• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14 
15 #include <linux/hashtable.h>
16 #include <linux/sched.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 
30 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
31 
32 enum userfaultfd_state {
33 	UFFD_STATE_WAIT_API,
34 	UFFD_STATE_RUNNING,
35 };
36 
37 /*
38  * Start with fault_pending_wqh and fault_wqh so they're more likely
39  * to be in the same cacheline.
40  */
41 struct userfaultfd_ctx {
42 	/* waitqueue head for the pending (i.e. not read) userfaults */
43 	wait_queue_head_t fault_pending_wqh;
44 	/* waitqueue head for the userfaults */
45 	wait_queue_head_t fault_wqh;
46 	/* waitqueue head for the pseudo fd to wakeup poll/read */
47 	wait_queue_head_t fd_wqh;
48 	/* a refile sequence protected by fault_pending_wqh lock */
49 	struct seqcount refile_seq;
50 	/* pseudo fd refcounting */
51 	atomic_t refcount;
52 	/* userfaultfd syscall flags */
53 	unsigned int flags;
54 	/* state machine */
55 	enum userfaultfd_state state;
56 	/* released */
57 	bool released;
58 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
59 	struct mm_struct *mm;
60 };
61 
62 struct userfaultfd_wait_queue {
63 	struct uffd_msg msg;
64 	wait_queue_t wq;
65 	struct userfaultfd_ctx *ctx;
66 };
67 
68 struct userfaultfd_wake_range {
69 	unsigned long start;
70 	unsigned long len;
71 };
72 
userfaultfd_wake_function(wait_queue_t * wq,unsigned mode,int wake_flags,void * key)73 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
74 				     int wake_flags, void *key)
75 {
76 	struct userfaultfd_wake_range *range = key;
77 	int ret;
78 	struct userfaultfd_wait_queue *uwq;
79 	unsigned long start, len;
80 
81 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
82 	ret = 0;
83 	/* len == 0 means wake all */
84 	start = range->start;
85 	len = range->len;
86 	if (len && (start > uwq->msg.arg.pagefault.address ||
87 		    start + len <= uwq->msg.arg.pagefault.address))
88 		goto out;
89 	ret = wake_up_state(wq->private, mode);
90 	if (ret)
91 		/*
92 		 * Wake only once, autoremove behavior.
93 		 *
94 		 * After the effect of list_del_init is visible to the
95 		 * other CPUs, the waitqueue may disappear from under
96 		 * us, see the !list_empty_careful() in
97 		 * handle_userfault(). try_to_wake_up() has an
98 		 * implicit smp_mb__before_spinlock, and the
99 		 * wq->private is read before calling the extern
100 		 * function "wake_up_state" (which in turns calls
101 		 * try_to_wake_up). While the spin_lock;spin_unlock;
102 		 * wouldn't be enough, the smp_mb__before_spinlock is
103 		 * enough to avoid an explicit smp_mb() here.
104 		 */
105 		list_del_init(&wq->task_list);
106 out:
107 	return ret;
108 }
109 
110 /**
111  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
112  * context.
113  * @ctx: [in] Pointer to the userfaultfd context.
114  *
115  * Returns: In case of success, returns not zero.
116  */
userfaultfd_ctx_get(struct userfaultfd_ctx * ctx)117 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
118 {
119 	if (!atomic_inc_not_zero(&ctx->refcount))
120 		BUG();
121 }
122 
123 /**
124  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
125  * context.
126  * @ctx: [in] Pointer to userfaultfd context.
127  *
128  * The userfaultfd context reference must have been previously acquired either
129  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
130  */
userfaultfd_ctx_put(struct userfaultfd_ctx * ctx)131 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
132 {
133 	if (atomic_dec_and_test(&ctx->refcount)) {
134 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
135 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
136 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
137 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
138 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
139 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
140 		mmdrop(ctx->mm);
141 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
142 	}
143 }
144 
msg_init(struct uffd_msg * msg)145 static inline void msg_init(struct uffd_msg *msg)
146 {
147 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
148 	/*
149 	 * Must use memset to zero out the paddings or kernel data is
150 	 * leaked to userland.
151 	 */
152 	memset(msg, 0, sizeof(struct uffd_msg));
153 }
154 
userfault_msg(unsigned long address,unsigned int flags,unsigned long reason)155 static inline struct uffd_msg userfault_msg(unsigned long address,
156 					    unsigned int flags,
157 					    unsigned long reason)
158 {
159 	struct uffd_msg msg;
160 	msg_init(&msg);
161 	msg.event = UFFD_EVENT_PAGEFAULT;
162 	msg.arg.pagefault.address = address;
163 	if (flags & FAULT_FLAG_WRITE)
164 		/*
165 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the
166 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
167 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
168 		 * was a read fault, otherwise if set it means it's
169 		 * a write fault.
170 		 */
171 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
172 	if (reason & VM_UFFD_WP)
173 		/*
174 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
175 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
176 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
177 		 * a missing fault, otherwise if set it means it's a
178 		 * write protect fault.
179 		 */
180 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
181 	return msg;
182 }
183 
184 /*
185  * Verify the pagetables are still not ok after having reigstered into
186  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
187  * userfault that has already been resolved, if userfaultfd_read and
188  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
189  * threads.
