• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * file.c
5  *
6  * File open, close, extend, truncate
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40 #include <linux/backing-dev.h>
41 
42 #include <cluster/masklog.h>
43 
44 #include "ocfs2.h"
45 
46 #include "alloc.h"
47 #include "aops.h"
48 #include "dir.h"
49 #include "dlmglue.h"
50 #include "extent_map.h"
51 #include "file.h"
52 #include "sysfile.h"
53 #include "inode.h"
54 #include "ioctl.h"
55 #include "journal.h"
56 #include "locks.h"
57 #include "mmap.h"
58 #include "suballoc.h"
59 #include "super.h"
60 #include "xattr.h"
61 #include "acl.h"
62 #include "quota.h"
63 #include "refcounttree.h"
64 #include "ocfs2_trace.h"
65 
66 #include "buffer_head_io.h"
67 
ocfs2_init_file_private(struct inode * inode,struct file * file)68 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
69 {
70 	struct ocfs2_file_private *fp;
71 
72 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
73 	if (!fp)
74 		return -ENOMEM;
75 
76 	fp->fp_file = file;
77 	mutex_init(&fp->fp_mutex);
78 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
79 	file->private_data = fp;
80 
81 	return 0;
82 }
83 
ocfs2_free_file_private(struct inode * inode,struct file * file)84 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
85 {
86 	struct ocfs2_file_private *fp = file->private_data;
87 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
88 
89 	if (fp) {
90 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
91 		ocfs2_lock_res_free(&fp->fp_flock);
92 		kfree(fp);
93 		file->private_data = NULL;
94 	}
95 }
96 
ocfs2_file_open(struct inode * inode,struct file * file)97 static int ocfs2_file_open(struct inode *inode, struct file *file)
98 {
99 	int status;
100 	int mode = file->f_flags;
101 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
102 
103 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
104 			      (unsigned long long)OCFS2_I(inode)->ip_blkno,
105 			      file->f_path.dentry->d_name.len,
106 			      file->f_path.dentry->d_name.name, mode);
107 
108 	if (file->f_mode & FMODE_WRITE) {
109 		status = dquot_initialize(inode);
110 		if (status)
111 			goto leave;
112 	}
113 
114 	spin_lock(&oi->ip_lock);
115 
116 	/* Check that the inode hasn't been wiped from disk by another
117 	 * node. If it hasn't then we're safe as long as we hold the
118 	 * spin lock until our increment of open count. */
119 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
120 		spin_unlock(&oi->ip_lock);
121 
122 		status = -ENOENT;
123 		goto leave;
124 	}
125 
126 	if (mode & O_DIRECT)
127 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
128 
129 	oi->ip_open_count++;
130 	spin_unlock(&oi->ip_lock);
131 
132 	status = ocfs2_init_file_private(inode, file);
133 	if (status) {
134 		/*
135 		 * We want to set open count back if we're failing the
136 		 * open.
137 		 */
138 		spin_lock(&oi->ip_lock);
139 		oi->ip_open_count--;
140 		spin_unlock(&oi->ip_lock);
141 	}
142 
143 leave:
144 	return status;
145 }
146 
ocfs2_file_release(struct inode * inode,struct file * file)147 static int ocfs2_file_release(struct inode *inode, struct file *file)
148 {
149 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
150 
151 	spin_lock(&oi->ip_lock);
152 	if (!--oi->ip_open_count)
153 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
154 
155 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
156 				 oi->ip_blkno,
157 				 file->f_path.dentry->d_name.len,
158 				 file->f_path.dentry->d_name.name,
159 				 oi->ip_open_count);
160 	spin_unlock(&oi->ip_lock);
161 
162 	ocfs2_free_file_private(inode, file);
163 
164 	return 0;
165 }
166 
ocfs2_dir_open(struct inode * inode,struct file * file)167 static int ocfs2_dir_open(struct inode *inode, struct file *file)
168 {
169 	return ocfs2_init_file_private(inode, file);
170 }
171 
ocfs2_dir_release(struct inode * inode,struct file * file)172 static int ocfs2_dir_release(struct inode *inode, struct file *file)
173 {
174 	ocfs2_free_file_private(inode, file);
175 	return 0;
176 }
177 
ocfs2_sync_file(struct file * file,loff_t start,loff_t end,int datasync)178 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
179 			   int datasync)
180 {
181 	int err = 0;
182 	struct inode *inode = file->f_mapping->host;
183 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
184 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
185 	journal_t *journal = osb->journal->j_journal;
186 	int ret;
187 	tid_t commit_tid;
188 	bool needs_barrier = false;
189 
190 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
191 			      OCFS2_I(inode)->ip_blkno,
192 			      file->f_path.dentry->d_name.len,
193 			      file->f_path.dentry->d_name.name,
194 			      (unsigned long long)datasync);
195 
196 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
197 		return -EROFS;
198 
199 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
200 	if (err)
201 		return err;
202 
203 	commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
204 	if (journal->j_flags & JBD2_BARRIER &&
205 	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
206 		needs_barrier = true;
207 	err = jbd2_complete_transaction(journal, commit_tid);
208 	if (needs_barrier) {
209 		ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
210 		if (!err)
211 			err = ret;
212 	}
213 
214 	if (err)
215 		mlog_errno(err);
216 
217 	return (err < 0) ? -EIO : 0;
218 }
219 
ocfs2_should_update_atime(struct inode * inode,struct vfsmount * vfsmnt)220 int ocfs2_should_update_atime(struct inode *inode,
221 			      struct vfsmount *vfsmnt)
222 {
223 	struct timespec now;
224 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
225 
226 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
227 		return 0;
228 
229 	if ((inode->i_flags & S_NOATIME) ||
230 	    ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
231 		return 0;
232 
233 	/*
234 	 * We can be called with no vfsmnt structure - NFSD will
235 	 * sometimes do this.
236 	 *
237 	 * Note that our action here is different than touch_atime() -
238 	 * if we can't tell whether this is a noatime mount, then we
239 	 * don't know whether to trust the value of s_atime_quantum.
240 	 */
241 	if (vfsmnt == NULL)
242 		return 0;
243 
244 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
245 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
246 		return 0;
247 
248 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
249 		if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
250 		    (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
251 			return 1;
252 
253 		return 0;
254 	}
255 
256 	now = CURRENT_TIME;
257 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
258 		return 0;
259 	else
260 		return 1;
261 }
262 
ocfs2_update_inode_atime(struct inode * inode,struct buffer_head * bh)263 int ocfs2_update_inode_atime(struct inode *inode,
264 			     struct buffer_head *bh)
265 {
266 	int ret;
267 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
268 	handle_t *handle;
269 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
270 
271 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
272 	if (IS_ERR(handle)) {
273 		ret = PTR_ERR(handle);
274 		mlog_errno(ret);
275 		goto out;
276 	}
277 
278 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
279 				      OCFS2_JOURNAL_ACCESS_WRITE);
280 	if (ret) {
281 		mlog_errno(ret);
282 		goto out_commit;
283 	}
284 
285 	/*
286 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
287 	 * have i_mutex to guard against concurrent changes to other
288 	 * inode fields.
289 	 */
290 	inode->i_atime = CURRENT_TIME;
291 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
292 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
293 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
294 	ocfs2_journal_dirty(handle, bh);
295 
296 out_commit:
297 	ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
298 out:
299 	return ret;
300 }
301 
ocfs2_set_inode_size(handle_t * handle,struct inode * inode,struct buffer_head * fe_bh,u64 new_i_size)302 int ocfs2_set_inode_size(handle_t *handle,
303 				struct inode *inode,
304 				struct buffer_head *fe_bh,
305 				u64 new_i_size)
306 {
307 	int status;
308 
309 	i_size_write(inode, new_i_size);
310 	inode->i_blocks = ocfs2_inode_sector_count(inode);
311 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
312 
313 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
314 	if (status < 0) {
315 		mlog_errno(status);
316 		goto bail;
317 	}
318 
319 bail:
320 	return status;
321 }
322 
ocfs2_simple_size_update(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)323 int ocfs2_simple_size_update(struct inode *inode,
324 			     struct buffer_head *di_bh,
325 			     u64 new_i_size)
326 {
327 	int ret;
328 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
329 	handle_t *handle = NULL;
330 
331 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
332 	if (IS_ERR(handle)) {
333 		ret = PTR_ERR(handle);
334 		mlog_errno(ret);
335 		goto out;
336 	}
337 
338 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
339 				   new_i_size);
340 	if (ret < 0)
341 		mlog_errno(ret);
342 
343 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
344 	ocfs2_commit_trans(osb, handle);
345 out:
346 	return ret;
347 }
348 
ocfs2_cow_file_pos(struct inode * inode,struct buffer_head * fe_bh,u64 offset)349 static int ocfs2_cow_file_pos(struct inode *inode,
350 			      struct buffer_head *fe_bh,
351 			      u64 offset)
352 {
353 	int status;
354 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
355 	unsigned int num_clusters = 0;
356 	unsigned int ext_flags = 0;
357 
358 	/*
359 	 * If the new offset is aligned to the range of the cluster, there is
360 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
361 	 * CoW either.
362 	 */
363 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
364 		return 0;
365 
366 	status = ocfs2_get_clusters(inode, cpos, &phys,
367 				    &num_clusters, &ext_flags);
368 	if (status) {
369 		mlog_errno(status);
370 		goto out;
371 	}
372 
373 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
374 		goto out;
375 
376 	return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
377 
378 out:
379 	return status;
380 }
381 
ocfs2_orphan_for_truncate(struct ocfs2_super * osb,struct inode * inode,struct buffer_head * fe_bh,u64 new_i_size)382 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
383 				     struct inode *inode,
384 				     struct buffer_head *fe_bh,
385 				     u64 new_i_size)
386 {
387 	int status;
388 	handle_t *handle;
389 	struct ocfs2_dinode *di;
390 	u64 cluster_bytes;
391 
392 	/*
393 	 * We need to CoW the cluster contains the offset if it is reflinked
394 	 * since we will call ocfs2_zero_range_for_truncate later which will
395 	 * write "0" from offset to the end of the cluster.
396 	 */
397 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
398 	if (status) {
399 		mlog_errno(status);
400 		return status;
401 	}
402 
403 	/* TODO: This needs to actually orphan the inode in this
404 	 * transaction. */
405 
406 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
407 	if (IS_ERR(handle)) {
408 		status = PTR_ERR(handle);
409 		mlog_errno(status);
410 		goto out;
411 	}
412 
413 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
414 					 OCFS2_JOURNAL_ACCESS_WRITE);
415 	if (status < 0) {
416 		mlog_errno(status);
417 		goto out_commit;
418 	}
419 
420 	/*
421 	 * Do this before setting i_size.
