• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements VFS file and inode operations for regular files, device
25  * nodes and symlinks as well as address space operations.
26  *
27  * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28  * the page is dirty and is used for optimization purposes - dirty pages are
29  * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30  * the budget for this page. The @PG_checked flag is set if full budgeting is
31  * required for the page e.g., when it corresponds to a file hole or it is
32  * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33  * it is OK to fail in this function, and the budget is released in
34  * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35  * information about how the page was budgeted, to make it possible to release
36  * the budget properly.
37  *
38  * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39  * implement. However, this is not true for 'ubifs_writepage()', which may be
40  * called with @i_mutex unlocked. For example, when flusher thread is doing
41  * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
42  * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
43  * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
44  * 'ubifs_writepage()' we are only guaranteed that the page is locked.
45  *
46  * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47  * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48  * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49  * set as well. However, UBIFS disables readahead.
50  */
51 
52 #include "ubifs.h"
53 #include <linux/mount.h>
54 #include <linux/slab.h>
55 #include <linux/migrate.h>
56 
read_block(struct inode * inode,void * addr,unsigned int block,struct ubifs_data_node * dn)57 static int read_block(struct inode *inode, void *addr, unsigned int block,
58 		      struct ubifs_data_node *dn)
59 {
60 	struct ubifs_info *c = inode->i_sb->s_fs_info;
61 	int err, len, out_len;
62 	union ubifs_key key;
63 	unsigned int dlen;
64 
65 	data_key_init(c, &key, inode->i_ino, block);
66 	err = ubifs_tnc_lookup(c, &key, dn);
67 	if (err) {
68 		if (err == -ENOENT)
69 			/* Not found, so it must be a hole */
70 			memset(addr, 0, UBIFS_BLOCK_SIZE);
71 		return err;
72 	}
73 
74 	ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
75 		     ubifs_inode(inode)->creat_sqnum);
76 	len = le32_to_cpu(dn->size);
77 	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
78 		goto dump;
79 
80 	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
81 	out_len = UBIFS_BLOCK_SIZE;
82 	err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
83 			       le16_to_cpu(dn->compr_type));
84 	if (err || len != out_len)
85 		goto dump;
86 
87 	/*
88 	 * Data length can be less than a full block, even for blocks that are
89 	 * not the last in the file (e.g., as a result of making a hole and
90 	 * appending data). Ensure that the remainder is zeroed out.
91 	 */
92 	if (len < UBIFS_BLOCK_SIZE)
93 		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
94 
95 	return 0;
96 
97 dump:
98 	ubifs_err(c, "bad data node (block %u, inode %lu)",
99 		  block, inode->i_ino);
100 	ubifs_dump_node(c, dn);
101 	return -EINVAL;
102 }
103 
do_readpage(struct page * page)104 static int do_readpage(struct page *page)
105 {
106 	void *addr;
107 	int err = 0, i;
108 	unsigned int block, beyond;
109 	struct ubifs_data_node *dn;
110 	struct inode *inode = page->mapping->host;
111 	loff_t i_size = i_size_read(inode);
112 
113 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
114 		inode->i_ino, page->index, i_size, page->flags);
115 	ubifs_assert(!PageChecked(page));
116 	ubifs_assert(!PagePrivate(page));
117 
118 	addr = kmap(page);
119 
120 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
121 	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
122 	if (block >= beyond) {
123 		/* Reading beyond inode */
124 		SetPageChecked(page);
125 		memset(addr, 0, PAGE_CACHE_SIZE);
126 		goto out;
127 	}
128 
129 	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
130 	if (!dn) {
131 		err = -ENOMEM;
132 		goto error;
133 	}
134 
135 	i = 0;
136 	while (1) {
137 		int ret;
138 
139 		if (block >= beyond) {
140 			/* Reading beyond inode */
141 			err = -ENOENT;
142 			memset(addr, 0, UBIFS_BLOCK_SIZE);
143 		} else {
144 			ret = read_block(inode, addr, block, dn);
145 			if (ret) {
146 				err = ret;
147 				if (err != -ENOENT)
148 					break;
149 			} else if (block + 1 == beyond) {
150 				int dlen = le32_to_cpu(dn->size);
151 				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
152 
153 				if (ilen && ilen < dlen)
154 					memset(addr + ilen, 0, dlen - ilen);
155 			}
156 		}
157 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
158 			break;
159 		block += 1;
160 		addr += UBIFS_BLOCK_SIZE;
161 	}
162 	if (err) {
163 		struct ubifs_info *c = inode->i_sb->s_fs_info;
164 		if (err == -ENOENT) {
165 			/* Not found, so it must be a hole */
166 			SetPageChecked(page);
167 			dbg_gen("hole");
168 			goto out_free;
169 		}
170 		ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
171 			  page->index, inode->i_ino, err);
172 		goto error;
173 	}
174 
175 out_free:
176 	kfree(dn);
177 out:
178 	SetPageUptodate(page);
179 	ClearPageError(page);
180 	flush_dcache_page(page);
181 	kunmap(page);
182 	return 0;
183 
184 error:
185 	kfree(dn);
186 	ClearPageUptodate(page);
187 	SetPageError(page);
188 	flush_dcache_page(page);
189 	kunmap(page);
190 	return err;
191 }
192 
193 /**
194  * release_new_page_budget - release budget of a new page.
195  * @c: UBIFS file-system description object
196  *
197  * This is a helper function which releases budget corresponding to the budget
198  * of one new page of data.
199  */
release_new_page_budget(struct ubifs_info * c)200 static void release_new_page_budget(struct ubifs_info *c)
201 {
202 	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
203 
204 	ubifs_release_budget(c, &req);
205 }
206 
207 /**
208  * release_existing_page_budget - release budget of an existing page.
209  * @c: UBIFS file-system description object
210  *
211  * This is a helper function which releases budget corresponding to the budget
212  * of changing one one page of data which already exists on the flash media.
213  */
release_existing_page_budget(struct ubifs_info * c)214 static void release_existing_page_budget(struct ubifs_info *c)
215 {
216 	struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
217 
218 	ubifs_release_budget(c, &req);
219 }
220 
write_begin_slow(struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,unsigned flags)221 static int write_begin_slow(struct address_space *mapping,
222 			    loff_t pos, unsigned len, struct page **pagep,
223 			    unsigned flags)
224 {
225 	struct inode *inode = mapping->host;
226 	struct ubifs_info *c = inode->i_sb->s_fs_info;
227 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
228 	struct ubifs_budget_req req = { .new_page = 1 };
229 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
230 	struct page *page;
231 
232 	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
233 		inode->i_ino, pos, len, inode->i_size);
234 
235 	/*
236 	 * At the slow path we have to budget before locking the page, because
237 	 * budgeting may force write-back, which would wait on locked pages and
238 	 * deadlock if we had the page locked. At this point we do not know
239 	 * anything about the page, so assume that this is a new page which is
240 	 * written to a hole. This corresponds to largest budget. Later the
241 	 * budget will be amended if this is not true.
