• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file contains the procedures for the handling of select and poll
3  *
4  * Created for Linux based loosely upon Mathius Lattner's minix
5  * patches by Peter MacDonald. Heavily edited by Linus.
6  *
7  *  4 February 1994
8  *     COFF/ELF binary emulation. If the process has the STICKY_TIMEOUTS
9  *     flag set in its personality we do *not* modify the given timeout
10  *     parameter to reflect time remaining.
11  *
12  *  24 January 2000
13  *     Changed sys_poll()/do_poll() to use PAGE_SIZE chunk-based allocation
14  *     of fds to overcome nfds < 16390 descriptors limit (Tigran Aivazian).
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/sched.h>
19 #include <linux/syscalls.h>
20 #include <linux/export.h>
21 #include <linux/slab.h>
22 #include <linux/poll.h>
23 #include <linux/personality.h> /* for STICKY_TIMEOUTS */
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/fs.h>
27 #include <linux/rcupdate.h>
28 #include <linux/hrtimer.h>
29 #include <linux/sched/rt.h>
30 #include <linux/freezer.h>
31 #include <net/busy_poll.h>
32 #include <linux/vmalloc.h>
33 
34 #include <asm/uaccess.h>
35 
36 
37 /*
38  * Estimate expected accuracy in ns from a timeval.
39  *
40  * After quite a bit of churning around, we've settled on
41  * a simple thing of taking 0.1% of the timeout as the
42  * slack, with a cap of 100 msec.
43  * "nice" tasks get a 0.5% slack instead.
44  *
45  * Consider this comment an open invitation to come up with even
46  * better solutions..
47  */
48 
49 #define MAX_SLACK	(100 * NSEC_PER_MSEC)
50 
__estimate_accuracy(struct timespec * tv)51 static long __estimate_accuracy(struct timespec *tv)
52 {
53 	long slack;
54 	int divfactor = 1000;
55 
56 	if (tv->tv_sec < 0)
57 		return 0;
58 
59 	if (task_nice(current) > 0)
60 		divfactor = divfactor / 5;
61 
62 	if (tv->tv_sec > MAX_SLACK / (NSEC_PER_SEC/divfactor))
63 		return MAX_SLACK;
64 
65 	slack = tv->tv_nsec / divfactor;
66 	slack += tv->tv_sec * (NSEC_PER_SEC/divfactor);
67 
68 	if (slack > MAX_SLACK)
69 		return MAX_SLACK;
70 
71 	return slack;
72 }
73 
select_estimate_accuracy(struct timespec * tv)74 u64 select_estimate_accuracy(struct timespec *tv)
75 {
76 	u64 ret;
77 	struct timespec now;
78 
79 	/*
80 	 * Realtime tasks get a slack of 0 for obvious reasons.
81 	 */
82 
83 	if (rt_task(current))
84 		return 0;
85 
86 	ktime_get_ts(&now);
87 	now = timespec_sub(*tv, now);
88 	ret = __estimate_accuracy(&now);
89 	if (ret < current->timer_slack_ns)
90 		return current->timer_slack_ns;
91 	return ret;
92 }
93 
94 
95 
96 struct poll_table_page {
97 	struct poll_table_page * next;
98 	struct poll_table_entry * entry;
99 	struct poll_table_entry entries[0];
100 };
101 
102 #define POLL_TABLE_FULL(table) \
103 	((unsigned long)((table)->entry+1) > PAGE_SIZE + (unsigned long)(table))
104 
105 /*
106  * Ok, Peter made a complicated, but straightforward multiple_wait() function.
107  * I have rewritten this, taking some shortcuts: This code may not be easy to
108  * follow, but it should be free of race-conditions, and it's practical. If you
109  * understand what I'm doing here, then you understand how the linux
110  * sleep/wakeup mechanism works.
111  *
112  * Two very simple procedures, poll_wait() and poll_freewait() make all the
113  * work.  poll_wait() is an inline-function defined in <linux/poll.h>,
114  * as all select/poll functions have to call it to add an entry to the
115  * poll table.