422 	 */
423 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
424 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
425 					       cluster_bytes);
426 	if (status) {
427 		mlog_errno(status);
428 		goto out_commit;
429 	}
430 
431 	i_size_write(inode, new_i_size);
432 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
433 
434 	di = (struct ocfs2_dinode *) fe_bh->b_data;
435 	di->i_size = cpu_to_le64(new_i_size);
436 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
437 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
438 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
439 
440 	ocfs2_journal_dirty(handle, fe_bh);
441 
442 out_commit:
443 	ocfs2_commit_trans(osb, handle);
444 out:
445 	return status;
446 }
447 
ocfs2_truncate_file(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)448 int ocfs2_truncate_file(struct inode *inode,
449 			       struct buffer_head *di_bh,
450 			       u64 new_i_size)
451 {
452 	int status = 0;
453 	struct ocfs2_dinode *fe = NULL;
454 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
455 
456 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
457 	 * already validated it */
458 	fe = (struct ocfs2_dinode *) di_bh->b_data;
459 
460 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
461 				  (unsigned long long)le64_to_cpu(fe->i_size),
462 				  (unsigned long long)new_i_size);
463 
464 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
465 			"Inode %llu, inode i_size = %lld != di "
466 			"i_size = %llu, i_flags = 0x%x\n",
467 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
468 			i_size_read(inode),
469 			(unsigned long long)le64_to_cpu(fe->i_size),
470 			le32_to_cpu(fe->i_flags));
471 
472 	if (new_i_size > le64_to_cpu(fe->i_size)) {
473 		trace_ocfs2_truncate_file_error(
474 			(unsigned long long)le64_to_cpu(fe->i_size),
475 			(unsigned long long)new_i_size);
476 		status = -EINVAL;
477 		mlog_errno(status);
478 		goto bail;
479 	}
480 
481 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
482 
483 	ocfs2_resv_discard(&osb->osb_la_resmap,
484 			   &OCFS2_I(inode)->ip_la_data_resv);
485 
486 	/*
487 	 * The inode lock forced other nodes to sync and drop their
488 	 * pages, which (correctly) happens even if we have a truncate
489 	 * without allocation change - ocfs2 cluster sizes can be much
490 	 * greater than page size, so we have to truncate them
491 	 * anyway.
492 	 */
493 
494 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
495 		unmap_mapping_range(inode->i_mapping,
496 				    new_i_size + PAGE_SIZE - 1, 0, 1);
497 		truncate_inode_pages(inode->i_mapping, new_i_size);
498 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
499 					       i_size_read(inode), 1);
500 		if (status)
501 			mlog_errno(status);
502 
503 		goto bail_unlock_sem;
504 	}
505 
506 	/* alright, we're going to need to do a full blown alloc size
507 	 * change. Orphan the inode so that recovery can complete the
508 	 * truncate if necessary. This does the task of marking
509 	 * i_size. */
510 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
511 	if (status < 0) {
512 		mlog_errno(status);
513 		goto bail_unlock_sem;
514 	}
515 
516 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
517 	truncate_inode_pages(inode->i_mapping, new_i_size);
518 
519 	status = ocfs2_commit_truncate(osb, inode, di_bh);
520 	if (status < 0) {
521 		mlog_errno(status);
522 		goto bail_unlock_sem;
523 	}
524 
525 	/* TODO: orphan dir cleanup here. */
526 bail_unlock_sem:
527 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
528 
529 bail:
530 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
531 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
532 
533 	return status;
534 }
535 
536 /*
537  * extend file allocation only here.
538  * we'll update all the disk stuff, and oip->alloc_size
539  *
540  * expect stuff to be locked, a transaction started and enough data /
541  * metadata reservations in the contexts.
542  *
543  * Will return -EAGAIN, and a reason if a restart is needed.
544  * If passed in, *reason will always be set, even in error.
545  */
ocfs2_add_inode_data(struct ocfs2_super * osb,struct inode * inode,u32 * logical_offset,u32 clusters_to_add,int mark_unwritten,struct buffer_head * fe_bh,handle_t * handle,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,enum ocfs2_alloc_restarted * reason_ret)546 int ocfs2_add_inode_data(struct ocfs2_super *osb,
547 			 struct inode *inode,
548 			 u32 *logical_offset,
549 			 u32 clusters_to_add,
550 			 int mark_unwritten,
551 			 struct buffer_head *fe_bh,
552 			 handle_t *handle,
553 			 struct ocfs2_alloc_context *data_ac,
554 			 struct ocfs2_alloc_context *meta_ac,
555 			 enum ocfs2_alloc_restarted *reason_ret)
556 {
557 	int ret;
558 	struct ocfs2_extent_tree et;
559 
560 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
561 	ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
562 					  clusters_to_add, mark_unwritten,
563 					  data_ac, meta_ac, reason_ret);
564 
565 	return ret;
566 }
567 
__ocfs2_extend_allocation(struct inode * inode,u32 logical_start,u32 clusters_to_add,int mark_unwritten)568 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
569 				     u32 clusters_to_add, int mark_unwritten)
570 {
571 	int status = 0;
572 	int restart_func = 0;
573 	int credits;
574 	u32 prev_clusters;
575 	struct buffer_head *bh = NULL;
576 	struct ocfs2_dinode *fe = NULL;
577 	handle_t *handle = NULL;
578 	struct ocfs2_alloc_context *data_ac = NULL;
579 	struct ocfs2_alloc_context *meta_ac = NULL;
580 	enum ocfs2_alloc_restarted why = RESTART_NONE;
581 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
582 	struct ocfs2_extent_tree et;
583 	int did_quota = 0;
584 
585 	/*
586 	 * Unwritten extent only exists for file systems which
587 	 * support holes.
588 	 */
589 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
590 
591 	status = ocfs2_read_inode_block(inode, &bh);
592 	if (status < 0) {
593 		mlog_errno(status);
594 		goto leave;
595 	}
596 	fe = (struct ocfs2_dinode *) bh->b_data;
597 
598 restart_all:
599 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
600 
601 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
602 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
603 				       &data_ac, &meta_ac);
604 	if (status) {
605 		mlog_errno(status);
606 		goto leave;
607 	}
608 
609 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
610 	handle = ocfs2_start_trans(osb, credits);
611 	if (IS_ERR(handle)) {
612 		status = PTR_ERR(handle);
613 		handle = NULL;
614 		mlog_errno(status);
615 		goto leave;
616 	}
617 
618 restarted_transaction:
619 	trace_ocfs2_extend_allocation(
620 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
621 		(unsigned long long)i_size_read(inode),
622 		le32_to_cpu(fe->i_clusters), clusters_to_add,
623 		why, restart_func);
624 
625 	status = dquot_alloc_space_nodirty(inode,
626 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
627 	if (status)
628 		goto leave;
629 	did_quota = 1;
630 
631 	/* reserve a write to the file entry early on - that we if we
632 	 * run out of credits in the allocation path, we can still
633 	 * update i_size. */
634 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
635 					 OCFS2_JOURNAL_ACCESS_WRITE);
636 	if (status < 0) {
637 		mlog_errno(status);
638 		goto leave;
639 	}
640 
641 	prev_clusters = OCFS2_I(inode)->ip_clusters;
642 
643 	status = ocfs2_add_inode_data(osb,
644 				      inode,
645 				      &logical_start,
646 				      clusters_to_add,
647 				      mark_unwritten,
648 				      bh,
649 				      handle,
650 				      data_ac,
651 				      meta_ac,
652 				      &why);
653 	if ((status < 0) && (status != -EAGAIN)) {
654 		if (status != -ENOSPC)
655 			mlog_errno(status);
656 		goto leave;
657 	}
658 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
659 	ocfs2_journal_dirty(handle, bh);
660 
661 	spin_lock(&OCFS2_I(inode)->ip_lock);
662 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
663 	spin_unlock(&OCFS2_I(inode)->ip_lock);
664 	/* Release unused quota reservation */
665 	dquot_free_space(inode,
666 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
667 	did_quota = 0;
668 
669 	if (why != RESTART_NONE && clusters_to_add) {
670 		if (why == RESTART_META) {
671 			restart_func = 1;
672 			status = 0;
673 		} else {
674 			BUG_ON(why != RESTART_TRANS);
675 
676 			status = ocfs2_allocate_extend_trans(handle, 1);
677 			if (status < 0) {
678 				/* handle still has to be committed at
679 				 * this point. */
680 				status = -ENOMEM;
681 				mlog_errno(status);
682 				goto leave;
683 			}
684 			goto restarted_transaction;
685 		}
686 	}
687 
688 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
689 	     le32_to_cpu(fe->i_clusters),
690 	     (unsigned long long)le64_to_cpu(fe->i_size),
691 	     OCFS2_I(inode)->ip_clusters,
692 	     (unsigned long long)i_size_read(inode));
693 
694 leave:
695 	if (status < 0 && did_quota)
696 		dquot_free_space(inode,
697 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
698 	if (handle) {
699 		ocfs2_commit_trans(osb, handle);
700 		handle = NULL;
701 	}
702 	if (data_ac) {
703 		ocfs2_free_alloc_context(data_ac);
704 		data_ac = NULL;
705 	}
706 	if (meta_ac) {
707 		ocfs2_free_alloc_context(meta_ac);
708 		meta_ac = NULL;
709 	}
710 	if ((!status) && restart_func) {
711 		restart_func = 0;
712 		goto restart_all;
713 	}
714 	brelse(bh);
715 	bh = NULL;
716 
717 	return status;
718 }
719 
ocfs2_extend_allocation(struct inode * inode,u32 logical_start,u32 clusters_to_add,int mark_unwritten)720 int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
721 		u32 clusters_to_add, int mark_unwritten)
722 {
723 	return __ocfs2_extend_allocation(inode, logical_start,
724 			clusters_to_add, mark_unwritten);
725 }
726 
727 /*
728  * While a write will already be ordering the data, a truncate will not.
729  * Thus, we need to explicitly order the zeroed pages.
