1 /*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
15 #include <linux/hashtable.h>
16 #include <linux/sched.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29
30 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
31
32 enum userfaultfd_state {
33 UFFD_STATE_WAIT_API,
34 UFFD_STATE_RUNNING,
35 };
36
37 /*
38 * Start with fault_pending_wqh and fault_wqh so they're more likely
39 * to be in the same cacheline.
40 */
41 struct userfaultfd_ctx {
42 /* waitqueue head for the pending (i.e. not read) userfaults */
43 wait_queue_head_t fault_pending_wqh;
44 /* waitqueue head for the userfaults */
45 wait_queue_head_t fault_wqh;
46 /* waitqueue head for the pseudo fd to wakeup poll/read */
47 wait_queue_head_t fd_wqh;
48 /* a refile sequence protected by fault_pending_wqh lock */
49 struct seqcount refile_seq;
50 /* pseudo fd refcounting */
51 atomic_t refcount;
52 /* userfaultfd syscall flags */
53 unsigned int flags;
54 /* state machine */
55 enum userfaultfd_state state;
56 /* released */
57 bool released;
58 /* mm with one ore more vmas attached to this userfaultfd_ctx */
59 struct mm_struct *mm;
60 };
61
62 struct userfaultfd_wait_queue {
63 struct uffd_msg msg;
64 wait_queue_t wq;
65 struct userfaultfd_ctx *ctx;
66 };
67
68 struct userfaultfd_wake_range {
69 unsigned long start;
70 unsigned long len;
71 };
72
userfaultfd_wake_function(wait_queue_t * wq,unsigned mode,int wake_flags,void * key)73 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
74 int wake_flags, void *key)
75 {
76 struct userfaultfd_wake_range *range = key;
77 int ret;
78 struct userfaultfd_wait_queue *uwq;
79 unsigned long start, len;
80
81 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
82 ret = 0;
83 /* len == 0 means wake all */
84 start = range->start;
85 len = range->len;
86 if (len && (start > uwq->msg.arg.pagefault.address ||
87 start + len <= uwq->msg.arg.pagefault.address))
88 goto out;
89 ret = wake_up_state(wq->private, mode);
90 if (ret)
91 /*
92 * Wake only once, autoremove behavior.
93 *
94 * After the effect of list_del_init is visible to the
95 * other CPUs, the waitqueue may disappear from under
96 * us, see the !list_empty_careful() in
97 * handle_userfault(). try_to_wake_up() has an
98 * implicit smp_mb__before_spinlock, and the
99 * wq->private is read before calling the extern
100 * function "wake_up_state" (which in turns calls
101 * try_to_wake_up). While the spin_lock;spin_unlock;
102 * wouldn't be enough, the smp_mb__before_spinlock is
103 * enough to avoid an explicit smp_mb() here.
104 */
105 list_del_init(&wq->task_list);
106 out:
107 return ret;
108 }
109
110 /**
111 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
112 * context.
113 * @ctx: [in] Pointer to the userfaultfd context.
114 *
115 * Returns: In case of success, returns not zero.
116 */
userfaultfd_ctx_get(struct userfaultfd_ctx * ctx)117 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
118 {
119 if (!atomic_inc_not_zero(&ctx->refcount))
120 BUG();
121 }
122
123 /**
124 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
125 * context.
126 * @ctx: [in] Pointer to userfaultfd context.
127 *
128 * The userfaultfd context reference must have been previously acquired either
129 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
130 */
userfaultfd_ctx_put(struct userfaultfd_ctx * ctx)131 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
132 {
133 if (atomic_dec_and_test(&ctx->refcount)) {
134 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
135 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
136 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
137 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
138 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
139 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
140 mmdrop(ctx->mm);
141 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
142 }
143 }
144
msg_init(struct uffd_msg * msg)145 static inline void msg_init(struct uffd_msg *msg)
146 {
147 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
148 /*
149 * Must use memset to zero out the paddings or kernel data is
150 * leaked to userland.
151 */
152 memset(msg, 0, sizeof(struct uffd_msg));
153 }
154
userfault_msg(unsigned long address,unsigned int flags,unsigned long reason)155 static inline struct uffd_msg userfault_msg(unsigned long address,
156 unsigned int flags,
157 unsigned long reason)
158 {
159 struct uffd_msg msg;
160 msg_init(&msg);
161 msg.event = UFFD_EVENT_PAGEFAULT;
162 msg.arg.pagefault.address = address;
163 if (flags & FAULT_FLAG_WRITE)
164 /*
165 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the
166 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
167 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
168 * was a read fault, otherwise if set it means it's
169 * a write fault.
170 */
171 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
172 if (reason & VM_UFFD_WP)
173 /*
174 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
175 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
176 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
177 * a missing fault, otherwise if set it means it's a
178 * write protect fault.
179 */
180 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
181 return msg;
182 }
183
184 /*
185 * Verify the pagetables are still not ok after having reigstered into
186 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
187 * userfault that has already been resolved, if userfaultfd_read and
188 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
189 * threads.
