• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/compat.h>
48 #include <linux/slab.h>
49 #include <linux/poll.h>
50 #include <linux/fs.h>
51 #include <linux/file.h>
52 #include <linux/jhash.h>
53 #include <linux/init.h>
54 #include <linux/futex.h>
55 #include <linux/mount.h>
56 #include <linux/pagemap.h>
57 #include <linux/syscalls.h>
58 #include <linux/signal.h>
59 #include <linux/export.h>
60 #include <linux/magic.h>
61 #include <linux/pid.h>
62 #include <linux/nsproxy.h>
63 #include <linux/ptrace.h>
64 #include <linux/sched/rt.h>
65 #include <linux/hugetlb.h>
66 #include <linux/freezer.h>
67 #include <linux/bootmem.h>
68 #include <linux/fault-inject.h>
69 
70 #include <asm/futex.h>
71 
72 #include "locking/rtmutex_common.h"
73 
74 /*
75  * READ this before attempting to hack on futexes!
76  *
77  * Basic futex operation and ordering guarantees
78  * =============================================
79  *
80  * The waiter reads the futex value in user space and calls
81  * futex_wait(). This function computes the hash bucket and acquires
82  * the hash bucket lock. After that it reads the futex user space value
83  * again and verifies that the data has not changed. If it has not changed
84  * it enqueues itself into the hash bucket, releases the hash bucket lock
85  * and schedules.
86  *
87  * The waker side modifies the user space value of the futex and calls
88  * futex_wake(). This function computes the hash bucket and acquires the
89  * hash bucket lock. Then it looks for waiters on that futex in the hash
90  * bucket and wakes them.
91  *
92  * In futex wake up scenarios where no tasks are blocked on a futex, taking
93  * the hb spinlock can be avoided and simply return. In order for this
94  * optimization to work, ordering guarantees must exist so that the waiter
95  * being added to the list is acknowledged when the list is concurrently being
96  * checked by the waker, avoiding scenarios like the following:
97  *
98  * CPU 0                               CPU 1
99  * val = *futex;
100  * sys_futex(WAIT, futex, val);
101  *   futex_wait(futex, val);
102  *   uval = *futex;
103  *                                     *futex = newval;
104  *                                     sys_futex(WAKE, futex);
105  *                                       futex_wake(futex);
106  *                                       if (queue_empty())
107  *                                         return;
108  *   if (uval == val)
109  *      lock(hash_bucket(futex));
110  *      queue();
111  *     unlock(hash_bucket(futex));
112  *     schedule();
113  *
114  * This would cause the waiter on CPU 0 to wait forever because it
115  * missed the transition of the user space value from val to newval
116  * and the waker did not find the waiter in the hash bucket queue.
117  *
118  * The correct serialization ensures that a waiter either observes
119  * the changed user space value before blocking or is woken by a
120  * concurrent waker:
121  *
122  * CPU 0                                 CPU 1
123  * val = *futex;
124  * sys_futex(WAIT, futex, val);
125  *   futex_wait(futex, val);
126  *
127  *   waiters++; (a)
128  *   mb(); (A) <-- paired with -.
129  *                              |
130  *   lock(hash_bucket(futex));  |
131  *                              |
132  *   uval = *futex;             |
133  *                              |        *futex = newval;
134  *                              |        sys_futex(WAKE, futex);
135  *                              |          futex_wake(futex);
136  *                              |
137  *                              `------->  mb(); (B)
138  *   if (uval == val)
139  *     queue();
140  *     unlock(hash_bucket(futex));
141  *     schedule();                         if (waiters)
142  *                                           lock(hash_bucket(futex));
143  *   else                                    wake_waiters(futex);
144  *     waiters--; (b)                        unlock(hash_bucket(futex));
145  *
146  * Where (A) orders the waiters increment and the futex value read through
147  * atomic operations (see hb_waiters_inc) and where (B) orders the write
148  * to futex and the waiters read -- this is done by the barriers for both
149  * shared and private futexes in get_futex_key_refs().
150  *
151  * This yields the following case (where X:=waiters, Y:=futex):
152  *
153  *	X = Y = 0
154  *
155  *	w[X]=1		w[Y]=1
156  *	MB		MB
157  *	r[Y]=y		r[X]=x
158  *
159  * Which guarantees that x==0 && y==0 is impossible; which translates back into
160  * the guarantee that we cannot both miss the futex variable change and the
161  * enqueue.
162  *
163  * Note that a new waiter is accounted for in (a) even when it is possible that
164  * the wait call can return error, in which case we backtrack from it in (b).
165  * Refer to the comment in queue_lock().
166  *
167  * Similarly, in order to account for waiters being requeued on another
168  * address we always increment the waiters for the destination bucket before
169  * acquiring the lock. It then decrements them again  after releasing it -
170  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
171  * will do the additional required waiter count housekeeping. This is done for
172  * double_lock_hb() and double_unlock_hb(), respectively.
173  */
174 
175 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
176 #define futex_cmpxchg_enabled 1
177 #else
178 static int  __read_mostly futex_cmpxchg_enabled;
179 #endif
180 
181 /*
182  * Futex flags used to encode options to functions and preserve them across
183  * restarts.
184  */
185 #define FLAGS_SHARED		0x01
186 #define FLAGS_CLOCKRT		0x02
187 #define FLAGS_HAS_TIMEOUT	0x04
188 
189 /*
190  * Priority Inheritance state:
191  */
192 struct futex_pi_state {
193 	/*
194 	 * list of 'owned' pi_state instances - these have to be
195 	 * cleaned up in do_exit() if the task exits prematurely:
196 	 */
197 	struct list_head list;
198 
199 	/*
200 	 * The PI object:
201 	 */
202 	struct rt_mutex pi_mutex;
203 
204 	struct task_struct *owner;
205 	atomic_t refcount;
206 
207 	union futex_key key;
208 };
209 
210 /**
211  * struct futex_q - The hashed futex queue entry, one per waiting task
212  * @list:		priority-sorted list of tasks waiting on this futex
213  * @task:		the task waiting on the futex
214  * @lock_ptr:		the hash bucket lock
215  * @key:		the key the futex is hashed on
216  * @pi_state:		optional priority inheritance state
217  * @rt_waiter:		rt_waiter storage for use with requeue_pi
218  * @requeue_pi_key:	the requeue_pi target futex key
219  * @bitset:		bitset for the optional bitmasked wakeup
220  *
221  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
222  * we can wake only the relevant ones (hashed queues may be shared).
223  *
224  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
225  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
226  * The order of wakeup is always to make the first condition true, then
227  * the second.
228  *
229  * PI futexes are typically woken before they are removed from the hash list via
230  * the rt_mutex code. See unqueue_me_pi().
231  */
232 struct futex_q {
233 	struct plist_node list;
234 
235 	struct task_struct *task;
236 	spinlock_t *lock_ptr;
237 	union futex_key key;
238 	struct futex_pi_state *pi_state;
239 	struct rt_mutex_waiter *rt_waiter;
240 	union futex_key *requeue_pi_key;
241 	u32 bitset;
242 };
243 
244 static const struct futex_q futex_q_init = {
245 	/* list gets initialized in queue_me()*/
246 	.key = FUTEX_KEY_INIT,
247 	.bitset = FUTEX_BITSET_MATCH_ANY
248 };
249 
250 /*
251  * Hash buckets are shared by all the futex_keys that hash to the same
252  * location.  Each key may have multiple futex_q structures, one for each task
253  * waiting on a futex.
254  */
255 struct futex_hash_bucket {
256 	atomic_t waiters;
257 	spinlock_t lock;
258 	struct plist_head chain;
259 } ____cacheline_aligned_in_smp;
260 
261 /*
262  * The base of the bucket array and its size are always used together
263  * (after initialization only in hash_futex()), so ensure that they
264  * reside in the same cacheline.
265  */
266 static struct {
267 	struct futex_hash_bucket *queues;
268 	unsigned long            hashsize;
269 } __futex_data __read_mostly __aligned(2*sizeof(long));
270 #define futex_queues   (__futex_data.queues)
271 #define futex_hashsize (__futex_data.hashsize)
272 
273 
274 /*
275  * Fault injections for futexes.
276  */
277 #ifdef CONFIG_FAIL_FUTEX
278 
279 static struct {
280 	struct fault_attr attr;
281 
282 	bool ignore_private;
283 } fail_futex = {
284 	.attr = FAULT_ATTR_INITIALIZER,
285 	.ignore_private = false,
286 };
287 
setup_fail_futex(char * str)288 static int __init setup_fail_futex(char *str)
289 {
290 	return setup_fault_attr(&fail_futex.attr, str);
291 }
292 __setup("fail_futex=", setup_fail_futex);
293 
should_fail_futex(bool fshared)294 static bool should_fail_futex(bool fshared)
295 {
296 	if (fail_futex.ignore_private && !fshared)
297 		return false;
298 
299 	return should_fail(&fail_futex.attr, 1);
300 }
301 
302 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
303 
fail_futex_debugfs(void)304 static int __init fail_futex_debugfs(void)
305 {
306 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
307 	struct dentry *dir;
308 
309 	dir = fault_create_debugfs_attr("fail_futex", NULL,
310 					&fail_futex.attr);
311 	if (IS_ERR(dir))
312 		return PTR_ERR(dir);
313 
314 	if (!debugfs_create_bool("ignore-private", mode, dir,
315 				 &fail_futex.ignore_private)) {
316 		debugfs_remove_recursive(dir);
317 		return -ENOMEM;
318 	}
319 
320 	return 0;
321 }
322 
323 late_initcall(fail_futex_debugfs);
324 
325 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
326 
327 #else
should_fail_futex(bool fshared)328 static inline bool should_fail_futex(bool fshared)
329 {
330 	return false;
331 }
332 #endif /* CONFIG_FAIL_FUTEX */
333 
334 #ifdef CONFIG_COMPAT
335 static void compat_exit_robust_list(struct task_struct *curr);
336 #else
compat_exit_robust_list(struct task_struct * curr)337 static inline void compat_exit_robust_list(struct task_struct *curr) { }
338 #endif
339 
futex_get_mm(union futex_key * key)340 static inline void futex_get_mm(union futex_key *key)
341 {
342 	atomic_inc(&key->private.mm->mm_count);
343 	/*
344 	 * Ensure futex_get_mm() implies a full barrier such that
345 	 * get_futex_key() implies a full barrier. This is relied upon
346 	 * as full barrier (B), see the ordering comment above.
347 	 */
348 	smp_mb__after_atomic();
349 }
350 
351 /*
352  * Reflects a new waiter being added to the waitqueue.
353  */
hb_waiters_inc(struct futex_hash_bucket * hb)354 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
355 {
356 #ifdef CONFIG_SMP
357 	atomic_inc(&hb->waiters);
358 	/*
359 	 * Full barrier (A), see the ordering comment above.
360 	 */
361 	smp_mb__after_atomic();
362 #endif
363 }
364 
365 /*
366  * Reflects a waiter being removed from the waitqueue by wakeup
367  * paths.
368  */
hb_waiters_dec(struct futex_hash_bucket * hb)369 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
370 {
371 #ifdef CONFIG_SMP
372 	atomic_dec(&hb->waiters);
373 #endif
374 }
375 
hb_waiters_pending(struct futex_hash_bucket * hb)376 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
377 {
378 #ifdef CONFIG_SMP
379 	return atomic_read(&hb->waiters);
380 #else
381 	return 1;
382 #endif
383 }
384 
385 /*
386  * We hash on the keys returned from get_futex_key (see below).
387  */
hash_futex(union futex_key * key)388 static struct futex_hash_bucket *hash_futex(union futex_key *key)
389 {
390 	u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
391 			  key->both.offset);
392 
393 	return &futex_queues[hash & (futex_hashsize - 1)];
394 }
395 
396 /*
397  * Return 1 if two futex_keys are equal, 0 otherwise.
398  */
match_futex(union futex_key * key1,union futex_key * key2)399 static inline int match_futex(union futex_key *key1, union futex_key *key2)
400 {
401 	return (key1 && key2
402 		&& key1->both.word == key2->both.word
403 		&& key1->both.ptr == key2->both.ptr
404 		&& key1->both.offset == key2->both.offset);
405 }
406 
407 /*
408  * Take a reference to the resource addressed by a key.
409  * Can be called while holding spinlocks.
410  *
411  */
get_futex_key_refs(union futex_key * key)412 static void get_futex_key_refs(union futex_key *key)
413 {
414 	if (!key->both.ptr)
415 		return;
416 
417 	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
418 	case FUT_OFF_INODE:
419 		smp_mb();		/* explicit smp_mb(); (B) */
420 		break;
421 	case FUT_OFF_MMSHARED:
422 		futex_get_mm(key); /* implies MB (B) */
423 		break;
424 	default:
425 		/*
426 		 * Private futexes do not hold reference on an inode or
427 		 * mm, therefore the only purpose of calling get_futex_key_refs
428 		 * is because we need the barrier for the lockless waiter check.
429 		 */
430 		smp_mb(); /* explicit MB (B) */
431 	}
432 }
433 
434 /*
435  * Drop a reference to the resource addressed by a key.
436  * The hash bucket spinlock must not be held. This is
437  * a no-op for private futexes, see comment in the get
438  * counterpart.
439  */
drop_futex_key_refs(union futex_key * key)440 static void drop_futex_key_refs(union futex_key *key)
441 {
442 	if (!key->both.ptr) {
443 		/* If we're here then we tried to put a key we failed to get */
444 		WARN_ON_ONCE(1);
445 		return;
446 	}
447 
448 	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
449 	case FUT_OFF_INODE:
450 		break;
451 	case FUT_OFF_MMSHARED:
452 		mmdrop(key->private.mm);
453 		break;
454 	}
455 }
456 
457 /*
458  * Generate a machine wide unique identifier for this inode.
