1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * file.c
5 *
6 * File open, close, extend, truncate
7 *
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40 #include <linux/backing-dev.h>
41
42 #include <cluster/masklog.h>
43
44 #include "ocfs2.h"
45
46 #include "alloc.h"
47 #include "aops.h"
48 #include "dir.h"
49 #include "dlmglue.h"
50 #include "extent_map.h"
51 #include "file.h"
52 #include "sysfile.h"
53 #include "inode.h"
54 #include "ioctl.h"
55 #include "journal.h"
56 #include "locks.h"
57 #include "mmap.h"
58 #include "suballoc.h"
59 #include "super.h"
60 #include "xattr.h"
61 #include "acl.h"
62 #include "quota.h"
63 #include "refcounttree.h"
64 #include "ocfs2_trace.h"
65
66 #include "buffer_head_io.h"
67
ocfs2_init_file_private(struct inode * inode,struct file * file)68 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
69 {
70 struct ocfs2_file_private *fp;
71
72 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
73 if (!fp)
74 return -ENOMEM;
75
76 fp->fp_file = file;
77 mutex_init(&fp->fp_mutex);
78 ocfs2_file_lock_res_init(&fp->fp_flock, fp);
79 file->private_data = fp;
80
81 return 0;
82 }
83
ocfs2_free_file_private(struct inode * inode,struct file * file)84 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
85 {
86 struct ocfs2_file_private *fp = file->private_data;
87 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
88
89 if (fp) {
90 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
91 ocfs2_lock_res_free(&fp->fp_flock);
92 kfree(fp);
93 file->private_data = NULL;
94 }
95 }
96
ocfs2_file_open(struct inode * inode,struct file * file)97 static int ocfs2_file_open(struct inode *inode, struct file *file)
98 {
99 int status;
100 int mode = file->f_flags;
101 struct ocfs2_inode_info *oi = OCFS2_I(inode);
102
103 trace_ocfs2_file_open(inode, file, file->f_path.dentry,
104 (unsigned long long)OCFS2_I(inode)->ip_blkno,
105 file->f_path.dentry->d_name.len,
106 file->f_path.dentry->d_name.name, mode);
107
108 if (file->f_mode & FMODE_WRITE) {
109 status = dquot_initialize(inode);
110 if (status)
111 goto leave;
112 }
113
114 spin_lock(&oi->ip_lock);
115
116 /* Check that the inode hasn't been wiped from disk by another
117 * node. If it hasn't then we're safe as long as we hold the
118 * spin lock until our increment of open count. */
119 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
120 spin_unlock(&oi->ip_lock);
121
122 status = -ENOENT;
123 goto leave;
124 }
125
126 if (mode & O_DIRECT)
127 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
128
129 oi->ip_open_count++;
130 spin_unlock(&oi->ip_lock);
131
132 status = ocfs2_init_file_private(inode, file);
133 if (status) {
134 /*
135 * We want to set open count back if we're failing the
136 * open.
137 */
138 spin_lock(&oi->ip_lock);
139 oi->ip_open_count--;
140 spin_unlock(&oi->ip_lock);
141 }
142
143 leave:
144 return status;
145 }
146
ocfs2_file_release(struct inode * inode,struct file * file)147 static int ocfs2_file_release(struct inode *inode, struct file *file)
148 {
149 struct ocfs2_inode_info *oi = OCFS2_I(inode);
150
151 spin_lock(&oi->ip_lock);
152 if (!--oi->ip_open_count)
153 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
154
155 trace_ocfs2_file_release(inode, file, file->f_path.dentry,
156 oi->ip_blkno,
157 file->f_path.dentry->d_name.len,
158 file->f_path.dentry->d_name.name,
159 oi->ip_open_count);
160 spin_unlock(&oi->ip_lock);
161
162 ocfs2_free_file_private(inode, file);
163
164 return 0;
165 }
166
ocfs2_dir_open(struct inode * inode,struct file * file)167 static int ocfs2_dir_open(struct inode *inode, struct file *file)
168 {
169 return ocfs2_init_file_private(inode, file);
170 }
171
ocfs2_dir_release(struct inode * inode,struct file * file)172 static int ocfs2_dir_release(struct inode *inode, struct file *file)
173 {
174 ocfs2_free_file_private(inode, file);
175 return 0;
176 }
177
ocfs2_sync_file(struct file * file,loff_t start,loff_t end,int datasync)178 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
179 int datasync)
180 {
181 int err = 0;
182 struct inode *inode = file->f_mapping->host;
183 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
184 struct ocfs2_inode_info *oi = OCFS2_I(inode);
185 journal_t *journal = osb->journal->j_journal;
186 int ret;
187 tid_t commit_tid;
188 bool needs_barrier = false;
189
190 trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
191 OCFS2_I(inode)->ip_blkno,
192 file->f_path.dentry->d_name.len,
193 file->f_path.dentry->d_name.name,
194 (unsigned long long)datasync);
195
196 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
197 return -EROFS;
198
199 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
200 if (err)
201 return err;
202
203 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
204 if (journal->j_flags & JBD2_BARRIER &&
205 !jbd2_trans_will_send_data_barrier(journal, commit_tid))
206 needs_barrier = true;
207 err = jbd2_complete_transaction(journal, commit_tid);
208 if (needs_barrier) {
209 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
210 if (!err)
211 err = ret;
212 }
213
214 if (err)
215 mlog_errno(err);
216
217 return (err < 0) ? -EIO : 0;
218 }
219
ocfs2_should_update_atime(struct inode * inode,struct vfsmount * vfsmnt)220 int ocfs2_should_update_atime(struct inode *inode,
221 struct vfsmount *vfsmnt)
222 {
223 struct timespec now;
224 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
225
226 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
227 return 0;
228
229 if ((inode->i_flags & S_NOATIME) ||
230 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
231 return 0;
232
233 /*
234 * We can be called with no vfsmnt structure - NFSD will
235 * sometimes do this.
236 *
237 * Note that our action here is different than touch_atime() -
238 * if we can't tell whether this is a noatime mount, then we
239 * don't know whether to trust the value of s_atime_quantum.
240 */
241 if (vfsmnt == NULL)
242 return 0;
243
244 if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
245 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
246 return 0;
247
248 if (vfsmnt->mnt_flags & MNT_RELATIME) {
249 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
250 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
251 return 1;
252
253 return 0;
254 }
255
256 now = CURRENT_TIME;
257 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
258 return 0;
259 else
260 return 1;
261 }
262
ocfs2_update_inode_atime(struct inode * inode,struct buffer_head * bh)263 int ocfs2_update_inode_atime(struct inode *inode,
264 struct buffer_head *bh)
265 {
266 int ret;
267 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
268 handle_t *handle;
269 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
270
271 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
272 if (IS_ERR(handle)) {
273 ret = PTR_ERR(handle);
274 mlog_errno(ret);
275 goto out;
276 }
277
278 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
279 OCFS2_JOURNAL_ACCESS_WRITE);
280 if (ret) {
281 mlog_errno(ret);
282 goto out_commit;
283 }
284
285 /*
286 * Don't use ocfs2_mark_inode_dirty() here as we don't always
287 * have i_mutex to guard against concurrent changes to other
288 * inode fields.
289 */
290 inode->i_atime = CURRENT_TIME;
291 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
292 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
293 ocfs2_update_inode_fsync_trans(handle, inode, 0);
294 ocfs2_journal_dirty(handle, bh);
295
296 out_commit:
297 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
298 out:
299 return ret;
300 }
301
ocfs2_set_inode_size(handle_t * handle,struct inode * inode,struct buffer_head * fe_bh,u64 new_i_size)302 int ocfs2_set_inode_size(handle_t *handle,
303 struct inode *inode,
304 struct buffer_head *fe_bh,
305 u64 new_i_size)
306 {
307 int status;
308
309 i_size_write(inode, new_i_size);
310 inode->i_blocks = ocfs2_inode_sector_count(inode);
311 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
312
313 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
314 if (status < 0) {
315 mlog_errno(status);
316 goto bail;
317 }
318
319 bail:
320 return status;
321 }
322
ocfs2_simple_size_update(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)323 int ocfs2_simple_size_update(struct inode *inode,
324 struct buffer_head *di_bh,
325 u64 new_i_size)
326 {
327 int ret;
328 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
329 handle_t *handle = NULL;
330
331 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
332 if (IS_ERR(handle)) {
333 ret = PTR_ERR(handle);
334 mlog_errno(ret);
335 goto out;
336 }
337
338 ret = ocfs2_set_inode_size(handle, inode, di_bh,
339 new_i_size);
340 if (ret < 0)
341 mlog_errno(ret);
342
343 ocfs2_update_inode_fsync_trans(handle, inode, 0);
344 ocfs2_commit_trans(osb, handle);
345 out:
346 return ret;
347 }
348
ocfs2_cow_file_pos(struct inode * inode,struct buffer_head * fe_bh,u64 offset)349 static int ocfs2_cow_file_pos(struct inode *inode,
350 struct buffer_head *fe_bh,
351 u64 offset)
352 {
353 int status;
354 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
355 unsigned int num_clusters = 0;
356 unsigned int ext_flags = 0;
357
358 /*
359 * If the new offset is aligned to the range of the cluster, there is
360 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
361 * CoW either.
362 */
363 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
364 return 0;
365
366 status = ocfs2_get_clusters(inode, cpos, &phys,
367 &num_clusters, &ext_flags);
368 if (status) {
369 mlog_errno(status);
370 goto out;
371 }
372
373 if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
374 goto out;
375
376 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
377
378 out:
379 return status;
380 }
381
ocfs2_orphan_for_truncate(struct ocfs2_super * osb,struct inode * inode,struct buffer_head * fe_bh,u64 new_i_size)382 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
383 struct inode *inode,
384 struct buffer_head *fe_bh,
385 u64 new_i_size)
386 {
387 int status;
388 handle_t *handle;
389 struct ocfs2_dinode *di;
390 u64 cluster_bytes;
391
392 /*
393 * We need to CoW the cluster contains the offset if it is reflinked
394 * since we will call ocfs2_zero_range_for_truncate later which will
395 * write "0" from offset to the end of the cluster.