116  */
117 static void __pollwait(struct file *filp, wait_queue_head_t *wait_address,
118 		       poll_table *p);
119 
poll_initwait(struct poll_wqueues * pwq)120 void poll_initwait(struct poll_wqueues *pwq)
121 {
122 	init_poll_funcptr(&pwq->pt, __pollwait);
123 	pwq->polling_task = current;
124 	pwq->triggered = 0;
125 	pwq->error = 0;
126 	pwq->table = NULL;
127 	pwq->inline_index = 0;
128 }
129 EXPORT_SYMBOL(poll_initwait);
130 
free_poll_entry(struct poll_table_entry * entry)131 static void free_poll_entry(struct poll_table_entry *entry)
132 {
133 	remove_wait_queue(entry->wait_address, &entry->wait);
134 	fput(entry->filp);
135 }
136 
poll_freewait(struct poll_wqueues * pwq)137 void poll_freewait(struct poll_wqueues *pwq)
138 {
139 	struct poll_table_page * p = pwq->table;
140 	int i;
141 	for (i = 0; i < pwq->inline_index; i++)
142 		free_poll_entry(pwq->inline_entries + i);
143 	while (p) {
144 		struct poll_table_entry * entry;
145 		struct poll_table_page *old;
146 
147 		entry = p->entry;
148 		do {
149 			entry--;
150 			free_poll_entry(entry);
151 		} while (entry > p->entries);
152 		old = p;
153 		p = p->next;
154 		free_page((unsigned long) old);
155 	}
156 }
157 EXPORT_SYMBOL(poll_freewait);
158 
poll_get_entry(struct poll_wqueues * p)159 static struct poll_table_entry *poll_get_entry(struct poll_wqueues *p)
160 {
161 	struct poll_table_page *table = p->table;
162 
163 	if (p->inline_index < N_INLINE_POLL_ENTRIES)
164 		return p->inline_entries + p->inline_index++;
165 
166 	if (!table || POLL_TABLE_FULL(table)) {
167 		struct poll_table_page *new_table;
168 
169 		new_table = (struct poll_table_page *) __get_free_page(GFP_KERNEL);
170 		if (!new_table) {
171 			p->error = -ENOMEM;
172 			return NULL;
173 		}
174 		new_table->entry = new_table->entries;
175 		new_table->next = table;
176 		p->table = new_table;
177 		table = new_table;
178 	}
179 
180 	return table->entry++;
181 }
182 
__pollwake(wait_queue_t * wait,unsigned mode,int sync,void * key)183 static int __pollwake(wait_queue_t *wait, unsigned mode, int sync, void *key)
184 {
185 	struct poll_wqueues *pwq = wait->private;
186 	DECLARE_WAITQUEUE(dummy_wait, pwq->polling_task);
187 
188 	/*
189 	 * Although this function is called under waitqueue lock, LOCK
190 	 * doesn't imply write barrier and the users expect write
191 	 * barrier semantics on wakeup functions.  The following
192 	 * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
193 	 * and is paired with smp_store_mb() in poll_schedule_timeout.
194 	 */
195 	smp_wmb();
196 	pwq->triggered = 1;
197 
198 	/*
199 	 * Perform the default wake up operation using a dummy
200 	 * waitqueue.
201 	 *
202 	 * TODO: This is hacky but there currently is no interface to
203 	 * pass in @sync.  @sync is scheduled to be removed and once
204 	 * that happens, wake_up_process() can be used directly.
205 	 */
206 	return default_wake_function(&dummy_wait, mode, sync, key);
207 }
208 
pollwake(wait_queue_t * wait,unsigned mode,int sync,void * key)209 static int pollwake(wait_queue_t *wait, unsigned mode, int sync, void *key)
210 {
211 	struct poll_table_entry *entry;
212 
213 	entry = container_of(wait, struct poll_table_entry, wait);
214 	if (key && !((unsigned long)key & entry->key))
215 		return 0;
216 	return __pollwake(wait, mode, sync, key);
217 }
218 
219 /* Add a new entry */
__pollwait(struct file * filp,wait_queue_head_t * wait_address,poll_table * p)220 static void __pollwait(struct file *filp, wait_queue_head_t *wait_address,
221 				poll_table *p)
222 {
223 	struct poll_wqueues *pwq = container_of(p, struct poll_wqueues, pt);
224 	struct poll_table_entry *entry = poll_get_entry(pwq);
225 	if (!entry)
226 		return;
227 	entry->filp = get_file(filp);
228 	entry->wait_address = wait_address;
229 	entry->key = p->_key;
230 	init_waitqueue_func_entry(&entry->wait, pollwake);
231 	entry->wait.private = pwq;
232 	add_wait_queue(wait_address, &entry->wait);
233 }
234 
poll_schedule_timeout(struct poll_wqueues * pwq,int state,ktime_t * expires,unsigned long slack)235 int poll_schedule_timeout(struct poll_wqueues *pwq, int state,
236 			  ktime_t *expires, unsigned long slack)
237 {
238 	int rc = -EINTR;
239 
240 	set_current_state(state);
241 	if (!pwq->triggered)
242 		rc = schedule_hrtimeout_range(expires, slack, HRTIMER_MODE_ABS);
243 	__set_current_state(TASK_RUNNING);
244 
245 	/*
246 	 * Prepare for the next iteration.
247 	 *
248 	 * The following smp_store_mb() serves two purposes.  First, it's
249 	 * the counterpart rmb of the wmb in pollwake() such that data
250 	 * written before wake up is always visible after wake up.
251 	 * Second, the full barrier guarantees that triggered clearing
252 	 * doesn't pass event check of the next iteration.  Note that
253 	 * this problem doesn't exist for the first iteration as
254 	 * add_wait_queue() has full barrier semantics.