190 */
userfaultfd_must_wait(struct userfaultfd_ctx * ctx,unsigned long address,unsigned long flags,unsigned long reason)191 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
192 unsigned long address,
193 unsigned long flags,
194 unsigned long reason)
195 {
196 struct mm_struct *mm = ctx->mm;
197 pgd_t *pgd;
198 pud_t *pud;
199 pmd_t *pmd, _pmd;
200 pte_t *pte;
201 bool ret = true;
202
203 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
204
205 pgd = pgd_offset(mm, address);
206 if (!pgd_present(*pgd))
207 goto out;
208 pud = pud_offset(pgd, address);
209 if (!pud_present(*pud))
210 goto out;
211 pmd = pmd_offset(pud, address);
212 /*
213 * READ_ONCE must function as a barrier with narrower scope
214 * and it must be equivalent to:
215 * _pmd = *pmd; barrier();
216 *
217 * This is to deal with the instability (as in
218 * pmd_trans_unstable) of the pmd.
219 */
220 _pmd = READ_ONCE(*pmd);
221 if (!pmd_present(_pmd))
222 goto out;
223
224 ret = false;
225 if (pmd_trans_huge(_pmd))
226 goto out;
227
228 /*
229 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
230 * and use the standard pte_offset_map() instead of parsing _pmd.
231 */
232 pte = pte_offset_map(pmd, address);
233 /*
234 * Lockless access: we're in a wait_event so it's ok if it
235 * changes under us.
236 */
237 if (pte_none(*pte))
238 ret = true;
239 pte_unmap(pte);
240
241 out:
242 return ret;
243 }
244
245 /*
246 * The locking rules involved in returning VM_FAULT_RETRY depending on
247 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
248 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
249 * recommendation in __lock_page_or_retry is not an understatement.
250 *
251 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
252 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
253 * not set.
254 *
255 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
256 * set, VM_FAULT_RETRY can still be returned if and only if there are
257 * fatal_signal_pending()s, and the mmap_sem must be released before
258 * returning it.
259 */
handle_userfault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long reason)260 int handle_userfault(struct vm_area_struct *vma, unsigned long address,
261 unsigned int flags, unsigned long reason)
262 {
263 struct mm_struct *mm = vma->vm_mm;
264 struct userfaultfd_ctx *ctx;
265 struct userfaultfd_wait_queue uwq;
266 int ret;
267 bool must_wait, return_to_userland;
268
269 BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
270
271 ret = VM_FAULT_SIGBUS;
272 ctx = vma->vm_userfaultfd_ctx.ctx;
273 if (!ctx)
274 goto out;
275
276 BUG_ON(ctx->mm != mm);
277
278 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
279 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
280
281 /*
282 * If it's already released don't get it. This avoids to loop
283 * in __get_user_pages if userfaultfd_release waits on the
284 * caller of handle_userfault to release the mmap_sem.
285 */
286 if (unlikely(ACCESS_ONCE(ctx->released)))
287 goto out;
288
289 /*
290 * We don't do userfault handling for the final child pid update.
291 */
292 if (current->flags & PF_EXITING)
293 goto out;
294
295 /*
296 * Check that we can return VM_FAULT_RETRY.
297 *
298 * NOTE: it should become possible to return VM_FAULT_RETRY
299 * even if FAULT_FLAG_TRIED is set without leading to gup()
300 * -EBUSY failures, if the userfaultfd is to be extended for
301 * VM_UFFD_WP tracking and we intend to arm the userfault
302 * without first stopping userland access to the memory. For
303 * VM_UFFD_MISSING userfaults this is enough for now.
304 */
305 if (unlikely(!(flags & FAULT_FLAG_ALLOW_RETRY))) {
306 /*
307 * Validate the invariant that nowait must allow retry
308 * to be sure not to return SIGBUS erroneously on
309 * nowait invocations.
310 */
311 BUG_ON(flags & FAULT_FLAG_RETRY_NOWAIT);
312 #ifdef CONFIG_DEBUG_VM
313 if (printk_ratelimit()) {
314 printk(KERN_WARNING
315 "FAULT_FLAG_ALLOW_RETRY missing %x\n", flags);
316 dump_stack();
317 }
318 #endif
319 goto out;
320 }
321
322 /*
323 * Handle nowait, not much to do other than tell it to retry
324 * and wait.
325 */
326 ret = VM_FAULT_RETRY;
327 if (flags & FAULT_FLAG_RETRY_NOWAIT)
328 goto out;
329
330 /* take the reference before dropping the mmap_sem */
331 userfaultfd_ctx_get(ctx);
332
333 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
334 uwq.wq.private = current;
335 uwq.msg = userfault_msg(address, flags, reason);
336 uwq.ctx = ctx;
337
338 return_to_userland = (flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
339 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
340
341 spin_lock(&ctx->fault_pending_wqh.lock);
342 /*
343 * After the __add_wait_queue the uwq is visible to userland
344 * through poll/read().
345 */
346 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
347 /*
348 * The smp_mb() after __set_current_state prevents the reads
349 * following the spin_unlock to happen before the list_add in
350 * __add_wait_queue.
