);
750 			goto out;
751 		}
752 	}
753 
754 	while (total_zero_len) {
755 		ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
756 				&ext_flags);
757 		if (ret < 0) {
758 			mlog_errno(ret);
759 			goto out;
760 		}
761 
762 		zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
763 			size_div;
764 		zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
765 			size_div;
766 		zero_len = min(total_zero_len, zero_len);
767 
768 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
769 			ret = blkdev_issue_zeroout(osb->sb->s_bdev,
770 					zero_start >> 9, zero_len >> 9,
771 					GFP_NOFS, false);
772 			if (ret < 0) {
773 				mlog_errno(ret);
774 				goto out;
775 			}
776 		}
777 
778 		total_zero_len -= zero_len;
779 		v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
780 
781 		/* Only at first iteration can be cluster not aligned.
782 		 * So set size_div to 0 for the rest */
783 		size_div = 0;
784 	}
785 
786 out:
787 	return ret;
788 }
789 
ocfs2_direct_IO_write(struct kiocb * iocb,struct iov_iter * iter,loff_t offset)790 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
791 		struct iov_iter *iter,
792 		loff_t offset)
793 {
794 	ssize_t ret = 0;
795 	ssize_t written = 0;
796 	bool orphaned = false;
797 	int is_overwrite = 0;
798 	struct file *file = iocb->ki_filp;
799 	struct inode *inode = file_inode(file)->i_mapping->host;
800 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
801 	struct buffer_head *di_bh = NULL;
802 	size_t count = iter->count;
803 	journal_t *journal = osb->journal->j_journal;
804 	u64 zero_len_head, zero_len_tail;
805 	int cluster_align_head, cluster_align_tail;
806 	loff_t final_size = offset + count;
807 	int append_write = offset >= i_size_read(inode) ? 1 : 0;
808 	unsigned int num_clusters = 0;
809 	unsigned int ext_flags = 0;
810 
811 	{
812 		u64 o = offset;
813 		u64 s = i_size_read(inode);
814 
815 		zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
816 		cluster_align_head = !zero_len_head;
817 
818 		zero_len_tail = osb->s_clustersize -
819 			do_div(s, osb->s_clustersize);
820 		if ((offset - i_size_read(inode)) < zero_len_tail)
821 			zero_len_tail = offset - i_size_read(inode);
822 		cluster_align_tail = !zero_len_tail;
823 	}
824 
825 	/*
826 	 * when final_size > inode->i_size, inode->i_size will be
827 	 * updated after direct write, so add the inode to orphan
828 	 * dir first.
829 	 */
830 	if (final_size > i_size_read(inode)) {
831 		ret = ocfs2_add_inode_to_orphan(osb, inode);
832 		if (ret < 0) {
833 			mlog_errno(ret);
834 			goto out;
835 		}
836 		orphaned = true;
837 	}
838 
839 	if (append_write) {
840 		ret = ocfs2_inode_lock(inode, NULL, 1);
841 		if (ret < 0) {
842 			mlog_errno(ret);
843 			goto clean_orphan;
844 		}
845 
846 		/* zeroing out the previously allocated cluster tail
847 		 * that but not zeroed */
848 		if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
849 			down_read(&OCFS2_I(inode)->ip_alloc_sem);
850 			ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
851 					zero_len_tail, cluster_align_tail);
852 			up_read(&OCFS2_I(inode)->ip_alloc_sem);
853 		} else {
854 			down_write(&OCFS2_I(inode)->ip_alloc_sem);
855 			ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
856 					offset);
857 			up_write(&OCFS2_I(inode)->ip_alloc_sem);
858 		}
859 		if (ret < 0) {
860 			mlog_errno(ret);
861 			ocfs2_inode_unlock(inode, 1);
862 			goto clean_orphan;
863 		}
864 
865 		is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
866 		if (is_overwrite < 0) {
867 			mlog_errno(is_overwrite);
868 			ret = is_overwrite;
869 			ocfs2_inode_unlock(inode, 1);
870 			goto clean_orphan;
871 		}
872 
873 		ocfs2_inode_unlock(inode, 1);
874 	}
875 
876 	written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
877 				       offset, ocfs2_direct_IO_get_blocks,
878 				       ocfs2_dio_end_io, NULL, 0);
879 	/* overwrite aio may return -EIOCBQUEUED, and it is not an error */
880 	if ((written < 0) && (written != -EIOCBQUEUED)) {
881 		loff_t i_size = i_size_read(inode);
882 
883 		if (offset + count > i_size) {
884 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
885 			if (ret < 0) {
886 				mlog_errno(ret);
887 				goto clean_orphan;
888 			}
889 
890 			if (i_size == i_size_read(inode)) {
891 				ret = ocfs2_truncate_file(inode, di_bh,
892 						i_size);
893 				if (ret < 0) {
894 					if (ret != -ENOSPC)
895 						mlog_errno(ret);
896 
897 					ocfs2_inode_unlock(inode, 1);
898 					brelse(di_bh);
899 					di_bh = NULL;
900 					goto clean_orphan;
901 				}
902 			}
903 
904 			ocfs2_inode_unlock(inode, 1);
905 			brelse(di_bh);
906 			di_bh = NULL;
907 
908 			ret = jbd2_journal_force_commit(journal);
909 			if (ret < 0)
910 				mlog_errno(ret);
911 		}
912 	} else if (written > 0 && append_write && !is_overwrite &&
913 			!cluster_align_head) {
914 		/* zeroing out the allocated cluster head */
915 		u32 p_cpos = 0;
916 		u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
917 
918 		ret = ocfs2_inode_lock(inode, NULL, 0);
919 		if (ret < 0) {
920 			mlog_errno(ret);
921 			goto clean_orphan;
922 		}
923 
924 		ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
925 				&num_clusters, &ext_flags);
926 		if (ret < 0) {
927 			mlog_errno(ret);
928 			ocfs2_inode_unlock(inode, 0);
929 			goto clean_orphan;
930 		}
931 
932 		BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
933 
934 		ret = blkdev_issue_zeroout(osb->sb->s_bdev,
935 				(u64)p_cpos << (osb->s_clustersize_bits - 9),
936 				zero_len_head >> 9, GFP_NOFS, false);
937 		if (ret < 0)
938 			mlog_errno(ret);
939 
940 		ocfs2_inode_unlock(inode, 0);
941 	}
942 
943 clean_orphan:
944 	if (orphaned) {
945 		int tmp_ret;
946 		int update_isize = written > 0 ? 1 : 0;
947 		loff_t end = update_isize ? offset + written : 0;
948 
949 		tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
950 		if (tmp_ret < 0) {
951 			ret = tmp_ret;
952 			mlog_errno(ret);
953 			goto out;
954 		}
955 
956 		tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
957 				update_isize, end);
958 		if (tmp_ret < 0) {
959 			ocfs2_inode_unlock(inode, 1);
960 			ret = tmp_ret;
961 			mlog_errno(ret);
962 			brelse(di_bh);
963 			goto out;
964 		}
965 
966 		ocfs2_inode_unlock(inode, 1);
967 		brelse(di_bh);
968 
969 		tmp_ret = jbd2_journal_force_commit(journal);
970 		if (tmp_ret < 0) {
971 			ret = tmp_ret;
972 			mlog_errno(tmp_ret);
973 		}
974 	}
975 
976 out:
977 	if (ret >= 0)
978 		ret = written;
979 	return ret;
980 }
981 
ocfs2_direct_IO(struct kiocb * iocb,struct iov_iter * iter,loff_t offset)982 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
983 			       loff_t offset)
984 {
985 	struct file *file = iocb->ki_filp;
986 	struct inode *inode = file_inode(file)->i_mapping->host;
987 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
988 	int full_coherency = !(osb->s_mount_opt &
989 			OCFS2_MOUNT_COHERENCY_BUFFERED);
990 
991 	/*
992 	 * Fallback to buffered I/O if we see an inode without
993 	 * extents.