459  *
460  * This relies on u64 not wrapping in the life-time of the machine; which with
461  * 1ns resolution means almost 585 years.
462  *
463  * This further relies on the fact that a well formed program will not unmap
464  * the file while it has a (shared) futex waiting on it. This mapping will have
465  * a file reference which pins the mount and inode.
466  *
467  * If for some reason an inode gets evicted and read back in again, it will get
468  * a new sequence number and will _NOT_ match, even though it is the exact same
469  * file.
470  *
471  * It is important that match_futex() will never have a false-positive, esp.
472  * for PI futexes that can mess up the state. The above argues that false-negatives
473  * are only possible for malformed programs.
474  */
get_inode_sequence_number(struct inode * inode)475 static u64 get_inode_sequence_number(struct inode *inode)
476 {
477 	static atomic64_t i_seq;
478 	u64 old;
479 
480 	/* Does the inode already have a sequence number? */
481 	old = atomic64_read(&inode->i_sequence);
482 	if (likely(old))
483 		return old;
484 
485 	for (;;) {
486 		u64 new = atomic64_add_return(1, &i_seq);
487 		if (WARN_ON_ONCE(!new))
488 			continue;
489 
490 		old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
491 		if (old)
492 			return old;
493 		return new;
494 	}
495 }
496 
497 /**
498  * get_futex_key() - Get parameters which are the keys for a futex
499  * @uaddr:	virtual address of the futex
500  * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
501  * @key:	address where result is stored.
502  * @rw:		mapping needs to be read/write (values: VERIFY_READ,
503  *              VERIFY_WRITE)
504  *
505  * Return: a negative error code or 0
506  *
507  * The key words are stored in *key on success.
508  *
509  * For shared mappings (when @fshared), the key is:
510  *   ( inode->i_sequence, page->index, offset_within_page )
511  * [ also see get_inode_sequence_number() ]
512  *
513  * For private mappings (or when !@fshared), the key is:
514  *   ( current->mm, address, 0 )
515  *
516  * This allows (cross process, where applicable) identification of the futex
517  * without keeping the page pinned for the duration of the FUTEX_WAIT.
518  *
519  * lock_page() might sleep, the caller should not hold a spinlock.
520  */
521 static int
get_futex_key(u32 __user * uaddr,int fshared,union futex_key * key,int rw)522 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
523 {
524 	unsigned long address = (unsigned long)uaddr;
525 	struct mm_struct *mm = current->mm;
526 	struct page *page, *page_head;
527 	struct address_space *mapping;
528 	int err, ro = 0;
529 
530 	/*
531 	 * The futex address must be "naturally" aligned.
532 	 */
533 	key->both.offset = address % PAGE_SIZE;
534 	if (unlikely((address % sizeof(u32)) != 0))
535 		return -EINVAL;
536 	address -= key->both.offset;
537 
538 	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
539 		return -EFAULT;
540 
541 	if (unlikely(should_fail_futex(fshared)))
542 		return -EFAULT;
543 
544 	/*
545 	 * PROCESS_PRIVATE futexes are fast.
546 	 * As the mm cannot disappear under us and the 'key' only needs
547 	 * virtual address, we dont even have to find the underlying vma.
548 	 * Note : We do have to check 'uaddr' is a valid user address,
549 	 *        but access_ok() should be faster than find_vma()
550 	 */
551 	if (!fshared) {
552 		key->private.mm = mm;
553 		key->private.address = address;
554 		get_futex_key_refs(key);  /* implies MB (B) */
555 		return 0;
556 	}
557 
558 again:
559 	/* Ignore any VERIFY_READ mapping (futex common case) */
560 	if (unlikely(should_fail_futex(fshared)))
561 		return -EFAULT;
562 
563 	err = get_user_pages_fast(address, 1, 1, &page);
564 	/*
565 	 * If write access is not required (eg. FUTEX_WAIT), try
566 	 * and get read-only access.
567 	 */
568 	if (err == -EFAULT && rw == VERIFY_READ) {
569 		err = get_user_pages_fast(address, 1, 0, &page);
570 		ro = 1;
571 	}
572 	if (err < 0)
573 		return err;
574 	else
575 		err = 0;
576 
577 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
578 	page_head = page;
579 	if (unlikely(PageTail(page))) {
580 		put_page(page);
581 		/* serialize against __split_huge_page_splitting() */
582 		local_irq_disable();
583 		if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
584 			page_head = compound_head(page);
585 			/*
586 			 * page_head is valid pointer but we must pin
587 			 * it before taking the PG_lock and/or
588 			 * PG_compound_lock. The moment we re-enable
589 			 * irqs __split_huge_page_splitting() can
590 			 * return and the head page can be freed from
591 			 * under us. We can't take the PG_lock and/or
592 			 * PG_compound_lock on a page that could be
593 			 * freed from under us.
594 			 */
595 			if (page != page_head) {
596 				get_page(page_head);
597 				put_page(page);
598 			}
599 			local_irq_enable();
600 		} else {
601 			local_irq_enable();
602 			goto again;
603 		}
604 	}
605 #else
606 	page_head = compound_head(page);
607 	if (page != page_head) {
608 		get_page(page_head);
609 		put_page(page);
610 	}
611 #endif
612 
613 	/*
614 	 * The treatment of mapping from this point on is critical. The page
615 	 * lock protects many things but in this context the page lock
616 	 * stabilizes mapping, prevents inode freeing in the shared
617 	 * file-backed region case and guards against movement to swap cache.
618 	 *
619 	 * Strictly speaking the page lock is not needed in all cases being
620 	 * considered here and page lock forces unnecessarily serialization
621 	 * From this point on, mapping will be re-verified if necessary and
622 	 * page lock will be acquired only if it is unavoidable
623 	 */
624 
625 	mapping = READ_ONCE(page_head->mapping);
626 
627 	/*
628 	 * If page_head->mapping is NULL, then it cannot be a PageAnon
629 	 * page; but it might be the ZERO_PAGE or in the gate area or
630 	 * in a special mapping (all cases which we are happy to fail);
631 	 * or it may have been a good file page when get_user_pages_fast
632 	 * found it, but truncated or holepunched or subjected to
633 	 * invalidate_complete_page2 before we got the page lock (also
634 	 * cases which we are happy to fail).  And we hold a reference,
635 	 * so refcount care in invalidate_complete_page's remove_mapping
636 	 * prevents drop_caches from setting mapping to NULL beneath us.
637 	 *
638 	 * The case we do have to guard against is when memory pressure made
639 	 * shmem_writepage move it from filecache to swapcache beneath us:
640 	 * an unlikely race, but we do need to retry for page_head->mapping.
641 	 */
642 	if (unlikely(!mapping)) {
643 		int shmem_swizzled;
644 
645 		/*
646 		 * Page lock is required to identify which special case above
647 		 * applies. If this is really a shmem page then the page lock
648 		 * will prevent unexpected transitions.
649 		 */
650 		lock_page(page_head);
651 		shmem_swizzled = PageSwapCache(page_head) || page_head->mapping;
652 		unlock_page(page_head);
653 		put_page(page_head);
654 
655 		if (shmem_swizzled)
656 			goto again;
657 
658 		return -EFAULT;
659 	}
660 
661 	/*
662 	 * Private mappings are handled in a simple way.
663 	 *
664 	 * If the futex key is stored on an anonymous page, then the associated
665 	 * object is the mm which is implicitly pinned by the calling process.
666 	 *
667 	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
668 	 * it's a read-only handle, it's expected that futexes attach to
669 	 * the object not the particular process.
670 	 */
671 	if (PageAnon(page_head)) {
672 		/*
673 		 * A RO anonymous page will never change and thus doesn't make
674 		 * sense for futex operations.
675 		 */
676 		if (unlikely(should_fail_futex(fshared)) || ro) {
677 			err = -EFAULT;
678 			goto out;
679 		}
680 
681 		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
682 		key->private.mm = mm;
683 		key->private.address = address;
684 
685 	} else {
686 		struct inode *inode;
687 
688 		/*
689 		 * The associated futex object in this case is the inode and
690 		 * the page->mapping must be traversed. Ordinarily this should
691 		 * be stabilised under page lock but it's not strictly
692 		 * necessary in this case as we just want to pin the inode, not
693 		 * update the radix tree or anything like that.
694 		 *
695 		 * The RCU read lock is taken as the inode is finally freed
696 		 * under RCU. If the mapping still matches expectations then the
697 		 * mapping->host can be safely accessed as being a valid inode.
698 		 */
699 		rcu_read_lock();
700 
701 		if (READ_ONCE(page_head->mapping) != mapping) {
702 			rcu_read_unlock();
703 			put_page(page_head);
704 
705 			goto again;
706 		}
707 
708 		inode = READ_ONCE(mapping->host);
709 		if (!inode) {
710 			rcu_read_unlock();
711 			put_page(page_head);
712 
713 			goto again;
714 		}
715 
716 		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
717 		key->shared.i_seq = get_inode_sequence_number(inode);
718 		key->shared.pgoff = basepage_index(page);
719 		rcu_read_unlock();
720 	}
721 
722 	get_futex_key_refs(key); /* implies smp_mb(); (B) */
723 
724 out:
725 	put_page(page_head);
726 	return err;
727 }
728 
put_futex_key(union futex_key * key)729 static inline void put_futex_key(union futex_key *key)
730 {
731 	drop_futex_key_refs(key);
732 }
733 
734 /**
735  * fault_in_user_writeable() - Fault in user address and verify RW access
736  * @uaddr:	pointer to faulting user space address
737  *
738  * Slow path to fixup the fault we just took in the atomic write
739  * access to @uaddr.
740  *
741  * We have no generic implementation of a non-destructive write to the
742  * user address. We know that we faulted in the atomic pagefault
743  * disabled section so we can as well avoid the #PF overhead by
744  * calling get_user_pages() right away.
745  */
fault_in_user_writeable(u32 __user * uaddr)746 static int fault_in_user_writeable(u32 __user *uaddr)
747 {
748 	struct mm_struct *mm = current->mm;
749 	int ret;
750 
751 	down_read(&mm->mmap_sem);
752 	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
753 			       FAULT_FLAG_WRITE);
754 	up_read(&mm->mmap_sem);
755 
756 	return ret < 0 ? ret : 0;
757 }
758 
759 /**
760  * futex_top_waiter() - Return the highest priority waiter on a futex
761  * @hb:		the hash bucket the futex_q's reside in
762  * @key:	the futex key (to distinguish it from other futex futex_q's)
763  *
764  * Must be called with the hb lock held.
765  */
futex_top_waiter(struct futex_hash_bucket * hb,union futex_key * key)766 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
767 					union futex_key *key)
768 {
769 	struct futex_q *this;
770 
771 	plist_for_each_entry(this, &hb->chain, list) {
772 		if (match_futex(&this->key, key))
773 			return this;
774 	}
775 	return NULL;
776 }
777 
cmpxchg_futex_value_locked(u32 * curval,u32 __user * uaddr,u32 uval,u32 newval)778 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
779 				      u32 uval, u32 newval)
780 {
781 	int ret;
782 
783 	pagefault_disable();
784 	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
785 	pagefault_enable();
786 
787 	return ret;
788 }
789 
get_futex_value_locked(u32 * dest,u32 __user * from)790 static int get_futex_value_locked(u32 *dest, u32 __user *from)
791 {
792 	int ret;
793 
794 	pagefault_disable();
795 	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
796 	pagefault_enable();
797 
798 	return ret ? -EFAULT : 0;
799 }
800 
801 
802 /*
803  * PI code:
804  */
refill_pi_state_cache(void)805 static int refill_pi_state_cache(void)
806 {
807 	struct futex_pi_state *pi_state;
808 
809 	if (likely(current->pi_state_cache))
810 		return 0;
811 
812 	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
813 
814 	if (!pi_state)
815 		return -ENOMEM;
816 
817 	INIT_LIST_HEAD(&pi_state->list);
818 	/* pi_mutex gets initialized later */
819 	pi_state->owner = NULL;
820 	atomic_set(&pi_state->refcount, 1);
821 	pi_state->key = FUTEX_KEY_INIT;
822 
823 	current->pi_state_cache = pi_state;
824 
825 	return 0;
826 }
827 
alloc_pi_state(void)828 static struct futex_pi_state *alloc_pi_state(void)
829 {
830 	struct futex_pi_state *pi_state = current->pi_state_cache;
831 
832 	WARN_ON(!pi_state);
833 	current->pi_state_cache = NULL;
834 
835 	return pi_state;
836 }
837 
pi_state_update_owner(struct futex_pi_state * pi_state,struct task_struct * new_owner)838 static void pi_state_update_owner(struct futex_pi_state *pi_state,
839 				  struct task_struct *new_owner)
840 {
841 	struct task_struct *old_owner = pi_state->owner;
842 
843 	lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
844 
845 	if (old_owner) {
846 		raw_spin_lock(&old_owner->pi_lock);
847 		WARN_ON(list_empty(&pi_state->list));
848 		list_del_init(&pi_state->list);
849 		raw_spin_unlock(&old_owner->pi_lock);
850 	}
851 
852 	if (new_owner) {
853 		raw_spin_lock(&new_owner->pi_lock);
854 		WARN_ON(!list_empty(&pi_state->list));
855 		list_add(&pi_state->list, &new_owner->pi_state_list);
856 		pi_state->owner = new_owner;
857 		raw_spin_unlock(&new_owner->pi_lock);
858 	}
859 }
860 
get_pi_state(struct futex_pi_state * pi_state)861 static void get_pi_state(struct futex_pi_state *pi_state)
862 {
863 	WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
864 }
865 
866 /*
867  * Drops a reference to the pi_state object and frees or caches it
868  * when the last reference is gone.
