1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17
18 #include <asm/elf.h>
19 #include <asm/uaccess.h>
20 #include <asm/tlbflush.h>
21 #include "internal.h"
22
task_mem(struct seq_file * m,struct mm_struct * mm)23 void task_mem(struct seq_file *m, struct mm_struct *mm)
24 {
25 unsigned long data, text, lib, swap, ptes, pmds;
26 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
27
28 /*
29 * Note: to minimize their overhead, mm maintains hiwater_vm and
30 * hiwater_rss only when about to *lower* total_vm or rss. Any
31 * collector of these hiwater stats must therefore get total_vm
32 * and rss too, which will usually be the higher. Barriers? not
33 * worth the effort, such snapshots can always be inconsistent.
34 */
35 hiwater_vm = total_vm = mm->total_vm;
36 if (hiwater_vm < mm->hiwater_vm)
37 hiwater_vm = mm->hiwater_vm;
38 hiwater_rss = total_rss = get_mm_rss(mm);
39 if (hiwater_rss < mm->hiwater_rss)
40 hiwater_rss = mm->hiwater_rss;
41
42 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
43 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
44 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
45 swap = get_mm_counter(mm, MM_SWAPENTS);
46 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
47 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
48 seq_printf(m,
49 "VmPeak:\t%8lu kB\n"
50 "VmSize:\t%8lu kB\n"
51 "VmLck:\t%8lu kB\n"
52 "VmPin:\t%8lu kB\n"
53 "VmHWM:\t%8lu kB\n"
54 "VmRSS:\t%8lu kB\n"
55 "VmData:\t%8lu kB\n"
56 "VmStk:\t%8lu kB\n"
57 "VmExe:\t%8lu kB\n"
58 "VmLib:\t%8lu kB\n"
59 "VmPTE:\t%8lu kB\n"
60 "VmPMD:\t%8lu kB\n"
61 "VmSwap:\t%8lu kB\n",
62 hiwater_vm << (PAGE_SHIFT-10),
63 total_vm << (PAGE_SHIFT-10),
64 mm->locked_vm << (PAGE_SHIFT-10),
65 mm->pinned_vm << (PAGE_SHIFT-10),
66 hiwater_rss << (PAGE_SHIFT-10),
67 total_rss << (PAGE_SHIFT-10),
68 data << (PAGE_SHIFT-10),
69 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
70 ptes >> 10,
71 pmds >> 10,
72 swap << (PAGE_SHIFT-10));
73 hugetlb_report_usage(m, mm);
74 }
75
task_vsize(struct mm_struct * mm)76 unsigned long task_vsize(struct mm_struct *mm)
77 {
78 return PAGE_SIZE * mm->total_vm;
79 }
80
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)81 unsigned long task_statm(struct mm_struct *mm,
82 unsigned long *shared, unsigned long *text,
83 unsigned long *data, unsigned long *resident)
84 {
85 *shared = get_mm_counter(mm, MM_FILEPAGES);
86 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
87 >> PAGE_SHIFT;
88 *data = mm->total_vm - mm->shared_vm;
89 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
90 return mm->total_vm;
91 }
92
93 #ifdef CONFIG_NUMA
94 /*
95 * Save get_task_policy() for show_numa_map().
96 */
hold_task_mempolicy(struct proc_maps_private * priv)97 static void hold_task_mempolicy(struct proc_maps_private *priv)
98 {
99 struct task_struct *task = priv->task;
100
101 task_lock(task);
102 priv->task_mempolicy = get_task_policy(task);
103 mpol_get(priv->task_mempolicy);
104 task_unlock(task);
105 }
release_task_mempolicy(struct proc_maps_private * priv)106 static void release_task_mempolicy(struct proc_maps_private *priv)
107 {
108 mpol_put(priv->task_mempolicy);
109 }
110 #else
hold_task_mempolicy(struct proc_maps_private * priv)111 static void hold_task_mempolicy(struct proc_maps_private *priv)
112 {
113 }
release_task_mempolicy(struct proc_maps_private * priv)114 static void release_task_mempolicy(struct proc_maps_private *priv)
115 {
116 }
117 #endif
118
seq_print_vma_name(struct seq_file * m,struct vm_area_struct * vma)119 static void seq_print_vma_name(struct seq_file *m, struct vm_area_struct *vma)
120 {
121 const char __user *name = vma_get_anon_name(vma);
122 struct mm_struct *mm = vma->vm_mm;
123
124 unsigned long page_start_vaddr;
125 unsigned long page_offset;
126 unsigned long num_pages;
127 unsigned long max_len = NAME_MAX;
128 int i;
129
130 page_start_vaddr = (unsigned long)name & PAGE_MASK;
131 page_offset = (unsigned long)name - page_start_vaddr;
132 num_pages = DIV_ROUND_UP(page_offset + max_len, PAGE_SIZE);
133
134 seq_puts(m, "[anon:");
135
136 for (i = 0; i < num_pages; i++) {
137 int len;
138 int write_len;
139 const char *kaddr;
140 long pages_pinned;
141 struct page *page;
142
143 pages_pinned = get_user_pages(current, mm, page_start_vaddr,
144 1, 0, &page, NULL);
145 if (pages_pinned < 1) {
146 seq_puts(m, "<fault>]");
147 return;
148 }
149
150 kaddr = (const char *)kmap(page);
151 len = min(max_len, PAGE_SIZE - page_offset);
152 write_len = strnlen(kaddr + page_offset, len);
153 seq_write(m, kaddr + page_offset, write_len);
154 kunmap(page);
155 put_page(page);
156
157 /* if strnlen hit a null terminator then we're done */
158 if (write_len != len)
159 break;
160
161 max_len -= len;
162 page_offset = 0;
163 page_start_vaddr += PAGE_SIZE;
164 }
165
166 seq_putc(m, ']');
167 }
168
vma_stop(struct proc_maps_private * priv)169 static void vma_stop(struct proc_maps_private *priv)
170 {
171 struct mm_struct *mm = priv->mm;
172
173 release_task_mempolicy(priv);
174 up_read(&mm->mmap_sem);
175 mmput(mm);
176 }
177
178 static struct vm_area_struct *
m_next_vma(struct proc_maps_private * priv,struct vm_area_struct * vma)179 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
180 {
181 if (vma == priv->tail_vma)
182 return NULL;
183 return vma->vm_next ?: priv->tail_vma;
184 }
185
m_cache_vma(struct seq_file * m,struct vm_area_struct * vma)186 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
187 {
188 if (m->count < m->size) /* vma is copied successfully */
189 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
190 }
191
m_start(struct seq_file * m,loff_t * ppos)192 static void *m_start(struct seq_file *m, loff_t *ppos)
193 {
194 struct proc_maps_private *priv = m->private;
195 unsigned long last_addr = m->version;
196 struct mm_struct *mm;
197 struct vm_area_struct *vma;
198 unsigned int pos = *ppos;
199
200 /* See m_cache_vma(). Zero at the start or after lseek. */
201 if (last_addr == -1UL)
202 return NULL;
203
204 priv->task = get_proc_task(priv->inode);
205 if (!priv->task)
206 return ERR_PTR(-ESRCH);
207
208 mm = priv->mm;
209 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
210 return NULL;
211
212 down_read(&mm->mmap_sem);
213 hold_task_mempolicy(priv);
214 priv->tail_vma = get_gate_vma(mm);
215
216 if (last_addr) {