190  */
userfaultfd_must_wait(struct userfaultfd_ctx * ctx,unsigned long address,unsigned long flags,unsigned long reason)191 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
192 					 unsigned long address,
193 					 unsigned long flags,
194 					 unsigned long reason)
195 {
196 	struct mm_struct *mm = ctx->mm;
197 	pgd_t *pgd;
198 	pud_t *pud;
199 	pmd_t *pmd, _pmd;
200 	pte_t *pte;
201 	bool ret = true;
202 
203 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
204 
205 	pgd = pgd_offset(mm, address);
206 	if (!pgd_present(*pgd))
207 		goto out;
208 	pud = pud_offset(pgd, address);
209 	if (!pud_present(*pud))
210 		goto out;
211 	pmd = pmd_offset(pud, address);
212 	/*
213 	 * READ_ONCE must function as a barrier with narrower scope
214 	 * and it must be equivalent to:
215 	 *	_pmd = *pmd; barrier();
216 	 *
217 	 * This is to deal with the instability (as in
218 	 * pmd_trans_unstable) of the pmd.
219 	 */
220 	_pmd = READ_ONCE(*pmd);
221 	if (!pmd_present(_pmd))
222 		goto out;
223 
224 	ret = false;
225 	if (pmd_trans_huge(_pmd))
226 		goto out;
227 
228 	/*
229 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
230 	 * and use the standard pte_offset_map() instead of parsing _pmd.
231 	 */
232 	pte = pte_offset_map(pmd, address);
233 	/*
234 	 * Lockless access: we're in a wait_event so it's ok if it
235 	 * changes under us.
236 	 */
237 	if (pte_none(*pte))
238 		ret = true;
239 	pte_unmap(pte);
240 
241 out:
242 	return ret;
243 }
244 
245 /*
246  * The locking rules involved in returning VM_FAULT_RETRY depending on
247  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
248  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
249  * recommendation in __lock_page_or_retry is not an understatement.
250  *
251  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
252  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
253  * not set.
254  *
255  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
256  * set, VM_FAULT_RETRY can still be returned if and only if there are
257  * fatal_signal_pending()s, and the mmap_sem must be released before
258  * returning it.
259  */
handle_userfault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long reason)260 int handle_userfault(struct vm_area_struct *vma, unsigned long address,
261 		     unsigned int flags, unsigned long reason)
262 {
263 	struct mm_struct *mm = vma->vm_mm;
264 	struct userfaultfd_ctx *ctx;
265 	struct userfaultfd_wait_queue uwq;
266 	int ret;
267 	bool must_wait, return_to_userland;
268 
269 	BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
270 
271 	ret = VM_FAULT_SIGBUS;
272 	ctx = vma->vm_userfaultfd_ctx.ctx;
273 	if (!ctx)
274 		goto out;
275 
276 	BUG_ON(ctx->mm != mm);
277 
278 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
279 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
280 
281 	/*
282 	 * If it's already released don't get it. This avoids to loop
283 	 * in __get_user_pages if userfaultfd_release waits on the
284 	 * caller of handle_userfault to release the mmap_sem.
285 	 */
286 	if (unlikely(ACCESS_ONCE(ctx->released)))
287 		goto out;
288 
289 	/*
290 	 * We don't do userfault handling for the final child pid update.
291 	 */
292 	if (current->flags & PF_EXITING)
293 		goto out;
294 
295 	/*
296 	 * Check that we can return VM_FAULT_RETRY.
297 	 *
298 	 * NOTE: it should become possible to return VM_FAULT_RETRY
299 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
300 	 * -EBUSY failures, if the userfaultfd is to be extended for
301 	 * VM_UFFD_WP tracking and we intend to arm the userfault
302 	 * without first stopping userland access to the memory. For
303 	 * VM_UFFD_MISSING userfaults this is enough for now.
304 	 */
305 	if (unlikely(!(flags & FAULT_FLAG_ALLOW_RETRY))) {
306 		/*
307 		 * Validate the invariant that nowait must allow retry
308 		 * to be sure not to return SIGBUS erroneously on
309 		 * nowait invocations.
310 		 */
311 		BUG_ON(flags & FAULT_FLAG_RETRY_NOWAIT);
312 #ifdef CONFIG_DEBUG_VM
313 		if (printk_ratelimit()) {
314 			printk(KERN_WARNING
315 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n", flags);
316 			dump_stack();
317 		}
318 #endif
319 		goto out;
320 	}
321 
322 	/*
323 	 * Handle nowait, not much to do other than tell it to retry
324 	 * and wait.
325 	 */
326 	ret = VM_FAULT_RETRY;
327 	if (flags & FAULT_FLAG_RETRY_NOWAIT)
328 		goto out;
329 
330 	/* take the reference before dropping the mmap_sem */
331 	userfaultfd_ctx_get(ctx);
332 
333 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
334 	uwq.wq.private = current;
335 	uwq.msg = userfault_msg(address, flags, reason);
336 	uwq.ctx = ctx;
337 
338 	return_to_userland = (flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
339 		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
340 
341 	spin_lock(&ctx->fault_pending_wqh.lock);
342 	/*
343 	 * After the __add_wait_queue the uwq is visible to userland
344 	 * through poll/read().
345 	 */
346 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
347 	/*
348 	 * The smp_mb() after __set_current_state prevents the reads
349 	 * following the spin_unlock to happen before the list_add in
350 	 * __add_wait_queue.