242 	 */
243 	if (appending)
244 		/* We are appending data, budget for inode change */
245 		req.dirtied_ino = 1;
246 
247 	err = ubifs_budget_space(c, &req);
248 	if (unlikely(err))
249 		return err;
250 
251 	page = grab_cache_page_write_begin(mapping, index, flags);
252 	if (unlikely(!page)) {
253 		ubifs_release_budget(c, &req);
254 		return -ENOMEM;
255 	}
256 
257 	if (!PageUptodate(page)) {
258 		if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
259 			SetPageChecked(page);
260 		else {
261 			err = do_readpage(page);
262 			if (err) {
263 				unlock_page(page);
264 				page_cache_release(page);
265 				ubifs_release_budget(c, &req);
266 				return err;
267 			}
268 		}
269 
270 		SetPageUptodate(page);
271 		ClearPageError(page);
272 	}
273 
274 	if (PagePrivate(page))
275 		/*
276 		 * The page is dirty, which means it was budgeted twice:
277 		 *   o first time the budget was allocated by the task which
278 		 *     made the page dirty and set the PG_private flag;
279 		 *   o and then we budgeted for it for the second time at the
280 		 *     very beginning of this function.
281 		 *
282 		 * So what we have to do is to release the page budget we
283 		 * allocated.
284 		 */
285 		release_new_page_budget(c);
286 	else if (!PageChecked(page))
287 		/*
288 		 * We are changing a page which already exists on the media.
289 		 * This means that changing the page does not make the amount
290 		 * of indexing information larger, and this part of the budget
291 		 * which we have already acquired may be released.
292 		 */
293 		ubifs_convert_page_budget(c);
294 
295 	if (appending) {
296 		struct ubifs_inode *ui = ubifs_inode(inode);
297 
298 		/*
299 		 * 'ubifs_write_end()' is optimized from the fast-path part of
300 		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
301 		 * if data is appended.
302 		 */
303 		mutex_lock(&ui->ui_mutex);
304 		if (ui->dirty)
305 			/*
306 			 * The inode is dirty already, so we may free the
307 			 * budget we allocated.
308 			 */
309 			ubifs_release_dirty_inode_budget(c, ui);
310 	}
311 
312 	*pagep = page;
313 	return 0;
314 }
315 
316 /**
317  * allocate_budget - allocate budget for 'ubifs_write_begin()'.
318  * @c: UBIFS file-system description object
319  * @page: page to allocate budget for
320  * @ui: UBIFS inode object the page belongs to
321  * @appending: non-zero if the page is appended
322  *
323  * This is a helper function for 'ubifs_write_begin()' which allocates budget
324  * for the operation. The budget is allocated differently depending on whether
325  * this is appending, whether the page is dirty or not, and so on. This
326  * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
327  * in case of success and %-ENOSPC in case of failure.
328  */
allocate_budget(struct ubifs_info * c,struct page * page,struct ubifs_inode * ui,int appending)329 static int allocate_budget(struct ubifs_info *c, struct page *page,
330 			   struct ubifs_inode *ui, int appending)
331 {
332 	struct ubifs_budget_req req = { .fast = 1 };
333 
334 	if (PagePrivate(page)) {
335 		if (!appending)
336 			/*
337 			 * The page is dirty and we are not appending, which
338 			 * means no budget is needed at all.
339 			 */
340 			return 0;
341 
342 		mutex_lock(&ui->ui_mutex);
343 		if (ui->dirty)
344 			/*
345 			 * The page is dirty and we are appending, so the inode
346 			 * has to be marked as dirty. However, it is already
347 			 * dirty, so we do not need any budget. We may return,
348 			 * but @ui->ui_mutex hast to be left locked because we
349 			 * should prevent write-back from flushing the inode
350 			 * and freeing the budget. The lock will be released in
351 			 * 'ubifs_write_end()'.
352 			 */
353 			return 0;
354 
355 		/*
356 		 * The page is dirty, we are appending, the inode is clean, so
357 		 * we need to budget the inode change.
358 		 */
359 		req.dirtied_ino = 1;
360 	} else {
361 		if (PageChecked(page))
362 			/*
363 			 * The page corresponds to a hole and does not
364 			 * exist on the media. So changing it makes
365 			 * make the amount of indexing information
366 			 * larger, and we have to budget for a new
367 			 * page.
368 			 */
369 			req.new_page = 1;
370 		else
371 			/*
372 			 * Not a hole, the change will not add any new
373 			 * indexing information, budget for page
374 			 * change.
375 			 */
376 			req.dirtied_page = 1;
377 
378 		if (appending) {
379 			mutex_lock(&ui->ui_mutex);
380 			if (!ui->dirty)
381 				/*
382 				 * The inode is clean but we will have to mark
383 				 * it as dirty because we are appending. This
384 				 * needs a budget.
385 				 */
386 				req.dirtied_ino = 1;
387 		}
388 	}
389 
390 	return ubifs_budget_space(c, &req);
391 }
392 
393 /*
394  * This function is called when a page of data is going to be written. Since
395  * the page of data will not necessarily go to the flash straight away, UBIFS
396  * has to reserve space on the media for it, which is done by means of
397  * budgeting.
398  *
399  * This is the hot-path of the file-system and we are trying to optimize it as
400  * much as possible. For this reasons it is split on 2 parts - slow and fast.
401  *
402  * There many budgeting cases:
403  *     o a new page is appended - we have to budget for a new page and for
404  *       changing the inode; however, if the inode is already dirty, there is
405  *       no need to budget for it;
406  *     o an existing clean page is changed - we have budget for it; if the page
407  *       does not exist on the media (a hole), we have to budget for a new
408  *       page; otherwise, we may budget for changing an existing page; the
409  *       difference between these cases is that changing an existing page does
410  *       not introduce anything new to the FS indexing information, so it does
411  *       not grow, and smaller budget is acquired in this case;
412  *     o an existing dirty page is changed - no need to budget at all, because
413  *       the page budget has been acquired by earlier, when the page has been
414  *       marked dirty.
415  *
416  * UBIFS budgeting sub-system may force write-back if it thinks there is no
417  * space to reserve. This imposes some locking restrictions and makes it
418  * impossible to take into account the above cases, and makes it impossible to
419  * optimize budgeting.
420  *
421  * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
422  * there is a plenty of flash space and the budget will be acquired quickly,
423  * without forcing write-back. The slow path does not make this assumption.
424  */
ubifs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)425 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
426 			     loff_t pos, unsigned len, unsigned flags,
427 			     struct page **pagep, void **fsdata)
428 {
429 	struct inode *inode = mapping->host;
430 	struct ubifs_info *c = inode->i_sb->s_fs_info;
431 	struct ubifs_inode *ui = ubifs_inode(inode);
432 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
433 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
434 	int skipped_read = 0;
435 	struct page *page;
436 
437 	ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
438 	ubifs_assert(!c->ro_media && !c->ro_mount);
439 
440 	if (unlikely(c->ro_error))
441 		return -EROFS;
442 
443 	/* Try out the fast-path part first */
444 	page = grab_cache_page_write_begin(mapping, index, flags);
445 	if (unlikely(!page))
446 		return -ENOMEM;
447 
448 	if (!PageUptodate(page)) {
449 		/* The page is not loaded from the flash */
450 		if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) {
451 			/*
452 			 * We change whole page so no need to load it. But we
453 			 * do not know whether this page exists on the media or
454 			 * not, so we assume the latter because it requires
455 			 * larger budget. The assumption is that it is better
456 			 * to budget a bit more than to read the page from the
457 			 * media. Thus, we are setting the @PG_checked flag
458 			 * here.