217 vma = find_vma(mm, last_addr);
218 if (vma && (vma = m_next_vma(priv, vma)))
219 return vma;
220 }
221
222 m->version = 0;
223 if (pos < mm->map_count) {
224 for (vma = mm->mmap; pos; pos--) {
225 m->version = vma->vm_start;
226 vma = vma->vm_next;
227 }
228 return vma;
229 }
230
231 /* we do not bother to update m->version in this case */
232 if (pos == mm->map_count && priv->tail_vma)
233 return priv->tail_vma;
234
235 vma_stop(priv);
236 return NULL;
237 }
238
m_next(struct seq_file * m,void * v,loff_t * pos)239 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
240 {
241 struct proc_maps_private *priv = m->private;
242 struct vm_area_struct *next;
243
244 (*pos)++;
245 next = m_next_vma(priv, v);
246 if (!next)
247 vma_stop(priv);
248 return next;
249 }
250
m_stop(struct seq_file * m,void * v)251 static void m_stop(struct seq_file *m, void *v)
252 {
253 struct proc_maps_private *priv = m->private;
254
255 if (!IS_ERR_OR_NULL(v))
256 vma_stop(priv);
257 if (priv->task) {
258 put_task_struct(priv->task);
259 priv->task = NULL;
260 }
261 }
262
proc_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops,int psize)263 static int proc_maps_open(struct inode *inode, struct file *file,
264 const struct seq_operations *ops, int psize)
265 {
266 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
267
268 if (!priv)
269 return -ENOMEM;
270
271 priv->inode = inode;
272 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
273 if (IS_ERR(priv->mm)) {
274 int err = PTR_ERR(priv->mm);
275
276 seq_release_private(inode, file);
277 return err;
278 }
279
280 return 0;
281 }
282
proc_map_release(struct inode * inode,struct file * file)283 static int proc_map_release(struct inode *inode, struct file *file)
284 {
285 struct seq_file *seq = file->private_data;
286 struct proc_maps_private *priv = seq->private;
287
288 if (priv->mm)
289 mmdrop(priv->mm);
290
291 return seq_release_private(inode, file);
292 }
293
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)294 static int do_maps_open(struct inode *inode, struct file *file,
295 const struct seq_operations *ops)
296 {
297 return proc_maps_open(inode, file, ops,
298 sizeof(struct proc_maps_private));
299 }
300
301 /*
302 * Indicate if the VMA is a stack for the given task; for
303 * /proc/PID/maps that is the stack of the main task.
304 */
is_stack(struct proc_maps_private * priv,struct vm_area_struct * vma)305 static int is_stack(struct proc_maps_private *priv,
306 struct vm_area_struct *vma)
307 {
308 /*
309 * We make no effort to guess what a given thread considers to be
310 * its "stack". It's not even well-defined for programs written
311 * languages like Go.
312 */
313 return vma->vm_start <= vma->vm_mm->start_stack &&
314 vma->vm_end >= vma->vm_mm->start_stack;
315 }
316
317 static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma,int is_pid)318 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
319 {
320 struct mm_struct *mm = vma->vm_mm;
321 struct file *file = vma->vm_file;
322 struct proc_maps_private *priv = m->private;
323 vm_flags_t flags = vma->vm_flags;
324 unsigned long ino = 0;
325 unsigned long long pgoff = 0;
326 unsigned long start, end;
327 dev_t dev = 0;
328 const char *name = NULL;
329
330 if (file) {
331 struct inode *inode = file_inode(vma->vm_file);
332 dev = inode->i_sb->s_dev;
333 ino = inode->i_ino;
334 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
335 }
336
337 /* We don't show the stack guard page in /proc/maps */
338 start = vma->vm_start;
339 end = vma->vm_end;
340
341 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
342 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
343 start,
344 end,
345 flags & VM_READ ? 'r' : '-',
346 flags & VM_WRITE ? 'w' : '-',
347 flags & VM_EXEC ? 'x' : '-',
348 flags & VM_MAYSHARE ? 's' : 'p',
349 pgoff,
350 MAJOR(dev), MINOR(dev), ino);
351
352 /*
353 * Print the dentry name for named mappings, and a
354 * special [heap] marker for the heap:
355 */
356 if (file) {
357 seq_pad(m, ' ');
358 seq_file_path(m, file, "\n");
359 goto done;
360 }
361
362 if (vma->vm_ops && vma->vm_ops->name) {
363 name = vma->vm_ops->name(vma);
364 if (name)
365 goto done;
366 }
367
368 name = arch_vma_name(vma);
369 if (!name) {
370 if (!mm) {
371 name = "[vdso]";
372 goto done;
373 }
374
375 if (vma->vm_start <= mm->brk &&
376 vma->vm_end >= mm->start_brk) {
377 name = "[heap]";
378 goto done;
379 }
380
381 if (is_stack(priv, vma)) {
382 name = "[stack]";
383 goto done;
384 }
385
386 if (vma_get_anon_name(vma)) {
387 seq_pad(m, ' ');
388 seq_print_vma_name(m, vma);
389 }
390 }
391
392 done:
393 if (name) {
394 seq_pad(m, ' ');
395 seq_puts(m, name);
396 }
397 seq_putc(m, '\n');
398 }
399
show_map(struct seq_file * m,void * v,int is_pid)400 static int show_map(struct seq_file *m, void *v, int is_pid)
401 {
402 show_map_vma(m, v, is_pid);
403 m_cache_vma(m, v);
404 return 0;
405 }
406
show_pid_map(struct seq_file * m,void * v)407 static int show_pid_map(struct seq_file *m, void *v)
408 {
409 return show_map(m, v, 1);
410 }
411
show_tid_map(struct seq_file * m,void * v)412 static int show_tid_map(struct seq_file *m, void *v)
413 {
414 return show_map(m, v, 0);
415 }
416
417 static const struct seq_operations proc_pid_maps_op = {
418 .start = m_start,
419 .next = m_next,
420 .stop = m_stop,
421 .show = show_pid_map
422 };
423
424 static const struct seq_operations proc_tid_maps_op = {
425 .start = m_start,
426 .next = m_next,
427 .stop = m_stop,
428 .show = show_tid_map
429 };
430
pid_maps_open(struct inode * inode,struct file * file)431 static int pid_maps_open(struct inode *inode, struct file *file)
432 {
433 return do_maps_open(inode, file, &proc_pid_maps_op);
434 }
435
tid_maps_open(struct inode * inode,struct file * file)436 static int tid_maps_open(struct inode *inode, struct file *file)
437 {
438 return do_maps_open(inode, file, &proc_tid_maps_op);
439 }
440
441 const struct file_operations proc_pid_maps_operations = {
442 .open = pid_maps_open,
443 .read = seq_read,
444 .llseek = seq_lseek,
445 .release = proc_map_release,
446 };
447
448 const struct file_operations proc_tid_maps_operations = {
449 .open = tid_maps_open,
450 .read = seq_read,
451 .llseek = seq_lseek,
452 .release = proc_map_release,
453 };
454
455 /*
456 * Proportional Set Size(PSS): my share of RSS.