351 	 */
352 	set_current_state(return_to_userland ? TASK_INTERRUPTIBLE :
353 			  TASK_KILLABLE);
354 	spin_unlock(&ctx->fault_pending_wqh.lock);
355 
356 	must_wait = userfaultfd_must_wait(ctx, address, flags, reason);
357 	up_read(&mm->mmap_sem);
358 
359 	if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
360 		   (return_to_userland ? !signal_pending(current) :
361 		    !fatal_signal_pending(current)))) {
362 		wake_up_poll(&ctx->fd_wqh, POLLIN);
363 		schedule();
364 		ret |= VM_FAULT_MAJOR;
365 	}
366 
367 	__set_current_state(TASK_RUNNING);
368 
369 	if (return_to_userland) {
370 		if (signal_pending(current) &&
371 		    !fatal_signal_pending(current)) {
372 			/*
373 			 * If we got a SIGSTOP or SIGCONT and this is
374 			 * a normal userland page fault, just let
375 			 * userland return so the signal will be
376 			 * handled and gdb debugging works.  The page
377 			 * fault code immediately after we return from
378 			 * this function is going to release the
379 			 * mmap_sem and it's not depending on it
380 			 * (unlike gup would if we were not to return
381 			 * VM_FAULT_RETRY).
382 			 *
383 			 * If a fatal signal is pending we still take
384 			 * the streamlined VM_FAULT_RETRY failure path
385 			 * and there's no need to retake the mmap_sem
386 			 * in such case.
387 			 */
388 			down_read(&mm->mmap_sem);
389 			ret = VM_FAULT_NOPAGE;
390 		}
391 	}
392 
393 	/*
394 	 * Here we race with the list_del; list_add in
395 	 * userfaultfd_ctx_read(), however because we don't ever run
396 	 * list_del_init() to refile across the two lists, the prev
397 	 * and next pointers will never point to self. list_add also
398 	 * would never let any of the two pointers to point to
399 	 * self. So list_empty_careful won't risk to see both pointers
400 	 * pointing to self at any time during the list refile. The
401 	 * only case where list_del_init() is called is the full
402 	 * removal in the wake function and there we don't re-list_add
403 	 * and it's fine not to block on the spinlock. The uwq on this
404 	 * kernel stack can be released after the list_del_init.
405 	 */
406 	if (!list_empty_careful(&uwq.wq.task_list)) {
407 		spin_lock(&ctx->fault_pending_wqh.lock);
408 		/*
409 		 * No need of list_del_init(), the uwq on the stack
410 		 * will be freed shortly anyway.
411 		 */
412 		list_del(&uwq.wq.task_list);
413 		spin_unlock(&ctx->fault_pending_wqh.lock);
414 	}
415 
416 	/*
417 	 * ctx may go away after this if the userfault pseudo fd is
418 	 * already released.
419 	 */
420 	userfaultfd_ctx_put(ctx);
421 
422 out:
423 	return ret;
424 }
425 
userfaultfd_release(struct inode * inode,struct file * file)426 static int userfaultfd_release(struct inode *inode, struct file *file)
427 {
428 	struct userfaultfd_ctx *ctx = file->private_data;
429 	struct mm_struct *mm = ctx->mm;
430 	struct vm_area_struct *vma, *prev;
431 	/* len == 0 means wake all */
432 	struct userfaultfd_wake_range range = { .len = 0, };
433 	unsigned long new_flags;
434 	bool still_valid;
435 
436 	ACCESS_ONCE(ctx->released) = true;
437 
438 	if (!mmget_not_zero(mm))
439 		goto wakeup;
440 
441 	/*
442 	 * Flush page faults out of all CPUs. NOTE: all page faults
443 	 * must be retried without returning VM_FAULT_SIGBUS if
444 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
445 	 * changes while handle_userfault released the mmap_sem. So
446 	 * it's critical that released is set to true (above), before
447 	 * taking the mmap_sem for writing.
448 	 */
449 	down_write(&mm->mmap_sem);
450 	still_valid = mmget_still_valid(mm);
451 	prev = NULL;
452 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
453 		cond_resched();
454 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
455 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
456 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
457 			prev = vma;
458 			continue;
459 		}
460 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
461 		if (still_valid) {
462 			prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
463 					 new_flags, vma->anon_vma,
464 					 vma->vm_file, vma->vm_pgoff,
465 					 vma_policy(vma),
466 					 NULL_VM_UFFD_CTX,
467 					 vma_get_anon_name(vma));
468 			if (prev)
469 				vma = prev;
470 			else
471 				prev = vma;
472 		}
473 		vma->vm_flags = new_flags;
474 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
475 	}
476 	up_write(&mm->mmap_sem);
477 	mmput(mm);
478 wakeup:
479 	/*
480 	 * After no new page faults can wait on this fault_*wqh, flush
481 	 * the last page faults that may have been already waiting on
482 	 * the fault_*wqh.
483 	 */
484 	spin_lock(&ctx->fault_pending_wqh.lock);
485 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
486 	__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
487 	spin_unlock(&ctx->fault_pending_wqh.lock);
488 
489 	wake_up_poll(&ctx->fd_wqh, POLLHUP);
490 	userfaultfd_ctx_put(ctx);
491 	return 0;
492 }
493 
494 /* fault_pending_wqh.lock must be hold by the caller */
find_userfault(struct userfaultfd_ctx * ctx)495 static inline struct userfaultfd_wait_queue *find_userfault(
496 	struct userfaultfd_ctx *ctx)
497 {
498 	wait_queue_t *wq;
499 	struct userfaultfd_wait_queue *uwq;
500 
501 	VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock));
502 
503 	uwq = NULL;
504 	if (!waitqueue_active(&ctx->fault_pending_wqh))
505 		goto out;
506 	/* walk in reverse to provide FIFO behavior to read userfaults */
507 	wq = list_last_entry(&ctx->fault_pending_wqh.task_list,
508 			     typeof(*wq), task_list);
509 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
510 out:
511 	return uwq;
512 }
513 
userfaultfd_poll(struct file * file,poll_table * wait)514 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
515 {
516 	struct userfaultfd_ctx *ctx = file->private_data;
517 	unsigned int ret;
518 
519 	poll_wait(file, &ctx->fd_wqh, wait);
520 
521 	switch (ctx->state) {
522 	case UFFD_STATE_WAIT_API:
523 		return POLLERR;
524 	case UFFD_STATE_RUNNING:
525 		/*
526 		 * poll() never guarantees that read won't block.