459 			 */
460 			SetPageChecked(page);
461 			skipped_read = 1;
462 		} else {
463 			err = do_readpage(page);
464 			if (err) {
465 				unlock_page(page);
466 				page_cache_release(page);
467 				return err;
468 			}
469 		}
470 
471 		SetPageUptodate(page);
472 		ClearPageError(page);
473 	}
474 
475 	err = allocate_budget(c, page, ui, appending);
476 	if (unlikely(err)) {
477 		ubifs_assert(err == -ENOSPC);
478 		/*
479 		 * If we skipped reading the page because we were going to
480 		 * write all of it, then it is not up to date.
481 		 */
482 		if (skipped_read) {
483 			ClearPageChecked(page);
484 			ClearPageUptodate(page);
485 		}
486 		/*
487 		 * Budgeting failed which means it would have to force
488 		 * write-back but didn't, because we set the @fast flag in the
489 		 * request. Write-back cannot be done now, while we have the
490 		 * page locked, because it would deadlock. Unlock and free
491 		 * everything and fall-back to slow-path.
492 		 */
493 		if (appending) {
494 			ubifs_assert(mutex_is_locked(&ui->ui_mutex));
495 			mutex_unlock(&ui->ui_mutex);
496 		}
497 		unlock_page(page);
498 		page_cache_release(page);
499 
500 		return write_begin_slow(mapping, pos, len, pagep, flags);
501 	}
502 
503 	/*
504 	 * Whee, we acquired budgeting quickly - without involving
505 	 * garbage-collection, committing or forcing write-back. We return
506 	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
507 	 * otherwise. This is an optimization (slightly hacky though).
508 	 */
509 	*pagep = page;
510 	return 0;
511 
512 }
513 
514 /**
515  * cancel_budget - cancel budget.
516  * @c: UBIFS file-system description object
517  * @page: page to cancel budget for
518  * @ui: UBIFS inode object the page belongs to
519  * @appending: non-zero if the page is appended
520  *
521  * This is a helper function for a page write operation. It unlocks the
522  * @ui->ui_mutex in case of appending.
523  */
cancel_budget(struct ubifs_info * c,struct page * page,struct ubifs_inode * ui,int appending)524 static void cancel_budget(struct ubifs_info *c, struct page *page,
525 			  struct ubifs_inode *ui, int appending)
526 {
527 	if (appending) {
528 		if (!ui->dirty)
529 			ubifs_release_dirty_inode_budget(c, ui);
530 		mutex_unlock(&ui->ui_mutex);
531 	}
532 	if (!PagePrivate(page)) {
533 		if (PageChecked(page))
534 			release_new_page_budget(c);
535 		else
536 			release_existing_page_budget(c);
537 	}
538 }
539 
ubifs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)540 static int ubifs_write_end(struct file *file, struct address_space *mapping,
541 			   loff_t pos, unsigned len, unsigned copied,
542 			   struct page *page, void *fsdata)
543 {
544 	struct inode *inode = mapping->host;
545 	struct ubifs_inode *ui = ubifs_inode(inode);
546 	struct ubifs_info *c = inode->i_sb->s_fs_info;
547 	loff_t end_pos = pos + len;
548 	int appending = !!(end_pos > inode->i_size);
549 
550 	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
551 		inode->i_ino, pos, page->index, len, copied, inode->i_size);
552 
553 	if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
554 		/*
555 		 * VFS copied less data to the page that it intended and
556 		 * declared in its '->write_begin()' call via the @len
557 		 * argument. If the page was not up-to-date, and @len was
558 		 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
559 		 * not load it from the media (for optimization reasons). This
560 		 * means that part of the page contains garbage. So read the
561 		 * page now.
562 		 */
563 		dbg_gen("copied %d instead of %d, read page and repeat",
564 			copied, len);
565 		cancel_budget(c, page, ui, appending);
566 		ClearPageChecked(page);
567 
568 		/*
569 		 * Return 0 to force VFS to repeat the whole operation, or the
570 		 * error code if 'do_readpage()' fails.
571 		 */
572 		copied = do_readpage(page);
573 		goto out;
574 	}
575 
576 	if (!PagePrivate(page)) {
577 		SetPagePrivate(page);
578 		atomic_long_inc(&c->dirty_pg_cnt);
579 		__set_page_dirty_nobuffers(page);
580 	}
581 
582 	if (appending) {
583 		i_size_write(inode, end_pos);
584 		ui->ui_size = end_pos;
585 		/*
586 		 * Note, we do not set @I_DIRTY_PAGES (which means that the
587 		 * inode has dirty pages), this has been done in
588 		 * '__set_page_dirty_nobuffers()'.
589 		 */
590 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
591 		ubifs_assert(mutex_is_locked(&ui->ui_mutex));
592 		mutex_unlock(&ui->ui_mutex);
593 	}
594 
595 out:
596 	unlock_page(page);
597 	page_cache_release(page);
598 	return copied;
599 }
600 
601 /**
602  * populate_page - copy data nodes into a page for bulk-read.
603  * @c: UBIFS file-system description object
604  * @page: page
605  * @bu: bulk-read information
606  * @n: next zbranch slot
607  *
608  * This function returns %0 on success and a negative error code on failure.
