• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coalesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 enum {
39 	MIGRATE_UNMOVABLE,
40 	MIGRATE_MOVABLE,
41 	MIGRATE_RECLAIMABLE,
42 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
43 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 	/*
46 	 * MIGRATE_CMA migration type is designed to mimic the way
47 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
48 	 * from MIGRATE_CMA pageblocks and page allocator never
49 	 * implicitly change migration type of MIGRATE_CMA pageblock.
50 	 *
51 	 * The way to use it is to change migratetype of a range of
52 	 * pageblocks to MIGRATE_CMA which can be done by
53 	 * __free_pageblock_cma() function.  What is important though
54 	 * is that a range of pageblocks must be aligned to
55 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 	 * a single pageblock.
57 	 */
58 	MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 	MIGRATE_ISOLATE,	/* can't allocate from here */
62 #endif
63 	MIGRATE_TYPES
64 };
65 
66 #ifdef CONFIG_CMA
67 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
68 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
69 #else
70 #  define is_migrate_cma(migratetype) false
71 #  define is_migrate_cma_page(_page) false
72 #endif
73 
74 #define for_each_migratetype_order(order, type) \
75 	for (order = 0; order < MAX_ORDER; order++) \
76 		for (type = 0; type < MIGRATE_TYPES; type++)
77 
78 extern int page_group_by_mobility_disabled;
79 
80 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
81 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
82 
83 #define get_pageblock_migratetype(page)					\
84 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
85 			PB_migrate_end, MIGRATETYPE_MASK)
86 
get_pfnblock_migratetype(struct page * page,unsigned long pfn)87 static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
88 {
89 	BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2);
90 	return get_pfnblock_flags_mask(page, pfn, PB_migrate_end,
91 					MIGRATETYPE_MASK);
92 }
93 
94 struct free_area {
95 	struct list_head	free_list[MIGRATE_TYPES];
96 	unsigned long		nr_free;
97 };
98 
99 struct pglist_data;
100 
101 /*
102  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
103  * So add a wild amount of padding here to ensure that they fall into separate
104  * cachelines.  There are very few zone structures in the machine, so space
105  * consumption is not a concern here.
106  */
107 #if defined(CONFIG_SMP)
108 struct zone_padding {
109 	char x[0];
110 } ____cacheline_internodealigned_in_smp;
111 #define ZONE_PADDING(name)	struct zone_padding name;
112 #else
113 #define ZONE_PADDING(name)
114 #endif
115 
116 enum zone_stat_item {
117 	/* First 128 byte cacheline (assuming 64 bit words) */
118 	NR_FREE_PAGES,
119 	NR_ALLOC_BATCH,
120 	NR_LRU_BASE,
121 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
122 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
123 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
124 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
125 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
126 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
127 	NR_ANON_PAGES,	/* Mapped anonymous pages */
128 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
129 			   only modified from process context */
130 	NR_FILE_PAGES,
131 	NR_FILE_DIRTY,
132 	NR_WRITEBACK,
133 	NR_SLAB_RECLAIMABLE,
134 	NR_SLAB_UNRECLAIMABLE,
135 	NR_PAGETABLE,		/* used for pagetables */
136 	/* Second 128 byte cacheline */
137 	NR_KERNEL_STACK,
138 	NR_KAISERTABLE,
139 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
140 	NR_BOUNCE,
141 	NR_VMSCAN_WRITE,
142 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
143 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
144 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
145 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
146 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
147 	NR_DIRTIED,		/* page dirtyings since bootup */
148 	NR_WRITTEN,		/* page writings since bootup */
149 	NR_PAGES_SCANNED,	/* pages scanned since last reclaim */
150 #ifdef CONFIG_NUMA
151 	NUMA_HIT,		/* allocated in intended node */
152 	NUMA_MISS,		/* allocated in non intended node */
153 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
154 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
155 	NUMA_LOCAL,		/* allocation from local node */
156 	NUMA_OTHER,		/* allocation from other node */
157 #endif
158 	WORKINGSET_REFAULT,
159 	WORKINGSET_ACTIVATE,
160 	WORKINGSET_NODERECLAIM,
161 	NR_ANON_TRANSPARENT_HUGEPAGES,
162 	NR_FREE_CMA_PAGES,
163 	NR_VM_ZONE_STAT_ITEMS };
164 
165 /*
166  * We do arithmetic on the LRU lists in various places in the code,
167  * so it is important to keep the active lists LRU_ACTIVE higher in
168  * the array than the corresponding inactive lists, and to keep
169  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
170  *
171  * This has to be kept in sync with the statistics in zone_stat_item
172  * above and the descriptions in vmstat_text in mm/vmstat.c
173  */
174 #define LRU_BASE 0
175 #define LRU_ACTIVE 1
176 #define LRU_FILE 2
177 
178 enum lru_list {
179 	LRU_INACTIVE_ANON = LRU_BASE,
180 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
181 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
182 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
183 	LRU_UNEVICTABLE,
184 	NR_LRU_LISTS
185 };
186 
187 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
188 
189 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
190 
is_file_lru(enum lru_list lru)191 static inline int is_file_lru(enum lru_list lru)
192 {
193 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
194 }
195 
is_active_lru(enum lru_list lru)196 static inline int is_active_lru(enum lru_list lru)
197 {
198 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
199 }
200 
is_unevictable_lru(enum lru_list lru)201 static inline int is_unevictable_lru(enum lru_list lru)
202 {
203 	return (lru == LRU_UNEVICTABLE);
204 }
205 
206 struct zone_reclaim_stat {
207 	/*
208 	 * The pageout code in vmscan.c keeps track of how many of the
209 	 * mem/swap backed and file backed pages are referenced.
