• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_PTRACE_H
2 #define _LINUX_PTRACE_H
3 
4 #include <linux/compiler.h>		/* For unlikely.  */
5 #include <linux/sched.h>		/* For struct task_struct.  */
6 #include <linux/err.h>			/* for IS_ERR_VALUE */
7 #include <linux/bug.h>			/* For BUG_ON.  */
8 #include <linux/pid_namespace.h>	/* For task_active_pid_ns.  */
9 #include <uapi/linux/ptrace.h>
10 
11 /*
12  * Ptrace flags
13  *
14  * The owner ship rules for task->ptrace which holds the ptrace
15  * flags is simple.  When a task is running it owns it's task->ptrace
16  * flags.  When the a task is stopped the ptracer owns task->ptrace.
17  */
18 
19 #define PT_SEIZED	0x00010000	/* SEIZE used, enable new behavior */
20 #define PT_PTRACED	0x00000001
21 #define PT_DTRACE	0x00000002	/* delayed trace (used on m68k, i386) */
22 
23 #define PT_OPT_FLAG_SHIFT	3
24 /* PT_TRACE_* event enable flags */
25 #define PT_EVENT_FLAG(event)	(1 << (PT_OPT_FLAG_SHIFT + (event)))
26 #define PT_TRACESYSGOOD		PT_EVENT_FLAG(0)
27 #define PT_TRACE_FORK		PT_EVENT_FLAG(PTRACE_EVENT_FORK)
28 #define PT_TRACE_VFORK		PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
29 #define PT_TRACE_CLONE		PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
30 #define PT_TRACE_EXEC		PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
31 #define PT_TRACE_VFORK_DONE	PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
32 #define PT_TRACE_EXIT		PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
33 #define PT_TRACE_SECCOMP	PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
34 
35 #define PT_EXITKILL		(PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT)
36 #define PT_SUSPEND_SECCOMP	(PTRACE_O_SUSPEND_SECCOMP << PT_OPT_FLAG_SHIFT)
37 
38 /* single stepping state bits (used on ARM and PA-RISC) */
39 #define PT_SINGLESTEP_BIT	31
40 #define PT_SINGLESTEP		(1<<PT_SINGLESTEP_BIT)
41 #define PT_BLOCKSTEP_BIT	30
42 #define PT_BLOCKSTEP		(1<<PT_BLOCKSTEP_BIT)
43 
44 extern long arch_ptrace(struct task_struct *child, long request,
45 			unsigned long addr, unsigned long data);
46 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
47 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
48 extern void ptrace_disable(struct task_struct *);
49 extern int ptrace_request(struct task_struct *child, long request,
50 			  unsigned long addr, unsigned long data);
51 extern void ptrace_notify(int exit_code);
52 extern void __ptrace_link(struct task_struct *child,
53 			  struct task_struct *new_parent,
54 			  const struct cred *ptracer_cred);
55 extern void __ptrace_unlink(struct task_struct *child);
56 extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead);
57 #define PTRACE_MODE_READ	0x01
58 #define PTRACE_MODE_ATTACH	0x02
59 #define PTRACE_MODE_NOAUDIT	0x04
60 #define PTRACE_MODE_FSCREDS	0x08
61 #define PTRACE_MODE_REALCREDS	0x10
62 #define PTRACE_MODE_SCHED	0x20
63 #define PTRACE_MODE_IBPB	0x40
64 
65 /* shorthands for READ/ATTACH and FSCREDS/REALCREDS combinations */
66 #define PTRACE_MODE_READ_FSCREDS (PTRACE_MODE_READ | PTRACE_MODE_FSCREDS)
67 #define PTRACE_MODE_READ_REALCREDS (PTRACE_MODE_READ | PTRACE_MODE_REALCREDS)
68 #define PTRACE_MODE_ATTACH_FSCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS)
69 #define PTRACE_MODE_ATTACH_REALCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS)
70 #define PTRACE_MODE_SPEC_IBPB (PTRACE_MODE_ATTACH_REALCREDS | PTRACE_MODE_IBPB)
71 
72 /**
73  * ptrace_may_access - check whether the caller is permitted to access
74  * a target task.
75  * @task: target task
76  * @mode: selects type of access and caller credentials
77  *
78  * Returns true on success, false on denial.