609  */
populate_page(struct ubifs_info * c,struct page * page,struct bu_info * bu,int * n)610 static int populate_page(struct ubifs_info *c, struct page *page,
611 			 struct bu_info *bu, int *n)
612 {
613 	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
614 	struct inode *inode = page->mapping->host;
615 	loff_t i_size = i_size_read(inode);
616 	unsigned int page_block;
617 	void *addr, *zaddr;
618 	pgoff_t end_index;
619 
620 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
621 		inode->i_ino, page->index, i_size, page->flags);
622 
623 	addr = zaddr = kmap(page);
624 
625 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
626 	if (!i_size || page->index > end_index) {
627 		hole = 1;
628 		memset(addr, 0, PAGE_CACHE_SIZE);
629 		goto out_hole;
630 	}
631 
632 	page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
633 	while (1) {
634 		int err, len, out_len, dlen;
635 
636 		if (nn >= bu->cnt) {
637 			hole = 1;
638 			memset(addr, 0, UBIFS_BLOCK_SIZE);
639 		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
640 			struct ubifs_data_node *dn;
641 
642 			dn = bu->buf + (bu->zbranch[nn].offs - offs);
643 
644 			ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
645 				     ubifs_inode(inode)->creat_sqnum);
646 
647 			len = le32_to_cpu(dn->size);
648 			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
649 				goto out_err;
650 
651 			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
652 			out_len = UBIFS_BLOCK_SIZE;
653 			err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
654 					       le16_to_cpu(dn->compr_type));
655 			if (err || len != out_len)
656 				goto out_err;
657 
658 			if (len < UBIFS_BLOCK_SIZE)
659 				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
660 
661 			nn += 1;
662 			read = (i << UBIFS_BLOCK_SHIFT) + len;
663 		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
664 			nn += 1;
665 			continue;
666 		} else {
667 			hole = 1;
668 			memset(addr, 0, UBIFS_BLOCK_SIZE);
669 		}
670 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
671 			break;
672 		addr += UBIFS_BLOCK_SIZE;
673 		page_block += 1;
674 	}
675 
676 	if (end_index == page->index) {
677 		int len = i_size & (PAGE_CACHE_SIZE - 1);
678 
679 		if (len && len < read)
680 			memset(zaddr + len, 0, read - len);
681 	}
682 
683 out_hole:
684 	if (hole) {
685 		SetPageChecked(page);
686 		dbg_gen("hole");
687 	}
688 
689 	SetPageUptodate(page);
690 	ClearPageError(page);
691 	flush_dcache_page(page);
692 	kunmap(page);
693 	*n = nn;
694 	return 0;
695 
696 out_err:
697 	ClearPageUptodate(page);
698 	SetPageError(page);
699 	flush_dcache_page(page);
700 	kunmap(page);
701 	ubifs_err(c, "bad data node (block %u, inode %lu)",
702 		  page_block, inode->i_ino);
703 	return -EINVAL;
704 }
705 
706 /**
707  * ubifs_do_bulk_read - do bulk-read.
708  * @c: UBIFS file-system description object
709  * @bu: bulk-read information
710  * @page1: first page to read
711  *
712  * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
713  */
ubifs_do_bulk_read(struct ubifs_info * c,struct bu_info * bu,struct page * page1)714 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
715 			      struct page *page1)
716 {
717 	pgoff_t offset = page1->index, end_index;
718 	struct address_space *mapping = page1->mapping;
719 	struct inode *inode = mapping->host;
720 	struct ubifs_inode *ui = ubifs_inode(inode);
721 	int err, page_idx, page_cnt, ret = 0, n = 0;
722 	int allocate = bu->buf ? 0 : 1;
723 	loff_t isize;
724 
725 	err = ubifs_tnc_get_bu_keys(c, bu);
726 	if (err)
727 		goto out_warn;
728 
729 	if (bu->eof) {
730 		/* Turn off bulk-read at the end of the file */
731 		ui->read_in_a_row = 1;
732 		ui->bulk_read = 0;
733 	}
734 
735 	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
736 	if (!page_cnt) {
737 		/*
738 		 * This happens when there are multiple blocks per page and the
739 		 * blocks for the first page we are looking for, are not
740 		 * together. If all the pages were like this, bulk-read would
741 		 * reduce performance, so we turn it off for a while.
742 		 */
743 		goto out_bu_off;
744 	}
745 
746 	if (bu->cnt) {
747 		if (allocate) {
748 			/*
749 			 * Allocate bulk-read buffer depending on how many data
750 			 * nodes we are going to read.
751 			 */
752 			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
753 				      bu->zbranch[bu->cnt - 1].len -
754 				      bu->zbranch[0].offs;
755 			ubifs_assert(bu->buf_len > 0);
756 			ubifs_assert(bu->buf_len <= c->leb_size);
757 			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
758 			if (!bu->buf)
759 				goto out_bu_off;
760 		}
761 
762 		err = ubifs_tnc_bulk_read(c, bu);
763 		if (err)
764 			goto out_warn;
765 	}
766 
767 	err = populate_page(c, page1, bu, &n);
768 	if (err)
769 		goto out_warn;
770 
771 	unlock_page(page1);
772 	ret = 1;
773 
774 	isize = i_size_read(inode);
775 	if (isize == 0)
776 		goto out_free;
777 	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
778 
779 	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
780 		pgoff_t page_offset = offset + page_idx;
781 		struct page *page;
782 
783 		if (page_offset > end_index)
784 			break;
785 		page = pagecache_get_page(mapping, page_offset,
786 				 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT,
787 				 GFP_NOFS | __GFP_COLD);
788 		if (!page)
789 			break;
790 		if (!PageUptodate(page))
791 			err = populate_page(c, page, bu, &n);
792 		unlock_page(page);
793 		page_cache_release(page);
794 		if (err)
795 			break;
796 	}
797 
798 	ui->last_page_read = offset + page_idx - 1;
799 
800 out_free:
801 	if (allocate)
802 		kfree(bu->buf);
803 	return ret;
804 
805 out_warn:
806 	ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
807 	goto out_free;
808 
809 out_bu_off:
810 	ui->read_in_a_row = ui->bulk_read = 0;
811 	goto out_free;
812 }
813 
814 /**
815  * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
816  * @page: page from which to start bulk-read.
817  *
818  * Some flash media are capable of reading sequentially at faster rates. UBIFS
819  * bulk-read facility is designed to take advantage of that, by reading in one
820  * go consecutive data nodes that are also located consecutively in the same
821  * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
822  */
ubifs_bulk_read(struct page * page)823 static int ubifs_bulk_read(struct page *page)
824 {
825 	struct inode *inode = page->mapping->host;
826 	struct ubifs_info *c = inode->i_sb->s_fs_info;
827 	struct ubifs_inode *ui = ubifs_inode(inode);
828 	pgoff_t index = page->index, last_page_read = ui->last_page_read;
829 	struct bu_info *bu;
830 	int err = 0, allocated = 0;
831 
832 	ui->last_page_read = index;
833 	if (!c->bulk_read)
834 		return 0;
835 
836 	/*
837 	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
838 	 * so don't bother if we cannot lock the mutex.
839 	 */
840 	if (!mutex_trylock(&ui->ui_mutex))
841 		return 0;
842 
843 	if (index != last_page_read + 1) {
844 		/* Turn off bulk-read if we stop reading sequentially */
845 		ui->read_in_a_row = 1;
846 		if (ui->bulk_read)
847 			ui->bulk_read = 0;
848 		goto out_unlock;
849 	}
850 
851 	if (!ui->bulk_read) {
852 		ui->read_in_a_row += 1;
853 		if (ui->read_in_a_row < 3)
854 			goto out_unlock;
855 		/* Three reads in a row, so switch on bulk-read */
856 		ui->bulk_read = 1;
857 	}
858 
859 	/*
860 	 * If possible, try to use pre-allocated bulk-read information, which
861 	 * is protected by @c->bu_mutex.