210 	 * The higher the rotated/scanned ratio, the more valuable
211 	 * that cache is.
212 	 *
213 	 * The anon LRU stats live in [0], file LRU stats in [1]
214 	 */
215 	unsigned long		recent_rotated[2];
216 	unsigned long		recent_scanned[2];
217 };
218 
219 struct lruvec {
220 	struct list_head lists[NR_LRU_LISTS];
221 	struct zone_reclaim_stat reclaim_stat;
222 #ifdef CONFIG_MEMCG
223 	struct zone *zone;
224 #endif
225 };
226 
227 /* Mask used at gathering information at once (see memcontrol.c) */
228 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
229 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
230 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
231 
232 /* Isolate clean file */
233 #define ISOLATE_CLEAN		((__force isolate_mode_t)0x1)
234 /* Isolate unmapped file */
235 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
236 /* Isolate for asynchronous migration */
237 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
238 /* Isolate unevictable pages */
239 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
240 
241 /* LRU Isolation modes. */
242 typedef unsigned __bitwise__ isolate_mode_t;
243 
244 enum zone_watermarks {
245 	WMARK_MIN,
246 	WMARK_LOW,
247 	WMARK_HIGH,
248 	NR_WMARK
249 };
250 
251 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
252 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
253 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
254 
255 struct per_cpu_pages {
256 	int count;		/* number of pages in the list */
257 	int high;		/* high watermark, emptying needed */
258 	int batch;		/* chunk size for buddy add/remove */
259 
260 	/* Lists of pages, one per migrate type stored on the pcp-lists */
261 	struct list_head lists[MIGRATE_PCPTYPES];
262 };
263 
264 struct per_cpu_pageset {
265 	struct per_cpu_pages pcp;
266 #ifdef CONFIG_NUMA
267 	s8 expire;
268 #endif
269 #ifdef CONFIG_SMP
270 	s8 stat_threshold;
271 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
272 #endif
273 };
274 
275 #endif /* !__GENERATING_BOUNDS.H */
276 
277 enum zone_type {
278 #ifdef CONFIG_ZONE_DMA
279 	/*
280 	 * ZONE_DMA is used when there are devices that are not able
281 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
282 	 * carve out the portion of memory that is needed for these devices.
283 	 * The range is arch specific.
284 	 *
285 	 * Some examples
286 	 *
287 	 * Architecture		Limit
288 	 * ---------------------------
289 	 * parisc, ia64, sparc	<4G
290 	 * s390			<2G
291 	 * arm			Various
292 	 * alpha		Unlimited or 0-16MB.
293 	 *
294 	 * i386, x86_64 and multiple other arches
295 	 * 			<16M.
296 	 */
297 	ZONE_DMA,
298 #endif
299 #ifdef CONFIG_ZONE_DMA32
300 	/*
301 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
302 	 * only able to do DMA to the lower 16M but also 32 bit devices that
303 	 * can only do DMA areas below 4G.
304 	 */
305 	ZONE_DMA32,
306 #endif
307 	/*
308 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
309 	 * performed on pages in ZONE_NORMAL if the DMA devices support
310 	 * transfers to all addressable memory.
311 	 */
312 	ZONE_NORMAL,
313 #ifdef CONFIG_HIGHMEM
314 	/*
315 	 * A memory area that is only addressable by the kernel through
316 	 * mapping portions into its own address space. This is for example
317 	 * used by i386 to allow the kernel to address the memory beyond
318 	 * 900MB. The kernel will set up special mappings (page
319 	 * table entries on i386) for each page that the kernel needs to
320 	 * access.
321 	 */
322 	ZONE_HIGHMEM,
323 #endif
324 	ZONE_MOVABLE,
325 #ifdef CONFIG_ZONE_DEVICE
326 	ZONE_DEVICE,
327 #endif
328 	__MAX_NR_ZONES
329 
330 };
331 
332 #ifndef __GENERATING_BOUNDS_H
333 
334 struct zone {
335 	/* Read-mostly fields */
336 
337 	/* zone watermarks, access with *_wmark_pages(zone) macros */
338 	unsigned long watermark[NR_WMARK];
339 
340 	unsigned long nr_reserved_highatomic;
341 
342 	/*
343 	 * We don't know if the memory that we're going to allocate will be
344 	 * freeable or/and it will be released eventually, so to avoid totally
345 	 * wasting several GB of ram we must reserve some of the lower zone
346 	 * memory (otherwise we risk to run OOM on the lower zones despite
347 	 * there being tons of freeable ram on the higher zones).  This array is
348 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
349 	 * changes.
