• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17 
18 #include <asm/elf.h>
19 #include <asm/uaccess.h>
20 #include <asm/tlbflush.h>
21 #include "internal.h"
22 
task_mem(struct seq_file * m,struct mm_struct * mm)23 void task_mem(struct seq_file *m, struct mm_struct *mm)
24 {
25 	unsigned long data, text, lib, swap, ptes, pmds;
26 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
27 
28 	/*
29 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
30 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
31 	 * collector of these hiwater stats must therefore get total_vm
32 	 * and rss too, which will usually be the higher.  Barriers? not
33 	 * worth the effort, such snapshots can always be inconsistent.
34 	 */
35 	hiwater_vm = total_vm = mm->total_vm;
36 	if (hiwater_vm < mm->hiwater_vm)
37 		hiwater_vm = mm->hiwater_vm;
38 	hiwater_rss = total_rss = get_mm_rss(mm);
39 	if (hiwater_rss < mm->hiwater_rss)
40 		hiwater_rss = mm->hiwater_rss;
41 
42 	data = mm->total_vm - mm->shared_vm - mm->stack_vm;
43 	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
44 	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
45 	swap = get_mm_counter(mm, MM_SWAPENTS);
46 	ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
47 	pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
48 	seq_printf(m,
49 		"VmPeak:\t%8lu kB\n"
50 		"VmSize:\t%8lu kB\n"
51 		"VmLck:\t%8lu kB\n"
52 		"VmPin:\t%8lu kB\n"
53 		"VmHWM:\t%8lu kB\n"
54 		"VmRSS:\t%8lu kB\n"
55 		"VmData:\t%8lu kB\n"
56 		"VmStk:\t%8lu kB\n"
57 		"VmExe:\t%8lu kB\n"
58 		"VmLib:\t%8lu kB\n"
59 		"VmPTE:\t%8lu kB\n"
60 		"VmPMD:\t%8lu kB\n"
61 		"VmSwap:\t%8lu kB\n",
62 		hiwater_vm << (PAGE_SHIFT-10),
63 		total_vm << (PAGE_SHIFT-10),
64 		mm->locked_vm << (PAGE_SHIFT-10),
65 		mm->pinned_vm << (PAGE_SHIFT-10),
66 		hiwater_rss << (PAGE_SHIFT-10),
67 		total_rss << (PAGE_SHIFT-10),
68 		data << (PAGE_SHIFT-10),
69 		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
70 		ptes >> 10,
71 		pmds >> 10,
72 		swap << (PAGE_SHIFT-10));
73 	hugetlb_report_usage(m, mm);
74 }
75 
task_vsize(struct mm_struct * mm)76 unsigned long task_vsize(struct mm_struct *mm)
77 {
78 	return PAGE_SIZE * mm->total_vm;
79 }
80 
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)81 unsigned long task_statm(struct mm_struct *mm,
82 			 unsigned long *shared, unsigned long *text,
83 			 unsigned long *data, unsigned long *resident)
84 {
85 	*shared = get_mm_counter(mm, MM_FILEPAGES);
86 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
87 								>> PAGE_SHIFT;
88 	*data = mm->total_vm - mm->shared_vm;
89 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
90 	return mm->total_vm;
91 }
92 
93 #ifdef CONFIG_NUMA
94 /*
95  * Save get_task_policy() for show_numa_map().
96  */
hold_task_mempolicy(struct proc_maps_private * priv)97 static void hold_task_mempolicy(struct proc_maps_private *priv)
98 {
99 	struct task_struct *task = priv->task;
100 
101 	task_lock(task);
102 	priv->task_mempolicy = get_task_policy(task);
103 	mpol_get(priv->task_mempolicy);
104 	task_unlock(task);
105 }
release_task_mempolicy(struct proc_maps_private * priv)106 static void release_task_mempolicy(struct proc_maps_private *priv)
107 {
108 	mpol_put(priv->task_mempolicy);
109 }
110 #else
hold_task_mempolicy(struct proc_maps_private * priv)111 static void hold_task_mempolicy(struct proc_maps_private *priv)
112 {
113 }
release_task_mempolicy(struct proc_maps_private * priv)114 static void release_task_mempolicy(struct proc_maps_private *priv)
115 {
116 }
117 #endif
118 
seq_print_vma_name(struct seq_file * m,struct vm_area_struct * vma)119 static void seq_print_vma_name(struct seq_file *m, struct vm_area_struct *vma)
120 {
121 	const char __user *name = vma_get_anon_name(vma);
122 	struct mm_struct *mm = vma->vm_mm;
123 
124 	unsigned long page_start_vaddr;
125 	unsigned long page_offset;
126 	unsigned long num_pages;
127 	unsigned long max_len = NAME_MAX;
128 	int i;
129 
130 	page_start_vaddr = (unsigned long)name & PAGE_MASK;
131 	page_offset = (unsigned long)name - page_start_vaddr;
132 	num_pages = DIV_ROUND_UP(page_offset + max_len, PAGE_SIZE);
133 
134 	seq_puts(m, "[anon:");
135 
136 	for (i = 0; i < num_pages; i++) {
137 		int len;
138 		int write_len;
139 		const char *kaddr;
140 		long pages_pinned;
141 		struct page *page;
142 
143 		pages_pinned = get_user_pages(current, mm, page_start_vaddr,
144 				1, 0, &page, NULL);
145 		if (pages_pinned < 1) {
146 			seq_puts(m, "<fault>]");
147 			return;
148 		}
149 
150 		kaddr = (const char *)kmap(page);
151 		len = min(max_len, PAGE_SIZE - page_offset);
152 		write_len = strnlen(kaddr + page_offset, len);
153 		seq_write(m, kaddr + page_offset, write_len);
154 		kunmap(page);
155 		put_page(page);
156 
157 		/* if strnlen hit a null terminator then we're done */
158 		if (write_len != len)
159 			break;
160 
161 		max_len -= len;
162 		page_offset = 0;
163 		page_start_vaddr += PAGE_SIZE;
164 	}
165 
166 	seq_putc(m, ']');
167 }
168 
vma_stop(struct proc_maps_private * priv)169 static void vma_stop(struct proc_maps_private *priv)
170 {
171 	struct mm_struct *mm = priv->mm;
172 
173 	release_task_mempolicy(priv);
174 	up_read(&mm->mmap_sem);
175 	mmput(mm);
176 }
177 
178 static struct vm_area_struct *
m_next_vma(struct proc_maps_private * priv,struct vm_area_struct * vma)179 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
180 {
181 	if (vma == priv->tail_vma)
182 		return NULL;
183 	return vma->vm_next ?: priv->tail_vma;
184 }
185 
m_cache_vma(struct seq_file * m,struct vm_area_struct * vma)186 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
187 {
188 	if (m->count < m->size)	/* vma is copied successfully */
189 		m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
190 }
191 
m_start(struct seq_file * m,loff_t * ppos)192 static void *m_start(struct seq_file *m, loff_t *ppos)
193 {
194 	struct proc_maps_private *priv = m->private;
195 	unsigned long last_addr = m->version;
196 	struct mm_struct *mm;
197 	struct vm_area_struct *vma;
198 	unsigned int pos = *ppos;
199 
200 	/* See m_cache_vma(). Zero at the start or after lseek. */
201 	if (last_addr == -1UL)
202 		return NULL;
203 
204 	priv->task = get_proc_task(priv->inode);
205 	if (!priv->task)
206 		return ERR_PTR(-ESRCH);
207 
208 	mm = priv->mm;
209 	if (!mm || !atomic_inc_not_zero(&mm->mm_users))
210 		return NULL;
211 
212 	down_read(&mm->mmap_sem);
213 	hold_task_mempolicy(priv);
214 	priv->tail_vma = get_gate_vma(mm);
215 
216 	if (last_addr) {
217 		vma = find_vma(mm, last_addr);