862 	 */
863 	if (mutex_trylock(&c->bu_mutex))
864 		bu = &c->bu;
865 	else {
866 		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
867 		if (!bu)
868 			goto out_unlock;
869 
870 		bu->buf = NULL;
871 		allocated = 1;
872 	}
873 
874 	bu->buf_len = c->max_bu_buf_len;
875 	data_key_init(c, &bu->key, inode->i_ino,
876 		      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
877 	err = ubifs_do_bulk_read(c, bu, page);
878 
879 	if (!allocated)
880 		mutex_unlock(&c->bu_mutex);
881 	else
882 		kfree(bu);
883 
884 out_unlock:
885 	mutex_unlock(&ui->ui_mutex);
886 	return err;
887 }
888 
ubifs_readpage(struct file * file,struct page * page)889 static int ubifs_readpage(struct file *file, struct page *page)
890 {
891 	if (ubifs_bulk_read(page))
892 		return 0;
893 	do_readpage(page);
894 	unlock_page(page);
895 	return 0;
896 }
897 
do_writepage(struct page * page,int len)898 static int do_writepage(struct page *page, int len)
899 {
900 	int err = 0, i, blen;
901 	unsigned int block;
902 	void *addr;
903 	union ubifs_key key;
904 	struct inode *inode = page->mapping->host;
905 	struct ubifs_info *c = inode->i_sb->s_fs_info;
906 
907 #ifdef UBIFS_DEBUG
908 	struct ubifs_inode *ui = ubifs_inode(inode);
909 	spin_lock(&ui->ui_lock);
910 	ubifs_assert(page->index <= ui->synced_i_size >> PAGE_CACHE_SHIFT);
911 	spin_unlock(&ui->ui_lock);
912 #endif
913 
914 	/* Update radix tree tags */
915 	set_page_writeback(page);
916 
917 	addr = kmap(page);
918 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
919 	i = 0;
920 	while (len) {
921 		blen = min_t(int, len, UBIFS_BLOCK_SIZE);
922 		data_key_init(c, &key, inode->i_ino, block);
923 		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
924 		if (err)
925 			break;
926 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
927 			break;
928 		block += 1;
929 		addr += blen;
930 		len -= blen;
931 	}
932 	if (err) {
933 		SetPageError(page);
934 		ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
935 			  page->index, inode->i_ino, err);
936 		ubifs_ro_mode(c, err);
937 	}
938 
939 	ubifs_assert(PagePrivate(page));
940 	if (PageChecked(page))
941 		release_new_page_budget(c);
942 	else
943 		release_existing_page_budget(c);
944 
945 	atomic_long_dec(&c->dirty_pg_cnt);
946 	ClearPagePrivate(page);
947 	ClearPageChecked(page);
948 
949 	kunmap(page);
950 	unlock_page(page);
951 	end_page_writeback(page);
952 	return err;
953 }
954 
955 /*
956  * When writing-back dirty inodes, VFS first writes-back pages belonging to the
957  * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
958  * situation when a we have an inode with size 0, then a megabyte of data is
959  * appended to the inode, then write-back starts and flushes some amount of the
960  * dirty pages, the journal becomes full, commit happens and finishes, and then
961  * an unclean reboot happens. When the file system is mounted next time, the
962  * inode size would still be 0, but there would be many pages which are beyond
963  * the inode size, they would be indexed and consume flash space. Because the
964  * journal has been committed, the replay would not be able to detect this
965  * situation and correct the inode size. This means UBIFS would have to scan
966  * whole index and correct all inode sizes, which is long an unacceptable.
967  *
968  * To prevent situations like this, UBIFS writes pages back only if they are
969  * within the last synchronized inode size, i.e. the size which has been
970  * written to the flash media last time. Otherwise, UBIFS forces inode
971  * write-back, thus making sure the on-flash inode contains current inode size,
972  * and then keeps writing pages back.
973  *
974  * Some locking issues explanation. 'ubifs_writepage()' first is called with
975  * the page locked, and it locks @ui_mutex. However, write-back does take inode
976  * @i_mutex, which means other VFS operations may be run on this inode at the
977  * same time. And the problematic one is truncation to smaller size, from where
978  * we have to call 'truncate_setsize()', which first changes @inode->i_size,
979  * then drops the truncated pages. And while dropping the pages, it takes the
980  * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
981  * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
982  * This means that @inode->i_size is changed while @ui_mutex is unlocked.
983  *
984  * XXX(truncate): with the new truncate sequence this is not true anymore,
985  * and the calls to truncate_setsize can be move around freely.  They should
986  * be moved to the very end of the truncate sequence.
987  *
988  * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
989  * inode size. How do we do this if @inode->i_size may became smaller while we
990  * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
991  * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
992  * internally and updates it under @ui_mutex.
993  *
994  * Q: why we do not worry that if we race with truncation, we may end up with a
995  * situation when the inode is truncated while we are in the middle of
996  * 'do_writepage()', so we do write beyond inode size?
997  * A: If we are in the middle of 'do_writepage()', truncation would be locked
998  * on the page lock and it would not write the truncated inode node to the
999  * journal before we have finished.
1000  */
ubifs_writepage(struct page * page,struct writeback_control * wbc)1001 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1002 {
1003 	struct inode *inode = page->mapping->host;
1004 	struct ubifs_inode *ui = ubifs_inode(inode);
1005 	loff_t i_size =  i_size_read(inode), synced_i_size;
1006 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
1007 	int err, len = i_size & (PAGE_CACHE_SIZE - 1);
1008 	void *kaddr;
1009 
1010 	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1011 		inode->i_ino, page->index, page->flags);
1012 	ubifs_assert(PagePrivate(page));
1013 
1014 	/* Is the page fully outside @i_size? (truncate in progress) */
1015 	if (page->index > end_index || (page->index == end_index && !len)) {
1016 		err = 0;
1017 		goto out_unlock;
1018 	}
1019 
1020 	spin_lock(&ui->ui_lock);
1021 	synced_i_size = ui->synced_i_size;
1022 	spin_unlock(&ui->ui_lock);
1023 
1024 	/* Is the page fully inside @i_size? */
1025 	if (page->index < end_index) {
1026 		if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
1027 			err = inode->i_sb->s_op->write_inode(inode, NULL);
1028 			if (err)
1029 				goto out_unlock;
1030 			/*
1031 			 * The inode has been written, but the write-buffer has
1032 			 * not been synchronized, so in case of an unclean
1033 			 * reboot we may end up with some pages beyond inode
1034 			 * size, but they would be in the journal (because
1035 			 * commit flushes write buffers) and recovery would deal
1036 			 * with this.
1037 			 */
1038 		}
1039 		return do_writepage(page, PAGE_CACHE_SIZE);
1040 	}
1041 
1042 	/*
1043 	 * The page straddles @i_size. It must be zeroed out on each and every
1044 	 * writepage invocation because it may be mmapped. "A file is mapped
1045 	 * in multiples of the page size. For a file that is not a multiple of
1046 	 * the page size, the remaining memory is zeroed when mapped, and
1047 	 * writes to that region are not written out to the file."
1048 	 */
1049 	kaddr = kmap_atomic(page);
1050 	memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
1051 	flush_dcache_page(page);
1052 	kunmap_atomic(kaddr);
1053 
1054 	if (i_size > synced_i_size) {
1055 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1056 		if (err)
1057 			goto out_unlock;
1058 	}
1059 
1060 	return do_writepage(page, len);
1061 
1062 out_unlock:
1063 	unlock_page(page);
1064 	return err;
1065 }
1066 
1067 /**
1068  * do_attr_changes - change inode attributes.