869  *
870  * Must be called with the hb lock held.
871  */
put_pi_state(struct futex_pi_state * pi_state)872 static void put_pi_state(struct futex_pi_state *pi_state)
873 {
874 	if (!pi_state)
875 		return;
876 
877 	if (!atomic_dec_and_test(&pi_state->refcount))
878 		return;
879 
880 	/*
881 	 * If pi_state->owner is NULL, the owner is most probably dying
882 	 * and has cleaned up the pi_state already
883 	 */
884 	if (pi_state->owner) {
885 		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
886 		pi_state_update_owner(pi_state, NULL);
887 		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
888 		rt_mutex_proxy_unlock(&pi_state->pi_mutex);
889 	}
890 
891 	if (current->pi_state_cache)
892 		kfree(pi_state);
893 	else {
894 		/*
895 		 * pi_state->list is already empty.
896 		 * clear pi_state->owner.
897 		 * refcount is at 0 - put it back to 1.
898 		 */
899 		pi_state->owner = NULL;
900 		atomic_set(&pi_state->refcount, 1);
901 		current->pi_state_cache = pi_state;
902 	}
903 }
904 
905 /*
906  * Look up the task based on what TID userspace gave us.
907  * We dont trust it.
908  */
futex_find_get_task(pid_t pid)909 static struct task_struct *futex_find_get_task(pid_t pid)
910 {
911 	struct task_struct *p;
912 
913 	rcu_read_lock();
914 	p = find_task_by_vpid(pid);
915 	if (p)
916 		get_task_struct(p);
917 
918 	rcu_read_unlock();
919 
920 	return p;
921 }
922 
923 /*
924  * This task is holding PI mutexes at exit time => bad.
925  * Kernel cleans up PI-state, but userspace is likely hosed.
926  * (Robust-futex cleanup is separate and might save the day for userspace.)
927  */
exit_pi_state_list(struct task_struct * curr)928 static void exit_pi_state_list(struct task_struct *curr)
929 {
930 	struct list_head *next, *head = &curr->pi_state_list;
931 	struct futex_pi_state *pi_state;
932 	struct futex_hash_bucket *hb;
933 	union futex_key key = FUTEX_KEY_INIT;
934 
935 	if (!futex_cmpxchg_enabled)
936 		return;
937 	/*
938 	 * We are a ZOMBIE and nobody can enqueue itself on
939 	 * pi_state_list anymore, but we have to be careful
940 	 * versus waiters unqueueing themselves:
941 	 */
942 	raw_spin_lock_irq(&curr->pi_lock);
943 	while (!list_empty(head)) {
944 
945 		next = head->next;
946 		pi_state = list_entry(next, struct futex_pi_state, list);
947 		key = pi_state->key;
948 		hb = hash_futex(&key);
949 		raw_spin_unlock_irq(&curr->pi_lock);
950 
951 		spin_lock(&hb->lock);
952 
953 		raw_spin_lock_irq(&curr->pi_lock);
954 		/*
955 		 * We dropped the pi-lock, so re-check whether this
956 		 * task still owns the PI-state:
957 		 */
958 		if (head->next != next) {
959 			spin_unlock(&hb->lock);
960 			continue;
961 		}
962 
963 		WARN_ON(pi_state->owner != curr);
964 		WARN_ON(list_empty(&pi_state->list));
965 		list_del_init(&pi_state->list);
966 		pi_state->owner = NULL;
967 		raw_spin_unlock_irq(&curr->pi_lock);
968 
969 		get_pi_state(pi_state);
970 		spin_unlock(&hb->lock);
971 
972 		rt_mutex_futex_unlock(&pi_state->pi_mutex);
973 		put_pi_state(pi_state);
974 
975 		raw_spin_lock_irq(&curr->pi_lock);
976 	}
977 	raw_spin_unlock_irq(&curr->pi_lock);
978 }
979 
980 /*
981  * We need to check the following states:
982  *
983  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
984  *
985  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
986  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
987  *
988  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
989  *
990  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
991  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
992  *
993  * [6]  Found  | Found    | task      | 0         | 1      | Valid
994  *
995  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
996  *
997  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
998  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
999  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
1000  *
1001  * [1]	Indicates that the kernel can acquire the futex atomically. We
1002  *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
1003  *
1004  * [2]	Valid, if TID does not belong to a kernel thread. If no matching
1005  *      thread is found then it indicates that the owner TID has died.
1006  *
1007  * [3]	Invalid. The waiter is queued on a non PI futex
1008  *
1009  * [4]	Valid state after exit_robust_list(), which sets the user space
1010  *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1011  *
1012  * [5]	The user space value got manipulated between exit_robust_list()
1013  *	and exit_pi_state_list()
1014  *
1015  * [6]	Valid state after exit_pi_state_list() which sets the new owner in
1016  *	the pi_state but cannot access the user space value.
1017  *
1018  * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1019  *
1020  * [8]	Owner and user space value match
1021  *
1022  * [9]	There is no transient state which sets the user space TID to 0
1023  *	except exit_robust_list(), but this is indicated by the
1024  *	FUTEX_OWNER_DIED bit. See [4]
1025  *
1026  * [10] There is no transient state which leaves owner and user space
1027  *	TID out of sync. Except one error case where the kernel is denied
1028  *	write access to the user address, see fixup_pi_state_owner().
1029  *
1030  *
1031  * Serialization and lifetime rules:
1032  *
1033  * hb->lock:
1034  *
1035  *	hb -> futex_q, relation
1036  *	futex_q -> pi_state, relation
1037  *
1038  *	(cannot be raw because hb can contain arbitrary amount
1039  *	 of futex_q's)
1040  *
1041  * pi_mutex->wait_lock:
1042  *
1043  *	{uval, pi_state}
1044  *
1045  *	(and pi_mutex 'obviously')
1046  *
1047  * p->pi_lock:
1048  *
1049  *	p->pi_state_list -> pi_state->list, relation
1050  *
1051  * pi_state->refcount:
1052  *
1053  *	pi_state lifetime
1054  *
1055  *
1056  * Lock order:
1057  *
1058  *   hb->lock
1059  *     pi_mutex->wait_lock
1060  *       p->pi_lock
1061  *
1062  */
1063 
1064 /*
1065  * Validate that the existing waiter has a pi_state and sanity check
1066  * the pi_state against the user space value. If correct, attach to
1067  * it.
1068  */
attach_to_pi_state(u32 __user * uaddr,u32 uval,struct futex_pi_state * pi_state,struct futex_pi_state ** ps)1069 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1070 			      struct futex_pi_state *pi_state,
1071 			      struct futex_pi_state **ps)
1072 {
1073 	pid_t pid = uval & FUTEX_TID_MASK;
1074 	int ret, uval2;
1075 
1076 	/*
1077 	 * Userspace might have messed up non-PI and PI futexes [3]
1078 	 */
1079 	if (unlikely(!pi_state))
1080 		return -EINVAL;
1081 
1082 	/*
1083 	 * We get here with hb->lock held, and having found a
1084 	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1085 	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1086 	 * which in turn means that futex_lock_pi() still has a reference on
1087 	 * our pi_state.
1088 	 *
1089 	 * The waiter holding a reference on @pi_state also protects against
1090 	 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1091 	 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1092 	 * free pi_state before we can take a reference ourselves.
1093 	 */
1094 	WARN_ON(!atomic_read(&pi_state->refcount));
1095 
1096 	/*
1097 	 * Now that we have a pi_state, we can acquire wait_lock
1098 	 * and do the state validation.
1099 	 */
1100 	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1101 
1102 	/*
1103 	 * Since {uval, pi_state} is serialized by wait_lock, and our current
1104 	 * uval was read without holding it, it can have changed. Verify it
1105 	 * still is what we expect it to be, otherwise retry the entire
1106 	 * operation.
1107 	 */
1108 	if (get_futex_value_locked(&uval2, uaddr))
1109 		goto out_efault;
1110 
1111 	if (uval != uval2)
1112 		goto out_eagain;
1113 
1114 	/*
1115 	 * Handle the owner died case:
1116 	 */
1117 	if (uval & FUTEX_OWNER_DIED) {
1118 		/*
1119 		 * exit_pi_state_list sets owner to NULL and wakes the
1120 		 * topmost waiter. The task which acquires the
1121 		 * pi_state->rt_mutex will fixup owner.
1122 		 */
1123 		if (!pi_state->owner) {
1124 			/*
1125 			 * No pi state owner, but the user space TID
1126 			 * is not 0. Inconsistent state. [5]
1127 			 */
1128 			if (pid)
1129 				goto out_einval;
1130 			/*
1131 			 * Take a ref on the state and return success. [4]
1132 			 */
1133 			goto out_attach;
1134 		}
1135 
1136 		/*
1137 		 * If TID is 0, then either the dying owner has not
1138 		 * yet executed exit_pi_state_list() or some waiter
1139 		 * acquired the rtmutex in the pi state, but did not
1140 		 * yet fixup the TID in user space.
1141 		 *
1142 		 * Take a ref on the state and return success. [6]
1143 		 */
1144 		if (!pid)
1145 			goto out_attach;
1146 	} else {
1147 		/*
1148 		 * If the owner died bit is not set, then the pi_state
1149 		 * must have an owner. [7]
1150 		 */
1151 		if (!pi_state->owner)
1152 			goto out_einval;
1153 	}
1154 
1155 	/*
1156 	 * Bail out if user space manipulated the futex value. If pi
1157 	 * state exists then the owner TID must be the same as the
1158 	 * user space TID. [9/10]
1159 	 */
1160 	if (pid != task_pid_vnr(pi_state->owner))
1161 		goto out_einval;
1162 
1163 out_attach:
1164 	get_pi_state(pi_state);
1165 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1166 	*ps = pi_state;
1167 	return 0;
1168 
1169 out_einval:
1170 	ret = -EINVAL;
1171 	goto out_error;
1172 
1173 out_eagain:
1174 	ret = -EAGAIN;
1175 	goto out_error;
1176 
1177 out_efault:
1178 	ret = -EFAULT;
1179 	goto out_error;
1180 
1181 out_error:
1182 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1183 	return ret;
1184 }
1185 
1186 /**
1187  * wait_for_owner_exiting - Block until the owner has exited
1188  * @exiting:	Pointer to the exiting task
1189  *
1190  * Caller must hold a refcount on @exiting.
1191  */
wait_for_owner_exiting(int ret,struct task_struct * exiting)1192 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1193 {
1194 	if (ret != -EBUSY) {
1195 		WARN_ON_ONCE(exiting);
1196 		return;
1197 	}
1198 
1199 	if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1200 		return;
1201 
1202 	mutex_lock(&exiting->futex_exit_mutex);
1203 	/*
1204 	 * No point in doing state checking here. If the waiter got here
1205 	 * while the task was in exec()->exec_futex_release() then it can
1206 	 * have any FUTEX_STATE_* value when the waiter has acquired the
1207 	 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1208 	 * already. Highly unlikely and not a problem. Just one more round
1209 	 * through the futex maze.
1210 	 */
1211 	mutex_unlock(&exiting->futex_exit_mutex);
1212 
1213 	put_task_struct(exiting);
1214 }
1215 
handle_exit_race(u32 __user * uaddr,u32 uval,struct task_struct * tsk)1216 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1217 			    struct task_struct *tsk)
1218 {
1219 	u32 uval2;
1220 
1221 	/*
1222 	 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1223 	 * caller that the alleged owner is busy.
1224 	 */
1225 	if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1226 		return -EBUSY;
1227 
1228 	/*
1229 	 * Reread the user space value to handle the following situation:
1230 	 *
1231 	 * CPU0				CPU1
1232 	 *
1233 	 * sys_exit()			sys_futex()
1234 	 *  do_exit()			 futex_lock_pi()
1235 	 *                                futex_lock_pi_atomic()
1236 	 *   exit_signals(tsk)		    No waiters:
1237 	 *    tsk->flags |= PF_EXITING;	    *uaddr == 0x00000PID
1238 	 *  mm_release(tsk)		    Set waiter bit
1239 	 *   exit_robust_list(tsk) {	    *uaddr = 0x80000PID;
1240 	 *      Set owner died		    attach_to_pi_owner() {
1241 	 *    *uaddr = 0xC0000000;	     tsk = get_task(PID);
1242 	 *   }				     if (!tsk->flags & PF_EXITING) {
1243 	 *  ...				       attach();
1244 	 *  tsk->futex_state =               } else {
1245 	 *	FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1246 	 *					  FUTEX_STATE_DEAD)
1247 	 *				         return -EAGAIN;
1248 	 *				       return -ESRCH; <--- FAIL
1249 	 *				     }
1250 	 *
1251 	 * Returning ESRCH unconditionally is wrong here because the
1252 	 * user space value has been changed by the exiting task.
1253 	 *
1254 	 * The same logic applies to the case where the exiting task is
1255 	 * already gone.
1256 	 */
1257 	if (get_futex_value_locked(&uval2, uaddr))
1258 		return -EFAULT;
1259 
1260 	/* If the user space value has changed, try again. */
1261 	if (uval2 != uval)
1262 		return -EAGAIN;
1263 
1264 	/*
1265 	 * The exiting task did not have a robust list, the robust list was
1266 	 * corrupted or the user space value in *uaddr is simply bogus.
1267 	 * Give up and tell user space.
1268 	 */
1269 	return -ESRCH;
1270 }
1271 
1272 /*
1273  * Lookup the task for the TID provided from user space and attach to
1274  * it after doing proper sanity checks.
