• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005 David Brownell
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #ifndef __LINUX_SPI_H
16 #define __LINUX_SPI_H
17 
18 #include <linux/device.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/slab.h>
21 #include <linux/kthread.h>
22 #include <linux/completion.h>
23 #include <linux/scatterlist.h>
24 
25 struct dma_chan;
26 struct spi_master;
27 struct spi_transfer;
28 
29 /*
30  * INTERFACES between SPI master-side drivers and SPI infrastructure.
31  * (There's no SPI slave support for Linux yet...)
32  */
33 extern struct bus_type spi_bus_type;
34 
35 /**
36  * struct spi_statistics - statistics for spi transfers
37  * @lock:          lock protecting this structure
38  *
39  * @messages:      number of spi-messages handled
40  * @transfers:     number of spi_transfers handled
41  * @errors:        number of errors during spi_transfer
42  * @timedout:      number of timeouts during spi_transfer
43  *
44  * @spi_sync:      number of times spi_sync is used
45  * @spi_sync_immediate:
46  *                 number of times spi_sync is executed immediately
47  *                 in calling context without queuing and scheduling
48  * @spi_async:     number of times spi_async is used
49  *
50  * @bytes:         number of bytes transferred to/from device
51  * @bytes_tx:      number of bytes sent to device
52  * @bytes_rx:      number of bytes received from device
53  *
54  * @transfer_bytes_histo:
55  *                 transfer bytes histogramm
56  */
57 struct spi_statistics {
58 	spinlock_t		lock; /* lock for the whole structure */
59 
60 	unsigned long		messages;
61 	unsigned long		transfers;
62 	unsigned long		errors;
63 	unsigned long		timedout;
64 
65 	unsigned long		spi_sync;
66 	unsigned long		spi_sync_immediate;
67 	unsigned long		spi_async;
68 
69 	unsigned long long	bytes;
70 	unsigned long long	bytes_rx;
71 	unsigned long long	bytes_tx;
72 
73 #define SPI_STATISTICS_HISTO_SIZE 17
74 	unsigned long transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
75 };
76 
77 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
78 				       struct spi_transfer *xfer,
79 				       struct spi_master *master);
80 
81 #define SPI_STATISTICS_ADD_TO_FIELD(stats, field, count)	\
82 	do {							\
83 		unsigned long flags;				\
84 		spin_lock_irqsave(&(stats)->lock, flags);	\
85 		(stats)->field += count;			\
86 		spin_unlock_irqrestore(&(stats)->lock, flags);	\
87 	} while (0)
88 
89 #define SPI_STATISTICS_INCREMENT_FIELD(stats, field)	\
90 	SPI_STATISTICS_ADD_TO_FIELD(stats, field, 1)
91 
92 /**
93  * struct spi_device - Master side proxy for an SPI slave device
94  * @dev: Driver model representation of the device.
95  * @master: SPI controller used with the device.
96  * @max_speed_hz: Maximum clock rate to be used with this chip
97  *	(on this board); may be changed by the device's driver.
98  *	The spi_transfer.speed_hz can override this for each transfer.
99  * @chip_select: Chipselect, distinguishing chips handled by @master.
100  * @mode: The spi mode defines how data is clocked out and in.
101  *	This may be changed by the device's driver.
102  *	The "active low" default for chipselect mode can be overridden
103  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
104  *	each word in a transfer (by specifying SPI_LSB_FIRST).
105  * @bits_per_word: Data transfers involve one or more words; word sizes
106  *	like eight or 12 bits are common.  In-memory wordsizes are
107  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
108  *	This may be changed by the device's driver, or left at the
109  *	default (0) indicating protocol words are eight bit bytes.
110  *	The spi_transfer.bits_per_word can override this for each transfer.
111  * @irq: Negative, or the number passed to request_irq() to receive
112  *	interrupts from this device.
113  * @controller_state: Controller's runtime state
114  * @controller_data: Board-specific definitions for controller, such as
115  *	FIFO initialization parameters; from board_info.controller_data
116  * @modalias: Name of the driver to use with this device, or an alias
117  *	for that name.  This appears in the sysfs "modalias" attribute
118  *	for driver coldplugging, and in uevents used for hotplugging
119  * @cs_gpio: gpio number of the chipselect line (optional, -ENOENT when
120  *	when not using a GPIO line)
121  *
122  * @statistics: statistics for the spi_device
123  *
124  * A @spi_device is used to interchange data between an SPI slave
125  * (usually a discrete chip) and CPU memory.
126  *
127  * In @dev, the platform_data is used to hold information about this
128  * device that's meaningful to the device's protocol driver, but not
129  * to its controller.  One example might be an identifier for a chip
130  * variant with slightly different functionality; another might be
131  * information about how this particular board wires the chip's pins.