527 		 * userfaults can be waken before they're read().
528 		 */
529 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
530 			return POLLERR;
531 		/*
532 		 * lockless access to see if there are pending faults
533 		 * __pollwait last action is the add_wait_queue but
534 		 * the spin_unlock would allow the waitqueue_active to
535 		 * pass above the actual list_add inside
536 		 * add_wait_queue critical section. So use a full
537 		 * memory barrier to serialize the list_add write of
538 		 * add_wait_queue() with the waitqueue_active read
539 		 * below.
540 		 */
541 		ret = 0;
542 		smp_mb();
543 		if (waitqueue_active(&ctx->fault_pending_wqh))
544 			ret = POLLIN;
545 		return ret;
546 	default:
547 		BUG();
548 	}
549 }
550 
userfaultfd_ctx_read(struct userfaultfd_ctx * ctx,int no_wait,struct uffd_msg * msg)551 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
552 				    struct uffd_msg *msg)
553 {
554 	ssize_t ret;
555 	DECLARE_WAITQUEUE(wait, current);
556 	struct userfaultfd_wait_queue *uwq;
557 
558 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
559 	spin_lock(&ctx->fd_wqh.lock);
560 	__add_wait_queue(&ctx->fd_wqh, &wait);
561 	for (;;) {
562 		set_current_state(TASK_INTERRUPTIBLE);
563 		spin_lock(&ctx->fault_pending_wqh.lock);
564 		uwq = find_userfault(ctx);
565 		if (uwq) {
566 			/*
567 			 * Use a seqcount to repeat the lockless check
568 			 * in wake_userfault() to avoid missing
569 			 * wakeups because during the refile both
570 			 * waitqueue could become empty if this is the
571 			 * only userfault.
572 			 */
573 			write_seqcount_begin(&ctx->refile_seq);
574 
575 			/*
576 			 * The fault_pending_wqh.lock prevents the uwq
577 			 * to disappear from under us.
578 			 *
579 			 * Refile this userfault from
580 			 * fault_pending_wqh to fault_wqh, it's not
581 			 * pending anymore after we read it.
582 			 *
583 			 * Use list_del() by hand (as
584 			 * userfaultfd_wake_function also uses
585 			 * list_del_init() by hand) to be sure nobody
586 			 * changes __remove_wait_queue() to use
587 			 * list_del_init() in turn breaking the
588 			 * !list_empty_careful() check in
589 			 * handle_userfault(). The uwq->wq.task_list
590 			 * must never be empty at any time during the
591 			 * refile, or the waitqueue could disappear
592 			 * from under us. The "wait_queue_head_t"
593 			 * parameter of __remove_wait_queue() is unused
594 			 * anyway.
595 			 */
596 			list_del(&uwq->wq.task_list);
597 			__add_wait_queue(&ctx->fault_wqh, &uwq->wq);
598 
599 			write_seqcount_end(&ctx->refile_seq);
600 
601 			/* careful to always initialize msg if ret == 0 */
602 			*msg = uwq->msg;
603 			spin_unlock(&ctx->fault_pending_wqh.lock);
604 			ret = 0;
605 			break;
606 		}
607 		spin_unlock(&ctx->fault_pending_wqh.lock);
608 		if (signal_pending(current)) {
609 			ret = -ERESTARTSYS;
610 			break;
611 		}
612 		if (no_wait) {
613 			ret = -EAGAIN;
614 			break;
615 		}
616 		spin_unlock(&ctx->fd_wqh.lock);
617 		schedule();
618 		spin_lock(&ctx->fd_wqh.lock);
619 	}
620 	__remove_wait_queue(&ctx->fd_wqh, &wait);
621 	__set_current_state(TASK_RUNNING);
622 	spin_unlock(&ctx->fd_wqh.lock);
623 
624 	return ret;
625 }
626 
userfaultfd_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)627 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
628 				size_t count, loff_t *ppos)
629 {
630 	struct userfaultfd_ctx *ctx = file->private_data;
631 	ssize_t _ret, ret = 0;
632 	struct uffd_msg msg;
633 	int no_wait = file->f_flags & O_NONBLOCK;
634 
635 	if (ctx->state == UFFD_STATE_WAIT_API)
636 		return -EINVAL;
637 
638 	for (;;) {
639 		if (count < sizeof(msg))
640 			return ret ? ret : -EINVAL;
641 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
642 		if (_ret < 0)
643 			return ret ? ret : _ret;
644 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
645 			return ret ? ret : -EFAULT;
646 		ret += sizeof(msg);
647 		buf += sizeof(msg);
648 		count -= sizeof(msg);
649 		/*
650 		 * Allow to read more than one fault at time but only
651 		 * block if waiting for the very first one.
