• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* auditfilter.c -- filtering of audit events
2  *
3  * Copyright 2003-2004 Red Hat, Inc.
4  * Copyright 2005 Hewlett-Packard Development Company, L.P.
5  * Copyright 2005 IBM Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23 
24 #include <linux/kernel.h>
25 #include <linux/audit.h>
26 #include <linux/kthread.h>
27 #include <linux/mutex.h>
28 #include <linux/fs.h>
29 #include <linux/namei.h>
30 #include <linux/netlink.h>
31 #include <linux/sched.h>
32 #include <linux/slab.h>
33 #include <linux/security.h>
34 #include <net/net_namespace.h>
35 #include <net/sock.h>
36 #include "audit.h"
37 
38 /*
39  * Locking model:
40  *
41  * audit_filter_mutex:
42  *		Synchronizes writes and blocking reads of audit's filterlist
43  *		data.  Rcu is used to traverse the filterlist and access
44  *		contents of structs audit_entry, audit_watch and opaque
45  *		LSM rules during filtering.  If modified, these structures
46  *		must be copied and replace their counterparts in the filterlist.
47  *		An audit_parent struct is not accessed during filtering, so may
48  *		be written directly provided audit_filter_mutex is held.
49  */
50 
51 /* Audit filter lists, defined in <linux/audit.h> */
52 struct list_head audit_filter_list[AUDIT_NR_FILTERS] = {
53 	LIST_HEAD_INIT(audit_filter_list[0]),
54 	LIST_HEAD_INIT(audit_filter_list[1]),
55 	LIST_HEAD_INIT(audit_filter_list[2]),
56 	LIST_HEAD_INIT(audit_filter_list[3]),
57 	LIST_HEAD_INIT(audit_filter_list[4]),
58 	LIST_HEAD_INIT(audit_filter_list[5]),
59 #if AUDIT_NR_FILTERS != 6
60 #error Fix audit_filter_list initialiser
61 #endif
62 };
63 static struct list_head audit_rules_list[AUDIT_NR_FILTERS] = {
64 	LIST_HEAD_INIT(audit_rules_list[0]),
65 	LIST_HEAD_INIT(audit_rules_list[1]),
66 	LIST_HEAD_INIT(audit_rules_list[2]),
67 	LIST_HEAD_INIT(audit_rules_list[3]),
68 	LIST_HEAD_INIT(audit_rules_list[4]),
69 	LIST_HEAD_INIT(audit_rules_list[5]),
70 };
71 
72 DEFINE_MUTEX(audit_filter_mutex);
73 
audit_free_lsm_field(struct audit_field * f)74 static void audit_free_lsm_field(struct audit_field *f)
75 {
76 	switch (f->type) {
77 	case AUDIT_SUBJ_USER:
78 	case AUDIT_SUBJ_ROLE:
79 	case AUDIT_SUBJ_TYPE:
80 	case AUDIT_SUBJ_SEN:
81 	case AUDIT_SUBJ_CLR:
82 	case AUDIT_OBJ_USER:
83 	case AUDIT_OBJ_ROLE:
84 	case AUDIT_OBJ_TYPE:
85 	case AUDIT_OBJ_LEV_LOW:
86 	case AUDIT_OBJ_LEV_HIGH:
87 		kfree(f->lsm_str);
88 		security_audit_rule_free(f->lsm_rule);
89 	}
90 }
91 
audit_free_rule(struct audit_entry * e)92 static inline void audit_free_rule(struct audit_entry *e)
93 {
94 	int i;
95 	struct audit_krule *erule = &e->rule;
96 
97 	/* some rules don't have associated watches */
98 	if (erule->watch)
99 		audit_put_watch(erule->watch);
100 	if (erule->fields)
101 		for (i = 0; i < erule->field_count; i++)
102 			audit_free_lsm_field(&erule->fields[i]);
103 	kfree(erule->fields);
104 	kfree(erule->filterkey);
105 	kfree(e);
106 }
107 
audit_free_rule_rcu(struct rcu_head * head)108 void audit_free_rule_rcu(struct rcu_head *head)
109 {
110 	struct audit_entry *e = container_of(head, struct audit_entry, rcu);
111 	audit_free_rule(e);
112 }
113 
114 /* Initialize an audit filterlist entry. */
audit_init_entry(u32 field_count)115 static inline struct audit_entry *audit_init_entry(u32 field_count)
116 {
117 	struct audit_entry *entry;
118 	struct audit_field *fields;
119 
120 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
121 	if (unlikely(!entry))
122 		return NULL;
123 
124 	fields = kcalloc(field_count, sizeof(*fields), GFP_KERNEL);
125 	if (unlikely(!fields)) {
126 		kfree(entry);
127 		return NULL;
128 	}
129 	entry->rule.fields = fields;
130 
131 	return entry;
132 }
133 
134 /* Unpack a filter field's string representation from user-space
135  * buffer. */
audit_unpack_string(void ** bufp,size_t * remain,size_t len)136 char *audit_unpack_string(void **bufp, size_t *remain, size_t len)
137 {
138 	char *str;
139 
140 	if (!*bufp || (len == 0) || (len > *remain))
141 		return ERR_PTR(-EINVAL);
142 
143 	/* Of the currently implemented string fields, PATH_MAX
144 	 * defines the longest valid length.