1275  */
attach_to_pi_owner(u32 __user * uaddr,u32 uval,union futex_key * key,struct futex_pi_state ** ps,struct task_struct ** exiting)1276 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1277 			      struct futex_pi_state **ps,
1278 			      struct task_struct **exiting)
1279 {
1280 	pid_t pid = uval & FUTEX_TID_MASK;
1281 	struct futex_pi_state *pi_state;
1282 	struct task_struct *p;
1283 
1284 	/*
1285 	 * We are the first waiter - try to look up the real owner and attach
1286 	 * the new pi_state to it, but bail out when TID = 0 [1]
1287 	 *
1288 	 * The !pid check is paranoid. None of the call sites should end up
1289 	 * with pid == 0, but better safe than sorry. Let the caller retry
1290 	 */
1291 	if (!pid)
1292 		return -EAGAIN;
1293 	p = futex_find_get_task(pid);
1294 	if (!p)
1295 		return handle_exit_race(uaddr, uval, NULL);
1296 
1297 	if (unlikely(p->flags & PF_KTHREAD)) {
1298 		put_task_struct(p);
1299 		return -EPERM;
1300 	}
1301 
1302 	/*
1303 	 * We need to look at the task state to figure out, whether the
1304 	 * task is exiting. To protect against the change of the task state
1305 	 * in futex_exit_release(), we do this protected by p->pi_lock:
1306 	 */
1307 	raw_spin_lock_irq(&p->pi_lock);
1308 	if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1309 		/*
1310 		 * The task is on the way out. When the futex state is
1311 		 * FUTEX_STATE_DEAD, we know that the task has finished
1312 		 * the cleanup:
1313 		 */
1314 		int ret = handle_exit_race(uaddr, uval, p);
1315 
1316 		raw_spin_unlock_irq(&p->pi_lock);
1317 		/*
1318 		 * If the owner task is between FUTEX_STATE_EXITING and
1319 		 * FUTEX_STATE_DEAD then store the task pointer and keep
1320 		 * the reference on the task struct. The calling code will
1321 		 * drop all locks, wait for the task to reach
1322 		 * FUTEX_STATE_DEAD and then drop the refcount. This is
1323 		 * required to prevent a live lock when the current task
1324 		 * preempted the exiting task between the two states.
1325 		 */
1326 		if (ret == -EBUSY)
1327 			*exiting = p;
1328 		else
1329 			put_task_struct(p);
1330 		return ret;
1331 	}
1332 
1333 	/*
1334 	 * No existing pi state. First waiter. [2]
1335 	 *
1336 	 * This creates pi_state, we have hb->lock held, this means nothing can
1337 	 * observe this state, wait_lock is irrelevant.
1338 	 */
1339 	pi_state = alloc_pi_state();
1340 
1341 	/*
1342 	 * Initialize the pi_mutex in locked state and make @p
1343 	 * the owner of it:
1344 	 */
1345 	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1346 
1347 	/* Store the key for possible exit cleanups: */
1348 	pi_state->key = *key;
1349 
1350 	WARN_ON(!list_empty(&pi_state->list));
1351 	list_add(&pi_state->list, &p->pi_state_list);
1352 	pi_state->owner = p;
1353 	raw_spin_unlock_irq(&p->pi_lock);
1354 
1355 	put_task_struct(p);
1356 
1357 	*ps = pi_state;
1358 
1359 	return 0;
1360 }
1361 
lookup_pi_state(u32 __user * uaddr,u32 uval,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct ** exiting)1362 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1363 			   struct futex_hash_bucket *hb,
1364 			   union futex_key *key, struct futex_pi_state **ps,
1365 			   struct task_struct **exiting)
1366 {
1367 	struct futex_q *match = futex_top_waiter(hb, key);
1368 
1369 	/*
1370 	 * If there is a waiter on that futex, validate it and
1371 	 * attach to the pi_state when the validation succeeds.
1372 	 */
1373 	if (match)
1374 		return attach_to_pi_state(uaddr, uval, match->pi_state, ps);
1375 
1376 	/*
1377 	 * We are the first waiter - try to look up the owner based on
1378 	 * @uval and attach to it.
1379 	 */
1380 	return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1381 }
1382 
lock_pi_update_atomic(u32 __user * uaddr,u32 uval,u32 newval)1383 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1384 {
1385 	u32 uninitialized_var(curval);
1386 
1387 	if (unlikely(should_fail_futex(true)))
1388 		return -EFAULT;
1389 
1390 	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1391 		return -EFAULT;
1392 
1393 	/* If user space value changed, let the caller retry */
1394 	return curval != uval ? -EAGAIN : 0;
1395 }
1396 
1397 /**
1398  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1399  * @uaddr:		the pi futex user address
1400  * @hb:			the pi futex hash bucket
1401  * @key:		the futex key associated with uaddr and hb
1402  * @ps:			the pi_state pointer where we store the result of the
1403  *			lookup
1404  * @task:		the task to perform the atomic lock work for.  This will
1405  *			be "current" except in the case of requeue pi.
1406  * @exiting:		Pointer to store the task pointer of the owner task
1407  *			which is in the middle of exiting
1408  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1409  *
1410  * Return:
1411  *  0 - ready to wait;
1412  *  1 - acquired the lock;
1413  * <0 - error
1414  *
1415  * The hb->lock and futex_key refs shall be held by the caller.
1416  *
1417  * @exiting is only set when the return value is -EBUSY. If so, this holds
1418  * a refcount on the exiting task on return and the caller needs to drop it
1419  * after waiting for the exit to complete.
1420  */
futex_lock_pi_atomic(u32 __user * uaddr,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct * task,struct task_struct ** exiting,int set_waiters)1421 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1422 				union futex_key *key,
1423 				struct futex_pi_state **ps,
1424 				struct task_struct *task,
1425 				struct task_struct **exiting,
1426 				int set_waiters)
1427 {
1428 	u32 uval, newval, vpid = task_pid_vnr(task);
1429 	struct futex_q *match;
1430 	int ret;
1431 
1432 	/*
1433 	 * Read the user space value first so we can validate a few
1434 	 * things before proceeding further.
1435 	 */
1436 	if (get_futex_value_locked(&uval, uaddr))
1437 		return -EFAULT;
1438 
1439 	if (unlikely(should_fail_futex(true)))
1440 		return -EFAULT;
1441 
1442 	/*
1443 	 * Detect deadlocks.
1444 	 */
1445 	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1446 		return -EDEADLK;
1447 
1448 	if ((unlikely(should_fail_futex(true))))
1449 		return -EDEADLK;
1450 
1451 	/*
1452 	 * Lookup existing state first. If it exists, try to attach to
1453 	 * its pi_state.
1454 	 */
1455 	match = futex_top_waiter(hb, key);
1456 	if (match)
1457 		return attach_to_pi_state(uaddr, uval, match->pi_state, ps);
1458 
1459 	/*
1460 	 * No waiter and user TID is 0. We are here because the
1461 	 * waiters or the owner died bit is set or called from
1462 	 * requeue_cmp_pi or for whatever reason something took the
1463 	 * syscall.
1464 	 */
1465 	if (!(uval & FUTEX_TID_MASK)) {
1466 		/*
1467 		 * We take over the futex. No other waiters and the user space
1468 		 * TID is 0. We preserve the owner died bit.
1469 		 */
1470 		newval = uval & FUTEX_OWNER_DIED;
1471 		newval |= vpid;
1472 
1473 		/* The futex requeue_pi code can enforce the waiters bit */
1474 		if (set_waiters)
1475 			newval |= FUTEX_WAITERS;
1476 
1477 		ret = lock_pi_update_atomic(uaddr, uval, newval);
1478 		/* If the take over worked, return 1 */
1479 		return ret < 0 ? ret : 1;
1480 	}
1481 
1482 	/*
1483 	 * First waiter. Set the waiters bit before attaching ourself to
1484 	 * the owner. If owner tries to unlock, it will be forced into
1485 	 * the kernel and blocked on hb->lock.
1486 	 */
1487 	newval = uval | FUTEX_WAITERS;
1488 	ret = lock_pi_update_atomic(uaddr, uval, newval);
1489 	if (ret)
1490 		return ret;
1491 	/*
1492 	 * If the update of the user space value succeeded, we try to
1493 	 * attach to the owner. If that fails, no harm done, we only
1494 	 * set the FUTEX_WAITERS bit in the user space variable.
1495 	 */
1496 	return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1497 }
1498 
1499 /**
1500  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1501  * @q:	The futex_q to unqueue
1502  *
1503  * The q->lock_ptr must not be NULL and must be held by the caller.
1504  */
__unqueue_futex(struct futex_q * q)1505 static void __unqueue_futex(struct futex_q *q)
1506 {
1507 	struct futex_hash_bucket *hb;
1508 
1509 	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1510 	    || WARN_ON(plist_node_empty(&q->list)))
1511 		return;
1512 
1513 	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1514 	plist_del(&q->list, &hb->chain);
1515 	hb_waiters_dec(hb);
1516 }
1517 
1518 /*
1519  * The hash bucket lock must be held when this is called.
1520  * Afterwards, the futex_q must not be accessed. Callers
1521  * must ensure to later call wake_up_q() for the actual
1522  * wakeups to occur.
1523  */
mark_wake_futex(struct wake_q_head * wake_q,struct futex_q * q)1524 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1525 {
1526 	struct task_struct *p = q->task;
1527 
1528 	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1529 		return;
1530 
1531 	/*
1532 	 * Queue the task for later wakeup for after we've released
1533 	 * the hb->lock. wake_q_add() grabs reference to p.
1534 	 */
1535 	wake_q_add(wake_q, p);
1536 	__unqueue_futex(q);
1537 	/*
1538 	 * The waiting task can free the futex_q as soon as
1539 	 * q->lock_ptr = NULL is written, without taking any locks. A
1540 	 * memory barrier is required here to prevent the following
1541 	 * store to lock_ptr from getting ahead of the plist_del.
1542 	 */
1543 	smp_wmb();
1544 	q->lock_ptr = NULL;
1545 }
1546 
1547 /*
1548  * Caller must hold a reference on @pi_state.
1549  */
wake_futex_pi(u32 __user * uaddr,u32 uval,struct futex_pi_state * pi_state)1550 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1551 {
1552 	u32 uninitialized_var(curval), newval;
1553 	struct task_struct *new_owner;
1554 	bool deboost = false;
1555 	WAKE_Q(wake_q);
1556 	int ret = 0;
1557 
1558 	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1559 	if (WARN_ON_ONCE(!new_owner)) {
1560 		/*
1561 		 * As per the comment in futex_unlock_pi() this should not happen.
1562 		 *
1563 		 * When this happens, give up our locks and try again, giving
1564 		 * the futex_lock_pi() instance time to complete, either by
1565 		 * waiting on the rtmutex or removing itself from the futex
1566 		 * queue.
1567 		 */
1568 		ret = -EAGAIN;
1569 		goto out_unlock;
1570 	}
1571 
1572 	/*
1573 	 * We pass it to the next owner. The WAITERS bit is always kept
1574 	 * enabled while there is PI state around. We cleanup the owner
1575 	 * died bit, because we are the owner.
1576 	 */
1577 	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1578 
1579 	if (unlikely(should_fail_futex(true)))
1580 		ret = -EFAULT;
1581 
1582 	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1583 		ret = -EFAULT;
1584 
1585 	} else if (curval != uval) {
1586 		/*
1587 		 * If a unconditional UNLOCK_PI operation (user space did not
1588 		 * try the TID->0 transition) raced with a waiter setting the
1589 		 * FUTEX_WAITERS flag between get_user() and locking the hash
1590 		 * bucket lock, retry the operation.
1591 		 */
1592 		if ((FUTEX_TID_MASK & curval) == uval)
1593 			ret = -EAGAIN;
1594 		else
1595 			ret = -EINVAL;
1596 	}
1597 
1598 	if (!ret) {
1599 		/*
1600 		 * This is a point of no return; once we modified the uval
1601 		 * there is no going back and subsequent operations must
1602 		 * not fail.
1603 		 */
1604 		pi_state_update_owner(pi_state, new_owner);
1605 		deboost = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1606 	}
1607 
1608 out_unlock:
1609 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1610 
1611 	if (deboost) {
1612 		wake_up_q(&wake_q);
1613 		rt_mutex_adjust_prio(current);
1614 	}
1615 
1616 	return ret;
1617 }
1618 
1619 /*
1620  * Express the locking dependencies for lockdep:
1621  */
1622 static inline void
double_lock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1623 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1624 {
1625 	if (hb1 <= hb2) {
1626 		spin_lock(&hb1->lock);
1627 		if (hb1 < hb2)
1628 			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1629 	} else { /* hb1 > hb2 */
1630 		spin_lock(&hb2->lock);
1631 		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1632 	}
1633 }
1634 
1635 static inline void
double_unlock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1636 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1637 {
1638 	spin_unlock(&hb1->lock);
1639 	if (hb1 != hb2)
1640 		spin_unlock(&hb2->lock);
1641 }
1642 
1643 /*
1644  * Wake up waiters matching bitset queued on this futex (uaddr).