255 	 */
256 	smp_store_mb(pwq->triggered, 0);
257 
258 	return rc;
259 }
260 EXPORT_SYMBOL(poll_schedule_timeout);
261 
262 /**
263  * poll_select_set_timeout - helper function to setup the timeout value
264  * @to:		pointer to timespec variable for the final timeout
265  * @sec:	seconds (from user space)
266  * @nsec:	nanoseconds (from user space)
267  *
268  * Note, we do not use a timespec for the user space value here, That
269  * way we can use the function for timeval and compat interfaces as well.
270  *
271  * Returns -EINVAL if sec/nsec are not normalized. Otherwise 0.
272  */
poll_select_set_timeout(struct timespec * to,long sec,long nsec)273 int poll_select_set_timeout(struct timespec *to, long sec, long nsec)
274 {
275 	struct timespec ts = {.tv_sec = sec, .tv_nsec = nsec};
276 
277 	if (!timespec_valid(&ts))
278 		return -EINVAL;
279 
280 	/* Optimize for the zero timeout value here */
281 	if (!sec && !nsec) {
282 		to->tv_sec = to->tv_nsec = 0;
283 	} else {
284 		ktime_get_ts(to);
285 		*to = timespec_add_safe(*to, ts);
286 	}
287 	return 0;
288 }
289 
poll_select_copy_remaining(struct timespec * end_time,void __user * p,int timeval,int ret)290 static int poll_select_copy_remaining(struct timespec *end_time, void __user *p,
291 				      int timeval, int ret)
292 {
293 	struct timespec rts;
294 	struct timeval rtv;
295 
296 	if (!p)
297 		return ret;
298 
299 	if (current->personality & STICKY_TIMEOUTS)
300 		goto sticky;
301 
302 	/* No update for zero timeout */
303 	if (!end_time->tv_sec && !end_time->tv_nsec)
304 		return ret;
305 
306 	ktime_get_ts(&rts);
307 	rts = timespec_sub(*end_time, rts);
308 	if (rts.tv_sec < 0)
309 		rts.tv_sec = rts.tv_nsec = 0;
310 
311 	if (timeval) {
312 		if (sizeof(rtv) > sizeof(rtv.tv_sec) + sizeof(rtv.tv_usec))
313 			memset(&rtv, 0, sizeof(rtv));
314 		rtv.tv_sec = rts.tv_sec;
315 		rtv.tv_usec = rts.tv_nsec / NSEC_PER_USEC;
316 
317 		if (!copy_to_user(p, &rtv, sizeof(rtv)))
318 			return ret;
319 
320 	} else if (!copy_to_user(p, &rts, sizeof(rts)))
321 		return ret;
322 
323 	/*
324 	 * If an application puts its timeval in read-only memory, we
325 	 * don't want the Linux-specific update to the timeval to
326 	 * cause a fault after the select has completed
327 	 * successfully. However, because we're not updating the
328 	 * timeval, we can't restart the system call.
329 	 */
330 
331 sticky:
332 	if (ret == -ERESTARTNOHAND)
333 		ret = -EINTR;
334 	return ret;
335 }
336 
337 #define FDS_IN(fds, n)		(fds->in + n)
338 #define FDS_OUT(fds, n)		(fds->out + n)
339 #define FDS_EX(fds, n)		(fds->ex + n)
340 
341 #define BITS(fds, n)	(*FDS_IN(fds, n)|*FDS_OUT(fds, n)|*FDS_EX(fds, n))
342 
max_select_fd(unsigned long n,fd_set_bits * fds)343 static int max_select_fd(unsigned long n, fd_set_bits *fds)
344 {
345 	unsigned long *open_fds;
346 	unsigned long set;
347 	int max;
348 	struct fdtable *fdt;
349 
350 	/* handle last in-complete long-word first */
351 	set = ~(~0UL << (n & (BITS_PER_LONG-1)));
352 	n /= BITS_PER_LONG;
353 	fdt = files_fdtable(current->files);
354 	open_fds = fdt->open_fds + n;
355 	max = 0;
356 	if (set) {
357 		set &= BITS(fds, n);
358 		if (set) {
359 			if (!(set & ~*open_fds))
360 				goto get_max;
361 			return -EBADF;
362 		}
363 	}
364 	while (n) {
365 		open_fds--;
366 		n--;
367 		set = BITS(fds, n);
368 		if (!set)
369 			continue;
370 		if (set & ~*open_fds)
371 			return -EBADF;
372 		if (max)
373 			continue;
374 get_max:
375 		do {
376 			max++;
377 			set >>= 1;
378 		} while (set);
379 		max += n * BITS_PER_LONG;
380 	}
381 
382 	return max;
383 }
384 
385 #define POLLIN_SET (POLLRDNORM | POLLRDBAND | POLLIN | POLLHUP | POLLERR)
386 #define POLLOUT_SET (POLLWRBAND | POLLWRNORM | POLLOUT | POLLERR)
387 #define POLLEX_SET (POLLPRI)
388 
wait_key_set(poll_table * wait,unsigned long in,unsigned long out,unsigned long bit,unsigned int ll_flag)389 static inline void wait_key_set(poll_table *wait, unsigned long in,
390 				unsigned long out, unsigned long bit,
391 				unsigned int ll_flag)
392 {