145 	 */
146 	if (len > PATH_MAX)
147 		return ERR_PTR(-ENAMETOOLONG);
148 
149 	str = kmalloc(len + 1, GFP_KERNEL);
150 	if (unlikely(!str))
151 		return ERR_PTR(-ENOMEM);
152 
153 	memcpy(str, *bufp, len);
154 	str[len] = 0;
155 	*bufp += len;
156 	*remain -= len;
157 
158 	return str;
159 }
160 
161 /* Translate an inode field to kernel respresentation. */
audit_to_inode(struct audit_krule * krule,struct audit_field * f)162 static inline int audit_to_inode(struct audit_krule *krule,
163 				 struct audit_field *f)
164 {
165 	if (krule->listnr != AUDIT_FILTER_EXIT ||
166 	    krule->inode_f || krule->watch || krule->tree ||
167 	    (f->op != Audit_equal && f->op != Audit_not_equal))
168 		return -EINVAL;
169 
170 	krule->inode_f = f;
171 	return 0;
172 }
173 
174 static __u32 *classes[AUDIT_SYSCALL_CLASSES];
175 
audit_register_class(int class,unsigned * list)176 int __init audit_register_class(int class, unsigned *list)
177 {
178 	__u32 *p = kcalloc(AUDIT_BITMASK_SIZE, sizeof(__u32), GFP_KERNEL);
179 	if (!p)
180 		return -ENOMEM;
181 	while (*list != ~0U) {
182 		unsigned n = *list++;
183 		if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) {
184 			kfree(p);
185 			return -EINVAL;
186 		}
187 		p[AUDIT_WORD(n)] |= AUDIT_BIT(n);
188 	}
189 	if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) {
190 		kfree(p);
191 		return -EINVAL;
192 	}
193 	classes[class] = p;
194 	return 0;
195 }
196 
audit_match_class(int class,unsigned syscall)197 int audit_match_class(int class, unsigned syscall)
198 {
199 	if (unlikely(syscall >= AUDIT_BITMASK_SIZE * 32))
200 		return 0;
201 	if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class]))
202 		return 0;
203 	return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall);
204 }
205 
206 #ifdef CONFIG_AUDITSYSCALL
audit_match_class_bits(int class,u32 * mask)207 static inline int audit_match_class_bits(int class, u32 *mask)
208 {
209 	int i;
210 
211 	if (classes[class]) {
212 		for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
213 			if (mask[i] & classes[class][i])
214 				return 0;
215 	}
216 	return 1;
217 }
218 
audit_match_signal(struct audit_entry * entry)219 static int audit_match_signal(struct audit_entry *entry)
220 {
221 	struct audit_field *arch = entry->rule.arch_f;
222 
223 	if (!arch) {
224 		/* When arch is unspecified, we must check both masks on biarch
225 		 * as syscall number alone is ambiguous. */
226 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
227 					       entry->rule.mask) &&
228 			audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
229 					       entry->rule.mask));
230 	}
231 
232 	switch(audit_classify_arch(arch->val)) {
233 	case 0: /* native */
234 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
235 					       entry->rule.mask));
236 	case 1: /* 32bit on biarch */
237 		return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
238 					       entry->rule.mask));
239 	default:
240 		return 1;
241 	}
242 }
243 #endif
244 
245 /* Common user-space to kernel rule translation. */
audit_to_entry_common(struct audit_rule_data * rule)246 static inline struct audit_entry *audit_to_entry_common(struct audit_rule_data *rule)
247 {
248 	unsigned listnr;
249 	struct audit_entry *entry;
250 	int i, err;
251 
252 	err = -EINVAL;
253 	listnr = rule->flags & ~AUDIT_FILTER_PREPEND;
254 	switch(listnr) {
255 	default:
256 		goto exit_err;
257 #ifdef CONFIG_AUDITSYSCALL
258 	case AUDIT_FILTER_ENTRY:
259 		if (rule->action == AUDIT_ALWAYS)
260 			goto exit_err;
261 	case AUDIT_FILTER_EXIT:
262 	case AUDIT_FILTER_TASK:
263 #endif
264 	case AUDIT_FILTER_USER:
265 	case AUDIT_FILTER_TYPE:
266 		;
267 	}
268 	if (unlikely(rule->action == AUDIT_POSSIBLE)) {
269 		pr_err("AUDIT_POSSIBLE is deprecated\n");
270 		goto exit_err;
271 	}
272 	if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS)
273 		goto exit_err;
274 	if (rule->field_count > AUDIT_MAX_FIELDS)
275 		goto exit_err;
276 
277 	err = -ENOMEM;
278 	entry = audit_init_entry(rule->field_count);
279 	if (!entry)
280 		goto exit_err;
281 
282 	entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND;
283 	entry->rule.listnr = listnr;
284 	entry->rule.action = rule->action;
285 	entry->rule.field_count = rule->field_count;
286 
287 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
288 		entry->rule.mask[i] = rule->mask[i];
289 
290 	for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) {
291 		int bit = AUDIT_BITMASK_SIZE * 32 - i - 1;
292 		__u32 *p = &entry->rule.mask[AUDIT_WORD(bit)];
293 		__u32 *class;
294 
295 		if (!(*p & AUDIT_BIT(bit)))
296 			continue;
297 		*p &= ~AUDIT_BIT(bit);
298 		class = classes[i];
299 		if (class) {
300 			int j;
301 			for (j = 0; j < AUDIT_BITMASK_SIZE; j++)
302 				entry->rule.mask[j] |= class[j];
303 		}
304 	}
305 
306 	return entry;
307 
308 exit_err:
309 	return ERR_PTR(err);
310 }
311 
312 static u32 audit_ops[] =
313 {
314 	[Audit_equal] = AUDIT_EQUAL,
315 	[Audit_not_equal] = AUDIT_NOT_EQUAL,
316 	[Audit_bitmask] = AUDIT_BIT_MASK,
317 	[Audit_bittest] = AUDIT_BIT_TEST,
318 	[Audit_lt] = AUDIT_LESS_THAN,
319 	[Audit_gt] = AUDIT_GREATER_THAN,
320 	[Audit_le] = AUDIT_LESS_THAN_OR_EQUAL,
321 	[Audit_ge] = AUDIT_GREATER_THAN_OR_EQUAL,
322 };
323 
audit_to_op(u32 op)324 static u32 audit_to_op(u32 op)
325 {
326 	u32 n;
327 	for (n = Audit_equal; n < Audit_bad && audit_ops[n] != op; n++)
328 		;
329 	return n;
330 }
331 
332 /* check if an audit field is valid */
audit_field_valid(struct audit_entry * entry,struct audit_field * f)333 static int audit_field_valid(struct audit_entry *entry, struct audit_field *f)
334 {
335 	switch(f->type) {
336 	case AUDIT_MSGTYPE:
337 		if (entry->rule.listnr != AUDIT_FILTER_TYPE &&
338 		    entry->rule.listnr != AUDIT_FILTER_USER)
339 			return -EINVAL;
340 		break;
341 	};
342 
343 	switch(f->type) {
344 	default:
345 		return -EINVAL;
346 	case AUDIT_UID:
347 	case AUDIT_EUID:
348 	case AUDIT_SUID:
349 	case AUDIT_FSUID:
350 	case AUDIT_LOGINUID:
351 	case AUDIT_OBJ_UID:
352 	case AUDIT_GID:
353 	case AUDIT_EGID:
354 	case AUDIT_SGID:
355 	case AUDIT_FSGID:
356 	case AUDIT_OBJ_GID:
357 	case AUDIT_PID:
358 	case AUDIT_PERS:
359 	case AUDIT_MSGTYPE:
360 	case AUDIT_PPID:
361 	case AUDIT_DEVMAJOR:
362 	case AUDIT_DEVMINOR:
363 	case AUDIT_EXIT:
364 	case AUDIT_SUCCESS:
365 	case AUDIT_INODE:
366 		/* bit ops are only useful on syscall args */
367 		if (f->op == Audit_bitmask || f->op == Audit_bittest)
368 			return -EINVAL;
369 		break;
370 	case AUDIT_ARG0:
371 	case AUDIT_ARG1:
372 	case AUDIT_ARG2:
373 	case AUDIT_ARG3:
374 	case AUDIT_SUBJ_USER:
375 	case AUDIT_SUBJ_ROLE:
376 	case AUDIT_SUBJ_TYPE:
377 	case AUDIT_SUBJ_SEN:
378 	case AUDIT_SUBJ_CLR:
379 	case AUDIT_OBJ_USER:
380 	case AUDIT_OBJ_ROLE:
381 	case AUDIT_OBJ_TYPE:
382 	case AUDIT_OBJ_LEV_LOW:
383 	case AUDIT_OBJ_LEV_HIGH:
384 	case AUDIT_WATCH:
385 	case AUDIT_DIR:
386 	case AUDIT_FILTERKEY:
387 		break;
388 	case AUDIT_LOGINUID_SET:
389 		if ((f->val != 0) && (f->val != 1))
390 			return -EINVAL;
391 	/* FALL THROUGH */
392 	case AUDIT_ARCH:
393 		if (f->op != Audit_not_equal && f->op != Audit_equal)
394 			return -EINVAL;
395 		break;
396 	case AUDIT_PERM:
397 		if (f->val & ~15)
398 			return -EINVAL;
399 		break;
400 	case AUDIT_FILETYPE:
401 		if (f->val & ~S_IFMT)
402 			return -EINVAL;
403 		break;
404 	case AUDIT_FIELD_COMPARE:
405 		if (f->val > AUDIT_MAX_FIELD_COMPARE)
406 			return -EINVAL;
407 		break;
408 	case AUDIT_EXE:
409 		if (f->op != Audit_not_equal && f->op != Audit_equal)
410 			return -EINVAL;
411 		if (entry->rule.listnr != AUDIT_FILTER_EXIT)
412 			return -EINVAL;
413 		break;
414 	};
415 	return 0;
416 }
417 
418 /* Translate struct audit_rule_data to kernel's rule respresentation. */
audit_data_to_entry(struct audit_rule_data * data,size_t datasz)419 static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data,
420 					       size_t datasz)
421 {
422 	int err = 0;
423 	struct audit_entry *entry;
424 	void *bufp;
425 	size_t remain = datasz - sizeof(struct audit_rule_data);
426 	int i;
427 	char *str;
428 	struct audit_fsnotify_mark *audit_mark;
429 
430 	entry = audit_to_entry_common(data);
431 	if (IS_ERR(entry))
432 		goto exit_nofree;
433 
434 	bufp = data->buf;
435 	for (i = 0; i < data->field_count; i++) {
436 		struct audit_field *f = &entry->rule.fields[i];
437 		u32 f_val;
438 
439 		err = -EINVAL;
440 
441 		f->op = audit_to_op(data->fieldflags[i]);
442 		if (f->op == Audit_bad)
443 			goto exit_free;
444 
445 		f->type = data->fields[i];
446 		f_val = data->values[i];
447 
448 		/* Support legacy tests for a valid loginuid */
449 		if ((f->type == AUDIT_LOGINUID) && (f_val == AUDIT_UID_UNSET)) {
450 			f->type = AUDIT_LOGINUID_SET;
451 			f_val = 0;
452 			entry->rule.pflags |= AUDIT_LOGINUID_LEGACY;
453 		}
454 
455 		err = audit_field_valid(entry, f);
456 		if (err)
457 			goto exit_free;
458 
459 		err = -EINVAL;
460 		switch (f->type) {
461 		case AUDIT_LOGINUID:
462 		case AUDIT_UID:
463 		case AUDIT_EUID:
464 		case AUDIT_SUID:
465 		case AUDIT_FSUID:
466 		case AUDIT_OBJ_UID:
467 			f->uid = make_kuid(current_user_ns(), f_val);
468 			if (!uid_valid(f->uid))
469 				goto exit_free;
470 			break;
471 		case AUDIT_GID:
472 		case AUDIT_EGID:
473 		case AUDIT_SGID:
474 		case AUDIT_FSGID:
475 		case AUDIT_OBJ_GID:
476 			f->gid = make_kgid(current_user_ns(), f_val);
477 			if (!gid_valid(f->gid))
478 				goto exit_free;
479 			break;
480 		case AUDIT_ARCH:
481 			f->val = f_val;
482 			entry->rule.arch_f = f;
483 			break;
484 		case AUDIT_SUBJ_USER:
485 		case AUDIT_SUBJ_ROLE:
486 		case AUDIT_SUBJ_TYPE:
487 		case AUDIT_SUBJ_SEN:
488 		case AUDIT_SUBJ_CLR:
489 		case AUDIT_OBJ_USER:
490 		case AUDIT_OBJ_ROLE:
491 		case AUDIT_OBJ_TYPE:
492 		case AUDIT_OBJ_LEV_LOW:
493 		case AUDIT_OBJ_LEV_HIGH:
494 			str = audit_unpack_string(&bufp, &remain, f_val);
495 			if (IS_ERR(str)) {
496 				err = PTR_ERR(str);
497 				goto exit_free;
498 			}
499 			entry->rule.buflen += f_val;
500 			f->lsm_str = str;
501 			err = security_audit_rule_init(f->type, f->op, str,
502 						       (void **)&f->lsm_rule);
503 			/* Keep currently invalid fields around in case they
504 			 * become valid after a policy reload. */
505 			if (err == -EINVAL) {
506 				pr_warn("audit rule for LSM \'%s\' is invalid\n",
507 					str);
508 				err = 0;
509 			} else if (err)
510 				goto exit_free;
511 			break;
512 		case AUDIT_WATCH:
513 			str = audit_unpack_string(&bufp, &remain, f_val);
514 			if (IS_ERR(str)) {
515 				err = PTR_ERR(str);
516 				goto exit_free;
517 			}
518 			err = audit_to_watch(&entry->rule, str, f_val, f->op);
519 			if (err) {
520 				kfree(str);
521 				goto exit_free;
522 			}
523 			entry->rule.buflen += f_val;
524 			break;
525 		case AUDIT_DIR:
526 			str = audit_unpack_string(&bufp, &remain, f_val);
527 			if (IS_ERR(str)) {
528 				err = PTR_ERR(str);
529 				goto exit_free;
530 			}
531 			err = audit_make_tree(&entry->rule, str, f->op);
532 			kfree(str);
533 			if (err)
534 				goto exit_free;
535 			entry->rule.buflen += f_val;
536 			break;
537 		case AUDIT_INODE:
538 			f->val = f_val;
539 			err = audit_to_inode(&entry->rule, f);
540 			if (err)
541 				goto exit_free;
542 			break;
543 		case AUDIT_FILTERKEY:
544 			if (entry->rule.filterkey || f_val > AUDIT_MAX_KEY_LEN)
545 				goto exit_free;
546 			str = audit_unpack_string(&bufp, &remain, f_val);
547 			if (IS_ERR(str)) {
548 				err = PTR_ERR(str);
549 				goto exit_free;
550 			}
551 			entry->rule.buflen += f_val;
552 			entry->rule.filterkey = str;
553 			break;
554 		case AUDIT_EXE:
555 			if (entry->rule.exe || f_val > PATH_MAX)
556 				goto exit_free;
557 			str = audit_unpack_string(&bufp, &remain, f_val);
558 			if (IS_ERR(str)) {
559 				err = PTR_ERR(str);
560 				goto exit_free;
561 			}
562 			audit_mark = audit_alloc_mark(&entry->rule, str, f_val);
563 			if (IS_ERR(audit_mark)) {
564 				kfree(str);
565 				err = PTR_ERR(audit_mark);
566 				goto exit_free;
567 			}
568 			entry->rule.buflen += f_val;
569 			entry->rule.exe = audit_mark;
570 			break;
571 		default:
572 			f->val = f_val;
573 			break;
574 		}
575 	}
576 
577 	if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal)
578 		entry->rule.inode_f = NULL;
579 
580 exit_nofree:
581 	return entry;
582 
583 exit_free:
584 	if (entry->rule.tree)
585 		audit_put_tree(entry->rule.tree); /* that's the temporary one */