351 */
352 set_current_state(return_to_userland ? TASK_INTERRUPTIBLE :
353 TASK_KILLABLE);
354 spin_unlock(&ctx->fault_pending_wqh.lock);
355
356 must_wait = userfaultfd_must_wait(ctx, address, flags, reason);
357 up_read(&mm->mmap_sem);
358
359 if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
360 (return_to_userland ? !signal_pending(current) :
361 !fatal_signal_pending(current)))) {
362 wake_up_poll(&ctx->fd_wqh, POLLIN);
363 schedule();
364 ret |= VM_FAULT_MAJOR;
365 }
366
367 __set_current_state(TASK_RUNNING);
368
369 if (return_to_userland) {
370 if (signal_pending(current) &&
371 !fatal_signal_pending(current)) {
372 /*
373 * If we got a SIGSTOP or SIGCONT and this is
374 * a normal userland page fault, just let
375 * userland return so the signal will be
376 * handled and gdb debugging works. The page
377 * fault code immediately after we return from
378 * this function is going to release the
379 * mmap_sem and it's not depending on it
380 * (unlike gup would if we were not to return
381 * VM_FAULT_RETRY).
382 *
383 * If a fatal signal is pending we still take
384 * the streamlined VM_FAULT_RETRY failure path
385 * and there's no need to retake the mmap_sem
386 * in such case.
387 */
388 down_read(&mm->mmap_sem);
389 ret = VM_FAULT_NOPAGE;
390 }
391 }
392
393 /*
394 * Here we race with the list_del; list_add in
395 * userfaultfd_ctx_read(), however because we don't ever run
396 * list_del_init() to refile across the two lists, the prev
397 * and next pointers will never point to self. list_add also
398 * would never let any of the two pointers to point to
399 * self. So list_empty_careful won't risk to see both pointers
400 * pointing to self at any time during the list refile. The
401 * only case where list_del_init() is called is the full
402 * removal in the wake function and there we don't re-list_add
403 * and it's fine not to block on the spinlock. The uwq on this
404 * kernel stack can be released after the list_del_init.
405 */
406 if (!list_empty_careful(&uwq.wq.task_list)) {
407 spin_lock(&ctx->fault_pending_wqh.lock);
408 /*
409 * No need of list_del_init(), the uwq on the stack
410 * will be freed shortly anyway.
411 */
412 list_del(&uwq.wq.task_list);
413 spin_unlock(&ctx->fault_pending_wqh.lock);
414 }
415
416 /*
417 * ctx may go away after this if the userfault pseudo fd is
418 * already released.
419 */
420 userfaultfd_ctx_put(ctx);
421
422 out:
423 return ret;
424 }
425
userfaultfd_release(struct inode * inode,struct file * file)426 static int userfaultfd_release(struct inode *inode, struct file *file)
427 {
428 struct userfaultfd_ctx *ctx = file->private_data;
429 struct mm_struct *mm = ctx->mm;
430 struct vm_area_struct *vma, *prev;
431 /* len == 0 means wake all */
432 struct userfaultfd_wake_range range = { .len = 0, };
433 unsigned long new_flags;
434 bool still_valid;
435
436 ACCESS_ONCE(ctx->released) = true;
437
438 if (!mmget_not_zero(mm))
439 goto wakeup;
440
441 /*
442 * Flush page faults out of all CPUs. NOTE: all page faults
443 * must be retried without returning VM_FAULT_SIGBUS if
444 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
445 * changes while handle_userfault released the mmap_sem. So
446 * it's critical that released is set to true (above), before
447 * taking the mmap_sem for writing.
448 */
449 down_write(&mm->mmap_sem);
450 still_valid = mmget_still_valid(mm);
451 prev = NULL;
452 for (vma = mm->mmap; vma; vma = vma->vm_next) {
453 cond_resched();
454 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
455 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
456 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
457 prev = vma;
458 continue;
459 }
460 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
461 if (still_valid) {
462 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
463 new_flags, vma->anon_vma,
464 vma->vm_file, vma->vm_pgoff,
465 vma_policy(vma),
466 NULL_VM_UFFD_CTX,
467 vma_get_anon_name(vma));
468 if (prev)
469 vma = prev;
470 else
471 prev = vma;
472 }
473 vma->vm_flags = new_flags;
474 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
475 }
476 up_write(&mm->mmap_sem);
477 mmput(mm);
478 wakeup:
479 /*
480 * After no new page faults can wait on this fault_*wqh, flush
481 * the last page faults that may have been already waiting on
482 * the fault_*wqh.
483 */
484 spin_lock(&ctx->fault_pending_wqh.lock);
485 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
486 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
487 spin_unlock(&ctx->fault_pending_wqh.lock);
488
489 wake_up_poll(&ctx->fd_wqh, POLLHUP);
490 userfaultfd_ctx_put(ctx);
491 return 0;
492 }
493
494 /* fault_pending_wqh.lock must be hold by the caller */
find_userfault(struct userfaultfd_ctx * ctx)495 static inline struct userfaultfd_wait_queue *find_userfault(
496 struct userfaultfd_ctx *ctx)
497 {
498 wait_queue_t *wq;
499 struct userfaultfd_wait_queue *uwq;
500
501 VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock));
502
503 uwq = NULL;
504 if (!waitqueue_active(&ctx->fault_pending_wqh))
505 goto out;
506 /* walk in reverse to provide FIFO behavior to read userfaults */
507 wq = list_last_entry(&ctx->fault_pending_wqh.task_list,
508 typeof(*wq), task_list);
509 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
510 out:
511 return uwq;
512 }
513
userfaultfd_poll(struct file * file,poll_table * wait)514 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
515 {
516 struct userfaultfd_ctx *ctx = file->private_data;
517 unsigned int ret;
518
519 poll_wait(file, &ctx->fd_wqh, wait);
520
521 switch (ctx->state) {
522 case UFFD_STATE_WAIT_API:
523 return POLLERR;
524 case UFFD_STATE_RUNNING:
525 /*
526 * poll() never guarantees that read won't block.