350 	 */
351 	long lowmem_reserve[MAX_NR_ZONES];
352 
353 #ifdef CONFIG_NUMA
354 	int node;
355 #endif
356 
357 	/*
358 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
359 	 * this zone's LRU.  Maintained by the pageout code.
360 	 */
361 	unsigned int inactive_ratio;
362 
363 	struct pglist_data	*zone_pgdat;
364 	struct per_cpu_pageset __percpu *pageset;
365 
366 	/*
367 	 * This is a per-zone reserve of pages that should not be
368 	 * considered dirtyable memory.
369 	 */
370 	unsigned long		dirty_balance_reserve;
371 
372 #ifndef CONFIG_SPARSEMEM
373 	/*
374 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
375 	 * In SPARSEMEM, this map is stored in struct mem_section
376 	 */
377 	unsigned long		*pageblock_flags;
378 #endif /* CONFIG_SPARSEMEM */
379 
380 #ifdef CONFIG_NUMA
381 	/*
382 	 * zone reclaim becomes active if more unmapped pages exist.
383 	 */
384 	unsigned long		min_unmapped_pages;
385 	unsigned long		min_slab_pages;
386 #endif /* CONFIG_NUMA */
387 
388 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
389 	unsigned long		zone_start_pfn;
390 
391 	/*
392 	 * spanned_pages is the total pages spanned by the zone, including
393 	 * holes, which is calculated as:
394 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
395 	 *
396 	 * present_pages is physical pages existing within the zone, which
397 	 * is calculated as:
398 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
399 	 *
400 	 * managed_pages is present pages managed by the buddy system, which
401 	 * is calculated as (reserved_pages includes pages allocated by the
402 	 * bootmem allocator):
403 	 *	managed_pages = present_pages - reserved_pages;
404 	 *
405 	 * So present_pages may be used by memory hotplug or memory power
406 	 * management logic to figure out unmanaged pages by checking
407 	 * (present_pages - managed_pages). And managed_pages should be used
408 	 * by page allocator and vm scanner to calculate all kinds of watermarks
409 	 * and thresholds.
410 	 *
411 	 * Locking rules:
412 	 *
413 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
414 	 * It is a seqlock because it has to be read outside of zone->lock,
415 	 * and it is done in the main allocator path.  But, it is written
416 	 * quite infrequently.
417 	 *
418 	 * The span_seq lock is declared along with zone->lock because it is
419 	 * frequently read in proximity to zone->lock.  It's good to
420 	 * give them a chance of being in the same cacheline.
421 	 *
422 	 * Write access to present_pages at runtime should be protected by
423 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
424 	 * present_pages should get_online_mems() to get a stable value.
425 	 *
426 	 * Read access to managed_pages should be safe because it's unsigned
427 	 * long. Write access to zone->managed_pages and totalram_pages are
428 	 * protected by managed_page_count_lock at runtime. Idealy only
429 	 * adjust_managed_page_count() should be used instead of directly
430 	 * touching zone->managed_pages and totalram_pages.
431 	 */
432 	unsigned long		managed_pages;
433 	unsigned long		spanned_pages;
434 	unsigned long		present_pages;
435 
436 	const char		*name;
437 
438 #ifdef CONFIG_MEMORY_ISOLATION
439 	/*
440 	 * Number of isolated pageblock. It is used to solve incorrect
441 	 * freepage counting problem due to racy retrieving migratetype
442 	 * of pageblock. Protected by zone->lock.
443 	 */
444 	unsigned long		nr_isolate_pageblock;
445 #endif
446 
447 #ifdef CONFIG_MEMORY_HOTPLUG
448 	/* see spanned/present_pages for more description */
449 	seqlock_t		span_seqlock;
450 #endif
451 
452 	/*
453 	 * wait_table		-- the array holding the hash table
454 	 * wait_table_hash_nr_entries	-- the size of the hash table array
455 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
456 	 *
457 	 * The purpose of all these is to keep track of the people
458 	 * waiting for a page to become available and make them
459 	 * runnable again when possible. The trouble is that this
460 	 * consumes a lot of space, especially when so few things
461 	 * wait on pages at a given time. So instead of using
462 	 * per-page waitqueues, we use a waitqueue hash table.
463 	 *
464 	 * The bucket discipline is to sleep on the same queue when
465 	 * colliding and wake all in that wait queue when removing.