1645  */
1646 static int
futex_wake(u32 __user * uaddr,unsigned int flags,int nr_wake,u32 bitset)1647 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1648 {
1649 	struct futex_hash_bucket *hb;
1650 	struct futex_q *this, *next;
1651 	union futex_key key = FUTEX_KEY_INIT;
1652 	int ret;
1653 	WAKE_Q(wake_q);
1654 
1655 	if (!bitset)
1656 		return -EINVAL;
1657 
1658 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1659 	if (unlikely(ret != 0))
1660 		goto out;
1661 
1662 	hb = hash_futex(&key);
1663 
1664 	/* Make sure we really have tasks to wakeup */
1665 	if (!hb_waiters_pending(hb))
1666 		goto out_put_key;
1667 
1668 	spin_lock(&hb->lock);
1669 
1670 	plist_for_each_entry_safe(this, next, &hb->chain, list) {
1671 		if (match_futex (&this->key, &key)) {
1672 			if (this->pi_state || this->rt_waiter) {
1673 				ret = -EINVAL;
1674 				break;
1675 			}
1676 
1677 			/* Check if one of the bits is set in both bitsets */
1678 			if (!(this->bitset & bitset))
1679 				continue;
1680 
1681 			mark_wake_futex(&wake_q, this);
1682 			if (++ret >= nr_wake)
1683 				break;
1684 		}
1685 	}
1686 
1687 	spin_unlock(&hb->lock);
1688 	wake_up_q(&wake_q);
1689 out_put_key:
1690 	put_futex_key(&key);
1691 out:
1692 	return ret;
1693 }
1694 
futex_atomic_op_inuser(unsigned int encoded_op,u32 __user * uaddr)1695 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1696 {
1697 	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
1698 	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
1699 	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1700 	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1701 	int oldval, ret;
1702 
1703 	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1704 		if (oparg < 0 || oparg > 31) {
1705 			char comm[sizeof(current->comm)];
1706 			/*
1707 			 * kill this print and return -EINVAL when userspace
1708 			 * is sane again
1709 			 */
1710 			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1711 					get_task_comm(comm, current), oparg);
1712 			oparg &= 31;
1713 		}
1714 		oparg = 1 << oparg;
1715 	}
1716 
1717 	if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1718 		return -EFAULT;
1719 
1720 	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1721 	if (ret)
1722 		return ret;
1723 
1724 	switch (cmp) {
1725 	case FUTEX_OP_CMP_EQ:
1726 		return oldval == cmparg;
1727 	case FUTEX_OP_CMP_NE:
1728 		return oldval != cmparg;
1729 	case FUTEX_OP_CMP_LT:
1730 		return oldval < cmparg;
1731 	case FUTEX_OP_CMP_GE:
1732 		return oldval >= cmparg;
1733 	case FUTEX_OP_CMP_LE:
1734 		return oldval <= cmparg;
1735 	case FUTEX_OP_CMP_GT:
1736 		return oldval > cmparg;
1737 	default:
1738 		return -ENOSYS;
1739 	}
1740 }
1741 
1742 /*
1743  * Wake up all waiters hashed on the physical page that is mapped
1744  * to this virtual address:
1745  */
1746 static int
futex_wake_op(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_wake2,int op)1747 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1748 	      int nr_wake, int nr_wake2, int op)
1749 {
1750 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1751 	struct futex_hash_bucket *hb1, *hb2;
1752 	struct futex_q *this, *next;
1753 	int ret, op_ret;
1754 	WAKE_Q(wake_q);
1755 
1756 retry:
1757 	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1758 	if (unlikely(ret != 0))
1759 		goto out;
1760 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1761 	if (unlikely(ret != 0))
1762 		goto out_put_key1;
1763 
1764 	hb1 = hash_futex(&key1);
1765 	hb2 = hash_futex(&key2);
1766 
1767 retry_private:
1768 	double_lock_hb(hb1, hb2);
1769 	op_ret = futex_atomic_op_inuser(op, uaddr2);
1770 	if (unlikely(op_ret < 0)) {
1771 
1772 		double_unlock_hb(hb1, hb2);
1773 
1774 #ifndef CONFIG_MMU
1775 		/*
1776 		 * we don't get EFAULT from MMU faults if we don't have an MMU,
1777 		 * but we might get them from range checking
1778 		 */
1779 		ret = op_ret;
1780 		goto out_put_keys;
1781 #endif
1782 
1783 		if (unlikely(op_ret != -EFAULT)) {
1784 			ret = op_ret;
1785 			goto out_put_keys;
1786 		}
1787 
1788 		ret = fault_in_user_writeable(uaddr2);
1789 		if (ret)
1790 			goto out_put_keys;
1791 
1792 		if (!(flags & FLAGS_SHARED))
1793 			goto retry_private;
1794 
1795 		put_futex_key(&key2);
1796 		put_futex_key(&key1);
1797 		goto retry;
1798 	}
1799 
1800 	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1801 		if (match_futex (&this->key, &key1)) {
1802 			if (this->pi_state || this->rt_waiter) {
1803 				ret = -EINVAL;
1804 				goto out_unlock;
1805 			}
1806 			mark_wake_futex(&wake_q, this);
1807 			if (++ret >= nr_wake)
1808 				break;
1809 		}
1810 	}
1811 
1812 	if (op_ret > 0) {
1813 		op_ret = 0;
1814 		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1815 			if (match_futex (&this->key, &key2)) {
1816 				if (this->pi_state || this->rt_waiter) {
1817 					ret = -EINVAL;
1818 					goto out_unlock;
1819 				}
1820 				mark_wake_futex(&wake_q, this);
1821 				if (++op_ret >= nr_wake2)
1822 					break;
1823 			}
1824 		}
1825 		ret += op_ret;
1826 	}
1827 
1828 out_unlock:
1829 	double_unlock_hb(hb1, hb2);
1830 	wake_up_q(&wake_q);
1831 out_put_keys:
1832 	put_futex_key(&key2);
1833 out_put_key1:
1834 	put_futex_key(&key1);
1835 out:
1836 	return ret;
1837 }
1838 
1839 /**
1840  * requeue_futex() - Requeue a futex_q from one hb to another
1841  * @q:		the futex_q to requeue
1842  * @hb1:	the source hash_bucket
1843  * @hb2:	the target hash_bucket
1844  * @key2:	the new key for the requeued futex_q
1845  */
1846 static inline
requeue_futex(struct futex_q * q,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key2)1847 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1848 		   struct futex_hash_bucket *hb2, union futex_key *key2)
1849 {
1850 
1851 	/*
1852 	 * If key1 and key2 hash to the same bucket, no need to
1853 	 * requeue.
1854 	 */
1855 	if (likely(&hb1->chain != &hb2->chain)) {
1856 		plist_del(&q->list, &hb1->chain);
1857 		hb_waiters_dec(hb1);
1858 		hb_waiters_inc(hb2);
1859 		plist_add(&q->list, &hb2->chain);
1860 		q->lock_ptr = &hb2->lock;
1861 	}
1862 	get_futex_key_refs(key2);
1863 	q->key = *key2;
1864 }
1865 
1866 /**
1867  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1868  * @q:		the futex_q
1869  * @key:	the key of the requeue target futex
1870  * @hb:		the hash_bucket of the requeue target futex
1871  *
1872  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1873  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1874  * to the requeue target futex so the waiter can detect the wakeup on the right
1875  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1876  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1877  * to protect access to the pi_state to fixup the owner later.  Must be called
1878  * with both q->lock_ptr and hb->lock held.
1879  */
1880 static inline
requeue_pi_wake_futex(struct futex_q * q,union futex_key * key,struct futex_hash_bucket * hb)1881 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1882 			   struct futex_hash_bucket *hb)
1883 {
1884 	get_futex_key_refs(key);
1885 	q->key = *key;
1886 
1887 	__unqueue_futex(q);
1888 
1889 	WARN_ON(!q->rt_waiter);
1890 	q->rt_waiter = NULL;
1891 
1892 	q->lock_ptr = &hb->lock;
1893 
1894 	wake_up_state(q->task, TASK_NORMAL);
1895 }
1896 
1897 /**
1898  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1899  * @pifutex:		the user address of the to futex
1900  * @hb1:		the from futex hash bucket, must be locked by the caller
1901  * @hb2:		the to futex hash bucket, must be locked by the caller
1902  * @key1:		the from futex key
1903  * @key2:		the to futex key
1904  * @ps:			address to store the pi_state pointer
1905  * @exiting:		Pointer to store the task pointer of the owner task
1906  *			which is in the middle of exiting
1907  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1908  *
1909  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1910  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1911  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1912  * hb1 and hb2 must be held by the caller.
1913  *
1914  * @exiting is only set when the return value is -EBUSY. If so, this holds
1915  * a refcount on the exiting task on return and the caller needs to drop it
1916  * after waiting for the exit to complete.
1917  *
1918  * Return:
1919  *  0 - failed to acquire the lock atomically;
1920  * >0 - acquired the lock, return value is vpid of the top_waiter
1921  * <0 - error
1922  */
1923 static int
futex_proxy_trylock_atomic(u32 __user * pifutex,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key1,union futex_key * key2,struct futex_pi_state ** ps,struct task_struct ** exiting,int set_waiters)1924 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1925 			   struct futex_hash_bucket *hb2, union futex_key *key1,
1926 			   union futex_key *key2, struct futex_pi_state **ps,
1927 			   struct task_struct **exiting, int set_waiters)
1928 {
1929 	struct futex_q *top_waiter = NULL;
1930 	u32 curval;
1931 	int ret, vpid;
1932 
1933 	if (get_futex_value_locked(&curval, pifutex))
1934 		return -EFAULT;
1935 
1936 	if (unlikely(should_fail_futex(true)))
1937 		return -EFAULT;
1938 
1939 	/*
1940 	 * Find the top_waiter and determine if there are additional waiters.
1941 	 * If the caller intends to requeue more than 1 waiter to pifutex,
1942 	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1943 	 * as we have means to handle the possible fault.  If not, don't set
1944 	 * the bit unecessarily as it will force the subsequent unlock to enter
1945 	 * the kernel.
1946 	 */
1947 	top_waiter = futex_top_waiter(hb1, key1);
1948 
1949 	/* There are no waiters, nothing for us to do. */
1950 	if (!top_waiter)
1951 		return 0;
1952 
1953 	/* Ensure we requeue to the expected futex. */
1954 	if (!match_futex(top_waiter->requeue_pi_key, key2))
1955 		return -EINVAL;
1956 
1957 	/*
1958 	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1959 	 * the contended case or if set_waiters is 1.  The pi_state is returned
1960 	 * in ps in contended cases.
1961 	 */
1962 	vpid = task_pid_vnr(top_waiter->task);
1963 	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1964 				   exiting, set_waiters);
1965 	if (ret == 1) {
1966 		requeue_pi_wake_futex(top_waiter, key2, hb2);
1967 		return vpid;
1968 	}
1969 	return ret;
1970 }
1971 
1972 /**
1973  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1974  * @uaddr1:	source futex user address
1975  * @flags:	futex flags (FLAGS_SHARED, etc.)
1976  * @uaddr2:	target futex user address
1977  * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1978  * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1979  * @cmpval:	@uaddr1 expected value (or %NULL)
1980  * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1981  *		pi futex (pi to pi requeue is not supported)
1982  *
1983  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1984  * uaddr2 atomically on behalf of the top waiter.
1985  *
1986  * Return:
1987  * >=0 - on success, the number of tasks requeued or woken;
1988  *  <0 - on error
1989  */
futex_requeue(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_requeue,u32 * cmpval,int requeue_pi)1990 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1991 			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1992 			 u32 *cmpval, int requeue_pi)
1993 {
1994 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1995 	int drop_count = 0, task_count = 0, ret;
1996 	struct futex_pi_state *pi_state = NULL;
1997 	struct futex_hash_bucket *hb1, *hb2;
1998 	struct futex_q *this, *next;
1999 	WAKE_Q(wake_q);
2000 
2001 	if (nr_wake < 0 || nr_requeue < 0)
2002 		return -EINVAL;
2003 
2004 	if (requeue_pi) {
2005 		/*
2006 		 * Requeue PI only works on two distinct uaddrs. This
2007 		 * check is only valid for private futexes. See below.
2008 		 */
2009 		if (uaddr1 == uaddr2)
2010 			return -EINVAL;
2011 
2012 		/*
2013 		 * requeue_pi requires a pi_state, try to allocate it now
2014 		 * without any locks in case it fails.
2015 		 */
2016 		if (refill_pi_state_cache())
2017 			return -ENOMEM;
2018 		/*
2019 		 * requeue_pi must wake as many tasks as it can, up to nr_wake
2020 		 * + nr_requeue, since it acquires the rt_mutex prior to
2021 		 * returning to userspace, so as to not leave the rt_mutex with
2022 		 * waiters and no owner.  However, second and third wake-ups
2023 		 * cannot be predicted as they involve race conditions with the
2024 		 * first wake and a fault while looking up the pi_state.  Both
2025 		 * pthread_cond_signal() and pthread_cond_broadcast() should
2026 		 * use nr_wake=1.
2027 		 */
2028 		if (nr_wake != 1)
2029 			return -EINVAL;
2030 	}
2031 
2032 retry:
2033 	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
2034 	if (unlikely(ret != 0))
2035 		goto out;
2036 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
2037 			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
2038 	if (unlikely(ret != 0))
2039 		goto out_put_key1;
2040 
2041 	/*
2042 	 * The check above which compares uaddrs is not sufficient for
2043 	 * shared futexes. We need to compare the keys:
2044 	 */
2045 	if (requeue_pi && match_futex(&key1, &key2)) {
2046 		ret = -EINVAL;
2047 		goto out_put_keys;
2048 	}
2049 
2050 	hb1 = hash_futex(&key1);
2051 	hb2 = hash_futex(&key2);
2052 
2053 retry_private:
2054 	hb_waiters_inc(hb2);
2055 	double_lock_hb(hb1, hb2);
2056 
2057 	if (likely(cmpval != NULL)) {
2058 		u32 curval;
2059 
2060 		ret = get_futex_value_locked(&curval, uaddr1);
2061 
2062 		if (unlikely(ret)) {
2063 			double_unlock_hb(hb1, hb2);
2064 			hb_waiters_dec(hb2);
2065 
2066 			ret = get_user(curval, uaddr1);
2067 			if (ret)
2068 				goto out_put_keys;
2069 
2070 			if (!(flags & FLAGS_SHARED))
2071 				goto retry_private;
2072 
2073 			put_futex_key(&key2);
2074 			put_futex_key(&key1);
2075 			goto retry;
2076 		}
2077 		if (curval != *cmpval) {
2078 			ret = -EAGAIN;
2079 			goto out_unlock;
2080 		}
2081 	}
2082 
2083 	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2084 		struct task_struct *exiting = NULL;
2085 
2086 		/*
2087 		 * Attempt to acquire uaddr2 and wake the top waiter. If we
2088 		 * intend to requeue waiters, force setting the FUTEX_WAITERS
2089 		 * bit.  We force this here where we are able to easily handle
2090 		 * faults rather in the requeue loop below.