396 */
397 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
398 if (status) {
399 mlog_errno(status);
400 return status;
401 }
402
403 /* TODO: This needs to actually orphan the inode in this
404 * transaction. */
405
406 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
407 if (IS_ERR(handle)) {
408 status = PTR_ERR(handle);
409 mlog_errno(status);
410 goto out;
411 }
412
413 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
414 OCFS2_JOURNAL_ACCESS_WRITE);
415 if (status < 0) {
416 mlog_errno(status);
417 goto out_commit;
418 }
419
420 /*
421 * Do this before setting i_size.
422 */
423 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
424 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
425 cluster_bytes);
426 if (status) {
427 mlog_errno(status);
428 goto out_commit;
429 }
430
431 i_size_write(inode, new_i_size);
432 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
433
434 di = (struct ocfs2_dinode *) fe_bh->b_data;
435 di->i_size = cpu_to_le64(new_i_size);
436 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
437 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
438 ocfs2_update_inode_fsync_trans(handle, inode, 0);
439
440 ocfs2_journal_dirty(handle, fe_bh);
441
442 out_commit:
443 ocfs2_commit_trans(osb, handle);
444 out:
445 return status;
446 }
447
ocfs2_truncate_file(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)448 int ocfs2_truncate_file(struct inode *inode,
449 struct buffer_head *di_bh,
450 u64 new_i_size)
451 {
452 int status = 0;
453 struct ocfs2_dinode *fe = NULL;
454 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
455
456 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
457 * already validated it */
458 fe = (struct ocfs2_dinode *) di_bh->b_data;
459
460 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
461 (unsigned long long)le64_to_cpu(fe->i_size),
462 (unsigned long long)new_i_size);
463
464 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
465 "Inode %llu, inode i_size = %lld != di "
466 "i_size = %llu, i_flags = 0x%x\n",
467 (unsigned long long)OCFS2_I(inode)->ip_blkno,
468 i_size_read(inode),
469 (unsigned long long)le64_to_cpu(fe->i_size),
470 le32_to_cpu(fe->i_flags));
471
472 if (new_i_size > le64_to_cpu(fe->i_size)) {
473 trace_ocfs2_truncate_file_error(
474 (unsigned long long)le64_to_cpu(fe->i_size),
475 (unsigned long long)new_i_size);
476 status = -EINVAL;
477 mlog_errno(status);
478 goto bail;
479 }
480
481 down_write(&OCFS2_I(inode)->ip_alloc_sem);
482
483 ocfs2_resv_discard(&osb->osb_la_resmap,
484 &OCFS2_I(inode)->ip_la_data_resv);
485
486 /*
487 * The inode lock forced other nodes to sync and drop their
488 * pages, which (correctly) happens even if we have a truncate
489 * without allocation change - ocfs2 cluster sizes can be much
490 * greater than page size, so we have to truncate them
491 * anyway.
492 */
493
494 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
495 unmap_mapping_range(inode->i_mapping,
496 new_i_size + PAGE_SIZE - 1, 0, 1);
497 truncate_inode_pages(inode->i_mapping, new_i_size);
498 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
499 i_size_read(inode), 1);
500 if (status)
501 mlog_errno(status);
502
503 goto bail_unlock_sem;
504 }
505
506 /* alright, we're going to need to do a full blown alloc size
507 * change. Orphan the inode so that recovery can complete the
508 * truncate if necessary. This does the task of marking
509 * i_size. */
510 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
511 if (status < 0) {
512 mlog_errno(status);
513 goto bail_unlock_sem;
514 }
515
516 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
517 truncate_inode_pages(inode->i_mapping, new_i_size);
518
519 status = ocfs2_commit_truncate(osb, inode, di_bh);
520 if (status < 0) {
521 mlog_errno(status);
522 goto bail_unlock_sem;
523 }
524
525 /* TODO: orphan dir cleanup here. */
526 bail_unlock_sem:
527 up_write(&OCFS2_I(inode)->ip_alloc_sem);
528
529 bail:
530 if (!status && OCFS2_I(inode)->ip_clusters == 0)
531 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
532
533 return status;
534 }
535
536 /*
537 * extend file allocation only here.
538 * we'll update all the disk stuff, and oip->alloc_size
539 *
540 * expect stuff to be locked, a transaction started and enough data /
541 * metadata reservations in the contexts.
542 *
543 * Will return -EAGAIN, and a reason if a restart is needed.
544 * If passed in, *reason will always be set, even in error.
545 */
ocfs2_add_inode_data(struct ocfs2_super * osb,struct inode * inode,u32 * logical_offset,u32 clusters_to_add,int mark_unwritten,struct buffer_head * fe_bh,handle_t * handle,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,enum ocfs2_alloc_restarted * reason_ret)546 int ocfs2_add_inode_data(struct ocfs2_super *osb,
547 struct inode *inode,
548 u32 *logical_offset,
549 u32 clusters_to_add,
550 int mark_unwritten,
551 struct buffer_head *fe_bh,
552 handle_t *handle,
553 struct ocfs2_alloc_context *data_ac,
554 struct ocfs2_alloc_context *meta_ac,
555 enum ocfs2_alloc_restarted *reason_ret)
556 {
557 int ret;
558 struct ocfs2_extent_tree et;
559
560 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
561 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
562 clusters_to_add, mark_unwritten,
563 data_ac, meta_ac, reason_ret);
564
565 return ret;
566 }
567
__ocfs2_extend_allocation(struct inode * inode,u32 logical_start,u32 clusters_to_add,int mark_unwritten)568 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
569 u32 clusters_to_add, int mark_unwritten)
570 {
571 int status = 0;
572 int restart_func = 0;
573 int credits;
574 u32 prev_clusters;
575 struct buffer_head *bh = NULL;
576 struct ocfs2_dinode *fe = NULL;
577 handle_t *handle = NULL;
578 struct ocfs2_alloc_context *data_ac = NULL;
579 struct ocfs2_alloc_context *meta_ac = NULL;
580 enum ocfs2_alloc_restarted why = RESTART_NONE;
581 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
582 struct ocfs2_extent_tree et;
583 int did_quota = 0;
584
585 /*
586 * Unwritten extent only exists for file systems which
587 * support holes.
588 */
589 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
590
591 status = ocfs2_read_inode_block(inode, &bh);
592 if (status < 0) {
593 mlog_errno(status);
594 goto leave;
595 }
596 fe = (struct ocfs2_dinode *) bh->b_data;
597
598 restart_all:
599 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
600
601 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
602 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
603 &data_ac, &meta_ac);
604 if (status) {
605 mlog_errno(status);
606 goto leave;
607 }
608
609 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
610 handle = ocfs2_start_trans(osb, credits);
611 if (IS_ERR(handle)) {
612 status = PTR_ERR(handle);
613 handle = NULL;
614 mlog_errno(status);
615 goto leave;
616 }
617
618 restarted_transaction:
619 trace_ocfs2_extend_allocation(
620 (unsigned long long)OCFS2_I(inode)->ip_blkno,
621 (unsigned long long)i_size_read(inode),
622 le32_to_cpu(fe->i_clusters), clusters_to_add,
623 why, restart_func);
624
625 status = dquot_alloc_space_nodirty(inode,
626 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
627 if (status)
628 goto leave;
629 did_quota = 1;
630
631 /* reserve a write to the file entry early on - that we if we
632 * run out of credits in the allocation path, we can still
633 * update i_size. */
634 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
635 OCFS2_JOURNAL_ACCESS_WRITE);
636 if (status < 0) {
637 mlog_errno(status);
638 goto leave;
639 }
640
641 prev_clusters = OCFS2_I(inode)->ip_clusters;
642
643 status = ocfs2_add_inode_data(osb,
644 inode,
645 &logical_start,
646 clusters_to_add,
647 mark_unwritten,
648 bh,
649 handle,
650 data_ac,
651 meta_ac,
652 &why);
653 if ((status < 0) && (status != -EAGAIN)) {
654 if (status != -ENOSPC)
655 mlog_errno(status);
656 goto leave;
657 }
658 ocfs2_update_inode_fsync_trans(handle, inode, 1);
659 ocfs2_journal_dirty(handle, bh);
660
661 spin_lock(&OCFS2_I(inode)->ip_lock);
662 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
663 spin_unlock(&OCFS2_I(inode)->ip_lock);
664 /* Release unused quota reservation */
665 dquot_free_space(inode,
666 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
667 did_quota = 0;
668
669 if (why != RESTART_NONE && clusters_to_add) {
670 if (why == RESTART_META) {
671 restart_func = 1;
672 status = 0;
673 } else {
674 BUG_ON(why != RESTART_TRANS);
675
676 status = ocfs2_allocate_extend_trans(handle, 1);
677 if (status < 0) {
678 /* handle still has to be committed at
679 * this point. */
680 status = -ENOMEM;
681 mlog_errno(status);
682 goto leave;
683 }
684 goto restarted_transaction;
685 }
686 }
687
688 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
689 le32_to_cpu(fe->i_clusters),
690 (unsigned long long)le64_to_cpu(fe->i_size),
691 OCFS2_I(inode)->ip_clusters,
692 (unsigned long long)i_size_read(inode));
693
694 leave:
695 if (status < 0 && did_quota)
696 dquot_free_space(inode,
697 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
698 if (handle) {
699 ocfs2_commit_trans(osb, handle);
700 handle = NULL;
701 }
702 if (data_ac) {
703 ocfs2_free_alloc_context(data_ac);
704 data_ac = NULL;
705 }
706 if (meta_ac) {
707 ocfs2_free_alloc_context(meta_ac);
708 meta_ac = NULL;
709 }
710 if ((!status) && restart_func) {
711 restart_func = 0;
712 goto restart_all;
713 }
714 brelse(bh);
715 bh = NULL;
716
717 return status;
718 }
719
ocfs2_extend_allocation(struct inode * inode,u32 logical_start,u32 clusters_to_add,int mark_unwritten)720 int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
721 u32 clusters_to_add, int mark_unwritten)
722 {
723 return __ocfs2_extend_allocation(inode, logical_start,
724 clusters_to_add, mark_unwritten);
725 }
726
727 /*
728 * While a write will already be ordering the data, a truncate will not.
729 * Thus, we need to explicitly order the zeroed pages.