994 	 */
995 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
996 		return 0;
997 
998 	/* Fallback to buffered I/O if we are appending and
999 	 * concurrent O_DIRECT writes are allowed.
1000 	 */
1001 	if (i_size_read(inode) <= offset && !full_coherency)
1002 		return 0;
1003 
1004 	if (iov_iter_rw(iter) == READ)
1005 		return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
1006 					    iter, offset,
1007 					    ocfs2_direct_IO_get_blocks,
1008 					    ocfs2_dio_end_io, NULL, 0);
1009 	else
1010 		return ocfs2_direct_IO_write(iocb, iter, offset);
1011 }
1012 
ocfs2_figure_cluster_boundaries(struct ocfs2_super * osb,u32 cpos,unsigned int * start,unsigned int * end)1013 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
1014 					    u32 cpos,
1015 					    unsigned int *start,
1016 					    unsigned int *end)
1017 {
1018 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
1019 
1020 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
1021 		unsigned int cpp;
1022 
1023 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
1024 
1025 		cluster_start = cpos % cpp;
1026 		cluster_start = cluster_start << osb->s_clustersize_bits;
1027 
1028 		cluster_end = cluster_start + osb->s_clustersize;
1029 	}
1030 
1031 	BUG_ON(cluster_start > PAGE_SIZE);
1032 	BUG_ON(cluster_end > PAGE_SIZE);
1033 
1034 	if (start)
1035 		*start = cluster_start;
1036 	if (end)
1037 		*end = cluster_end;
1038 }
1039 
1040 /*
1041  * 'from' and 'to' are the region in the page to avoid zeroing.
1042  *
1043  * If pagesize > clustersize, this function will avoid zeroing outside
1044  * of the cluster boundary.
1045  *
1046  * from == to == 0 is code for "zero the entire cluster region"
1047  */
ocfs2_clear_page_regions(struct page * page,struct ocfs2_super * osb,u32 cpos,unsigned from,unsigned to)1048 static void ocfs2_clear_page_regions(struct page *page,
1049 				     struct ocfs2_super *osb, u32 cpos,
1050 				     unsigned from, unsigned to)
1051 {
1052 	void *kaddr;
1053 	unsigned int cluster_start, cluster_end;
1054 
1055 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1056 
1057 	kaddr = kmap_atomic(page);
1058 
1059 	if (from || to) {
1060 		if (from > cluster_start)
1061 			memset(kaddr + cluster_start, 0, from - cluster_start);
1062 		if (to < cluster_end)
1063 			memset(kaddr + to, 0, cluster_end - to);
1064 	} else {
1065 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1066 	}
1067 
1068 	kunmap_atomic(kaddr);
1069 }
1070 
1071 /*
1072  * Nonsparse file systems fully allocate before we get to the write
1073  * code. This prevents ocfs2_write() from tagging the write as an
1074  * allocating one, which means ocfs2_map_page_blocks() might try to
1075  * read-in the blocks at the tail of our file. Avoid reading them by
1076  * testing i_size against each block offset.
1077  */
ocfs2_should_read_blk(struct inode * inode,struct page * page,unsigned int block_start)1078 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1079 				 unsigned int block_start)
1080 {
1081 	u64 offset = page_offset(page) + block_start;
1082 
1083 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1084 		return 1;
1085 
1086 	if (i_size_read(inode) > offset)
1087 		return 1;
1088 
1089 	return 0;
1090 }
1091 
1092 /*
1093  * Some of this taken from __block_write_begin(). We already have our
1094  * mapping by now though, and the entire write will be allocating or
1095  * it won't, so not much need to use BH_New.
1096  *
1097  * This will also skip zeroing, which is handled externally.
1098  */
ocfs2_map_page_blocks(struct page * page,u64 * p_blkno,struct inode * inode,unsigned int from,unsigned int to,int new)1099 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1100 			  struct inode *inode, unsigned int from,
1101 			  unsigned int to, int new)
1102 {
1103 	int ret = 0;
1104 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1105 	unsigned int block_end, block_start;
1106 	unsigned int bsize = i_blocksize(inode);
1107 
1108 	if (!page_has_buffers(page))
1109 		create_empty_buffers(page, bsize, 0);
1110 
1111 	head = page_buffers(page);
1112 	for (bh = head, block_start = 0; bh != head || !block_start;
1113 	     bh = bh->b_this_page, block_start += bsize) {
1114 		block_end = block_start + bsize;
1115 
1116 		clear_buffer_new(bh);
1117 
1118 		/*
1119 		 * Ignore blocks outside of our i/o range -
1120 		 * they may belong to unallocated clusters.
1121 		 */
1122 		if (block_start >= to || block_end <= from) {
1123 			if (PageUptodate(page))
1124 				set_buffer_uptodate(bh);
1125 			continue;
1126 		}
1127 
1128 		/*
1129 		 * For an allocating write with cluster size >= page
1130 		 * size, we always write the entire page.
1131 		 */
1132 		if (new)
1133 			set_buffer_new(bh);
1134 
1135 		if (!buffer_mapped(bh)) {
1136 			map_bh(bh, inode->i_sb, *p_blkno);
1137 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1138 		}
1139 
1140 		if (PageUptodate(page)) {
1141 			if (!buffer_uptodate(bh))
1142 				set_buffer_uptodate(bh);
1143 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1144 			   !buffer_new(bh) &&
1145 			   ocfs2_should_read_blk(inode, page, block_start) &&
1146 			   (block_start < from || block_end > to)) {
1147 			ll_rw_block(READ, 1, &bh);
1148 			*wait_bh++=bh;
1149 		}
1150 
1151 		*p_blkno = *p_blkno + 1;
1152 	}
1153 
1154 	/*
1155 	 * If we issued read requests - let them complete.
1156 	 */
1157 	while(wait_bh > wait) {
1158 		wait_on_buffer(*--wait_bh);
1159 		if (!buffer_uptodate(*wait_bh))
1160 			ret = -EIO;
1161 	}
1162 
1163 	if (ret == 0 || !new)
1164 		return ret;
1165 
1166 	/*
1167 	 * If we get -EIO above, zero out any newly allocated blocks
1168 	 * to avoid exposing stale data.