393 	wait->_key = POLLEX_SET | ll_flag;
394 	if (in & bit)
395 		wait->_key |= POLLIN_SET;
396 	if (out & bit)
397 		wait->_key |= POLLOUT_SET;
398 }
399 
do_select(int n,fd_set_bits * fds,struct timespec * end_time)400 int do_select(int n, fd_set_bits *fds, struct timespec *end_time)
401 {
402 	ktime_t expire, *to = NULL;
403 	struct poll_wqueues table;
404 	poll_table *wait;
405 	int retval, i, timed_out = 0;
406 	u64 slack = 0;
407 	unsigned int busy_flag = net_busy_loop_on() ? POLL_BUSY_LOOP : 0;
408 	unsigned long busy_end = 0;
409 
410 	rcu_read_lock();
411 	retval = max_select_fd(n, fds);
412 	rcu_read_unlock();
413 
414 	if (retval < 0)
415 		return retval;
416 	n = retval;
417 
418 	poll_initwait(&table);
419 	wait = &table.pt;
420 	if (end_time && !end_time->tv_sec && !end_time->tv_nsec) {
421 		wait->_qproc = NULL;
422 		timed_out = 1;
423 	}
424 
425 	if (end_time && !timed_out)
426 		slack = select_estimate_accuracy(end_time);
427 
428 	retval = 0;
429 	for (;;) {
430 		unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp;
431 		bool can_busy_loop = false;
432 
433 		inp = fds->in; outp = fds->out; exp = fds->ex;
434 		rinp = fds->res_in; routp = fds->res_out; rexp = fds->res_ex;
435 
436 		for (i = 0; i < n; ++rinp, ++routp, ++rexp) {
437 			unsigned long in, out, ex, all_bits, bit = 1, mask, j;
438 			unsigned long res_in = 0, res_out = 0, res_ex = 0;
439 
440 			in = *inp++; out = *outp++; ex = *exp++;
441 			all_bits = in | out | ex;
442 			if (all_bits == 0) {
443 				i += BITS_PER_LONG;
444 				continue;
445 			}
446 
447 			for (j = 0; j < BITS_PER_LONG; ++j, ++i, bit <<= 1) {
448 				struct fd f;
449 				if (i >= n)
450 					break;
451 				if (!(bit & all_bits))
452 					continue;
453 				f = fdget(i);
454 				if (f.file) {
455 					const struct file_operations *f_op;
456 					f_op = f.file->f_op;
457 					mask = DEFAULT_POLLMASK;
458 					if (f_op->poll) {
459 						wait_key_set(wait, in, out,
460 							     bit, busy_flag);
461 						mask = (*f_op->poll)(f.file, wait);
462 					}
463 					fdput(f);
464 					if ((mask & POLLIN_SET) && (in & bit)) {
465 						res_in |= bit;
466 						retval++;
467 						wait->_qproc = NULL;
468 					}
469 					if ((mask & POLLOUT_SET) && (out & bit)) {
470 						res_out |= bit;
471 						retval++;
472 						wait->_qproc = NULL;
473 					}
474 					if ((mask & POLLEX_SET) && (ex & bit)) {
475 						res_ex |= bit;
476 						retval++;
477 						wait->_qproc = NULL;
478 					}
479 					/* got something, stop busy polling */
480 					if (retval) {
481 						can_busy_loop = false;
482 						busy_flag = 0;
483 
484 					/*
485 					 * only remember a returned
486 					 * POLL_BUSY_LOOP if we asked for it
487 					 */
488 					} else if (busy_flag & mask)
489 						can_busy_loop = true;
490 
491 				}
492 			}
493 			if (res_in)
494 				*rinp = res_in;
495 			if (res_out)
496 				*routp = res_out;
497 			if (res_ex)
498 				*rexp = res_ex;
499 			cond_resched();
500 		}
501 		wait->_qproc = NULL;
502 		if (retval || timed_out || signal_pending(current))
503 			break;
504 		if (table.error) {
505 			retval = table.error;
506 			break;
507 		}
508 
509 		/* only if found POLL_BUSY_LOOP sockets && not out of time */
510 		if (can_busy_loop && !need_resched()) {
511 			if (!busy_end) {
512 				busy_end = busy_loop_end_time();
513 				continue;
514 			}
515 			if (!busy_loop_timeout(busy_end))
516 				continue;
517 		}
518 		busy_flag = 0;
519 
520 		/*
521 		 * If this is the first loop and we have a timeout
522 		 * given, then we convert to ktime_t and set the to
523 		 * pointer to the expiry value.
524 		 */
525 		if (end_time && !to) {
526 			expire = timespec_to_ktime(*end_time);
527 			to = &expire;
528 		}
529 
530 		if (!poll_schedule_timeout(&table, TASK_INTERRUPTIBLE,
531 					   to, slack))
532 			timed_out = 1;
533 	}
534 
535 	poll_freewait(&table);
536 
537 	return retval;
538 }
539 
540 /*
541  * We can actually return ERESTARTSYS instead of EINTR, but I'd
542  * like to be certain this leads to no problems. So I return
543  * EINTR just for safety.