652 		 */
653 		no_wait = O_NONBLOCK;
654 	}
655 }
656 
__wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)657 static void __wake_userfault(struct userfaultfd_ctx *ctx,
658 			     struct userfaultfd_wake_range *range)
659 {
660 	unsigned long start, end;
661 
662 	start = range->start;
663 	end = range->start + range->len;
664 
665 	spin_lock(&ctx->fault_pending_wqh.lock);
666 	/* wake all in the range and autoremove */
667 	if (waitqueue_active(&ctx->fault_pending_wqh))
668 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
669 				     range);
670 	if (waitqueue_active(&ctx->fault_wqh))
671 		__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
672 	spin_unlock(&ctx->fault_pending_wqh.lock);
673 }
674 
wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)675 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
676 					   struct userfaultfd_wake_range *range)
677 {
678 	unsigned seq;
679 	bool need_wakeup;
680 
681 	/*
682 	 * To be sure waitqueue_active() is not reordered by the CPU
683 	 * before the pagetable update, use an explicit SMP memory
684 	 * barrier here. PT lock release or up_read(mmap_sem) still
685 	 * have release semantics that can allow the
686 	 * waitqueue_active() to be reordered before the pte update.
687 	 */
688 	smp_mb();
689 
690 	/*
691 	 * Use waitqueue_active because it's very frequent to
692 	 * change the address space atomically even if there are no
693 	 * userfaults yet. So we take the spinlock only when we're
694 	 * sure we've userfaults to wake.
695 	 */
696 	do {
697 		seq = read_seqcount_begin(&ctx->refile_seq);
698 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
699 			waitqueue_active(&ctx->fault_wqh);
700 		cond_resched();
701 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
702 	if (need_wakeup)
703 		__wake_userfault(ctx, range);
704 }
705 
validate_range(struct mm_struct * mm,__u64 start,__u64 len)706 static __always_inline int validate_range(struct mm_struct *mm,
707 					  __u64 start, __u64 len)
708 {
709 	__u64 task_size = mm->task_size;
710 
711 	if (start & ~PAGE_MASK)
712 		return -EINVAL;
713 	if (len & ~PAGE_MASK)
714 		return -EINVAL;
715 	if (!len)
716 		return -EINVAL;
717 	if (start < mmap_min_addr)
718 		return -EINVAL;
719 	if (start >= task_size)
720 		return -EINVAL;
721 	if (len > task_size - start)
722 		return -EINVAL;
723 	return 0;
724 }
725 
userfaultfd_register(struct userfaultfd_ctx * ctx,unsigned long arg)726 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
727 				unsigned long arg)
728 {
729 	struct mm_struct *mm = ctx->mm;
730 	struct vm_area_struct *vma, *prev, *cur;
731 	int ret;
732 	struct uffdio_register uffdio_register;
733 	struct uffdio_register __user *user_uffdio_register;
734 	unsigned long vm_flags, new_flags;
735 	bool found;
736 	unsigned long start, end, vma_end;
737 
738 	user_uffdio_register = (struct uffdio_register __user *) arg;
739 
740 	ret = -EFAULT;
741 	if (copy_from_user(&uffdio_register, user_uffdio_register,
742 			   sizeof(uffdio_register)-sizeof(__u64)))
743 		goto out;
744 
745 	ret = -EINVAL;
746 	if (!uffdio_register.mode)
747 		goto out;
748 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
749 				     UFFDIO_REGISTER_MODE_WP))
750 		goto out;
751 	vm_flags = 0;
752 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
753 		vm_flags |= VM_UFFD_MISSING;
754 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
755 		vm_flags |= VM_UFFD_WP;
756 		/*
757 		 * FIXME: remove the below error constraint by
758 		 * implementing the wprotect tracking mode.
759 		 */
760 		ret = -EINVAL;
761 		goto out;
762 	}
763 
764 	ret = validate_range(mm, uffdio_register.range.start,
765 			     uffdio_register.range.len);
766 	if (ret)
767 		goto out;
768 
769 	start = uffdio_register.range.start;
770 	end = start + uffdio_register.range.len;
771 
772 	ret = -ENOMEM;
773 	if (!mmget_not_zero(mm))
774 		goto out;
775 
776 	down_write(&mm->mmap_sem);
777 	if (!mmget_still_valid(mm))
778 		goto out_unlock;
779 	vma = find_vma_prev(mm, start, &prev);
780 	if (!vma)
781 		goto out_unlock;
782 
783 	/* check that there's at least one vma in the range */
784 	ret = -EINVAL;
785 	if (vma->vm_start >= end)
786 		goto out_unlock;
787 
788 	/*
789 	 * Search for not compatible vmas.
790 	 *
791 	 * FIXME: this shall be relaxed later so that it doesn't fail
792 	 * on tmpfs backed vmas (in addition to the current allowance
793 	 * on anonymous vmas).
794 	 */
795 	found = false;
796 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
797 		cond_resched();
798 
799 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
800 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
801 
802 		/* check not compatible vmas */
803 		ret = -EINVAL;
804 		if (cur->vm_ops)
805 			goto out_unlock;
806 
807 		/*
808 		 * Check that this vma isn't already owned by a
809 		 * different userfaultfd. We can't allow more than one
810 		 * userfaultfd to own a single vma simultaneously or we
811 		 * wouldn't know which one to deliver the userfaults to.
812 		 */
813 		ret = -EBUSY;
814 		if (cur->vm_userfaultfd_ctx.ctx &&
815 		    cur->vm_userfaultfd_ctx.ctx != ctx)
816 			goto out_unlock;
817 
818 		found = true;
819 	}
820 	BUG_ON(!found);
821 
822 	if (vma->vm_start < start)
823 		prev = vma;
824 
825 	ret = 0;
826 	do {
827 		cond_resched();
828 
829 		BUG_ON(vma->vm_ops);
830 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
831 		       vma->vm_userfaultfd_ctx.ctx != ctx);
832 
833 		/*
834 		 * Nothing to do: this vma is already registered into this
835 		 * userfaultfd and with the right tracking mode too.