2091 		 */
2092 		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2093 						 &key2, &pi_state,
2094 						 &exiting, nr_requeue);
2095 
2096 		/*
2097 		 * At this point the top_waiter has either taken uaddr2 or is
2098 		 * waiting on it.  If the former, then the pi_state will not
2099 		 * exist yet, look it up one more time to ensure we have a
2100 		 * reference to it. If the lock was taken, ret contains the
2101 		 * vpid of the top waiter task.
2102 		 */
2103 		if (ret > 0) {
2104 			WARN_ON(pi_state);
2105 			drop_count++;
2106 			task_count++;
2107 			/*
2108 			 * If we acquired the lock, then the user
2109 			 * space value of uaddr2 should be vpid. It
2110 			 * cannot be changed by the top waiter as it
2111 			 * is blocked on hb2 lock if it tries to do
2112 			 * so. If something fiddled with it behind our
2113 			 * back the pi state lookup might unearth
2114 			 * it. So we rather use the known value than
2115 			 * rereading and handing potential crap to
2116 			 * lookup_pi_state.
2117 			 */
2118 			ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2119 					      &pi_state, &exiting);
2120 		}
2121 
2122 		switch (ret) {
2123 		case 0:
2124 			break;
2125 		case -EFAULT:
2126 			put_pi_state(pi_state);
2127 			pi_state = NULL;
2128 			double_unlock_hb(hb1, hb2);
2129 			hb_waiters_dec(hb2);
2130 			put_futex_key(&key2);
2131 			put_futex_key(&key1);
2132 			ret = fault_in_user_writeable(uaddr2);
2133 			if (!ret)
2134 				goto retry;
2135 			goto out;
2136 		case -EBUSY:
2137 		case -EAGAIN:
2138 			/*
2139 			 * Two reasons for this:
2140 			 * - EBUSY: Owner is exiting and we just wait for the
2141 			 *   exit to complete.
2142 			 * - EAGAIN: The user space value changed.
2143 			 */
2144 			put_pi_state(pi_state);
2145 			pi_state = NULL;
2146 			double_unlock_hb(hb1, hb2);
2147 			hb_waiters_dec(hb2);
2148 			put_futex_key(&key2);
2149 			put_futex_key(&key1);
2150 			/*
2151 			 * Handle the case where the owner is in the middle of
2152 			 * exiting. Wait for the exit to complete otherwise
2153 			 * this task might loop forever, aka. live lock.
2154 			 */
2155 			wait_for_owner_exiting(ret, exiting);
2156 			cond_resched();
2157 			goto retry;
2158 		default:
2159 			goto out_unlock;
2160 		}
2161 	}
2162 
2163 	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2164 		if (task_count - nr_wake >= nr_requeue)
2165 			break;
2166 
2167 		if (!match_futex(&this->key, &key1))
2168 			continue;
2169 
2170 		/*
2171 		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2172 		 * be paired with each other and no other futex ops.
2173 		 *
2174 		 * We should never be requeueing a futex_q with a pi_state,
2175 		 * which is awaiting a futex_unlock_pi().
2176 		 */
2177 		if ((requeue_pi && !this->rt_waiter) ||
2178 		    (!requeue_pi && this->rt_waiter) ||
2179 		    this->pi_state) {
2180 			ret = -EINVAL;
2181 			break;
2182 		}
2183 
2184 		/*
2185 		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2186 		 * lock, we already woke the top_waiter.  If not, it will be
2187 		 * woken by futex_unlock_pi().
2188 		 */
2189 		if (++task_count <= nr_wake && !requeue_pi) {
2190 			mark_wake_futex(&wake_q, this);
2191 			continue;
2192 		}
2193 
2194 		/* Ensure we requeue to the expected futex for requeue_pi. */
2195 		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2196 			ret = -EINVAL;
2197 			break;
2198 		}
2199 
2200 		/*
2201 		 * Requeue nr_requeue waiters and possibly one more in the case
2202 		 * of requeue_pi if we couldn't acquire the lock atomically.
2203 		 */
2204 		if (requeue_pi) {
2205 			/* Prepare the waiter to take the rt_mutex. */
2206 			get_pi_state(pi_state);
2207 			this->pi_state = pi_state;
2208 			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2209 							this->rt_waiter,
2210 							this->task);
2211 			if (ret == 1) {
2212 				/* We got the lock. */
2213 				requeue_pi_wake_futex(this, &key2, hb2);
2214 				drop_count++;
2215 				continue;
2216 			} else if (ret) {
2217 				/* -EDEADLK */
2218 				this->pi_state = NULL;
2219 				put_pi_state(pi_state);
2220 				goto out_unlock;
2221 			}
2222 		}
2223 		requeue_futex(this, hb1, hb2, &key2);
2224 		drop_count++;
2225 	}
2226 
2227 out_unlock:
2228 	put_pi_state(pi_state);
2229 	double_unlock_hb(hb1, hb2);
2230 	wake_up_q(&wake_q);
2231 	hb_waiters_dec(hb2);
2232 
2233 	/*
2234 	 * drop_futex_key_refs() must be called outside the spinlocks. During
2235 	 * the requeue we moved futex_q's from the hash bucket at key1 to the
2236 	 * one at key2 and updated their key pointer.  We no longer need to
2237 	 * hold the references to key1.
2238 	 */
2239 	while (--drop_count >= 0)
2240 		drop_futex_key_refs(&key1);
2241 
2242 out_put_keys:
2243 	put_futex_key(&key2);
2244 out_put_key1:
2245 	put_futex_key(&key1);
2246 out:
2247 	return ret ? ret : task_count;
2248 }
2249 
2250 /* The key must be already stored in q->key. */
queue_lock(struct futex_q * q)2251 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2252 	__acquires(&hb->lock)
2253 {
2254 	struct futex_hash_bucket *hb;
2255 
2256 	hb = hash_futex(&q->key);
2257 
2258 	/*
2259 	 * Increment the counter before taking the lock so that
2260 	 * a potential waker won't miss a to-be-slept task that is
2261 	 * waiting for the spinlock. This is safe as all queue_lock()
2262 	 * users end up calling queue_me(). Similarly, for housekeeping,
2263 	 * decrement the counter at queue_unlock() when some error has
2264 	 * occurred and we don't end up adding the task to the list.
2265 	 */
2266 	hb_waiters_inc(hb);
2267 
2268 	q->lock_ptr = &hb->lock;
2269 
2270 	spin_lock(&hb->lock); /* implies MB (A) */
2271 	return hb;
2272 }
2273 
2274 static inline void
queue_unlock(struct futex_hash_bucket * hb)2275 queue_unlock(struct futex_hash_bucket *hb)
2276 	__releases(&hb->lock)
2277 {
2278 	spin_unlock(&hb->lock);
2279 	hb_waiters_dec(hb);
2280 }
2281 
__queue_me(struct futex_q * q,struct futex_hash_bucket * hb)2282 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2283 {
2284 	int prio;
2285 
2286 	/*
2287 	 * The priority used to register this element is
2288 	 * - either the real thread-priority for the real-time threads
2289 	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2290 	 * - or MAX_RT_PRIO for non-RT threads.
2291 	 * Thus, all RT-threads are woken first in priority order, and
2292 	 * the others are woken last, in FIFO order.
2293 	 */
2294 	prio = min(current->normal_prio, MAX_RT_PRIO);
2295 
2296 	plist_node_init(&q->list, prio);
2297 	plist_add(&q->list, &hb->chain);
2298 	q->task = current;
2299 }
2300 
2301 /**
2302  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2303  * @q:	The futex_q to enqueue
2304  * @hb:	The destination hash bucket
2305  *
2306  * The hb->lock must be held by the caller, and is released here. A call to
2307  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2308  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2309  * or nothing if the unqueue is done as part of the wake process and the unqueue
2310  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2311  * an example).
2312  */
queue_me(struct futex_q * q,struct futex_hash_bucket * hb)2313 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2314 	__releases(&hb->lock)
2315 {
2316 	__queue_me(q, hb);
2317 	spin_unlock(&hb->lock);
2318 }
2319 
2320 /**
2321  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2322  * @q:	The futex_q to unqueue
2323  *
2324  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2325  * be paired with exactly one earlier call to queue_me().
2326  *
2327  * Return:
2328  *   1 - if the futex_q was still queued (and we removed unqueued it);
2329  *   0 - if the futex_q was already removed by the waking thread
2330  */
unqueue_me(struct futex_q * q)2331 static int unqueue_me(struct futex_q *q)
2332 {
2333 	spinlock_t *lock_ptr;
2334 	int ret = 0;
2335 
2336 	/* In the common case we don't take the spinlock, which is nice. */
2337 retry:
2338 	/*
2339 	 * q->lock_ptr can change between this read and the following spin_lock.
2340 	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2341 	 * optimizing lock_ptr out of the logic below.
2342 	 */
2343 	lock_ptr = READ_ONCE(q->lock_ptr);
2344 	if (lock_ptr != NULL) {
2345 		spin_lock(lock_ptr);
2346 		/*
2347 		 * q->lock_ptr can change between reading it and
2348 		 * spin_lock(), causing us to take the wrong lock.  This
2349 		 * corrects the race condition.
2350 		 *
2351 		 * Reasoning goes like this: if we have the wrong lock,
2352 		 * q->lock_ptr must have changed (maybe several times)
2353 		 * between reading it and the spin_lock().  It can
2354 		 * change again after the spin_lock() but only if it was
2355 		 * already changed before the spin_lock().  It cannot,
2356 		 * however, change back to the original value.  Therefore
2357 		 * we can detect whether we acquired the correct lock.
2358 		 */
2359 		if (unlikely(lock_ptr != q->lock_ptr)) {
2360 			spin_unlock(lock_ptr);
2361 			goto retry;
2362 		}
2363 		__unqueue_futex(q);
2364 
2365 		BUG_ON(q->pi_state);
2366 
2367 		spin_unlock(lock_ptr);
2368 		ret = 1;
2369 	}
2370 
2371 	drop_futex_key_refs(&q->key);
2372 	return ret;
2373 }
2374 
2375 /*
2376  * PI futexes can not be requeued and must remove themself from the
2377  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2378  * and dropped here.
2379  */
unqueue_me_pi(struct futex_q * q)2380 static void unqueue_me_pi(struct futex_q *q)
2381 	__releases(q->lock_ptr)
2382 {
2383 	__unqueue_futex(q);
2384 
2385 	BUG_ON(!q->pi_state);
2386 	put_pi_state(q->pi_state);
2387 	q->pi_state = NULL;
2388 
2389 	spin_unlock(q->lock_ptr);
2390 }
2391 
__fixup_pi_state_owner(u32 __user * uaddr,struct futex_q * q,struct task_struct * argowner)2392 static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2393 				  struct task_struct *argowner)
2394 {
2395 	struct futex_pi_state *pi_state = q->pi_state;
2396 	struct task_struct *oldowner, *newowner;
2397 	u32 uval, curval, newval, newtid;
2398 	int err = 0;
2399 
2400 	oldowner = pi_state->owner;
2401 	/*
2402 	 * We are here because either:
2403 	 *
2404 	 *  - we stole the lock and pi_state->owner needs updating to reflect
2405 	 *    that (@argowner == current),
2406 	 *
2407 	 * or:
2408 	 *
2409 	 *  - someone stole our lock and we need to fix things to point to the
2410 	 *    new owner (@argowner == NULL).
2411 	 *
2412 	 * Either way, we have to replace the TID in the user space variable.
2413 	 * This must be atomic as we have to preserve the owner died bit here.
2414 	 *
2415 	 * Note: We write the user space value _before_ changing the pi_state
2416 	 * because we can fault here. Imagine swapped out pages or a fork
2417 	 * that marked all the anonymous memory readonly for cow.
2418 	 *
2419 	 * Modifying pi_state _before_ the user space value would leave the
2420 	 * pi_state in an inconsistent state when we fault here, because we
2421 	 * need to drop the locks to handle the fault. This might be observed
2422 	 * in the PID check in lookup_pi_state.
2423 	 */
2424 retry:
2425 	if (!argowner) {
2426 		if (oldowner != current) {
2427 			/*
2428 			 * We raced against a concurrent self; things are
2429 			 * already fixed up. Nothing to do.
2430 			 */
2431 			return 0;
2432 		}
2433 
2434 		if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2435 			/* We got the lock. pi_state is correct. Tell caller */
2436 			return 1;
2437 		}
2438 
2439 		/*
2440 		 * The trylock just failed, so either there is an owner or
2441 		 * there is a higher priority waiter than this one.