730  */
ocfs2_zero_start_ordered_transaction(struct inode * inode,struct buffer_head * di_bh)731 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
732 						struct buffer_head *di_bh)
733 {
734 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
735 	handle_t *handle = NULL;
736 	int ret = 0;
737 
738 	if (!ocfs2_should_order_data(inode))
739 		goto out;
740 
741 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
742 	if (IS_ERR(handle)) {
743 		ret = -ENOMEM;
744 		mlog_errno(ret);
745 		goto out;
746 	}
747 
748 	ret = ocfs2_jbd2_file_inode(handle, inode);
749 	if (ret < 0) {
750 		mlog_errno(ret);
751 		goto out;
752 	}
753 
754 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
755 				      OCFS2_JOURNAL_ACCESS_WRITE);
756 	if (ret)
757 		mlog_errno(ret);
758 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
759 
760 out:
761 	if (ret) {
762 		if (!IS_ERR(handle))
763 			ocfs2_commit_trans(osb, handle);
764 		handle = ERR_PTR(ret);
765 	}
766 	return handle;
767 }
768 
769 /* Some parts of this taken from generic_cont_expand, which turned out
770  * to be too fragile to do exactly what we need without us having to
771  * worry about recursive locking in ->write_begin() and ->write_end(). */
ocfs2_write_zero_page(struct inode * inode,u64 abs_from,u64 abs_to,struct buffer_head * di_bh)772 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
773 				 u64 abs_to, struct buffer_head *di_bh)
774 {
775 	struct address_space *mapping = inode->i_mapping;
776 	struct page *page;
777 	unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
778 	handle_t *handle;
779 	int ret = 0;
780 	unsigned zero_from, zero_to, block_start, block_end;
781 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
782 
783 	BUG_ON(abs_from >= abs_to);
784 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
785 	BUG_ON(abs_from & (inode->i_blkbits - 1));
786 
787 	handle = ocfs2_zero_start_ordered_transaction(inode, di_bh);
788 	if (IS_ERR(handle)) {
789 		ret = PTR_ERR(handle);
790 		goto out;
791 	}
792 
793 	page = find_or_create_page(mapping, index, GFP_NOFS);
794 	if (!page) {
795 		ret = -ENOMEM;
796 		mlog_errno(ret);
797 		goto out_commit_trans;
798 	}
799 
800 	/* Get the offsets within the page that we want to zero */
801 	zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
802 	zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
803 	if (!zero_to)
804 		zero_to = PAGE_CACHE_SIZE;
805 
806 	trace_ocfs2_write_zero_page(
807 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
808 			(unsigned long long)abs_from,
809 			(unsigned long long)abs_to,
810 			index, zero_from, zero_to);
811 
812 	/* We know that zero_from is block aligned */
813 	for (block_start = zero_from; block_start < zero_to;
814 	     block_start = block_end) {
815 		block_end = block_start + i_blocksize(inode);
816 
817 		/*
818 		 * block_start is block-aligned.  Bump it by one to force
819 		 * __block_write_begin and block_commit_write to zero the
820 		 * whole block.
821 		 */
822 		ret = __block_write_begin(page, block_start + 1, 0,
823 					  ocfs2_get_block);
824 		if (ret < 0) {
825 			mlog_errno(ret);
826 			goto out_unlock;
827 		}
828 
829 
830 		/* must not update i_size! */
831 		ret = block_commit_write(page, block_start + 1,
832 					 block_start + 1);
833 		if (ret < 0)
834 			mlog_errno(ret);
835 		else
836 			ret = 0;
837 	}
838 
839 	/*
840 	 * fs-writeback will release the dirty pages without page lock
841 	 * whose offset are over inode size, the release happens at
842 	 * block_write_full_page().
843 	 */
844 	i_size_write(inode, abs_to);
845 	inode->i_blocks = ocfs2_inode_sector_count(inode);
846 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
847 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
848 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
849 	di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
850 	di->i_mtime_nsec = di->i_ctime_nsec;
851 	if (handle) {
852 		ocfs2_journal_dirty(handle, di_bh);
853 		ocfs2_update_inode_fsync_trans(handle, inode, 1);
854 	}
855 
856 out_unlock:
857 	unlock_page(page);
858 	page_cache_release(page);
859 out_commit_trans:
860 	if (handle)
861 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
862 out:
863 	return ret;
864 }
865 
866 /*
867  * Find the next range to zero.  We do this in terms of bytes because
868  * that's what ocfs2_zero_extend() wants, and it is dealing with the
869  * pagecache.  We may return multiple extents.
870  *
871  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
872  * needs to be zeroed.  range_start and range_end return the next zeroing
873  * range.  A subsequent call should pass the previous range_end as its
874  * zero_start.  If range_end is 0, there's nothing to do.
875  *
876  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
877  */
ocfs2_zero_extend_get_range(struct inode * inode,struct buffer_head * di_bh,u64 zero_start,u64 zero_end,u64 * range_start,u64 * range_end)878 static int ocfs2_zero_extend_get_range(struct inode *inode,
879 				       struct buffer_head *di_bh,
880 				       u64 zero_start, u64 zero_end,
881 				       u64 *range_start, u64 *range_end)
882 {
883 	int rc = 0, needs_cow = 0;
884 	u32 p_cpos, zero_clusters = 0;
885 	u32 zero_cpos =
886 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
887 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
888 	unsigned int num_clusters = 0;
889 	unsigned int ext_flags = 0;
890 
891 	while (zero_cpos < last_cpos) {
892 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
893 					&num_clusters, &ext_flags);
894 		if (rc) {
895 			mlog_errno(rc);
896 			goto out;
897 		}
898 
899 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
900 			zero_clusters = num_clusters;
901 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
902 				needs_cow = 1;
903 			break;
904 		}
905 
906 		zero_cpos += num_clusters;
907 	}
908 	if (!zero_clusters) {
909 		*range_end = 0;
910 		goto out;
911 	}
912 
913 	while ((zero_cpos + zero_clusters) < last_cpos) {
914 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
915 					&p_cpos, &num_clusters,
916 					&ext_flags);
917 		if (rc) {
918 			mlog_errno(rc);
919 			goto out;
920 		}
921 
922 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
923 			break;
924 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
925 			needs_cow = 1;
926 		zero_clusters += num_clusters;
927 	}
928 	if ((zero_cpos + zero_clusters) > last_cpos)
929 		zero_clusters = last_cpos - zero_cpos;
930 
931 	if (needs_cow) {
932 		rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
933 					zero_clusters, UINT_MAX);
934 		if (rc) {
935 			mlog_errno(rc);
936 			goto out;
937 		}
938 	}
939 
940 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
941 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
942 					     zero_cpos + zero_clusters);
943 
944 out:
945 	return rc;
946 }
947 
948 /*
949  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
950  * has made sure that the entire range needs zeroing.
951  */
ocfs2_zero_extend_range(struct inode * inode,u64 range_start,u64 range_end,struct buffer_head * di_bh)952 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
953 				   u64 range_end, struct buffer_head *di_bh)
954 {
955 	int rc = 0;
956 	u64 next_pos;
957 	u64 zero_pos = range_start;
958 
959 	trace_ocfs2_zero_extend_range(
960 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
961 			(unsigned long long)range_start,
962 			(unsigned long long)range_end);
963 	BUG_ON(range_start >= range_end);
964 
965 	while (zero_pos < range_end) {
966 		next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
967 		if (next_pos > range_end)
968 			next_pos = range_end;
969 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
970 		if (rc < 0) {
971 			mlog_errno(rc);
972 			break;
973 		}
974 		zero_pos = next_pos;
975 
976 		/*
977 		 * Very large extends have the potential to lock up
978 		 * the cpu for extended periods of time.
979 		 */
980 		cond_resched();
981 	}
982 
983 	return rc;
984 }
985 
ocfs2_zero_extend(struct inode * inode,struct buffer_head * di_bh,loff_t zero_to_size)986 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
987 		      loff_t zero_to_size)
988 {
989 	int ret = 0;
990 	u64 zero_start, range_start = 0, range_end = 0;
991 	struct super_block *sb = inode->i_sb;
992 
993 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
994 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
995 				(unsigned long long)zero_start,
996 				(unsigned long long)i_size_read(inode));
997 	while (zero_start < zero_to_size) {
998 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
999 						  zero_to_size,
1000 						  &range_start,
1001 						  &range_end);
1002 		if (ret) {
1003 			mlog_errno(ret);
1004 			break;
1005 		}
1006 		if (!range_end)
1007 			break;
1008 		/* Trim the ends */
1009 		if (range_start < zero_start)
1010 			range_start = zero_start;
1011 		if (range_end > zero_to_size)
1012 			range_end = zero_to_size;
1013 
1014 		ret = ocfs2_zero_extend_range(inode, range_start,
1015 					      range_end, di_bh);
1016 		if (ret) {
1017 			mlog_errno(ret);
1018 			break;
1019 		}
1020 		zero_start = range_end;
1021 	}
1022 
1023 	return ret;
1024 }
1025 
ocfs2_extend_no_holes(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size,u64 zero_to)1026 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1027 			  u64 new_i_size, u64 zero_to)
1028 {
1029 	int ret;
1030 	u32 clusters_to_add;
1031 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1032 
1033 	/*
1034 	 * Only quota files call this without a bh, and they can't be
1035 	 * refcounted.
1036 	 */
1037 	BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1038 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1039 
1040 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1041 	if (clusters_to_add < oi->ip_clusters)
1042 		clusters_to_add = 0;
1043 	else
1044 		clusters_to_add -= oi->ip_clusters;
1045 
1046 	if (clusters_to_add) {
1047 		ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1048 						clusters_to_add, 0);
1049 		if (ret) {
1050 			mlog_errno(ret);
1051 			goto out;
1052 		}
1053 	}
1054 
1055 	/*
1056 	 * Call this even if we don't add any clusters to the tree. We
1057 	 * still need to zero the area between the old i_size and the
1058 	 * new i_size.
1059 	 */
1060 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1061 	if (ret < 0)
1062 		mlog_errno(ret);
1063 
1064 out:
1065 	return ret;
1066 }
1067 
ocfs2_extend_file(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)1068 static int ocfs2_extend_file(struct inode *inode,
1069 			     struct buffer_head *di_bh,
1070 			     u64 new_i_size)
1071 {
1072 	int ret = 0;
1073 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1074 
1075 	BUG_ON(!di_bh);
1076 
1077 	/* setattr sometimes calls us like this. */
1078 	if (new_i_size == 0)
1079 		goto out;
1080 
1081 	if (i_size_read(inode) == new_i_size)
1082 		goto out;
1083 	BUG_ON(new_i_size < i_size_read(inode));
1084 
1085 	/*
1086 	 * The alloc sem blocks people in read/write from reading our
1087 	 * allocation until we're done changing it. We depend on
1088 	 * i_mutex to block other extend/truncate calls while we're
1089 	 * here.  We even have to hold it for sparse files because there
1090 	 * might be some tail zeroing.
1091 	 */
1092 	down_write(&oi->ip_alloc_sem);
1093 
1094 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1095 		/*
1096 		 * We can optimize small extends by keeping the inodes
1097 		 * inline data.