457 *
458 * PSS of a process is the count of pages it has in memory, where each
459 * page is divided by the number of processes sharing it. So if a
460 * process has 1000 pages all to itself, and 1000 shared with one other
461 * process, its PSS will be 1500.
462 *
463 * To keep (accumulated) division errors low, we adopt a 64bit
464 * fixed-point pss counter to minimize division errors. So (pss >>
465 * PSS_SHIFT) would be the real byte count.
466 *
467 * A shift of 12 before division means (assuming 4K page size):
468 * - 1M 3-user-pages add up to 8KB errors;
469 * - supports mapcount up to 2^24, or 16M;
470 * - supports PSS up to 2^52 bytes, or 4PB.
471 */
472 #define PSS_SHIFT 12
473
474 #ifdef CONFIG_PROC_PAGE_MONITOR
475 struct mem_size_stats {
476 unsigned long resident;
477 unsigned long shared_clean;
478 unsigned long shared_dirty;
479 unsigned long private_clean;
480 unsigned long private_dirty;
481 unsigned long referenced;
482 unsigned long anonymous;
483 unsigned long anonymous_thp;
484 unsigned long swap;
485 unsigned long shared_hugetlb;
486 unsigned long private_hugetlb;
487 u64 pss;
488 u64 swap_pss;
489 };
490
smaps_account(struct mem_size_stats * mss,struct page * page,unsigned long size,bool young,bool dirty)491 static void smaps_account(struct mem_size_stats *mss, struct page *page,
492 unsigned long size, bool young, bool dirty)
493 {
494 int mapcount;
495
496 if (PageAnon(page))
497 mss->anonymous += size;
498
499 mss->resident += size;
500 /* Accumulate the size in pages that have been accessed. */
501 if (young || page_is_young(page) || PageReferenced(page))
502 mss->referenced += size;
503 mapcount = page_mapcount(page);
504 if (mapcount >= 2) {
505 u64 pss_delta;
506
507 if (dirty || PageDirty(page))
508 mss->shared_dirty += size;
509 else
510 mss->shared_clean += size;
511 pss_delta = (u64)size << PSS_SHIFT;
512 do_div(pss_delta, mapcount);
513 mss->pss += pss_delta;
514 } else {
515 if (dirty || PageDirty(page))
516 mss->private_dirty += size;
517 else
518 mss->private_clean += size;
519 mss->pss += (u64)size << PSS_SHIFT;
520 }
521 }
522
smaps_pte_entry(pte_t * pte,unsigned long addr,struct mm_walk * walk)523 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
524 struct mm_walk *walk)
525 {
526 struct mem_size_stats *mss = walk->private;
527 struct vm_area_struct *vma = walk->vma;
528 struct page *page = NULL;
529
530 if (pte_present(*pte)) {
531 page = vm_normal_page(vma, addr, *pte);
532 } else if (is_swap_pte(*pte)) {
533 swp_entry_t swpent = pte_to_swp_entry(*pte);
534
535 if (!non_swap_entry(swpent)) {
536 int mapcount;
537
538 mss->swap += PAGE_SIZE;
539 mapcount = swp_swapcount(swpent);
540 if (mapcount >= 2) {
541 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
542
543 do_div(pss_delta, mapcount);
544 mss->swap_pss += pss_delta;
545 } else {
546 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
547 }
548 } else if (is_migration_entry(swpent))
549 page = migration_entry_to_page(swpent);
550 }
551
552 if (!page)
553 return;
554 smaps_account(mss, page, PAGE_SIZE, pte_young(*pte), pte_dirty(*pte));
555 }
556
557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)558 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
559 struct mm_walk *walk)
560 {
561 struct mem_size_stats *mss = walk->private;
562 struct vm_area_struct *vma = walk->vma;
563 struct page *page;
564
565 /* FOLL_DUMP will return -EFAULT on huge zero page */
566 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
567 if (IS_ERR_OR_NULL(page))
568 return;
569 mss->anonymous_thp += HPAGE_PMD_SIZE;
570 smaps_account(mss, page, HPAGE_PMD_SIZE,
571 pmd_young(*pmd), pmd_dirty(*pmd));
572 }
573 #else
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)574 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
575 struct mm_walk *walk)
576 {
577 }
578 #endif
579
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)580 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
581 struct mm_walk *walk)
582 {
583 struct vm_area_struct *vma = walk->vma;
584 pte_t *pte;
585 spinlock_t *ptl;
586
587 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
588 smaps_pmd_entry(pmd, addr, walk);
589 spin_unlock(ptl);
590 return 0;
591 }
592
593 if (pmd_trans_unstable(pmd))
594 return 0;
595 /*
596 * The mmap_sem held all the way back in m_start() is what
597 * keeps khugepaged out of here and from collapsing things
598 * in here.
599 */
600 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
601 for (; addr != end; pte++, addr += PAGE_SIZE)
602 smaps_pte_entry(pte, addr, walk);
603 pte_unmap_unlock(pte - 1, ptl);
604 cond_resched();
605 return 0;
606 }
607
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)608 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
609 {
610 /*
611 * Don't forget to update Documentation/ on changes.
612 */
613 static const char mnemonics[BITS_PER_LONG][2] = {
614 /*
615 * In case if we meet a flag we don't know about.