730 */
ocfs2_zero_start_ordered_transaction(struct inode * inode,struct buffer_head * di_bh)731 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
732 struct buffer_head *di_bh)
733 {
734 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
735 handle_t *handle = NULL;
736 int ret = 0;
737
738 if (!ocfs2_should_order_data(inode))
739 goto out;
740
741 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
742 if (IS_ERR(handle)) {
743 ret = -ENOMEM;
744 mlog_errno(ret);
745 goto out;
746 }
747
748 ret = ocfs2_jbd2_file_inode(handle, inode);
749 if (ret < 0) {
750 mlog_errno(ret);
751 goto out;
752 }
753
754 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
755 OCFS2_JOURNAL_ACCESS_WRITE);
756 if (ret)
757 mlog_errno(ret);
758 ocfs2_update_inode_fsync_trans(handle, inode, 1);
759
760 out:
761 if (ret) {
762 if (!IS_ERR(handle))
763 ocfs2_commit_trans(osb, handle);
764 handle = ERR_PTR(ret);
765 }
766 return handle;
767 }
768
769 /* Some parts of this taken from generic_cont_expand, which turned out
770 * to be too fragile to do exactly what we need without us having to
771 * worry about recursive locking in ->write_begin() and ->write_end(). */
ocfs2_write_zero_page(struct inode * inode,u64 abs_from,u64 abs_to,struct buffer_head * di_bh)772 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
773 u64 abs_to, struct buffer_head *di_bh)
774 {
775 struct address_space *mapping = inode->i_mapping;
776 struct page *page;
777 unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
778 handle_t *handle;
779 int ret = 0;
780 unsigned zero_from, zero_to, block_start, block_end;
781 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
782
783 BUG_ON(abs_from >= abs_to);
784 BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
785 BUG_ON(abs_from & (inode->i_blkbits - 1));
786
787 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh);
788 if (IS_ERR(handle)) {
789 ret = PTR_ERR(handle);
790 goto out;
791 }
792
793 page = find_or_create_page(mapping, index, GFP_NOFS);
794 if (!page) {
795 ret = -ENOMEM;
796 mlog_errno(ret);
797 goto out_commit_trans;
798 }
799
800 /* Get the offsets within the page that we want to zero */
801 zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
802 zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
803 if (!zero_to)
804 zero_to = PAGE_CACHE_SIZE;
805
806 trace_ocfs2_write_zero_page(
807 (unsigned long long)OCFS2_I(inode)->ip_blkno,
808 (unsigned long long)abs_from,
809 (unsigned long long)abs_to,
810 index, zero_from, zero_to);
811
812 /* We know that zero_from is block aligned */
813 for (block_start = zero_from; block_start < zero_to;
814 block_start = block_end) {
815 block_end = block_start + i_blocksize(inode);
816
817 /*
818 * block_start is block-aligned. Bump it by one to force
819 * __block_write_begin and block_commit_write to zero the
820 * whole block.
821 */
822 ret = __block_write_begin(page, block_start + 1, 0,
823 ocfs2_get_block);
824 if (ret < 0) {
825 mlog_errno(ret);
826 goto out_unlock;
827 }
828
829
830 /* must not update i_size! */
831 ret = block_commit_write(page, block_start + 1,
832 block_start + 1);
833 if (ret < 0)
834 mlog_errno(ret);
835 else
836 ret = 0;
837 }
838
839 /*
840 * fs-writeback will release the dirty pages without page lock
841 * whose offset are over inode size, the release happens at
842 * block_write_full_page().
843 */
844 i_size_write(inode, abs_to);
845 inode->i_blocks = ocfs2_inode_sector_count(inode);
846 di->i_size = cpu_to_le64((u64)i_size_read(inode));
847 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
848 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
849 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
850 di->i_mtime_nsec = di->i_ctime_nsec;
851 if (handle) {
852 ocfs2_journal_dirty(handle, di_bh);
853 ocfs2_update_inode_fsync_trans(handle, inode, 1);
854 }
855
856 out_unlock:
857 unlock_page(page);
858 page_cache_release(page);
859 out_commit_trans:
860 if (handle)
861 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
862 out:
863 return ret;
864 }
865
866 /*
867 * Find the next range to zero. We do this in terms of bytes because
868 * that's what ocfs2_zero_extend() wants, and it is dealing with the
869 * pagecache. We may return multiple extents.
870 *
871 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
872 * needs to be zeroed. range_start and range_end return the next zeroing
873 * range. A subsequent call should pass the previous range_end as its
874 * zero_start. If range_end is 0, there's nothing to do.
875 *
876 * Unwritten extents are skipped over. Refcounted extents are CoWd.
877 */
ocfs2_zero_extend_get_range(struct inode * inode,struct buffer_head * di_bh,u64 zero_start,u64 zero_end,u64 * range_start,u64 * range_end)878 static int ocfs2_zero_extend_get_range(struct inode *inode,
879 struct buffer_head *di_bh,
880 u64 zero_start, u64 zero_end,
881 u64 *range_start, u64 *range_end)
882 {
883 int rc = 0, needs_cow = 0;
884 u32 p_cpos, zero_clusters = 0;
885 u32 zero_cpos =
886 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
887 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
888 unsigned int num_clusters = 0;
889 unsigned int ext_flags = 0;
890
891 while (zero_cpos < last_cpos) {
892 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
893 &num_clusters, &ext_flags);
894 if (rc) {
895 mlog_errno(rc);
896 goto out;
897 }
898
899 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
900 zero_clusters = num_clusters;
901 if (ext_flags & OCFS2_EXT_REFCOUNTED)
902 needs_cow = 1;
903 break;
904 }
905
906 zero_cpos += num_clusters;
907 }
908 if (!zero_clusters) {
909 *range_end = 0;
910 goto out;
911 }
912
913 while ((zero_cpos + zero_clusters) < last_cpos) {
914 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
915 &p_cpos, &num_clusters,
916 &ext_flags);
917 if (rc) {
918 mlog_errno(rc);
919 goto out;
920 }
921
922 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
923 break;
924 if (ext_flags & OCFS2_EXT_REFCOUNTED)
925 needs_cow = 1;
926 zero_clusters += num_clusters;
927 }
928 if ((zero_cpos + zero_clusters) > last_cpos)
929 zero_clusters = last_cpos - zero_cpos;
930
931 if (needs_cow) {
932 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
933 zero_clusters, UINT_MAX);
934 if (rc) {
935 mlog_errno(rc);
936 goto out;
937 }
938 }
939
940 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
941 *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
942 zero_cpos + zero_clusters);
943
944 out:
945 return rc;
946 }
947
948 /*
949 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
950 * has made sure that the entire range needs zeroing.
951 */
ocfs2_zero_extend_range(struct inode * inode,u64 range_start,u64 range_end,struct buffer_head * di_bh)952 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
953 u64 range_end, struct buffer_head *di_bh)
954 {
955 int rc = 0;
956 u64 next_pos;
957 u64 zero_pos = range_start;
958
959 trace_ocfs2_zero_extend_range(
960 (unsigned long long)OCFS2_I(inode)->ip_blkno,
961 (unsigned long long)range_start,
962 (unsigned long long)range_end);
963 BUG_ON(range_start >= range_end);
964
965 while (zero_pos < range_end) {
966 next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
967 if (next_pos > range_end)
968 next_pos = range_end;
969 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
970 if (rc < 0) {
971 mlog_errno(rc);
972 break;
973 }
974 zero_pos = next_pos;
975
976 /*
977 * Very large extends have the potential to lock up
978 * the cpu for extended periods of time.
979 */
980 cond_resched();
981 }
982
983 return rc;
984 }
985
ocfs2_zero_extend(struct inode * inode,struct buffer_head * di_bh,loff_t zero_to_size)986 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
987 loff_t zero_to_size)
988 {
989 int ret = 0;
990 u64 zero_start, range_start = 0, range_end = 0;
991 struct super_block *sb = inode->i_sb;
992
993 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
994 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
995 (unsigned long long)zero_start,
996 (unsigned long long)i_size_read(inode));
997 while (zero_start < zero_to_size) {
998 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
999 zero_to_size,
1000 &range_start,
1001 &range_end);
1002 if (ret) {
1003 mlog_errno(ret);
1004 break;
1005 }
1006 if (!range_end)
1007 break;
1008 /* Trim the ends */
1009 if (range_start < zero_start)
1010 range_start = zero_start;
1011 if (range_end > zero_to_size)
1012 range_end = zero_to_size;
1013
1014 ret = ocfs2_zero_extend_range(inode, range_start,
1015 range_end, di_bh);
1016 if (ret) {
1017 mlog_errno(ret);
1018 break;
1019 }
1020 zero_start = range_end;
1021 }
1022
1023 return ret;
1024 }
1025
ocfs2_extend_no_holes(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size,u64 zero_to)1026 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1027 u64 new_i_size, u64 zero_to)
1028 {
1029 int ret;
1030 u32 clusters_to_add;
1031 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1032
1033 /*
1034 * Only quota files call this without a bh, and they can't be
1035 * refcounted.
1036 */
1037 BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1038 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1039
1040 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1041 if (clusters_to_add < oi->ip_clusters)
1042 clusters_to_add = 0;
1043 else
1044 clusters_to_add -= oi->ip_clusters;
1045
1046 if (clusters_to_add) {
1047 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1048 clusters_to_add, 0);
1049 if (ret) {
1050 mlog_errno(ret);
1051 goto out;
1052 }
1053 }
1054
1055 /*
1056 * Call this even if we don't add any clusters to the tree. We
1057 * still need to zero the area between the old i_size and the
1058 * new i_size.
1059 */
1060 ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1061 if (ret < 0)
1062 mlog_errno(ret);
1063
1064 out:
1065 return ret;
1066 }
1067
ocfs2_extend_file(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)1068 static int ocfs2_extend_file(struct inode *inode,
1069 struct buffer_head *di_bh,
1070 u64 new_i_size)
1071 {
1072 int ret = 0;
1073 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1074
1075 BUG_ON(!di_bh);
1076
1077 /* setattr sometimes calls us like this. */
1078 if (new_i_size == 0)
1079 goto out;
1080
1081 if (i_size_read(inode) == new_i_size)
1082 goto out;
1083 BUG_ON(new_i_size < i_size_read(inode));
1084
1085 /*
1086 * The alloc sem blocks people in read/write from reading our
1087 * allocation until we're done changing it. We depend on
1088 * i_mutex to block other extend/truncate calls while we're
1089 * here. We even have to hold it for sparse files because there
1090 * might be some tail zeroing.