1098 		 */
1099 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1100 			up_write(&oi->ip_alloc_sem);
1101 			goto out_update_size;
1102 		}
1103 
1104 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1105 		if (ret) {
1106 			up_write(&oi->ip_alloc_sem);
1107 			mlog_errno(ret);
1108 			goto out;
1109 		}
1110 	}
1111 
1112 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1113 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1114 	else
1115 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1116 					    new_i_size);
1117 
1118 	up_write(&oi->ip_alloc_sem);
1119 
1120 	if (ret < 0) {
1121 		mlog_errno(ret);
1122 		goto out;
1123 	}
1124 
1125 out_update_size:
1126 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1127 	if (ret < 0)
1128 		mlog_errno(ret);
1129 
1130 out:
1131 	return ret;
1132 }
1133 
ocfs2_setattr(struct dentry * dentry,struct iattr * attr)1134 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1135 {
1136 	int status = 0, size_change;
1137 	int inode_locked = 0;
1138 	struct inode *inode = d_inode(dentry);
1139 	struct super_block *sb = inode->i_sb;
1140 	struct ocfs2_super *osb = OCFS2_SB(sb);
1141 	struct buffer_head *bh = NULL;
1142 	handle_t *handle = NULL;
1143 	struct dquot *transfer_to[MAXQUOTAS] = { };
1144 	int qtype;
1145 
1146 	trace_ocfs2_setattr(inode, dentry,
1147 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1148 			    dentry->d_name.len, dentry->d_name.name,
1149 			    attr->ia_valid, attr->ia_mode,
1150 			    from_kuid(&init_user_ns, attr->ia_uid),
1151 			    from_kgid(&init_user_ns, attr->ia_gid));
1152 
1153 	/* ensuring we don't even attempt to truncate a symlink */
1154 	if (S_ISLNK(inode->i_mode))
1155 		attr->ia_valid &= ~ATTR_SIZE;
1156 
1157 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1158 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1159 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1160 		return 0;
1161 
1162 	status = inode_change_ok(inode, attr);
1163 	if (status)
1164 		return status;
1165 
1166 	if (is_quota_modification(inode, attr)) {
1167 		status = dquot_initialize(inode);
1168 		if (status)
1169 			return status;
1170 	}
1171 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1172 	if (size_change) {
1173 		status = ocfs2_rw_lock(inode, 1);
1174 		if (status < 0) {
1175 			mlog_errno(status);
1176 			goto bail;
1177 		}
1178 	}
1179 
1180 	status = ocfs2_inode_lock(inode, &bh, 1);
1181 	if (status < 0) {
1182 		if (status != -ENOENT)
1183 			mlog_errno(status);
1184 		goto bail_unlock_rw;
1185 	}
1186 	inode_locked = 1;
1187 
1188 	if (size_change) {
1189 		status = inode_newsize_ok(inode, attr->ia_size);
1190 		if (status)
1191 			goto bail_unlock;
1192 
1193 		inode_dio_wait(inode);
1194 
1195 		if (i_size_read(inode) >= attr->ia_size) {
1196 			if (ocfs2_should_order_data(inode)) {
1197 				status = ocfs2_begin_ordered_truncate(inode,
1198 								      attr->ia_size);
1199 				if (status)
1200 					goto bail_unlock;
1201 			}
1202 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1203 		} else
1204 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1205 		if (status < 0) {
1206 			if (status != -ENOSPC)
1207 				mlog_errno(status);
1208 			status = -ENOSPC;
1209 			goto bail_unlock;
1210 		}
1211 	}
1212 
1213 	if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1214 	    (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1215 		/*
1216 		 * Gather pointers to quota structures so that allocation /
1217 		 * freeing of quota structures happens here and not inside
1218 		 * dquot_transfer() where we have problems with lock ordering
1219 		 */
1220 		if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1221 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1222 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1223 			transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1224 			if (IS_ERR(transfer_to[USRQUOTA])) {
1225 				status = PTR_ERR(transfer_to[USRQUOTA]);
1226 				goto bail_unlock;
1227 			}
1228 		}
1229 		if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1230 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1231 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1232 			transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1233 			if (IS_ERR(transfer_to[GRPQUOTA])) {
1234 				status = PTR_ERR(transfer_to[GRPQUOTA]);
1235 				goto bail_unlock;
1236 			}
1237 		}
1238 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1239 					   2 * ocfs2_quota_trans_credits(sb));
1240 		if (IS_ERR(handle)) {
1241 			status = PTR_ERR(handle);
1242 			mlog_errno(status);
1243 			goto bail_unlock;
1244 		}
1245 		status = __dquot_transfer(inode, transfer_to);
1246 		if (status < 0)
1247 			goto bail_commit;
1248 	} else {
1249 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1250 		if (IS_ERR(handle)) {
1251 			status = PTR_ERR(handle);
1252 			mlog_errno(status);
1253 			goto bail_unlock;
1254 		}
1255 	}
1256 
1257 	setattr_copy(inode, attr);
1258 	mark_inode_dirty(inode);
1259 
1260 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1261 	if (status < 0)
1262 		mlog_errno(status);
1263 
1264 bail_commit:
1265 	ocfs2_commit_trans(osb, handle);
1266 bail_unlock:
1267 	if (status) {
1268 		ocfs2_inode_unlock(inode, 1);
1269 		inode_locked = 0;
1270 	}
1271 bail_unlock_rw:
1272 	if (size_change)
1273 		ocfs2_rw_unlock(inode, 1);
1274 bail:
1275 
1276 	/* Release quota pointers in case we acquired them */
1277 	for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1278 		dqput(transfer_to[qtype]);
1279 
1280 	if (!status && attr->ia_valid & ATTR_MODE) {
1281 		status = ocfs2_acl_chmod(inode, bh);
1282 		if (status < 0)
1283 			mlog_errno(status);
1284 	}
1285 	if (inode_locked)
1286 		ocfs2_inode_unlock(inode, 1);
1287 
1288 	brelse(bh);
1289 	return status;
1290 }
1291 
ocfs2_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)1292 int ocfs2_getattr(struct vfsmount *mnt,
1293 		  struct dentry *dentry,
1294 		  struct kstat *stat)
1295 {
1296 	struct inode *inode = d_inode(dentry);
1297 	struct super_block *sb = d_inode(dentry)->i_sb;
1298 	struct ocfs2_super *osb = sb->s_fs_info;
1299 	int err;
1300 
1301 	err = ocfs2_inode_revalidate(dentry);
1302 	if (err) {
1303 		if (err != -ENOENT)
1304 			mlog_errno(err);
1305 		goto bail;
1306 	}
1307 
1308 	generic_fillattr(inode, stat);
1309 
1310 	/* We set the blksize from the cluster size for performance */
1311 	stat->blksize = osb->s_clustersize;
1312 
1313 bail:
1314 	return err;
1315 }
1316 
ocfs2_permission(struct inode * inode,int mask)1317 int ocfs2_permission(struct inode *inode, int mask)
1318 {
1319 	int ret;
1320 
1321 	if (mask & MAY_NOT_BLOCK)
1322 		return -ECHILD;
1323 
1324 	ret = ocfs2_inode_lock(inode, NULL, 0);
1325 	if (ret) {
1326 		if (ret != -ENOENT)
1327 			mlog_errno(ret);
1328 		goto out;
1329 	}
1330 
1331 	ret = generic_permission(inode, mask);
1332 
1333 	ocfs2_inode_unlock(inode, 0);
1334 out:
1335 	return ret;
1336 }
1337 
__ocfs2_write_remove_suid(struct inode * inode,struct buffer_head * bh)1338 static int __ocfs2_write_remove_suid(struct inode *inode,
1339 				     struct buffer_head *bh)
1340 {
1341 	int ret;
1342 	handle_t *handle;
1343 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1344 	struct ocfs2_dinode *di;
1345 
1346 	trace_ocfs2_write_remove_suid(
1347 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1348 			inode->i_mode);
1349 
1350 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1351 	if (IS_ERR(handle)) {
1352 		ret = PTR_ERR(handle);
1353 		mlog_errno(ret);
1354 		goto out;
1355 	}
1356 
1357 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1358 				      OCFS2_JOURNAL_ACCESS_WRITE);
1359 	if (ret < 0) {
1360 		mlog_errno(ret);
1361 		goto out_trans;
1362 	}
1363 
1364 	inode->i_mode &= ~S_ISUID;
1365 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1366 		inode->i_mode &= ~S_ISGID;
1367 
1368 	di = (struct ocfs2_dinode *) bh->b_data;
1369 	di->i_mode = cpu_to_le16(inode->i_mode);
1370 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
1371 
1372 	ocfs2_journal_dirty(handle, bh);
1373 
1374 out_trans:
1375 	ocfs2_commit_trans(osb, handle);
1376 out:
1377 	return ret;
1378 }
1379 
1380 /*
1381  * Will look for holes and unwritten extents in the range starting at
1382  * pos for count bytes (inclusive).
1383  */
ocfs2_check_range_for_holes(struct inode * inode,loff_t pos,size_t count)1384 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1385 				       size_t count)
1386 {
1387 	int ret = 0;
1388 	unsigned int extent_flags;
1389 	u32 cpos, clusters, extent_len, phys_cpos;
1390 	struct super_block *sb = inode->i_sb;
1391 
1392 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1393 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1394 
1395 	while (clusters) {
1396 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1397 					 &extent_flags);
1398 		if (ret < 0) {
1399 			mlog_errno(ret);
1400 			goto out;
1401 		}
1402 
1403 		if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1404 			ret = 1;
1405 			break;
1406 		}
1407 
1408 		if (extent_len > clusters)
1409 			extent_len = clusters;
1410 
1411 		clusters -= extent_len;
1412 		cpos += extent_len;
1413 	}
1414 out:
1415 	return ret;
1416 }
1417 
ocfs2_write_remove_suid(struct inode * inode)1418 static int ocfs2_write_remove_suid(struct inode *inode)
1419 {
1420 	int ret;
1421 	struct buffer_head *bh = NULL;
1422 
1423 	ret = ocfs2_read_inode_block(inode, &bh);
1424 	if (ret < 0) {
1425 		mlog_errno(ret);
1426 		goto out;
1427 	}
1428 
1429 	ret =  __ocfs2_write_remove_suid(inode, bh);
1430 out:
1431 	brelse(bh);
1432 	return ret;
1433 }
1434 
1435 /*
1436  * Allocate enough extents to cover the region starting at byte offset
1437  * start for len bytes. Existing extents are skipped, any extents
1438  * added are marked as "unwritten".
1439  */
ocfs2_allocate_unwritten_extents(struct inode * inode,u64 start,u64 len)1440 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1441 					    u64 start, u64 len)
1442 {
1443 	int ret;
1444 	u32 cpos, phys_cpos, clusters, alloc_size;
1445 	u64 end = start + len;
1446 	struct buffer_head *di_bh = NULL;
1447 
1448 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1449 		ret = ocfs2_read_inode_block(inode, &di_bh);
1450 		if (ret) {
1451 			mlog_errno(ret);
1452 			goto out;
1453 		}
1454 
1455 		/*
1456 		 * Nothing to do if the requested reservation range
1457 		 * fits within the inode.
1458 		 */
1459 		if (ocfs2_size_fits_inline_data(di_bh, end))
1460 			goto out;
1461 
1462 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1463 		if (ret) {
1464 			mlog_errno(ret);
1465 			goto out;
1466 		}
1467 	}
1468 
1469 	/*
1470 	 * We consider both start and len to be inclusive.