527 * userfaults can be waken before they're read().
528 */
529 if (unlikely(!(file->f_flags & O_NONBLOCK)))
530 return POLLERR;
531 /*
532 * lockless access to see if there are pending faults
533 * __pollwait last action is the add_wait_queue but
534 * the spin_unlock would allow the waitqueue_active to
535 * pass above the actual list_add inside
536 * add_wait_queue critical section. So use a full
537 * memory barrier to serialize the list_add write of
538 * add_wait_queue() with the waitqueue_active read
539 * below.
540 */
541 ret = 0;
542 smp_mb();
543 if (waitqueue_active(&ctx->fault_pending_wqh))
544 ret = POLLIN;
545 return ret;
546 default:
547 BUG();
548 }
549 }
550
userfaultfd_ctx_read(struct userfaultfd_ctx * ctx,int no_wait,struct uffd_msg * msg)551 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
552 struct uffd_msg *msg)
553 {
554 ssize_t ret;
555 DECLARE_WAITQUEUE(wait, current);
556 struct userfaultfd_wait_queue *uwq;
557
558 /* always take the fd_wqh lock before the fault_pending_wqh lock */
559 spin_lock(&ctx->fd_wqh.lock);
560 __add_wait_queue(&ctx->fd_wqh, &wait);
561 for (;;) {
562 set_current_state(TASK_INTERRUPTIBLE);
563 spin_lock(&ctx->fault_pending_wqh.lock);
564 uwq = find_userfault(ctx);
565 if (uwq) {
566 /*
567 * Use a seqcount to repeat the lockless check
568 * in wake_userfault() to avoid missing
569 * wakeups because during the refile both
570 * waitqueue could become empty if this is the
571 * only userfault.
572 */
573 write_seqcount_begin(&ctx->refile_seq);
574
575 /*
576 * The fault_pending_wqh.lock prevents the uwq
577 * to disappear from under us.
578 *
579 * Refile this userfault from
580 * fault_pending_wqh to fault_wqh, it's not
581 * pending anymore after we read it.
582 *
583 * Use list_del() by hand (as
584 * userfaultfd_wake_function also uses
585 * list_del_init() by hand) to be sure nobody
586 * changes __remove_wait_queue() to use
587 * list_del_init() in turn breaking the
588 * !list_empty_careful() check in
589 * handle_userfault(). The uwq->wq.task_list
590 * must never be empty at any time during the
591 * refile, or the waitqueue could disappear
592 * from under us. The "wait_queue_head_t"
593 * parameter of __remove_wait_queue() is unused
594 * anyway.
595 */
596 list_del(&uwq->wq.task_list);
597 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
598
599 write_seqcount_end(&ctx->refile_seq);
600
601 /* careful to always initialize msg if ret == 0 */
602 *msg = uwq->msg;
603 spin_unlock(&ctx->fault_pending_wqh.lock);
604 ret = 0;
605 break;
606 }
607 spin_unlock(&ctx->fault_pending_wqh.lock);
608 if (signal_pending(current)) {
609 ret = -ERESTARTSYS;
610 break;
611 }
612 if (no_wait) {
613 ret = -EAGAIN;
614 break;
615 }
616 spin_unlock(&ctx->fd_wqh.lock);
617 schedule();
618 spin_lock(&ctx->fd_wqh.lock);
619 }
620 __remove_wait_queue(&ctx->fd_wqh, &wait);
621 __set_current_state(TASK_RUNNING);
622 spin_unlock(&ctx->fd_wqh.lock);
623
624 return ret;
625 }
626
userfaultfd_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)627 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
628 size_t count, loff_t *ppos)
629 {
630 struct userfaultfd_ctx *ctx = file->private_data;
631 ssize_t _ret, ret = 0;
632 struct uffd_msg msg;
633 int no_wait = file->f_flags & O_NONBLOCK;
634
635 if (ctx->state == UFFD_STATE_WAIT_API)
636 return -EINVAL;
637
638 for (;;) {
639 if (count < sizeof(msg))
640 return ret ? ret : -EINVAL;
641 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
642 if (_ret < 0)
643 return ret ? ret : _ret;
644 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
645 return ret ? ret : -EFAULT;
646 ret += sizeof(msg);
647 buf += sizeof(msg);
648 count -= sizeof(msg);
649 /*
650 * Allow to read more than one fault at time but only
651 * block if waiting for the very first one.