1091 */
1092 down_write(&oi->ip_alloc_sem);
1093
1094 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1095 /*
1096 * We can optimize small extends by keeping the inodes
1097 * inline data.
1098 */
1099 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1100 up_write(&oi->ip_alloc_sem);
1101 goto out_update_size;
1102 }
1103
1104 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1105 if (ret) {
1106 up_write(&oi->ip_alloc_sem);
1107 mlog_errno(ret);
1108 goto out;
1109 }
1110 }
1111
1112 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1113 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1114 else
1115 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1116 new_i_size);
1117
1118 up_write(&oi->ip_alloc_sem);
1119
1120 if (ret < 0) {
1121 mlog_errno(ret);
1122 goto out;
1123 }
1124
1125 out_update_size:
1126 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1127 if (ret < 0)
1128 mlog_errno(ret);
1129
1130 out:
1131 return ret;
1132 }
1133
ocfs2_setattr(struct dentry * dentry,struct iattr * attr)1134 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1135 {
1136 int status = 0, size_change;
1137 int inode_locked = 0;
1138 struct inode *inode = d_inode(dentry);
1139 struct super_block *sb = inode->i_sb;
1140 struct ocfs2_super *osb = OCFS2_SB(sb);
1141 struct buffer_head *bh = NULL;
1142 handle_t *handle = NULL;
1143 struct dquot *transfer_to[MAXQUOTAS] = { };
1144 int qtype;
1145
1146 trace_ocfs2_setattr(inode, dentry,
1147 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1148 dentry->d_name.len, dentry->d_name.name,
1149 attr->ia_valid, attr->ia_mode,
1150 from_kuid(&init_user_ns, attr->ia_uid),
1151 from_kgid(&init_user_ns, attr->ia_gid));
1152
1153 /* ensuring we don't even attempt to truncate a symlink */
1154 if (S_ISLNK(inode->i_mode))
1155 attr->ia_valid &= ~ATTR_SIZE;
1156
1157 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1158 | ATTR_GID | ATTR_UID | ATTR_MODE)
1159 if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1160 return 0;
1161
1162 status = inode_change_ok(inode, attr);
1163 if (status)
1164 return status;
1165
1166 if (is_quota_modification(inode, attr)) {
1167 status = dquot_initialize(inode);
1168 if (status)
1169 return status;
1170 }
1171 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1172 if (size_change) {
1173 status = ocfs2_rw_lock(inode, 1);
1174 if (status < 0) {
1175 mlog_errno(status);
1176 goto bail;
1177 }
1178 }
1179
1180 status = ocfs2_inode_lock(inode, &bh, 1);
1181 if (status < 0) {
1182 if (status != -ENOENT)
1183 mlog_errno(status);
1184 goto bail_unlock_rw;
1185 }
1186 inode_locked = 1;
1187
1188 if (size_change) {
1189 status = inode_newsize_ok(inode, attr->ia_size);
1190 if (status)
1191 goto bail_unlock;
1192
1193 inode_dio_wait(inode);
1194
1195 if (i_size_read(inode) >= attr->ia_size) {
1196 if (ocfs2_should_order_data(inode)) {
1197 status = ocfs2_begin_ordered_truncate(inode,
1198 attr->ia_size);
1199 if (status)
1200 goto bail_unlock;
1201 }
1202 status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1203 } else
1204 status = ocfs2_extend_file(inode, bh, attr->ia_size);
1205 if (status < 0) {
1206 if (status != -ENOSPC)
1207 mlog_errno(status);
1208 status = -ENOSPC;
1209 goto bail_unlock;
1210 }
1211 }
1212
1213 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1214 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1215 /*
1216 * Gather pointers to quota structures so that allocation /
1217 * freeing of quota structures happens here and not inside
1218 * dquot_transfer() where we have problems with lock ordering
1219 */
1220 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1221 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1222 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1223 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1224 if (IS_ERR(transfer_to[USRQUOTA])) {
1225 status = PTR_ERR(transfer_to[USRQUOTA]);
1226 goto bail_unlock;
1227 }
1228 }
1229 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1230 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1231 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1232 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1233 if (IS_ERR(transfer_to[GRPQUOTA])) {
1234 status = PTR_ERR(transfer_to[GRPQUOTA]);
1235 goto bail_unlock;
1236 }
1237 }
1238 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1239 2 * ocfs2_quota_trans_credits(sb));
1240 if (IS_ERR(handle)) {
1241 status = PTR_ERR(handle);
1242 mlog_errno(status);
1243 goto bail_unlock;
1244 }
1245 status = __dquot_transfer(inode, transfer_to);
1246 if (status < 0)
1247 goto bail_commit;
1248 } else {
1249 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1250 if (IS_ERR(handle)) {
1251 status = PTR_ERR(handle);
1252 mlog_errno(status);
1253 goto bail_unlock;
1254 }
1255 }
1256
1257 setattr_copy(inode, attr);
1258 mark_inode_dirty(inode);
1259
1260 status = ocfs2_mark_inode_dirty(handle, inode, bh);
1261 if (status < 0)
1262 mlog_errno(status);
1263
1264 bail_commit:
1265 ocfs2_commit_trans(osb, handle);
1266 bail_unlock:
1267 if (status) {
1268 ocfs2_inode_unlock(inode, 1);
1269 inode_locked = 0;
1270 }
1271 bail_unlock_rw:
1272 if (size_change)
1273 ocfs2_rw_unlock(inode, 1);
1274 bail:
1275
1276 /* Release quota pointers in case we acquired them */
1277 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1278 dqput(transfer_to[qtype]);
1279
1280 if (!status && attr->ia_valid & ATTR_MODE) {
1281 status = ocfs2_acl_chmod(inode, bh);
1282 if (status < 0)
1283 mlog_errno(status);
1284 }
1285 if (inode_locked)
1286 ocfs2_inode_unlock(inode, 1);
1287
1288 brelse(bh);
1289 return status;
1290 }
1291
ocfs2_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)1292 int ocfs2_getattr(struct vfsmount *mnt,
1293 struct dentry *dentry,
1294 struct kstat *stat)
1295 {
1296 struct inode *inode = d_inode(dentry);
1297 struct super_block *sb = d_inode(dentry)->i_sb;
1298 struct ocfs2_super *osb = sb->s_fs_info;
1299 int err;
1300
1301 err = ocfs2_inode_revalidate(dentry);
1302 if (err) {
1303 if (err != -ENOENT)
1304 mlog_errno(err);
1305 goto bail;
1306 }
1307
1308 generic_fillattr(inode, stat);
1309
1310 /* We set the blksize from the cluster size for performance */
1311 stat->blksize = osb->s_clustersize;
1312
1313 bail:
1314 return err;
1315 }
1316
ocfs2_permission(struct inode * inode,int mask)1317 int ocfs2_permission(struct inode *inode, int mask)
1318 {
1319 int ret;
1320
1321 if (mask & MAY_NOT_BLOCK)
1322 return -ECHILD;
1323
1324 ret = ocfs2_inode_lock(inode, NULL, 0);
1325 if (ret) {
1326 if (ret != -ENOENT)
1327 mlog_errno(ret);
1328 goto out;
1329 }
1330
1331 ret = generic_permission(inode, mask);
1332
1333 ocfs2_inode_unlock(inode, 0);
1334 out:
1335 return ret;
1336 }
1337
__ocfs2_write_remove_suid(struct inode * inode,struct buffer_head * bh)1338 static int __ocfs2_write_remove_suid(struct inode *inode,
1339 struct buffer_head *bh)
1340 {
1341 int ret;
1342 handle_t *handle;
1343 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1344 struct ocfs2_dinode *di;
1345
1346 trace_ocfs2_write_remove_suid(
1347 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1348 inode->i_mode);
1349
1350 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1351 if (IS_ERR(handle)) {
1352 ret = PTR_ERR(handle);
1353 mlog_errno(ret);
1354 goto out;
1355 }
1356
1357 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1358 OCFS2_JOURNAL_ACCESS_WRITE);
1359 if (ret < 0) {
1360 mlog_errno(ret);
1361 goto out_trans;
1362 }
1363
1364 inode->i_mode &= ~S_ISUID;
1365 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1366 inode->i_mode &= ~S_ISGID;
1367
1368 di = (struct ocfs2_dinode *) bh->b_data;
1369 di->i_mode = cpu_to_le16(inode->i_mode);
1370 ocfs2_update_inode_fsync_trans(handle, inode, 0);
1371
1372 ocfs2_journal_dirty(handle, bh);
1373
1374 out_trans:
1375 ocfs2_commit_trans(osb, handle);
1376 out:
1377 return ret;
1378 }
1379
1380 /*
1381 * Will look for holes and unwritten extents in the range starting at
1382 * pos for count bytes (inclusive).
1383 */
ocfs2_check_range_for_holes(struct inode * inode,loff_t pos,size_t count)1384 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1385 size_t count)
1386 {
1387 int ret = 0;
1388 unsigned int extent_flags;
1389 u32 cpos, clusters, extent_len, phys_cpos;
1390 struct super_block *sb = inode->i_sb;
1391
1392 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1393 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1394
1395 while (clusters) {
1396 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1397 &extent_flags);
1398 if (ret < 0) {
1399 mlog_errno(ret);
1400 goto out;
1401 }
1402
1403 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1404 ret = 1;
1405 break;
1406 }
1407
1408 if (extent_len > clusters)
1409 extent_len = clusters;
1410
1411 clusters -= extent_len;
1412 cpos += extent_len;
1413 }
1414 out:
1415 return ret;
1416 }
1417
ocfs2_write_remove_suid(struct inode * inode)1418 static int ocfs2_write_remove_suid(struct inode *inode)
1419 {
1420 int ret;
1421 struct buffer_head *bh = NULL;
1422
1423 ret = ocfs2_read_inode_block(inode, &bh);
1424 if (ret < 0) {
1425 mlog_errno(ret);
1426 goto out;
1427 }
1428
1429 ret = __ocfs2_write_remove_suid(inode, bh);
1430 out:
1431 brelse(bh);
1432 return ret;
1433 }
1434
1435 /*
1436 * Allocate enough extents to cover the region starting at byte offset
1437 * start for len bytes. Existing extents are skipped, any extents
1438 * added are marked as "unwritten".