1169 	 */
1170 	bh = head;
1171 	block_start = 0;
1172 	do {
1173 		block_end = block_start + bsize;
1174 		if (block_end <= from)
1175 			goto next_bh;
1176 		if (block_start >= to)
1177 			break;
1178 
1179 		zero_user(page, block_start, bh->b_size);
1180 		set_buffer_uptodate(bh);
1181 		mark_buffer_dirty(bh);
1182 
1183 next_bh:
1184 		block_start = block_end;
1185 		bh = bh->b_this_page;
1186 	} while (bh != head);
1187 
1188 	return ret;
1189 }
1190 
1191 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1192 #define OCFS2_MAX_CTXT_PAGES	1
1193 #else
1194 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1195 #endif
1196 
1197 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1198 
1199 /*
1200  * Describe the state of a single cluster to be written to.
1201  */
1202 struct ocfs2_write_cluster_desc {
1203 	u32		c_cpos;
1204 	u32		c_phys;
1205 	/*
1206 	 * Give this a unique field because c_phys eventually gets
1207 	 * filled.
1208 	 */
1209 	unsigned	c_new;
1210 	unsigned	c_unwritten;
1211 	unsigned	c_needs_zero;
1212 };
1213 
1214 struct ocfs2_write_ctxt {
1215 	/* Logical cluster position / len of write */
1216 	u32				w_cpos;
1217 	u32				w_clen;
1218 
1219 	/* First cluster allocated in a nonsparse extend */
1220 	u32				w_first_new_cpos;
1221 
1222 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1223 
1224 	/*
1225 	 * This is true if page_size > cluster_size.
1226 	 *
1227 	 * It triggers a set of special cases during write which might
1228 	 * have to deal with allocating writes to partial pages.
1229 	 */
1230 	unsigned int			w_large_pages;
1231 
1232 	/*
1233 	 * Pages involved in this write.
1234 	 *
1235 	 * w_target_page is the page being written to by the user.
1236 	 *
1237 	 * w_pages is an array of pages which always contains
1238 	 * w_target_page, and in the case of an allocating write with
1239 	 * page_size < cluster size, it will contain zero'd and mapped
1240 	 * pages adjacent to w_target_page which need to be written
1241 	 * out in so that future reads from that region will get
1242 	 * zero's.
1243 	 */
1244 	unsigned int			w_num_pages;
1245 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
1246 	struct page			*w_target_page;
1247 
1248 	/*
1249 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
1250 	 * against w_target_page in ocfs2_write_end_nolock.
1251 	 */
1252 	unsigned int			w_target_locked:1;
1253 
1254 	/*
1255 	 * ocfs2_write_end() uses this to know what the real range to
1256 	 * write in the target should be.
1257 	 */
1258 	unsigned int			w_target_from;
1259 	unsigned int			w_target_to;
1260 
1261 	/*
1262 	 * We could use journal_current_handle() but this is cleaner,
1263 	 * IMHO -Mark
1264 	 */
1265 	handle_t			*w_handle;
1266 
1267 	struct buffer_head		*w_di_bh;
1268 
1269 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
1270 };
1271 
ocfs2_unlock_and_free_pages(struct page ** pages,int num_pages)1272 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1273 {
1274 	int i;
1275 
1276 	for(i = 0; i < num_pages; i++) {
1277 		if (pages[i]) {
1278 			unlock_page(pages[i]);
1279 			mark_page_accessed(pages[i]);
1280 			page_cache_release(pages[i]);
1281 		}
1282 	}
1283 }
1284 
ocfs2_unlock_pages(struct ocfs2_write_ctxt * wc)1285 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1286 {
1287 	int i;
1288 
1289 	/*
1290 	 * w_target_locked is only set to true in the page_mkwrite() case.
1291 	 * The intent is to allow us to lock the target page from write_begin()
1292 	 * to write_end(). The caller must hold a ref on w_target_page.
1293 	 */
1294 	if (wc->w_target_locked) {
1295 		BUG_ON(!wc->w_target_page);
1296 		for (i = 0; i < wc->w_num_pages; i++) {
1297 			if (wc->w_target_page == wc->w_pages[i]) {
1298 				wc->w_pages[i] = NULL;
1299 				break;
1300 			}
1301 		}
1302 		mark_page_accessed(wc->w_target_page);
1303 		page_cache_release(wc->w_target_page);
1304 	}
1305 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1306 }
1307 
ocfs2_free_write_ctxt(struct ocfs2_write_ctxt * wc)1308 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1309 {
1310 	ocfs2_unlock_pages(wc);
1311 	brelse(wc->w_di_bh);
1312 	kfree(wc);
1313 }
1314 
ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt ** wcp,struct ocfs2_super * osb,loff_t pos,unsigned len,struct buffer_head * di_bh)1315 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1316 				  struct ocfs2_super *osb, loff_t pos,
1317 				  unsigned len, struct buffer_head *di_bh)
1318 {
1319 	u32 cend;
1320 	struct ocfs2_write_ctxt *wc;
1321 
1322 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1323 	if (!wc)
1324 		return -ENOMEM;
1325 
1326 	wc->w_cpos = pos >> osb->s_clustersize_bits;
1327 	wc->w_first_new_cpos = UINT_MAX;
1328 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
1329 	wc->w_clen = cend - wc->w_cpos + 1;
1330 	get_bh(di_bh);
1331 	wc->w_di_bh = di_bh;
1332 
1333 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1334 		wc->w_large_pages = 1;
1335 	else
1336 		wc->w_large_pages = 0;
1337 
1338 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1339 
1340 	*wcp = wc;
1341 
1342 	return 0;
1343 }
1344 
1345 /*
1346  * If a page has any new buffers, zero them out here, and mark them uptodate
1347  * and dirty so they'll be written out (in order to prevent uninitialised
1348  * block data from leaking). And clear the new bit.
1349  */
ocfs2_zero_new_buffers(struct page * page,unsigned from,unsigned to)1350 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1351 {
1352 	unsigned int block_start, block_end;
1353 	struct buffer_head *head, *bh;
1354 
1355 	BUG_ON(!PageLocked(page));
1356 	if (!page_has_buffers(page))
1357 		return;
1358 
1359 	bh = head = page_buffers(page);
1360 	block_start = 0;
1361 	do {
1362 		block_end = block_start + bh->b_size;
1363 
1364 		if (buffer_new(bh)) {
1365 			if (block_end > from && block_start < to) {
1366 				if (!PageUptodate(page)) {
1367 					unsigned start, end;
1368 
1369 					start = max(from, block_start);
1370 					end = min(to, block_end);
1371 
1372 					zero_user_segment(page, start, end);
1373 					set_buffer_uptodate(bh);
1374 				}
1375 
1376 				clear_buffer_new(bh);
1377 				mark_buffer_dirty(bh);
1378 			}
1379 		}
1380 
1381 		block_start = block_end;
1382 		bh = bh->b_this_page;
1383 	} while (bh != head);
1384 }
1385 
1386 /*
1387  * Only called when we have a failure during allocating write to write
1388  * zero's to the newly allocated region.