218 		if (vma && (vma = m_next_vma(priv, vma)))
219 			return vma;
220 	}
221 
222 	m->version = 0;
223 	if (pos < mm->map_count) {
224 		for (vma = mm->mmap; pos; pos--) {
225 			m->version = vma->vm_start;
226 			vma = vma->vm_next;
227 		}
228 		return vma;
229 	}
230 
231 	/* we do not bother to update m->version in this case */
232 	if (pos == mm->map_count && priv->tail_vma)
233 		return priv->tail_vma;
234 
235 	vma_stop(priv);
236 	return NULL;
237 }
238 
m_next(struct seq_file * m,void * v,loff_t * pos)239 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
240 {
241 	struct proc_maps_private *priv = m->private;
242 	struct vm_area_struct *next;
243 
244 	(*pos)++;
245 	next = m_next_vma(priv, v);
246 	if (!next)
247 		vma_stop(priv);
248 	return next;
249 }
250 
m_stop(struct seq_file * m,void * v)251 static void m_stop(struct seq_file *m, void *v)
252 {
253 	struct proc_maps_private *priv = m->private;
254 
255 	if (!IS_ERR_OR_NULL(v))
256 		vma_stop(priv);
257 	if (priv->task) {
258 		put_task_struct(priv->task);
259 		priv->task = NULL;
260 	}
261 }
262 
proc_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops,int psize)263 static int proc_maps_open(struct inode *inode, struct file *file,
264 			const struct seq_operations *ops, int psize)
265 {
266 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
267 
268 	if (!priv)
269 		return -ENOMEM;
270 
271 	priv->inode = inode;
272 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
273 	if (IS_ERR(priv->mm)) {
274 		int err = PTR_ERR(priv->mm);
275 
276 		seq_release_private(inode, file);
277 		return err;
278 	}
279 
280 	return 0;
281 }
282 
proc_map_release(struct inode * inode,struct file * file)283 static int proc_map_release(struct inode *inode, struct file *file)
284 {
285 	struct seq_file *seq = file->private_data;
286 	struct proc_maps_private *priv = seq->private;
287 
288 	if (priv->mm)
289 		mmdrop(priv->mm);
290 
291 	return seq_release_private(inode, file);
292 }
293 
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)294 static int do_maps_open(struct inode *inode, struct file *file,
295 			const struct seq_operations *ops)
296 {
297 	return proc_maps_open(inode, file, ops,
298 				sizeof(struct proc_maps_private));
299 }
300 
301 /*
302  * Indicate if the VMA is a stack for the given task; for
303  * /proc/PID/maps that is the stack of the main task.
304  */
is_stack(struct proc_maps_private * priv,struct vm_area_struct * vma)305 static int is_stack(struct proc_maps_private *priv,
306 		    struct vm_area_struct *vma)
307 {
308 	/*
309 	 * We make no effort to guess what a given thread considers to be
310 	 * its "stack".  It's not even well-defined for programs written
311 	 * languages like Go.
312 	 */
313 	return vma->vm_start <= vma->vm_mm->start_stack &&
314 		vma->vm_end >= vma->vm_mm->start_stack;
315 }
316 
317 static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma,int is_pid)318 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
319 {
320 	struct mm_struct *mm = vma->vm_mm;
321 	struct file *file = vma->vm_file;
322 	struct proc_maps_private *priv = m->private;
323 	vm_flags_t flags = vma->vm_flags;
324 	unsigned long ino = 0;
325 	unsigned long long pgoff = 0;
326 	unsigned long start, end;
327 	dev_t dev = 0;
328 	const char *name = NULL;
329 
330 	if (file) {
331 		struct inode *inode = file_inode(vma->vm_file);
332 		dev = inode->i_sb->s_dev;
333 		ino = inode->i_ino;
334 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
335 	}
336 
337 	/* We don't show the stack guard page in /proc/maps */
338 	start = vma->vm_start;
339 	end = vma->vm_end;
340 
341 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
342 	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
343 			start,
344 			end,
345 			flags & VM_READ ? 'r' : '-',
346 			flags & VM_WRITE ? 'w' : '-',
347 			flags & VM_EXEC ? 'x' : '-',
348 			flags & VM_MAYSHARE ? 's' : 'p',
349 			pgoff,
350 			MAJOR(dev), MINOR(dev), ino);
351 
352 	/*
353 	 * Print the dentry name for named mappings, and a
354 	 * special [heap] marker for the heap:
355 	 */
356 	if (file) {
357 		seq_pad(m, ' ');
358 		seq_file_path(m, file, "\n");
359 		goto done;
360 	}
361 
362 	if (vma->vm_ops && vma->vm_ops->name) {
363 		name = vma->vm_ops->name(vma);
364 		if (name)
365 			goto done;
366 	}
367 
368 	name = arch_vma_name(vma);
369 	if (!name) {
370 		if (!mm) {
371 			name = "[vdso]";
372 			goto done;
373 		}
374 
375 		if (vma->vm_start <= mm->brk &&
376 		    vma->vm_end >= mm->start_brk) {
377 			name = "[heap]";
378 			goto done;
379 		}
380 
381 		if (is_stack(priv, vma)) {
382 			name = "[stack]";
383 			goto done;
384 		}
385 
386 		if (vma_get_anon_name(vma)) {
387 			seq_pad(m, ' ');
388 			seq_print_vma_name(m, vma);
389 		}
390 	}
391 
392 done:
393 	if (name) {
394 		seq_pad(m, ' ');
395 		seq_puts(m, name);
396 	}
397 	seq_putc(m, '\n');
398 }
399 
show_map(struct seq_file * m,void * v,int is_pid)400 static int show_map(struct seq_file *m, void *v, int is_pid)
401 {
402 	show_map_vma(m, v, is_pid);
403 	m_cache_vma(m, v);
404 	return 0;
405 }
406 
show_pid_map(struct seq_file * m,void * v)407 static int show_pid_map(struct seq_file *m, void *v)
408 {
409 	return show_map(m, v, 1);
410 }
411 
show_tid_map(struct seq_file * m,void * v)412 static int show_tid_map(struct seq_file *m, void *v)
413 {
414 	return show_map(m, v, 0);
415 }
416 
417 static const struct seq_operations proc_pid_maps_op = {
418 	.start	= m_start,
419 	.next	= m_next,
420 	.stop	= m_stop,
421 	.show	= show_pid_map
422 };
423 
424 static const struct seq_operations proc_tid_maps_op = {
425 	.start	= m_start,
426 	.next	= m_next,
427 	.stop	= m_stop,
428 	.show	= show_tid_map
429 };
430 
pid_maps_open(struct inode * inode,struct file * file)431 static int pid_maps_open(struct inode *inode, struct file *file)
432 {
433 	return do_maps_open(inode, file, &proc_pid_maps_op);
434 }
435 
tid_maps_open(struct inode * inode,struct file * file)436 static int tid_maps_open(struct inode *inode, struct file *file)
437 {
438 	return do_maps_open(inode, file, &proc_tid_maps_op);
439 }
440 
441 const struct file_operations proc_pid_maps_operations = {
442 	.open		= pid_maps_open,
443 	.read		= seq_read,
444 	.llseek		= seq_lseek,
445 	.release	= proc_map_release,
446 };
447 
448 const struct file_operations proc_tid_maps_operations = {
449 	.open		= tid_maps_open,
450 	.read		= seq_read,
451 	.llseek		= seq_lseek,
452 	.release	= proc_map_release,
453 };
454 
455 /*
456  * Proportional Set Size(PSS): my share of RSS.