1439 */
ocfs2_allocate_unwritten_extents(struct inode * inode,u64 start,u64 len)1440 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1441 u64 start, u64 len)
1442 {
1443 int ret;
1444 u32 cpos, phys_cpos, clusters, alloc_size;
1445 u64 end = start + len;
1446 struct buffer_head *di_bh = NULL;
1447
1448 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1449 ret = ocfs2_read_inode_block(inode, &di_bh);
1450 if (ret) {
1451 mlog_errno(ret);
1452 goto out;
1453 }
1454
1455 /*
1456 * Nothing to do if the requested reservation range
1457 * fits within the inode.
1458 */
1459 if (ocfs2_size_fits_inline_data(di_bh, end))
1460 goto out;
1461
1462 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1463 if (ret) {
1464 mlog_errno(ret);
1465 goto out;
1466 }
1467 }
1468
1469 /*
1470 * We consider both start and len to be inclusive.
1471 */
1472 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1473 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1474 clusters -= cpos;
1475
1476 while (clusters) {
1477 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1478 &alloc_size, NULL);
1479 if (ret) {
1480 mlog_errno(ret);
1481 goto out;
1482 }
1483
1484 /*
1485 * Hole or existing extent len can be arbitrary, so
1486 * cap it to our own allocation request.
1487 */
1488 if (alloc_size > clusters)
1489 alloc_size = clusters;
1490
1491 if (phys_cpos) {
1492 /*
1493 * We already have an allocation at this
1494 * region so we can safely skip it.
1495 */
1496 goto next;
1497 }
1498
1499 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1500 if (ret) {
1501 if (ret != -ENOSPC)
1502 mlog_errno(ret);
1503 goto out;
1504 }
1505
1506 next:
1507 cpos += alloc_size;
1508 clusters -= alloc_size;
1509 }
1510
1511 ret = 0;
1512 out:
1513
1514 brelse(di_bh);
1515 return ret;
1516 }
1517
1518 /*
1519 * Truncate a byte range, avoiding pages within partial clusters. This
1520 * preserves those pages for the zeroing code to write to.
1521 */
ocfs2_truncate_cluster_pages(struct inode * inode,u64 byte_start,u64 byte_len)1522 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1523 u64 byte_len)
1524 {
1525 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1526 loff_t start, end;
1527 struct address_space *mapping = inode->i_mapping;
1528
1529 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1530 end = byte_start + byte_len;
1531 end = end & ~(osb->s_clustersize - 1);
1532
1533 if (start < end) {
1534 unmap_mapping_range(mapping, start, end - start, 0);
1535 truncate_inode_pages_range(mapping, start, end - 1);
1536 }
1537 }
1538
1539 /*
1540 * zero out partial blocks of one cluster.
1541 *
1542 * start: file offset where zero starts, will be made upper block aligned.
1543 * len: it will be trimmed to the end of current cluster if "start + len"
1544 * is bigger than it.
1545 */
ocfs2_zeroout_partial_cluster(struct inode * inode,u64 start,u64 len)1546 static int ocfs2_zeroout_partial_cluster(struct inode *inode,
1547 u64 start, u64 len)
1548 {
1549 int ret;
1550 u64 start_block, end_block, nr_blocks;
1551 u64 p_block, offset;
1552 u32 cluster, p_cluster, nr_clusters;
1553 struct super_block *sb = inode->i_sb;
1554 u64 end = ocfs2_align_bytes_to_clusters(sb, start);
1555
1556 if (start + len < end)
1557 end = start + len;
1558
1559 start_block = ocfs2_blocks_for_bytes(sb, start);
1560 end_block = ocfs2_blocks_for_bytes(sb, end);
1561 nr_blocks = end_block - start_block;
1562 if (!nr_blocks)
1563 return 0;
1564
1565 cluster = ocfs2_bytes_to_clusters(sb, start);
1566 ret = ocfs2_get_clusters(inode, cluster, &p_cluster,
1567 &nr_clusters, NULL);
1568 if (ret)
1569 return ret;
1570 if (!p_cluster)
1571 return 0;
1572
1573 offset = start_block - ocfs2_clusters_to_blocks(sb, cluster);
1574 p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset;
1575 return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS);
1576 }
1577
ocfs2_zero_partial_clusters(struct inode * inode,u64 start,u64 len)1578 static int ocfs2_zero_partial_clusters(struct inode *inode,
1579 u64 start, u64 len)
1580 {
1581 int ret = 0;
1582 u64 tmpend = 0;
1583 u64 end = start + len;
1584 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1585 unsigned int csize = osb->s_clustersize;
1586 handle_t *handle;
1587 loff_t isize = i_size_read(inode);
1588
1589 /*
1590 * The "start" and "end" values are NOT necessarily part of
1591 * the range whose allocation is being deleted. Rather, this
1592 * is what the user passed in with the request. We must zero
1593 * partial clusters here. There's no need to worry about
1594 * physical allocation - the zeroing code knows to skip holes.
1595 */
1596 trace_ocfs2_zero_partial_clusters(
1597 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1598 (unsigned long long)start, (unsigned long long)end);
1599
1600 /*
1601 * If both edges are on a cluster boundary then there's no
1602 * zeroing required as the region is part of the allocation to
1603 * be truncated.
1604 */
1605 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1606 goto out;
1607
1608 /* No page cache for EOF blocks, issue zero out to disk. */
1609 if (end > isize) {
1610 /*
1611 * zeroout eof blocks in last cluster starting from
1612 * "isize" even "start" > "isize" because it is
1613 * complicated to zeroout just at "start" as "start"
1614 * may be not aligned with block size, buffer write
1615 * would be required to do that, but out of eof buffer
1616 * write is not supported.
1617 */
1618 ret = ocfs2_zeroout_partial_cluster(inode, isize,
1619 end - isize);
1620 if (ret) {
1621 mlog_errno(ret);
1622 goto out;
1623 }
1624 if (start >= isize)
1625 goto out;
1626 end = isize;
1627 }
1628 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1629 if (IS_ERR(handle)) {
1630 ret = PTR_ERR(handle);
1631 mlog_errno(ret);
1632 goto out;
1633 }
1634
1635 /*
1636 * If start is on a cluster boundary and end is somewhere in another
1637 * cluster, we have not COWed the cluster starting at start, unless
1638 * end is also within the same cluster. So, in this case, we skip this
1639 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1640 * to the next one.
1641 */
1642 if ((start & (csize - 1)) != 0) {
1643 /*
1644 * We want to get the byte offset of the end of the 1st
1645 * cluster.
1646 */
1647 tmpend = (u64)osb->s_clustersize +
1648 (start & ~(osb->s_clustersize - 1));
1649 if (tmpend > end)
1650 tmpend = end;
1651
1652 trace_ocfs2_zero_partial_clusters_range1(
1653 (unsigned long long)start,
1654 (unsigned long long)tmpend);
1655
1656 ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1657 tmpend);
1658 if (ret)
1659 mlog_errno(ret);
1660 }
1661
1662 if (tmpend < end) {
1663 /*
1664 * This may make start and end equal, but the zeroing
1665 * code will skip any work in that case so there's no
1666 * need to catch it up here.
1667 */
1668 start = end & ~(osb->s_clustersize - 1);
1669
1670 trace_ocfs2_zero_partial_clusters_range2(
1671 (unsigned long long)start, (unsigned long long)end);
1672
1673 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1674 if (ret)
1675 mlog_errno(ret);
1676 }
1677 ocfs2_update_inode_fsync_trans(handle, inode, 1);
1678
1679 ocfs2_commit_trans(osb, handle);
1680 out:
1681 return ret;
1682 }
1683
ocfs2_find_rec(struct ocfs2_extent_list * el,u32 pos)1684 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1685 {
1686 int i;
1687 struct ocfs2_extent_rec *rec = NULL;
1688
1689 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1690
1691 rec = &el->l_recs[i];
1692
1693 if (le32_to_cpu(rec->e_cpos) < pos)
1694 break;
1695 }
1696
1697 return i;
1698 }
1699
1700 /*
1701 * Helper to calculate the punching pos and length in one run, we handle the
1702 * following three cases in order:
1703 *
1704 * - remove the entire record
1705 * - remove a partial record
1706 * - no record needs to be removed (hole-punching completed)
1707 */
ocfs2_calc_trunc_pos(struct inode * inode,struct ocfs2_extent_list * el,struct ocfs2_extent_rec * rec,u32 trunc_start,u32 * trunc_cpos,u32 * trunc_len,u32 * trunc_end,u64 * blkno,int * done)1708 static void ocfs2_calc_trunc_pos(struct inode *inode,
1709 struct ocfs2_extent_list *el,
1710 struct ocfs2_extent_rec *rec,
1711 u32 trunc_start, u32 *trunc_cpos,
1712 u32 *trunc_len, u32 *trunc_end,
1713 u64 *blkno, int *done)
1714 {
1715 int ret = 0;
1716 u32 coff, range;
1717
1718 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1719
1720 if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1721 /*
1722 * remove an entire extent record.
1723 */
1724 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1725 /*
1726 * Skip holes if any.
1727 */
1728 if (range < *trunc_end)
1729 *trunc_end = range;
1730 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1731 *blkno = le64_to_cpu(rec->e_blkno);
1732 *trunc_end = le32_to_cpu(rec->e_cpos);
1733 } else if (range > trunc_start) {
1734 /*
1735 * remove a partial extent record, which means we're
1736 * removing the last extent record.
1737 */
1738 *trunc_cpos = trunc_start;
1739 /*
1740 * skip hole if any.
1741 */
1742 if (range < *trunc_end)
1743 *trunc_end = range;
1744 *trunc_len = *trunc_end - trunc_start;
1745 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1746 *blkno = le64_to_cpu(rec->e_blkno) +
1747 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1748 *trunc_end = trunc_start;
1749 } else {
1750 /*
1751 * It may have two following possibilities:
1752 *
1753 * - last record has been removed
1754 * - trunc_start was within a hole
1755 *
1756 * both two cases mean the completion of hole punching.