1389  */
ocfs2_write_failure(struct inode * inode,struct ocfs2_write_ctxt * wc,loff_t user_pos,unsigned user_len)1390 static void ocfs2_write_failure(struct inode *inode,
1391 				struct ocfs2_write_ctxt *wc,
1392 				loff_t user_pos, unsigned user_len)
1393 {
1394 	int i;
1395 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1396 		to = user_pos + user_len;
1397 	struct page *tmppage;
1398 
1399 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1400 
1401 	for(i = 0; i < wc->w_num_pages; i++) {
1402 		tmppage = wc->w_pages[i];
1403 
1404 		if (page_has_buffers(tmppage)) {
1405 			if (ocfs2_should_order_data(inode))
1406 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1407 
1408 			block_commit_write(tmppage, from, to);
1409 		}
1410 	}
1411 }
1412 
ocfs2_prepare_page_for_write(struct inode * inode,u64 * p_blkno,struct ocfs2_write_ctxt * wc,struct page * page,u32 cpos,loff_t user_pos,unsigned user_len,int new)1413 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1414 					struct ocfs2_write_ctxt *wc,
1415 					struct page *page, u32 cpos,
1416 					loff_t user_pos, unsigned user_len,
1417 					int new)
1418 {
1419 	int ret;
1420 	unsigned int map_from = 0, map_to = 0;
1421 	unsigned int cluster_start, cluster_end;
1422 	unsigned int user_data_from = 0, user_data_to = 0;
1423 
1424 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1425 					&cluster_start, &cluster_end);
1426 
1427 	/* treat the write as new if the a hole/lseek spanned across
1428 	 * the page boundary.
1429 	 */
1430 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
1431 			(page_offset(page) <= user_pos));
1432 
1433 	if (page == wc->w_target_page) {
1434 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1435 		map_to = map_from + user_len;
1436 
1437 		if (new)
1438 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1439 						    cluster_start, cluster_end,
1440 						    new);
1441 		else
1442 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1443 						    map_from, map_to, new);
1444 		if (ret) {
1445 			mlog_errno(ret);
1446 			goto out;
1447 		}
1448 
1449 		user_data_from = map_from;
1450 		user_data_to = map_to;
1451 		if (new) {
1452 			map_from = cluster_start;
1453 			map_to = cluster_end;
1454 		}
1455 	} else {
1456 		/*
1457 		 * If we haven't allocated the new page yet, we
1458 		 * shouldn't be writing it out without copying user
1459 		 * data. This is likely a math error from the caller.
1460 		 */
1461 		BUG_ON(!new);
1462 
1463 		map_from = cluster_start;
1464 		map_to = cluster_end;
1465 
1466 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1467 					    cluster_start, cluster_end, new);
1468 		if (ret) {
1469 			mlog_errno(ret);
1470 			goto out;
1471 		}
1472 	}
1473 
1474 	/*
1475 	 * Parts of newly allocated pages need to be zero'd.
1476 	 *
1477 	 * Above, we have also rewritten 'to' and 'from' - as far as
1478 	 * the rest of the function is concerned, the entire cluster
1479 	 * range inside of a page needs to be written.
1480 	 *
1481 	 * We can skip this if the page is up to date - it's already
1482 	 * been zero'd from being read in as a hole.
1483 	 */
1484 	if (new && !PageUptodate(page))
1485 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1486 					 cpos, user_data_from, user_data_to);
1487 
1488 	flush_dcache_page(page);
1489 
1490 out:
1491 	return ret;
1492 }
1493 
1494 /*
1495  * This function will only grab one clusters worth of pages.
1496  */
ocfs2_grab_pages_for_write(struct address_space * mapping,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len,int new,struct page * mmap_page)1497 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1498 				      struct ocfs2_write_ctxt *wc,
1499 				      u32 cpos, loff_t user_pos,
1500 				      unsigned user_len, int new,
1501 				      struct page *mmap_page)
1502 {
1503 	int ret = 0, i;
1504 	unsigned long start, target_index, end_index, index;
1505 	struct inode *inode = mapping->host;
1506 	loff_t last_byte;
1507 
1508 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1509 
1510 	/*
1511 	 * Figure out how many pages we'll be manipulating here. For
1512 	 * non allocating write, we just change the one
1513 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1514 	 * writing past i_size, we only need enough pages to cover the
1515 	 * last page of the write.
1516 	 */
1517 	if (new) {
1518 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1519 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1520 		/*
1521 		 * We need the index *past* the last page we could possibly
1522 		 * touch.  This is the page past the end of the write or
1523 		 * i_size, whichever is greater.
1524 		 */
1525 		last_byte = max(user_pos + user_len, i_size_read(inode));
1526 		BUG_ON(last_byte < 1);
1527 		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1528 		if ((start + wc->w_num_pages) > end_index)
1529 			wc->w_num_pages = end_index - start;
1530 	} else {
1531 		wc->w_num_pages = 1;
1532 		start = target_index;
1533 	}
1534 
1535 	for(i = 0; i < wc->w_num_pages; i++) {
1536 		index = start + i;
1537 
1538 		if (index == target_index && mmap_page) {
1539 			/*
1540 			 * ocfs2_pagemkwrite() is a little different
1541 			 * and wants us to directly use the page
1542 			 * passed in.
1543 			 */
1544 			lock_page(mmap_page);
1545 
1546 			/* Exit and let the caller retry */
1547 			if (mmap_page->mapping != mapping) {
1548 				WARN_ON(mmap_page->mapping);
1549 				unlock_page(mmap_page);
1550 				ret = -EAGAIN;
1551 				goto out;
1552 			}
1553 
1554 			page_cache_get(mmap_page);
1555 			wc->w_pages[i] = mmap_page;
1556 			wc->w_target_locked = true;
1557 		} else {
1558 			wc->w_pages[i] = find_or_create_page(mapping, index,
1559 							     GFP_NOFS);
1560 			if (!wc->w_pages[i]) {
1561 				ret = -ENOMEM;
1562 				mlog_errno(ret);
1563 				goto out;
1564 			}
1565 		}
1566 		wait_for_stable_page(wc->w_pages[i]);
1567 
1568 		if (index == target_index)
1569 			wc->w_target_page = wc->w_pages[i];
1570 	}
1571 out:
1572 	if (ret)
1573 		wc->w_target_locked = false;
1574 	return ret;
1575 }
1576 
1577 /*
1578  * Prepare a single cluster for write one cluster into the file.
1579  */
ocfs2_write_cluster(struct address_space * mapping,u32 phys,unsigned int unwritten,unsigned int should_zero,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len)1580 static int ocfs2_write_cluster(struct address_space *mapping,
1581 			       u32 phys, unsigned int unwritten,
1582 			       unsigned int should_zero,
1583 			       struct ocfs2_alloc_context *data_ac,
1584 			       struct ocfs2_alloc_context *meta_ac,
1585 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1586 			       loff_t user_pos, unsigned user_len)
1587 {
1588 	int ret, i, new;
1589 	u64 v_blkno, p_blkno;
1590 	struct inode *inode = mapping->host;
1591 	struct ocfs2_extent_tree et;
1592 
1593 	new = phys == 0 ? 1 : 0;
1594 	if (new) {
1595 		u32 tmp_pos;
1596 
1597 		/*
1598 		 * This is safe to call with the page locks - it won't take
1599 		 * any additional semaphores or cluster locks.