586 	if (entry->rule.exe)
587 		audit_remove_mark(entry->rule.exe); /* that's the template one */
588 	audit_free_rule(entry);
589 	return ERR_PTR(err);
590 }
591 
592 /* Pack a filter field's string representation into data block. */
audit_pack_string(void ** bufp,const char * str)593 static inline size_t audit_pack_string(void **bufp, const char *str)
594 {
595 	size_t len = strlen(str);
596 
597 	memcpy(*bufp, str, len);
598 	*bufp += len;
599 
600 	return len;
601 }
602 
603 /* Translate kernel rule respresentation to struct audit_rule_data. */
audit_krule_to_data(struct audit_krule * krule)604 static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule)
605 {
606 	struct audit_rule_data *data;
607 	void *bufp;
608 	int i;
609 
610 	data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL);
611 	if (unlikely(!data))
612 		return NULL;
613 	memset(data, 0, sizeof(*data));
614 
615 	data->flags = krule->flags | krule->listnr;
616 	data->action = krule->action;
617 	data->field_count = krule->field_count;
618 	bufp = data->buf;
619 	for (i = 0; i < data->field_count; i++) {
620 		struct audit_field *f = &krule->fields[i];
621 
622 		data->fields[i] = f->type;
623 		data->fieldflags[i] = audit_ops[f->op];
624 		switch(f->type) {
625 		case AUDIT_SUBJ_USER:
626 		case AUDIT_SUBJ_ROLE:
627 		case AUDIT_SUBJ_TYPE:
628 		case AUDIT_SUBJ_SEN:
629 		case AUDIT_SUBJ_CLR:
630 		case AUDIT_OBJ_USER:
631 		case AUDIT_OBJ_ROLE:
632 		case AUDIT_OBJ_TYPE:
633 		case AUDIT_OBJ_LEV_LOW:
634 		case AUDIT_OBJ_LEV_HIGH:
635 			data->buflen += data->values[i] =
636 				audit_pack_string(&bufp, f->lsm_str);
637 			break;
638 		case AUDIT_WATCH:
639 			data->buflen += data->values[i] =
640 				audit_pack_string(&bufp,
641 						  audit_watch_path(krule->watch));
642 			break;
643 		case AUDIT_DIR:
644 			data->buflen += data->values[i] =
645 				audit_pack_string(&bufp,
646 						  audit_tree_path(krule->tree));
647 			break;
648 		case AUDIT_FILTERKEY:
649 			data->buflen += data->values[i] =
650 				audit_pack_string(&bufp, krule->filterkey);
651 			break;
652 		case AUDIT_EXE:
653 			data->buflen += data->values[i] =
654 				audit_pack_string(&bufp, audit_mark_path(krule->exe));
655 			break;
656 		case AUDIT_LOGINUID_SET:
657 			if (krule->pflags & AUDIT_LOGINUID_LEGACY && !f->val) {
658 				data->fields[i] = AUDIT_LOGINUID;
659 				data->values[i] = AUDIT_UID_UNSET;
660 				break;
661 			}
662 			/* fallthrough if set */
663 		default:
664 			data->values[i] = f->val;
665 		}
666 	}
667 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i];
668 
669 	return data;
670 }
671 
672 /* Compare two rules in kernel format.  Considered success if rules
673  * don't match. */
audit_compare_rule(struct audit_krule * a,struct audit_krule * b)674 static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b)
675 {
676 	int i;
677 
678 	if (a->flags != b->flags ||
679 	    a->pflags != b->pflags ||
680 	    a->listnr != b->listnr ||
681 	    a->action != b->action ||
682 	    a->field_count != b->field_count)
683 		return 1;
684 
685 	for (i = 0; i < a->field_count; i++) {
686 		if (a->fields[i].type != b->fields[i].type ||
687 		    a->fields[i].op != b->fields[i].op)
688 			return 1;
689 
690 		switch(a->fields[i].type) {
691 		case AUDIT_SUBJ_USER:
692 		case AUDIT_SUBJ_ROLE:
693 		case AUDIT_SUBJ_TYPE:
694 		case AUDIT_SUBJ_SEN:
695 		case AUDIT_SUBJ_CLR:
696 		case AUDIT_OBJ_USER:
697 		case AUDIT_OBJ_ROLE:
698 		case AUDIT_OBJ_TYPE:
699 		case AUDIT_OBJ_LEV_LOW:
700 		case AUDIT_OBJ_LEV_HIGH:
701 			if (strcmp(a->fields[i].lsm_str, b->fields[i].lsm_str))
702 				return 1;
703 			break;
704 		case AUDIT_WATCH:
705 			if (strcmp(audit_watch_path(a->watch),
706 				   audit_watch_path(b->watch)))
707 				return 1;
708 			break;
709 		case AUDIT_DIR:
710 			if (strcmp(audit_tree_path(a->tree),
711 				   audit_tree_path(b->tree)))
712 				return 1;
713 			break;
714 		case AUDIT_FILTERKEY:
715 			/* both filterkeys exist based on above type compare */
716 			if (strcmp(a->filterkey, b->filterkey))
717 				return 1;
718 			break;
719 		case AUDIT_EXE:
720 			/* both paths exist based on above type compare */
721 			if (strcmp(audit_mark_path(a->exe),
722 				   audit_mark_path(b->exe)))
723 				return 1;
724 			break;
725 		case AUDIT_UID:
726 		case AUDIT_EUID:
727 		case AUDIT_SUID:
728 		case AUDIT_FSUID:
729 		case AUDIT_LOGINUID:
730 		case AUDIT_OBJ_UID:
731 			if (!uid_eq(a->fields[i].uid, b->fields[i].uid))
732 				return 1;
733 			break;
734 		case AUDIT_GID:
735 		case AUDIT_EGID:
736 		case AUDIT_SGID:
737 		case AUDIT_FSGID:
738 		case AUDIT_OBJ_GID:
739 			if (!gid_eq(a->fields[i].gid, b->fields[i].gid))
740 				return 1;
741 			break;
742 		default:
743 			if (a->fields[i].val != b->fields[i].val)
744 				return 1;
745 		}
746 	}
747 
748 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
749 		if (a->mask[i] != b->mask[i])
750 			return 1;
751 
752 	return 0;
753 }
754 
755 /* Duplicate LSM field information.  The lsm_rule is opaque, so must be
756  * re-initialized. */
audit_dupe_lsm_field(struct audit_field * df,struct audit_field * sf)757 static inline int audit_dupe_lsm_field(struct audit_field *df,
758 					   struct audit_field *sf)
759 {
760 	int ret = 0;
761 	char *lsm_str;
762 
763 	/* our own copy of lsm_str */
764 	lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL);
765 	if (unlikely(!lsm_str))
766 		return -ENOMEM;
767 	df->lsm_str = lsm_str;
768 
769 	/* our own (refreshed) copy of lsm_rule */
770 	ret = security_audit_rule_init(df->type, df->op, df->lsm_str,
771 				       (void **)&df->lsm_rule);
772 	/* Keep currently invalid fields around in case they
773 	 * become valid after a policy reload. */
774 	if (ret == -EINVAL) {
775 		pr_warn("audit rule for LSM \'%s\' is invalid\n",
776 			df->lsm_str);
777 		ret = 0;
778 	}
779 
780 	return ret;
781 }
782 
783 /* Duplicate an audit rule.  This will be a deep copy with the exception
784  * of the watch - that pointer is carried over.  The LSM specific fields
785  * will be updated in the copy.  The point is to be able to replace the old
786  * rule with the new rule in the filterlist, then free the old rule.