466 	 * When something wakes, it must check to be sure its page is
467 	 * truly available, a la thundering herd. The cost of a
468 	 * collision is great, but given the expected load of the
469 	 * table, they should be so rare as to be outweighed by the
470 	 * benefits from the saved space.
471 	 *
472 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
473 	 * primary users of these fields, and in mm/page_alloc.c
474 	 * free_area_init_core() performs the initialization of them.
475 	 */
476 	wait_queue_head_t	*wait_table;
477 	unsigned long		wait_table_hash_nr_entries;
478 	unsigned long		wait_table_bits;
479 
480 	ZONE_PADDING(_pad1_)
481 	/* free areas of different sizes */
482 	struct free_area	free_area[MAX_ORDER];
483 
484 	/* zone flags, see below */
485 	unsigned long		flags;
486 
487 	/* Write-intensive fields used from the page allocator */
488 	spinlock_t		lock;
489 
490 	ZONE_PADDING(_pad2_)
491 
492 	/* Write-intensive fields used by page reclaim */
493 
494 	/* Fields commonly accessed by the page reclaim scanner */
495 	spinlock_t		lru_lock;
496 	struct lruvec		lruvec;
497 
498 	/* Evictions & activations on the inactive file list */
499 	atomic_long_t		inactive_age;
500 
501 	/*
502 	 * When free pages are below this point, additional steps are taken
503 	 * when reading the number of free pages to avoid per-cpu counter
504 	 * drift allowing watermarks to be breached
505 	 */
506 	unsigned long percpu_drift_mark;
507 
508 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
509 	/* pfn where compaction free scanner should start */
510 	unsigned long		compact_cached_free_pfn;
511 	/* pfn where async and sync compaction migration scanner should start */
512 	unsigned long		compact_cached_migrate_pfn[2];
513 #endif
514 
515 #ifdef CONFIG_COMPACTION
516 	/*
517 	 * On compaction failure, 1<<compact_defer_shift compactions
518 	 * are skipped before trying again. The number attempted since
519 	 * last failure is tracked with compact_considered.
520 	 */
521 	unsigned int		compact_considered;
522 	unsigned int		compact_defer_shift;
523 	int			compact_order_failed;
524 #endif
525 
526 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
527 	/* Set to true when the PG_migrate_skip bits should be cleared */
528 	bool			compact_blockskip_flush;
529 #endif
530 
531 	ZONE_PADDING(_pad3_)
532 	/* Zone statistics */
533 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
534 } ____cacheline_internodealigned_in_smp;
535 
536 enum zone_flags {
537 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
538 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
539 	ZONE_CONGESTED,			/* zone has many dirty pages backed by
540 					 * a congested BDI
541 					 */
542 	ZONE_DIRTY,			/* reclaim scanning has recently found
543 					 * many dirty file pages at the tail
544 					 * of the LRU.
545 					 */
546 	ZONE_WRITEBACK,			/* reclaim scanning has recently found
547 					 * many pages under writeback
548 					 */
549 	ZONE_FAIR_DEPLETED,		/* fair zone policy batch depleted */
550 };
551 
zone_end_pfn(const struct zone * zone)552 static inline unsigned long zone_end_pfn(const struct zone *zone)
553 {
554 	return zone->zone_start_pfn + zone->spanned_pages;
555 }
556 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)557 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
558 {
559 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
560 }
561 
zone_is_initialized(struct zone * zone)562 static inline bool zone_is_initialized(struct zone *zone)
563 {
564 	return !!zone->wait_table;
565 }
566 
zone_is_empty(struct zone * zone)567 static inline bool zone_is_empty(struct zone *zone)
568 {
569 	return zone->spanned_pages == 0;
570 }
571 
572 /*
573  * The "priority" of VM scanning is how much of the queues we will scan in one
574  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
575  * queues ("queue_length >> 12") during an aging round.
576  */
577 #define DEF_PRIORITY 12
578 
579 /* Maximum number of zones on a zonelist */
580 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
581 
582 #ifdef CONFIG_NUMA
583 
584 /*
585  * The NUMA zonelists are doubled because we need zonelists that restrict the
586  * allocations to a single node for __GFP_THISNODE.
587  *
588  * [0]	: Zonelist with fallback
589  * [1]	: No fallback (__GFP_THISNODE)
590  */
591 #define MAX_ZONELISTS 2
592 #else
593 #define MAX_ZONELISTS 1
594 #endif
595 
596 /*
597  * This struct contains information about a zone in a zonelist. It is stored
598  * here to avoid dereferences into large structures and lookups of tables
599  */
600 struct zoneref {
601 	struct zone *zone;	/* Pointer to actual zone */
602 	int zone_idx;		/* zone_idx(zoneref->zone) */
603 };
604 
605 /*
606  * One allocation request operates on a zonelist. A zonelist
607  * is a list of zones, the first one is the 'goal' of the
608  * allocation, the other zones are fallback zones, in decreasing
609  * priority.