1600 		 */
1601 		tmp_pos = cpos;
1602 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1603 					   &tmp_pos, 1, 0, wc->w_di_bh,
1604 					   wc->w_handle, data_ac,
1605 					   meta_ac, NULL);
1606 		/*
1607 		 * This shouldn't happen because we must have already
1608 		 * calculated the correct meta data allocation required. The
1609 		 * internal tree allocation code should know how to increase
1610 		 * transaction credits itself.
1611 		 *
1612 		 * If need be, we could handle -EAGAIN for a
1613 		 * RESTART_TRANS here.
1614 		 */
1615 		mlog_bug_on_msg(ret == -EAGAIN,
1616 				"Inode %llu: EAGAIN return during allocation.\n",
1617 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1618 		if (ret < 0) {
1619 			mlog_errno(ret);
1620 			goto out;
1621 		}
1622 	} else if (unwritten) {
1623 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1624 					      wc->w_di_bh);
1625 		ret = ocfs2_mark_extent_written(inode, &et,
1626 						wc->w_handle, cpos, 1, phys,
1627 						meta_ac, &wc->w_dealloc);
1628 		if (ret < 0) {
1629 			mlog_errno(ret);
1630 			goto out;
1631 		}
1632 	}
1633 
1634 	if (should_zero)
1635 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1636 	else
1637 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1638 
1639 	/*
1640 	 * The only reason this should fail is due to an inability to
1641 	 * find the extent added.
1642 	 */
1643 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1644 					  NULL);
1645 	if (ret < 0) {
1646 		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1647 			    "at logical block %llu",
1648 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1649 			    (unsigned long long)v_blkno);
1650 		goto out;
1651 	}
1652 
1653 	BUG_ON(p_blkno == 0);
1654 
1655 	for(i = 0; i < wc->w_num_pages; i++) {
1656 		int tmpret;
1657 
1658 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1659 						      wc->w_pages[i], cpos,
1660 						      user_pos, user_len,
1661 						      should_zero);
1662 		if (tmpret) {
1663 			mlog_errno(tmpret);
1664 			if (ret == 0)
1665 				ret = tmpret;
1666 		}
1667 	}
1668 
1669 	/*
1670 	 * We only have cleanup to do in case of allocating write.
1671 	 */
1672 	if (ret && new)
1673 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1674 
1675 out:
1676 
1677 	return ret;
1678 }
1679 
ocfs2_write_cluster_by_desc(struct address_space * mapping,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len)1680 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1681 				       struct ocfs2_alloc_context *data_ac,
1682 				       struct ocfs2_alloc_context *meta_ac,
1683 				       struct ocfs2_write_ctxt *wc,
1684 				       loff_t pos, unsigned len)
1685 {
1686 	int ret, i;
1687 	loff_t cluster_off;
1688 	unsigned int local_len = len;
1689 	struct ocfs2_write_cluster_desc *desc;
1690 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1691 
1692 	for (i = 0; i < wc->w_clen; i++) {
1693 		desc = &wc->w_desc[i];
1694 
1695 		/*
1696 		 * We have to make sure that the total write passed in
1697 		 * doesn't extend past a single cluster.
1698 		 */
1699 		local_len = len;
1700 		cluster_off = pos & (osb->s_clustersize - 1);
1701 		if ((cluster_off + local_len) > osb->s_clustersize)
1702 			local_len = osb->s_clustersize - cluster_off;
1703 
1704 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1705 					  desc->c_unwritten,
1706 					  desc->c_needs_zero,
1707 					  data_ac, meta_ac,
1708 					  wc, desc->c_cpos, pos, local_len);
1709 		if (ret) {
1710 			mlog_errno(ret);
1711 			goto out;
1712 		}
1713 
1714 		len -= local_len;
1715 		pos += local_len;
1716 	}
1717 
1718 	ret = 0;
1719 out:
1720 	return ret;
1721 }
1722 
1723 /*
1724  * ocfs2_write_end() wants to know which parts of the target page it
1725  * should complete the write on. It's easiest to compute them ahead of
1726  * time when a more complete view of the write is available.
1727  */
ocfs2_set_target_boundaries(struct ocfs2_super * osb,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len,int alloc)1728 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1729 					struct ocfs2_write_ctxt *wc,
1730 					loff_t pos, unsigned len, int alloc)
1731 {
1732 	struct ocfs2_write_cluster_desc *desc;
1733 
1734 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1735 	wc->w_target_to = wc->w_target_from + len;
1736 
1737 	if (alloc == 0)
1738 		return;
1739 
1740 	/*
1741 	 * Allocating write - we may have different boundaries based
1742 	 * on page size and cluster size.
1743 	 *
1744 	 * NOTE: We can no longer compute one value from the other as
1745 	 * the actual write length and user provided length may be
1746 	 * different.
1747 	 */
1748 
1749 	if (wc->w_large_pages) {
1750 		/*
1751 		 * We only care about the 1st and last cluster within
1752 		 * our range and whether they should be zero'd or not. Either
1753 		 * value may be extended out to the start/end of a
1754 		 * newly allocated cluster.
1755 		 */
1756 		desc = &wc->w_desc[0];
1757 		if (desc->c_needs_zero)
1758 			ocfs2_figure_cluster_boundaries(osb,
1759 							desc->c_cpos,
1760 							&wc->w_target_from,
1761 							NULL);
1762 
1763 		desc = &wc->w_desc[wc->w_clen - 1];
1764 		if (desc->c_needs_zero)
1765 			ocfs2_figure_cluster_boundaries(osb,
1766 							desc->c_cpos,
1767 							NULL,
1768 							&wc->w_target_to);
1769 	} else {
1770 		wc->w_target_from = 0;
1771 		wc->w_target_to = PAGE_CACHE_SIZE;
1772 	}
1773 }
1774 
1775 /*
1776  * Populate each single-cluster write descriptor in the write context
1777  * with information about the i/o to be done.
1778  *
1779  * Returns the number of clusters that will have to be allocated, as
1780  * well as a worst case estimate of the number of extent records that
1781  * would have to be created during a write to an unwritten region.
1782  */
ocfs2_populate_write_desc(struct inode * inode,struct ocfs2_write_ctxt * wc,unsigned int * clusters_to_alloc,unsigned int * extents_to_split)1783 static int ocfs2_populate_write_desc(struct inode *inode,
1784 				     struct ocfs2_write_ctxt *wc,
1785 				     unsigned int *clusters_to_alloc,
1786 				     unsigned int *extents_to_split)
1787 {
1788 	int ret;
1789 	struct ocfs2_write_cluster_desc *desc;
1790 	unsigned int num_clusters = 0;
1791 	unsigned int ext_flags = 0;
1792 	u32 phys = 0;
1793 	int i;
1794 
1795 	*clusters_to_alloc = 0;
1796 	*extents_to_split = 0;
1797 
1798 	for (i = 0; i < wc->w_clen; i++) {
1799 		desc = &wc->w_desc[i];
1800 		desc->c_cpos = wc->w_cpos + i;
1801 
1802 		if (num_clusters == 0) {
1803 			/*
1804 			 * Need to look up the next extent record.