132  */
133 struct spi_device {
134 	struct device		dev;
135 	struct spi_master	*master;
136 	u32			max_speed_hz;
137 	u8			chip_select;
138 	u8			bits_per_word;
139 	u16			mode;
140 #define	SPI_CPHA	0x01			/* clock phase */
141 #define	SPI_CPOL	0x02			/* clock polarity */
142 #define	SPI_MODE_0	(0|0)			/* (original MicroWire) */
143 #define	SPI_MODE_1	(0|SPI_CPHA)
144 #define	SPI_MODE_2	(SPI_CPOL|0)
145 #define	SPI_MODE_3	(SPI_CPOL|SPI_CPHA)
146 #define	SPI_CS_HIGH	0x04			/* chipselect active high? */
147 #define	SPI_LSB_FIRST	0x08			/* per-word bits-on-wire */
148 #define	SPI_3WIRE	0x10			/* SI/SO signals shared */
149 #define	SPI_LOOP	0x20			/* loopback mode */
150 #define	SPI_NO_CS	0x40			/* 1 dev/bus, no chipselect */
151 #define	SPI_READY	0x80			/* slave pulls low to pause */
152 #define	SPI_TX_DUAL	0x100			/* transmit with 2 wires */
153 #define	SPI_TX_QUAD	0x200			/* transmit with 4 wires */
154 #define	SPI_RX_DUAL	0x400			/* receive with 2 wires */
155 #define	SPI_RX_QUAD	0x800			/* receive with 4 wires */
156 	int			irq;
157 	void			*controller_state;
158 	void			*controller_data;
159 	char			modalias[SPI_NAME_SIZE];
160 	int			cs_gpio;	/* chip select gpio */
161 
162 	/* the statistics */
163 	struct spi_statistics	statistics;
164 
165 	/*
166 	 * likely need more hooks for more protocol options affecting how
167 	 * the controller talks to each chip, like:
168 	 *  - memory packing (12 bit samples into low bits, others zeroed)
169 	 *  - priority
170 	 *  - drop chipselect after each word
171 	 *  - chipselect delays
172 	 *  - ...
173 	 */
174 };
175 
to_spi_device(struct device * dev)176 static inline struct spi_device *to_spi_device(struct device *dev)
177 {
178 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
179 }
180 
181 /* most drivers won't need to care about device refcounting */
spi_dev_get(struct spi_device * spi)182 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
183 {
184 	return (spi && get_device(&spi->dev)) ? spi : NULL;
185 }
186 
spi_dev_put(struct spi_device * spi)187 static inline void spi_dev_put(struct spi_device *spi)
188 {
189 	if (spi)
190 		put_device(&spi->dev);
191 }
192 
193 /* ctldata is for the bus_master driver's runtime state */
spi_get_ctldata(struct spi_device * spi)194 static inline void *spi_get_ctldata(struct spi_device *spi)
195 {
196 	return spi->controller_state;
197 }
198 
spi_set_ctldata(struct spi_device * spi,void * state)199 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
200 {
201 	spi->controller_state = state;
202 }
203 
204 /* device driver data */
205 
spi_set_drvdata(struct spi_device * spi,void * data)206 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
207 {
208 	dev_set_drvdata(&spi->dev, data);
209 }
210 
spi_get_drvdata(struct spi_device * spi)211 static inline void *spi_get_drvdata(struct spi_device *spi)
212 {
213 	return dev_get_drvdata(&spi->dev);
214 }
215 
216 struct spi_message;
217 struct spi_transfer;
218 
219 /**
220  * struct spi_driver - Host side "protocol" driver
221  * @id_table: List of SPI devices supported by this driver
222  * @probe: Binds this driver to the spi device.  Drivers can verify
223  *	that the device is actually present, and may need to configure
224  *	characteristics (such as bits_per_word) which weren't needed for
225  *	the initial configuration done during system setup.
226  * @remove: Unbinds this driver from the spi device
227  * @shutdown: Standard shutdown callback used during system state
228  *	transitions such as powerdown/halt and kexec
229  * @driver: SPI device drivers should initialize the name and owner
230  *	field of this structure.
231  *
232  * This represents the kind of device driver that uses SPI messages to
233  * interact with the hardware at the other end of a SPI link.  It's called
234  * a "protocol" driver because it works through messages rather than talking
235  * directly to SPI hardware (which is what the underlying SPI controller
236  * driver does to pass those messages).  These protocols are defined in the
237  * specification for the device(s) supported by the driver.
238  *
239  * As a rule, those device protocols represent the lowest level interface
240  * supported by a driver, and it will support upper level interfaces too.
241  * Examples of such upper levels include frameworks like MTD, networking,
242  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
243  */
244 struct spi_driver {
245 	const struct spi_device_id *id_table;
246 	int			(*probe)(struct spi_device *spi);
247 	int			(*remove)(struct spi_device *spi);
248 	void			(*shutdown)(struct spi_device *spi);
249 	struct device_driver	driver;
250 };
251 
to_spi_driver(struct device_driver * drv)252 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
253 {
254 	return drv ? container_of(drv, struct spi_driver, driver) : NULL;
255 }
256 
257 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
258 
259 /**
260  * spi_unregister_driver - reverse effect of spi_register_driver
261  * @sdrv: the driver to unregister
262  * Context: can sleep
263  */
spi_unregister_driver(struct spi_driver * sdrv)264 static inline void spi_unregister_driver(struct spi_driver *sdrv)
265 {
266 	if (sdrv)
267 		driver_unregister(&sdrv->driver);
268 }
269 
270 /* use a define to avoid include chaining to get THIS_MODULE */
271 #define spi_register_driver(driver) \
272 	__spi_register_driver(THIS_MODULE, driver)
273 
274 /**
275  * module_spi_driver() - Helper macro for registering a SPI driver
276  * @__spi_driver: spi_driver struct
277  *
278  * Helper macro for SPI drivers which do not do anything special in module
279  * init/exit. This eliminates a lot of boilerplate. Each module may only
280  * use this macro once, and calling it replaces module_init() and module_exit()
281  */
282 #define module_spi_driver(__spi_driver) \
283 	module_driver(__spi_driver, spi_register_driver, \
284 			spi_unregister_driver)
285 
286 /**
287  * struct spi_master - interface to SPI master controller
288  * @dev: device interface to this driver
289  * @list: link with the global spi_master list
290  * @bus_num: board-specific (and often SOC-specific) identifier for a
291  *	given SPI controller.