652 */
653 no_wait = O_NONBLOCK;
654 }
655 }
656
__wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)657 static void __wake_userfault(struct userfaultfd_ctx *ctx,
658 struct userfaultfd_wake_range *range)
659 {
660 unsigned long start, end;
661
662 start = range->start;
663 end = range->start + range->len;
664
665 spin_lock(&ctx->fault_pending_wqh.lock);
666 /* wake all in the range and autoremove */
667 if (waitqueue_active(&ctx->fault_pending_wqh))
668 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
669 range);
670 if (waitqueue_active(&ctx->fault_wqh))
671 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
672 spin_unlock(&ctx->fault_pending_wqh.lock);
673 }
674
wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)675 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
676 struct userfaultfd_wake_range *range)
677 {
678 unsigned seq;
679 bool need_wakeup;
680
681 /*
682 * To be sure waitqueue_active() is not reordered by the CPU
683 * before the pagetable update, use an explicit SMP memory
684 * barrier here. PT lock release or up_read(mmap_sem) still
685 * have release semantics that can allow the
686 * waitqueue_active() to be reordered before the pte update.
687 */
688 smp_mb();
689
690 /*
691 * Use waitqueue_active because it's very frequent to
692 * change the address space atomically even if there are no
693 * userfaults yet. So we take the spinlock only when we're
694 * sure we've userfaults to wake.
695 */
696 do {
697 seq = read_seqcount_begin(&ctx->refile_seq);
698 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
699 waitqueue_active(&ctx->fault_wqh);
700 cond_resched();
701 } while (read_seqcount_retry(&ctx->refile_seq, seq));
702 if (need_wakeup)
703 __wake_userfault(ctx, range);
704 }
705
validate_range(struct mm_struct * mm,__u64 start,__u64 len)706 static __always_inline int validate_range(struct mm_struct *mm,
707 __u64 start, __u64 len)
708 {
709 __u64 task_size = mm->task_size;
710
711 if (start & ~PAGE_MASK)
712 return -EINVAL;
713 if (len & ~PAGE_MASK)
714 return -EINVAL;
715 if (!len)
716 return -EINVAL;
717 if (start < mmap_min_addr)
718 return -EINVAL;
719 if (start >= task_size)
720 return -EINVAL;
721 if (len > task_size - start)
722 return -EINVAL;
723 return 0;
724 }
725
userfaultfd_register(struct userfaultfd_ctx * ctx,unsigned long arg)726 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
727 unsigned long arg)
728 {
729 struct mm_struct *mm = ctx->mm;
730 struct vm_area_struct *vma, *prev, *cur;
731 int ret;
732 struct uffdio_register uffdio_register;
733 struct uffdio_register __user *user_uffdio_register;
734 unsigned long vm_flags, new_flags;
735 bool found;
736 unsigned long start, end, vma_end;
737
738 user_uffdio_register = (struct uffdio_register __user *) arg;
739
740 ret = -EFAULT;
741 if (copy_from_user(&uffdio_register, user_uffdio_register,
742 sizeof(uffdio_register)-sizeof(__u64)))
743 goto out;
744
745 ret = -EINVAL;
746 if (!uffdio_register.mode)
747 goto out;
748 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
749 UFFDIO_REGISTER_MODE_WP))
750 goto out;
751 vm_flags = 0;
752 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
753 vm_flags |= VM_UFFD_MISSING;
754 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
755 vm_flags |= VM_UFFD_WP;
756 /*
757 * FIXME: remove the below error constraint by
758 * implementing the wprotect tracking mode.
759 */
760 ret = -EINVAL;
761 goto out;
762 }
763
764 ret = validate_range(mm, uffdio_register.range.start,
765 uffdio_register.range.len);
766 if (ret)
767 goto out;
768
769 start = uffdio_register.range.start;
770 end = start + uffdio_register.range.len;
771
772 ret = -ENOMEM;
773 if (!mmget_not_zero(mm))
774 goto out;
775
776 down_write(&mm->mmap_sem);
777 if (!mmget_still_valid(mm))
778 goto out_unlock;
779 vma = find_vma_prev(mm, start, &prev);
780 if (!vma)
781 goto out_unlock;
782
783 /* check that there's at least one vma in the range */
784 ret = -EINVAL;
785 if (vma->vm_start >= end)
786 goto out_unlock;
787
788 /*
789 * Search for not compatible vmas.
790 *
791 * FIXME: this shall be relaxed later so that it doesn't fail
792 * on tmpfs backed vmas (in addition to the current allowance
793 * on anonymous vmas).
794 */
795 found = false;
796 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
797 cond_resched();
798
799 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
800 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
801
802 /* check not compatible vmas */
803 ret = -EINVAL;
804 if (cur->vm_ops)
805 goto out_unlock;
806
807 /*
808 * Check that this vma isn't already owned by a
809 * different userfaultfd. We can't allow more than one
810 * userfaultfd to own a single vma simultaneously or we
811 * wouldn't know which one to deliver the userfaults to.
812 */
813 ret = -EBUSY;
814 if (cur->vm_userfaultfd_ctx.ctx &&
815 cur->vm_userfaultfd_ctx.ctx != ctx)
816 goto out_unlock;
817
818 found = true;
819 }
820 BUG_ON(!found);
821
822 if (vma->vm_start < start)
823 prev = vma;
824
825 ret = 0;
826 do {
827 cond_resched();
828
829 BUG_ON(vma->vm_ops);
830 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
831 vma->vm_userfaultfd_ctx.ctx != ctx);
832
833 /*
834 * Nothing to do: this vma is already registered into this
835 * userfaultfd and with the right tracking mode too.