1805 			 */
1806 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1807 						 &num_clusters, &ext_flags);
1808 			if (ret) {
1809 				mlog_errno(ret);
1810 				goto out;
1811 			}
1812 
1813 			/* We should already CoW the refcountd extent. */
1814 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1815 
1816 			/*
1817 			 * Assume worst case - that we're writing in
1818 			 * the middle of the extent.
1819 			 *
1820 			 * We can assume that the write proceeds from
1821 			 * left to right, in which case the extent
1822 			 * insert code is smart enough to coalesce the
1823 			 * next splits into the previous records created.
1824 			 */
1825 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1826 				*extents_to_split = *extents_to_split + 2;
1827 		} else if (phys) {
1828 			/*
1829 			 * Only increment phys if it doesn't describe
1830 			 * a hole.
1831 			 */
1832 			phys++;
1833 		}
1834 
1835 		/*
1836 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1837 		 * file that got extended.  w_first_new_cpos tells us
1838 		 * where the newly allocated clusters are so we can
1839 		 * zero them.
1840 		 */
1841 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1842 			BUG_ON(phys == 0);
1843 			desc->c_needs_zero = 1;
1844 		}
1845 
1846 		desc->c_phys = phys;
1847 		if (phys == 0) {
1848 			desc->c_new = 1;
1849 			desc->c_needs_zero = 1;
1850 			*clusters_to_alloc = *clusters_to_alloc + 1;
1851 		}
1852 
1853 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1854 			desc->c_unwritten = 1;
1855 			desc->c_needs_zero = 1;
1856 		}
1857 
1858 		num_clusters--;
1859 	}
1860 
1861 	ret = 0;
1862 out:
1863 	return ret;
1864 }
1865 
ocfs2_write_begin_inline(struct address_space * mapping,struct inode * inode,struct ocfs2_write_ctxt * wc)1866 static int ocfs2_write_begin_inline(struct address_space *mapping,
1867 				    struct inode *inode,
1868 				    struct ocfs2_write_ctxt *wc)
1869 {
1870 	int ret;
1871 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1872 	struct page *page;
1873 	handle_t *handle;
1874 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1875 
1876 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1877 	if (IS_ERR(handle)) {
1878 		ret = PTR_ERR(handle);
1879 		mlog_errno(ret);
1880 		goto out;
1881 	}
1882 
1883 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1884 	if (!page) {
1885 		ocfs2_commit_trans(osb, handle);
1886 		ret = -ENOMEM;
1887 		mlog_errno(ret);
1888 		goto out;
1889 	}
1890 	/*
1891 	 * If we don't set w_num_pages then this page won't get unlocked
1892 	 * and freed on cleanup of the write context.
1893 	 */
1894 	wc->w_pages[0] = wc->w_target_page = page;
1895 	wc->w_num_pages = 1;
1896 
1897 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1898 				      OCFS2_JOURNAL_ACCESS_WRITE);
1899 	if (ret) {
1900 		ocfs2_commit_trans(osb, handle);
1901 
1902 		mlog_errno(ret);
1903 		goto out;
1904 	}
1905 
1906 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1907 		ocfs2_set_inode_data_inline(inode, di);
1908 
1909 	if (!PageUptodate(page)) {
1910 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1911 		if (ret) {
1912 			ocfs2_commit_trans(osb, handle);
1913 
1914 			goto out;
1915 		}
1916 	}
1917 
1918 	wc->w_handle = handle;
1919 out:
1920 	return ret;
1921 }
1922 
ocfs2_size_fits_inline_data(struct buffer_head * di_bh,u64 new_size)1923 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1924 {
1925 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1926 
1927 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1928 		return 1;
1929 	return 0;
1930 }
1931 
ocfs2_try_to_write_inline_data(struct address_space * mapping,struct inode * inode,loff_t pos,unsigned len,struct page * mmap_page,struct ocfs2_write_ctxt * wc)1932 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1933 					  struct inode *inode, loff_t pos,
1934 					  unsigned len, struct page *mmap_page,
1935 					  struct ocfs2_write_ctxt *wc)
1936 {
1937 	int ret, written = 0;
1938 	loff_t end = pos + len;
1939 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1940 	struct ocfs2_dinode *di = NULL;
1941 
1942 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1943 					     len, (unsigned long long)pos,
1944 					     oi->ip_dyn_features);
1945 
1946 	/*
1947 	 * Handle inodes which already have inline data 1st.
1948 	 */
1949 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1950 		if (mmap_page == NULL &&
1951 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1952 			goto do_inline_write;
1953 
1954 		/*
1955 		 * The write won't fit - we have to give this inode an
1956 		 * inline extent list now.
1957 		 */
1958 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1959 		if (ret)
1960 			mlog_errno(ret);
1961 		goto out;
1962 	}
1963 
1964 	/*
1965 	 * Check whether the inode can accept inline data.
1966 	 */
1967 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1968 		return 0;
1969 
1970 	/*
1971 	 * Check whether the write can fit.
1972 	 */
1973 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1974 	if (mmap_page ||
1975 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1976 		return 0;
1977 
1978 do_inline_write:
1979 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1980 	if (ret) {
1981 		mlog_errno(ret);
1982 		goto out;
1983 	}
1984 
1985 	/*
1986 	 * This signals to the caller that the data can be written
1987 	 * inline.
1988 	 */
1989 	written = 1;
1990 out:
1991 	return written ? written : ret;
1992 }
1993 
1994 /*
1995  * This function only does anything for file systems which can't
1996  * handle sparse files.
1997  *
1998  * What we want to do here is fill in any hole between the current end
1999  * of allocation and the end of our write. That way the rest of the
2000  * write path can treat it as an non-allocating write, which has no
2001  * special case code for sparse/nonsparse files.
2002  */
ocfs2_expand_nonsparse_inode(struct inode * inode,struct buffer_head * di_bh,loff_t pos,unsigned len,struct ocfs2_write_ctxt * wc)2003 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
2004 					struct buffer_head *di_bh,
2005 					loff_t pos, unsigned len,
2006 					struct ocfs2_write_ctxt *wc)
2007 {
2008 	int ret;
2009 	loff_t newsize = pos + len;
2010 
2011 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2012 
2013 	if (newsize <= i_size_read(inode))
2014 		return 0;
2015 
2016 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
2017 	if (ret)
2018 		mlog_errno(ret);
2019 
2020 	wc->w_first_new_cpos =
2021 		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
2022 
2023 	return ret;
2024 }
2025 
ocfs2_zero_tail(struct inode * inode,struct buffer_head * di_bh,loff_t pos)2026 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2027 			   loff_t pos)
2028 {
2029 	int ret = 0;
2030 
2031 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2032 	if (pos > i_size_read(inode))
2033 		ret = ocfs2_zero_extend(inode, di_bh, pos);
2034 
2035 	return ret;
2036 }
2037 
2038 /*
2039  * Try to flush truncate logs if we can free enough clusters from it.
2040  * As for return value, "< 0" means error, "0" no space and "1" means
2041  * we have freed enough spaces and let the caller try to allocate again.