610  *
611  * To speed the reading of the zonelist, the zonerefs contain the zone index
612  * of the entry being read. Helper functions to access information given
613  * a struct zoneref are
614  *
615  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
616  * zonelist_zone_idx()	- Return the index of the zone for an entry
617  * zonelist_node_idx()	- Return the index of the node for an entry
618  */
619 struct zonelist {
620 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
621 };
622 
623 #ifndef CONFIG_DISCONTIGMEM
624 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
625 extern struct page *mem_map;
626 #endif
627 
628 /*
629  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
630  * (mostly NUMA machines?) to denote a higher-level memory zone than the
631  * zone denotes.
632  *
633  * On NUMA machines, each NUMA node would have a pg_data_t to describe
634  * it's memory layout.
635  *
636  * Memory statistics and page replacement data structures are maintained on a
637  * per-zone basis.
638  */
639 struct bootmem_data;
640 typedef struct pglist_data {
641 	struct zone node_zones[MAX_NR_ZONES];
642 	struct zonelist node_zonelists[MAX_ZONELISTS];
643 	int nr_zones;
644 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
645 	struct page *node_mem_map;
646 #ifdef CONFIG_PAGE_EXTENSION
647 	struct page_ext *node_page_ext;
648 #endif
649 #endif
650 #ifndef CONFIG_NO_BOOTMEM
651 	struct bootmem_data *bdata;
652 #endif
653 #ifdef CONFIG_MEMORY_HOTPLUG
654 	/*
655 	 * Must be held any time you expect node_start_pfn, node_present_pages
656 	 * or node_spanned_pages stay constant.  Holding this will also
657 	 * guarantee that any pfn_valid() stays that way.
658 	 *
659 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
660 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
661 	 *
662 	 * Nests above zone->lock and zone->span_seqlock
663 	 */
664 	spinlock_t node_size_lock;
665 #endif
666 	unsigned long node_start_pfn;
667 	unsigned long node_present_pages; /* total number of physical pages */
668 	unsigned long node_spanned_pages; /* total size of physical page
669 					     range, including holes */
670 	int node_id;
671 	wait_queue_head_t kswapd_wait;
672 	wait_queue_head_t pfmemalloc_wait;
673 	struct task_struct *kswapd;	/* Protected by
674 					   mem_hotplug_begin/end() */
675 	int kswapd_max_order;
676 	enum zone_type classzone_idx;
677 #ifdef CONFIG_NUMA_BALANCING
678 	/* Lock serializing the migrate rate limiting window */
679 	spinlock_t numabalancing_migrate_lock;
680 
681 	/* Rate limiting time interval */
682 	unsigned long numabalancing_migrate_next_window;
683 
684 	/* Number of pages migrated during the rate limiting time interval */
685 	unsigned long numabalancing_migrate_nr_pages;
686 #endif
687 
688 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
689 	/*
690 	 * If memory initialisation on large machines is deferred then this
691 	 * is the first PFN that needs to be initialised.
692 	 */
693 	unsigned long first_deferred_pfn;
694 	/* Number of non-deferred pages */
695 	unsigned long static_init_pgcnt;
696 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
697 } pg_data_t;
698 
699 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
700 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
701 #ifdef CONFIG_FLAT_NODE_MEM_MAP
702 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
703 #else
704 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
705 #endif
706 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
707 
708 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
709 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
710 
pgdat_end_pfn(pg_data_t * pgdat)711 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
712 {
713 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
714 }
715 
pgdat_is_empty(pg_data_t * pgdat)716 static inline bool pgdat_is_empty(pg_data_t *pgdat)
717 {
718 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
719 }
720 
zone_id(const struct zone * zone)721 static inline int zone_id(const struct zone *zone)
722 {
723 	struct pglist_data *pgdat = zone->zone_pgdat;
724 
725 	return zone - pgdat->node_zones;
726 }
727 
728 #ifdef CONFIG_ZONE_DEVICE
is_dev_zone(const struct zone * zone)729 static inline bool is_dev_zone(const struct zone *zone)
730 {
731 	return zone_id(zone) == ZONE_DEVICE;
732 }
733 #else
is_dev_zone(const struct zone * zone)734 static inline bool is_dev_zone(const struct zone *zone)
735 {
736 	return false;
737 }
738 #endif
739 
740 #include <linux/memory_hotplug.h>
741 
742 extern struct mutex zonelists_mutex;
743 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
744 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
745 bool zone_watermark_ok(struct zone *z, unsigned int order,
746 		unsigned long mark, int classzone_idx, int alloc_flags);
747 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
748 		unsigned long mark, int classzone_idx);
749 enum memmap_context {
750 	MEMMAP_EARLY,
751 	MEMMAP_HOTPLUG,
752 };
753 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
754 				     unsigned long size);
755 
756 extern void lruvec_init(struct lruvec *lruvec);
757 
lruvec_zone(struct lruvec * lruvec)758 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
759 {
760 #ifdef CONFIG_MEMCG
761 	return lruvec->zone;
762 #else
763 	return container_of(lruvec, struct zone, lruvec);
764 #endif
765 }
766 
767 #ifdef CONFIG_HAVE_MEMORY_PRESENT
768 void memory_present(int nid, unsigned long start, unsigned long end);
769 #else