836 */
837 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
838 (vma->vm_flags & vm_flags) == vm_flags)
839 goto skip;
840
841 if (vma->vm_start > start)
842 start = vma->vm_start;
843 vma_end = min(end, vma->vm_end);
844
845 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
846 prev = vma_merge(mm, prev, start, vma_end, new_flags,
847 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
848 vma_policy(vma),
849 ((struct vm_userfaultfd_ctx){ ctx }),
850 vma_get_anon_name(vma));
851 if (prev) {
852 vma = prev;
853 goto next;
854 }
855 if (vma->vm_start < start) {
856 ret = split_vma(mm, vma, start, 1);
857 if (ret)
858 break;
859 }
860 if (vma->vm_end > end) {
861 ret = split_vma(mm, vma, end, 0);
862 if (ret)
863 break;
864 }
865 next:
866 /*
867 * In the vma_merge() successful mprotect-like case 8:
868 * the next vma was merged into the current one and
869 * the current one has not been updated yet.
870 */
871 vma->vm_flags = new_flags;
872 vma->vm_userfaultfd_ctx.ctx = ctx;
873
874 skip:
875 prev = vma;
876 start = vma->vm_end;
877 vma = vma->vm_next;
878 } while (vma && vma->vm_start < end);
879 out_unlock:
880 up_write(&mm->mmap_sem);
881 mmput(mm);
882 if (!ret) {
883 /*
884 * Now that we scanned all vmas we can already tell
885 * userland which ioctls methods are guaranteed to
886 * succeed on this range.
887 */
888 if (put_user(UFFD_API_RANGE_IOCTLS,
889 &user_uffdio_register->ioctls))
890 ret = -EFAULT;
891 }
892 out:
893 return ret;
894 }
895
userfaultfd_unregister(struct userfaultfd_ctx * ctx,unsigned long arg)896 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
897 unsigned long arg)
898 {
899 struct mm_struct *mm = ctx->mm;
900 struct vm_area_struct *vma, *prev, *cur;
901 int ret;
902 struct uffdio_range uffdio_unregister;
903 unsigned long new_flags;
904 bool found;
905 unsigned long start, end, vma_end;
906 const void __user *buf = (void __user *)arg;
907
908 ret = -EFAULT;
909 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
910 goto out;
911
912 ret = validate_range(mm, uffdio_unregister.start,
913 uffdio_unregister.len);
914 if (ret)
915 goto out;
916
917 start = uffdio_unregister.start;
918 end = start + uffdio_unregister.len;
919
920 ret = -ENOMEM;
921 if (!mmget_not_zero(mm))
922 goto out;
923
924 down_write(&mm->mmap_sem);
925 if (!mmget_still_valid(mm))
926 goto out_unlock;
927 vma = find_vma_prev(mm, start, &prev);
928 if (!vma)
929 goto out_unlock;
930
931 /* check that there's at least one vma in the range */
932 ret = -EINVAL;
933 if (vma->vm_start >= end)
934 goto out_unlock;
935
936 /*
937 * Search for not compatible vmas.
938 *
939 * FIXME: this shall be relaxed later so that it doesn't fail
940 * on tmpfs backed vmas (in addition to the current allowance
941 * on anonymous vmas).
942 */
943 found = false;
944 ret = -EINVAL;
945 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
946 cond_resched();
947
948 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
949 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
950
951 /*
952 * Check not compatible vmas, not strictly required
953 * here as not compatible vmas cannot have an
954 * userfaultfd_ctx registered on them, but this
955 * provides for more strict behavior to notice
956 * unregistration errors.
957 */
958 if (cur->vm_ops)
959 goto out_unlock;
960
961 found = true;
962 }
963 BUG_ON(!found);
964
965 if (vma->vm_start < start)
966 prev = vma;
967
968 ret = 0;
969 do {
970 cond_resched();
971
972 BUG_ON(vma->vm_ops);
973
974 /*
975 * Nothing to do: this vma is already registered into this
976 * userfaultfd and with the right tracking mode too.
977 */
978 if (!vma->vm_userfaultfd_ctx.ctx)
979 goto skip;
980
981 if (vma->vm_start > start)
982 start = vma->vm_start;
983 vma_end = min(end, vma->vm_end);
984
985 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
986 prev = vma_merge(mm, prev, start, vma_end, new_flags,
987 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
988 vma_policy(vma),
989 NULL_VM_UFFD_CTX,
990 vma_get_anon_name(vma));
991 if (prev) {
992 vma = prev;
993 goto next;
994 }
995 if (vma->vm_start < start) {
996 ret = split_vma(mm, vma, start, 1);
997 if (ret)
998 break;
999 }
1000 if (vma->vm_end > end) {
1001 ret = split_vma(mm, vma, end, 0);
1002 if (ret)
1003 break;
1004 }
1005 next:
1006 /*
1007 * In the vma_merge() successful mprotect-like case 8:
1008 * the next vma was merged into the current one and
1009 * the current one has not been updated yet.