292  * @num_chipselect: chipselects are used to distinguish individual
293  *	SPI slaves, and are numbered from zero to num_chipselects.
294  *	each slave has a chipselect signal, but it's common that not
295  *	every chipselect is connected to a slave.
296  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
297  * @mode_bits: flags understood by this controller driver
298  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
299  *	supported by the driver. Bit n indicates that a bits_per_word n+1 is
300  *	supported. If set, the SPI core will reject any transfer with an
301  *	unsupported bits_per_word. If not set, this value is simply ignored,
302  *	and it's up to the individual driver to perform any validation.
303  * @min_speed_hz: Lowest supported transfer speed
304  * @max_speed_hz: Highest supported transfer speed
305  * @flags: other constraints relevant to this driver
306  * @bus_lock_spinlock: spinlock for SPI bus locking
307  * @bus_lock_mutex: mutex for SPI bus locking
308  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
309  * @setup: updates the device mode and clocking records used by a
310  *	device's SPI controller; protocol code may call this.  This
311  *	must fail if an unrecognized or unsupported mode is requested.
312  *	It's always safe to call this unless transfers are pending on
313  *	the device whose settings are being modified.
314  * @transfer: adds a message to the controller's transfer queue.
315  * @cleanup: frees controller-specific state
316  * @can_dma: determine whether this master supports DMA
317  * @queued: whether this master is providing an internal message queue
318  * @kworker: thread struct for message pump
319  * @kworker_task: pointer to task for message pump kworker thread
320  * @pump_messages: work struct for scheduling work to the message pump
321  * @queue_lock: spinlock to syncronise access to message queue
322  * @queue: message queue
323  * @idling: the device is entering idle state
324  * @cur_msg: the currently in-flight message
325  * @cur_msg_prepared: spi_prepare_message was called for the currently
326  *                    in-flight message
327  * @cur_msg_mapped: message has been mapped for DMA
328  * @xfer_completion: used by core transfer_one_message()
329  * @busy: message pump is busy
330  * @running: message pump is running
331  * @rt: whether this queue is set to run as a realtime task
332  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
333  *                   while the hardware is prepared, using the parent
334  *                   device for the spidev
335  * @max_dma_len: Maximum length of a DMA transfer for the device.
336  * @prepare_transfer_hardware: a message will soon arrive from the queue
337  *	so the subsystem requests the driver to prepare the transfer hardware
338  *	by issuing this call
339  * @transfer_one_message: the subsystem calls the driver to transfer a single
340  *	message while queuing transfers that arrive in the meantime. When the
341  *	driver is finished with this message, it must call
342  *	spi_finalize_current_message() so the subsystem can issue the next
343  *	message
344  * @unprepare_transfer_hardware: there are currently no more messages on the
345  *	queue so the subsystem notifies the driver that it may relax the
346  *	hardware by issuing this call
347  * @set_cs: set the logic level of the chip select line.  May be called
348  *          from interrupt context.
349  * @prepare_message: set up the controller to transfer a single message,
350  *                   for example doing DMA mapping.  Called from threaded
351  *                   context.
352  * @transfer_one: transfer a single spi_transfer.
353  *                  - return 0 if the transfer is finished,
354  *                  - return 1 if the transfer is still in progress. When
355  *                    the driver is finished with this transfer it must
356  *                    call spi_finalize_current_transfer() so the subsystem
357  *                    can issue the next transfer. Note: transfer_one and
358  *                    transfer_one_message are mutually exclusive; when both
359  *                    are set, the generic subsystem does not call your
360  *                    transfer_one callback.
361  * @handle_err: the subsystem calls the driver to handle an error that occurs
362  *		in the generic implementation of transfer_one_message().
363  * @unprepare_message: undo any work done by prepare_message().
364  * @cs_gpios: Array of GPIOs to use as chip select lines; one per CS
365  *	number. Any individual value may be -ENOENT for CS lines that
366  *	are not GPIOs (driven by the SPI controller itself).
367  * @statistics: statistics for the spi_master
368  * @dma_tx: DMA transmit channel
369  * @dma_rx: DMA receive channel
370  * @dummy_rx: dummy receive buffer for full-duplex devices
371  * @dummy_tx: dummy transmit buffer for full-duplex devices
372  *
373  * Each SPI master controller can communicate with one or more @spi_device
374  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
375  * but not chip select signals.  Each device may be configured to use a
376  * different clock rate, since those shared signals are ignored unless
377  * the chip is selected.
378  *
379  * The driver for an SPI controller manages access to those devices through
380  * a queue of spi_message transactions, copying data between CPU memory and
381  * an SPI slave device.  For each such message it queues, it calls the
382  * message's completion function when the transaction completes.
383  */
384 struct spi_master {
385 	struct device	dev;
386 
387 	struct list_head list;
388 
389 	/* other than negative (== assign one dynamically), bus_num is fully
390 	 * board-specific.  usually that simplifies to being SOC-specific.
391 	 * example:  one SOC has three SPI controllers, numbered 0..2,
392 	 * and one board's schematics might show it using SPI-2.  software
393 	 * would normally use bus_num=2 for that controller.
394 	 */
395 	s16			bus_num;
396 
397 	/* chipselects will be integral to many controllers; some others
398 	 * might use board-specific GPIOs.
399 	 */
400 	u16			num_chipselect;
401 
402 	/* some SPI controllers pose alignment requirements on DMAable
403 	 * buffers; let protocol drivers know about these requirements.