2042  */
ocfs2_try_to_free_truncate_log(struct ocfs2_super * osb,unsigned int needed)2043 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2044 					  unsigned int needed)
2045 {
2046 	tid_t target;
2047 	int ret = 0;
2048 	unsigned int truncated_clusters;
2049 
2050 	mutex_lock(&osb->osb_tl_inode->i_mutex);
2051 	truncated_clusters = osb->truncated_clusters;
2052 	mutex_unlock(&osb->osb_tl_inode->i_mutex);
2053 
2054 	/*
2055 	 * Check whether we can succeed in allocating if we free
2056 	 * the truncate log.
2057 	 */
2058 	if (truncated_clusters < needed)
2059 		goto out;
2060 
2061 	ret = ocfs2_flush_truncate_log(osb);
2062 	if (ret) {
2063 		mlog_errno(ret);
2064 		goto out;
2065 	}
2066 
2067 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2068 		jbd2_log_wait_commit(osb->journal->j_journal, target);
2069 		ret = 1;
2070 	}
2071 out:
2072 	return ret;
2073 }
2074 
ocfs2_write_begin_nolock(struct file * filp,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,struct buffer_head * di_bh,struct page * mmap_page)2075 int ocfs2_write_begin_nolock(struct file *filp,
2076 			     struct address_space *mapping,
2077 			     loff_t pos, unsigned len, unsigned flags,
2078 			     struct page **pagep, void **fsdata,
2079 			     struct buffer_head *di_bh, struct page *mmap_page)
2080 {
2081 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2082 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2083 	struct ocfs2_write_ctxt *wc;
2084 	struct inode *inode = mapping->host;
2085 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2086 	struct ocfs2_dinode *di;
2087 	struct ocfs2_alloc_context *data_ac = NULL;
2088 	struct ocfs2_alloc_context *meta_ac = NULL;
2089 	handle_t *handle;
2090 	struct ocfs2_extent_tree et;
2091 	int try_free = 1, ret1;
2092 
2093 try_again:
2094 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2095 	if (ret) {
2096 		mlog_errno(ret);
2097 		return ret;
2098 	}
2099 
2100 	if (ocfs2_supports_inline_data(osb)) {
2101 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2102 						     mmap_page, wc);
2103 		if (ret == 1) {
2104 			ret = 0;
2105 			goto success;
2106 		}
2107 		if (ret < 0) {
2108 			mlog_errno(ret);
2109 			goto out;
2110 		}
2111 	}
2112 
2113 	if (ocfs2_sparse_alloc(osb))
2114 		ret = ocfs2_zero_tail(inode, di_bh, pos);
2115 	else
2116 		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2117 						   wc);
2118 	if (ret) {
2119 		mlog_errno(ret);
2120 		goto out;
2121 	}
2122 
2123 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
2124 	if (ret < 0) {
2125 		mlog_errno(ret);
2126 		goto out;
2127 	} else if (ret == 1) {
2128 		clusters_need = wc->w_clen;
2129 		ret = ocfs2_refcount_cow(inode, di_bh,
2130 					 wc->w_cpos, wc->w_clen, UINT_MAX);
2131 		if (ret) {
2132 			mlog_errno(ret);
2133 			goto out;
2134 		}
2135 	}
2136 
2137 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2138 					&extents_to_split);
2139 	if (ret) {
2140 		mlog_errno(ret);
2141 		goto out;
2142 	}
2143 	clusters_need += clusters_to_alloc;
2144 
2145 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2146 
2147 	trace_ocfs2_write_begin_nolock(
2148 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2149 			(long long)i_size_read(inode),
2150 			le32_to_cpu(di->i_clusters),
2151 			pos, len, flags, mmap_page,
2152 			clusters_to_alloc, extents_to_split);
2153 
2154 	/*
2155 	 * We set w_target_from, w_target_to here so that
2156 	 * ocfs2_write_end() knows which range in the target page to
2157 	 * write out. An allocation requires that we write the entire
2158 	 * cluster range.
2159 	 */
2160 	if (clusters_to_alloc || extents_to_split) {
2161 		/*
2162 		 * XXX: We are stretching the limits of
2163 		 * ocfs2_lock_allocators(). It greatly over-estimates
2164 		 * the work to be done.
2165 		 */
2166 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2167 					      wc->w_di_bh);
2168 		ret = ocfs2_lock_allocators(inode, &et,
2169 					    clusters_to_alloc, extents_to_split,
2170 					    &data_ac, &meta_ac);
2171 		if (ret) {
2172 			mlog_errno(ret);
2173 			goto out;
2174 		}
2175 
2176 		if (data_ac)
2177 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2178 
2179 		credits = ocfs2_calc_extend_credits(inode->i_sb,
2180 						    &di->id2.i_list);
2181 
2182 	}
2183 
2184 	/*
2185 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
2186 	 * and non-sparse clusters we just extended.  For non-sparse writes,
2187 	 * we know zeros will only be needed in the first and/or last cluster.
2188 	 */
2189 	if (clusters_to_alloc || extents_to_split ||
2190 	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2191 			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2192 		cluster_of_pages = 1;
2193 	else
2194 		cluster_of_pages = 0;
2195 
2196 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2197 
2198 	handle = ocfs2_start_trans(osb, credits);
2199 	if (IS_ERR(handle)) {
2200 		ret = PTR_ERR(handle);
2201 		mlog_errno(ret);
2202 		goto out;
2203 	}
2204 
2205 	wc->w_handle = handle;
2206 
2207 	if (clusters_to_alloc) {
2208 		ret = dquot_alloc_space_nodirty(inode,
2209 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2210 		if (ret)
2211 			goto out_commit;
2212 	}
2213 
2214 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2215 				      OCFS2_JOURNAL_ACCESS_WRITE);
2216 	if (ret) {
2217 		mlog_errno(ret);
2218 		goto out_quota;
2219 	}
2220 
2221 	/*
2222 	 * Fill our page array first. That way we've grabbed enough so
2223 	 * that we can zero and flush if we error after adding the
2224 	 * extent.
2225 	 */
2226 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2227 					 cluster_of_pages, mmap_page);
2228 	if (ret && ret != -EAGAIN) {
2229 		mlog_errno(ret);
2230 		goto out_quota;
2231 	}
2232 
2233 	/*
2234 	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2235 	 * the target page. In this case, we exit with no error and no target
2236 	 * page. This will trigger the caller, page_mkwrite(), to re-try
2237 	 * the operation.
2238 	 */
2239 	if (ret == -EAGAIN) {
2240 		BUG_ON(wc->w_target_page);
2241 		ret = 0;
2242 		goto out_quota;
2243 	}
2244 
2245 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2246 					  len);
2247 	if (ret) {
2248 		mlog_errno(ret);
2249 		goto out_quota;
2250 	}
2251 
2252 	if (data_ac)
2253 		ocfs2_free_alloc_context(data_ac);
2254 	if (meta_ac)
2255 		ocfs2_free_alloc_context(meta_ac);
2256 
2257 success:
2258 	*pagep = wc->w_target_page;
2259 	*fsdata = wc;
2260 	return 0;
2261 out_quota:
2262 	if (clusters_to_alloc)
2263 		dquot_free_space(inode,
2264 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2265 out_commit:
2266 	ocfs2_commit_trans(osb, handle);
2267 
2268 out:
2269 	ocfs2_free_write_ctxt(wc);
2270 
2271 	if (data_ac) {
2272 		ocfs2_free_alloc_context(data_ac);
2273 		data_ac = NULL;
2274 	}
2275 	if (meta_ac) {
2276 		ocfs2_free_alloc_context(meta_ac);
2277 		meta_ac = NULL;
2278 	}
2279 
2280 	if (ret == -ENOSPC && try_free) {
2281 		/*
2282 		 * Try to free some truncate log so that we can have enough
2283 		 * clusters to allocate.