1757 */
1758 ret = 1;
1759 }
1760
1761 *done = ret;
1762 }
1763
ocfs2_remove_inode_range(struct inode * inode,struct buffer_head * di_bh,u64 byte_start,u64 byte_len)1764 static int ocfs2_remove_inode_range(struct inode *inode,
1765 struct buffer_head *di_bh, u64 byte_start,
1766 u64 byte_len)
1767 {
1768 int ret = 0, flags = 0, done = 0, i;
1769 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1770 u32 cluster_in_el;
1771 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1772 struct ocfs2_cached_dealloc_ctxt dealloc;
1773 struct address_space *mapping = inode->i_mapping;
1774 struct ocfs2_extent_tree et;
1775 struct ocfs2_path *path = NULL;
1776 struct ocfs2_extent_list *el = NULL;
1777 struct ocfs2_extent_rec *rec = NULL;
1778 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1779 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1780
1781 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1782 ocfs2_init_dealloc_ctxt(&dealloc);
1783
1784 trace_ocfs2_remove_inode_range(
1785 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1786 (unsigned long long)byte_start,
1787 (unsigned long long)byte_len);
1788
1789 if (byte_len == 0)
1790 return 0;
1791
1792 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1793 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1794 byte_start + byte_len, 0);
1795 if (ret) {
1796 mlog_errno(ret);
1797 goto out;
1798 }
1799 /*
1800 * There's no need to get fancy with the page cache
1801 * truncate of an inline-data inode. We're talking
1802 * about less than a page here, which will be cached
1803 * in the dinode buffer anyway.
1804 */
1805 unmap_mapping_range(mapping, 0, 0, 0);
1806 truncate_inode_pages(mapping, 0);
1807 goto out;
1808 }
1809
1810 /*
1811 * For reflinks, we may need to CoW 2 clusters which might be
1812 * partially zero'd later, if hole's start and end offset were
1813 * within one cluster(means is not exactly aligned to clustersize).
1814 */
1815
1816 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1817
1818 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1819 if (ret) {
1820 mlog_errno(ret);
1821 goto out;
1822 }
1823
1824 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1825 if (ret) {
1826 mlog_errno(ret);
1827 goto out;
1828 }
1829 }
1830
1831 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1832 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1833 cluster_in_el = trunc_end;
1834
1835 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1836 if (ret) {
1837 mlog_errno(ret);
1838 goto out;
1839 }
1840
1841 path = ocfs2_new_path_from_et(&et);
1842 if (!path) {
1843 ret = -ENOMEM;
1844 mlog_errno(ret);
1845 goto out;
1846 }
1847
1848 while (trunc_end > trunc_start) {
1849
1850 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1851 cluster_in_el);
1852 if (ret) {
1853 mlog_errno(ret);
1854 goto out;
1855 }
1856
1857 el = path_leaf_el(path);
1858
1859 i = ocfs2_find_rec(el, trunc_end);
1860 /*
1861 * Need to go to previous extent block.
1862 */
1863 if (i < 0) {
1864 if (path->p_tree_depth == 0)
1865 break;
1866
1867 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1868 path,
1869 &cluster_in_el);
1870 if (ret) {
1871 mlog_errno(ret);
1872 goto out;
1873 }
1874
1875 /*
1876 * We've reached the leftmost extent block,
1877 * it's safe to leave.
1878 */
1879 if (cluster_in_el == 0)
1880 break;
1881
1882 /*
1883 * The 'pos' searched for previous extent block is
1884 * always one cluster less than actual trunc_end.
1885 */
1886 trunc_end = cluster_in_el + 1;
1887
1888 ocfs2_reinit_path(path, 1);
1889
1890 continue;
1891
1892 } else
1893 rec = &el->l_recs[i];
1894
1895 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1896 &trunc_len, &trunc_end, &blkno, &done);
1897 if (done)
1898 break;
1899
1900 flags = rec->e_flags;
1901 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1902
1903 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1904 phys_cpos, trunc_len, flags,
1905 &dealloc, refcount_loc, false);
1906 if (ret < 0) {
1907 mlog_errno(ret);
1908 goto out;
1909 }
1910
1911 cluster_in_el = trunc_end;
1912
1913 ocfs2_reinit_path(path, 1);
1914 }
1915
1916 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1917
1918 out:
1919 ocfs2_free_path(path);
1920 ocfs2_schedule_truncate_log_flush(osb, 1);
1921 ocfs2_run_deallocs(osb, &dealloc);
1922
1923 return ret;
1924 }
1925
1926 /*
1927 * Parts of this function taken from xfs_change_file_space()
1928 */
__ocfs2_change_file_space(struct file * file,struct inode * inode,loff_t f_pos,unsigned int cmd,struct ocfs2_space_resv * sr,int change_size)1929 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1930 loff_t f_pos, unsigned int cmd,
1931 struct ocfs2_space_resv *sr,
1932 int change_size)
1933 {
1934 int ret;
1935 s64 llen;
1936 loff_t size, orig_isize;
1937 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1938 struct buffer_head *di_bh = NULL;
1939 handle_t *handle;
1940 unsigned long long max_off = inode->i_sb->s_maxbytes;
1941
1942 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1943 return -EROFS;
1944
1945 mutex_lock(&inode->i_mutex);
1946
1947 /*
1948 * This prevents concurrent writes on other nodes
1949 */
1950 ret = ocfs2_rw_lock(inode, 1);
1951 if (ret) {
1952 mlog_errno(ret);
1953 goto out;
1954 }
1955
1956 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1957 if (ret) {
1958 mlog_errno(ret);
1959 goto out_rw_unlock;
1960 }
1961
1962 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1963 ret = -EPERM;
1964 goto out_inode_unlock;
1965 }
1966
1967 switch (sr->l_whence) {
1968 case 0: /*SEEK_SET*/
1969 break;
1970 case 1: /*SEEK_CUR*/
1971 sr->l_start += f_pos;
1972 break;
1973 case 2: /*SEEK_END*/
1974 sr->l_start += i_size_read(inode);
1975 break;
1976 default:
1977 ret = -EINVAL;
1978 goto out_inode_unlock;
1979 }
1980 sr->l_whence = 0;
1981
1982 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1983
1984 if (sr->l_start < 0
1985 || sr->l_start > max_off
1986 || (sr->l_start + llen) < 0
1987 || (sr->l_start + llen) > max_off) {
1988 ret = -EINVAL;
1989 goto out_inode_unlock;
1990 }
1991 size = sr->l_start + sr->l_len;
1992
1993 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1994 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1995 if (sr->l_len <= 0) {
1996 ret = -EINVAL;
1997 goto out_inode_unlock;
1998 }
1999 }
2000
2001 if (file && should_remove_suid(file->f_path.dentry)) {
2002 ret = __ocfs2_write_remove_suid(inode, di_bh);
2003 if (ret) {
2004 mlog_errno(ret);
2005 goto out_inode_unlock;
2006 }
2007 }
2008
2009 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2010 switch (cmd) {
2011 case OCFS2_IOC_RESVSP:
2012 case OCFS2_IOC_RESVSP64:
2013 /*
2014 * This takes unsigned offsets, but the signed ones we
2015 * pass have been checked against overflow above.
2016 */
2017 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
2018 sr->l_len);
2019 break;
2020 case OCFS2_IOC_UNRESVSP:
2021 case OCFS2_IOC_UNRESVSP64:
2022 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
2023 sr->l_len);
2024 break;
2025 default:
2026 ret = -EINVAL;
2027 }
2028
2029 orig_isize = i_size_read(inode);
2030 /* zeroout eof blocks in the cluster. */
2031 if (!ret && change_size && orig_isize < size) {
2032 ret = ocfs2_zeroout_partial_cluster(inode, orig_isize,
2033 size - orig_isize);
2034 if (!ret)
2035 i_size_write(inode, size);
2036 }
2037 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2038 if (ret) {
2039 mlog_errno(ret);
2040 goto out_inode_unlock;
2041 }
2042
2043 /*
2044 * We update c/mtime for these changes
2045 */
2046 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
2047 if (IS_ERR(handle)) {
2048 ret = PTR_ERR(handle);
2049 mlog_errno(ret);
2050 goto out_inode_unlock;
2051 }
2052
2053 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
2054 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
2055 if (ret < 0)
2056 mlog_errno(ret);
2057
2058 if (file && (file->f_flags & O_SYNC))
2059 handle->h_sync = 1;
2060
2061 ocfs2_commit_trans(osb, handle);
2062
2063 out_inode_unlock:
2064 brelse(di_bh);
2065 ocfs2_inode_unlock(inode, 1);
2066 out_rw_unlock:
2067 ocfs2_rw_unlock(inode, 1);
2068
2069 out:
2070 mutex_unlock(&inode->i_mutex);
2071 return ret;
2072 }
2073
ocfs2_change_file_space(struct file * file,unsigned int cmd,struct ocfs2_space_resv * sr)2074 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
2075 struct ocfs2_space_resv *sr)
2076 {
2077 struct inode *inode = file_inode(file);
2078 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2079 int ret;
2080
2081 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2082 !ocfs2_writes_unwritten_extents(osb))
2083 return -ENOTTY;
2084 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2085 !ocfs2_sparse_alloc(osb))
2086 return -ENOTTY;
2087
2088 if (!S_ISREG(inode->i_mode))
2089 return -EINVAL;
2090
2091 if (!(file->f_mode & FMODE_WRITE))
2092 return -EBADF;
2093
2094 ret = mnt_want_write_file(file);
2095 if (ret)
2096 return ret;
2097 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2098 mnt_drop_write_file(file);
2099 return ret;
2100 }
2101
ocfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2102 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2103 loff_t len)
2104 {
2105 struct inode *inode = file_inode(file);
2106 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2107 struct ocfs2_space_resv sr;
2108 int change_size = 1;
2109 int cmd = OCFS2_IOC_RESVSP64;
2110
2111 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2112 return -EOPNOTSUPP;
2113 if (!ocfs2_writes_unwritten_extents(osb))
2114 return -EOPNOTSUPP;
2115
2116 if (mode & FALLOC_FL_KEEP_SIZE)
2117 change_size = 0;
2118
2119 if (mode & FALLOC_FL_PUNCH_HOLE)
2120 cmd = OCFS2_IOC_UNRESVSP64;
2121
2122 sr.l_whence = 0;
2123 sr.l_start = (s64)offset;
2124 sr.l_len = (s64)len;
2125
2126 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2127 change_size);
2128 }
2129
ocfs2_check_range_for_refcount(struct inode * inode,loff_t pos,size_t count)2130 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2131 size_t count)
2132 {
2133 int ret = 0;
2134 unsigned int extent_flags;
2135 u32 cpos, clusters, extent_len, phys_cpos;
2136 struct super_block *sb = inode->i_sb;
2137
2138 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2139 !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2140 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2141 return 0;
2142
2143 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2144 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2145
2146 while (clusters) {
2147 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2148 &extent_flags);
2149 if (ret < 0) {
2150 mlog_errno(ret);
2151 goto out;
2152 }
2153
2154 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2155 ret = 1;
2156 break;
2157 }
2158
2159 if (extent_len > clusters)
2160 extent_len = clusters;
2161
2162 clusters -= extent_len;
2163 cpos += extent_len;
2164 }
2165 out:
2166 return ret;
2167 }
2168
ocfs2_is_io_unaligned(struct inode * inode,size_t count,loff_t pos)2169 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2170 {
2171 int blockmask = inode->i_sb->s_blocksize - 1;
2172 loff_t final_size = pos + count;
2173
2174 if ((pos & blockmask) || (final_size & blockmask))
2175 return 1;
2176 return 0;
2177 }
2178
ocfs2_prepare_inode_for_refcount(struct inode * inode,struct file * file,loff_t pos,size_t count,int * meta_level)2179 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2180 struct file *file,
2181 loff_t pos, size_t count,
2182 int *meta_level)
2183 {
2184 int ret;
2185 struct buffer_head *di_bh = NULL;
2186 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2187 u32 clusters =
2188 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2189
2190 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2191 if (ret) {
2192 mlog_errno(ret);
2193 goto out;
2194 }
2195
2196 *meta_level = 1;
2197
2198 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2199 if (ret)
2200 mlog_errno(ret);
2201 out:
2202 brelse(di_bh);
2203 return ret;
2204 }
2205
ocfs2_prepare_inode_for_write(struct file * file,loff_t pos,size_t count,int appending,int * direct_io,int * has_refcount)2206 static int ocfs2_prepare_inode_for_write(struct file *file,
2207 loff_t pos,
2208 size_t count,
2209 int appending,
2210 int *direct_io,
2211 int *has_refcount)
2212 {
2213 int ret = 0, meta_level = 0;
2214 struct dentry *dentry = file->f_path.dentry;
2215 struct inode *inode = d_inode(dentry);
2216 loff_t end;
2217 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2218 int full_coherency = !(osb->s_mount_opt &
2219 OCFS2_MOUNT_COHERENCY_BUFFERED);
2220
2221 /*
2222 * We start with a read level meta lock and only jump to an ex
2223 * if we need to make modifications here.