2442 		 */
2443 		newowner = rt_mutex_owner(&pi_state->pi_mutex);
2444 		/*
2445 		 * If the higher priority waiter has not yet taken over the
2446 		 * rtmutex then newowner is NULL. We can't return here with
2447 		 * that state because it's inconsistent vs. the user space
2448 		 * state. So drop the locks and try again. It's a valid
2449 		 * situation and not any different from the other retry
2450 		 * conditions.
2451 		 */
2452 		if (unlikely(!newowner)) {
2453 			err = -EAGAIN;
2454 			goto handle_fault;
2455 		}
2456 	} else {
2457 		WARN_ON_ONCE(argowner != current);
2458 		if (oldowner == current) {
2459 			/*
2460 			 * We raced against a concurrent self; things are
2461 			 * already fixed up. Nothing to do.
2462 			 */
2463 			return 1;
2464 		}
2465 		newowner = argowner;
2466 	}
2467 
2468 	newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2469 	/* Owner died? */
2470 	if (!pi_state->owner)
2471 		newtid |= FUTEX_OWNER_DIED;
2472 
2473 	if (get_futex_value_locked(&uval, uaddr))
2474 		goto handle_fault;
2475 
2476 	for (;;) {
2477 		newval = (uval & FUTEX_OWNER_DIED) | newtid;
2478 
2479 		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2480 			goto handle_fault;
2481 		if (curval == uval)
2482 			break;
2483 		uval = curval;
2484 	}
2485 
2486 	/*
2487 	 * We fixed up user space. Now we need to fix the pi_state
2488 	 * itself.
2489 	 */
2490 	pi_state_update_owner(pi_state, newowner);
2491 
2492 	return argowner == current;
2493 
2494 	/*
2495 	 * To handle the page fault we need to drop the locks here. That gives
2496 	 * the other task (either the highest priority waiter itself or the
2497 	 * task which stole the rtmutex) the chance to try the fixup of the
2498 	 * pi_state. So once we are back from handling the fault we need to
2499 	 * check the pi_state after reacquiring the locks and before trying to
2500 	 * do another fixup. When the fixup has been done already we simply
2501 	 * return.
2502 	 *
2503 	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2504 	 * drop hb->lock since the caller owns the hb -> futex_q relation.
2505 	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2506 	 */
2507 handle_fault:
2508 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2509 	spin_unlock(q->lock_ptr);
2510 
2511 	err = fault_in_user_writeable(uaddr);
2512 
2513 	spin_lock(q->lock_ptr);
2514 	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2515 
2516 	/*
2517 	 * Check if someone else fixed it for us:
2518 	 */
2519 	if (pi_state->owner != oldowner)
2520 		return argowner == current;
2521 
2522 	/* Retry if err was -EAGAIN or the fault in succeeded */
2523 	if (!err)
2524 		goto retry;
2525 
2526 	/*
2527 	 * fault_in_user_writeable() failed so user state is immutable. At
2528 	 * best we can make the kernel state consistent but user state will
2529 	 * be most likely hosed and any subsequent unlock operation will be
2530 	 * rejected due to PI futex rule [10].
2531 	 *
2532 	 * Ensure that the rtmutex owner is also the pi_state owner despite
2533 	 * the user space value claiming something different. There is no
2534 	 * point in unlocking the rtmutex if current is the owner as it
2535 	 * would need to wait until the next waiter has taken the rtmutex
2536 	 * to guarantee consistent state. Keep it simple. Userspace asked
2537 	 * for this wreckaged state.
2538 	 *
2539 	 * The rtmutex has an owner - either current or some other
2540 	 * task. See the EAGAIN loop above.
2541 	 */
2542 	pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
2543 
2544 	return err;
2545 }
2546 
fixup_pi_state_owner(u32 __user * uaddr,struct futex_q * q,struct task_struct * argowner)2547 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2548 				struct task_struct *argowner)
2549 {
2550 	struct futex_pi_state *pi_state = q->pi_state;
2551 	int ret;
2552 
2553 	lockdep_assert_held(q->lock_ptr);
2554 
2555 	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2556 	ret = __fixup_pi_state_owner(uaddr, q, argowner);
2557 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2558 	return ret;
2559 }
2560 
2561 static long futex_wait_restart(struct restart_block *restart);
2562 
2563 /**
2564  * fixup_owner() - Post lock pi_state and corner case management
2565  * @uaddr:	user address of the futex
2566  * @q:		futex_q (contains pi_state and access to the rt_mutex)
2567  * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
2568  *
2569  * After attempting to lock an rt_mutex, this function is called to cleanup
2570  * the pi_state owner as well as handle race conditions that may allow us to
2571  * acquire the lock. Must be called with the hb lock held.
2572  *
2573  * Return:
2574  *  1 - success, lock taken;
2575  *  0 - success, lock not taken;
2576  * <0 - on error (-EFAULT)
2577  */
fixup_owner(u32 __user * uaddr,struct futex_q * q,int locked)2578 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2579 {
2580 	if (locked) {
2581 		/*
2582 		 * Got the lock. We might not be the anticipated owner if we
2583 		 * did a lock-steal - fix up the PI-state in that case:
2584 		 *
2585 		 * Speculative pi_state->owner read (we don't hold wait_lock);
2586 		 * since we own the lock pi_state->owner == current is the
2587 		 * stable state, anything else needs more attention.
2588 		 */
2589 		if (q->pi_state->owner != current)
2590 			return fixup_pi_state_owner(uaddr, q, current);
2591 		return 1;
2592 	}
2593 
2594 	/*
2595 	 * If we didn't get the lock; check if anybody stole it from us. In
2596 	 * that case, we need to fix up the uval to point to them instead of
2597 	 * us, otherwise bad things happen. [10]
2598 	 *
2599 	 * Another speculative read; pi_state->owner == current is unstable
2600 	 * but needs our attention.
2601 	 */
2602 	if (q->pi_state->owner == current)
2603 		return fixup_pi_state_owner(uaddr, q, NULL);
2604 
2605 	/*
2606 	 * Paranoia check. If we did not take the lock, then we should not be
2607 	 * the owner of the rt_mutex. Warn and establish consistent state.
2608 	 */
2609 	if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2610 		return fixup_pi_state_owner(uaddr, q, current);
2611 
2612 	return 0;
2613 }
2614 
2615 /**
2616  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2617  * @hb:		the futex hash bucket, must be locked by the caller
2618  * @q:		the futex_q to queue up on
2619  * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
2620  */
futex_wait_queue_me(struct futex_hash_bucket * hb,struct futex_q * q,struct hrtimer_sleeper * timeout)2621 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2622 				struct hrtimer_sleeper *timeout)
2623 {
2624 	/*
2625 	 * The task state is guaranteed to be set before another task can
2626 	 * wake it. set_current_state() is implemented using smp_store_mb() and
2627 	 * queue_me() calls spin_unlock() upon completion, both serializing
2628 	 * access to the hash list and forcing another memory barrier.
2629 	 */
2630 	set_current_state(TASK_INTERRUPTIBLE);
2631 	queue_me(q, hb);
2632 
2633 	/* Arm the timer */
2634 	if (timeout)
2635 		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2636 
2637 	/*
2638 	 * If we have been removed from the hash list, then another task
2639 	 * has tried to wake us, and we can skip the call to schedule().
2640 	 */
2641 	if (likely(!plist_node_empty(&q->list))) {
2642 		/*
2643 		 * If the timer has already expired, current will already be
2644 		 * flagged for rescheduling. Only call schedule if there
2645 		 * is no timeout, or if it has yet to expire.
2646 		 */
2647 		if (!timeout || timeout->task)
2648 			freezable_schedule();
2649 	}
2650 	__set_current_state(TASK_RUNNING);
2651 }
2652 
2653 /**
2654  * futex_wait_setup() - Prepare to wait on a futex
2655  * @uaddr:	the futex userspace address
2656  * @val:	the expected value
2657  * @flags:	futex flags (FLAGS_SHARED, etc.)
2658  * @q:		the associated futex_q
2659  * @hb:		storage for hash_bucket pointer to be returned to caller
2660  *
2661  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2662  * compare it with the expected value.  Handle atomic faults internally.
2663  * Return with the hb lock held and a q.key reference on success, and unlocked
2664  * with no q.key reference on failure.
2665  *
2666  * Return:
2667  *  0 - uaddr contains val and hb has been locked;
2668  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2669  */
futex_wait_setup(u32 __user * uaddr,u32 val,unsigned int flags,struct futex_q * q,struct futex_hash_bucket ** hb)2670 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2671 			   struct futex_q *q, struct futex_hash_bucket **hb)
2672 {
2673 	u32 uval;
2674 	int ret;
2675 
2676 	/*
2677 	 * Access the page AFTER the hash-bucket is locked.
2678 	 * Order is important:
2679 	 *
2680 	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2681 	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2682 	 *
2683 	 * The basic logical guarantee of a futex is that it blocks ONLY
2684 	 * if cond(var) is known to be true at the time of blocking, for
2685 	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
2686 	 * would open a race condition where we could block indefinitely with
2687 	 * cond(var) false, which would violate the guarantee.
2688 	 *
2689 	 * On the other hand, we insert q and release the hash-bucket only
2690 	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
2691 	 * absorb a wakeup if *uaddr does not match the desired values
2692 	 * while the syscall executes.
2693 	 */
2694 retry:
2695 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2696 	if (unlikely(ret != 0))
2697 		return ret;
2698 
2699 retry_private:
2700 	*hb = queue_lock(q);
2701 
2702 	ret = get_futex_value_locked(&uval, uaddr);
2703 
2704 	if (ret) {
2705 		queue_unlock(*hb);
2706 
2707 		ret = get_user(uval, uaddr);
2708 		if (ret)
2709 			goto out;
2710 
2711 		if (!(flags & FLAGS_SHARED))
2712 			goto retry_private;
2713 
2714 		put_futex_key(&q->key);
2715 		goto retry;
2716 	}
2717 
2718 	if (uval != val) {
2719 		queue_unlock(*hb);
2720 		ret = -EWOULDBLOCK;
2721 	}
2722 
2723 out:
2724 	if (ret)
2725 		put_futex_key(&q->key);
2726 	return ret;
2727 }
2728 
futex_wait(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset)2729 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2730 		      ktime_t *abs_time, u32 bitset)
2731 {
2732 	struct hrtimer_sleeper timeout, *to = NULL;
2733 	struct restart_block *restart;
2734 	struct futex_hash_bucket *hb;
2735 	struct futex_q q = futex_q_init;
2736 	int ret;
2737 
2738 	if (!bitset)
2739 		return -EINVAL;
2740 	q.bitset = bitset;
2741 
2742 	if (abs_time) {
2743 		to = &timeout;
2744 
2745 		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2746 				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2747 				      HRTIMER_MODE_ABS);
2748 		hrtimer_init_sleeper(to, current);
2749 		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2750 					     current->timer_slack_ns);
2751 	}
2752 
2753 retry:
2754 	/*
2755 	 * Prepare to wait on uaddr. On success, holds hb lock and increments
2756 	 * q.key refs.
2757 	 */
2758 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2759 	if (ret)
2760 		goto out;
2761 
2762 	/* queue_me and wait for wakeup, timeout, or a signal. */
2763 	futex_wait_queue_me(hb, &q, to);
2764 
2765 	/* If we were woken (and unqueued), we succeeded, whatever. */
2766 	ret = 0;
2767 	/* unqueue_me() drops q.key ref */
2768 	if (!unqueue_me(&q))
2769 		goto out;
2770 	ret = -ETIMEDOUT;
2771 	if (to && !to->task)
2772 		goto out;
2773 
2774 	/*
2775 	 * We expect signal_pending(current), but we might be the
2776 	 * victim of a spurious wakeup as well.
2777 	 */
2778 	if (!signal_pending(current))
2779 		goto retry;
2780 
2781 	ret = -ERESTARTSYS;
2782 	if (!abs_time)
2783 		goto out;
2784 
2785 	restart = &current->restart_block;
2786 	restart->fn = futex_wait_restart;
2787 	restart->futex.uaddr = uaddr;
2788 	restart->futex.val = val;
2789 	restart->futex.time = abs_time->tv64;
2790 	restart->futex.bitset = bitset;
2791 	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2792 
2793 	ret = -ERESTART_RESTARTBLOCK;
2794 
2795 out:
2796 	if (to) {
2797 		hrtimer_cancel(&to->timer);
2798 		destroy_hrtimer_on_stack(&to->timer);
2799 	}
2800 	return ret;
2801 }
2802 
2803 
futex_wait_restart(struct restart_block * restart)2804 static long futex_wait_restart(struct restart_block *restart)
2805 {
2806 	u32 __user *uaddr = restart->futex.uaddr;
2807 	ktime_t t, *tp = NULL;
2808 
2809 	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2810 		t.tv64 = restart->futex.time;
2811 		tp = &t;
2812 	}
2813 	restart->fn = do_no_restart_syscall;
2814 
2815 	return (long)futex_wait(uaddr, restart->futex.flags,
2816 				restart->futex.val, tp, restart->futex.bitset);
2817 }
2818 
2819 
2820 /*
2821  * Userspace tried a 0 -> TID atomic transition of the futex value
2822  * and failed. The kernel side here does the whole locking operation:
2823  * if there are waiters then it will block as a consequence of relying
2824  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2825  * a 0 value of the futex too.).
2826  *
2827  * Also serves as futex trylock_pi()'ing, and due semantics.