1069  * @inode: inode to change attributes for
1070  * @attr: describes attributes to change
1071  */
do_attr_changes(struct inode * inode,const struct iattr * attr)1072 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1073 {
1074 	if (attr->ia_valid & ATTR_UID)
1075 		inode->i_uid = attr->ia_uid;
1076 	if (attr->ia_valid & ATTR_GID)
1077 		inode->i_gid = attr->ia_gid;
1078 	if (attr->ia_valid & ATTR_ATIME)
1079 		inode->i_atime = timespec_trunc(attr->ia_atime,
1080 						inode->i_sb->s_time_gran);
1081 	if (attr->ia_valid & ATTR_MTIME)
1082 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
1083 						inode->i_sb->s_time_gran);
1084 	if (attr->ia_valid & ATTR_CTIME)
1085 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
1086 						inode->i_sb->s_time_gran);
1087 	if (attr->ia_valid & ATTR_MODE) {
1088 		umode_t mode = attr->ia_mode;
1089 
1090 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1091 			mode &= ~S_ISGID;
1092 		inode->i_mode = mode;
1093 	}
1094 }
1095 
1096 /**
1097  * do_truncation - truncate an inode.
1098  * @c: UBIFS file-system description object
1099  * @inode: inode to truncate
1100  * @attr: inode attribute changes description
1101  *
1102  * This function implements VFS '->setattr()' call when the inode is truncated
1103  * to a smaller size. Returns zero in case of success and a negative error code
1104  * in case of failure.
1105  */
do_truncation(struct ubifs_info * c,struct inode * inode,const struct iattr * attr)1106 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1107 			 const struct iattr *attr)
1108 {
1109 	int err;
1110 	struct ubifs_budget_req req;
1111 	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1112 	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1113 	struct ubifs_inode *ui = ubifs_inode(inode);
1114 
1115 	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1116 	memset(&req, 0, sizeof(struct ubifs_budget_req));
1117 
1118 	/*
1119 	 * If this is truncation to a smaller size, and we do not truncate on a
1120 	 * block boundary, budget for changing one data block, because the last
1121 	 * block will be re-written.
1122 	 */
1123 	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1124 		req.dirtied_page = 1;
1125 
1126 	req.dirtied_ino = 1;
1127 	/* A funny way to budget for truncation node */
1128 	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1129 	err = ubifs_budget_space(c, &req);
1130 	if (err) {
1131 		/*
1132 		 * Treat truncations to zero as deletion and always allow them,
1133 		 * just like we do for '->unlink()'.
1134 		 */
1135 		if (new_size || err != -ENOSPC)
1136 			return err;
1137 		budgeted = 0;
1138 	}
1139 
1140 	truncate_setsize(inode, new_size);
1141 
1142 	if (offset) {
1143 		pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
1144 		struct page *page;
1145 
1146 		page = find_lock_page(inode->i_mapping, index);
1147 		if (page) {
1148 			if (PageDirty(page)) {
1149 				/*
1150 				 * 'ubifs_jnl_truncate()' will try to truncate
1151 				 * the last data node, but it contains
1152 				 * out-of-date data because the page is dirty.
1153 				 * Write the page now, so that
1154 				 * 'ubifs_jnl_truncate()' will see an already
1155 				 * truncated (and up to date) data node.
1156 				 */
1157 				ubifs_assert(PagePrivate(page));
1158 
1159 				clear_page_dirty_for_io(page);
1160 				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1161 					offset = new_size &
1162 						 (PAGE_CACHE_SIZE - 1);
1163 				err = do_writepage(page, offset);
1164 				page_cache_release(page);
1165 				if (err)
1166 					goto out_budg;
1167 				/*
1168 				 * We could now tell 'ubifs_jnl_truncate()' not
1169 				 * to read the last block.
1170 				 */
1171 			} else {
1172 				/*
1173 				 * We could 'kmap()' the page and pass the data
1174 				 * to 'ubifs_jnl_truncate()' to save it from
1175 				 * having to read it.
1176 				 */
1177 				unlock_page(page);
1178 				page_cache_release(page);
1179 			}
1180 		}
1181 	}
1182 
1183 	mutex_lock(&ui->ui_mutex);
1184 	ui->ui_size = inode->i_size;
1185 	/* Truncation changes inode [mc]time */
1186 	inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1187 	/* Other attributes may be changed at the same time as well */
1188 	do_attr_changes(inode, attr);
1189 	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1190 	mutex_unlock(&ui->ui_mutex);
1191 
1192 out_budg:
1193 	if (budgeted)
1194 		ubifs_release_budget(c, &req);
1195 	else {
1196 		c->bi.nospace = c->bi.nospace_rp = 0;
1197 		smp_wmb();
1198 	}
1199 	return err;
1200 }
1201 
1202 /**
1203  * do_setattr - change inode attributes.
1204  * @c: UBIFS file-system description object
1205  * @inode: inode to change attributes for
1206  * @attr: inode attribute changes description
1207  *
1208  * This function implements VFS '->setattr()' call for all cases except
1209  * truncations to smaller size. Returns zero in case of success and a negative
1210  * error code in case of failure.
1211  */
do_setattr(struct ubifs_info * c,struct inode * inode,const struct iattr * attr)1212 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1213 		      const struct iattr *attr)
1214 {
1215 	int err, release;
1216 	loff_t new_size = attr->ia_size;
1217 	struct ubifs_inode *ui = ubifs_inode(inode);
1218 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1219 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1220 
1221 	err = ubifs_budget_space(c, &req);
1222 	if (err)
1223 		return err;
1224 
1225 	if (attr->ia_valid & ATTR_SIZE) {
1226 		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1227 		truncate_setsize(inode, new_size);
1228 	}
1229 
1230 	mutex_lock(&ui->ui_mutex);
1231 	if (attr->ia_valid & ATTR_SIZE) {
1232 		/* Truncation changes inode [mc]time */
1233 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1234 		/* 'truncate_setsize()' changed @i_size, update @ui_size */
1235 		ui->ui_size = inode->i_size;
1236 	}
1237 
1238 	do_attr_changes(inode, attr);
1239 
1240 	release = ui->dirty;
1241 	if (attr->ia_valid & ATTR_SIZE)
1242 		/*
1243 		 * Inode length changed, so we have to make sure
1244 		 * @I_DIRTY_DATASYNC is set.