836 		 */
837 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
838 		    (vma->vm_flags & vm_flags) == vm_flags)
839 			goto skip;
840 
841 		if (vma->vm_start > start)
842 			start = vma->vm_start;
843 		vma_end = min(end, vma->vm_end);
844 
845 		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
846 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
847 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
848 				 vma_policy(vma),
849 				 ((struct vm_userfaultfd_ctx){ ctx }),
850 				 vma_get_anon_name(vma));
851 		if (prev) {
852 			vma = prev;
853 			goto next;
854 		}
855 		if (vma->vm_start < start) {
856 			ret = split_vma(mm, vma, start, 1);
857 			if (ret)
858 				break;
859 		}
860 		if (vma->vm_end > end) {
861 			ret = split_vma(mm, vma, end, 0);
862 			if (ret)
863 				break;
864 		}
865 	next:
866 		/*
867 		 * In the vma_merge() successful mprotect-like case 8:
868 		 * the next vma was merged into the current one and
869 		 * the current one has not been updated yet.
870 		 */
871 		vma->vm_flags = new_flags;
872 		vma->vm_userfaultfd_ctx.ctx = ctx;
873 
874 	skip:
875 		prev = vma;
876 		start = vma->vm_end;
877 		vma = vma->vm_next;
878 	} while (vma && vma->vm_start < end);
879 out_unlock:
880 	up_write(&mm->mmap_sem);
881 	mmput(mm);
882 	if (!ret) {
883 		/*
884 		 * Now that we scanned all vmas we can already tell
885 		 * userland which ioctls methods are guaranteed to
886 		 * succeed on this range.
887 		 */
888 		if (put_user(UFFD_API_RANGE_IOCTLS,
889 			     &user_uffdio_register->ioctls))
890 			ret = -EFAULT;
891 	}
892 out:
893 	return ret;
894 }
895 
userfaultfd_unregister(struct userfaultfd_ctx * ctx,unsigned long arg)896 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
897 				  unsigned long arg)
898 {
899 	struct mm_struct *mm = ctx->mm;
900 	struct vm_area_struct *vma, *prev, *cur;
901 	int ret;
902 	struct uffdio_range uffdio_unregister;
903 	unsigned long new_flags;
904 	bool found;
905 	unsigned long start, end, vma_end;
906 	const void __user *buf = (void __user *)arg;
907 
908 	ret = -EFAULT;
909 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
910 		goto out;
911 
912 	ret = validate_range(mm, uffdio_unregister.start,
913 			     uffdio_unregister.len);
914 	if (ret)
915 		goto out;
916 
917 	start = uffdio_unregister.start;
918 	end = start + uffdio_unregister.len;
919 
920 	ret = -ENOMEM;
921 	if (!mmget_not_zero(mm))
922 		goto out;
923 
924 	down_write(&mm->mmap_sem);
925 	if (!mmget_still_valid(mm))
926 		goto out_unlock;
927 	vma = find_vma_prev(mm, start, &prev);
928 	if (!vma)
929 		goto out_unlock;
930 
931 	/* check that there's at least one vma in the range */
932 	ret = -EINVAL;
933 	if (vma->vm_start >= end)
934 		goto out_unlock;
935 
936 	/*
937 	 * Search for not compatible vmas.
938 	 *
939 	 * FIXME: this shall be relaxed later so that it doesn't fail
940 	 * on tmpfs backed vmas (in addition to the current allowance
941 	 * on anonymous vmas).
942 	 */
943 	found = false;
944 	ret = -EINVAL;
945 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
946 		cond_resched();
947 
948 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
949 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
950 
951 		/*
952 		 * Check not compatible vmas, not strictly required
953 		 * here as not compatible vmas cannot have an
954 		 * userfaultfd_ctx registered on them, but this
955 		 * provides for more strict behavior to notice
956 		 * unregistration errors.
957 		 */
958 		if (cur->vm_ops)
959 			goto out_unlock;
960 
961 		found = true;
962 	}
963 	BUG_ON(!found);
964 
965 	if (vma->vm_start < start)
966 		prev = vma;
967 
968 	ret = 0;
969 	do {
970 		cond_resched();
971 
972 		BUG_ON(vma->vm_ops);
973 
974 		/*
975 		 * Nothing to do: this vma is already registered into this
976 		 * userfaultfd and with the right tracking mode too.
977 		 */
978 		if (!vma->vm_userfaultfd_ctx.ctx)
979 			goto skip;
980 
981 		if (vma->vm_start > start)
982 			start = vma->vm_start;
983 		vma_end = min(end, vma->vm_end);
984 
985 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
986 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
987 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
988 				 vma_policy(vma),
989 				 NULL_VM_UFFD_CTX,
990 				 vma_get_anon_name(vma));
991 		if (prev) {
992 			vma = prev;
993 			goto next;
994 		}
995 		if (vma->vm_start < start) {
996 			ret = split_vma(mm, vma, start, 1);
997 			if (ret)
998 				break;
999 		}
1000 		if (vma->vm_end > end) {
1001 			ret = split_vma(mm, vma, end, 0);
1002 			if (ret)
1003 				break;
1004 		}
1005 	next:
1006 		/*
1007 		 * In the vma_merge() successful mprotect-like case 8:
1008 		 * the next vma was merged into the current one and
1009 		 * the current one has not been updated yet.