404 	 */
405 	u16			dma_alignment;
406 
407 	/* spi_device.mode flags understood by this controller driver */
408 	u16			mode_bits;
409 
410 	/* bitmask of supported bits_per_word for transfers */
411 	u32			bits_per_word_mask;
412 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
413 #define SPI_BIT_MASK(bits) (((bits) == 32) ? ~0U : (BIT(bits) - 1))
414 #define SPI_BPW_RANGE_MASK(min, max) (SPI_BIT_MASK(max) - SPI_BIT_MASK(min - 1))
415 
416 	/* limits on transfer speed */
417 	u32			min_speed_hz;
418 	u32			max_speed_hz;
419 
420 	/* other constraints relevant to this driver */
421 	u16			flags;
422 #define SPI_MASTER_HALF_DUPLEX	BIT(0)		/* can't do full duplex */
423 #define SPI_MASTER_NO_RX	BIT(1)		/* can't do buffer read */
424 #define SPI_MASTER_NO_TX	BIT(2)		/* can't do buffer write */
425 #define SPI_MASTER_MUST_RX      BIT(3)		/* requires rx */
426 #define SPI_MASTER_MUST_TX      BIT(4)		/* requires tx */
427 
428 	/* flag indicating this is a non-devres managed controller */
429 	bool			devm_allocated;
430 
431 	/* lock and mutex for SPI bus locking */
432 	spinlock_t		bus_lock_spinlock;
433 	struct mutex		bus_lock_mutex;
434 
435 	/* flag indicating that the SPI bus is locked for exclusive use */
436 	bool			bus_lock_flag;
437 
438 	/* Setup mode and clock, etc (spi driver may call many times).
439 	 *
440 	 * IMPORTANT:  this may be called when transfers to another
441 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
442 	 * which could break those transfers.
443 	 */
444 	int			(*setup)(struct spi_device *spi);
445 
446 	/* bidirectional bulk transfers
447 	 *
448 	 * + The transfer() method may not sleep; its main role is
449 	 *   just to add the message to the queue.
450 	 * + For now there's no remove-from-queue operation, or
451 	 *   any other request management
452 	 * + To a given spi_device, message queueing is pure fifo
453 	 *
454 	 * + The master's main job is to process its message queue,
455 	 *   selecting a chip then transferring data
456 	 * + If there are multiple spi_device children, the i/o queue
457 	 *   arbitration algorithm is unspecified (round robin, fifo,
458 	 *   priority, reservations, preemption, etc)
459 	 *
460 	 * + Chipselect stays active during the entire message
461 	 *   (unless modified by spi_transfer.cs_change != 0).
462 	 * + The message transfers use clock and SPI mode parameters
463 	 *   previously established by setup() for this device
464 	 */
465 	int			(*transfer)(struct spi_device *spi,
466 						struct spi_message *mesg);
467 
468 	/* called on release() to free memory provided by spi_master */
469 	void			(*cleanup)(struct spi_device *spi);
470 
471 	/*
472 	 * Used to enable core support for DMA handling, if can_dma()
473 	 * exists and returns true then the transfer will be mapped
474 	 * prior to transfer_one() being called.  The driver should
475 	 * not modify or store xfer and dma_tx and dma_rx must be set
476 	 * while the device is prepared.
477 	 */
478 	bool			(*can_dma)(struct spi_master *master,
479 					   struct spi_device *spi,
480 					   struct spi_transfer *xfer);
481 
482 	/*
483 	 * These hooks are for drivers that want to use the generic
484 	 * master transfer queueing mechanism. If these are used, the
485 	 * transfer() function above must NOT be specified by the driver.
486 	 * Over time we expect SPI drivers to be phased over to this API.
487 	 */
488 	bool				queued;
489 	struct kthread_worker		kworker;
490 	struct task_struct		*kworker_task;
491 	struct kthread_work		pump_messages;
492 	spinlock_t			queue_lock;
493 	struct list_head		queue;
494 	struct spi_message		*cur_msg;
495 	bool				idling;
496 	bool				busy;
497 	bool				running;
498 	bool				rt;
499 	bool				auto_runtime_pm;
500 	bool                            cur_msg_prepared;
501 	bool				cur_msg_mapped;
502 	struct completion               xfer_completion;
503 	size_t				max_dma_len;
504 
505 	int (*prepare_transfer_hardware)(struct spi_master *master);
506 	int (*transfer_one_message)(struct spi_master *master,
507 				    struct spi_message *mesg);
508 	int (*unprepare_transfer_hardware)(struct spi_master *master);
509 	int (*prepare_message)(struct spi_master *master,
510 			       struct spi_message *message);
511 	int (*unprepare_message)(struct spi_master *master,
512 				 struct spi_message *message);
513 
514 	/*
515 	 * These hooks are for drivers that use a generic implementation
516 	 * of transfer_one_message() provied by the core.