544  *
545  * Update: ERESTARTSYS breaks at least the xview clock binary, so
546  * I'm trying ERESTARTNOHAND which restart only when you want to.
547  */
core_sys_select(int n,fd_set __user * inp,fd_set __user * outp,fd_set __user * exp,struct timespec * end_time)548 int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp,
549 			   fd_set __user *exp, struct timespec *end_time)
550 {
551 	fd_set_bits fds;
552 	void *bits;
553 	int ret, max_fds;
554 	size_t size, alloc_size;
555 	struct fdtable *fdt;
556 	/* Allocate small arguments on the stack to save memory and be faster */
557 	long stack_fds[SELECT_STACK_ALLOC/sizeof(long)];
558 
559 	ret = -EINVAL;
560 	if (n < 0)
561 		goto out_nofds;
562 
563 	/* max_fds can increase, so grab it once to avoid race */
564 	rcu_read_lock();
565 	fdt = files_fdtable(current->files);
566 	max_fds = fdt->max_fds;
567 	rcu_read_unlock();
568 	if (n > max_fds)
569 		n = max_fds;
570 
571 	/*
572 	 * We need 6 bitmaps (in/out/ex for both incoming and outgoing),
573 	 * since we used fdset we need to allocate memory in units of
574 	 * long-words.
575 	 */
576 	size = FDS_BYTES(n);
577 	bits = stack_fds;
578 	if (size > sizeof(stack_fds) / 6) {
579 		/* Not enough space in on-stack array; must use kmalloc */
580 		ret = -ENOMEM;
581 		if (size > (SIZE_MAX / 6))
582 			goto out_nofds;
583 
584 		alloc_size = 6 * size;
585 		bits = kmalloc(alloc_size, GFP_KERNEL|__GFP_NOWARN);
586 		if (!bits && alloc_size > PAGE_SIZE)
587 			bits = vmalloc(alloc_size);
588 
589 		if (!bits)
590 			goto out_nofds;
591 	}
592 	fds.in      = bits;
593 	fds.out     = bits +   size;
594 	fds.ex      = bits + 2*size;
595 	fds.res_in  = bits + 3*size;
596 	fds.res_out = bits + 4*size;
597 	fds.res_ex  = bits + 5*size;
598 
599 	if ((ret = get_fd_set(n, inp, fds.in)) ||
600 	    (ret = get_fd_set(n, outp, fds.out)) ||
601 	    (ret = get_fd_set(n, exp, fds.ex)))
602 		goto out;
603 	zero_fd_set(n, fds.res_in);
604 	zero_fd_set(n, fds.res_out);
605 	zero_fd_set(n, fds.res_ex);
606 
607 	ret = do_select(n, &fds, end_time);
608 
609 	if (ret < 0)
610 		goto out;
611 	if (!ret) {
612 		ret = -ERESTARTNOHAND;
613 		if (signal_pending(current))
614 			goto out;
615 		ret = 0;
616 	}
617 
618 	if (set_fd_set(n, inp, fds.res_in) ||
619 	    set_fd_set(n, outp, fds.res_out) ||
620 	    set_fd_set(n, exp, fds.res_ex))
621 		ret = -EFAULT;
622 
623 out:
624 	if (bits != stack_fds)
625 		kvfree(bits);
626 out_nofds:
627 	return ret;
628 }
629 
SYSCALL_DEFINE5(select,int,n,fd_set __user *,inp,fd_set __user *,outp,fd_set __user *,exp,struct timeval __user *,tvp)630 SYSCALL_DEFINE5(select, int, n, fd_set __user *, inp, fd_set __user *, outp,
631 		fd_set __user *, exp, struct timeval __user *, tvp)
632 {
633 	struct timespec end_time, *to = NULL;
634 	struct timeval tv;
635 	int ret;
636 
637 	if (tvp) {
638 		if (copy_from_user(&tv, tvp, sizeof(tv)))
639 			return -EFAULT;
640 
641 		to = &end_time;
642 		if (poll_select_set_timeout(to,
643 				tv.tv_sec + (tv.tv_usec / USEC_PER_SEC),
644 				(tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC))
645 			return -EINVAL;
646 	}
647 
648 	ret = core_sys_select(n, inp, outp, exp, to);
649 	ret = poll_select_copy_remaining(&end_time, tvp, 1, ret);
650 
651 	return ret;
652 }
653 
do_pselect(int n,fd_set __user * inp,fd_set __user * outp,fd_set __user * exp,struct timespec __user * tsp,const sigset_t __user * sigmask,size_t sigsetsize)654 static long do_pselect(int n, fd_set __user *inp, fd_set __user *outp,
655 		       fd_set __user *exp, struct timespec __user *tsp,
656 		       const sigset_t __user *sigmask, size_t sigsetsize)
657 {
658 	sigset_t ksigmask, sigsaved;
659 	struct timespec ts, end_time, *to = NULL;
660 	int ret;
661 
662 	if (tsp) {
663 		if (copy_from_user(&ts, tsp, sizeof(ts)))
664 			return -EFAULT;
665 
666 		to = &end_time;
667 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
668 			return -EINVAL;
669 	}
670 
671 	if (sigmask) {
672 		/* XXX: Don't preclude handling different sized sigset_t's.  */
673 		if (sigsetsize != sizeof(sigset_t))
674 			return -EINVAL;
675 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
676 			return -EFAULT;
677 
678 		sigdelsetmask(&ksigmask, sigmask(SIGKILL)|sigmask(SIGSTOP));
679 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
680 	}
681 
682 	ret = core_sys_select(n, inp, outp, exp, to);
683 	ret = poll_select_copy_remaining(&end_time, tsp, 0, ret);
684 
685 	if (ret == -ERESTARTNOHAND) {
686 		/*
687 		 * Don't restore the signal mask yet. Let do_signal() deliver
688 		 * the signal on the way back to userspace, before the signal
689 		 * mask is restored.