1010 		 */
1011 		vma->vm_flags = new_flags;
1012 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1013 
1014 	skip:
1015 		prev = vma;
1016 		start = vma->vm_end;
1017 		vma = vma->vm_next;
1018 	} while (vma && vma->vm_start < end);
1019 out_unlock:
1020 	up_write(&mm->mmap_sem);
1021 	mmput(mm);
1022 out:
1023 	return ret;
1024 }
1025 
1026 /*
1027  * userfaultfd_wake may be used in combination with the
1028  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1029  */
userfaultfd_wake(struct userfaultfd_ctx * ctx,unsigned long arg)1030 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1031 			    unsigned long arg)
1032 {
1033 	int ret;
1034 	struct uffdio_range uffdio_wake;
1035 	struct userfaultfd_wake_range range;
1036 	const void __user *buf = (void __user *)arg;
1037 
1038 	ret = -EFAULT;
1039 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1040 		goto out;
1041 
1042 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1043 	if (ret)
1044 		goto out;
1045 
1046 	range.start = uffdio_wake.start;
1047 	range.len = uffdio_wake.len;
1048 
1049 	/*
1050 	 * len == 0 means wake all and we don't want to wake all here,
1051 	 * so check it again to be sure.
1052 	 */
1053 	VM_BUG_ON(!range.len);
1054 
1055 	wake_userfault(ctx, &range);
1056 	ret = 0;
1057 
1058 out:
1059 	return ret;
1060 }
1061 
userfaultfd_copy(struct userfaultfd_ctx * ctx,unsigned long arg)1062 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1063 			    unsigned long arg)
1064 {
1065 	__s64 ret;
1066 	struct uffdio_copy uffdio_copy;
1067 	struct uffdio_copy __user *user_uffdio_copy;
1068 	struct userfaultfd_wake_range range;
1069 
1070 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1071 
1072 	ret = -EFAULT;
1073 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1074 			   /* don't copy "copy" last field */
1075 			   sizeof(uffdio_copy)-sizeof(__s64)))
1076 		goto out;
1077 
1078 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1079 	if (ret)
1080 		goto out;
1081 	/*
1082 	 * double check for wraparound just in case. copy_from_user()
1083 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1084 	 * in the userland range.
1085 	 */
1086 	ret = -EINVAL;
1087 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1088 		goto out;
1089 	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1090 		goto out;
1091 	if (mmget_not_zero(ctx->mm)) {
1092 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1093 				   uffdio_copy.len);
1094 		mmput(ctx->mm);
1095 	}
1096 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1097 		return -EFAULT;
1098 	if (ret < 0)
1099 		goto out;
1100 	BUG_ON(!ret);
1101 	/* len == 0 would wake all */
1102 	range.len = ret;
1103 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1104 		range.start = uffdio_copy.dst;
1105 		wake_userfault(ctx, &range);
1106 	}
1107 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1108 out:
1109 	return ret;
1110 }
1111 
userfaultfd_zeropage(struct userfaultfd_ctx * ctx,unsigned long arg)1112 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1113 				unsigned long arg)
1114 {
1115 	__s64 ret;
1116 	struct uffdio_zeropage uffdio_zeropage;
1117 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1118 	struct userfaultfd_wake_range range;
1119 
1120 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1121 
1122 	ret = -EFAULT;
1123 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1124 			   /* don't copy "zeropage" last field */
1125 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1126 		goto out;
1127 
1128 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1129 			     uffdio_zeropage.range.len);
1130 	if (ret)
1131 		goto out;
1132 	ret = -EINVAL;
1133 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1134 		goto out;
1135 
1136 	if (mmget_not_zero(ctx->mm)) {
1137 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1138 				     uffdio_zeropage.range.len);
1139 		mmput(ctx->mm);
1140 	}
1141 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1142 		return -EFAULT;
1143 	if (ret < 0)
1144 		goto out;
1145 	/* len == 0 would wake all */
1146 	BUG_ON(!ret);
1147 	range.len = ret;
1148 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1149 		range.start = uffdio_zeropage.range.start;
1150 		wake_userfault(ctx, &range);
1151 	}
1152 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1153 out:
1154 	return ret;
1155 }
1156 
1157 /*
1158  * userland asks for a certain API version and we return which bits
1159  * and ioctl commands are implemented in this kernel for such API
1160  * version or -EINVAL if unknown.