79  *
80  * One of the flags PTRACE_MODE_FSCREDS and PTRACE_MODE_REALCREDS must
81  * be set in @mode to specify whether the access was requested through
82  * a filesystem syscall (should use effective capabilities and fsuid
83  * of the caller) or through an explicit syscall such as
84  * process_vm_writev or ptrace (and should use the real credentials).
85  */
86 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
87 
88 /**
89  * ptrace_may_access - check whether the caller is permitted to access
90  * a target task.
91  * @task: target task
92  * @mode: selects type of access and caller credentials
93  *
94  * Returns true on success, false on denial.
95  *
96  * Similar to ptrace_may_access(). Only to be called from context switch
97  * code. Does not call into audit and the regular LSM hooks due to locking
98  * constraints.
99  */
100 extern bool ptrace_may_access_sched(struct task_struct *task, unsigned int mode);
101 
ptrace_reparented(struct task_struct * child)102 static inline int ptrace_reparented(struct task_struct *child)
103 {
104 	return !same_thread_group(child->real_parent, child->parent);
105 }
106 
ptrace_unlink(struct task_struct * child)107 static inline void ptrace_unlink(struct task_struct *child)
108 {
109 	if (unlikely(child->ptrace))
110 		__ptrace_unlink(child);
111 }
112 
113 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
114 			    unsigned long data);
115 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
116 			    unsigned long data);
117 
118 /**
119  * ptrace_parent - return the task that is tracing the given task
120  * @task: task to consider
121  *
122  * Returns %NULL if no one is tracing @task, or the &struct task_struct
123  * pointer to its tracer.
124  *
125  * Must called under rcu_read_lock().  The pointer returned might be kept
126  * live only by RCU.  During exec, this may be called with task_lock() held
127  * on @task, still held from when check_unsafe_exec() was called.
128  */
ptrace_parent(struct task_struct * task)129 static inline struct task_struct *ptrace_parent(struct task_struct *task)
130 {
131 	if (unlikely(task->ptrace))
132 		return rcu_dereference(task->parent);
133 	return NULL;
134 }
135 
136 /**
137  * ptrace_event_enabled - test whether a ptrace event is enabled
138  * @task: ptracee of interest
139  * @event: %PTRACE_EVENT_* to test
140  *
141  * Test whether @event is enabled for ptracee @task.
142  *
143  * Returns %true if @event is enabled, %false otherwise.
144  */
ptrace_event_enabled(struct task_struct * task,int event)145 static inline bool ptrace_event_enabled(struct task_struct *task, int event)
146 {
147 	return task->ptrace & PT_EVENT_FLAG(event);
148 }
149 
150 /**
151  * ptrace_event - possibly stop for a ptrace event notification
152  * @event:	%PTRACE_EVENT_* value to report
153  * @message:	value for %PTRACE_GETEVENTMSG to return
154  *
155  * Check whether @event is enabled and, if so, report @event and @message
156  * to the ptrace parent.
157  *
158  * Called without locks.
159  */
ptrace_event(int event,unsigned long message)160 static inline void ptrace_event(int event, unsigned long message)
161 {
162 	if (unlikely(ptrace_event_enabled(current, event))) {
163 		current->ptrace_message = message;
164 		ptrace_notify((event << 8) | SIGTRAP);
165 	} else if (event == PTRACE_EVENT_EXEC) {
166 		/* legacy EXEC report via SIGTRAP */
167 		if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
168 			send_sig(SIGTRAP, current, 0);
169 	}
170 }
171 
172 /**
173  * ptrace_event_pid - possibly stop for a ptrace event notification
174  * @event:	%PTRACE_EVENT_* value to report
175  * @pid:	process identifier for %PTRACE_GETEVENTMSG to return
176  *
177  * Check whether @event is enabled and, if so, report @event and @pid
178  * to the ptrace parent.  @pid is reported as the pid_t seen from the
179  * the ptrace parent's pid namespace.
180  *
181  * Called without locks.
182  */
ptrace_event_pid(int event,struct pid * pid)183 static inline void ptrace_event_pid(int event, struct pid *pid)
184 {
185 	/*
186 	 * FIXME: There's a potential race if a ptracer in a different pid
187 	 * namespace than parent attaches between computing message below and
188 	 * when we acquire tasklist_lock in ptrace_stop().  If this happens,
189 	 * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG.