787  * The rlist element is undefined; list manipulations are handled apart from
788  * the initial copy. */
audit_dupe_rule(struct audit_krule * old)789 struct audit_entry *audit_dupe_rule(struct audit_krule *old)
790 {
791 	u32 fcount = old->field_count;
792 	struct audit_entry *entry;
793 	struct audit_krule *new;
794 	char *fk;
795 	int i, err = 0;
796 
797 	entry = audit_init_entry(fcount);
798 	if (unlikely(!entry))
799 		return ERR_PTR(-ENOMEM);
800 
801 	new = &entry->rule;
802 	new->flags = old->flags;
803 	new->pflags = old->pflags;
804 	new->listnr = old->listnr;
805 	new->action = old->action;
806 	for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
807 		new->mask[i] = old->mask[i];
808 	new->prio = old->prio;
809 	new->buflen = old->buflen;
810 	new->inode_f = old->inode_f;
811 	new->field_count = old->field_count;
812 
813 	/*
814 	 * note that we are OK with not refcounting here; audit_match_tree()
815 	 * never dereferences tree and we can't get false positives there
816 	 * since we'd have to have rule gone from the list *and* removed
817 	 * before the chunks found by lookup had been allocated, i.e. before
818 	 * the beginning of list scan.
819 	 */
820 	new->tree = old->tree;
821 	memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount);
822 
823 	/* deep copy this information, updating the lsm_rule fields, because
824 	 * the originals will all be freed when the old rule is freed. */
825 	for (i = 0; i < fcount; i++) {
826 		switch (new->fields[i].type) {
827 		case AUDIT_SUBJ_USER:
828 		case AUDIT_SUBJ_ROLE:
829 		case AUDIT_SUBJ_TYPE:
830 		case AUDIT_SUBJ_SEN:
831 		case AUDIT_SUBJ_CLR:
832 		case AUDIT_OBJ_USER:
833 		case AUDIT_OBJ_ROLE:
834 		case AUDIT_OBJ_TYPE:
835 		case AUDIT_OBJ_LEV_LOW:
836 		case AUDIT_OBJ_LEV_HIGH:
837 			err = audit_dupe_lsm_field(&new->fields[i],
838 						       &old->fields[i]);
839 			break;
840 		case AUDIT_FILTERKEY:
841 			fk = kstrdup(old->filterkey, GFP_KERNEL);
842 			if (unlikely(!fk))
843 				err = -ENOMEM;
844 			else
845 				new->filterkey = fk;
846 			break;
847 		case AUDIT_EXE:
848 			err = audit_dupe_exe(new, old);
849 			break;
850 		}
851 		if (err) {
852 			if (new->exe)
853 				audit_remove_mark(new->exe);
854 			audit_free_rule(entry);
855 			return ERR_PTR(err);
856 		}
857 	}
858 
859 	if (old->watch) {
860 		audit_get_watch(old->watch);
861 		new->watch = old->watch;
862 	}
863 
864 	return entry;
865 }
866 
867 /* Find an existing audit rule.