690 		 */
691 		if (sigmask) {
692 			memcpy(&current->saved_sigmask, &sigsaved,
693 					sizeof(sigsaved));
694 			set_restore_sigmask();
695 		}
696 	} else if (sigmask)
697 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
698 
699 	return ret;
700 }
701 
702 /*
703  * Most architectures can't handle 7-argument syscalls. So we provide a
704  * 6-argument version where the sixth argument is a pointer to a structure
705  * which has a pointer to the sigset_t itself followed by a size_t containing
706  * the sigset size.
707  */
SYSCALL_DEFINE6(pselect6,int,n,fd_set __user *,inp,fd_set __user *,outp,fd_set __user *,exp,struct timespec __user *,tsp,void __user *,sig)708 SYSCALL_DEFINE6(pselect6, int, n, fd_set __user *, inp, fd_set __user *, outp,
709 		fd_set __user *, exp, struct timespec __user *, tsp,
710 		void __user *, sig)
711 {
712 	size_t sigsetsize = 0;
713 	sigset_t __user *up = NULL;
714 
715 	if (sig) {
716 		if (!access_ok(VERIFY_READ, sig, sizeof(void *)+sizeof(size_t))
717 		    || __get_user(up, (sigset_t __user * __user *)sig)
718 		    || __get_user(sigsetsize,
719 				(size_t __user *)(sig+sizeof(void *))))
720 			return -EFAULT;
721 	}
722 
723 	return do_pselect(n, inp, outp, exp, tsp, up, sigsetsize);
724 }
725 
726 #ifdef __ARCH_WANT_SYS_OLD_SELECT
727 struct sel_arg_struct {
728 	unsigned long n;
729 	fd_set __user *inp, *outp, *exp;
730 	struct timeval __user *tvp;
731 };
732 
SYSCALL_DEFINE1(old_select,struct sel_arg_struct __user *,arg)733 SYSCALL_DEFINE1(old_select, struct sel_arg_struct __user *, arg)
734 {
735 	struct sel_arg_struct a;
736 
737 	if (copy_from_user(&a, arg, sizeof(a)))
738 		return -EFAULT;
739 	return sys_select(a.n, a.inp, a.outp, a.exp, a.tvp);
740 }
741 #endif
742 
743 struct poll_list {
744 	struct poll_list *next;
745 	int len;
746 	struct pollfd entries[0];
747 };
748 
749 #define POLLFD_PER_PAGE  ((PAGE_SIZE-sizeof(struct poll_list)) / sizeof(struct pollfd))
750 
751 /*
752  * Fish for pollable events on the pollfd->fd file descriptor. We're only
753  * interested in events matching the pollfd->events mask, and the result
754  * matching that mask is both recorded in pollfd->revents and returned. The
755  * pwait poll_table will be used by the fd-provided poll handler for waiting,
756  * if pwait->_qproc is non-NULL.