457  *
458  * PSS of a process is the count of pages it has in memory, where each
459  * page is divided by the number of processes sharing it.  So if a
460  * process has 1000 pages all to itself, and 1000 shared with one other
461  * process, its PSS will be 1500.
462  *
463  * To keep (accumulated) division errors low, we adopt a 64bit
464  * fixed-point pss counter to minimize division errors. So (pss >>
465  * PSS_SHIFT) would be the real byte count.
466  *
467  * A shift of 12 before division means (assuming 4K page size):
468  * 	- 1M 3-user-pages add up to 8KB errors;
469  * 	- supports mapcount up to 2^24, or 16M;
470  * 	- supports PSS up to 2^52 bytes, or 4PB.
471  */
472 #define PSS_SHIFT 12
473 
474 #ifdef CONFIG_PROC_PAGE_MONITOR
475 struct mem_size_stats {
476 	unsigned long resident;
477 	unsigned long shared_clean;
478 	unsigned long shared_dirty;
479 	unsigned long private_clean;
480 	unsigned long private_dirty;
481 	unsigned long referenced;
482 	unsigned long anonymous;
483 	unsigned long anonymous_thp;
484 	unsigned long swap;
485 	unsigned long shared_hugetlb;
486 	unsigned long private_hugetlb;
487 	u64 pss;
488 	u64 swap_pss;
489 };
490 
smaps_account(struct mem_size_stats * mss,struct page * page,unsigned long size,bool young,bool dirty)491 static void smaps_account(struct mem_size_stats *mss, struct page *page,
492 		unsigned long size, bool young, bool dirty)
493 {
494 	int mapcount;
495 
496 	if (PageAnon(page))
497 		mss->anonymous += size;
498 
499 	mss->resident += size;
500 	/* Accumulate the size in pages that have been accessed. */
501 	if (young || page_is_young(page) || PageReferenced(page))
502 		mss->referenced += size;
503 	mapcount = page_mapcount(page);
504 	if (mapcount >= 2) {
505 		u64 pss_delta;
506 
507 		if (dirty || PageDirty(page))
508 			mss->shared_dirty += size;
509 		else
510 			mss->shared_clean += size;
511 		pss_delta = (u64)size << PSS_SHIFT;
512 		do_div(pss_delta, mapcount);
513 		mss->pss += pss_delta;
514 	} else {
515 		if (dirty || PageDirty(page))
516 			mss->private_dirty += size;
517 		else
518 			mss->private_clean += size;
519 		mss->pss += (u64)size << PSS_SHIFT;
520 	}
521 }
522 
smaps_pte_entry(pte_t * pte,unsigned long addr,struct mm_walk * walk)523 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
524 		struct mm_walk *walk)
525 {
526 	struct mem_size_stats *mss = walk->private;
527 	struct vm_area_struct *vma = walk->vma;
528 	struct page *page = NULL;
529 
530 	if (pte_present(*pte)) {
531 		page = vm_normal_page(vma, addr, *pte);
532 	} else if (is_swap_pte(*pte)) {
533 		swp_entry_t swpent = pte_to_swp_entry(*pte);
534 
535 		if (!non_swap_entry(swpent)) {
536 			int mapcount;
537 
538 			mss->swap += PAGE_SIZE;
539 			mapcount = swp_swapcount(swpent);
540 			if (mapcount >= 2) {
541 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
542 
543 				do_div(pss_delta, mapcount);
544 				mss->swap_pss += pss_delta;
545 			} else {
546 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
547 			}
548 		} else if (is_migration_entry(swpent))
549 			page = migration_entry_to_page(swpent);
550 	}
551 
552 	if (!page)
553 		return;
554 	smaps_account(mss, page, PAGE_SIZE, pte_young(*pte), pte_dirty(*pte));
555 }
556 
557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)558 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
559 		struct mm_walk *walk)
560 {
561 	struct mem_size_stats *mss = walk->private;
562 	struct vm_area_struct *vma = walk->vma;
563 	struct page *page;
564 
565 	/* FOLL_DUMP will return -EFAULT on huge zero page */
566 	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
567 	if (IS_ERR_OR_NULL(page))
568 		return;
569 	mss->anonymous_thp += HPAGE_PMD_SIZE;
570 	smaps_account(mss, page, HPAGE_PMD_SIZE,
571 			pmd_young(*pmd), pmd_dirty(*pmd));
572 }
573 #else
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)574 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
575 		struct mm_walk *walk)
576 {
577 }
578 #endif
579 
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)580 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
581 			   struct mm_walk *walk)
582 {
583 	struct vm_area_struct *vma = walk->vma;
584 	pte_t *pte;
585 	spinlock_t *ptl;
586 
587 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
588 		smaps_pmd_entry(pmd, addr, walk);
589 		spin_unlock(ptl);
590 		return 0;
591 	}
592 
593 	if (pmd_trans_unstable(pmd))
594 		return 0;
595 	/*
596 	 * The mmap_sem held all the way back in m_start() is what
597 	 * keeps khugepaged out of here and from collapsing things
598 	 * in here.
599 	 */
600 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
601 	for (; addr != end; pte++, addr += PAGE_SIZE)
602 		smaps_pte_entry(pte, addr, walk);
603 	pte_unmap_unlock(pte - 1, ptl);
604 	cond_resched();
605 	return 0;
606 }
607 
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)608 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
609 {
610 	/*
611 	 * Don't forget to update Documentation/ on changes.
612 	 */
613 	static const char mnemonics[BITS_PER_LONG][2] = {
614 		/*
615 		 * In case if we meet a flag we don't know about.