868  * Caller must hold audit_filter_mutex to prevent stale rule data. */
audit_find_rule(struct audit_entry * entry,struct list_head ** p)869 static struct audit_entry *audit_find_rule(struct audit_entry *entry,
870 					   struct list_head **p)
871 {
872 	struct audit_entry *e, *found = NULL;
873 	struct list_head *list;
874 	int h;
875 
876 	if (entry->rule.inode_f) {
877 		h = audit_hash_ino(entry->rule.inode_f->val);
878 		*p = list = &audit_inode_hash[h];
879 	} else if (entry->rule.watch) {
880 		/* we don't know the inode number, so must walk entire hash */
881 		for (h = 0; h < AUDIT_INODE_BUCKETS; h++) {
882 			list = &audit_inode_hash[h];
883 			list_for_each_entry(e, list, list)
884 				if (!audit_compare_rule(&entry->rule, &e->rule)) {
885 					found = e;
886 					goto out;
887 				}
888 		}
889 		goto out;
890 	} else {
891 		*p = list = &audit_filter_list[entry->rule.listnr];
892 	}
893 
894 	list_for_each_entry(e, list, list)
895 		if (!audit_compare_rule(&entry->rule, &e->rule)) {
896 			found = e;
897 			goto out;
898 		}
899 
900 out:
901 	return found;
902 }
903 
904 static u64 prio_low = ~0ULL/2;
905 static u64 prio_high = ~0ULL/2 - 1;
906 
907 /* Add rule to given filterlist if not a duplicate. */
audit_add_rule(struct audit_entry * entry)908 static inline int audit_add_rule(struct audit_entry *entry)
909 {
910 	struct audit_entry *e;
911 	struct audit_watch *watch = entry->rule.watch;
912 	struct audit_tree *tree = entry->rule.tree;
913 	struct list_head *list;
914 	int err = 0;
915 #ifdef CONFIG_AUDITSYSCALL
916 	int dont_count = 0;
917 
918 	/* If either of these, don't count towards total */
919 	if (entry->rule.listnr == AUDIT_FILTER_USER ||
920 		entry->rule.listnr == AUDIT_FILTER_TYPE)
921 		dont_count = 1;
922 #endif
923 
924 	mutex_lock(&audit_filter_mutex);
925 	e = audit_find_rule(entry, &list);
926 	if (e) {
927 		mutex_unlock(&audit_filter_mutex);
928 		err = -EEXIST;
929 		/* normally audit_add_tree_rule() will free it on failure */
930 		if (tree)
931 			audit_put_tree(tree);
932 		return err;
933 	}
934 
935 	if (watch) {
936 		/* audit_filter_mutex is dropped and re-taken during this call */
937 		err = audit_add_watch(&entry->rule, &list);
938 		if (err) {
939 			mutex_unlock(&audit_filter_mutex);
940 			/*
941 			 * normally audit_add_tree_rule() will free it
942 			 * on failure
943 			 */
944 			if (tree)
945 				audit_put_tree(tree);
946 			return err;
947 		}
948 	}
949 	if (tree) {
950 		err = audit_add_tree_rule(&entry->rule);
951 		if (err) {
952 			mutex_unlock(&audit_filter_mutex);
953 			return err;
954 		}
955 	}
956 
957 	entry->rule.prio = ~0ULL;
958 	if (entry->rule.listnr == AUDIT_FILTER_EXIT) {
959 		if (entry->rule.flags & AUDIT_FILTER_PREPEND)
960 			entry->rule.prio = ++prio_high;
961 		else
962 			entry->rule.prio = --prio_low;
963 	}
964 
965 	if (entry->rule.flags & AUDIT_FILTER_PREPEND) {
966 		list_add(&entry->rule.list,
967 			 &audit_rules_list[entry->rule.listnr]);
968 		list_add_rcu(&entry->list, list);
969 		entry->rule.flags &= ~AUDIT_FILTER_PREPEND;
970 	} else {
971 		list_add_tail(&entry->rule.list,
972 			      &audit_rules_list[entry->rule.listnr]);
973 		list_add_tail_rcu(&entry->list, list);
974 	}
975 #ifdef CONFIG_AUDITSYSCALL
976 	if (!dont_count)
977 		audit_n_rules++;
978 
979 	if (!audit_match_signal(entry))
980 		audit_signals++;
981 #endif
982 	mutex_unlock(&audit_filter_mutex);
983 
984 	return err;
985 }
986 
987 /* Remove an existing rule from filterlist. */
audit_del_rule(struct audit_entry * entry)988 int audit_del_rule(struct audit_entry *entry)
989 {
990 	struct audit_entry  *e;
991 	struct audit_tree *tree = entry->rule.tree;
992 	struct list_head *list;
993 	int ret = 0;
994 #ifdef CONFIG_AUDITSYSCALL
995 	int dont_count = 0;
996 
997 	/* If either of these, don't count towards total */
998 	if (entry->rule.listnr == AUDIT_FILTER_USER ||
999 		entry->rule.listnr == AUDIT_FILTER_TYPE)
1000 		dont_count = 1;
1001 #endif
1002 
1003 	mutex_lock(&audit_filter_mutex);
1004 	e = audit_find_rule(entry, &list);
1005 	if (!e) {
1006 		ret = -ENOENT;
1007 		goto out;
1008 	}
1009 
1010 	if (e->rule.watch)
1011 		audit_remove_watch_rule(&e->rule);
1012 
1013 	if (e->rule.tree)
1014 		audit_remove_tree_rule(&e->rule);
1015 
1016 	if (e->rule.exe)
1017 		audit_remove_mark_rule(&e->rule);
1018 
1019 #ifdef CONFIG_AUDITSYSCALL
1020 	if (!dont_count)
1021 		audit_n_rules--;
1022 
1023 	if (!audit_match_signal(entry))
1024 		audit_signals--;
1025 #endif
1026 
1027 	list_del_rcu(&e->list);
1028 	list_del(&e->rule.list);
1029 	call_rcu(&e->rcu, audit_free_rule_rcu);
1030 
1031 out:
1032 	mutex_unlock(&audit_filter_mutex);
1033 
1034 	if (tree)
1035 		audit_put_tree(tree);	/* that's the temporary one */
1036 
1037 	return ret;
1038 }
1039 
1040 /* List rules using struct audit_rule_data. */
audit_list_rules(__u32 portid,int seq,struct sk_buff_head * q)1041 static void audit_list_rules(__u32 portid, int seq, struct sk_buff_head *q)
1042 {
1043 	struct sk_buff *skb;
1044 	struct audit_krule *r;
1045 	int i;
1046 
1047 	/* This is a blocking read, so use audit_filter_mutex instead of rcu
1048 	 * iterator to sync with list writers. */
1049 	for (i=0; i<AUDIT_NR_FILTERS; i++) {
1050 		list_for_each_entry(r, &audit_rules_list[i], list) {
1051 			struct audit_rule_data *data;
1052 
1053 			data = audit_krule_to_data(r);
1054 			if (unlikely(!data))
1055 				break;
1056 			skb = audit_make_reply(portid, seq, AUDIT_LIST_RULES,
1057 					       0, 1, data,
1058 					       sizeof(*data) + data->buflen);
1059 			if (skb)
1060 				skb_queue_tail(q, skb);
1061 			kfree(data);
1062 		}
1063 	}
1064 	skb = audit_make_reply(portid, seq, AUDIT_LIST_RULES, 1, 1, NULL, 0);
1065 	if (skb)
1066 		skb_queue_tail(q, skb);
1067 }
1068 
1069 /* Log rule additions and removals */
audit_log_rule_change(char * action,struct audit_krule * rule,int res)1070 static void audit_log_rule_change(char *action, struct audit_krule *rule, int res)
1071 {
1072 	struct audit_buffer *ab;
1073 	uid_t loginuid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1074 	unsigned int sessionid = audit_get_sessionid(current);
1075 
1076 	if (!audit_enabled)