517 	 */
518 	void (*set_cs)(struct spi_device *spi, bool enable);
519 	int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
520 			    struct spi_transfer *transfer);
521 	void (*handle_err)(struct spi_master *master,
522 			   struct spi_message *message);
523 
524 	/* gpio chip select */
525 	int			*cs_gpios;
526 
527 	/* statistics */
528 	struct spi_statistics	statistics;
529 
530 	/* DMA channels for use with core dmaengine helpers */
531 	struct dma_chan		*dma_tx;
532 	struct dma_chan		*dma_rx;
533 
534 	/* dummy data for full duplex devices */
535 	void			*dummy_rx;
536 	void			*dummy_tx;
537 };
538 
spi_master_get_devdata(struct spi_master * master)539 static inline void *spi_master_get_devdata(struct spi_master *master)
540 {
541 	return dev_get_drvdata(&master->dev);
542 }
543 
spi_master_set_devdata(struct spi_master * master,void * data)544 static inline void spi_master_set_devdata(struct spi_master *master, void *data)
545 {
546 	dev_set_drvdata(&master->dev, data);
547 }
548 
spi_master_get(struct spi_master * master)549 static inline struct spi_master *spi_master_get(struct spi_master *master)
550 {
551 	if (!master || !get_device(&master->dev))
552 		return NULL;
553 	return master;
554 }
555 
spi_master_put(struct spi_master * master)556 static inline void spi_master_put(struct spi_master *master)
557 {
558 	if (master)
559 		put_device(&master->dev);
560 }
561 
562 /* PM calls that need to be issued by the driver */
563 extern int spi_master_suspend(struct spi_master *master);
564 extern int spi_master_resume(struct spi_master *master);
565 
566 /* Calls the driver make to interact with the message queue */
567 extern struct spi_message *spi_get_next_queued_message(struct spi_master *master);
568 extern void spi_finalize_current_message(struct spi_master *master);
569 extern void spi_finalize_current_transfer(struct spi_master *master);
570 
571 /* the spi driver core manages memory for the spi_master classdev */
572 extern struct spi_master *
573 spi_alloc_master(struct device *host, unsigned size);
574 extern struct spi_master *
575 devm_spi_alloc_master(struct device *dev, unsigned int size);
576 
577 extern int spi_register_master(struct spi_master *master);
578 extern int devm_spi_register_master(struct device *dev,
579 				    struct spi_master *master);
580 extern void spi_unregister_master(struct spi_master *master);
581 
582 extern struct spi_master *spi_busnum_to_master(u16 busnum);
583 
584 /*---------------------------------------------------------------------------*/
585 
586 /*
587  * I/O INTERFACE between SPI controller and protocol drivers
588  *
589  * Protocol drivers use a queue of spi_messages, each transferring data
590  * between the controller and memory buffers.
591  *
592  * The spi_messages themselves consist of a series of read+write transfer
593  * segments.  Those segments always read the same number of bits as they
594  * write; but one or the other is easily ignored by passing a null buffer
595  * pointer.  (This is unlike most types of I/O API, because SPI hardware
596  * is full duplex.)
597  *
598  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
599  * up to the protocol driver, which guarantees the integrity of both (as
600  * well as the data buffers) for as long as the message is queued.
601  */
602 
603 /**
604  * struct spi_transfer - a read/write buffer pair
605  * @tx_buf: data to be written (dma-safe memory), or NULL
606  * @rx_buf: data to be read (dma-safe memory), or NULL
607  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
608  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
609  * @tx_nbits: number of bits used for writing. If 0 the default
610  *      (SPI_NBITS_SINGLE) is used.
611  * @rx_nbits: number of bits used for reading. If 0 the default
612  *      (SPI_NBITS_SINGLE) is used.
613  * @len: size of rx and tx buffers (in bytes)
614  * @speed_hz: Select a speed other than the device default for this
615  *      transfer. If 0 the default (from @spi_device) is used.
616  * @bits_per_word: select a bits_per_word other than the device default
617  *      for this transfer. If 0 the default (from @spi_device) is used.
618  * @cs_change: affects chipselect after this transfer completes
619  * @delay_usecs: microseconds to delay after this transfer before
620  *	(optionally) changing the chipselect status, then starting
621  *	the next transfer or completing this @spi_message.
622  * @transfer_list: transfers are sequenced through @spi_message.transfers
623  * @tx_sg: Scatterlist for transmit, currently not for client use
624  * @rx_sg: Scatterlist for receive, currently not for client use
625  *
626  * SPI transfers always write the same number of bytes as they read.
627  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
628  * In some cases, they may also want to provide DMA addresses for
629  * the data being transferred; that may reduce overhead, when the
630  * underlying driver uses dma.
631  *
632  * If the transmit buffer is null, zeroes will be shifted out
633  * while filling @rx_buf.  If the receive buffer is null, the data
634  * shifted in will be discarded.  Only "len" bytes shift out (or in).
635  * It's an error to try to shift out a partial word.  (For example, by
636  * shifting out three bytes with word size of sixteen or twenty bits;
637  * the former uses two bytes per word, the latter uses four bytes.)
638  *
639  * In-memory data values are always in native CPU byte order, translated
640  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
641  * for example when bits_per_word is sixteen, buffers are 2N bytes long
642  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
643  *
644  * When the word size of the SPI transfer is not a power-of-two multiple
645  * of eight bits, those in-memory words include extra bits.  In-memory
646  * words are always seen by protocol drivers as right-justified, so the
647  * undefined (rx) or unused (tx) bits are always the most significant bits.
648  *
649  * All SPI transfers start with the relevant chipselect active.  Normally
650  * it stays selected until after the last transfer in a message.  Drivers
651  * can affect the chipselect signal using cs_change.
652  *
653  * (i) If the transfer isn't the last one in the message, this flag is
654  * used to make the chipselect briefly go inactive in the middle of the
655  * message.  Toggling chipselect in this way may be needed to terminate
656  * a chip command, letting a single spi_message perform all of group of
657  * chip transactions together.
658  *
659  * (ii) When the transfer is the last one in the message, the chip may
660  * stay selected until the next transfer.  On multi-device SPI busses
661  * with nothing blocking messages going to other devices, this is just
662  * a performance hint; starting a message to another device deselects
663  * this one.  But in other cases, this can be used to ensure correctness.
664  * Some devices need protocol transactions to be built from a series of
665  * spi_message submissions, where the content of one message is determined
666  * by the results of previous messages and where the whole transaction
667  * ends when the chipselect goes intactive.