1471 	 */
1472 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1473 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1474 	clusters -= cpos;
1475 
1476 	while (clusters) {
1477 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1478 					 &alloc_size, NULL);
1479 		if (ret) {
1480 			mlog_errno(ret);
1481 			goto out;
1482 		}
1483 
1484 		/*
1485 		 * Hole or existing extent len can be arbitrary, so
1486 		 * cap it to our own allocation request.
1487 		 */
1488 		if (alloc_size > clusters)
1489 			alloc_size = clusters;
1490 
1491 		if (phys_cpos) {
1492 			/*
1493 			 * We already have an allocation at this
1494 			 * region so we can safely skip it.
1495 			 */
1496 			goto next;
1497 		}
1498 
1499 		ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1500 		if (ret) {
1501 			if (ret != -ENOSPC)
1502 				mlog_errno(ret);
1503 			goto out;
1504 		}
1505 
1506 next:
1507 		cpos += alloc_size;
1508 		clusters -= alloc_size;
1509 	}
1510 
1511 	ret = 0;
1512 out:
1513 
1514 	brelse(di_bh);
1515 	return ret;
1516 }
1517 
1518 /*
1519  * Truncate a byte range, avoiding pages within partial clusters. This
1520  * preserves those pages for the zeroing code to write to.
1521  */
ocfs2_truncate_cluster_pages(struct inode * inode,u64 byte_start,u64 byte_len)1522 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1523 					 u64 byte_len)
1524 {
1525 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1526 	loff_t start, end;
1527 	struct address_space *mapping = inode->i_mapping;
1528 
1529 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1530 	end = byte_start + byte_len;
1531 	end = end & ~(osb->s_clustersize - 1);
1532 
1533 	if (start < end) {
1534 		unmap_mapping_range(mapping, start, end - start, 0);
1535 		truncate_inode_pages_range(mapping, start, end - 1);
1536 	}
1537 }
1538 
1539 /*
1540  * zero out partial blocks of one cluster.
1541  *
1542  * start: file offset where zero starts, will be made upper block aligned.
1543  * len: it will be trimmed to the end of current cluster if "start + len"
1544  *      is bigger than it.
1545  */
ocfs2_zeroout_partial_cluster(struct inode * inode,u64 start,u64 len)1546 static int ocfs2_zeroout_partial_cluster(struct inode *inode,
1547 					u64 start, u64 len)
1548 {
1549 	int ret;
1550 	u64 start_block, end_block, nr_blocks;
1551 	u64 p_block, offset;
1552 	u32 cluster, p_cluster, nr_clusters;
1553 	struct super_block *sb = inode->i_sb;
1554 	u64 end = ocfs2_align_bytes_to_clusters(sb, start);
1555 
1556 	if (start + len < end)
1557 		end = start + len;
1558 
1559 	start_block = ocfs2_blocks_for_bytes(sb, start);
1560 	end_block = ocfs2_blocks_for_bytes(sb, end);
1561 	nr_blocks = end_block - start_block;
1562 	if (!nr_blocks)
1563 		return 0;
1564 
1565 	cluster = ocfs2_bytes_to_clusters(sb, start);
1566 	ret = ocfs2_get_clusters(inode, cluster, &p_cluster,
1567 				&nr_clusters, NULL);
1568 	if (ret)
1569 		return ret;
1570 	if (!p_cluster)
1571 		return 0;
1572 
1573 	offset = start_block - ocfs2_clusters_to_blocks(sb, cluster);
1574 	p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset;
1575 	return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS);
1576 }
1577 
ocfs2_zero_partial_clusters(struct inode * inode,u64 start,u64 len)1578 static int ocfs2_zero_partial_clusters(struct inode *inode,
1579 				       u64 start, u64 len)
1580 {
1581 	int ret = 0;
1582 	u64 tmpend = 0;
1583 	u64 end = start + len;
1584 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1585 	unsigned int csize = osb->s_clustersize;
1586 	handle_t *handle;
1587 	loff_t isize = i_size_read(inode);
1588 
1589 	/*
1590 	 * The "start" and "end" values are NOT necessarily part of
1591 	 * the range whose allocation is being deleted. Rather, this
1592 	 * is what the user passed in with the request. We must zero
1593 	 * partial clusters here. There's no need to worry about
1594 	 * physical allocation - the zeroing code knows to skip holes.
1595 	 */
1596 	trace_ocfs2_zero_partial_clusters(
1597 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1598 		(unsigned long long)start, (unsigned long long)end);
1599 
1600 	/*
1601 	 * If both edges are on a cluster boundary then there's no
1602 	 * zeroing required as the region is part of the allocation to
1603 	 * be truncated.
1604 	 */
1605 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1606 		goto out;
1607 
1608 	/* No page cache for EOF blocks, issue zero out to disk. */
1609 	if (end > isize) {
1610 		/*
1611 		 * zeroout eof blocks in last cluster starting from
1612 		 * "isize" even "start" > "isize" because it is
1613 		 * complicated to zeroout just at "start" as "start"
1614 		 * may be not aligned with block size, buffer write
1615 		 * would be required to do that, but out of eof buffer
1616 		 * write is not supported.
1617 		 */
1618 		ret = ocfs2_zeroout_partial_cluster(inode, isize,
1619 					end - isize);
1620 		if (ret) {
1621 			mlog_errno(ret);
1622 			goto out;
1623 		}
1624 		if (start >= isize)
1625 			goto out;
1626 		end = isize;
1627 	}
1628 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1629 	if (IS_ERR(handle)) {
1630 		ret = PTR_ERR(handle);
1631 		mlog_errno(ret);
1632 		goto out;
1633 	}
1634 
1635 	/*
1636 	 * If start is on a cluster boundary and end is somewhere in another
1637 	 * cluster, we have not COWed the cluster starting at start, unless
1638 	 * end is also within the same cluster. So, in this case, we skip this
1639 	 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1640 	 * to the next one.
1641 	 */
1642 	if ((start & (csize - 1)) != 0) {
1643 		/*
1644 		 * We want to get the byte offset of the end of the 1st
1645 		 * cluster.
1646 		 */
1647 		tmpend = (u64)osb->s_clustersize +
1648 			(start & ~(osb->s_clustersize - 1));
1649 		if (tmpend > end)
1650 			tmpend = end;
1651 
1652 		trace_ocfs2_zero_partial_clusters_range1(
1653 			(unsigned long long)start,
1654 			(unsigned long long)tmpend);
1655 
1656 		ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1657 						    tmpend);
1658 		if (ret)
1659 			mlog_errno(ret);
1660 	}
1661 
1662 	if (tmpend < end) {
1663 		/*
1664 		 * This may make start and end equal, but the zeroing
1665 		 * code will skip any work in that case so there's no
1666 		 * need to catch it up here.
1667 		 */
1668 		start = end & ~(osb->s_clustersize - 1);
1669 
1670 		trace_ocfs2_zero_partial_clusters_range2(
1671 			(unsigned long long)start, (unsigned long long)end);
1672 
1673 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1674 		if (ret)
1675 			mlog_errno(ret);
1676 	}
1677 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
1678 
1679 	ocfs2_commit_trans(osb, handle);
1680 out:
1681 	return ret;
1682 }
1683 
ocfs2_find_rec(struct ocfs2_extent_list * el,u32 pos)1684 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1685 {
1686 	int i;
1687 	struct ocfs2_extent_rec *rec = NULL;
1688 
1689 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1690 
1691 		rec = &el->l_recs[i];
1692 
1693 		if (le32_to_cpu(rec->e_cpos) < pos)
1694 			break;
1695 	}
1696 
1697 	return i;
1698 }
1699 
1700 /*
1701  * Helper to calculate the punching pos and length in one run, we handle the
1702  * following three cases in order:
1703  *
1704  * - remove the entire record
1705  * - remove a partial record
1706  * - no record needs to be removed (hole-punching completed)
1707 */
ocfs2_calc_trunc_pos(struct inode * inode,struct ocfs2_extent_list * el,struct ocfs2_extent_rec * rec,u32 trunc_start,u32 * trunc_cpos,u32 * trunc_len,u32 * trunc_end,u64 * blkno,int * done)1708 static void ocfs2_calc_trunc_pos(struct inode *inode,
1709 				 struct ocfs2_extent_list *el,
1710 				 struct ocfs2_extent_rec *rec,
1711 				 u32 trunc_start, u32 *trunc_cpos,
1712 				 u32 *trunc_len, u32 *trunc_end,
1713 				 u64 *blkno, int *done)
1714 {
1715 	int ret = 0;
1716 	u32 coff, range;
1717 
1718 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1719 
1720 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1721 		/*
1722 		 * remove an entire extent record.
1723 		 */
1724 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1725 		/*
1726 		 * Skip holes if any.
1727 		 */
1728 		if (range < *trunc_end)
1729 			*trunc_end = range;
1730 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1731 		*blkno = le64_to_cpu(rec->e_blkno);
1732 		*trunc_end = le32_to_cpu(rec->e_cpos);
1733 	} else if (range > trunc_start) {
1734 		/*
1735 		 * remove a partial extent record, which means we're
1736 		 * removing the last extent record.
1737 		 */
1738 		*trunc_cpos = trunc_start;
1739 		/*
1740 		 * skip hole if any.
1741 		 */
1742 		if (range < *trunc_end)
1743 			*trunc_end = range;
1744 		*trunc_len = *trunc_end - trunc_start;
1745 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1746 		*blkno = le64_to_cpu(rec->e_blkno) +
1747 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1748 		*trunc_end = trunc_start;
1749 	} else {
1750 		/*
1751 		 * It may have two following possibilities:
1752 		 *
1753 		 * - last record has been removed
1754 		 * - trunc_start was within a hole
1755 		 *
1756 		 * both two cases mean the completion of hole punching.
1757 		 */
1758 		ret = 1;
1759 	}
1760 
1761 	*done = ret;
1762 }
1763 
ocfs2_remove_inode_range(struct inode * inode,struct buffer_head * di_bh,u64 byte_start,u64 byte_len)1764 static int ocfs2_remove_inode_range(struct inode *inode,
1765 				    struct buffer_head *di_bh, u64 byte_start,
1766 				    u64 byte_len)
1767 {
1768 	int ret = 0, flags = 0, done = 0, i;
1769 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1770 	u32 cluster_in_el;
1771 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1772 	struct ocfs2_cached_dealloc_ctxt dealloc;
1773 	struct address_space *mapping = inode->i_mapping;
1774 	struct ocfs2_extent_tree et;
1775 	struct ocfs2_path *path = NULL;
1776 	struct ocfs2_extent_list *el = NULL;
1777 	struct ocfs2_extent_rec *rec = NULL;
1778 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1779 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1780 
1781 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1782 	ocfs2_init_dealloc_ctxt(&dealloc);
1783 
1784 	trace_ocfs2_remove_inode_range(
1785 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1786 			(unsigned long long)byte_start,
1787 			(unsigned long long)byte_len);
1788 
1789 	if (byte_len == 0)
1790 		return 0;
1791 
1792 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1793 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1794 					    byte_start + byte_len, 0);
1795 		if (ret) {
1796 			mlog_errno(ret);
1797 			goto out;
1798 		}
1799 		/*
1800 		 * There's no need to get fancy with the page cache
1801 		 * truncate of an inline-data inode. We're talking
1802 		 * about less than a page here, which will be cached
1803 		 * in the dinode buffer anyway.