190 	 */
191 	unsigned long message = 0;
192 	struct pid_namespace *ns;
193 
194 	rcu_read_lock();
195 	ns = task_active_pid_ns(rcu_dereference(current->parent));
196 	if (ns)
197 		message = pid_nr_ns(pid, ns);
198 	rcu_read_unlock();
199 
200 	ptrace_event(event, message);
201 }
202 
203 /**
204  * ptrace_init_task - initialize ptrace state for a new child
205  * @child:		new child task
206  * @ptrace:		true if child should be ptrace'd by parent's tracer
207  *
208  * This is called immediately after adding @child to its parent's children
209  * list.  @ptrace is false in the normal case, and true to ptrace @child.
210  *
211  * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
212  */
ptrace_init_task(struct task_struct * child,bool ptrace)213 static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
214 {
215 	INIT_LIST_HEAD(&child->ptrace_entry);
216 	INIT_LIST_HEAD(&child->ptraced);
217 	child->jobctl = 0;
218 	child->ptrace = 0;
219 	child->parent = child->real_parent;
220 
221 	if (unlikely(ptrace) && current->ptrace) {
222 		child->ptrace = current->ptrace;
223 		__ptrace_link(child, current->parent, current->ptracer_cred);
224 
225 		if (child->ptrace & PT_SEIZED)
226 			task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
227 		else
228 			sigaddset(&child->pending.signal, SIGSTOP);
229 
230 		set_tsk_thread_flag(child, TIF_SIGPENDING);
231 	}
232 	else
233 		child->ptracer_cred = NULL;
234 }
235 
236 /**
237  * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
238  * @task:	task in %EXIT_DEAD state
239  *
240  * Called with write_lock(&tasklist_lock) held.
241  */
ptrace_release_task(struct task_struct * task)242 static inline void ptrace_release_task(struct task_struct *task)
243 {
244 	BUG_ON(!list_empty(&task->ptraced));
245 	ptrace_unlink(task);
246 	BUG_ON(!list_empty(&task->ptrace_entry));
247 }
248 
249 #ifndef force_successful_syscall_return
250 /*
251  * System call handlers that, upon successful completion, need to return a
252  * negative value should call force_successful_syscall_return() right before
253  * returning.  On architectures where the syscall convention provides for a
254  * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
255  * others), this macro can be used to ensure that the error flag will not get
256  * set.  On architectures which do not support a separate error flag, the macro
257  * is a no-op and the spurious error condition needs to be filtered out by some
258  * other means (e.g., in user-level, by passing an extra argument to the
259  * syscall handler, or something along those lines).
260  */
261 #define force_successful_syscall_return() do { } while (0)
262 #endif
263 
264 #ifndef is_syscall_success
265 /*
266  * On most systems we can tell if a syscall is a success based on if the retval
267  * is an error value.  On some systems like ia64 and powerpc they have different
268  * indicators of success/failure and must define their own.
269  */
270 #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
271 #endif
272 
273 /*
274  * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
275  *
276  * These do-nothing inlines are used when the arch does not
277  * implement single-step.  The kerneldoc comments are here
278  * to document the interface for all arch definitions.
279  */
280 
281 #ifndef arch_has_single_step
282 /**
283  * arch_has_single_step - does this CPU support user-mode single-step?
284  *
285  * If this is defined, then there must be function declarations or
286  * inlines for user_enable_single_step() and user_disable_single_step().
287  * arch_has_single_step() should evaluate to nonzero iff the machine
288  * supports instruction single-step for user mode.
289  * It can be a constant or it can test a CPU feature bit.
290  */
291 #define arch_has_single_step()		(0)
292 
293 /**
294  * user_enable_single_step - single-step in user-mode task
295  * @task: either current or a task stopped in %TASK_TRACED
296  *
297  * This can only be called when arch_has_single_step() has returned nonzero.
298  * Set @task so that when it returns to user mode, it will trap after the
299  * next single instruction executes.  If arch_has_block_step() is defined,
300  * this must clear the effects of user_enable_block_step() too.
301  */
user_enable_single_step(struct task_struct * task)302 static inline void user_enable_single_step(struct task_struct *task)
303 {
304 	BUG();			/* This can never be called.  */
305 }
306 
307 /**
308  * user_disable_single_step - cancel user-mode single-step
309  * @task: either current or a task stopped in %TASK_TRACED
310  *
311  * Clear @task of the effects of user_enable_single_step() and
312  * user_enable_block_step().  This can be called whether or not either
313  * of those was ever called on @task, and even if arch_has_single_step()
314  * returned zero.