2224 */
2225 for(;;) {
2226 ret = ocfs2_inode_lock(inode, NULL, meta_level);
2227 if (ret < 0) {
2228 meta_level = -1;
2229 mlog_errno(ret);
2230 goto out;
2231 }
2232
2233 /* Clear suid / sgid if necessary. We do this here
2234 * instead of later in the write path because
2235 * remove_suid() calls ->setattr without any hint that
2236 * we may have already done our cluster locking. Since
2237 * ocfs2_setattr() *must* take cluster locks to
2238 * proceed, this will lead us to recursively lock the
2239 * inode. There's also the dinode i_size state which
2240 * can be lost via setattr during extending writes (we
2241 * set inode->i_size at the end of a write. */
2242 if (should_remove_suid(dentry)) {
2243 if (meta_level == 0) {
2244 ocfs2_inode_unlock(inode, meta_level);
2245 meta_level = 1;
2246 continue;
2247 }
2248
2249 ret = ocfs2_write_remove_suid(inode);
2250 if (ret < 0) {
2251 mlog_errno(ret);
2252 goto out_unlock;
2253 }
2254 }
2255
2256 end = pos + count;
2257
2258 ret = ocfs2_check_range_for_refcount(inode, pos, count);
2259 if (ret == 1) {
2260 ocfs2_inode_unlock(inode, meta_level);
2261 meta_level = -1;
2262
2263 ret = ocfs2_prepare_inode_for_refcount(inode,
2264 file,
2265 pos,
2266 count,
2267 &meta_level);
2268 if (has_refcount)
2269 *has_refcount = 1;
2270 if (direct_io)
2271 *direct_io = 0;
2272 }
2273
2274 if (ret < 0) {
2275 mlog_errno(ret);
2276 goto out_unlock;
2277 }
2278
2279 /*
2280 * Skip the O_DIRECT checks if we don't need
2281 * them.
2282 */
2283 if (!direct_io || !(*direct_io))
2284 break;
2285
2286 /*
2287 * There's no sane way to do direct writes to an inode
2288 * with inline data.
2289 */
2290 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2291 *direct_io = 0;
2292 break;
2293 }
2294
2295 /*
2296 * Allowing concurrent direct writes means
2297 * i_size changes wouldn't be synchronized, so
2298 * one node could wind up truncating another
2299 * nodes writes.
2300 */
2301 if (end > i_size_read(inode) && !full_coherency) {
2302 *direct_io = 0;
2303 break;
2304 }
2305
2306 /*
2307 * Fallback to old way if the feature bit is not set.
2308 */
2309 if (end > i_size_read(inode) &&
2310 !ocfs2_supports_append_dio(osb)) {
2311 *direct_io = 0;
2312 break;
2313 }
2314
2315 /*
2316 * We don't fill holes during direct io, so
2317 * check for them here. If any are found, the
2318 * caller will have to retake some cluster
2319 * locks and initiate the io as buffered.
2320 */
2321 ret = ocfs2_check_range_for_holes(inode, pos, count);
2322 if (ret == 1) {
2323 /*
2324 * Fallback to old way if the feature bit is not set.
2325 * Otherwise try dio first and then complete the rest
2326 * request through buffer io.
2327 */
2328 if (!ocfs2_supports_append_dio(osb))
2329 *direct_io = 0;
2330 ret = 0;
2331 } else if (ret < 0)
2332 mlog_errno(ret);
2333 break;
2334 }
2335
2336 out_unlock:
2337 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2338 pos, appending, count,
2339 direct_io, has_refcount);
2340
2341 if (meta_level >= 0)
2342 ocfs2_inode_unlock(inode, meta_level);
2343
2344 out:
2345 return ret;
2346 }
2347
ocfs2_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2348 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2349 struct iov_iter *from)
2350 {
2351 int direct_io, appending, rw_level;
2352 int can_do_direct, has_refcount = 0;
2353 ssize_t written = 0;
2354 ssize_t ret;
2355 size_t count = iov_iter_count(from), orig_count;
2356 struct file *file = iocb->ki_filp;
2357 struct inode *inode = file_inode(file);
2358 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2359 int full_coherency = !(osb->s_mount_opt &
2360 OCFS2_MOUNT_COHERENCY_BUFFERED);
2361 int unaligned_dio = 0;
2362 int dropped_dio = 0;
2363 int append_write = ((iocb->ki_pos + count) >=
2364 i_size_read(inode) ? 1 : 0);
2365
2366 trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2367 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2368 file->f_path.dentry->d_name.len,
2369 file->f_path.dentry->d_name.name,
2370 (unsigned int)from->nr_segs); /* GRRRRR */
2371
2372 if (count == 0)
2373 return 0;
2374
2375 appending = iocb->ki_flags & IOCB_APPEND ? 1 : 0;
2376 direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2377
2378 mutex_lock(&inode->i_mutex);
2379
2380 relock:
2381 /*
2382 * Concurrent O_DIRECT writes are allowed with
2383 * mount_option "coherency=buffered".
2384 * For append write, we must take rw EX.
2385 */
2386 rw_level = (!direct_io || full_coherency || append_write);
2387
2388 ret = ocfs2_rw_lock(inode, rw_level);
2389 if (ret < 0) {
2390 mlog_errno(ret);
2391 goto out_mutex;
2392 }
2393
2394 /*
2395 * O_DIRECT writes with "coherency=full" need to take EX cluster
2396 * inode_lock to guarantee coherency.
2397 */
2398 if (direct_io && full_coherency) {
2399 /*
2400 * We need to take and drop the inode lock to force
2401 * other nodes to drop their caches. Buffered I/O
2402 * already does this in write_begin().
2403 */
2404 ret = ocfs2_inode_lock(inode, NULL, 1);
2405 if (ret < 0) {
2406 mlog_errno(ret);
2407 goto out;
2408 }
2409
2410 ocfs2_inode_unlock(inode, 1);
2411 }
2412
2413 orig_count = iov_iter_count(from);
2414 ret = generic_write_checks(iocb, from);
2415 if (ret <= 0) {
2416 if (ret)
2417 mlog_errno(ret);
2418 goto out;
2419 }
2420 count = ret;
2421
2422 can_do_direct = direct_io;
2423 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, appending,
2424 &can_do_direct, &has_refcount);
2425 if (ret < 0) {
2426 mlog_errno(ret);
2427 goto out;
2428 }
2429
2430 if (direct_io && !is_sync_kiocb(iocb))
2431 unaligned_dio = ocfs2_is_io_unaligned(inode, count, iocb->ki_pos);
2432
2433 /*
2434 * We can't complete the direct I/O as requested, fall back to
2435 * buffered I/O.
2436 */
2437 if (direct_io && !can_do_direct) {
2438 ocfs2_rw_unlock(inode, rw_level);
2439
2440 rw_level = -1;
2441
2442 direct_io = 0;
2443 iocb->ki_flags &= ~IOCB_DIRECT;
2444 iov_iter_reexpand(from, orig_count);
2445 dropped_dio = 1;
2446 goto relock;
2447 }
2448
2449 if (unaligned_dio) {
2450 /*
2451 * Wait on previous unaligned aio to complete before
2452 * proceeding.
2453 */
2454 mutex_lock(&OCFS2_I(inode)->ip_unaligned_aio);
2455 /* Mark the iocb as needing an unlock in ocfs2_dio_end_io */
2456 ocfs2_iocb_set_unaligned_aio(iocb);
2457 }
2458
2459 /* communicate with ocfs2_dio_end_io */
2460 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2461
2462 written = __generic_file_write_iter(iocb, from);
2463 /* buffered aio wouldn't have proper lock coverage today */
2464 BUG_ON(written == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2465
2466 /*
2467 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2468 * function pointer which is called when o_direct io completes so that
2469 * it can unlock our rw lock.