1077 		return;
1078 
1079 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
1080 	if (!ab)
1081 		return;
1082 	audit_log_format(ab, "auid=%u ses=%u" ,loginuid, sessionid);
1083 	audit_log_task_context(ab);
1084 	audit_log_format(ab, " op=");
1085 	audit_log_string(ab, action);
1086 	audit_log_key(ab, rule->filterkey);
1087 	audit_log_format(ab, " list=%d res=%d", rule->listnr, res);
1088 	audit_log_end(ab);
1089 }
1090 
1091 /**
1092  * audit_rule_change - apply all rules to the specified message type
1093  * @type: audit message type
1094  * @portid: target port id for netlink audit messages
1095  * @seq: netlink audit message sequence (serial) number
1096  * @data: payload data
1097  * @datasz: size of payload data
1098  */
audit_rule_change(int type,__u32 portid,int seq,void * data,size_t datasz)1099 int audit_rule_change(int type, __u32 portid, int seq, void *data,
1100 			size_t datasz)
1101 {
1102 	int err = 0;
1103 	struct audit_entry *entry;
1104 
1105 	switch (type) {
1106 	case AUDIT_ADD_RULE:
1107 		entry = audit_data_to_entry(data, datasz);
1108 		if (IS_ERR(entry))
1109 			return PTR_ERR(entry);
1110 		err = audit_add_rule(entry);
1111 		audit_log_rule_change("add_rule", &entry->rule, !err);
1112 		break;
1113 	case AUDIT_DEL_RULE:
1114 		entry = audit_data_to_entry(data, datasz);
1115 		if (IS_ERR(entry))
1116 			return PTR_ERR(entry);
1117 		err = audit_del_rule(entry);
1118 		audit_log_rule_change("remove_rule", &entry->rule, !err);
1119 		break;
1120 	default:
1121 		WARN_ON(1);
1122 		return -EINVAL;
1123 	}
1124 
1125 	if (err || type == AUDIT_DEL_RULE) {
1126 		if (entry->rule.exe)
1127 			audit_remove_mark(entry->rule.exe);
1128 		audit_free_rule(entry);
1129 	}
1130 
1131 	return err;
1132 }
1133 
1134 /**
1135  * audit_list_rules_send - list the audit rules
1136  * @request_skb: skb of request we are replying to (used to target the reply)
1137  * @seq: netlink audit message sequence (serial) number
1138  */
audit_list_rules_send(struct sk_buff * request_skb,int seq)1139 int audit_list_rules_send(struct sk_buff *request_skb, int seq)
1140 {
1141 	u32 portid = NETLINK_CB(request_skb).portid;
1142 	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
1143 	struct task_struct *tsk;
1144 	struct audit_netlink_list *dest;
1145 	int err = 0;
1146 
1147 	/* We can't just spew out the rules here because we might fill
1148 	 * the available socket buffer space and deadlock waiting for
1149 	 * auditctl to read from it... which isn't ever going to
1150 	 * happen if we're actually running in the context of auditctl
1151 	 * trying to _send_ the stuff */
1152 
1153 	dest = kmalloc(sizeof(struct audit_netlink_list), GFP_KERNEL);
1154 	if (!dest)
1155 		return -ENOMEM;
1156 	dest->net = get_net(net);
1157 	dest->portid = portid;
1158 	skb_queue_head_init(&dest->q);
1159 
1160 	mutex_lock(&audit_filter_mutex);
1161 	audit_list_rules(portid, seq, &dest->q);
1162 	mutex_unlock(&audit_filter_mutex);
1163 
1164 	tsk = kthread_run(audit_send_list, dest, "audit_send_list");
1165 	if (IS_ERR(tsk)) {
1166 		skb_queue_purge(&dest->q);
1167 		kfree(dest);
1168 		err = PTR_ERR(tsk);
1169 	}
1170 
1171 	return err;
1172 }
1173 
audit_comparator(u32 left,u32 op,u32 right)1174 int audit_comparator(u32 left, u32 op, u32 right)
1175 {
1176 	switch (op) {
1177 	case Audit_equal:
1178 		return (left == right);
1179 	case Audit_not_equal:
1180 		return (left != right);
1181 	case Audit_lt:
1182 		return (left < right);
1183 	case Audit_le:
1184 		return (left <= right);
1185 	case Audit_gt:
1186 		return (left > right);
1187 	case Audit_ge:
1188 		return (left >= right);
1189 	case Audit_bitmask:
1190 		return (left & right);
1191 	case Audit_bittest:
1192 		return ((left & right) == right);
1193 	default:
1194 		BUG();
1195 		return 0;
1196 	}
1197 }
1198 
audit_uid_comparator(kuid_t left,u32 op,kuid_t right)1199 int audit_uid_comparator(kuid_t left, u32 op, kuid_t right)
1200 {
1201 	switch (op) {
1202 	case Audit_equal:
1203 		return uid_eq(left, right);
1204 	case Audit_not_equal:
1205 		return !uid_eq(left, right);
1206 	case Audit_lt:
1207 		return uid_lt(left, right);
1208 	case Audit_le:
1209 		return uid_lte(left, right);
1210 	case Audit_gt:
1211 		return uid_gt(left, right);
1212 	case Audit_ge:
1213 		return uid_gte(left, right);
1214 	case Audit_bitmask:
1215 	case Audit_bittest:
1216 	default:
1217 		BUG();
1218 		return 0;
1219 	}
1220 }
1221 
audit_gid_comparator(kgid_t left,u32 op,kgid_t right)1222 int audit_gid_comparator(kgid_t left, u32 op, kgid_t right)
1223 {
1224 	switch (op) {
1225 	case Audit_equal:
1226 		return gid_eq(left, right);
1227 	case Audit_not_equal:
1228 		return !gid_eq(left, right);
1229 	case Audit_lt:
1230 		return gid_lt(left, right);
1231 	case Audit_le:
1232 		return gid_lte(left, right);
1233 	case Audit_gt:
1234 		return gid_gt(left, right);
1235 	case Audit_ge:
1236 		return gid_gte(left, right);
1237 	case Audit_bitmask:
1238 	case Audit_bittest:
1239 	default:
1240 		BUG();
1241 		return 0;
1242 	}
1243 }
1244 
1245 /**
1246  * parent_len - find the length of the parent portion of a pathname
1247  * @path: pathname of which to determine length
1248  */
parent_len(const char * path)1249 int parent_len(const char *path)
1250 {
1251 	int plen;
1252 	const char *p;
1253 
1254 	plen = strlen(path);
1255 
1256 	if (plen == 0)
1257 		return plen;
1258 
1259 	/* disregard trailing slashes */
1260 	p = path + plen - 1;
1261 	while ((*p == '/') && (p > path))
1262 		p--;
1263 
1264 	/* walk backward until we find the next slash or hit beginning */
1265 	while ((*p != '/') && (p > path))
1266 		p--;
1267 
1268 	/* did we find a slash? Then increment to include it in path */
1269 	if (*p == '/')
1270 		p++;
1271 
1272 	return p - path;
1273 }
1274 
1275 /**
1276  * audit_compare_dname_path - compare given dentry name with last component in
1277  * 			      given path. Return of 0 indicates a match.
1278  * @dname:	dentry name that we're comparing
1279  * @path:	full pathname that we're comparing
1280  * @parentlen:	length of the parent if known. Passing in AUDIT_NAME_FULL
1281  * 		here indicates that we must compute this value.