1804 		 */
1805 		unmap_mapping_range(mapping, 0, 0, 0);
1806 		truncate_inode_pages(mapping, 0);
1807 		goto out;
1808 	}
1809 
1810 	/*
1811 	 * For reflinks, we may need to CoW 2 clusters which might be
1812 	 * partially zero'd later, if hole's start and end offset were
1813 	 * within one cluster(means is not exactly aligned to clustersize).
1814 	 */
1815 
1816 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1817 
1818 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1819 		if (ret) {
1820 			mlog_errno(ret);
1821 			goto out;
1822 		}
1823 
1824 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1825 		if (ret) {
1826 			mlog_errno(ret);
1827 			goto out;
1828 		}
1829 	}
1830 
1831 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1832 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1833 	cluster_in_el = trunc_end;
1834 
1835 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1836 	if (ret) {
1837 		mlog_errno(ret);
1838 		goto out;
1839 	}
1840 
1841 	path = ocfs2_new_path_from_et(&et);
1842 	if (!path) {
1843 		ret = -ENOMEM;
1844 		mlog_errno(ret);
1845 		goto out;
1846 	}
1847 
1848 	while (trunc_end > trunc_start) {
1849 
1850 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1851 				      cluster_in_el);
1852 		if (ret) {
1853 			mlog_errno(ret);
1854 			goto out;
1855 		}
1856 
1857 		el = path_leaf_el(path);
1858 
1859 		i = ocfs2_find_rec(el, trunc_end);
1860 		/*
1861 		 * Need to go to previous extent block.
1862 		 */
1863 		if (i < 0) {
1864 			if (path->p_tree_depth == 0)
1865 				break;
1866 
1867 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1868 							    path,
1869 							    &cluster_in_el);
1870 			if (ret) {
1871 				mlog_errno(ret);
1872 				goto out;
1873 			}
1874 
1875 			/*
1876 			 * We've reached the leftmost extent block,
1877 			 * it's safe to leave.
1878 			 */
1879 			if (cluster_in_el == 0)
1880 				break;
1881 
1882 			/*
1883 			 * The 'pos' searched for previous extent block is
1884 			 * always one cluster less than actual trunc_end.
1885 			 */
1886 			trunc_end = cluster_in_el + 1;
1887 
1888 			ocfs2_reinit_path(path, 1);
1889 
1890 			continue;
1891 
1892 		} else
1893 			rec = &el->l_recs[i];
1894 
1895 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1896 				     &trunc_len, &trunc_end, &blkno, &done);
1897 		if (done)
1898 			break;
1899 
1900 		flags = rec->e_flags;
1901 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1902 
1903 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1904 					       phys_cpos, trunc_len, flags,
1905 					       &dealloc, refcount_loc, false);
1906 		if (ret < 0) {
1907 			mlog_errno(ret);
1908 			goto out;
1909 		}
1910 
1911 		cluster_in_el = trunc_end;
1912 
1913 		ocfs2_reinit_path(path, 1);
1914 	}
1915 
1916 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1917 
1918 out:
1919 	ocfs2_free_path(path);
1920 	ocfs2_schedule_truncate_log_flush(osb, 1);
1921 	ocfs2_run_deallocs(osb, &dealloc);
1922 
1923 	return ret;
1924 }
1925 
1926 /*
1927  * Parts of this function taken from xfs_change_file_space()
1928  */
__ocfs2_change_file_space(struct file * file,struct inode * inode,loff_t f_pos,unsigned int cmd,struct ocfs2_space_resv * sr,int change_size)1929 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1930 				     loff_t f_pos, unsigned int cmd,
1931 				     struct ocfs2_space_resv *sr,
1932 				     int change_size)
1933 {
1934 	int ret;
1935 	s64 llen;
1936 	loff_t size, orig_isize;
1937 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1938 	struct buffer_head *di_bh = NULL;
1939 	handle_t *handle;
1940 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1941 
1942 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1943 		return -EROFS;
1944 
1945 	mutex_lock(&inode->i_mutex);
1946 
1947 	/*
1948 	 * This prevents concurrent writes on other nodes
1949 	 */
1950 	ret = ocfs2_rw_lock(inode, 1);
1951 	if (ret) {
1952 		mlog_errno(ret);
1953 		goto out;
1954 	}
1955 
1956 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1957 	if (ret) {
1958 		mlog_errno(ret);
1959 		goto out_rw_unlock;
1960 	}
1961 
1962 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1963 		ret = -EPERM;
1964 		goto out_inode_unlock;
1965 	}
1966 
1967 	switch (sr->l_whence) {
1968 	case 0: /*SEEK_SET*/
1969 		break;
1970 	case 1: /*SEEK_CUR*/
1971 		sr->l_start += f_pos;
1972 		break;
1973 	case 2: /*SEEK_END*/
1974 		sr->l_start += i_size_read(inode);
1975 		break;
1976 	default:
1977 		ret = -EINVAL;
1978 		goto out_inode_unlock;
1979 	}
1980 	sr->l_whence = 0;
1981 
1982 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1983 
1984 	if (sr->l_start < 0
1985 	    || sr->l_start > max_off
1986 	    || (sr->l_start + llen) < 0
1987 	    || (sr->l_start + llen) > max_off) {
1988 		ret = -EINVAL;
1989 		goto out_inode_unlock;
1990 	}
1991 	size = sr->l_start + sr->l_len;
1992 
1993 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1994 	    cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1995 		if (sr->l_len <= 0) {
1996 			ret = -EINVAL;
1997 			goto out_inode_unlock;
1998 		}
1999 	}
2000 
2001 	if (file && should_remove_suid(file->f_path.dentry)) {
2002 		ret = __ocfs2_write_remove_suid(inode, di_bh);
2003 		if (ret) {
2004 			mlog_errno(ret);
2005 			goto out_inode_unlock;
2006 		}
2007 	}
2008 
2009 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
2010 	switch (cmd) {
2011 	case OCFS2_IOC_RESVSP:
2012 	case OCFS2_IOC_RESVSP64:
2013 		/*
2014 		 * This takes unsigned offsets, but the signed ones we
2015 		 * pass have been checked against overflow above.
2016 		 */
2017 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
2018 						       sr->l_len);
2019 		break;
2020 	case OCFS2_IOC_UNRESVSP:
2021 	case OCFS2_IOC_UNRESVSP64:
2022 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
2023 					       sr->l_len);
2024 		break;
2025 	default:
2026 		ret = -EINVAL;
2027 	}
2028 
2029 	orig_isize = i_size_read(inode);
2030 	/* zeroout eof blocks in the cluster. */
2031 	if (!ret && change_size && orig_isize < size) {
2032 		ret = ocfs2_zeroout_partial_cluster(inode, orig_isize,
2033 					size - orig_isize);
2034 		if (!ret)
2035 			i_size_write(inode, size);
2036 	}
2037 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2038 	if (ret) {
2039 		mlog_errno(ret);
2040 		goto out_inode_unlock;
2041 	}
2042 
2043 	/*
2044 	 * We update c/mtime for these changes
2045 	 */
2046 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
2047 	if (IS_ERR(handle)) {
2048 		ret = PTR_ERR(handle);
2049 		mlog_errno(ret);
2050 		goto out_inode_unlock;
2051 	}
2052 
2053 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
2054 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
2055 	if (ret < 0)
2056 		mlog_errno(ret);
2057 
2058 	if (file && (file->f_flags & O_SYNC))
2059 		handle->h_sync = 1;
2060 
2061 	ocfs2_commit_trans(osb, handle);
2062 
2063 out_inode_unlock:
2064 	brelse(di_bh);
2065 	ocfs2_inode_unlock(inode, 1);
2066 out_rw_unlock:
2067 	ocfs2_rw_unlock(inode, 1);
2068 
2069 out:
2070 	mutex_unlock(&inode->i_mutex);
2071 	return ret;
2072 }
2073 
ocfs2_change_file_space(struct file * file,unsigned int cmd,struct ocfs2_space_resv * sr)2074 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
2075 			    struct ocfs2_space_resv *sr)
2076 {
2077 	struct inode *inode = file_inode(file);
2078 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2079 	int ret;
2080 
2081 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2082 	    !ocfs2_writes_unwritten_extents(osb))
2083 		return -ENOTTY;
2084 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2085 		 !ocfs2_sparse_alloc(osb))
2086 		return -ENOTTY;
2087 
2088 	if (!S_ISREG(inode->i_mode))
2089 		return -EINVAL;
2090 
2091 	if (!(file->f_mode & FMODE_WRITE))
2092 		return -EBADF;
2093 
2094 	ret = mnt_want_write_file(file);
2095 	if (ret)
2096 		return ret;
2097 	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2098 	mnt_drop_write_file(file);
2099 	return ret;
2100 }
2101 
ocfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2102 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2103 			    loff_t len)
2104 {
2105 	struct inode *inode = file_inode(file);
2106 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2107 	struct ocfs2_space_resv sr;
2108 	int change_size = 1;
2109 	int cmd = OCFS2_IOC_RESVSP64;
2110 
2111 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2112 		return -EOPNOTSUPP;
2113 	if (!ocfs2_writes_unwritten_extents(osb))
2114 		return -EOPNOTSUPP;
2115 
2116 	if (mode & FALLOC_FL_KEEP_SIZE)
2117 		change_size = 0;
2118 
2119 	if (mode & FALLOC_FL_PUNCH_HOLE)
2120 		cmd = OCFS2_IOC_UNRESVSP64;
2121 
2122 	sr.l_whence = 0;
2123 	sr.l_start = (s64)offset;
2124 	sr.l_len = (s64)len;
2125 
2126 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2127 					 change_size);
2128 }
2129 
ocfs2_check_range_for_refcount(struct inode * inode,loff_t pos,size_t count)2130 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2131 				   size_t count)
2132 {
2133 	int ret = 0;
2134 	unsigned int extent_flags;
2135 	u32 cpos, clusters, extent_len, phys_cpos;
2136 	struct super_block *sb = inode->i_sb;
2137 
2138 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2139 	    !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2140 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2141 		return 0;
2142 
2143 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2144 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2145 
2146 	while (clusters) {
2147 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2148 					 &extent_flags);
2149 		if (ret < 0) {
2150 			mlog_errno(ret);
2151 			goto out;
2152 		}
2153 
2154 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2155 			ret = 1;
2156 			break;
2157 		}
2158 
2159 		if (extent_len > clusters)
2160 			extent_len = clusters;
2161 
2162 		clusters -= extent_len;
2163 		cpos += extent_len;
2164 	}
2165 out:
2166 	return ret;
2167 }
2168 
ocfs2_is_io_unaligned(struct inode * inode,size_t count,loff_t pos)2169 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2170 {
2171 	int blockmask = inode->i_sb->s_blocksize - 1;
2172 	loff_t final_size = pos + count;
2173 
2174 	if ((pos & blockmask) || (final_size & blockmask))
2175 		return 1;
2176 	return 0;
2177 }
2178 
ocfs2_prepare_inode_for_refcount(struct inode * inode,struct file * file,loff_t pos,size_t count,int * meta_level)2179 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2180 					    struct file *file,
2181 					    loff_t pos, size_t count,
2182 					    int *meta_level)
2183 {
2184 	int ret;
2185 	struct buffer_head *di_bh = NULL;
2186 	u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2187 	u32 clusters =
2188 		ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2189 
2190 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2191 	if (ret) {
2192 		mlog_errno(ret);
2193 		goto out;
2194 	}
2195 
2196 	*meta_level = 1;
2197 
2198 	ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2199 	if (ret)
2200 		mlog_errno(ret);
2201 out:
2202 	brelse(di_bh);
2203 	return ret;
2204 }
2205 
ocfs2_prepare_inode_for_write(struct file * file,loff_t pos,size_t count,int appending,int * direct_io,int * has_refcount)2206 static int ocfs2_prepare_inode_for_write(struct file *file,
2207 					 loff_t pos,
2208 					 size_t count,
2209 					 int appending,
2210 					 int *direct_io,
2211 					 int *has_refcount)
2212 {
2213 	int ret = 0, meta_level = 0;
2214 	struct dentry *dentry = file->f_path.dentry;
2215 	struct inode *inode = d_inode(dentry);
2216 	loff_t end;
2217 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2218 	int full_coherency = !(osb->s_mount_opt &
2219 		OCFS2_MOUNT_COHERENCY_BUFFERED);
2220 
2221 	/*
2222 	 * We start with a read level meta lock and only jump to an ex
2223 	 * if we need to make modifications here.