616 */
617 [0 ... (BITS_PER_LONG-1)] = "??",
618
619 [ilog2(VM_READ)] = "rd",
620 [ilog2(VM_WRITE)] = "wr",
621 [ilog2(VM_EXEC)] = "ex",
622 [ilog2(VM_SHARED)] = "sh",
623 [ilog2(VM_MAYREAD)] = "mr",
624 [ilog2(VM_MAYWRITE)] = "mw",
625 [ilog2(VM_MAYEXEC)] = "me",
626 [ilog2(VM_MAYSHARE)] = "ms",
627 [ilog2(VM_GROWSDOWN)] = "gd",
628 [ilog2(VM_PFNMAP)] = "pf",
629 [ilog2(VM_DENYWRITE)] = "dw",
630 #ifdef CONFIG_X86_INTEL_MPX
631 [ilog2(VM_MPX)] = "mp",
632 #endif
633 [ilog2(VM_LOCKED)] = "lo",
634 [ilog2(VM_IO)] = "io",
635 [ilog2(VM_SEQ_READ)] = "sr",
636 [ilog2(VM_RAND_READ)] = "rr",
637 [ilog2(VM_DONTCOPY)] = "dc",
638 [ilog2(VM_DONTEXPAND)] = "de",
639 [ilog2(VM_ACCOUNT)] = "ac",
640 [ilog2(VM_NORESERVE)] = "nr",
641 [ilog2(VM_HUGETLB)] = "ht",
642 [ilog2(VM_ARCH_1)] = "ar",
643 [ilog2(VM_DONTDUMP)] = "dd",
644 #ifdef CONFIG_MEM_SOFT_DIRTY
645 [ilog2(VM_SOFTDIRTY)] = "sd",
646 #endif
647 [ilog2(VM_MIXEDMAP)] = "mm",
648 [ilog2(VM_HUGEPAGE)] = "hg",
649 [ilog2(VM_NOHUGEPAGE)] = "nh",
650 [ilog2(VM_MERGEABLE)] = "mg",
651 [ilog2(VM_UFFD_MISSING)]= "um",
652 [ilog2(VM_UFFD_WP)] = "uw",
653 };
654 size_t i;
655
656 seq_puts(m, "VmFlags: ");
657 for (i = 0; i < BITS_PER_LONG; i++) {
658 if (vma->vm_flags & (1UL << i)) {
659 seq_printf(m, "%c%c ",
660 mnemonics[i][0], mnemonics[i][1]);
661 }
662 }
663 seq_putc(m, '\n');
664 }
665
666 #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)667 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
668 unsigned long addr, unsigned long end,
669 struct mm_walk *walk)
670 {
671 struct mem_size_stats *mss = walk->private;
672 struct vm_area_struct *vma = walk->vma;
673 struct page *page = NULL;
674
675 if (pte_present(*pte)) {
676 page = vm_normal_page(vma, addr, *pte);
677 } else if (is_swap_pte(*pte)) {
678 swp_entry_t swpent = pte_to_swp_entry(*pte);
679
680 if (is_migration_entry(swpent))
681 page = migration_entry_to_page(swpent);
682 }
683 if (page) {
684 int mapcount = page_mapcount(page);
685
686 if (mapcount >= 2)
687 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
688 else
689 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
690 }
691 return 0;
692 }
693 #endif /* HUGETLB_PAGE */
694
show_smap(struct seq_file * m,void * v,int is_pid)695 static int show_smap(struct seq_file *m, void *v, int is_pid)
696 {
697 struct vm_area_struct *vma = v;
698 struct mem_size_stats mss;
699 struct mm_walk smaps_walk = {
700 .pmd_entry = smaps_pte_range,
701 #ifdef CONFIG_HUGETLB_PAGE
702 .hugetlb_entry = smaps_hugetlb_range,
703 #endif
704 .mm = vma->vm_mm,
705 .private = &mss,
706 };
707
708 memset(&mss, 0, sizeof mss);
709 /* mmap_sem is held in m_start */
710 walk_page_vma(vma, &smaps_walk);
711
712 show_map_vma(m, vma, is_pid);
713
714 if (vma_get_anon_name(vma)) {
715 seq_puts(m, "Name: ");
716 seq_print_vma_name(m, vma);
717 seq_putc(m, '\n');
718 }
719
720 seq_printf(m,
721 "Size: %8lu kB\n"
722 "Rss: %8lu kB\n"
723 "Pss: %8lu kB\n"
724 "Shared_Clean: %8lu kB\n"
725 "Shared_Dirty: %8lu kB\n"
726 "Private_Clean: %8lu kB\n"
727 "Private_Dirty: %8lu kB\n"
728 "Referenced: %8lu kB\n"
729 "Anonymous: %8lu kB\n"
730 "AnonHugePages: %8lu kB\n"
731 "Shared_Hugetlb: %8lu kB\n"
732 "Private_Hugetlb: %7lu kB\n"
733 "Swap: %8lu kB\n"
734 "SwapPss: %8lu kB\n"
735 "KernelPageSize: %8lu kB\n"
736 "MMUPageSize: %8lu kB\n"
737 "Locked: %8lu kB\n",
738 (vma->vm_end - vma->vm_start) >> 10,
739 mss.resident >> 10,
740 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
741 mss.shared_clean >> 10,
742 mss.shared_dirty >> 10,
743 mss.private_clean >> 10,
744 mss.private_dirty >> 10,
745 mss.referenced >> 10,
746 mss.anonymous >> 10,
747 mss.anonymous_thp >> 10,
748 mss.shared_hugetlb >> 10,
749 mss.private_hugetlb >> 10,
750 mss.swap >> 10,
751 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
752 vma_kernel_pagesize(vma) >> 10,
753 vma_mmu_pagesize(vma) >> 10,
754 (vma->vm_flags & VM_LOCKED) ?
755 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
756
757 show_smap_vma_flags(m, vma);
758 m_cache_vma(m, vma);
759 return 0;
760 }
761
show_pid_smap(struct seq_file * m,void * v)762 static int show_pid_smap(struct seq_file *m, void *v)
763 {
764 return show_smap(m, v, 1);
765 }
766
show_tid_smap(struct seq_file * m,void * v)767 static int show_tid_smap(struct seq_file *m, void *v)
768 {
769 return show_smap(m, v, 0);
770 }
771
772 static const struct seq_operations proc_pid_smaps_op = {
773 .start = m_start,
774 .next = m_next,
775 .stop = m_stop,
776 .show = show_pid_smap
777 };
778
779 static const struct seq_operations proc_tid_smaps_op = {
780 .start = m_start,
781 .next = m_next,
782 .stop = m_stop,
783 .show = show_tid_smap
784 };
785
pid_smaps_open(struct inode * inode,struct file * file)786 static int pid_smaps_open(struct inode *inode, struct file *file)
787 {
788 return do_maps_open(inode, file, &proc_pid_smaps_op);
789 }
790
tid_smaps_open(struct inode * inode,struct file * file)791 static int tid_smaps_open(struct inode *inode, struct file *file)
792 {
793 return do_maps_open(inode, file, &proc_tid_smaps_op);
794 }
795
796 const struct file_operations proc_pid_smaps_operations = {
797 .open = pid_smaps_open,
798 .read = seq_read,
799 .llseek = seq_lseek,
800 .release = proc_map_release,
801 };
802
803 const struct file_operations proc_tid_smaps_operations = {
804 .open = tid_smaps_open,
805 .read = seq_read,
806 .llseek = seq_lseek,
807 .release = proc_map_release,
808 };
809
810 enum clear_refs_types {
811 CLEAR_REFS_ALL = 1,
812 CLEAR_REFS_ANON,
813 CLEAR_REFS_MAPPED,
814 CLEAR_REFS_SOFT_DIRTY,
815 CLEAR_REFS_MM_HIWATER_RSS,
816 CLEAR_REFS_LAST,
817 };
818
819 struct clear_refs_private {
820 enum clear_refs_types type;
821 };
822
823 #ifdef CONFIG_MEM_SOFT_DIRTY
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)824 static inline void clear_soft_dirty(struct vm_area_struct *vma,
825 unsigned long addr, pte_t *pte)
826 {
827 /*
828 * The soft-dirty tracker uses #PF-s to catch writes
829 * to pages, so write-protect the pte as well. See the
830 * Documentation/vm/soft-dirty.txt for full description
831 * of how soft-dirty works.