memory_present(int nid,unsigned long start,unsigned long end)770 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
771 #endif
772 
773 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
774 int local_memory_node(int node_id);
775 #else
local_memory_node(int node_id)776 static inline int local_memory_node(int node_id) { return node_id; };
777 #endif
778 
779 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
780 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
781 #endif
782 
783 /*
784  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
785  */
786 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
787 
populated_zone(struct zone * zone)788 static inline int populated_zone(struct zone *zone)
789 {
790 	return (!!zone->present_pages);
791 }
792 
793 extern int movable_zone;
794 
795 #ifdef CONFIG_HIGHMEM
zone_movable_is_highmem(void)796 static inline int zone_movable_is_highmem(void)
797 {
798 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
799 	return movable_zone == ZONE_HIGHMEM;
800 #else
801 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
802 #endif
803 }
804 #endif
805 
is_highmem_idx(enum zone_type idx)806 static inline int is_highmem_idx(enum zone_type idx)
807 {
808 #ifdef CONFIG_HIGHMEM
809 	return (idx == ZONE_HIGHMEM ||
810 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
811 #else
812 	return 0;
813 #endif
814 }
815 
816 /**
817  * is_highmem - helper function to quickly check if a struct zone is a
818  *              highmem zone or not.  This is an attempt to keep references
819  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
820  * @zone - pointer to struct zone variable
821  */
is_highmem(struct zone * zone)822 static inline int is_highmem(struct zone *zone)
823 {
824 #ifdef CONFIG_HIGHMEM
825 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
826 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
827 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
828 		zone_movable_is_highmem());
829 #else
830 	return 0;
831 #endif
832 }
833 
834 /* These two functions are used to setup the per zone pages min values */
835 struct ctl_table;
836 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
837 					void __user *, size_t *, loff_t *);
838 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
839 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
840 					void __user *, size_t *, loff_t *);
841 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
842 					void __user *, size_t *, loff_t *);
843 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
844 			void __user *, size_t *, loff_t *);
845 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
846 			void __user *, size_t *, loff_t *);
847 
848 extern int numa_zonelist_order_handler(struct ctl_table *, int,
849 			void __user *, size_t *, loff_t *);
850 extern char numa_zonelist_order[];
851 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
852 
853 #ifndef CONFIG_NEED_MULTIPLE_NODES
854 
855 extern struct pglist_data contig_page_data;
856 #define NODE_DATA(nid)		(&contig_page_data)
857 #define NODE_MEM_MAP(nid)	mem_map
858 
859 #else /* CONFIG_NEED_MULTIPLE_NODES */
860 
861 #include <asm/mmzone.h>
862 
863 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
864 
865 extern struct pglist_data *first_online_pgdat(void);
866 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
867 extern struct zone *next_zone(struct zone *zone);
868 
869 /**
870  * for_each_online_pgdat - helper macro to iterate over all online nodes
871  * @pgdat - pointer to a pg_data_t variable
872  */
873 #define for_each_online_pgdat(pgdat)			\
874 	for (pgdat = first_online_pgdat();		\
875 	     pgdat;					\
876 	     pgdat = next_online_pgdat(pgdat))
877 /**
878  * for_each_zone - helper macro to iterate over all memory zones
879  * @zone - pointer to struct zone variable
880  *
881  * The user only needs to declare the zone variable, for_each_zone
882  * fills it in.
883  */
884 #define for_each_zone(zone)			        \
885 	for (zone = (first_online_pgdat())->node_zones; \
886 	     zone;					\
887 	     zone = next_zone(zone))
888 
889 #define for_each_populated_zone(zone)		        \
890 	for (zone = (first_online_pgdat())->node_zones; \
891 	     zone;					\
892 	     zone = next_zone(zone))			\
893 		if (!populated_zone(zone))		\
894 			; /* do nothing */		\
895 		else
896 
zonelist_zone(struct zoneref * zoneref)897 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
898 {
899 	return zoneref->zone;
900 }
901 
zonelist_zone_idx(struct zoneref * zoneref)902 static inline int zonelist_zone_idx(struct zoneref *zoneref)
903 {
904 	return zoneref->zone_idx;
905 }
906 
zonelist_node_idx(struct zoneref * zoneref)907 static inline int zonelist_node_idx(struct zoneref *zoneref)
908 {
909 #ifdef CONFIG_NUMA
910 	/* zone_to_nid not available in this context */
911 	return zoneref->zone->node;
912 #else
913 	return 0;
914 #endif /* CONFIG_NUMA */
915 }
916 
917 /**
918  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
919  * @z - The cursor used as a starting point for the search
920  * @highest_zoneidx - The zone index of the highest zone to return
921  * @nodes - An optional nodemask to filter the zonelist with
922  *
923  * This function returns the next zone at or below a given zone index that is
924  * within the allowed nodemask using a cursor as the starting point for the
925  * search. The zoneref returned is a cursor that represents the current zone
926  * being examined. It should be advanced by one before calling
927  * next_zones_zonelist again.