1245 		 */
1246 		 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1247 	else
1248 		mark_inode_dirty_sync(inode);
1249 	mutex_unlock(&ui->ui_mutex);
1250 
1251 	if (release)
1252 		ubifs_release_budget(c, &req);
1253 	if (IS_SYNC(inode))
1254 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1255 	return err;
1256 }
1257 
ubifs_setattr(struct dentry * dentry,struct iattr * attr)1258 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1259 {
1260 	int err;
1261 	struct inode *inode = d_inode(dentry);
1262 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1263 
1264 	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1265 		inode->i_ino, inode->i_mode, attr->ia_valid);
1266 	err = inode_change_ok(inode, attr);
1267 	if (err)
1268 		return err;
1269 
1270 	err = dbg_check_synced_i_size(c, inode);
1271 	if (err)
1272 		return err;
1273 
1274 	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1275 		/* Truncation to a smaller size */
1276 		err = do_truncation(c, inode, attr);
1277 	else
1278 		err = do_setattr(c, inode, attr);
1279 
1280 	return err;
1281 }
1282 
ubifs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)1283 static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1284 				 unsigned int length)
1285 {
1286 	struct inode *inode = page->mapping->host;
1287 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1288 
1289 	ubifs_assert(PagePrivate(page));
1290 	if (offset || length < PAGE_CACHE_SIZE)
1291 		/* Partial page remains dirty */
1292 		return;
1293 
1294 	if (PageChecked(page))
1295 		release_new_page_budget(c);
1296 	else
1297 		release_existing_page_budget(c);
1298 
1299 	atomic_long_dec(&c->dirty_pg_cnt);
1300 	ClearPagePrivate(page);
1301 	ClearPageChecked(page);
1302 }
1303 
ubifs_fsync(struct file * file,loff_t start,loff_t end,int datasync)1304 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1305 {
1306 	struct inode *inode = file->f_mapping->host;
1307 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1308 	int err;
1309 
1310 	dbg_gen("syncing inode %lu", inode->i_ino);
1311 
1312 	if (c->ro_mount)
1313 		/*
1314 		 * For some really strange reasons VFS does not filter out
1315 		 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1316 		 */
1317 		return 0;
1318 
1319 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
1320 	if (err)
1321 		return err;
1322 	mutex_lock(&inode->i_mutex);
1323 
1324 	/* Synchronize the inode unless this is a 'datasync()' call. */
1325 	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1326 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1327 		if (err)
1328 			goto out;
1329 	}
1330 
1331 	/*
1332 	 * Nodes related to this inode may still sit in a write-buffer. Flush
1333 	 * them.
1334 	 */
1335 	err = ubifs_sync_wbufs_by_inode(c, inode);
1336 out:
1337 	mutex_unlock(&inode->i_mutex);
1338 	return err;
1339 }
1340 
1341 /**
1342  * mctime_update_needed - check if mtime or ctime update is needed.
1343  * @inode: the inode to do the check for
1344  * @now: current time
1345  *
1346  * This helper function checks if the inode mtime/ctime should be updated or
1347  * not. If current values of the time-stamps are within the UBIFS inode time
1348  * granularity, they are not updated. This is an optimization.
1349  */
mctime_update_needed(const struct inode * inode,const struct timespec * now)1350 static inline int mctime_update_needed(const struct inode *inode,
1351 				       const struct timespec *now)
1352 {
1353 	if (!timespec_equal(&inode->i_mtime, now) ||
1354 	    !timespec_equal(&inode->i_ctime, now))
1355 		return 1;
1356 	return 0;
1357 }
1358 
1359 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1360 /**
1361  * ubifs_update_time - update time of inode.
1362  * @inode: inode to update
1363  *
1364  * This function updates time of the inode.
1365  */
ubifs_update_time(struct inode * inode,struct timespec * time,int flags)1366 int ubifs_update_time(struct inode *inode, struct timespec *time,
1367 			     int flags)
1368 {
1369 	struct ubifs_inode *ui = ubifs_inode(inode);
1370 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1371 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1372 			.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1373 	int iflags = I_DIRTY_TIME;
1374 	int err, release;
1375 
1376 	err = ubifs_budget_space(c, &req);
1377 	if (err)
1378 		return err;
1379 
1380 	mutex_lock(&ui->ui_mutex);
1381 	if (flags & S_ATIME)
1382 		inode->i_atime = *time;
1383 	if (flags & S_CTIME)
1384 		inode->i_ctime = *time;
1385 	if (flags & S_MTIME)
1386 		inode->i_mtime = *time;
1387 
1388 	if (!(inode->i_sb->s_flags & MS_LAZYTIME))
1389 		iflags |= I_DIRTY_SYNC;
1390 
1391 	release = ui->dirty;
1392 	__mark_inode_dirty(inode, iflags);
1393 	mutex_unlock(&ui->ui_mutex);
1394 	if (release)
1395 		ubifs_release_budget(c, &req);
1396 	return 0;
1397 }
1398 #endif
1399 
1400 /**
1401  * update_ctime - update mtime and ctime of an inode.
1402  * @inode: inode to update
1403  *
1404  * This function updates mtime and ctime of the inode if it is not equivalent to
1405  * current time. Returns zero in case of success and a negative error code in
1406  * case of failure.
1407  */
update_mctime(struct inode * inode)1408 static int update_mctime(struct inode *inode)
1409 {
1410 	struct timespec now = ubifs_current_time(inode);
1411 	struct ubifs_inode *ui = ubifs_inode(inode);
1412 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1413 
1414 	if (mctime_update_needed(inode, &now)) {
1415 		int err, release;
1416 		struct ubifs_budget_req req = { .dirtied_ino = 1,
1417 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1418 
1419 		err = ubifs_budget_space(c, &req);
1420 		if (err)
1421 			return err;
1422 
1423 		mutex_lock(&ui->ui_mutex);
1424 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1425 		release = ui->dirty;
1426 		mark_inode_dirty_sync(inode);
1427 		mutex_unlock(&ui->ui_mutex);
1428 		if (release)
1429 			ubifs_release_budget(c, &req);
1430 	}
1431 
1432 	return 0;
1433 }
1434 
ubifs_write_iter(struct kiocb * iocb,struct iov_iter * from)1435 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1436 {
1437 	int err = update_mctime(file_inode(iocb->ki_filp));
1438 	if (err)
1439 		return err;
1440 
1441 	return generic_file_write_iter(iocb, from);
1442 }
1443 
ubifs_set_page_dirty(struct page * page)1444 static int ubifs_set_page_dirty(struct page *page)
1445 {
1446 	int ret;
1447 
1448 	ret = __set_page_dirty_nobuffers(page);
1449 	/*
1450 	 * An attempt to dirty a page without budgeting for it - should not
1451 	 * happen.
1452 	 */
1453 	ubifs_assert(ret == 0);
1454 	return ret;
1455 }
1456 
1457 #ifdef CONFIG_MIGRATION
ubifs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)1458 static int ubifs_migrate_page(struct address_space *mapping,
1459 		struct page *newpage, struct page *page, enum migrate_mode mode)
1460 {
1461 	int rc;
1462 
1463 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
1464 	if (rc != MIGRATEPAGE_SUCCESS)
1465 		return rc;
1466 
1467 	if (PagePrivate(page)) {
1468 		ClearPagePrivate(page);
1469 		SetPagePrivate(newpage);
1470 	}
1471 
1472 	migrate_page_copy(newpage, page);
1473 	return MIGRATEPAGE_SUCCESS;
1474 }
1475 #endif
1476 
ubifs_releasepage(struct page * page,gfp_t unused_gfp_flags)1477 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1478 {
1479 	/*
1480 	 * An attempt to release a dirty page without budgeting for it - should
1481 	 * not happen.