1161  */
userfaultfd_api(struct userfaultfd_ctx * ctx,unsigned long arg)1162 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1163 			   unsigned long arg)
1164 {
1165 	struct uffdio_api uffdio_api;
1166 	void __user *buf = (void __user *)arg;
1167 	int ret;
1168 
1169 	ret = -EINVAL;
1170 	if (ctx->state != UFFD_STATE_WAIT_API)
1171 		goto out;
1172 	ret = -EFAULT;
1173 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1174 		goto out;
1175 	if (uffdio_api.api != UFFD_API || uffdio_api.features) {
1176 		memset(&uffdio_api, 0, sizeof(uffdio_api));
1177 		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1178 			goto out;
1179 		ret = -EINVAL;
1180 		goto out;
1181 	}
1182 	uffdio_api.features = UFFD_API_FEATURES;
1183 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1184 	ret = -EFAULT;
1185 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1186 		goto out;
1187 	ctx->state = UFFD_STATE_RUNNING;
1188 	ret = 0;
1189 out:
1190 	return ret;
1191 }
1192 
userfaultfd_ioctl(struct file * file,unsigned cmd,unsigned long arg)1193 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1194 			      unsigned long arg)
1195 {
1196 	int ret = -EINVAL;
1197 	struct userfaultfd_ctx *ctx = file->private_data;
1198 
1199 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1200 		return -EINVAL;
1201 
1202 	switch(cmd) {
1203 	case UFFDIO_API:
1204 		ret = userfaultfd_api(ctx, arg);
1205 		break;
1206 	case UFFDIO_REGISTER:
1207 		ret = userfaultfd_register(ctx, arg);
1208 		break;
1209 	case UFFDIO_UNREGISTER:
1210 		ret = userfaultfd_unregister(ctx, arg);
1211 		break;
1212 	case UFFDIO_WAKE:
1213 		ret = userfaultfd_wake(ctx, arg);
1214 		break;
1215 	case UFFDIO_COPY:
1216 		ret = userfaultfd_copy(ctx, arg);
1217 		break;
1218 	case UFFDIO_ZEROPAGE:
1219 		ret = userfaultfd_zeropage(ctx, arg);
1220 		break;
1221 	}
1222 	return ret;
1223 }
1224 
1225 #ifdef CONFIG_PROC_FS
userfaultfd_show_fdinfo(struct seq_file * m,struct file * f)1226 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1227 {
1228 	struct userfaultfd_ctx *ctx = f->private_data;
1229 	wait_queue_t *wq;
1230 	struct userfaultfd_wait_queue *uwq;
1231 	unsigned long pending = 0, total = 0;
1232 
1233 	spin_lock(&ctx->fault_pending_wqh.lock);
1234 	list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1235 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1236 		pending++;
1237 		total++;
1238 	}
1239 	list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1240 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1241 		total++;
1242 	}
1243 	spin_unlock(&ctx->fault_pending_wqh.lock);
1244 
1245 	/*
1246 	 * If more protocols will be added, there will be all shown
1247 	 * separated by a space. Like this:
1248 	 *	protocols: aa:... bb:...
1249 	 */
1250 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1251 		   pending, total, UFFD_API, UFFD_API_FEATURES,
1252 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1253 }
1254 #endif
1255 
1256 static const struct file_operations userfaultfd_fops = {
1257 #ifdef CONFIG_PROC_FS
1258 	.show_fdinfo	= userfaultfd_show_fdinfo,
1259 #endif
1260 	.release	= userfaultfd_release,
1261 	.poll		= userfaultfd_poll,
1262 	.read		= userfaultfd_read,
1263 	.unlocked_ioctl = userfaultfd_ioctl,
1264 	.compat_ioctl	= userfaultfd_ioctl,
1265 	.llseek		= noop_llseek,
1266 };
1267 
init_once_userfaultfd_ctx(void * mem)1268 static void init_once_userfaultfd_ctx(void *mem)
1269 {
1270 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1271 
1272 	init_waitqueue_head(&ctx->fault_pending_wqh);
1273 	init_waitqueue_head(&ctx->fault_wqh);
1274 	init_waitqueue_head(&ctx->fd_wqh);
1275 	seqcount_init(&ctx->refile_seq);
1276 }
1277 
1278 /**
1279  * userfaultfd_file_create - Creates an userfaultfd file pointer.
1280  * @flags: Flags for the userfaultfd file.
1281  *
1282  * This function creates an userfaultfd file pointer, w/out installing
1283  * it into the fd table. This is useful when the userfaultfd file is
1284  * used during the initialization of data structures that require
1285  * extra setup after the userfaultfd creation. So the userfaultfd
1286  * creation is split into the file pointer creation phase, and the
1287  * file descriptor installation phase.  In this way races with
1288  * userspace closing the newly installed file descriptor can be
1289  * avoided.  Returns an userfaultfd file pointer, or a proper error
1290  * pointer.
1291  */
userfaultfd_file_create(int flags)1292 static struct file *userfaultfd_file_create(int flags)
1293 {
1294 	struct file *file;
1295 	struct userfaultfd_ctx *ctx;
1296 
1297 	BUG_ON(!current->mm);
1298 
1299 	/* Check the UFFD_* constants for consistency.  */
1300 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1301 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1302 
1303 	file = ERR_PTR(-EINVAL);
1304 	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1305 		goto out;
1306 
1307 	file = ERR_PTR(-ENOMEM);
1308 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1309 	if (!ctx)
1310 		goto out;
1311 
1312 	atomic_set(&ctx->refcount, 1);
1313 	ctx->flags = flags;
1314 	ctx->state = UFFD_STATE_WAIT_API;
1315 	ctx->released = false;
1316 	ctx->mm = current->mm;
1317 	/* prevent the mm struct to be freed */
1318 	atomic_inc(&ctx->mm->mm_count);
1319 
1320 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1321 				  O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1322 	if (IS_ERR(file)) {
1323 		mmdrop(ctx->mm);
1324 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1325 	}
1326 out:
1327 	return file;
1328 }
1329 
SYSCALL_DEFINE1(userfaultfd,int,flags)1330 SYSCALL_DEFINE1(userfaultfd, int, flags)
1331 {
1332 	int fd, error;
1333 	struct file *file;
1334 
1335 	error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1336 	if (error < 0)
1337 		return error;
1338 	fd = error;
1339 
1340 	file = userfaultfd_file_create(flags);
1341 	if (IS_ERR(file)) {
1342 		error = PTR_ERR(file);
1343 		goto err_put_unused_fd;
1344 	}
1345 	fd_install(fd, file);
1346 
1347 	return fd;
1348 
1349 err_put_unused_fd:
1350 	put_unused_fd(fd);
1351 
1352 	return error;
1353 }
1354 
userfaultfd_init(void)1355 static int __init userfaultfd_init(void)
1356 {
1357 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1358 						sizeof(struct userfaultfd_ctx),
1359 						0,
1360 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1361 						init_once_userfaultfd_ctx);
1362 	return 0;
1363 }
1364 __initcall(userfaultfd_init);
1365