616 		 */
617 		[0 ... (BITS_PER_LONG-1)] = "??",
618 
619 		[ilog2(VM_READ)]	= "rd",
620 		[ilog2(VM_WRITE)]	= "wr",
621 		[ilog2(VM_EXEC)]	= "ex",
622 		[ilog2(VM_SHARED)]	= "sh",
623 		[ilog2(VM_MAYREAD)]	= "mr",
624 		[ilog2(VM_MAYWRITE)]	= "mw",
625 		[ilog2(VM_MAYEXEC)]	= "me",
626 		[ilog2(VM_MAYSHARE)]	= "ms",
627 		[ilog2(VM_GROWSDOWN)]	= "gd",
628 		[ilog2(VM_PFNMAP)]	= "pf",
629 		[ilog2(VM_DENYWRITE)]	= "dw",
630 #ifdef CONFIG_X86_INTEL_MPX
631 		[ilog2(VM_MPX)]		= "mp",
632 #endif
633 		[ilog2(VM_LOCKED)]	= "lo",
634 		[ilog2(VM_IO)]		= "io",
635 		[ilog2(VM_SEQ_READ)]	= "sr",
636 		[ilog2(VM_RAND_READ)]	= "rr",
637 		[ilog2(VM_DONTCOPY)]	= "dc",
638 		[ilog2(VM_DONTEXPAND)]	= "de",
639 		[ilog2(VM_ACCOUNT)]	= "ac",
640 		[ilog2(VM_NORESERVE)]	= "nr",
641 		[ilog2(VM_HUGETLB)]	= "ht",
642 		[ilog2(VM_ARCH_1)]	= "ar",
643 		[ilog2(VM_DONTDUMP)]	= "dd",
644 #ifdef CONFIG_MEM_SOFT_DIRTY
645 		[ilog2(VM_SOFTDIRTY)]	= "sd",
646 #endif
647 		[ilog2(VM_MIXEDMAP)]	= "mm",
648 		[ilog2(VM_HUGEPAGE)]	= "hg",
649 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
650 		[ilog2(VM_MERGEABLE)]	= "mg",
651 		[ilog2(VM_UFFD_MISSING)]= "um",
652 		[ilog2(VM_UFFD_WP)]	= "uw",
653 	};
654 	size_t i;
655 
656 	seq_puts(m, "VmFlags: ");
657 	for (i = 0; i < BITS_PER_LONG; i++) {
658 		if (vma->vm_flags & (1UL << i)) {
659 			seq_printf(m, "%c%c ",
660 				   mnemonics[i][0], mnemonics[i][1]);
661 		}
662 	}
663 	seq_putc(m, '\n');
664 }
665 
666 #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)667 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
668 				 unsigned long addr, unsigned long end,
669 				 struct mm_walk *walk)
670 {
671 	struct mem_size_stats *mss = walk->private;
672 	struct vm_area_struct *vma = walk->vma;
673 	struct page *page = NULL;
674 
675 	if (pte_present(*pte)) {
676 		page = vm_normal_page(vma, addr, *pte);
677 	} else if (is_swap_pte(*pte)) {
678 		swp_entry_t swpent = pte_to_swp_entry(*pte);
679 
680 		if (is_migration_entry(swpent))
681 			page = migration_entry_to_page(swpent);
682 	}
683 	if (page) {
684 		int mapcount = page_mapcount(page);
685 
686 		if (mapcount >= 2)
687 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
688 		else
689 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
690 	}
691 	return 0;
692 }
693 #endif /* HUGETLB_PAGE */
694 
show_smap(struct seq_file * m,void * v,int is_pid)695 static int show_smap(struct seq_file *m, void *v, int is_pid)
696 {
697 	struct vm_area_struct *vma = v;
698 	struct mem_size_stats mss;
699 	struct mm_walk smaps_walk = {
700 		.pmd_entry = smaps_pte_range,
701 #ifdef CONFIG_HUGETLB_PAGE
702 		.hugetlb_entry = smaps_hugetlb_range,
703 #endif
704 		.mm = vma->vm_mm,
705 		.private = &mss,
706 	};
707 
708 	memset(&mss, 0, sizeof mss);
709 	/* mmap_sem is held in m_start */
710 	walk_page_vma(vma, &smaps_walk);
711 
712 	show_map_vma(m, vma, is_pid);
713 
714 	if (vma_get_anon_name(vma)) {
715 		seq_puts(m, "Name:           ");
716 		seq_print_vma_name(m, vma);
717 		seq_putc(m, '\n');
718 	}
719 
720 	seq_printf(m,
721 		   "Size:           %8lu kB\n"
722 		   "Rss:            %8lu kB\n"
723 		   "Pss:            %8lu kB\n"
724 		   "Shared_Clean:   %8lu kB\n"
725 		   "Shared_Dirty:   %8lu kB\n"
726 		   "Private_Clean:  %8lu kB\n"
727 		   "Private_Dirty:  %8lu kB\n"
728 		   "Referenced:     %8lu kB\n"
729 		   "Anonymous:      %8lu kB\n"
730 		   "AnonHugePages:  %8lu kB\n"
731 		   "Shared_Hugetlb: %8lu kB\n"
732 		   "Private_Hugetlb: %7lu kB\n"
733 		   "Swap:           %8lu kB\n"
734 		   "SwapPss:        %8lu kB\n"
735 		   "KernelPageSize: %8lu kB\n"
736 		   "MMUPageSize:    %8lu kB\n"
737 		   "Locked:         %8lu kB\n",
738 		   (vma->vm_end - vma->vm_start) >> 10,
739 		   mss.resident >> 10,
740 		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
741 		   mss.shared_clean  >> 10,
742 		   mss.shared_dirty  >> 10,
743 		   mss.private_clean >> 10,
744 		   mss.private_dirty >> 10,
745 		   mss.referenced >> 10,
746 		   mss.anonymous >> 10,
747 		   mss.anonymous_thp >> 10,
748 		   mss.shared_hugetlb >> 10,
749 		   mss.private_hugetlb >> 10,
750 		   mss.swap >> 10,
751 		   (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
752 		   vma_kernel_pagesize(vma) >> 10,
753 		   vma_mmu_pagesize(vma) >> 10,
754 		   (vma->vm_flags & VM_LOCKED) ?
755 			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
756 
757 	show_smap_vma_flags(m, vma);
758 	m_cache_vma(m, vma);
759 	return 0;
760 }
761 
show_pid_smap(struct seq_file * m,void * v)762 static int show_pid_smap(struct seq_file *m, void *v)
763 {
764 	return show_smap(m, v, 1);
765 }
766 
show_tid_smap(struct seq_file * m,void * v)767 static int show_tid_smap(struct seq_file *m, void *v)
768 {
769 	return show_smap(m, v, 0);
770 }
771 
772 static const struct seq_operations proc_pid_smaps_op = {
773 	.start	= m_start,
774 	.next	= m_next,
775 	.stop	= m_stop,
776 	.show	= show_pid_smap
777 };
778 
779 static const struct seq_operations proc_tid_smaps_op = {
780 	.start	= m_start,
781 	.next	= m_next,
782 	.stop	= m_stop,
783 	.show	= show_tid_smap
784 };
785 
pid_smaps_open(struct inode * inode,struct file * file)786 static int pid_smaps_open(struct inode *inode, struct file *file)
787 {
788 	return do_maps_open(inode, file, &proc_pid_smaps_op);
789 }
790 
tid_smaps_open(struct inode * inode,struct file * file)791 static int tid_smaps_open(struct inode *inode, struct file *file)
792 {
793 	return do_maps_open(inode, file, &proc_tid_smaps_op);
794 }
795 
796 const struct file_operations proc_pid_smaps_operations = {
797 	.open		= pid_smaps_open,
798 	.read		= seq_read,
799 	.llseek		= seq_lseek,
800 	.release	= proc_map_release,
801 };
802 
803 const struct file_operations proc_tid_smaps_operations = {
804 	.open		= tid_smaps_open,
805 	.read		= seq_read,
806 	.llseek		= seq_lseek,
807 	.release	= proc_map_release,
808 };
809 
810 enum clear_refs_types {
811 	CLEAR_REFS_ALL = 1,
812 	CLEAR_REFS_ANON,
813 	CLEAR_REFS_MAPPED,
814 	CLEAR_REFS_SOFT_DIRTY,
815 	CLEAR_REFS_MM_HIWATER_RSS,
816 	CLEAR_REFS_LAST,
817 };
818 
819 struct clear_refs_private {
820 	enum clear_refs_types type;
821 };
822 
823 #ifdef CONFIG_MEM_SOFT_DIRTY
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)824 static inline void clear_soft_dirty(struct vm_area_struct *vma,
825 		unsigned long addr, pte_t *pte)
826 {
827 	/*
828 	 * The soft-dirty tracker uses #PF-s to catch writes
829 	 * to pages, so write-protect the pte as well. See the
830 	 * Documentation/vm/soft-dirty.txt for full description
831 	 * of how soft-dirty works.