1010 */
1011 vma->vm_flags = new_flags;
1012 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1013
1014 skip:
1015 prev = vma;
1016 start = vma->vm_end;
1017 vma = vma->vm_next;
1018 } while (vma && vma->vm_start < end);
1019 out_unlock:
1020 up_write(&mm->mmap_sem);
1021 mmput(mm);
1022 out:
1023 return ret;
1024 }
1025
1026 /*
1027 * userfaultfd_wake may be used in combination with the
1028 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1029 */
userfaultfd_wake(struct userfaultfd_ctx * ctx,unsigned long arg)1030 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1031 unsigned long arg)
1032 {
1033 int ret;
1034 struct uffdio_range uffdio_wake;
1035 struct userfaultfd_wake_range range;
1036 const void __user *buf = (void __user *)arg;
1037
1038 ret = -EFAULT;
1039 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1040 goto out;
1041
1042 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1043 if (ret)
1044 goto out;
1045
1046 range.start = uffdio_wake.start;
1047 range.len = uffdio_wake.len;
1048
1049 /*
1050 * len == 0 means wake all and we don't want to wake all here,
1051 * so check it again to be sure.
1052 */
1053 VM_BUG_ON(!range.len);
1054
1055 wake_userfault(ctx, &range);
1056 ret = 0;
1057
1058 out:
1059 return ret;
1060 }
1061
userfaultfd_copy(struct userfaultfd_ctx * ctx,unsigned long arg)1062 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1063 unsigned long arg)
1064 {
1065 __s64 ret;
1066 struct uffdio_copy uffdio_copy;
1067 struct uffdio_copy __user *user_uffdio_copy;
1068 struct userfaultfd_wake_range range;
1069
1070 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1071
1072 ret = -EFAULT;
1073 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1074 /* don't copy "copy" last field */
1075 sizeof(uffdio_copy)-sizeof(__s64)))
1076 goto out;
1077
1078 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1079 if (ret)
1080 goto out;
1081 /*
1082 * double check for wraparound just in case. copy_from_user()
1083 * will later check uffdio_copy.src + uffdio_copy.len to fit
1084 * in the userland range.
1085 */
1086 ret = -EINVAL;
1087 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1088 goto out;
1089 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1090 goto out;
1091 if (mmget_not_zero(ctx->mm)) {
1092 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1093 uffdio_copy.len);
1094 mmput(ctx->mm);
1095 }
1096 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1097 return -EFAULT;
1098 if (ret < 0)
1099 goto out;
1100 BUG_ON(!ret);
1101 /* len == 0 would wake all */
1102 range.len = ret;
1103 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1104 range.start = uffdio_copy.dst;
1105 wake_userfault(ctx, &range);
1106 }
1107 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1108 out:
1109 return ret;
1110 }
1111
userfaultfd_zeropage(struct userfaultfd_ctx * ctx,unsigned long arg)1112 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1113 unsigned long arg)
1114 {
1115 __s64 ret;
1116 struct uffdio_zeropage uffdio_zeropage;
1117 struct uffdio_zeropage __user *user_uffdio_zeropage;
1118 struct userfaultfd_wake_range range;
1119
1120 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1121
1122 ret = -EFAULT;
1123 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1124 /* don't copy "zeropage" last field */
1125 sizeof(uffdio_zeropage)-sizeof(__s64)))
1126 goto out;
1127
1128 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1129 uffdio_zeropage.range.len);
1130 if (ret)
1131 goto out;
1132 ret = -EINVAL;
1133 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1134 goto out;
1135
1136 if (mmget_not_zero(ctx->mm)) {
1137 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1138 uffdio_zeropage.range.len);
1139 mmput(ctx->mm);
1140 }
1141 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1142 return -EFAULT;
1143 if (ret < 0)
1144 goto out;
1145 /* len == 0 would wake all */
1146 BUG_ON(!ret);
1147 range.len = ret;
1148 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1149 range.start = uffdio_zeropage.range.start;
1150 wake_userfault(ctx, &range);
1151 }
1152 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1153 out:
1154 return ret;
1155 }
1156
1157 /*
1158 * userland asks for a certain API version and we return which bits
1159 * and ioctl commands are implemented in this kernel for such API
1160 * version or -EINVAL if unknown.
1161 */
userfaultfd_api(struct userfaultfd_ctx * ctx,unsigned long arg)1162 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1163 unsigned long arg)
1164 {
1165 struct uffdio_api uffdio_api;
1166 void __user *buf = (void __user *)arg;
1167 int ret;
1168
1169 ret = -EINVAL;
1170 if (ctx->state != UFFD_STATE_WAIT_API)
1171 goto out;
1172 ret = -EFAULT;
1173 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1174 goto out;
1175 if (uffdio_api.api != UFFD_API || uffdio_api.features) {
1176 memset(&uffdio_api, 0, sizeof(uffdio_api));
1177 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1178 goto out;
1179 ret = -EINVAL;
1180 goto out;
1181 }
1182 uffdio_api.features = UFFD_API_FEATURES;
1183 uffdio_api.ioctls = UFFD_API_IOCTLS;
1184 ret = -EFAULT;
1185 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1186 goto out;
1187 ctx->state = UFFD_STATE_RUNNING;
1188 ret = 0;
1189 out:
1190 return ret;
1191 }
1192
userfaultfd_ioctl(struct file * file,unsigned cmd,unsigned long arg)1193 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1194 unsigned long arg)
1195 {
1196 int ret = -EINVAL;
1197 struct userfaultfd_ctx *ctx = file->private_data;
1198
1199 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1200 return -EINVAL;
1201
1202 switch(cmd) {
1203 case UFFDIO_API:
1204 ret = userfaultfd_api(ctx, arg);
1205 break;
1206 case UFFDIO_REGISTER:
1207 ret = userfaultfd_register(ctx, arg);
1208 break;
1209 case UFFDIO_UNREGISTER:
1210 ret = userfaultfd_unregister(ctx, arg);
1211 break;
1212 case UFFDIO_WAKE:
1213 ret = userfaultfd_wake(ctx, arg);
1214 break;
1215 case UFFDIO_COPY:
1216 ret = userfaultfd_copy(ctx, arg);
1217 break;
1218 case UFFDIO_ZEROPAGE:
1219 ret = userfaultfd_zeropage(ctx, arg);
1220 break;
1221 }
1222 return ret;
1223 }
1224
1225 #ifdef CONFIG_PROC_FS
userfaultfd_show_fdinfo(struct seq_file * m,struct file * f)1226 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1227 {
1228 struct userfaultfd_ctx *ctx = f->private_data;
1229 wait_queue_t *wq;
1230 struct userfaultfd_wait_queue *uwq;
1231 unsigned long pending = 0, total = 0;
1232
1233 spin_lock(&ctx->fault_pending_wqh.lock);
1234 list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1235 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1236 pending++;
1237 total++;
1238 }
1239 list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1240 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1241 total++;
1242 }
1243 spin_unlock(&ctx->fault_pending_wqh.lock);
1244
1245 /*
1246 * If more protocols will be added, there will be all shown
1247 * separated by a space. Like this:
1248 * protocols: aa:... bb:...