757  */
do_pollfd(struct pollfd * pollfd,poll_table * pwait,bool * can_busy_poll,unsigned int busy_flag)758 static inline unsigned int do_pollfd(struct pollfd *pollfd, poll_table *pwait,
759 				     bool *can_busy_poll,
760 				     unsigned int busy_flag)
761 {
762 	unsigned int mask;
763 	int fd;
764 
765 	mask = 0;
766 	fd = pollfd->fd;
767 	if (fd >= 0) {
768 		struct fd f = fdget(fd);
769 		mask = POLLNVAL;
770 		if (f.file) {
771 			mask = DEFAULT_POLLMASK;
772 			if (f.file->f_op->poll) {
773 				pwait->_key = pollfd->events|POLLERR|POLLHUP;
774 				pwait->_key |= busy_flag;
775 				mask = f.file->f_op->poll(f.file, pwait);
776 				if (mask & busy_flag)
777 					*can_busy_poll = true;
778 			}
779 			/* Mask out unneeded events. */
780 			mask &= pollfd->events | POLLERR | POLLHUP;
781 			fdput(f);
782 		}
783 	}
784 	pollfd->revents = mask;
785 
786 	return mask;
787 }
788 
do_poll(unsigned int nfds,struct poll_list * list,struct poll_wqueues * wait,struct timespec * end_time)789 static int do_poll(unsigned int nfds,  struct poll_list *list,
790 		   struct poll_wqueues *wait, struct timespec *end_time)
791 {
792 	poll_table* pt = &wait->pt;
793 	ktime_t expire, *to = NULL;
794 	int timed_out = 0, count = 0;
795 	u64 slack = 0;
796 	unsigned int busy_flag = net_busy_loop_on() ? POLL_BUSY_LOOP : 0;
797 	unsigned long busy_end = 0;
798 
799 	/* Optimise the no-wait case */
800 	if (end_time && !end_time->tv_sec && !end_time->tv_nsec) {
801 		pt->_qproc = NULL;
802 		timed_out = 1;
803 	}
804 
805 	if (end_time && !timed_out)
806 		slack = select_estimate_accuracy(end_time);
807 
808 	for (;;) {
809 		struct poll_list *walk;
810 		bool can_busy_loop = false;
811 
812 		for (walk = list; walk != NULL; walk = walk->next) {
813 			struct pollfd * pfd, * pfd_end;
814 
815 			pfd = walk->entries;
816 			pfd_end = pfd + walk->len;
817 			for (; pfd != pfd_end; pfd++) {
818 				/*
819 				 * Fish for events. If we found one, record it
820 				 * and kill poll_table->_qproc, so we don't
821 				 * needlessly register any other waiters after
822 				 * this. They'll get immediately deregistered
823 				 * when we break out and return.
824 				 */
825 				if (do_pollfd(pfd, pt, &can_busy_loop,
826 					      busy_flag)) {
827 					count++;
828 					pt->_qproc = NULL;
829 					/* found something, stop busy polling */
830 					busy_flag = 0;
831 					can_busy_loop = false;
832 				}
833 			}
834 		}
835 		/*
836 		 * All waiters have already been registered, so don't provide
837 		 * a poll_table->_qproc to them on the next loop iteration.
838 		 */
839 		pt->_qproc = NULL;
840 		if (!count) {
841 			count = wait->error;
842 			if (signal_pending(current))
843 				count = -EINTR;
844 		}
845 		if (count || timed_out)
846 			break;
847 
848 		/* only if found POLL_BUSY_LOOP sockets && not out of time */
849 		if (can_busy_loop && !need_resched()) {
850 			if (!busy_end) {
851 				busy_end = busy_loop_end_time();
852 				continue;
853 			}
854 			if (!busy_loop_timeout(busy_end))
855 				continue;
856 		}
857 		busy_flag = 0;
858 
859 		/*
860 		 * If this is the first loop and we have a timeout
861 		 * given, then we convert to ktime_t and set the to
862 		 * pointer to the expiry value.
863 		 */
864 		if (end_time && !to) {
865 			expire = timespec_to_ktime(*end_time);
866 			to = &expire;
867 		}
868 
869 		if (!poll_schedule_timeout(wait, TASK_INTERRUPTIBLE, to, slack))
870 			timed_out = 1;
871 	}
872 	return count;
873 }
874 
875 #define N_STACK_PPS ((sizeof(stack_pps) - sizeof(struct poll_list))  / \
876 			sizeof(struct pollfd))
877 
do_sys_poll(struct pollfd __user * ufds,unsigned int nfds,struct timespec * end_time)878 int do_sys_poll(struct pollfd __user *ufds, unsigned int nfds,
879 		struct timespec *end_time)
880 {
881 	struct poll_wqueues table;
882  	int err = -EFAULT, fdcount, len, size;
883 	/* Allocate small arguments on the stack to save memory and be
884 	   faster - use long to make sure the buffer is aligned properly
885 	   on 64 bit archs to avoid unaligned access */
886 	long stack_pps[POLL_STACK_ALLOC/sizeof(long)];
887 	struct poll_list *const head = (struct poll_list *)stack_pps;
888  	struct poll_list *walk = head;
889  	unsigned long todo = nfds;
890 
891 	if (nfds > rlimit(RLIMIT_NOFILE))
892 		return -EINVAL;
893 
894 	len = min_t(unsigned int, nfds, N_STACK_PPS);
895 	for (;;) {
896 		walk->next = NULL;
897 		walk->len = len;