1482 	 */
1483 	if (PageWriteback(page))
1484 		return 0;
1485 	ubifs_assert(PagePrivate(page));
1486 	ubifs_assert(0);
1487 	ClearPagePrivate(page);
1488 	ClearPageChecked(page);
1489 	return 1;
1490 }
1491 
1492 /*
1493  * mmap()d file has taken write protection fault and is being made writable.
1494  * UBIFS must ensure page is budgeted for.
1495  */
ubifs_vm_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)1496 static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma,
1497 				 struct vm_fault *vmf)
1498 {
1499 	struct page *page = vmf->page;
1500 	struct inode *inode = file_inode(vma->vm_file);
1501 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1502 	struct timespec now = ubifs_current_time(inode);
1503 	struct ubifs_budget_req req = { .new_page = 1 };
1504 	int err, update_time;
1505 
1506 	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, page->index,
1507 		i_size_read(inode));
1508 	ubifs_assert(!c->ro_media && !c->ro_mount);
1509 
1510 	if (unlikely(c->ro_error))
1511 		return VM_FAULT_SIGBUS; /* -EROFS */
1512 
1513 	/*
1514 	 * We have not locked @page so far so we may budget for changing the
1515 	 * page. Note, we cannot do this after we locked the page, because
1516 	 * budgeting may cause write-back which would cause deadlock.
1517 	 *
1518 	 * At the moment we do not know whether the page is dirty or not, so we
1519 	 * assume that it is not and budget for a new page. We could look at
1520 	 * the @PG_private flag and figure this out, but we may race with write
1521 	 * back and the page state may change by the time we lock it, so this
1522 	 * would need additional care. We do not bother with this at the
1523 	 * moment, although it might be good idea to do. Instead, we allocate
1524 	 * budget for a new page and amend it later on if the page was in fact
1525 	 * dirty.
1526 	 *
1527 	 * The budgeting-related logic of this function is similar to what we
1528 	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1529 	 * for more comments.
1530 	 */
1531 	update_time = mctime_update_needed(inode, &now);
1532 	if (update_time)
1533 		/*
1534 		 * We have to change inode time stamp which requires extra
1535 		 * budgeting.
1536 		 */
1537 		req.dirtied_ino = 1;
1538 
1539 	err = ubifs_budget_space(c, &req);
1540 	if (unlikely(err)) {
1541 		if (err == -ENOSPC)
1542 			ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1543 				   inode->i_ino);
1544 		return VM_FAULT_SIGBUS;
1545 	}
1546 
1547 	lock_page(page);
1548 	if (unlikely(page->mapping != inode->i_mapping ||
1549 		     page_offset(page) > i_size_read(inode))) {
1550 		/* Page got truncated out from underneath us */
1551 		err = -EINVAL;
1552 		goto out_unlock;
1553 	}
1554 
1555 	if (PagePrivate(page))
1556 		release_new_page_budget(c);
1557 	else {
1558 		if (!PageChecked(page))
1559 			ubifs_convert_page_budget(c);
1560 		SetPagePrivate(page);
1561 		atomic_long_inc(&c->dirty_pg_cnt);
1562 		__set_page_dirty_nobuffers(page);
1563 	}
1564 
1565 	if (update_time) {
1566 		int release;
1567 		struct ubifs_inode *ui = ubifs_inode(inode);
1568 
1569 		mutex_lock(&ui->ui_mutex);
1570 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1571 		release = ui->dirty;
1572 		mark_inode_dirty_sync(inode);
1573 		mutex_unlock(&ui->ui_mutex);
1574 		if (release)
1575 			ubifs_release_dirty_inode_budget(c, ui);
1576 	}
1577 
1578 	wait_for_stable_page(page);
1579 	return VM_FAULT_LOCKED;
1580 
1581 out_unlock:
1582 	unlock_page(page);
1583 	ubifs_release_budget(c, &req);
1584 	if (err)
1585 		err = VM_FAULT_SIGBUS;
1586 	return err;
1587 }
1588 
1589 static const struct vm_operations_struct ubifs_file_vm_ops = {
1590 	.fault        = filemap_fault,
1591 	.map_pages = filemap_map_pages,
1592 	.page_mkwrite = ubifs_vm_page_mkwrite,
1593 };
1594 
ubifs_file_mmap(struct file * file,struct vm_area_struct * vma)1595 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1596 {
1597 	int err;
1598 
1599 	err = generic_file_mmap(file, vma);
1600 	if (err)
1601 		return err;
1602 	vma->vm_ops = &ubifs_file_vm_ops;
1603 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1604 	file_accessed(file);
1605 #endif
1606 	return 0;
1607 }
1608 
1609 const struct address_space_operations ubifs_file_address_operations = {
1610 	.readpage       = ubifs_readpage,
1611 	.writepage      = ubifs_writepage,
1612 	.write_begin    = ubifs_write_begin,
1613 	.write_end      = ubifs_write_end,
1614 	.invalidatepage = ubifs_invalidatepage,
1615 	.set_page_dirty = ubifs_set_page_dirty,
1616 #ifdef CONFIG_MIGRATION
1617 	.migratepage	= ubifs_migrate_page,
1618 #endif
1619 	.releasepage    = ubifs_releasepage,
1620 };
1621 
1622 const struct inode_operations ubifs_file_inode_operations = {
1623 	.setattr     = ubifs_setattr,
1624 	.getattr     = ubifs_getattr,
1625 	.setxattr    = ubifs_setxattr,
1626 	.getxattr    = ubifs_getxattr,
1627 	.listxattr   = ubifs_listxattr,
1628 	.removexattr = ubifs_removexattr,
1629 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1630 	.update_time = ubifs_update_time,
1631 #endif
1632 };
1633 
1634 const struct inode_operations ubifs_symlink_inode_operations = {
1635 	.readlink    = generic_readlink,
1636 	.follow_link = simple_follow_link,
1637 	.setattr     = ubifs_setattr,
1638 	.getattr     = ubifs_getattr,
1639 	.setxattr    = ubifs_setxattr,
1640 	.getxattr    = ubifs_getxattr,
1641 	.listxattr   = ubifs_listxattr,
1642 	.removexattr = ubifs_removexattr,
1643 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1644 	.update_time = ubifs_update_time,
1645 #endif
1646 };
1647 
1648 const struct file_operations ubifs_file_operations = {
1649 	.llseek         = generic_file_llseek,
1650 	.read_iter      = generic_file_read_iter,
1651 	.write_iter     = ubifs_write_iter,
1652 	.mmap           = ubifs_file_mmap,
1653 	.fsync          = ubifs_fsync,
1654 	.unlocked_ioctl = ubifs_ioctl,
1655 	.splice_read	= generic_file_splice_read,
1656 	.splice_write	= iter_file_splice_write,
1657 #ifdef CONFIG_COMPAT
1658 	.compat_ioctl   = ubifs_compat_ioctl,
1659 #endif
1660 };
1661