832 */
833 pte_t ptent = *pte;
834
835 if (pte_present(ptent)) {
836 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
837 ptent = pte_wrprotect(ptent);
838 ptent = pte_clear_soft_dirty(ptent);
839 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
840 } else if (is_swap_pte(ptent)) {
841 ptent = pte_swp_clear_soft_dirty(ptent);
842 set_pte_at(vma->vm_mm, addr, pte, ptent);
843 }
844 }
845 #else
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)846 static inline void clear_soft_dirty(struct vm_area_struct *vma,
847 unsigned long addr, pte_t *pte)
848 {
849 }
850 #endif
851
852 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)853 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
854 unsigned long addr, pmd_t *pmdp)
855 {
856 pmd_t pmd = *pmdp;
857
858 /* See comment in change_huge_pmd() */
859 pmdp_invalidate(vma, addr, pmdp);
860 if (pmd_dirty(*pmdp))
861 pmd = pmd_mkdirty(pmd);
862 if (pmd_young(*pmdp))
863 pmd = pmd_mkyoung(pmd);
864
865 pmd = pmd_wrprotect(pmd);
866 pmd = pmd_clear_soft_dirty(pmd);
867
868 if (vma->vm_flags & VM_SOFTDIRTY)
869 vma->vm_flags &= ~VM_SOFTDIRTY;
870
871 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
872 }
873 #else
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)874 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
875 unsigned long addr, pmd_t *pmdp)
876 {
877 }
878 #endif
879
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)880 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
881 unsigned long end, struct mm_walk *walk)
882 {
883 struct clear_refs_private *cp = walk->private;
884 struct vm_area_struct *vma = walk->vma;
885 pte_t *pte, ptent;
886 spinlock_t *ptl;
887 struct page *page;
888
889 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
890 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
891 clear_soft_dirty_pmd(vma, addr, pmd);
892 goto out;
893 }
894
895 page = pmd_page(*pmd);
896
897 /* Clear accessed and referenced bits. */
898 pmdp_test_and_clear_young(vma, addr, pmd);
899 test_and_clear_page_young(page);
900 ClearPageReferenced(page);
901 out:
902 spin_unlock(ptl);
903 return 0;
904 }
905
906 if (pmd_trans_unstable(pmd))
907 return 0;
908
909 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
910 for (; addr != end; pte++, addr += PAGE_SIZE) {
911 ptent = *pte;
912
913 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
914 clear_soft_dirty(vma, addr, pte);
915 continue;
916 }
917
918 if (!pte_present(ptent))
919 continue;
920
921 page = vm_normal_page(vma, addr, ptent);
922 if (!page)
923 continue;
924
925 /* Clear accessed and referenced bits. */
926 ptep_test_and_clear_young(vma, addr, pte);
927 test_and_clear_page_young(page);
928 ClearPageReferenced(page);
929 }
930 pte_unmap_unlock(pte - 1, ptl);
931 cond_resched();
932 return 0;
933 }
934
clear_refs_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)935 static int clear_refs_test_walk(unsigned long start, unsigned long end,
936 struct mm_walk *walk)
937 {
938 struct clear_refs_private *cp = walk->private;
939 struct vm_area_struct *vma = walk->vma;
940
941 if (vma->vm_flags & VM_PFNMAP)
942 return 1;
943
944 /*
945 * Writing 1 to /proc/pid/clear_refs affects all pages.
946 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
947 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
948 * Writing 4 to /proc/pid/clear_refs affects all pages.
949 */
950 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
951 return 1;
952 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
953 return 1;
954 return 0;
955 }
956
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)957 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
958 size_t count, loff_t *ppos)
959 {
960 struct task_struct *task;
961 char buffer[PROC_NUMBUF];
962 struct mm_struct *mm;
963 struct vm_area_struct *vma;
964 enum clear_refs_types type;
965 int itype;
966 int rv;
967
968 memset(buffer, 0, sizeof(buffer));
969 if (count > sizeof(buffer) - 1)
970 count = sizeof(buffer) - 1;
971 if (copy_from_user(buffer, buf, count))
972 return -EFAULT;
973 rv = kstrtoint(strstrip(buffer), 10, &itype);
974 if (rv < 0)
975 return rv;
976 type = (enum clear_refs_types)itype;
977 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
978 return -EINVAL;
979
980 task = get_proc_task(file_inode(file));
981 if (!task)
982 return -ESRCH;
983 mm = get_task_mm(task);
984 if (mm) {
985 struct clear_refs_private cp = {
986 .type = type,
987 };
988 struct mm_walk clear_refs_walk = {
989 .pmd_entry = clear_refs_pte_range,
990 .test_walk = clear_refs_test_walk,
991 .mm = mm,
992 .private = &cp,
993 };
994
995 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
996 /*
997 * Writing 5 to /proc/pid/clear_refs resets the peak
998 * resident set size to this mm's current rss value.
999 */
1000 down_write(&mm->mmap_sem);
1001 reset_mm_hiwater_rss(mm);
1002 up_write(&mm->mmap_sem);
1003 goto out_mm;
1004 }
1005
1006 down_read(&mm->mmap_sem);
1007 if (type == CLEAR_REFS_SOFT_DIRTY) {
1008 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1009 if (!(vma->vm_flags & VM_SOFTDIRTY))
1010 continue;
1011 up_read(&mm->mmap_sem);
1012 down_write(&mm->mmap_sem);
1013 /*
1014 * Avoid to modify vma->vm_flags
1015 * without locked ops while the
1016 * coredump reads the vm_flags.
1017 */
1018 if (!mmget_still_valid(mm)) {
1019 /*
1020 * Silently return "count"
1021 * like if get_task_mm()
1022 * failed. FIXME: should this
1023 * function have returned
1024 * -ESRCH if get_task_mm()
1025 * failed like if
1026 * get_proc_task() fails?