832 	 */
833 	pte_t ptent = *pte;
834 
835 	if (pte_present(ptent)) {
836 		ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
837 		ptent = pte_wrprotect(ptent);
838 		ptent = pte_clear_soft_dirty(ptent);
839 		ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
840 	} else if (is_swap_pte(ptent)) {
841 		ptent = pte_swp_clear_soft_dirty(ptent);
842 		set_pte_at(vma->vm_mm, addr, pte, ptent);
843 	}
844 }
845 #else
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)846 static inline void clear_soft_dirty(struct vm_area_struct *vma,
847 		unsigned long addr, pte_t *pte)
848 {
849 }
850 #endif
851 
852 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)853 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
854 		unsigned long addr, pmd_t *pmdp)
855 {
856 	pmd_t pmd = *pmdp;
857 
858 	/* See comment in change_huge_pmd() */
859 	pmdp_invalidate(vma, addr, pmdp);
860 	if (pmd_dirty(*pmdp))
861 		pmd = pmd_mkdirty(pmd);
862 	if (pmd_young(*pmdp))
863 		pmd = pmd_mkyoung(pmd);
864 
865 	pmd = pmd_wrprotect(pmd);
866 	pmd = pmd_clear_soft_dirty(pmd);
867 
868 	if (vma->vm_flags & VM_SOFTDIRTY)
869 		vma->vm_flags &= ~VM_SOFTDIRTY;
870 
871 	set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
872 }
873 #else
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)874 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
875 		unsigned long addr, pmd_t *pmdp)
876 {
877 }
878 #endif
879 
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)880 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
881 				unsigned long end, struct mm_walk *walk)
882 {
883 	struct clear_refs_private *cp = walk->private;
884 	struct vm_area_struct *vma = walk->vma;
885 	pte_t *pte, ptent;
886 	spinlock_t *ptl;
887 	struct page *page;
888 
889 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
890 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
891 			clear_soft_dirty_pmd(vma, addr, pmd);
892 			goto out;
893 		}
894 
895 		page = pmd_page(*pmd);
896 
897 		/* Clear accessed and referenced bits. */
898 		pmdp_test_and_clear_young(vma, addr, pmd);
899 		test_and_clear_page_young(page);
900 		ClearPageReferenced(page);
901 out:
902 		spin_unlock(ptl);
903 		return 0;
904 	}
905 
906 	if (pmd_trans_unstable(pmd))
907 		return 0;
908 
909 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
910 	for (; addr != end; pte++, addr += PAGE_SIZE) {
911 		ptent = *pte;
912 
913 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
914 			clear_soft_dirty(vma, addr, pte);
915 			continue;
916 		}
917 
918 		if (!pte_present(ptent))
919 			continue;
920 
921 		page = vm_normal_page(vma, addr, ptent);
922 		if (!page)
923 			continue;
924 
925 		/* Clear accessed and referenced bits. */
926 		ptep_test_and_clear_young(vma, addr, pte);
927 		test_and_clear_page_young(page);
928 		ClearPageReferenced(page);
929 	}
930 	pte_unmap_unlock(pte - 1, ptl);
931 	cond_resched();
932 	return 0;
933 }
934 
clear_refs_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)935 static int clear_refs_test_walk(unsigned long start, unsigned long end,
936 				struct mm_walk *walk)
937 {
938 	struct clear_refs_private *cp = walk->private;
939 	struct vm_area_struct *vma = walk->vma;
940 
941 	if (vma->vm_flags & VM_PFNMAP)
942 		return 1;
943 
944 	/*
945 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
946 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
947 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
948 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
949 	 */
950 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
951 		return 1;
952 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
953 		return 1;
954 	return 0;
955 }
956 
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)957 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
958 				size_t count, loff_t *ppos)
959 {
960 	struct task_struct *task;
961 	char buffer[PROC_NUMBUF];
962 	struct mm_struct *mm;
963 	struct vm_area_struct *vma;
964 	enum clear_refs_types type;
965 	int itype;
966 	int rv;
967 
968 	memset(buffer, 0, sizeof(buffer));
969 	if (count > sizeof(buffer) - 1)
970 		count = sizeof(buffer) - 1;
971 	if (copy_from_user(buffer, buf, count))
972 		return -EFAULT;
973 	rv = kstrtoint(strstrip(buffer), 10, &itype);
974 	if (rv < 0)
975 		return rv;
976 	type = (enum clear_refs_types)itype;
977 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
978 		return -EINVAL;
979 
980 	task = get_proc_task(file_inode(file));
981 	if (!task)
982 		return -ESRCH;
983 	mm = get_task_mm(task);
984 	if (mm) {
985 		struct clear_refs_private cp = {
986 			.type = type,
987 		};
988 		struct mm_walk clear_refs_walk = {
989 			.pmd_entry = clear_refs_pte_range,
990 			.test_walk = clear_refs_test_walk,
991 			.mm = mm,
992 			.private = &cp,
993 		};
994 
995 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
996 			/*
997 			 * Writing 5 to /proc/pid/clear_refs resets the peak
998 			 * resident set size to this mm's current rss value.
999 			 */
1000 			down_write(&mm->mmap_sem);
1001 			reset_mm_hiwater_rss(mm);
1002 			up_write(&mm->mmap_sem);
1003 			goto out_mm;
1004 		}
1005 
1006 		down_read(&mm->mmap_sem);
1007 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1008 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1009 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1010 					continue;
1011 				up_read(&mm->mmap_sem);
1012 				down_write(&mm->mmap_sem);
1013 				/*
1014 				 * Avoid to modify vma->vm_flags
1015 				 * without locked ops while the
1016 				 * coredump reads the vm_flags.
1017 				 */
1018 				if (!mmget_still_valid(mm)) {
1019 					/*
1020 					 * Silently return "count"
1021 					 * like if get_task_mm()
1022 					 * failed. FIXME: should this
1023 					 * function have returned
1024 					 * -ESRCH if get_task_mm()
1025 					 * failed like if
1026 					 * get_proc_task() fails?