1282  */
audit_compare_dname_path(const char * dname,const char * path,int parentlen)1283 int audit_compare_dname_path(const char *dname, const char *path, int parentlen)
1284 {
1285 	int dlen, pathlen;
1286 	const char *p;
1287 
1288 	dlen = strlen(dname);
1289 	pathlen = strlen(path);
1290 	if (pathlen < dlen)
1291 		return 1;
1292 
1293 	parentlen = parentlen == AUDIT_NAME_FULL ? parent_len(path) : parentlen;
1294 	if (pathlen - parentlen != dlen)
1295 		return 1;
1296 
1297 	p = path + parentlen;
1298 
1299 	return strncmp(p, dname, dlen);
1300 }
1301 
audit_filter_user_rules(struct audit_krule * rule,int type,enum audit_state * state)1302 static int audit_filter_user_rules(struct audit_krule *rule, int type,
1303 				   enum audit_state *state)
1304 {
1305 	int i;
1306 
1307 	for (i = 0; i < rule->field_count; i++) {
1308 		struct audit_field *f = &rule->fields[i];
1309 		pid_t pid;
1310 		int result = 0;
1311 		u32 sid;
1312 
1313 		switch (f->type) {
1314 		case AUDIT_PID:
1315 			pid = task_pid_nr(current);
1316 			result = audit_comparator(pid, f->op, f->val);
1317 			break;
1318 		case AUDIT_UID:
1319 			result = audit_uid_comparator(current_uid(), f->op, f->uid);
1320 			break;
1321 		case AUDIT_GID:
1322 			result = audit_gid_comparator(current_gid(), f->op, f->gid);
1323 			break;
1324 		case AUDIT_LOGINUID:
1325 			result = audit_uid_comparator(audit_get_loginuid(current),
1326 						  f->op, f->uid);
1327 			break;
1328 		case AUDIT_LOGINUID_SET:
1329 			result = audit_comparator(audit_loginuid_set(current),
1330 						  f->op, f->val);
1331 			break;
1332 		case AUDIT_MSGTYPE:
1333 			result = audit_comparator(type, f->op, f->val);
1334 			break;
1335 		case AUDIT_SUBJ_USER:
1336 		case AUDIT_SUBJ_ROLE:
1337 		case AUDIT_SUBJ_TYPE:
1338 		case AUDIT_SUBJ_SEN:
1339 		case AUDIT_SUBJ_CLR:
1340 			if (f->lsm_rule) {
1341 				security_task_getsecid(current, &sid);
1342 				result = security_audit_rule_match(sid,
1343 								   f->type,
1344 								   f->op,
1345 								   f->lsm_rule,
1346 								   NULL);
1347 			}
1348 			break;
1349 		}
1350 
1351 		if (!result)
1352 			return 0;
1353 	}
1354 	switch (rule->action) {
1355 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
1356 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
1357 	}
1358 	return 1;
1359 }
1360 
audit_filter_user(int type)1361 int audit_filter_user(int type)
1362 {
1363 	enum audit_state state = AUDIT_DISABLED;
1364 	struct audit_entry *e;
1365 	int rc, ret;
1366 
1367 	ret = 1; /* Audit by default */
1368 
1369 	rcu_read_lock();
1370 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) {
1371 		rc = audit_filter_user_rules(&e->rule, type, &state);
1372 		if (rc) {
1373 			if (rc > 0 && state == AUDIT_DISABLED)
1374 				ret = 0;
1375 			break;
1376 		}
1377 	}
1378 	rcu_read_unlock();
1379 
1380 	return ret;
1381 }
1382 
audit_filter_type(int type)1383 int audit_filter_type(int type)
1384 {
1385 	struct audit_entry *e;
1386 	int result = 0;
1387 
1388 	rcu_read_lock();
1389 	if (list_empty(&audit_filter_list[AUDIT_FILTER_TYPE]))
1390 		goto unlock_and_return;
1391 
1392 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TYPE],
1393 				list) {
1394 		int i;
1395 		for (i = 0; i < e->rule.field_count; i++) {
1396 			struct audit_field *f = &e->rule.fields[i];
1397 			if (f->type == AUDIT_MSGTYPE) {
1398 				result = audit_comparator(type, f->op, f->val);
1399 				if (!result)
1400 					break;
1401 			}
1402 		}
1403 		if (result)
1404 			goto unlock_and_return;
1405 	}
1406 unlock_and_return:
1407 	rcu_read_unlock();
1408 	return result;
1409 }
1410 
update_lsm_rule(struct audit_krule * r)1411 static int update_lsm_rule(struct audit_krule *r)
1412 {
1413 	struct audit_entry *entry = container_of(r, struct audit_entry, rule);
1414 	struct audit_entry *nentry;
1415 	int err = 0;
1416 
1417 	if (!security_audit_rule_known(r))
1418 		return 0;
1419 
1420 	nentry = audit_dupe_rule(r);
1421 	if (entry->rule.exe)
1422 		audit_remove_mark(entry->rule.exe);
1423 	if (IS_ERR(nentry)) {
1424 		/* save the first error encountered for the
1425 		 * return value */
1426 		err = PTR_ERR(nentry);
1427 		audit_panic("error updating LSM filters");
1428 		if (r->watch)
1429 			list_del(&r->rlist);
1430 		list_del_rcu(&entry->list);
1431 		list_del(&r->list);
1432 	} else {
1433 		if (r->watch || r->tree)
1434 			list_replace_init(&r->rlist, &nentry->rule.rlist);
1435 		list_replace_rcu(&entry->list, &nentry->list);
1436 		list_replace(&r->list, &nentry->rule.list);
1437 	}
1438 	call_rcu(&entry->rcu, audit_free_rule_rcu);
1439 
1440 	return err;
1441 }
1442 
1443 /* This function will re-initialize the lsm_rule field of all applicable rules.
1444  * It will traverse the filter lists serarching for rules that contain LSM
1445  * specific filter fields.  When such a rule is found, it is copied, the
1446  * LSM field is re-initialized, and the old rule is replaced with the
1447  * updated rule. */
audit_update_lsm_rules(void)1448 int audit_update_lsm_rules(void)
1449 {
1450 	struct audit_krule *r, *n;
1451 	int i, err = 0;
1452 
1453 	/* audit_filter_mutex synchronizes the writers */
1454 	mutex_lock(&audit_filter_mutex);
1455 
1456 	for (i = 0; i < AUDIT_NR_FILTERS; i++) {
1457 		list_for_each_entry_safe(r, n, &audit_rules_list[i], list) {
1458 			int res = update_lsm_rule(r);
1459 			if (!err)
1460 				err = res;
1461 		}
1462 	}
1463 	mutex_unlock(&audit_filter_mutex);
1464 
1465 	return err;
1466 }
1467