1027 */
1028 up_write(&mm->mmap_sem);
1029 goto out_mm;
1030 }
1031 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1032 vma->vm_flags &= ~VM_SOFTDIRTY;
1033 vma_set_page_prot(vma);
1034 }
1035 downgrade_write(&mm->mmap_sem);
1036 break;
1037 }
1038 mmu_notifier_invalidate_range_start(mm, 0, -1);
1039 }
1040 walk_page_range(0, ~0UL, &clear_refs_walk);
1041 if (type == CLEAR_REFS_SOFT_DIRTY)
1042 mmu_notifier_invalidate_range_end(mm, 0, -1);
1043 flush_tlb_mm(mm);
1044 up_read(&mm->mmap_sem);
1045 out_mm:
1046 mmput(mm);
1047 }
1048 put_task_struct(task);
1049
1050 return count;
1051 }
1052
1053 const struct file_operations proc_clear_refs_operations = {
1054 .write = clear_refs_write,
1055 .llseek = noop_llseek,
1056 };
1057
1058 typedef struct {
1059 u64 pme;
1060 } pagemap_entry_t;
1061
1062 struct pagemapread {
1063 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1064 pagemap_entry_t *buffer;
1065 bool show_pfn;
1066 };
1067
1068 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1069 #define PAGEMAP_WALK_MASK (PMD_MASK)
1070
1071 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1072 #define PM_PFRAME_BITS 55
1073 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1074 #define PM_SOFT_DIRTY BIT_ULL(55)
1075 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1076 #define PM_FILE BIT_ULL(61)
1077 #define PM_SWAP BIT_ULL(62)
1078 #define PM_PRESENT BIT_ULL(63)
1079
1080 #define PM_END_OF_BUFFER 1
1081
make_pme(u64 frame,u64 flags)1082 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1083 {
1084 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1085 }
1086
add_to_pagemap(unsigned long addr,pagemap_entry_t * pme,struct pagemapread * pm)1087 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1088 struct pagemapread *pm)
1089 {
1090 pm->buffer[pm->pos++] = *pme;
1091 if (pm->pos >= pm->len)
1092 return PM_END_OF_BUFFER;
1093 return 0;
1094 }
1095
pagemap_pte_hole(unsigned long start,unsigned long end,struct mm_walk * walk)1096 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1097 struct mm_walk *walk)
1098 {
1099 struct pagemapread *pm = walk->private;
1100 unsigned long addr = start;
1101 int err = 0;
1102
1103 while (addr < end) {
1104 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1105 pagemap_entry_t pme = make_pme(0, 0);
1106 /* End of address space hole, which we mark as non-present. */
1107 unsigned long hole_end;
1108
1109 if (vma)
1110 hole_end = min(end, vma->vm_start);
1111 else
1112 hole_end = end;
1113
1114 for (; addr < hole_end; addr += PAGE_SIZE) {
1115 err = add_to_pagemap(addr, &pme, pm);
1116 if (err)
1117 goto out;
1118 }
1119
1120 if (!vma)
1121 break;
1122
1123 /* Addresses in the VMA. */
1124 if (vma->vm_flags & VM_SOFTDIRTY)
1125 pme = make_pme(0, PM_SOFT_DIRTY);
1126 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1127 err = add_to_pagemap(addr, &pme, pm);
1128 if (err)
1129 goto out;
1130 }
1131 }
1132 out:
1133 return err;
1134 }
1135
pte_to_pagemap_entry(struct pagemapread * pm,struct vm_area_struct * vma,unsigned long addr,pte_t pte)1136 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1137 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1138 {
1139 u64 frame = 0, flags = 0;
1140 struct page *page = NULL;
1141
1142 if (pte_present(pte)) {
1143 if (pm->show_pfn)
1144 frame = pte_pfn(pte);
1145 flags |= PM_PRESENT;
1146 page = vm_normal_page(vma, addr, pte);
1147 if (pte_soft_dirty(pte))
1148 flags |= PM_SOFT_DIRTY;
1149 } else if (is_swap_pte(pte)) {
1150 swp_entry_t entry;
1151 if (pte_swp_soft_dirty(pte))
1152 flags |= PM_SOFT_DIRTY;
1153 entry = pte_to_swp_entry(pte);
1154 frame = swp_type(entry) |
1155 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1156 flags |= PM_SWAP;
1157 if (is_migration_entry(entry))
1158 page = migration_entry_to_page(entry);
1159 }
1160
1161 if (page && !PageAnon(page))
1162 flags |= PM_FILE;
1163 if (page && page_mapcount(page) == 1)
1164 flags |= PM_MMAP_EXCLUSIVE;
1165 if (vma->vm_flags & VM_SOFTDIRTY)
1166 flags |= PM_SOFT_DIRTY;
1167
1168 return make_pme(frame, flags);
1169 }
1170
pagemap_pmd_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)1171 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1172 struct mm_walk *walk)
1173 {
1174 struct vm_area_struct *vma = walk->vma;
1175 struct pagemapread *pm = walk->private;
1176 spinlock_t *ptl;
1177 pte_t *pte, *orig_pte;
1178 int err = 0;
1179
1180 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1181 if (pmd_trans_huge_lock(pmdp, vma, &ptl) == 1) {
1182 u64 flags = 0, frame = 0;
1183 pmd_t pmd = *pmdp;
1184
1185 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1186 flags |= PM_SOFT_DIRTY;
1187
1188 /*
1189 * Currently pmd for thp is always present because thp
1190 * can not be swapped-out, migrated, or HWPOISONed
1191 * (split in such cases instead.)
1192 * This if-check is just to prepare for future implementation.
1193 */
1194 if (pmd_present(pmd)) {
1195 struct page *page = pmd_page(pmd);
1196
1197 if (page_mapcount(page) == 1)
1198 flags |= PM_MMAP_EXCLUSIVE;
1199
1200 flags |= PM_PRESENT;
1201 if (pm->show_pfn)
1202 frame = pmd_pfn(pmd) +
1203 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1204 }
1205
1206 for (; addr != end; addr += PAGE_SIZE) {
1207 pagemap_entry_t pme = make_pme(frame, flags);
1208
1209 err = add_to_pagemap(addr, &pme, pm);
1210 if (err)
1211 break;
1212 if (pm->show_pfn && (flags & PM_PRESENT))
1213 frame++;
1214 }
1215 spin_unlock(ptl);
1216 return err;
1217 }
1218
1219 if (pmd_trans_unstable(pmdp))
1220 return 0;
1221 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1222
1223 /*
1224 * We can assume that @vma always points to a valid one and @end never
1225 * goes beyond vma->vm_end.
1226 */
1227 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1228 for (; addr < end; pte++, addr += PAGE_SIZE) {
1229 pagemap_entry_t pme;
1230
1231 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1232 err = add_to_pagemap(addr, &pme, pm);
1233 if (err)
1234 break;
1235 }
1236 pte_unmap_unlock(orig_pte, ptl);
1237
1238 cond_resched();
1239
1240 return err;
1241 }
1242
1243 #ifdef CONFIG_HUGETLB_PAGE
1244 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1245 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1246 unsigned long addr, unsigned long end,
1247 struct mm_walk *walk)
1248 {
1249 struct pagemapread *pm = walk->private;
1250 struct vm_area_struct *vma = walk->vma;
1251 u64 flags = 0, frame = 0;
1252 int err = 0;
1253 pte_t pte;
1254
1255 if (vma->vm_flags & VM_SOFTDIRTY)
1256 flags |= PM_SOFT_DIRTY;
1257
1258 pte = huge_ptep_get(ptep);
1259 if (pte_present(pte)) {
1260 struct page *page = pte_page(pte);
1261
1262 if (!PageAnon(page))
1263 flags |= PM_FILE;
1264
1265 if (page_mapcount(page) == 1)
1266 flags |= PM_MMAP_EXCLUSIVE;
1267
1268 flags |= PM_PRESENT;
1269 if (pm->show_pfn)
1270 frame = pte_pfn(pte) +
1271 ((addr & ~hmask) >> PAGE_SHIFT);
1272 }
1273
1274 for (; addr != end; addr += PAGE_SIZE) {
1275 pagemap_entry_t pme = make_pme(frame, flags);
1276
1277 err = add_to_pagemap(addr, &pme, pm);
1278 if (err)
1279 return err;
1280 if (pm->show_pfn && (flags & PM_PRESENT))
1281 frame++;
1282 }
1283
1284 cond_resched();
1285
1286 return err;
1287 }
1288 #endif /* HUGETLB_PAGE */
1289
1290 /*
1291 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1292 *
1293 * For each page in the address space, this file contains one 64-bit entry
1294 * consisting of the following:
1295 *
1296 * Bits 0-54 page frame number (PFN) if present
1297 * Bits 0-4 swap type if swapped
1298 * Bits 5-54 swap offset if swapped
1299 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1300 * Bit 56 page exclusively mapped
1301 * Bits 57-60 zero
1302 * Bit 61 page is file-page or shared-anon
1303 * Bit 62 page swapped
1304 * Bit 63 page present
1305 *
1306 * If the page is not present but in swap, then the PFN contains an
1307 * encoding of the swap file number and the page's offset into the
1308 * swap. Unmapped pages return a null PFN. This allows determining
1309 * precisely which pages are mapped (or in swap) and comparing mapped
1310 * pages between processes.