898 		if (!len)
899 			break;
900 
901 		if (copy_from_user(walk->entries, ufds + nfds-todo,
902 					sizeof(struct pollfd) * walk->len))
903 			goto out_fds;
904 
905 		todo -= walk->len;
906 		if (!todo)
907 			break;
908 
909 		len = min(todo, POLLFD_PER_PAGE);
910 		size = sizeof(struct poll_list) + sizeof(struct pollfd) * len;
911 		walk = walk->next = kmalloc(size, GFP_KERNEL);
912 		if (!walk) {
913 			err = -ENOMEM;
914 			goto out_fds;
915 		}
916 	}
917 
918 	poll_initwait(&table);
919 	fdcount = do_poll(nfds, head, &table, end_time);
920 	poll_freewait(&table);
921 
922 	for (walk = head; walk; walk = walk->next) {
923 		struct pollfd *fds = walk->entries;
924 		int j;
925 
926 		for (j = 0; j < walk->len; j++, ufds++)
927 			if (__put_user(fds[j].revents, &ufds->revents))
928 				goto out_fds;
929   	}
930 
931 	err = fdcount;
932 out_fds:
933 	walk = head->next;
934 	while (walk) {
935 		struct poll_list *pos = walk;
936 		walk = walk->next;
937 		kfree(pos);
938 	}
939 
940 	return err;
941 }
942 
do_restart_poll(struct restart_block * restart_block)943 static long do_restart_poll(struct restart_block *restart_block)
944 {
945 	struct pollfd __user *ufds = restart_block->poll.ufds;
946 	int nfds = restart_block->poll.nfds;
947 	struct timespec *to = NULL, end_time;
948 	int ret;
949 
950 	if (restart_block->poll.has_timeout) {
951 		end_time.tv_sec = restart_block->poll.tv_sec;
952 		end_time.tv_nsec = restart_block->poll.tv_nsec;
953 		to = &end_time;
954 	}
955 
956 	ret = do_sys_poll(ufds, nfds, to);
957 
958 	if (ret == -EINTR) {
959 		restart_block->fn = do_restart_poll;
960 		ret = -ERESTART_RESTARTBLOCK;
961 	}
962 	return ret;
963 }
964 
SYSCALL_DEFINE3(poll,struct pollfd __user *,ufds,unsigned int,nfds,int,timeout_msecs)965 SYSCALL_DEFINE3(poll, struct pollfd __user *, ufds, unsigned int, nfds,
966 		int, timeout_msecs)
967 {
968 	struct timespec end_time, *to = NULL;
969 	int ret;
970 
971 	if (timeout_msecs >= 0) {
972 		to = &end_time;
973 		poll_select_set_timeout(to, timeout_msecs / MSEC_PER_SEC,
974 			NSEC_PER_MSEC * (timeout_msecs % MSEC_PER_SEC));
975 	}
976 
977 	ret = do_sys_poll(ufds, nfds, to);
978 
979 	if (ret == -EINTR) {
980 		struct restart_block *restart_block;
981 
982 		restart_block = &current->restart_block;
983 		restart_block->fn = do_restart_poll;
984 		restart_block->poll.ufds = ufds;
985 		restart_block->poll.nfds = nfds;
986 
987 		if (timeout_msecs >= 0) {
988 			restart_block->poll.tv_sec = end_time.tv_sec;
989 			restart_block->poll.tv_nsec = end_time.tv_nsec;
990 			restart_block->poll.has_timeout = 1;
991 		} else
992 			restart_block->poll.has_timeout = 0;
993 
994 		ret = -ERESTART_RESTARTBLOCK;
995 	}
996 	return ret;
997 }
998 
SYSCALL_DEFINE5(ppoll,struct pollfd __user *,ufds,unsigned int,nfds,struct timespec __user *,tsp,const sigset_t __user *,sigmask,size_t,sigsetsize)999 SYSCALL_DEFINE5(ppoll, struct pollfd __user *, ufds, unsigned int, nfds,
1000 		struct timespec __user *, tsp, const sigset_t __user *, sigmask,
1001 		size_t, sigsetsize)
1002 {
1003 	sigset_t ksigmask, sigsaved;
1004 	struct timespec ts, end_time, *to = NULL;
1005 	int ret;
1006 
1007 	if (tsp) {
1008 		if (copy_from_user(&ts, tsp, sizeof(ts)))
1009 			return -EFAULT;
1010 
1011 		to = &end_time;
1012 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
1013 			return -EINVAL;
1014 	}
1015 
1016 	if (sigmask) {
1017 		/* XXX: Don't preclude handling different sized sigset_t's.  */
1018 		if (sigsetsize != sizeof(sigset_t))
1019 			return -EINVAL;
1020 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1021 			return -EFAULT;
1022 
1023 		sigdelsetmask(&ksigmask, sigmask(SIGKILL)|sigmask(SIGSTOP));
1024 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1025 	}
1026 
1027 	ret = do_sys_poll(ufds, nfds, to);
1028 
1029 	/* We can restart this syscall, usually */
1030 	if (ret == -EINTR) {
1031 		/*
1032 		 * Don't restore the signal mask yet. Let do_signal() deliver
1033 		 * the signal on the way back to userspace, before the signal
1034 		 * mask is restored.
1035 		 */
1036 		if (sigmask) {
1037 			memcpy(&current->saved_sigmask, &sigsaved,
1038 					sizeof(sigsaved));
1039 			set_restore_sigmask();
1040 		}
1041 		ret = -ERESTARTNOHAND;
1042 	} else if (sigmask)
1043 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1044 
1045 	ret = poll_select_copy_remaining(&end_time, tsp, 0, ret);
1046 
1047 	return ret;
1048 }
1049