668  *
669  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
670  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
671  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
672  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
673  *
674  * The code that submits an spi_message (and its spi_transfers)
675  * to the lower layers is responsible for managing its memory.
676  * Zero-initialize every field you don't set up explicitly, to
677  * insulate against future API updates.  After you submit a message
678  * and its transfers, ignore them until its completion callback.
679  */
680 struct spi_transfer {
681 	/* it's ok if tx_buf == rx_buf (right?)
682 	 * for MicroWire, one buffer must be null
683 	 * buffers must work with dma_*map_single() calls, unless
684 	 *   spi_message.is_dma_mapped reports a pre-existing mapping
685 	 */
686 	const void	*tx_buf;
687 	void		*rx_buf;
688 	unsigned	len;
689 
690 	dma_addr_t	tx_dma;
691 	dma_addr_t	rx_dma;
692 	struct sg_table tx_sg;
693 	struct sg_table rx_sg;
694 
695 	unsigned	cs_change:1;
696 	unsigned	tx_nbits:3;
697 	unsigned	rx_nbits:3;
698 #define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
699 #define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
700 #define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
701 	u8		bits_per_word;
702 	u16		delay_usecs;
703 	u32		speed_hz;
704 
705 	struct list_head transfer_list;
706 };
707 
708 /**
709  * struct spi_message - one multi-segment SPI transaction
710  * @transfers: list of transfer segments in this transaction
711  * @spi: SPI device to which the transaction is queued
712  * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
713  *	addresses for each transfer buffer
714  * @complete: called to report transaction completions
715  * @context: the argument to complete() when it's called
716  * @frame_length: the total number of bytes in the message
717  * @actual_length: the total number of bytes that were transferred in all
718  *	successful segments
719  * @status: zero for success, else negative errno
720  * @queue: for use by whichever driver currently owns the message
721  * @state: for use by whichever driver currently owns the message
722  *
723  * A @spi_message is used to execute an atomic sequence of data transfers,
724  * each represented by a struct spi_transfer.  The sequence is "atomic"
725  * in the sense that no other spi_message may use that SPI bus until that
726  * sequence completes.  On some systems, many such sequences can execute as
727  * as single programmed DMA transfer.  On all systems, these messages are
728  * queued, and might complete after transactions to other devices.  Messages
729  * sent to a given spi_device are always executed in FIFO order.
730  *
731  * The code that submits an spi_message (and its spi_transfers)
732  * to the lower layers is responsible for managing its memory.
733  * Zero-initialize every field you don't set up explicitly, to
734  * insulate against future API updates.  After you submit a message
735  * and its transfers, ignore them until its completion callback.
736  */
737 struct spi_message {
738 	struct list_head	transfers;
739 
740 	struct spi_device	*spi;
741 
742 	unsigned		is_dma_mapped:1;
743 
744 	/* REVISIT:  we might want a flag affecting the behavior of the
745 	 * last transfer ... allowing things like "read 16 bit length L"
746 	 * immediately followed by "read L bytes".  Basically imposing
747 	 * a specific message scheduling algorithm.
748 	 *
749 	 * Some controller drivers (message-at-a-time queue processing)
750 	 * could provide that as their default scheduling algorithm.  But
751 	 * others (with multi-message pipelines) could need a flag to
752 	 * tell them about such special cases.
753 	 */
754 
755 	/* completion is reported through a callback */
756 	void			(*complete)(void *context);
757 	void			*context;
758 	unsigned		frame_length;
759 	unsigned		actual_length;
760 	int			status;
761 
762 	/* for optional use by whatever driver currently owns the
763 	 * spi_message ...  between calls to spi_async and then later
764 	 * complete(), that's the spi_master controller driver.
765 	 */
766 	struct list_head	queue;
767 	void			*state;
768 };
769 
spi_message_init(struct spi_message * m)770 static inline void spi_message_init(struct spi_message *m)
771 {
772 	memset(m, 0, sizeof *m);
773 	INIT_LIST_HEAD(&m->transfers);
774 }
775 
776 static inline void
spi_message_add_tail(struct spi_transfer * t,struct spi_message * m)777 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
778 {
779 	list_add_tail(&t->transfer_list, &m->transfers);
780 }
781 
782 static inline void
spi_transfer_del(struct spi_transfer * t)783 spi_transfer_del(struct spi_transfer *t)
784 {
785 	list_del(&t->transfer_list);
786 }
787 
788 /**
789  * spi_message_init_with_transfers - Initialize spi_message and append transfers
790  * @m: spi_message to be initialized
791  * @xfers: An array of spi transfers
792  * @num_xfers: Number of items in the xfer array
793  *
794  * This function initializes the given spi_message and adds each spi_transfer in
795  * the given array to the message.
796  */
797 static inline void
spi_message_init_with_transfers(struct spi_message * m,struct spi_transfer * xfers,unsigned int num_xfers)798 spi_message_init_with_transfers(struct spi_message *m,
799 struct spi_transfer *xfers, unsigned int num_xfers)
800 {
801 	unsigned int i;
802 
803 	spi_message_init(m);
804 	for (i = 0; i < num_xfers; ++i)
805 		spi_message_add_tail(&xfers[i], m);
806 }
807 
808 /* It's fine to embed message and transaction structures in other data
809  * structures so long as you don't free them while they're in use.