928  */
929 struct zoneref *next_zones_zonelist(struct zoneref *z,
930 					enum zone_type highest_zoneidx,
931 					nodemask_t *nodes);
932 
933 /**
934  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
935  * @zonelist - The zonelist to search for a suitable zone
936  * @highest_zoneidx - The zone index of the highest zone to return
937  * @nodes - An optional nodemask to filter the zonelist with
938  * @zone - The first suitable zone found is returned via this parameter
939  *
940  * This function returns the first zone at or below a given zone index that is
941  * within the allowed nodemask. The zoneref returned is a cursor that can be
942  * used to iterate the zonelist with next_zones_zonelist by advancing it by
943  * one before calling.
944  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes,struct zone ** zone)945 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
946 					enum zone_type highest_zoneidx,
947 					nodemask_t *nodes,
948 					struct zone **zone)
949 {
950 	struct zoneref *z = next_zones_zonelist(zonelist->_zonerefs,
951 							highest_zoneidx, nodes);
952 	*zone = zonelist_zone(z);
953 	return z;
954 }
955 
956 /**
957  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
958  * @zone - The current zone in the iterator
959  * @z - The current pointer within zonelist->zones being iterated
960  * @zlist - The zonelist being iterated
961  * @highidx - The zone index of the highest zone to return
962  * @nodemask - Nodemask allowed by the allocator
963  *
964  * This iterator iterates though all zones at or below a given zone index and
965  * within a given nodemask
966  */
967 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
968 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
969 		zone;							\
970 		z = next_zones_zonelist(++z, highidx, nodemask),	\
971 			zone = zonelist_zone(z))			\
972 
973 /**
974  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
975  * @zone - The current zone in the iterator
976  * @z - The current pointer within zonelist->zones being iterated
977  * @zlist - The zonelist being iterated
978  * @highidx - The zone index of the highest zone to return
979  *
980  * This iterator iterates though all zones at or below a given zone index.
981  */
982 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
983 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
984 
985 #ifdef CONFIG_SPARSEMEM
986 #include <asm/sparsemem.h>
987 #endif
988 
989 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
990 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
early_pfn_to_nid(unsigned long pfn)991 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
992 {
993 	return 0;
994 }
995 #endif
996 
997 #ifdef CONFIG_FLATMEM
998 #define pfn_to_nid(pfn)		(0)
999 #endif
1000 
1001 #ifdef CONFIG_SPARSEMEM
1002 
1003 /*
1004  * SECTION_SHIFT    		#bits space required to store a section #
1005  *
1006  * PA_SECTION_SHIFT		physical address to/from section number
1007  * PFN_SECTION_SHIFT		pfn to/from section number
1008  */
1009 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1010 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1011 
1012 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1013 
1014 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1015 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1016 
1017 #define SECTION_BLOCKFLAGS_BITS \
1018 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1019 
1020 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1021 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1022 #endif
1023 
1024 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1025 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1026 
1027 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1028 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1029 
1030 struct page;
1031 struct page_ext;
1032 struct mem_section {
1033 	/*
1034 	 * This is, logically, a pointer to an array of struct
1035 	 * pages.  However, it is stored with some other magic.
1036 	 * (see sparse.c::sparse_init_one_section())
1037 	 *
1038 	 * Additionally during early boot we encode node id of
1039 	 * the location of the section here to guide allocation.
1040 	 * (see sparse.c::memory_present())
1041 	 *
1042 	 * Making it a UL at least makes someone do a cast
1043 	 * before using it wrong.
1044 	 */
1045 	unsigned long section_mem_map;
1046 
1047 	/* See declaration of similar field in struct zone */
1048 	unsigned long *pageblock_flags;
1049 #ifdef CONFIG_PAGE_EXTENSION
1050 	/*
1051 	 * If !SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1052 	 * section. (see page_ext.h about this.)
1053 	 */
1054 	struct page_ext *page_ext;
1055 	unsigned long pad;
1056 #endif
1057 	/*
1058 	 * WARNING: mem_section must be a power-of-2 in size for the
1059 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1060 	 */
1061 };
1062 
1063 #ifdef CONFIG_SPARSEMEM_EXTREME
1064 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1065 #else
1066 #define SECTIONS_PER_ROOT	1
1067 #endif
1068 
1069 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1070 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1071 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1072 
1073 #ifdef CONFIG_SPARSEMEM_EXTREME
1074 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1075 #else
1076 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1077 #endif
1078 
__nr_to_section(unsigned long nr)1079 static inline struct mem_section *__nr_to_section(unsigned long nr)
1080 {
1081 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1082 		return NULL;
1083 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1084 }
1085 extern int __section_nr(struct mem_section* ms);
1086 extern unsigned long usemap_size(void);
1087 
1088 /*
1089  * We use the lower bits of the mem_map pointer to store
1090  * a little bit of information.  There should be at least
1091  * 3 bits here due to 32-bit alignment.