2224 	 */
2225 	for(;;) {
2226 		ret = ocfs2_inode_lock(inode, NULL, meta_level);
2227 		if (ret < 0) {
2228 			meta_level = -1;
2229 			mlog_errno(ret);
2230 			goto out;
2231 		}
2232 
2233 		/* Clear suid / sgid if necessary. We do this here
2234 		 * instead of later in the write path because
2235 		 * remove_suid() calls ->setattr without any hint that
2236 		 * we may have already done our cluster locking. Since
2237 		 * ocfs2_setattr() *must* take cluster locks to
2238 		 * proceed, this will lead us to recursively lock the
2239 		 * inode. There's also the dinode i_size state which
2240 		 * can be lost via setattr during extending writes (we
2241 		 * set inode->i_size at the end of a write. */
2242 		if (should_remove_suid(dentry)) {
2243 			if (meta_level == 0) {
2244 				ocfs2_inode_unlock(inode, meta_level);
2245 				meta_level = 1;
2246 				continue;
2247 			}
2248 
2249 			ret = ocfs2_write_remove_suid(inode);
2250 			if (ret < 0) {
2251 				mlog_errno(ret);
2252 				goto out_unlock;
2253 			}
2254 		}
2255 
2256 		end = pos + count;
2257 
2258 		ret = ocfs2_check_range_for_refcount(inode, pos, count);
2259 		if (ret == 1) {
2260 			ocfs2_inode_unlock(inode, meta_level);
2261 			meta_level = -1;
2262 
2263 			ret = ocfs2_prepare_inode_for_refcount(inode,
2264 							       file,
2265 							       pos,
2266 							       count,
2267 							       &meta_level);
2268 			if (has_refcount)
2269 				*has_refcount = 1;
2270 			if (direct_io)
2271 				*direct_io = 0;
2272 		}
2273 
2274 		if (ret < 0) {
2275 			mlog_errno(ret);
2276 			goto out_unlock;
2277 		}
2278 
2279 		/*
2280 		 * Skip the O_DIRECT checks if we don't need
2281 		 * them.
2282 		 */
2283 		if (!direct_io || !(*direct_io))
2284 			break;
2285 
2286 		/*
2287 		 * There's no sane way to do direct writes to an inode
2288 		 * with inline data.
2289 		 */
2290 		if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2291 			*direct_io = 0;
2292 			break;
2293 		}
2294 
2295 		/*
2296 		 * Allowing concurrent direct writes means
2297 		 * i_size changes wouldn't be synchronized, so
2298 		 * one node could wind up truncating another
2299 		 * nodes writes.
2300 		 */
2301 		if (end > i_size_read(inode) && !full_coherency) {
2302 			*direct_io = 0;
2303 			break;
2304 		}
2305 
2306 		/*
2307 		 * Fallback to old way if the feature bit is not set.
2308 		 */
2309 		if (end > i_size_read(inode) &&
2310 				!ocfs2_supports_append_dio(osb)) {
2311 			*direct_io = 0;
2312 			break;
2313 		}
2314 
2315 		/*
2316 		 * We don't fill holes during direct io, so
2317 		 * check for them here. If any are found, the
2318 		 * caller will have to retake some cluster
2319 		 * locks and initiate the io as buffered.
2320 		 */
2321 		ret = ocfs2_check_range_for_holes(inode, pos, count);
2322 		if (ret == 1) {
2323 			/*
2324 			 * Fallback to old way if the feature bit is not set.
2325 			 * Otherwise try dio first and then complete the rest
2326 			 * request through buffer io.
2327 			 */
2328 			if (!ocfs2_supports_append_dio(osb))
2329 				*direct_io = 0;
2330 			ret = 0;
2331 		} else if (ret < 0)
2332 			mlog_errno(ret);
2333 		break;
2334 	}
2335 
2336 out_unlock:
2337 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2338 					    pos, appending, count,
2339 					    direct_io, has_refcount);
2340 
2341 	if (meta_level >= 0)
2342 		ocfs2_inode_unlock(inode, meta_level);
2343 
2344 out:
2345 	return ret;
2346 }
2347 
ocfs2_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2348 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2349 				    struct iov_iter *from)
2350 {
2351 	int direct_io, appending, rw_level;
2352 	int can_do_direct, has_refcount = 0;
2353 	ssize_t written = 0;
2354 	ssize_t ret;
2355 	size_t count = iov_iter_count(from), orig_count;
2356 	struct file *file = iocb->ki_filp;
2357 	struct inode *inode = file_inode(file);
2358 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2359 	int full_coherency = !(osb->s_mount_opt &
2360 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2361 	int unaligned_dio = 0;
2362 	int dropped_dio = 0;
2363 	int append_write = ((iocb->ki_pos + count) >=
2364 			i_size_read(inode) ? 1 : 0);
2365 
2366 	trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2367 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2368 		file->f_path.dentry->d_name.len,
2369 		file->f_path.dentry->d_name.name,
2370 		(unsigned int)from->nr_segs);	/* GRRRRR */
2371 
2372 	if (count == 0)
2373 		return 0;
2374 
2375 	appending = iocb->ki_flags & IOCB_APPEND ? 1 : 0;
2376 	direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2377 
2378 	mutex_lock(&inode->i_mutex);
2379 
2380 relock:
2381 	/*
2382 	 * Concurrent O_DIRECT writes are allowed with
2383 	 * mount_option "coherency=buffered".
2384 	 * For append write, we must take rw EX.
2385 	 */
2386 	rw_level = (!direct_io || full_coherency || append_write);
2387 
2388 	ret = ocfs2_rw_lock(inode, rw_level);
2389 	if (ret < 0) {
2390 		mlog_errno(ret);
2391 		goto out_mutex;
2392 	}
2393 
2394 	/*
2395 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2396 	 * inode_lock to guarantee coherency.
2397 	 */
2398 	if (direct_io && full_coherency) {
2399 		/*
2400 		 * We need to take and drop the inode lock to force
2401 		 * other nodes to drop their caches.  Buffered I/O
2402 		 * already does this in write_begin().
2403 		 */
2404 		ret = ocfs2_inode_lock(inode, NULL, 1);
2405 		if (ret < 0) {
2406 			mlog_errno(ret);
2407 			goto out;
2408 		}
2409 
2410 		ocfs2_inode_unlock(inode, 1);
2411 	}
2412 
2413 	orig_count = iov_iter_count(from);
2414 	ret = generic_write_checks(iocb, from);
2415 	if (ret <= 0) {
2416 		if (ret)
2417 			mlog_errno(ret);
2418 		goto out;
2419 	}
2420 	count = ret;
2421 
2422 	can_do_direct = direct_io;
2423 	ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, appending,
2424 					    &can_do_direct, &has_refcount);
2425 	if (ret < 0) {
2426 		mlog_errno(ret);
2427 		goto out;
2428 	}
2429 
2430 	if (direct_io && !is_sync_kiocb(iocb))
2431 		unaligned_dio = ocfs2_is_io_unaligned(inode, count, iocb->ki_pos);
2432 
2433 	/*
2434 	 * We can't complete the direct I/O as requested, fall back to
2435 	 * buffered I/O.
2436 	 */
2437 	if (direct_io && !can_do_direct) {
2438 		ocfs2_rw_unlock(inode, rw_level);
2439 
2440 		rw_level = -1;
2441 
2442 		direct_io = 0;
2443 		iocb->ki_flags &= ~IOCB_DIRECT;
2444 		iov_iter_reexpand(from, orig_count);
2445 		dropped_dio = 1;
2446 		goto relock;
2447 	}
2448 
2449 	if (unaligned_dio) {
2450 		/*
2451 		 * Wait on previous unaligned aio to complete before
2452 		 * proceeding.
2453 		 */
2454 		mutex_lock(&OCFS2_I(inode)->ip_unaligned_aio);
2455 		/* Mark the iocb as needing an unlock in ocfs2_dio_end_io */
2456 		ocfs2_iocb_set_unaligned_aio(iocb);
2457 	}
2458 
2459 	/* communicate with ocfs2_dio_end_io */
2460 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2461 
2462 	written = __generic_file_write_iter(iocb, from);
2463 	/* buffered aio wouldn't have proper lock coverage today */
2464 	BUG_ON(written == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2465 
2466 	/*
2467 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2468 	 * function pointer which is called when o_direct io completes so that
2469 	 * it can unlock our rw lock.