810  */
811 
spi_message_alloc(unsigned ntrans,gfp_t flags)812 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
813 {
814 	struct spi_message *m;
815 
816 	m = kzalloc(sizeof(struct spi_message)
817 			+ ntrans * sizeof(struct spi_transfer),
818 			flags);
819 	if (m) {
820 		unsigned i;
821 		struct spi_transfer *t = (struct spi_transfer *)(m + 1);
822 
823 		INIT_LIST_HEAD(&m->transfers);
824 		for (i = 0; i < ntrans; i++, t++)
825 			spi_message_add_tail(t, m);
826 	}
827 	return m;
828 }
829 
spi_message_free(struct spi_message * m)830 static inline void spi_message_free(struct spi_message *m)
831 {
832 	kfree(m);
833 }
834 
835 extern int spi_setup(struct spi_device *spi);
836 extern int spi_async(struct spi_device *spi, struct spi_message *message);
837 extern int spi_async_locked(struct spi_device *spi,
838 			    struct spi_message *message);
839 
840 /*---------------------------------------------------------------------------*/
841 
842 /* All these synchronous SPI transfer routines are utilities layered
843  * over the core async transfer primitive.  Here, "synchronous" means
844  * they will sleep uninterruptibly until the async transfer completes.
845  */
846 
847 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
848 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
849 extern int spi_bus_lock(struct spi_master *master);
850 extern int spi_bus_unlock(struct spi_master *master);
851 
852 /**
853  * spi_write - SPI synchronous write
854  * @spi: device to which data will be written
855  * @buf: data buffer
856  * @len: data buffer size
857  * Context: can sleep
858  *
859  * This function writes the buffer @buf.
860  * Callable only from contexts that can sleep.
861  *
862  * Return: zero on success, else a negative error code.
863  */
864 static inline int
spi_write(struct spi_device * spi,const void * buf,size_t len)865 spi_write(struct spi_device *spi, const void *buf, size_t len)
866 {
867 	struct spi_transfer	t = {
868 			.tx_buf		= buf,
869 			.len		= len,
870 		};
871 	struct spi_message	m;
872 
873 	spi_message_init(&m);
874 	spi_message_add_tail(&t, &m);
875 	return spi_sync(spi, &m);
876 }
877 
878 /**
879  * spi_read - SPI synchronous read
880  * @spi: device from which data will be read
881  * @buf: data buffer
882  * @len: data buffer size
883  * Context: can sleep
884  *
885  * This function reads the buffer @buf.
886  * Callable only from contexts that can sleep.
887  *
888  * Return: zero on success, else a negative error code.
889  */
890 static inline int
spi_read(struct spi_device * spi,void * buf,size_t len)891 spi_read(struct spi_device *spi, void *buf, size_t len)
892 {
893 	struct spi_transfer	t = {
894 			.rx_buf		= buf,
895 			.len		= len,
896 		};
897 	struct spi_message	m;
898 
899 	spi_message_init(&m);
900 	spi_message_add_tail(&t, &m);
901 	return spi_sync(spi, &m);
902 }
903 
904 /**
905  * spi_sync_transfer - synchronous SPI data transfer
906  * @spi: device with which data will be exchanged
907  * @xfers: An array of spi_transfers
908  * @num_xfers: Number of items in the xfer array
909  * Context: can sleep
910  *
911  * Does a synchronous SPI data transfer of the given spi_transfer array.
912  *
913  * For more specific semantics see spi_sync().
914  *
915  * Return: Return: zero on success, else a negative error code.
916  */
917 static inline int
spi_sync_transfer(struct spi_device * spi,struct spi_transfer * xfers,unsigned int num_xfers)918 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
919 	unsigned int num_xfers)
920 {
921 	struct spi_message msg;
922 
923 	spi_message_init_with_transfers(&msg, xfers, num_xfers);
924 
925 	return spi_sync(spi, &msg);
926 }
927 
928 /* this copies txbuf and rxbuf data; for small transfers only! */
929 extern int spi_write_then_read(struct spi_device *spi,
930 		const void *txbuf, unsigned n_tx,
931 		void *rxbuf, unsigned n_rx);
932 
933 /**
934  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
935  * @spi: device with which data will be exchanged
936  * @cmd: command to be written before data is read back
937  * Context: can sleep
938  *
939  * Callable only from contexts that can sleep.
940  *
941  * Return: the (unsigned) eight bit number returned by the
942  * device, or else a negative error code.
943  */
spi_w8r8(struct spi_device * spi,u8 cmd)944 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
945 {
946 	ssize_t			status;
947 	u8			result;
948 
949 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
950 
951 	/* return negative errno or unsigned value */
952 	return (status < 0) ? status : result;
953 }
954 
955 /**
956  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
957  * @spi: device with which data will be exchanged
958  * @cmd: command to be written before data is read back
959  * Context: can sleep
960  *
961  * The number is returned in wire-order, which is at least sometimes
962  * big-endian.
963  *
964  * Callable only from contexts that can sleep.
965  *
966  * Return: the (unsigned) sixteen bit number returned by the
967  * device, or else a negative error code.
968  */
spi_w8r16(struct spi_device * spi,u8 cmd)969 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
970 {
971 	ssize_t			status;
972 	u16			result;
973 
974 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
975 
976 	/* return negative errno or unsigned value */
977 	return (status < 0) ? status : result;
978 }
979 
980 /**
981  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
982  * @spi: device with which data will be exchanged
983  * @cmd: command to be written before data is read back
984  * Context: can sleep
985  *
986  * This function is similar to spi_w8r16, with the exception that it will
987  * convert the read 16 bit data word from big-endian to native endianness.
988  *
989  * Callable only from contexts that can sleep.
990  *
991  * Return: the (unsigned) sixteen bit number returned by the device in cpu
992  * endianness, or else a negative error code.