1027 					 */
1028 					up_write(&mm->mmap_sem);
1029 					goto out_mm;
1030 				}
1031 				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1032 					vma->vm_flags &= ~VM_SOFTDIRTY;
1033 					vma_set_page_prot(vma);
1034 				}
1035 				downgrade_write(&mm->mmap_sem);
1036 				break;
1037 			}
1038 			mmu_notifier_invalidate_range_start(mm, 0, -1);
1039 		}
1040 		walk_page_range(0, ~0UL, &clear_refs_walk);
1041 		if (type == CLEAR_REFS_SOFT_DIRTY)
1042 			mmu_notifier_invalidate_range_end(mm, 0, -1);
1043 		flush_tlb_mm(mm);
1044 		up_read(&mm->mmap_sem);
1045 out_mm:
1046 		mmput(mm);
1047 	}
1048 	put_task_struct(task);
1049 
1050 	return count;
1051 }
1052 
1053 const struct file_operations proc_clear_refs_operations = {
1054 	.write		= clear_refs_write,
1055 	.llseek		= noop_llseek,
1056 };
1057 
1058 typedef struct {
1059 	u64 pme;
1060 } pagemap_entry_t;
1061 
1062 struct pagemapread {
1063 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1064 	pagemap_entry_t *buffer;
1065 	bool show_pfn;
1066 };
1067 
1068 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1069 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1070 
1071 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1072 #define PM_PFRAME_BITS		55
1073 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1074 #define PM_SOFT_DIRTY		BIT_ULL(55)
1075 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1076 #define PM_FILE			BIT_ULL(61)
1077 #define PM_SWAP			BIT_ULL(62)
1078 #define PM_PRESENT		BIT_ULL(63)
1079 
1080 #define PM_END_OF_BUFFER    1
1081 
make_pme(u64 frame,u64 flags)1082 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1083 {
1084 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1085 }
1086 
add_to_pagemap(unsigned long addr,pagemap_entry_t * pme,struct pagemapread * pm)1087 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1088 			  struct pagemapread *pm)
1089 {
1090 	pm->buffer[pm->pos++] = *pme;
1091 	if (pm->pos >= pm->len)
1092 		return PM_END_OF_BUFFER;
1093 	return 0;
1094 }
1095 
pagemap_pte_hole(unsigned long start,unsigned long end,struct mm_walk * walk)1096 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1097 				struct mm_walk *walk)
1098 {
1099 	struct pagemapread *pm = walk->private;
1100 	unsigned long addr = start;
1101 	int err = 0;
1102 
1103 	while (addr < end) {
1104 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1105 		pagemap_entry_t pme = make_pme(0, 0);
1106 		/* End of address space hole, which we mark as non-present. */
1107 		unsigned long hole_end;
1108 
1109 		if (vma)
1110 			hole_end = min(end, vma->vm_start);
1111 		else
1112 			hole_end = end;
1113 
1114 		for (; addr < hole_end; addr += PAGE_SIZE) {
1115 			err = add_to_pagemap(addr, &pme, pm);
1116 			if (err)
1117 				goto out;
1118 		}
1119 
1120 		if (!vma)
1121 			break;
1122 
1123 		/* Addresses in the VMA. */
1124 		if (vma->vm_flags & VM_SOFTDIRTY)
1125 			pme = make_pme(0, PM_SOFT_DIRTY);
1126 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1127 			err = add_to_pagemap(addr, &pme, pm);
1128 			if (err)
1129 				goto out;
1130 		}
1131 	}
1132 out:
1133 	return err;
1134 }
1135 
pte_to_pagemap_entry(struct pagemapread * pm,struct vm_area_struct * vma,unsigned long addr,pte_t pte)1136 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1137 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1138 {
1139 	u64 frame = 0, flags = 0;
1140 	struct page *page = NULL;
1141 
1142 	if (pte_present(pte)) {
1143 		if (pm->show_pfn)
1144 			frame = pte_pfn(pte);
1145 		flags |= PM_PRESENT;
1146 		page = vm_normal_page(vma, addr, pte);
1147 		if (pte_soft_dirty(pte))
1148 			flags |= PM_SOFT_DIRTY;
1149 	} else if (is_swap_pte(pte)) {
1150 		swp_entry_t entry;
1151 		if (pte_swp_soft_dirty(pte))
1152 			flags |= PM_SOFT_DIRTY;
1153 		entry = pte_to_swp_entry(pte);
1154 		frame = swp_type(entry) |
1155 			(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1156 		flags |= PM_SWAP;
1157 		if (is_migration_entry(entry))
1158 			page = migration_entry_to_page(entry);
1159 	}
1160 
1161 	if (page && !PageAnon(page))
1162 		flags |= PM_FILE;
1163 	if (page && page_mapcount(page) == 1)
1164 		flags |= PM_MMAP_EXCLUSIVE;
1165 	if (vma->vm_flags & VM_SOFTDIRTY)
1166 		flags |= PM_SOFT_DIRTY;
1167 
1168 	return make_pme(frame, flags);
1169 }
1170 
pagemap_pmd_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)1171 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1172 			     struct mm_walk *walk)
1173 {
1174 	struct vm_area_struct *vma = walk->vma;
1175 	struct pagemapread *pm = walk->private;
1176 	spinlock_t *ptl;
1177 	pte_t *pte, *orig_pte;
1178 	int err = 0;
1179 
1180 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1181 	if (pmd_trans_huge_lock(pmdp, vma, &ptl) == 1) {
1182 		u64 flags = 0, frame = 0;
1183 		pmd_t pmd = *pmdp;
1184 
1185 		if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1186 			flags |= PM_SOFT_DIRTY;
1187 
1188 		/*
1189 		 * Currently pmd for thp is always present because thp
1190 		 * can not be swapped-out, migrated, or HWPOISONed
1191 		 * (split in such cases instead.)
1192 		 * This if-check is just to prepare for future implementation.
1193 		 */
1194 		if (pmd_present(pmd)) {
1195 			struct page *page = pmd_page(pmd);
1196 
1197 			if (page_mapcount(page) == 1)
1198 				flags |= PM_MMAP_EXCLUSIVE;
1199 
1200 			flags |= PM_PRESENT;
1201 			if (pm->show_pfn)
1202 				frame = pmd_pfn(pmd) +
1203 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1204 		}
1205 
1206 		for (; addr != end; addr += PAGE_SIZE) {
1207 			pagemap_entry_t pme = make_pme(frame, flags);
1208 
1209 			err = add_to_pagemap(addr, &pme, pm);
1210 			if (err)
1211 				break;
1212 			if (pm->show_pfn && (flags & PM_PRESENT))
1213 				frame++;
1214 		}
1215 		spin_unlock(ptl);
1216 		return err;
1217 	}
1218 
1219 	if (pmd_trans_unstable(pmdp))
1220 		return 0;
1221 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1222 
1223 	/*
1224 	 * We can assume that @vma always points to a valid one and @end never
1225 	 * goes beyond vma->vm_end.