2470 	 * Unfortunately there are error cases which call end_io and others
2471 	 * that don't.  so we don't have to unlock the rw_lock if either an
2472 	 * async dio is going to do it in the future or an end_io after an
2473 	 * error has already done it.
2474 	 */
2475 	if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2476 		rw_level = -1;
2477 		unaligned_dio = 0;
2478 	}
2479 
2480 	if (unlikely(written <= 0))
2481 		goto no_sync;
2482 
2483 	if (((file->f_flags & O_DSYNC) && !direct_io) ||
2484 	    IS_SYNC(inode) || dropped_dio) {
2485 		ret = filemap_fdatawrite_range(file->f_mapping,
2486 					       iocb->ki_pos - written,
2487 					       iocb->ki_pos - 1);
2488 		if (ret < 0)
2489 			written = ret;
2490 
2491 		if (!ret) {
2492 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2493 			if (ret < 0)
2494 				written = ret;
2495 		}
2496 
2497 		if (!ret)
2498 			ret = filemap_fdatawait_range(file->f_mapping,
2499 						      iocb->ki_pos - written,
2500 						      iocb->ki_pos - 1);
2501 	}
2502 
2503 no_sync:
2504 	if (unaligned_dio && ocfs2_iocb_is_unaligned_aio(iocb)) {
2505 		ocfs2_iocb_clear_unaligned_aio(iocb);
2506 		mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
2507 	}
2508 
2509 out:
2510 	if (rw_level != -1)
2511 		ocfs2_rw_unlock(inode, rw_level);
2512 
2513 out_mutex:
2514 	mutex_unlock(&inode->i_mutex);
2515 
2516 	if (written)
2517 		ret = written;
2518 	return ret;
2519 }
2520 
ocfs2_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2521 static ssize_t ocfs2_file_splice_read(struct file *in,
2522 				      loff_t *ppos,
2523 				      struct pipe_inode_info *pipe,
2524 				      size_t len,
2525 				      unsigned int flags)
2526 {
2527 	int ret = 0, lock_level = 0;
2528 	struct inode *inode = file_inode(in);
2529 
2530 	trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2531 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2532 			in->f_path.dentry->d_name.len,
2533 			in->f_path.dentry->d_name.name, len);
2534 
2535 	/*
2536 	 * See the comment in ocfs2_file_read_iter()
2537 	 */
2538 	ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level);
2539 	if (ret < 0) {
2540 		mlog_errno(ret);
2541 		goto bail;
2542 	}
2543 	ocfs2_inode_unlock(inode, lock_level);
2544 
2545 	ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2546 
2547 bail:
2548 	return ret;
2549 }
2550 
ocfs2_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2551 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2552 				   struct iov_iter *to)
2553 {
2554 	int ret = 0, rw_level = -1, lock_level = 0;
2555 	struct file *filp = iocb->ki_filp;
2556 	struct inode *inode = file_inode(filp);
2557 
2558 	trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2559 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2560 			filp->f_path.dentry->d_name.len,
2561 			filp->f_path.dentry->d_name.name,
2562 			to->nr_segs);	/* GRRRRR */
2563 
2564 
2565 	if (!inode) {
2566 		ret = -EINVAL;
2567 		mlog_errno(ret);
2568 		goto bail;
2569 	}
2570 
2571 	/*
2572 	 * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2573 	 * need locks to protect pending reads from racing with truncate.
2574 	 */
2575 	if (iocb->ki_flags & IOCB_DIRECT) {
2576 		ret = ocfs2_rw_lock(inode, 0);
2577 		if (ret < 0) {
2578 			mlog_errno(ret);
2579 			goto bail;
2580 		}
2581 		rw_level = 0;
2582 		/* communicate with ocfs2_dio_end_io */
2583 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2584 	}
2585 
2586 	/*
2587 	 * We're fine letting folks race truncates and extending
2588 	 * writes with read across the cluster, just like they can
2589 	 * locally. Hence no rw_lock during read.
2590 	 *
2591 	 * Take and drop the meta data lock to update inode fields
2592 	 * like i_size. This allows the checks down below
2593 	 * generic_file_aio_read() a chance of actually working.
2594 	 */
2595 	ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level);
2596 	if (ret < 0) {
2597 		mlog_errno(ret);
2598 		goto bail;
2599 	}
2600 	ocfs2_inode_unlock(inode, lock_level);
2601 
2602 	ret = generic_file_read_iter(iocb, to);
2603 	trace_generic_file_aio_read_ret(ret);
2604 
2605 	/* buffered aio wouldn't have proper lock coverage today */
2606 	BUG_ON(ret == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2607 
2608 	/* see ocfs2_file_write_iter */
2609 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2610 		rw_level = -1;
2611 	}
2612 
2613 bail:
2614 	if (rw_level != -1)
2615 		ocfs2_rw_unlock(inode, rw_level);
2616 
2617 	return ret;
2618 }
2619 
2620 /* Refer generic_file_llseek_unlocked() */
ocfs2_file_llseek(struct file * file,loff_t offset,int whence)2621 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2622 {
2623 	struct inode *inode = file->f_mapping->host;
2624 	int ret = 0;
2625 
2626 	mutex_lock(&inode->i_mutex);
2627 
2628 	switch (whence) {
2629 	case SEEK_SET:
2630 		break;
2631 	case SEEK_END:
2632 		/* SEEK_END requires the OCFS2 inode lock for the file
2633 		 * because it references the file's size.
2634 		 */
2635 		ret = ocfs2_inode_lock(inode, NULL, 0);
2636 		if (ret < 0) {
2637 			mlog_errno(ret);
2638 			goto out;
2639 		}
2640 		offset += i_size_read(inode);
2641 		ocfs2_inode_unlock(inode, 0);
2642 		break;
2643 	case SEEK_CUR:
2644 		if (offset == 0) {
2645 			offset = file->f_pos;
2646 			goto out;
2647 		}
2648 		offset += file->f_pos;
2649 		break;
2650 	case SEEK_DATA:
2651 	case SEEK_HOLE:
2652 		ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2653 		if (ret)
2654 			goto out;
2655 		break;
2656 	default:
2657 		ret = -EINVAL;
2658 		goto out;
2659 	}
2660 
2661 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2662 
2663 out:
2664 	mutex_unlock(&inode->i_mutex);
2665 	if (ret)
2666 		return ret;
2667 	return offset;
2668 }
2669 
2670 const struct inode_operations ocfs2_file_iops = {
2671 	.setattr	= ocfs2_setattr,
2672 	.getattr	= ocfs2_getattr,
2673 	.permission	= ocfs2_permission,
2674 	.setxattr	= generic_setxattr,
2675 	.getxattr	= generic_getxattr,
2676 	.listxattr	= ocfs2_listxattr,
2677 	.removexattr	= generic_removexattr,
2678 	.fiemap		= ocfs2_fiemap,
2679 	.get_acl	= ocfs2_iop_get_acl,
2680 	.set_acl	= ocfs2_iop_set_acl,
2681 };
2682 
2683 const struct inode_operations ocfs2_special_file_iops = {
2684 	.setattr	= ocfs2_setattr,
2685 	.getattr	= ocfs2_getattr,
2686 	.permission	= ocfs2_permission,
2687 	.get_acl	= ocfs2_iop_get_acl,
2688 	.set_acl	= ocfs2_iop_set_acl,
2689 };
2690 
2691 /*
2692  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2693  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2694  */
2695 const struct file_operations ocfs2_fops = {
2696 	.llseek		= ocfs2_file_llseek,
2697 	.mmap		= ocfs2_mmap,
2698 	.fsync		= ocfs2_sync_file,
2699 	.release	= ocfs2_file_release,
2700 	.open		= ocfs2_file_open,
2701 	.read_iter	= ocfs2_file_read_iter,
2702 	.write_iter	= ocfs2_file_write_iter,
2703 	.unlocked_ioctl	= ocfs2_ioctl,
2704 #ifdef CONFIG_COMPAT
2705 	.compat_ioctl   = ocfs2_compat_ioctl,
2706 #endif
2707 	.lock		= ocfs2_lock,
2708 	.flock		= ocfs2_flock,
2709 	.splice_read	= ocfs2_file_splice_read,
2710 	.splice_write	= iter_file_splice_write,
2711 	.fallocate	= ocfs2_fallocate,
2712 };
2713 
2714 const struct file_operations ocfs2_dops = {
2715 	.llseek		= generic_file_llseek,
2716 	.read		= generic_read_dir,
2717 	.iterate	= ocfs2_readdir,
2718 	.fsync		= ocfs2_sync_file,
2719 	.release	= ocfs2_dir_release,
2720 	.open		= ocfs2_dir_open,
2721 	.unlocked_ioctl	= ocfs2_ioctl,
2722 #ifdef CONFIG_COMPAT
2723 	.compat_ioctl   = ocfs2_compat_ioctl,
2724 #endif
2725 	.lock		= ocfs2_lock,
2726 	.flock		= ocfs2_flock,
2727 };
2728 
2729 /*
2730  * POSIX-lockless variants of our file_operations.
2731  *
2732  * These will be used if the underlying cluster stack does not support
2733  * posix file locking, if the user passes the "localflocks" mount
2734  * option, or if we have a local-only fs.
2735  *
2736  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2737  * so we still want it in the case of no stack support for
2738  * plocks. Internally, it will do the right thing when asked to ignore
2739  * the cluster.
2740  */
2741 const struct file_operations ocfs2_fops_no_plocks = {
2742 	.llseek		= ocfs2_file_llseek,
2743 	.mmap		= ocfs2_mmap,
2744 	.fsync		= ocfs2_sync_file,
2745 	.release	= ocfs2_file_release,
2746 	.open		= ocfs2_file_open,
2747 	.read_iter	= ocfs2_file_read_iter,
2748 	.write_iter	= ocfs2_file_write_iter,
2749 	.unlocked_ioctl	= ocfs2_ioctl,
2750 #ifdef CONFIG_COMPAT
2751 	.compat_ioctl   = ocfs2_compat_ioctl,
2752 #endif
2753 	.flock		= ocfs2_flock,
2754 	.splice_read	= ocfs2_file_splice_read,
2755 	.splice_write	= iter_file_splice_write,
2756 	.fallocate	= ocfs2_fallocate,
2757 };
2758 
2759 const struct file_operations ocfs2_dops_no_plocks = {
2760 	.llseek		= generic_file_llseek,
2761 	.read		= generic_read_dir,
2762 	.iterate	= ocfs2_readdir,
2763 	.fsync		= ocfs2_sync_file,
2764 	.release	= ocfs2_dir_release,
2765 	.open		= ocfs2_dir_open,
2766 	.unlocked_ioctl	= ocfs2_ioctl,
2767 #ifdef CONFIG_COMPAT
2768 	.compat_ioctl   = ocfs2_compat_ioctl,
2769 #endif
2770 	.flock		= ocfs2_flock,
2771 };
2772