993  */
spi_w8r16be(struct spi_device * spi,u8 cmd)994 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
995 
996 {
997 	ssize_t status;
998 	__be16 result;
999 
1000 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1001 	if (status < 0)
1002 		return status;
1003 
1004 	return be16_to_cpu(result);
1005 }
1006 
1007 /*---------------------------------------------------------------------------*/
1008 
1009 /*
1010  * INTERFACE between board init code and SPI infrastructure.
1011  *
1012  * No SPI driver ever sees these SPI device table segments, but
1013  * it's how the SPI core (or adapters that get hotplugged) grows
1014  * the driver model tree.
1015  *
1016  * As a rule, SPI devices can't be probed.  Instead, board init code
1017  * provides a table listing the devices which are present, with enough
1018  * information to bind and set up the device's driver.  There's basic
1019  * support for nonstatic configurations too; enough to handle adding
1020  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1021  */
1022 
1023 /**
1024  * struct spi_board_info - board-specific template for a SPI device
1025  * @modalias: Initializes spi_device.modalias; identifies the driver.
1026  * @platform_data: Initializes spi_device.platform_data; the particular
1027  *	data stored there is driver-specific.
1028  * @controller_data: Initializes spi_device.controller_data; some
1029  *	controllers need hints about hardware setup, e.g. for DMA.
1030  * @irq: Initializes spi_device.irq; depends on how the board is wired.
1031  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1032  *	from the chip datasheet and board-specific signal quality issues.
1033  * @bus_num: Identifies which spi_master parents the spi_device; unused
1034  *	by spi_new_device(), and otherwise depends on board wiring.
1035  * @chip_select: Initializes spi_device.chip_select; depends on how
1036  *	the board is wired.
1037  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1038  *	wiring (some devices support both 3WIRE and standard modes), and
1039  *	possibly presence of an inverter in the chipselect path.
1040  *
1041  * When adding new SPI devices to the device tree, these structures serve
1042  * as a partial device template.  They hold information which can't always
1043  * be determined by drivers.  Information that probe() can establish (such
1044  * as the default transfer wordsize) is not included here.
1045  *
1046  * These structures are used in two places.  Their primary role is to
1047  * be stored in tables of board-specific device descriptors, which are
1048  * declared early in board initialization and then used (much later) to
1049  * populate a controller's device tree after the that controller's driver
1050  * initializes.  A secondary (and atypical) role is as a parameter to
1051  * spi_new_device() call, which happens after those controller drivers
1052  * are active in some dynamic board configuration models.
1053  */
1054 struct spi_board_info {
1055 	/* the device name and module name are coupled, like platform_bus;
1056 	 * "modalias" is normally the driver name.
1057 	 *
1058 	 * platform_data goes to spi_device.dev.platform_data,
1059 	 * controller_data goes to spi_device.controller_data,
1060 	 * irq is copied too
1061 	 */
1062 	char		modalias[SPI_NAME_SIZE];
1063 	const void	*platform_data;
1064 	void		*controller_data;
1065 	int		irq;
1066 
1067 	/* slower signaling on noisy or low voltage boards */
1068 	u32		max_speed_hz;
1069 
1070 
1071 	/* bus_num is board specific and matches the bus_num of some
1072 	 * spi_master that will probably be registered later.
1073 	 *
1074 	 * chip_select reflects how this chip is wired to that master;
1075 	 * it's less than num_chipselect.
1076 	 */
1077 	u16		bus_num;
1078 	u16		chip_select;
1079 
1080 	/* mode becomes spi_device.mode, and is essential for chips
1081 	 * where the default of SPI_CS_HIGH = 0 is wrong.
1082 	 */
1083 	u16		mode;
1084 
1085 	/* ... may need additional spi_device chip config data here.
1086 	 * avoid stuff protocol drivers can set; but include stuff
1087 	 * needed to behave without being bound to a driver:
1088 	 *  - quirks like clock rate mattering when not selected
1089 	 */
1090 };
1091 
1092 #ifdef	CONFIG_SPI
1093 extern int
1094 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1095 #else
1096 /* board init code may ignore whether SPI is configured or not */
1097 static inline int
spi_register_board_info(struct spi_board_info const * info,unsigned n)1098 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1099 	{ return 0; }
1100 #endif
1101 
1102 
1103 /* If you're hotplugging an adapter with devices (parport, usb, etc)
1104  * use spi_new_device() to describe each device.  You can also call
1105  * spi_unregister_device() to start making that device vanish, but
1106  * normally that would be handled by spi_unregister_master().
1107  *
1108  * You can also use spi_alloc_device() and spi_add_device() to use a two
1109  * stage registration sequence for each spi_device.  This gives the caller
1110  * some more control over the spi_device structure before it is registered,
1111  * but requires that caller to initialize fields that would otherwise
1112  * be defined using the board info.
1113  */
1114 extern struct spi_device *
1115 spi_alloc_device(struct spi_master *master);
1116 
1117 extern int
1118 spi_add_device(struct spi_device *spi);
1119 
1120 extern struct spi_device *
1121 spi_new_device(struct spi_master *, struct spi_board_info *);
1122 
1123 static inline void
spi_unregister_device(struct spi_device * spi)1124 spi_unregister_device(struct spi_device *spi)
1125 {
1126 	if (spi)
1127 		device_unregister(&spi->dev);
1128 }
1129 
1130 extern const struct spi_device_id *
1131 spi_get_device_id(const struct spi_device *sdev);
1132 
1133 static inline bool
spi_transfer_is_last(struct spi_master * master,struct spi_transfer * xfer)1134 spi_transfer_is_last(struct spi_master *master, struct spi_transfer *xfer)
1135 {
1136 	return list_is_last(&xfer->transfer_list, &master->cur_msg->transfers);
1137 }
1138 
1139 #endif /* __LINUX_SPI_H */
1140