1311 *
1312 * Efficient users of this interface will use /proc/pid/maps to
1313 * determine which areas of memory are actually mapped and llseek to
1314 * skip over unmapped regions.
1315 */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1316 static ssize_t pagemap_read(struct file *file, char __user *buf,
1317 size_t count, loff_t *ppos)
1318 {
1319 struct mm_struct *mm = file->private_data;
1320 struct pagemapread pm;
1321 struct mm_walk pagemap_walk = {};
1322 unsigned long src;
1323 unsigned long svpfn;
1324 unsigned long start_vaddr;
1325 unsigned long end_vaddr;
1326 int ret = 0, copied = 0;
1327
1328 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1329 goto out;
1330
1331 ret = -EINVAL;
1332 /* file position must be aligned */
1333 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1334 goto out_mm;
1335
1336 ret = 0;
1337 if (!count)
1338 goto out_mm;
1339
1340 /* do not disclose physical addresses: attack vector */
1341 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1342
1343 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1344 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1345 ret = -ENOMEM;
1346 if (!pm.buffer)
1347 goto out_mm;
1348
1349 pagemap_walk.pmd_entry = pagemap_pmd_range;
1350 pagemap_walk.pte_hole = pagemap_pte_hole;
1351 #ifdef CONFIG_HUGETLB_PAGE
1352 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1353 #endif
1354 pagemap_walk.mm = mm;
1355 pagemap_walk.private = ±
1356
1357 src = *ppos;
1358 svpfn = src / PM_ENTRY_BYTES;
1359 start_vaddr = svpfn << PAGE_SHIFT;
1360 end_vaddr = mm->task_size;
1361
1362 /* watch out for wraparound */
1363 if (svpfn > mm->task_size >> PAGE_SHIFT)
1364 start_vaddr = end_vaddr;
1365
1366 /*
1367 * The odds are that this will stop walking way
1368 * before end_vaddr, because the length of the
1369 * user buffer is tracked in "pm", and the walk
1370 * will stop when we hit the end of the buffer.
1371 */
1372 ret = 0;
1373 while (count && (start_vaddr < end_vaddr)) {
1374 int len;
1375 unsigned long end;
1376
1377 pm.pos = 0;
1378 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1379 /* overflow ? */
1380 if (end < start_vaddr || end > end_vaddr)
1381 end = end_vaddr;
1382 down_read(&mm->mmap_sem);
1383 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1384 up_read(&mm->mmap_sem);
1385 start_vaddr = end;
1386
1387 len = min(count, PM_ENTRY_BYTES * pm.pos);
1388 if (copy_to_user(buf, pm.buffer, len)) {
1389 ret = -EFAULT;
1390 goto out_free;
1391 }
1392 copied += len;
1393 buf += len;
1394 count -= len;
1395 }
1396 *ppos += copied;
1397 if (!ret || ret == PM_END_OF_BUFFER)
1398 ret = copied;
1399
1400 out_free:
1401 kfree(pm.buffer);
1402 out_mm:
1403 mmput(mm);
1404 out:
1405 return ret;
1406 }
1407
pagemap_open(struct inode * inode,struct file * file)1408 static int pagemap_open(struct inode *inode, struct file *file)
1409 {
1410 struct mm_struct *mm;
1411
1412 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1413 if (IS_ERR(mm))
1414 return PTR_ERR(mm);
1415 file->private_data = mm;
1416 return 0;
1417 }
1418
pagemap_release(struct inode * inode,struct file * file)1419 static int pagemap_release(struct inode *inode, struct file *file)
1420 {
1421 struct mm_struct *mm = file->private_data;
1422
1423 if (mm)
1424 mmdrop(mm);
1425 return 0;
1426 }
1427
1428 const struct file_operations proc_pagemap_operations = {
1429 .llseek = mem_lseek, /* borrow this */
1430 .read = pagemap_read,
1431 .open = pagemap_open,
1432 .release = pagemap_release,
1433 };
1434 #endif /* CONFIG_PROC_PAGE_MONITOR */
1435
1436 #ifdef CONFIG_NUMA
1437
1438 struct numa_maps {
1439 unsigned long pages;
1440 unsigned long anon;
1441 unsigned long active;
1442 unsigned long writeback;
1443 unsigned long mapcount_max;
1444 unsigned long dirty;
1445 unsigned long swapcache;
1446 unsigned long node[MAX_NUMNODES];
1447 };
1448
1449 struct numa_maps_private {
1450 struct proc_maps_private proc_maps;
1451 struct numa_maps md;
1452 };
1453
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)1454 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1455 unsigned long nr_pages)
1456 {
1457 int count = page_mapcount(page);
1458
1459 md->pages += nr_pages;
1460 if (pte_dirty || PageDirty(page))
1461 md->dirty += nr_pages;
1462
1463 if (PageSwapCache(page))
1464 md->swapcache += nr_pages;
1465
1466 if (PageActive(page) || PageUnevictable(page))
1467 md->active += nr_pages;
1468
1469 if (PageWriteback(page))
1470 md->writeback += nr_pages;
1471
1472 if (PageAnon(page))
1473 md->anon += nr_pages;
1474
1475 if (count > md->mapcount_max)
1476 md->mapcount_max = count;
1477
1478 md->node[page_to_nid(page)] += nr_pages;
1479 }
1480
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)1481 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1482 unsigned long addr)
1483 {
1484 struct page *page;
1485 int nid;
1486
1487 if (!pte_present(pte))
1488 return NULL;
1489
1490 page = vm_normal_page(vma, addr, pte);
1491 if (!page)
1492 return NULL;
1493
1494 if (PageReserved(page))
1495 return NULL;
1496
1497 nid = page_to_nid(page);
1498 if (!node_isset(nid, node_states[N_MEMORY]))
1499 return NULL;
1500
1501 return page;
1502 }
1503
1504 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)1505 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1506 struct vm_area_struct *vma,
1507 unsigned long addr)
1508 {
1509 struct page *page;
1510 int nid;
1511
1512 if (!pmd_present(pmd))
1513 return NULL;
1514
1515 page = vm_normal_page_pmd(vma, addr, pmd);
1516 if (!page)
1517 return NULL;
1518
1519 if (PageReserved(page))
1520 return NULL;
1521
1522 nid = page_to_nid(page);
1523 if (!node_isset(nid, node_states[N_MEMORY]))
1524 return NULL;
1525
1526 return page;
1527 }
1528 #endif
1529
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1530 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1531 unsigned long end, struct mm_walk *walk)