315  */
user_disable_single_step(struct task_struct * task)316 static inline void user_disable_single_step(struct task_struct *task)
317 {
318 }
319 #else
320 extern void user_enable_single_step(struct task_struct *);
321 extern void user_disable_single_step(struct task_struct *);
322 #endif	/* arch_has_single_step */
323 
324 #ifndef arch_has_block_step
325 /**
326  * arch_has_block_step - does this CPU support user-mode block-step?
327  *
328  * If this is defined, then there must be a function declaration or inline
329  * for user_enable_block_step(), and arch_has_single_step() must be defined
330  * too.  arch_has_block_step() should evaluate to nonzero iff the machine
331  * supports step-until-branch for user mode.  It can be a constant or it
332  * can test a CPU feature bit.
333  */
334 #define arch_has_block_step()		(0)
335 
336 /**
337  * user_enable_block_step - step until branch in user-mode task
338  * @task: either current or a task stopped in %TASK_TRACED
339  *
340  * This can only be called when arch_has_block_step() has returned nonzero,
341  * and will never be called when single-instruction stepping is being used.
342  * Set @task so that when it returns to user mode, it will trap after the
343  * next branch or trap taken.
344  */
user_enable_block_step(struct task_struct * task)345 static inline void user_enable_block_step(struct task_struct *task)
346 {
347 	BUG();			/* This can never be called.  */
348 }
349 #else
350 extern void user_enable_block_step(struct task_struct *);
351 #endif	/* arch_has_block_step */
352 
353 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
354 extern void user_single_step_siginfo(struct task_struct *tsk,
355 				struct pt_regs *regs, siginfo_t *info);
356 #else
user_single_step_siginfo(struct task_struct * tsk,struct pt_regs * regs,siginfo_t * info)357 static inline void user_single_step_siginfo(struct task_struct *tsk,
358 				struct pt_regs *regs, siginfo_t *info)
359 {
360 	memset(info, 0, sizeof(*info));
361 	info->si_signo = SIGTRAP;
362 }
363 #endif
364 
365 #ifndef arch_ptrace_stop_needed
366 /**
367  * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
368  * @code:	current->exit_code value ptrace will stop with
369  * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
370  *
371  * This is called with the siglock held, to decide whether or not it's
372  * necessary to release the siglock and call arch_ptrace_stop() with the
373  * same @code and @info arguments.  It can be defined to a constant if
374  * arch_ptrace_stop() is never required, or always is.  On machines where
375  * this makes sense, it should be defined to a quick test to optimize out
376  * calling arch_ptrace_stop() when it would be superfluous.  For example,
377  * if the thread has not been back to user mode since the last stop, the
378  * thread state might indicate that nothing needs to be done.
379  *
380  * This is guaranteed to be invoked once before a task stops for ptrace and
381  * may include arch-specific operations necessary prior to a ptrace stop.
382  */
383 #define arch_ptrace_stop_needed(code, info)	(0)
384 #endif
385 
386 #ifndef arch_ptrace_stop
387 /**
388  * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
389  * @code:	current->exit_code value ptrace will stop with
390  * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
391  *
392  * This is called with no locks held when arch_ptrace_stop_needed() has
393  * just returned nonzero.  It is allowed to block, e.g. for user memory
394  * access.  The arch can have machine-specific work to be done before
395  * ptrace stops.  On ia64, register backing store gets written back to user
396  * memory here.  Since this can be costly (requires dropping the siglock),
397  * we only do it when the arch requires it for this particular stop, as
398  * indicated by arch_ptrace_stop_needed().
399  */
400 #define arch_ptrace_stop(code, info)		do { } while (0)
401 #endif
402 
403 #ifndef current_pt_regs
404 #define current_pt_regs() task_pt_regs(current)
405 #endif
406 
407 #ifndef ptrace_signal_deliver
408 #define ptrace_signal_deliver() ((void)0)
409 #endif
410 
411 /*
412  * unlike current_pt_regs(), this one is equal to task_pt_regs(current)
413  * on *all* architectures; the only reason to have a per-arch definition
414  * is optimisation.
415  */
416 #ifndef signal_pt_regs
417 #define signal_pt_regs() task_pt_regs(current)
418 #endif
419 
420 #ifndef current_user_stack_pointer
421 #define current_user_stack_pointer() user_stack_pointer(current_pt_regs())
422 #endif
423 
424 extern int task_current_syscall(struct task_struct *target, long *callno,
425 				unsigned long args[6], unsigned int maxargs,
426 				unsigned long *sp, unsigned long *pc);
427 
428 #endif
429