1226 	 */
1227 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1228 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1229 		pagemap_entry_t pme;
1230 
1231 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1232 		err = add_to_pagemap(addr, &pme, pm);
1233 		if (err)
1234 			break;
1235 	}
1236 	pte_unmap_unlock(orig_pte, ptl);
1237 
1238 	cond_resched();
1239 
1240 	return err;
1241 }
1242 
1243 #ifdef CONFIG_HUGETLB_PAGE
1244 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1245 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1246 				 unsigned long addr, unsigned long end,
1247 				 struct mm_walk *walk)
1248 {
1249 	struct pagemapread *pm = walk->private;
1250 	struct vm_area_struct *vma = walk->vma;
1251 	u64 flags = 0, frame = 0;
1252 	int err = 0;
1253 	pte_t pte;
1254 
1255 	if (vma->vm_flags & VM_SOFTDIRTY)
1256 		flags |= PM_SOFT_DIRTY;
1257 
1258 	pte = huge_ptep_get(ptep);
1259 	if (pte_present(pte)) {
1260 		struct page *page = pte_page(pte);
1261 
1262 		if (!PageAnon(page))
1263 			flags |= PM_FILE;
1264 
1265 		if (page_mapcount(page) == 1)
1266 			flags |= PM_MMAP_EXCLUSIVE;
1267 
1268 		flags |= PM_PRESENT;
1269 		if (pm->show_pfn)
1270 			frame = pte_pfn(pte) +
1271 				((addr & ~hmask) >> PAGE_SHIFT);
1272 	}
1273 
1274 	for (; addr != end; addr += PAGE_SIZE) {
1275 		pagemap_entry_t pme = make_pme(frame, flags);
1276 
1277 		err = add_to_pagemap(addr, &pme, pm);
1278 		if (err)
1279 			return err;
1280 		if (pm->show_pfn && (flags & PM_PRESENT))
1281 			frame++;
1282 	}
1283 
1284 	cond_resched();
1285 
1286 	return err;
1287 }
1288 #endif /* HUGETLB_PAGE */
1289 
1290 /*
1291  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1292  *
1293  * For each page in the address space, this file contains one 64-bit entry
1294  * consisting of the following:
1295  *
1296  * Bits 0-54  page frame number (PFN) if present
1297  * Bits 0-4   swap type if swapped
1298  * Bits 5-54  swap offset if swapped
1299  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1300  * Bit  56    page exclusively mapped
1301  * Bits 57-60 zero
1302  * Bit  61    page is file-page or shared-anon
1303  * Bit  62    page swapped
1304  * Bit  63    page present
1305  *
1306  * If the page is not present but in swap, then the PFN contains an
1307  * encoding of the swap file number and the page's offset into the
1308  * swap. Unmapped pages return a null PFN. This allows determining
1309  * precisely which pages are mapped (or in swap) and comparing mapped
1310  * pages between processes.
1311  *
1312  * Efficient users of this interface will use /proc/pid/maps to
1313  * determine which areas of memory are actually mapped and llseek to
1314  * skip over unmapped regions.
1315  */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1316 static ssize_t pagemap_read(struct file *file, char __user *buf,
1317 			    size_t count, loff_t *ppos)
1318 {
1319 	struct mm_struct *mm = file->private_data;
1320 	struct pagemapread pm;
1321 	struct mm_walk pagemap_walk = {};
1322 	unsigned long src;
1323 	unsigned long svpfn;
1324 	unsigned long start_vaddr;
1325 	unsigned long end_vaddr;
1326 	int ret = 0, copied = 0;
1327 
1328 	if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1329 		goto out;
1330 
1331 	ret = -EINVAL;
1332 	/* file position must be aligned */
1333 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1334 		goto out_mm;
1335 
1336 	ret = 0;
1337 	if (!count)
1338 		goto out_mm;
1339 
1340 	/* do not disclose physical addresses: attack vector */
1341 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1342 
1343 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1344 	pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1345 	ret = -ENOMEM;
1346 	if (!pm.buffer)
1347 		goto out_mm;
1348 
1349 	pagemap_walk.pmd_entry = pagemap_pmd_range;
1350 	pagemap_walk.pte_hole = pagemap_pte_hole;
1351 #ifdef CONFIG_HUGETLB_PAGE
1352 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1353 #endif
1354 	pagemap_walk.mm = mm;
1355 	pagemap_walk.private = &pm;
1356 
1357 	src = *ppos;
1358 	svpfn = src / PM_ENTRY_BYTES;
1359 	start_vaddr = svpfn << PAGE_SHIFT;
1360 	end_vaddr = mm->task_size;
1361 
1362 	/* watch out for wraparound */
1363 	if (svpfn > mm->task_size >> PAGE_SHIFT)
1364 		start_vaddr = end_vaddr;
1365 
1366 	/*
1367 	 * The odds are that this will stop walking way
1368 	 * before end_vaddr, because the length of the
1369 	 * user buffer is tracked in "pm", and the walk
1370 	 * will stop when we hit the end of the buffer.
1371 	 */
1372 	ret = 0;
1373 	while (count && (start_vaddr < end_vaddr)) {
1374 		int len;
1375 		unsigned long end;
1376 
1377 		pm.pos = 0;
1378 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1379 		/* overflow ? */
1380 		if (end < start_vaddr || end > end_vaddr)
1381 			end = end_vaddr;
1382 		down_read(&mm->mmap_sem);
1383 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1384 		up_read(&mm->mmap_sem);
1385 		start_vaddr = end;
1386 
1387 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1388 		if (copy_to_user(buf, pm.buffer, len)) {
1389 			ret = -EFAULT;
1390 			goto out_free;
1391 		}
1392 		copied += len;
1393 		buf += len;
1394 		count -= len;
1395 	}
1396 	*ppos += copied;
1397 	if (!ret || ret == PM_END_OF_BUFFER)
1398 		ret = copied;
1399 
1400 out_free:
1401 	kfree(pm.buffer);
1402 out_mm:
1403 	mmput(mm);
1404 out:
1405 	return ret;
1406 }
1407 
pagemap_open(struct inode * inode,struct file * file)1408 static int pagemap_open(struct inode *inode, struct file *file)
1409 {
1410 	struct mm_struct *mm;
1411 
1412 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1413 	if (IS_ERR(mm))
1414 		return PTR_ERR(mm);
1415 	file->private_data = mm;
1416 	return 0;
1417 }
1418 
pagemap_release(struct inode * inode,struct file * file)1419 static int pagemap_release(struct inode *inode, struct file *file)
1420 {
1421 	struct mm_struct *mm = file->private_data;
1422 
1423 	if (mm)
1424 		mmdrop(mm);
1425 	return 0;
1426 }
1427 
1428 const struct file_operations proc_pagemap_operations = {
1429 	.llseek		= mem_lseek, /* borrow this */
1430 	.read		= pagemap_read,
1431 	.open		= pagemap_open,
1432 	.release	= pagemap_release,
1433 };
1434 #endif /* CONFIG_PROC_PAGE_MONITOR */
1435 
1436 #ifdef CONFIG_NUMA
1437 
1438 struct numa_maps {
1439 	unsigned long pages;
1440 	unsigned long anon;
1441 	unsigned long active;
1442 	unsigned long writeback;
1443 	unsigned long mapcount_max;
1444 	unsigned long dirty;
1445 	unsigned long swapcache;
1446 	unsigned long node[MAX_NUMNODES];
1447 };
1448 
1449 struct numa_maps_private {
1450 	struct proc_maps_private proc_maps;
1451 	struct numa_maps md;
1452 };
1453 
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)1454 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1455 			unsigned long nr_pages)
1456 {
1457 	int count = page_mapcount(page);
1458 
1459 	md->pages += nr_pages;
1460 	if (pte_dirty || PageDirty(page))
1461 		md->dirty += nr_pages;
1462 
1463 	if (PageSwapCache(page))
1464 		md->swapcache += nr_pages;
1465 
1466 	if (PageActive(page) || PageUnevictable(page))
1467 		md->active += nr_pages;
1468 
1469 	if (PageWriteback(page))
1470 		md->writeback += nr_pages;
1471 
1472 	if (PageAnon(page))
1473 		md->anon += nr_pages;
1474 
1475 	if (count > md->mapcount_max)
1476 		md->mapcount_max = count;
1477 
1478 	md->node[page_to_nid(page)] += nr_pages;