1249 */
1250 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1251 pending, total, UFFD_API, UFFD_API_FEATURES,
1252 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1253 }
1254 #endif
1255
1256 static const struct file_operations userfaultfd_fops = {
1257 #ifdef CONFIG_PROC_FS
1258 .show_fdinfo = userfaultfd_show_fdinfo,
1259 #endif
1260 .release = userfaultfd_release,
1261 .poll = userfaultfd_poll,
1262 .read = userfaultfd_read,
1263 .unlocked_ioctl = userfaultfd_ioctl,
1264 .compat_ioctl = userfaultfd_ioctl,
1265 .llseek = noop_llseek,
1266 };
1267
init_once_userfaultfd_ctx(void * mem)1268 static void init_once_userfaultfd_ctx(void *mem)
1269 {
1270 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1271
1272 init_waitqueue_head(&ctx->fault_pending_wqh);
1273 init_waitqueue_head(&ctx->fault_wqh);
1274 init_waitqueue_head(&ctx->fd_wqh);
1275 seqcount_init(&ctx->refile_seq);
1276 }
1277
1278 /**
1279 * userfaultfd_file_create - Creates an userfaultfd file pointer.
1280 * @flags: Flags for the userfaultfd file.
1281 *
1282 * This function creates an userfaultfd file pointer, w/out installing
1283 * it into the fd table. This is useful when the userfaultfd file is
1284 * used during the initialization of data structures that require
1285 * extra setup after the userfaultfd creation. So the userfaultfd
1286 * creation is split into the file pointer creation phase, and the
1287 * file descriptor installation phase. In this way races with
1288 * userspace closing the newly installed file descriptor can be
1289 * avoided. Returns an userfaultfd file pointer, or a proper error
1290 * pointer.
1291 */
userfaultfd_file_create(int flags)1292 static struct file *userfaultfd_file_create(int flags)
1293 {
1294 struct file *file;
1295 struct userfaultfd_ctx *ctx;
1296
1297 BUG_ON(!current->mm);
1298
1299 /* Check the UFFD_* constants for consistency. */
1300 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1301 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1302
1303 file = ERR_PTR(-EINVAL);
1304 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1305 goto out;
1306
1307 file = ERR_PTR(-ENOMEM);
1308 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1309 if (!ctx)
1310 goto out;
1311
1312 atomic_set(&ctx->refcount, 1);
1313 ctx->flags = flags;
1314 ctx->state = UFFD_STATE_WAIT_API;
1315 ctx->released = false;
1316 ctx->mm = current->mm;
1317 /* prevent the mm struct to be freed */
1318 atomic_inc(&ctx->mm->mm_count);
1319
1320 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1321 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1322 if (IS_ERR(file)) {
1323 mmdrop(ctx->mm);
1324 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1325 }
1326 out:
1327 return file;
1328 }
1329
SYSCALL_DEFINE1(userfaultfd,int,flags)1330 SYSCALL_DEFINE1(userfaultfd, int, flags)
1331 {
1332 int fd, error;
1333 struct file *file;
1334
1335 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1336 if (error < 0)
1337 return error;
1338 fd = error;
1339
1340 file = userfaultfd_file_create(flags);
1341 if (IS_ERR(file)) {
1342 error = PTR_ERR(file);
1343 goto err_put_unused_fd;
1344 }
1345 fd_install(fd, file);
1346
1347 return fd;
1348
1349 err_put_unused_fd:
1350 put_unused_fd(fd);
1351
1352 return error;
1353 }
1354
userfaultfd_init(void)1355 static int __init userfaultfd_init(void)
1356 {
1357 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1358 sizeof(struct userfaultfd_ctx),
1359 0,
1360 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1361 init_once_userfaultfd_ctx);
1362 return 0;
1363 }
1364 __initcall(userfaultfd_init);
1365