2284 		 */
2285 		try_free = 0;
2286 
2287 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2288 		if (ret1 == 1)
2289 			goto try_again;
2290 
2291 		if (ret1 < 0)
2292 			mlog_errno(ret1);
2293 	}
2294 
2295 	return ret;
2296 }
2297 
ocfs2_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2298 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2299 			     loff_t pos, unsigned len, unsigned flags,
2300 			     struct page **pagep, void **fsdata)
2301 {
2302 	int ret;
2303 	struct buffer_head *di_bh = NULL;
2304 	struct inode *inode = mapping->host;
2305 
2306 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2307 	if (ret) {
2308 		mlog_errno(ret);
2309 		return ret;
2310 	}
2311 
2312 	/*
2313 	 * Take alloc sem here to prevent concurrent lookups. That way
2314 	 * the mapping, zeroing and tree manipulation within
2315 	 * ocfs2_write() will be safe against ->readpage(). This
2316 	 * should also serve to lock out allocation from a shared
2317 	 * writeable region.
2318 	 */
2319 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
2320 
2321 	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2322 				       fsdata, di_bh, NULL);
2323 	if (ret) {
2324 		mlog_errno(ret);
2325 		goto out_fail;
2326 	}
2327 
2328 	brelse(di_bh);
2329 
2330 	return 0;
2331 
2332 out_fail:
2333 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2334 
2335 	brelse(di_bh);
2336 	ocfs2_inode_unlock(inode, 1);
2337 
2338 	return ret;
2339 }
2340 
ocfs2_write_end_inline(struct inode * inode,loff_t pos,unsigned len,unsigned * copied,struct ocfs2_dinode * di,struct ocfs2_write_ctxt * wc)2341 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2342 				   unsigned len, unsigned *copied,
2343 				   struct ocfs2_dinode *di,
2344 				   struct ocfs2_write_ctxt *wc)
2345 {
2346 	void *kaddr;
2347 
2348 	if (unlikely(*copied < len)) {
2349 		if (!PageUptodate(wc->w_target_page)) {
2350 			*copied = 0;
2351 			return;
2352 		}
2353 	}
2354 
2355 	kaddr = kmap_atomic(wc->w_target_page);
2356 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2357 	kunmap_atomic(kaddr);
2358 
2359 	trace_ocfs2_write_end_inline(
2360 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2361 	     (unsigned long long)pos, *copied,
2362 	     le16_to_cpu(di->id2.i_data.id_count),
2363 	     le16_to_cpu(di->i_dyn_features));
2364 }
2365 
ocfs2_write_end_nolock(struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2366 int ocfs2_write_end_nolock(struct address_space *mapping,
2367 			   loff_t pos, unsigned len, unsigned copied,
2368 			   struct page *page, void *fsdata)
2369 {
2370 	int i, ret;
2371 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2372 	struct inode *inode = mapping->host;
2373 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2374 	struct ocfs2_write_ctxt *wc = fsdata;
2375 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2376 	handle_t *handle = wc->w_handle;
2377 	struct page *tmppage;
2378 
2379 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2380 			OCFS2_JOURNAL_ACCESS_WRITE);
2381 	if (ret) {
2382 		copied = ret;
2383 		mlog_errno(ret);
2384 		goto out;
2385 	}
2386 
2387 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2388 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2389 		goto out_write_size;
2390 	}
2391 
2392 	if (unlikely(copied < len)) {
2393 		if (!PageUptodate(wc->w_target_page))
2394 			copied = 0;
2395 
2396 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2397 				       start+len);
2398 	}
2399 	flush_dcache_page(wc->w_target_page);
2400 
2401 	for(i = 0; i < wc->w_num_pages; i++) {
2402 		tmppage = wc->w_pages[i];
2403 
2404 		if (tmppage == wc->w_target_page) {
2405 			from = wc->w_target_from;
2406 			to = wc->w_target_to;
2407 
2408 			BUG_ON(from > PAGE_CACHE_SIZE ||
2409 			       to > PAGE_CACHE_SIZE ||
2410 			       to < from);
2411 		} else {
2412 			/*
2413 			 * Pages adjacent to the target (if any) imply
2414 			 * a hole-filling write in which case we want
2415 			 * to flush their entire range.
2416 			 */
2417 			from = 0;
2418 			to = PAGE_CACHE_SIZE;
2419 		}
2420 
2421 		if (page_has_buffers(tmppage)) {
2422 			if (ocfs2_should_order_data(inode))
2423 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
2424 			block_commit_write(tmppage, from, to);
2425 		}
2426 	}
2427 
2428 out_write_size:
2429 	pos += copied;
2430 	if (pos > i_size_read(inode)) {
2431 		i_size_write(inode, pos);
2432 		mark_inode_dirty(inode);
2433 	}
2434 	inode->i_blocks = ocfs2_inode_sector_count(inode);
2435 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
2436 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2437 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2438 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2439 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
2440 	ocfs2_journal_dirty(handle, wc->w_di_bh);
2441 
2442 out:
2443 	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2444 	 * lock, or it will cause a deadlock since journal commit threads holds
2445 	 * this lock and will ask for the page lock when flushing the data.
2446 	 * put it here to preserve the unlock order.
2447 	 */
2448 	ocfs2_unlock_pages(wc);
2449 
2450 	ocfs2_commit_trans(osb, handle);
2451 
2452 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2453 
2454 	brelse(wc->w_di_bh);
2455 	kfree(wc);
2456 
2457 	return copied;
2458 }
2459 
ocfs2_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2460 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2461 			   loff_t pos, unsigned len, unsigned copied,
2462 			   struct page *page, void *fsdata)
2463 {
2464 	int ret;
2465 	struct inode *inode = mapping->host;
2466 
2467 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2468 
2469 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2470 	ocfs2_inode_unlock(inode, 1);
2471 
2472 	return ret;
2473 }
2474 
2475 const struct address_space_operations ocfs2_aops = {
2476 	.readpage		= ocfs2_readpage,
2477 	.readpages		= ocfs2_readpages,
2478 	.writepage		= ocfs2_writepage,
2479 	.write_begin		= ocfs2_write_begin,
2480 	.write_end		= ocfs2_write_end,
2481 	.bmap			= ocfs2_bmap,
2482 	.direct_IO		= ocfs2_direct_IO,
2483 	.invalidatepage		= block_invalidatepage,
2484 	.releasepage		= ocfs2_releasepage,
2485 	.migratepage		= buffer_migrate_page,
2486 	.is_partially_uptodate	= block_is_partially_uptodate,
2487 	.error_remove_page	= generic_error_remove_page,
2488 };
2489