1479 }
1480 
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)1481 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1482 		unsigned long addr)
1483 {
1484 	struct page *page;
1485 	int nid;
1486 
1487 	if (!pte_present(pte))
1488 		return NULL;
1489 
1490 	page = vm_normal_page(vma, addr, pte);
1491 	if (!page)
1492 		return NULL;
1493 
1494 	if (PageReserved(page))
1495 		return NULL;
1496 
1497 	nid = page_to_nid(page);
1498 	if (!node_isset(nid, node_states[N_MEMORY]))
1499 		return NULL;
1500 
1501 	return page;
1502 }
1503 
1504 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)1505 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1506 					      struct vm_area_struct *vma,
1507 					      unsigned long addr)
1508 {
1509 	struct page *page;
1510 	int nid;
1511 
1512 	if (!pmd_present(pmd))
1513 		return NULL;
1514 
1515 	page = vm_normal_page_pmd(vma, addr, pmd);
1516 	if (!page)
1517 		return NULL;
1518 
1519 	if (PageReserved(page))
1520 		return NULL;
1521 
1522 	nid = page_to_nid(page);
1523 	if (!node_isset(nid, node_states[N_MEMORY]))
1524 		return NULL;
1525 
1526 	return page;
1527 }
1528 #endif
1529 
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1530 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1531 		unsigned long end, struct mm_walk *walk)
1532 {
1533 	struct numa_maps *md = walk->private;
1534 	struct vm_area_struct *vma = walk->vma;
1535 	spinlock_t *ptl;
1536 	pte_t *orig_pte;
1537 	pte_t *pte;
1538 
1539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1540 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1541 		struct page *page;
1542 
1543 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1544 		if (page)
1545 			gather_stats(page, md, pmd_dirty(*pmd),
1546 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1547 		spin_unlock(ptl);
1548 		return 0;
1549 	}
1550 
1551 	if (pmd_trans_unstable(pmd))
1552 		return 0;
1553 #endif
1554 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1555 	do {
1556 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1557 		if (!page)
1558 			continue;
1559 		gather_stats(page, md, pte_dirty(*pte), 1);
1560 
1561 	} while (pte++, addr += PAGE_SIZE, addr != end);
1562 	pte_unmap_unlock(orig_pte, ptl);
1563 	return 0;
1564 }
1565 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1566 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1567 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1568 {
1569 	pte_t huge_pte = huge_ptep_get(pte);
1570 	struct numa_maps *md;
1571 	struct page *page;
1572 
1573 	if (!pte_present(huge_pte))
1574 		return 0;
1575 
1576 	page = pte_page(huge_pte);
1577 	if (!page)
1578 		return 0;
1579 
1580 	md = walk->private;
1581 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1582 	return 0;
1583 }
1584 
1585 #else
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1586 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1587 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1588 {
1589 	return 0;
1590 }
1591 #endif
1592 
1593 /*
1594  * Display pages allocated per node and memory policy via /proc.
1595  */
show_numa_map(struct seq_file * m,void * v,int is_pid)1596 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1597 {
1598 	struct numa_maps_private *numa_priv = m->private;
1599 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1600 	struct vm_area_struct *vma = v;
1601 	struct numa_maps *md = &numa_priv->md;
1602 	struct file *file = vma->vm_file;
1603 	struct mm_struct *mm = vma->vm_mm;
1604 	struct mm_walk walk = {
1605 		.hugetlb_entry = gather_hugetlb_stats,
1606 		.pmd_entry = gather_pte_stats,
1607 		.private = md,
1608 		.mm = mm,
1609 	};
1610 	struct mempolicy *pol;
1611 	char buffer[64];
1612 	int nid;
1613 
1614 	if (!mm)
1615 		return 0;
1616 
1617 	/* Ensure we start with an empty set of numa_maps statistics. */
1618 	memset(md, 0, sizeof(*md));
1619 
1620 	pol = __get_vma_policy(vma, vma->vm_start);
1621 	if (pol) {
1622 		mpol_to_str(buffer, sizeof(buffer), pol);
1623 		mpol_cond_put(pol);
1624 	} else {
1625 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1626 	}
1627 
1628 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1629 
1630 	if (file) {
1631 		seq_puts(m, " file=");
1632 		seq_file_path(m, file, "\n\t= ");
1633 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1634 		seq_puts(m, " heap");
1635 	} else if (is_stack(proc_priv, vma)) {
1636 		seq_puts(m, " stack");
1637 	}
1638 
1639 	if (is_vm_hugetlb_page(vma))
1640 		seq_puts(m, " huge");
1641 
1642 	/* mmap_sem is held by m_start */
1643 	walk_page_vma(vma, &walk);
1644 
1645 	if (!md->pages)
1646 		goto out;
1647 
1648 	if (md->anon)
1649 		seq_printf(m, " anon=%lu", md->anon);
1650 
1651 	if (md->dirty)
1652 		seq_printf(m, " dirty=%lu", md->dirty);
1653 
1654 	if (md->pages != md->anon && md->pages != md->dirty)
1655 		seq_printf(m, " mapped=%lu", md->pages);
1656 
1657 	if (md->mapcount_max > 1)
1658 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1659 
1660 	if (md->swapcache)
1661 		seq_printf(m, " swapcache=%lu", md->swapcache);
1662 
1663 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1664 		seq_printf(m, " active=%lu", md->active);
1665 
1666 	if (md->writeback)
1667 		seq_printf(m, " writeback=%lu", md->writeback);
1668 
1669 	for_each_node_state(nid, N_MEMORY)
1670 		if (md->node[nid])
1671 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1672 
1673 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1674 out:
1675 	seq_putc(m, '\n');
1676 	m_cache_vma(m, vma);
1677 	return 0;
1678 }
1679 
show_pid_numa_map(struct seq_file * m,void * v)1680 static int show_pid_numa_map(struct seq_file *m, void *v)
1681 {
1682 	return show_numa_map(m, v, 1);
1683 }
1684 
show_tid_numa_map(struct seq_file * m,void * v)1685 static int show_tid_numa_map(struct seq_file *m, void *v)
1686 {
1687 	return show_numa_map(m, v, 0);
1688 }
1689 
1690 static const struct seq_operations proc_pid_numa_maps_op = {
1691 	.start  = m_start,
1692 	.next   = m_next,
1693 	.stop   = m_stop,
1694 	.show   = show_pid_numa_map,
1695 };
1696 
1697 static const struct seq_operations proc_tid_numa_maps_op = {
1698 	.start  = m_start,
1699 	.next   = m_next,
1700 	.stop   = m_stop,
1701 	.show   = show_tid_numa_map,
1702 };
1703 
numa_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)1704 static int numa_maps_open(struct inode *inode, struct file *file,
1705 			  const struct seq_operations *ops)
1706 {
1707 	return proc_maps_open(inode, file, ops,
1708 				sizeof(struct numa_maps_private));
1709 }
1710 
pid_numa_maps_open(struct inode * inode,struct file * file)1711 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1712 {
1713 	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1714 }
1715 
tid_numa_maps_open(struct inode * inode,struct file * file)1716 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1717 {
1718 	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1719 }
1720 
1721 const struct file_operations proc_pid_numa_maps_operations = {
1722 	.open		= pid_numa_maps_open,
1723 	.read		= seq_read,
1724 	.llseek		= seq_lseek,
1725 	.release	= proc_map_release,
1726 };
1727 
1728 const struct file_operations proc_tid_numa_maps_operations = {
1729 	.open		= tid_numa_maps_open,
1730 	.read		= seq_read,
1731 	.llseek		= seq_lseek,
1732 	.release	= proc_map_release,
1733 };
1734 #endif /* CONFIG_NUMA */
1735