1092  */
1093 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1094 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1095 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1096 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1097 #define SECTION_NID_SHIFT	2
1098 
__section_mem_map_addr(struct mem_section * section)1099 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1100 {
1101 	unsigned long map = section->section_mem_map;
1102 	map &= SECTION_MAP_MASK;
1103 	return (struct page *)map;
1104 }
1105 
present_section(struct mem_section * section)1106 static inline int present_section(struct mem_section *section)
1107 {
1108 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1109 }
1110 
present_section_nr(unsigned long nr)1111 static inline int present_section_nr(unsigned long nr)
1112 {
1113 	return present_section(__nr_to_section(nr));
1114 }
1115 
valid_section(struct mem_section * section)1116 static inline int valid_section(struct mem_section *section)
1117 {
1118 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1119 }
1120 
valid_section_nr(unsigned long nr)1121 static inline int valid_section_nr(unsigned long nr)
1122 {
1123 	return valid_section(__nr_to_section(nr));
1124 }
1125 
__pfn_to_section(unsigned long pfn)1126 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1127 {
1128 	return __nr_to_section(pfn_to_section_nr(pfn));
1129 }
1130 
1131 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
pfn_valid(unsigned long pfn)1132 static inline int pfn_valid(unsigned long pfn)
1133 {
1134 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1135 		return 0;
1136 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1137 }
1138 #endif
1139 
pfn_present(unsigned long pfn)1140 static inline int pfn_present(unsigned long pfn)
1141 {
1142 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1143 		return 0;
1144 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1145 }
1146 
1147 /*
1148  * These are _only_ used during initialisation, therefore they
1149  * can use __initdata ...  They could have names to indicate
1150  * this restriction.
1151  */
1152 #ifdef CONFIG_NUMA
1153 #define pfn_to_nid(pfn)							\
1154 ({									\
1155 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1156 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1157 })
1158 #else
1159 #define pfn_to_nid(pfn)		(0)
1160 #endif
1161 
1162 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1163 void sparse_init(void);
1164 #else
1165 #define sparse_init()	do {} while (0)
1166 #define sparse_index_init(_sec, _nid)  do {} while (0)
1167 #endif /* CONFIG_SPARSEMEM */
1168 
1169 /*
1170  * During memory init memblocks map pfns to nids. The search is expensive and
1171  * this caches recent lookups. The implementation of __early_pfn_to_nid
1172  * may treat start/end as pfns or sections.
1173  */
1174 struct mminit_pfnnid_cache {
1175 	unsigned long last_start;
1176 	unsigned long last_end;
1177 	int last_nid;
1178 };
1179 
1180 #ifndef early_pfn_valid
1181 #define early_pfn_valid(pfn)	(1)
1182 #endif
1183 
1184 void memory_present(int nid, unsigned long start, unsigned long end);
1185 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1186 
1187 /*
1188  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1189  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1190  * pfn_valid_within() should be used in this case; we optimise this away
1191  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1192  */
1193 #ifdef CONFIG_HOLES_IN_ZONE
1194 #define pfn_valid_within(pfn) pfn_valid(pfn)
1195 #else
1196 #define pfn_valid_within(pfn) (1)
1197 #endif
1198 
1199 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1200 /*
1201  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1202  * associated with it or not. In FLATMEM, it is expected that holes always
1203  * have valid memmap as long as there is valid PFNs either side of the hole.
1204  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1205  * entire section.
1206  *
1207  * However, an ARM, and maybe other embedded architectures in the future
1208  * free memmap backing holes to save memory on the assumption the memmap is
1209  * never used. The page_zone linkages are then broken even though pfn_valid()
1210  * returns true. A walker of the full memmap must then do this additional
1211  * check to ensure the memmap they are looking at is sane by making sure
1212  * the zone and PFN linkages are still valid. This is expensive, but walkers
1213  * of the full memmap are extremely rare.
1214  */
1215 int memmap_valid_within(unsigned long pfn,
1216 					struct page *page, struct zone *zone);
1217 #else
memmap_valid_within(unsigned long pfn,struct page * page,struct zone * zone)1218 static inline int memmap_valid_within(unsigned long pfn,
1219 					struct page *page, struct zone *zone)
1220 {
1221 	return 1;
1222 }
1223 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1224 
1225 #endif /* !__GENERATING_BOUNDS.H */
1226 #endif /* !__ASSEMBLY__ */
1227 #endif /* _LINUX_MMZONE_H */
1228