1532 {
1533 struct numa_maps *md = walk->private;
1534 struct vm_area_struct *vma = walk->vma;
1535 spinlock_t *ptl;
1536 pte_t *orig_pte;
1537 pte_t *pte;
1538
1539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1540 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1541 struct page *page;
1542
1543 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1544 if (page)
1545 gather_stats(page, md, pmd_dirty(*pmd),
1546 HPAGE_PMD_SIZE/PAGE_SIZE);
1547 spin_unlock(ptl);
1548 return 0;
1549 }
1550
1551 if (pmd_trans_unstable(pmd))
1552 return 0;
1553 #endif
1554 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1555 do {
1556 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1557 if (!page)
1558 continue;
1559 gather_stats(page, md, pte_dirty(*pte), 1);
1560
1561 } while (pte++, addr += PAGE_SIZE, addr != end);
1562 pte_unmap_unlock(orig_pte, ptl);
1563 return 0;
1564 }
1565 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1566 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1567 unsigned long addr, unsigned long end, struct mm_walk *walk)
1568 {
1569 pte_t huge_pte = huge_ptep_get(pte);
1570 struct numa_maps *md;
1571 struct page *page;
1572
1573 if (!pte_present(huge_pte))
1574 return 0;
1575
1576 page = pte_page(huge_pte);
1577 if (!page)
1578 return 0;
1579
1580 md = walk->private;
1581 gather_stats(page, md, pte_dirty(huge_pte), 1);
1582 return 0;
1583 }
1584
1585 #else
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1586 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1587 unsigned long addr, unsigned long end, struct mm_walk *walk)
1588 {
1589 return 0;
1590 }
1591 #endif
1592
1593 /*
1594 * Display pages allocated per node and memory policy via /proc.
1595 */
show_numa_map(struct seq_file * m,void * v,int is_pid)1596 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1597 {
1598 struct numa_maps_private *numa_priv = m->private;
1599 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1600 struct vm_area_struct *vma = v;
1601 struct numa_maps *md = &numa_priv->md;
1602 struct file *file = vma->vm_file;
1603 struct mm_struct *mm = vma->vm_mm;
1604 struct mm_walk walk = {
1605 .hugetlb_entry = gather_hugetlb_stats,
1606 .pmd_entry = gather_pte_stats,
1607 .private = md,
1608 .mm = mm,
1609 };
1610 struct mempolicy *pol;
1611 char buffer[64];
1612 int nid;
1613
1614 if (!mm)
1615 return 0;
1616
1617 /* Ensure we start with an empty set of numa_maps statistics. */
1618 memset(md, 0, sizeof(*md));
1619
1620 pol = __get_vma_policy(vma, vma->vm_start);
1621 if (pol) {
1622 mpol_to_str(buffer, sizeof(buffer), pol);
1623 mpol_cond_put(pol);
1624 } else {
1625 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1626 }
1627
1628 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1629
1630 if (file) {
1631 seq_puts(m, " file=");
1632 seq_file_path(m, file, "\n\t= ");
1633 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1634 seq_puts(m, " heap");
1635 } else if (is_stack(proc_priv, vma)) {
1636 seq_puts(m, " stack");
1637 }
1638
1639 if (is_vm_hugetlb_page(vma))
1640 seq_puts(m, " huge");
1641
1642 /* mmap_sem is held by m_start */
1643 walk_page_vma(vma, &walk);
1644
1645 if (!md->pages)
1646 goto out;
1647
1648 if (md->anon)
1649 seq_printf(m, " anon=%lu", md->anon);
1650
1651 if (md->dirty)
1652 seq_printf(m, " dirty=%lu", md->dirty);
1653
1654 if (md->pages != md->anon && md->pages != md->dirty)
1655 seq_printf(m, " mapped=%lu", md->pages);
1656
1657 if (md->mapcount_max > 1)
1658 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1659
1660 if (md->swapcache)
1661 seq_printf(m, " swapcache=%lu", md->swapcache);
1662
1663 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1664 seq_printf(m, " active=%lu", md->active);
1665
1666 if (md->writeback)
1667 seq_printf(m, " writeback=%lu", md->writeback);
1668
1669 for_each_node_state(nid, N_MEMORY)
1670 if (md->node[nid])
1671 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1672
1673 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1674 out:
1675 seq_putc(m, '\n');
1676 m_cache_vma(m, vma);
1677 return 0;
1678 }
1679
show_pid_numa_map(struct seq_file * m,void * v)1680 static int show_pid_numa_map(struct seq_file *m, void *v)
1681 {
1682 return show_numa_map(m, v, 1);
1683 }
1684
show_tid_numa_map(struct seq_file * m,void * v)1685 static int show_tid_numa_map(struct seq_file *m, void *v)
1686 {
1687 return show_numa_map(m, v, 0);
1688 }
1689
1690 static const struct seq_operations proc_pid_numa_maps_op = {
1691 .start = m_start,
1692 .next = m_next,
1693 .stop = m_stop,
1694 .show = show_pid_numa_map,
1695 };
1696
1697 static const struct seq_operations proc_tid_numa_maps_op = {
1698 .start = m_start,
1699 .next = m_next,
1700 .stop = m_stop,
1701 .show = show_tid_numa_map,
1702 };
1703
numa_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)1704 static int numa_maps_open(struct inode *inode, struct file *file,
1705 const struct seq_operations *ops)
1706 {
1707 return proc_maps_open(inode, file, ops,
1708 sizeof(struct numa_maps_private));
1709 }
1710
pid_numa_maps_open(struct inode * inode,struct file * file)1711 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1712 {
1713 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1714 }
1715
tid_numa_maps_open(struct inode * inode,struct file * file)1716 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1717 {
1718 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1719 }
1720
1721 const struct file_operations proc_pid_numa_maps_operations = {
1722 .open = pid_numa_maps_open,
1723 .read = seq_read,
1724 .llseek = seq_lseek,
1725 .release = proc_map_release,
1726 };
1727
1728 const struct file_operations proc_tid_numa_maps_operations = {
1729 .open = tid_numa_maps_open,
1730 .read = seq_read,
1731 .llseek = seq_lseek,
1732 .release = proc_map_release,
1733 };
1734 #endif /* CONFIG_NUMA */
1735