2470 * Unfortunately there are error cases which call end_io and others
2471 * that don't. so we don't have to unlock the rw_lock if either an
2472 * async dio is going to do it in the future or an end_io after an
2473 * error has already done it.
2474 */
2475 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2476 rw_level = -1;
2477 unaligned_dio = 0;
2478 }
2479
2480 if (unlikely(written <= 0))
2481 goto no_sync;
2482
2483 if (((file->f_flags & O_DSYNC) && !direct_io) ||
2484 IS_SYNC(inode) || dropped_dio) {
2485 ret = filemap_fdatawrite_range(file->f_mapping,
2486 iocb->ki_pos - written,
2487 iocb->ki_pos - 1);
2488 if (ret < 0)
2489 written = ret;
2490
2491 if (!ret) {
2492 ret = jbd2_journal_force_commit(osb->journal->j_journal);
2493 if (ret < 0)
2494 written = ret;
2495 }
2496
2497 if (!ret)
2498 ret = filemap_fdatawait_range(file->f_mapping,
2499 iocb->ki_pos - written,
2500 iocb->ki_pos - 1);
2501 }
2502
2503 no_sync:
2504 if (unaligned_dio && ocfs2_iocb_is_unaligned_aio(iocb)) {
2505 ocfs2_iocb_clear_unaligned_aio(iocb);
2506 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
2507 }
2508
2509 out:
2510 if (rw_level != -1)
2511 ocfs2_rw_unlock(inode, rw_level);
2512
2513 out_mutex:
2514 mutex_unlock(&inode->i_mutex);
2515
2516 if (written)
2517 ret = written;
2518 return ret;
2519 }
2520
ocfs2_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2521 static ssize_t ocfs2_file_splice_read(struct file *in,
2522 loff_t *ppos,
2523 struct pipe_inode_info *pipe,
2524 size_t len,
2525 unsigned int flags)
2526 {
2527 int ret = 0, lock_level = 0;
2528 struct inode *inode = file_inode(in);
2529
2530 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2531 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2532 in->f_path.dentry->d_name.len,
2533 in->f_path.dentry->d_name.name, len);
2534
2535 /*
2536 * See the comment in ocfs2_file_read_iter()
2537 */
2538 ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level);
2539 if (ret < 0) {
2540 mlog_errno(ret);
2541 goto bail;
2542 }
2543 ocfs2_inode_unlock(inode, lock_level);
2544
2545 ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2546
2547 bail:
2548 return ret;
2549 }
2550
ocfs2_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2551 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2552 struct iov_iter *to)
2553 {
2554 int ret = 0, rw_level = -1, lock_level = 0;
2555 struct file *filp = iocb->ki_filp;
2556 struct inode *inode = file_inode(filp);
2557
2558 trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2559 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2560 filp->f_path.dentry->d_name.len,
2561 filp->f_path.dentry->d_name.name,
2562 to->nr_segs); /* GRRRRR */
2563
2564
2565 if (!inode) {
2566 ret = -EINVAL;
2567 mlog_errno(ret);
2568 goto bail;
2569 }
2570
2571 /*
2572 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2573 * need locks to protect pending reads from racing with truncate.
2574 */
2575 if (iocb->ki_flags & IOCB_DIRECT) {
2576 ret = ocfs2_rw_lock(inode, 0);
2577 if (ret < 0) {
2578 mlog_errno(ret);
2579 goto bail;
2580 }
2581 rw_level = 0;
2582 /* communicate with ocfs2_dio_end_io */
2583 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2584 }
2585
2586 /*
2587 * We're fine letting folks race truncates and extending
2588 * writes with read across the cluster, just like they can
2589 * locally. Hence no rw_lock during read.
2590 *
2591 * Take and drop the meta data lock to update inode fields
2592 * like i_size. This allows the checks down below
2593 * generic_file_aio_read() a chance of actually working.
2594 */
2595 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level);
2596 if (ret < 0) {
2597 mlog_errno(ret);
2598 goto bail;
2599 }
2600 ocfs2_inode_unlock(inode, lock_level);
2601
2602 ret = generic_file_read_iter(iocb, to);
2603 trace_generic_file_aio_read_ret(ret);
2604
2605 /* buffered aio wouldn't have proper lock coverage today */
2606 BUG_ON(ret == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2607
2608 /* see ocfs2_file_write_iter */
2609 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2610 rw_level = -1;
2611 }
2612
2613 bail:
2614 if (rw_level != -1)
2615 ocfs2_rw_unlock(inode, rw_level);
2616
2617 return ret;
2618 }
2619
2620 /* Refer generic_file_llseek_unlocked() */
ocfs2_file_llseek(struct file * file,loff_t offset,int whence)2621 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2622 {
2623 struct inode *inode = file->f_mapping->host;
2624 int ret = 0;
2625
2626 mutex_lock(&inode->i_mutex);
2627
2628 switch (whence) {
2629 case SEEK_SET:
2630 break;
2631 case SEEK_END:
2632 /* SEEK_END requires the OCFS2 inode lock for the file
2633 * because it references the file's size.
2634 */
2635 ret = ocfs2_inode_lock(inode, NULL, 0);
2636 if (ret < 0) {
2637 mlog_errno(ret);
2638 goto out;
2639 }
2640 offset += i_size_read(inode);
2641 ocfs2_inode_unlock(inode, 0);
2642 break;
2643 case SEEK_CUR:
2644 if (offset == 0) {
2645 offset = file->f_pos;
2646 goto out;
2647 }
2648 offset += file->f_pos;
2649 break;
2650 case SEEK_DATA:
2651 case SEEK_HOLE:
2652 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2653 if (ret)
2654 goto out;
2655 break;
2656 default:
2657 ret = -EINVAL;
2658 goto out;
2659 }
2660
2661 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2662
2663 out:
2664 mutex_unlock(&inode->i_mutex);
2665 if (ret)
2666 return ret;
2667 return offset;
2668 }
2669
2670 const struct inode_operations ocfs2_file_iops = {
2671 .setattr = ocfs2_setattr,
2672 .getattr = ocfs2_getattr,
2673 .permission = ocfs2_permission,
2674 .setxattr = generic_setxattr,
2675 .getxattr = generic_getxattr,
2676 .listxattr = ocfs2_listxattr,
2677 .removexattr = generic_removexattr,
2678 .fiemap = ocfs2_fiemap,
2679 .get_acl = ocfs2_iop_get_acl,
2680 .set_acl = ocfs2_iop_set_acl,
2681 };
2682
2683 const struct inode_operations ocfs2_special_file_iops = {
2684 .setattr = ocfs2_setattr,
2685 .getattr = ocfs2_getattr,
2686 .permission = ocfs2_permission,
2687 .get_acl = ocfs2_iop_get_acl,
2688 .set_acl = ocfs2_iop_set_acl,
2689 };
2690
2691 /*
2692 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2693 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2694 */
2695 const struct file_operations ocfs2_fops = {
2696 .llseek = ocfs2_file_llseek,
2697 .mmap = ocfs2_mmap,
2698 .fsync = ocfs2_sync_file,
2699 .release = ocfs2_file_release,
2700 .open = ocfs2_file_open,
2701 .read_iter = ocfs2_file_read_iter,
2702 .write_iter = ocfs2_file_write_iter,
2703 .unlocked_ioctl = ocfs2_ioctl,
2704 #ifdef CONFIG_COMPAT
2705 .compat_ioctl = ocfs2_compat_ioctl,
2706 #endif
2707 .lock = ocfs2_lock,
2708 .flock = ocfs2_flock,
2709 .splice_read = ocfs2_file_splice_read,
2710 .splice_write = iter_file_splice_write,
2711 .fallocate = ocfs2_fallocate,
2712 };
2713
2714 const struct file_operations ocfs2_dops = {
2715 .llseek = generic_file_llseek,
2716 .read = generic_read_dir,
2717 .iterate = ocfs2_readdir,
2718 .fsync = ocfs2_sync_file,
2719 .release = ocfs2_dir_release,
2720 .open = ocfs2_dir_open,
2721 .unlocked_ioctl = ocfs2_ioctl,
2722 #ifdef CONFIG_COMPAT
2723 .compat_ioctl = ocfs2_compat_ioctl,
2724 #endif
2725 .lock = ocfs2_lock,
2726 .flock = ocfs2_flock,
2727 };
2728
2729 /*
2730 * POSIX-lockless variants of our file_operations.
2731 *
2732 * These will be used if the underlying cluster stack does not support
2733 * posix file locking, if the user passes the "localflocks" mount
2734 * option, or if we have a local-only fs.
2735 *
2736 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2737 * so we still want it in the case of no stack support for
2738 * plocks. Internally, it will do the right thing when asked to ignore
2739 * the cluster.
2740 */
2741 const struct file_operations ocfs2_fops_no_plocks = {
2742 .llseek = ocfs2_file_llseek,
2743 .mmap = ocfs2_mmap,
2744 .fsync = ocfs2_sync_file,
2745 .release = ocfs2_file_release,
2746 .open = ocfs2_file_open,
2747 .read_iter = ocfs2_file_read_iter,
2748 .write_iter = ocfs2_file_write_iter,
2749 .unlocked_ioctl = ocfs2_ioctl,
2750 #ifdef CONFIG_COMPAT
2751 .compat_ioctl = ocfs2_compat_ioctl,
2752 #endif
2753 .flock = ocfs2_flock,
2754 .splice_read = ocfs2_file_splice_read,
2755 .splice_write = iter_file_splice_write,
2756 .fallocate = ocfs2_fallocate,
2757 };
2758
2759 const struct file_operations ocfs2_dops_no_plocks = {
2760 .llseek = generic_file_llseek,
2761 .read = generic_read_dir,
2762 .iterate = ocfs2_readdir,
2763 .fsync = ocfs2_sync_file,
2764 .release = ocfs2_dir_release,
2765 .open = ocfs2_dir_open,
2766 .unlocked_ioctl = ocfs2_ioctl,
2767 #ifdef CONFIG_COMPAT
2768 .compat_ioctl = ocfs2_compat_ioctl,
2769 #endif
2770 .flock = ocfs2_flock,
2771 };
2772