2828  */
futex_lock_pi(u32 __user * uaddr,unsigned int flags,ktime_t * time,int trylock)2829 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2830 			 ktime_t *time, int trylock)
2831 {
2832 	struct hrtimer_sleeper timeout, *to = NULL;
2833 	struct task_struct *exiting = NULL;
2834 	struct rt_mutex_waiter rt_waiter;
2835 	struct futex_hash_bucket *hb;
2836 	struct futex_q q = futex_q_init;
2837 	int res, ret;
2838 
2839 	if (refill_pi_state_cache())
2840 		return -ENOMEM;
2841 
2842 	if (time) {
2843 		to = &timeout;
2844 		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2845 				      HRTIMER_MODE_ABS);
2846 		hrtimer_init_sleeper(to, current);
2847 		hrtimer_set_expires(&to->timer, *time);
2848 	}
2849 
2850 retry:
2851 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2852 	if (unlikely(ret != 0))
2853 		goto out;
2854 
2855 retry_private:
2856 	hb = queue_lock(&q);
2857 
2858 	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2859 				   &exiting, 0);
2860 	if (unlikely(ret)) {
2861 		/*
2862 		 * Atomic work succeeded and we got the lock,
2863 		 * or failed. Either way, we do _not_ block.
2864 		 */
2865 		switch (ret) {
2866 		case 1:
2867 			/* We got the lock. */
2868 			ret = 0;
2869 			goto out_unlock_put_key;
2870 		case -EFAULT:
2871 			goto uaddr_faulted;
2872 		case -EBUSY:
2873 		case -EAGAIN:
2874 			/*
2875 			 * Two reasons for this:
2876 			 * - EBUSY: Task is exiting and we just wait for the
2877 			 *   exit to complete.
2878 			 * - EAGAIN: The user space value changed.
2879 			 */
2880 			queue_unlock(hb);
2881 			put_futex_key(&q.key);
2882 			/*
2883 			 * Handle the case where the owner is in the middle of
2884 			 * exiting. Wait for the exit to complete otherwise
2885 			 * this task might loop forever, aka. live lock.
2886 			 */
2887 			wait_for_owner_exiting(ret, exiting);
2888 			cond_resched();
2889 			goto retry;
2890 		default:
2891 			goto out_unlock_put_key;
2892 		}
2893 	}
2894 
2895 	WARN_ON(!q.pi_state);
2896 
2897 	/*
2898 	 * Only actually queue now that the atomic ops are done:
2899 	 */
2900 	__queue_me(&q, hb);
2901 
2902 	if (trylock) {
2903 		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2904 		/* Fixup the trylock return value: */
2905 		ret = ret ? 0 : -EWOULDBLOCK;
2906 		goto no_block;
2907 	}
2908 
2909 	/*
2910 	 * We must add ourselves to the rt_mutex waitlist while holding hb->lock
2911 	 * such that the hb and rt_mutex wait lists match.
2912 	 */
2913 	rt_mutex_init_waiter(&rt_waiter);
2914 	ret = rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2915 	if (ret) {
2916 		if (ret == 1)
2917 			ret = 0;
2918 
2919 		goto no_block;
2920 	}
2921 
2922 	spin_unlock(q.lock_ptr);
2923 
2924 	if (unlikely(to))
2925 		hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2926 
2927 	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2928 
2929 	spin_lock(q.lock_ptr);
2930 	/*
2931 	 * If we failed to acquire the lock (signal/timeout), we must
2932 	 * first acquire the hb->lock before removing the lock from the
2933 	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2934 	 * wait lists consistent.
2935 	 */
2936 	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2937 		ret = 0;
2938 
2939 no_block:
2940 	/*
2941 	 * Fixup the pi_state owner and possibly acquire the lock if we
2942 	 * haven't already.
2943 	 */
2944 	res = fixup_owner(uaddr, &q, !ret);
2945 	/*
2946 	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2947 	 * the lock, clear our -ETIMEDOUT or -EINTR.
2948 	 */
2949 	if (res)
2950 		ret = (res < 0) ? res : 0;
2951 
2952 	/* Unqueue and drop the lock */
2953 	unqueue_me_pi(&q);
2954 
2955 	goto out_put_key;
2956 
2957 out_unlock_put_key:
2958 	queue_unlock(hb);
2959 
2960 out_put_key:
2961 	put_futex_key(&q.key);
2962 out:
2963 	if (to) {
2964 		hrtimer_cancel(&to->timer);
2965 		destroy_hrtimer_on_stack(&to->timer);
2966 	}
2967 	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2968 
2969 uaddr_faulted:
2970 	queue_unlock(hb);
2971 
2972 	ret = fault_in_user_writeable(uaddr);
2973 	if (ret)
2974 		goto out_put_key;
2975 
2976 	if (!(flags & FLAGS_SHARED))
2977 		goto retry_private;
2978 
2979 	put_futex_key(&q.key);
2980 	goto retry;
2981 }
2982 
2983 /*
2984  * Userspace attempted a TID -> 0 atomic transition, and failed.
2985  * This is the in-kernel slowpath: we look up the PI state (if any),
2986  * and do the rt-mutex unlock.
2987  */
futex_unlock_pi(u32 __user * uaddr,unsigned int flags)2988 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2989 {
2990 	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2991 	union futex_key key = FUTEX_KEY_INIT;
2992 	struct futex_hash_bucket *hb;
2993 	struct futex_q *match;
2994 	int ret;
2995 
2996 retry:
2997 	if (get_user(uval, uaddr))
2998 		return -EFAULT;
2999 	/*
3000 	 * We release only a lock we actually own:
3001 	 */
3002 	if ((uval & FUTEX_TID_MASK) != vpid)
3003 		return -EPERM;
3004 
3005 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
3006 	if (ret)
3007 		return ret;
3008 
3009 	hb = hash_futex(&key);
3010 	spin_lock(&hb->lock);
3011 
3012 	/*
3013 	 * Check waiters first. We do not trust user space values at
3014 	 * all and we at least want to know if user space fiddled
3015 	 * with the futex value instead of blindly unlocking.
3016 	 */
3017 	match = futex_top_waiter(hb, &key);
3018 	if (match) {
3019 		struct futex_pi_state *pi_state = match->pi_state;
3020 
3021 		ret = -EINVAL;
3022 		if (!pi_state)
3023 			goto out_unlock;
3024 
3025 		/*
3026 		 * If current does not own the pi_state then the futex is
3027 		 * inconsistent and user space fiddled with the futex value.
3028 		 */
3029 		if (pi_state->owner != current)
3030 			goto out_unlock;
3031 
3032 		get_pi_state(pi_state);
3033 		/*
3034 		 * Since modifying the wait_list is done while holding both
3035 		 * hb->lock and wait_lock, holding either is sufficient to
3036 		 * observe it.
3037 		 *
3038 		 * By taking wait_lock while still holding hb->lock, we ensure
3039 		 * there is no point where we hold neither; and therefore
3040 		 * wake_futex_pi() must observe a state consistent with what we
3041 		 * observed.
3042 		 */
3043 		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3044 		spin_unlock(&hb->lock);
3045 
3046 		ret = wake_futex_pi(uaddr, uval, pi_state);
3047 
3048 		put_pi_state(pi_state);
3049 
3050 		/*
3051 		 * Success, we're done! No tricky corner cases.
3052 		 */
3053 		if (!ret)
3054 			goto out_putkey;
3055 		/*
3056 		 * The atomic access to the futex value generated a
3057 		 * pagefault, so retry the user-access and the wakeup:
3058 		 */
3059 		if (ret == -EFAULT)
3060 			goto pi_faulted;
3061 		/*
3062 		 * A unconditional UNLOCK_PI op raced against a waiter
3063 		 * setting the FUTEX_WAITERS bit. Try again.
3064 		 */
3065 		if (ret == -EAGAIN) {
3066 			put_futex_key(&key);
3067 			goto retry;
3068 		}
3069 		/*
3070 		 * wake_futex_pi has detected invalid state. Tell user
3071 		 * space.
3072 		 */
3073 		goto out_putkey;
3074 	}
3075 
3076 	/*
3077 	 * We have no kernel internal state, i.e. no waiters in the
3078 	 * kernel. Waiters which are about to queue themselves are stuck
3079 	 * on hb->lock. So we can safely ignore them. We do neither
3080 	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3081 	 * owner.
3082 	 */
3083 	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
3084 		spin_unlock(&hb->lock);
3085 		goto pi_faulted;
3086 	}
3087 
3088 	/*
3089 	 * If uval has changed, let user space handle it.
3090 	 */
3091 	ret = (curval == uval) ? 0 : -EAGAIN;
3092 
3093 out_unlock:
3094 	spin_unlock(&hb->lock);
3095 out_putkey:
3096 	put_futex_key(&key);
3097 	return ret;
3098 
3099 pi_faulted:
3100 	put_futex_key(&key);
3101 
3102 	ret = fault_in_user_writeable(uaddr);
3103 	if (!ret)
3104 		goto retry;
3105 
3106 	return ret;
3107 }
3108 
3109 /**
3110  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3111  * @hb:		the hash_bucket futex_q was original enqueued on
3112  * @q:		the futex_q woken while waiting to be requeued
3113  * @key2:	the futex_key of the requeue target futex
3114  * @timeout:	the timeout associated with the wait (NULL if none)
3115  *
3116  * Detect if the task was woken on the initial futex as opposed to the requeue
3117  * target futex.  If so, determine if it was a timeout or a signal that caused
3118  * the wakeup and return the appropriate error code to the caller.  Must be
3119  * called with the hb lock held.
3120  *
3121  * Return:
3122  *  0 = no early wakeup detected;
3123  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
3124  */
3125 static inline
handle_early_requeue_pi_wakeup(struct futex_hash_bucket * hb,struct futex_q * q,union futex_key * key2,struct hrtimer_sleeper * timeout)3126 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3127 				   struct futex_q *q, union futex_key *key2,
3128 				   struct hrtimer_sleeper *timeout)
3129 {
3130 	int ret = 0;
3131 
3132 	/*
3133 	 * With the hb lock held, we avoid races while we process the wakeup.
3134 	 * We only need to hold hb (and not hb2) to ensure atomicity as the
3135 	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3136 	 * It can't be requeued from uaddr2 to something else since we don't
3137 	 * support a PI aware source futex for requeue.
3138 	 */
3139 	if (!match_futex(&q->key, key2)) {
3140 		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3141 		/*
3142 		 * We were woken prior to requeue by a timeout or a signal.
3143 		 * Unqueue the futex_q and determine which it was.
3144 		 */
3145 		plist_del(&q->list, &hb->chain);
3146 		hb_waiters_dec(hb);
3147 
3148 		/* Handle spurious wakeups gracefully */
3149 		ret = -EWOULDBLOCK;
3150 		if (timeout && !timeout->task)
3151 			ret = -ETIMEDOUT;
3152 		else if (signal_pending(current))
3153 			ret = -ERESTARTNOINTR;
3154 	}
3155 	return ret;
3156 }
3157 
3158 /**
3159  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3160  * @uaddr:	the futex we initially wait on (non-pi)
3161  * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3162  *		the same type, no requeueing from private to shared, etc.
3163  * @val:	the expected value of uaddr
3164  * @abs_time:	absolute timeout
3165  * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
3166  * @uaddr2:	the pi futex we will take prior to returning to user-space
3167  *
3168  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3169  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3170  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3171  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3172  * without one, the pi logic would not know which task to boost/deboost, if
3173  * there was a need to.
3174  *
3175  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3176  * via the following--
3177  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3178  * 2) wakeup on uaddr2 after a requeue
3179  * 3) signal
3180  * 4) timeout
3181  *
3182  * If 3, cleanup and return -ERESTARTNOINTR.
3183  *
3184  * If 2, we may then block on trying to take the rt_mutex and return via:
3185  * 5) successful lock
3186  * 6) signal
3187  * 7) timeout
3188  * 8) other lock acquisition failure
3189  *
3190  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3191  *
3192  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3193  *
3194  * Return:
3195  *  0 - On success;
3196  * <0 - On error
3197  */
futex_wait_requeue_pi(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset,u32 __user * uaddr2)3198 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3199 				 u32 val, ktime_t *abs_time, u32 bitset,
3200 				 u32 __user *uaddr2)
3201 {
3202 	struct hrtimer_sleeper timeout, *to = NULL;
3203 	struct rt_mutex_waiter rt_waiter;
3204 	struct futex_hash_bucket *hb;
3205 	union futex_key key2 = FUTEX_KEY_INIT;
3206 	struct futex_q q = futex_q_init;
3207 	int res, ret;
3208 
3209 	if (uaddr == uaddr2)
3210 		return -EINVAL;
3211 
3212 	if (!bitset)
3213 		return -EINVAL;
3214 
3215 	if (abs_time) {
3216 		to = &timeout;
3217 		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3218 				      CLOCK_REALTIME : CLOCK_MONOTONIC,
3219 				      HRTIMER_MODE_ABS);
3220 		hrtimer_init_sleeper(to, current);
3221 		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3222 					     current->timer_slack_ns);
3223 	}
3224 
3225 	/*
3226 	 * The waiter is allocated on our stack, manipulated by the requeue
3227 	 * code while we sleep on uaddr.
3228 	 */
3229 	rt_mutex_init_waiter(&rt_waiter);
3230 
3231 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3232 	if (unlikely(ret != 0))
3233 		goto out;
3234 
3235 	q.bitset = bitset;
3236 	q.rt_waiter = &rt_waiter;
3237 	q.requeue_pi_key = &key2;
3238 
3239 	/*
3240 	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3241 	 * count.
3242 	 */
3243 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3244 	if (ret)
3245 		goto out_key2;
3246 
3247 	/*
3248 	 * The check above which compares uaddrs is not sufficient for
3249 	 * shared futexes. We need to compare the keys:
3250 	 */
3251 	if (match_futex(&q.key, &key2)) {
3252 		queue_unlock(hb);
3253 		ret = -EINVAL;
3254 		goto out_put_keys;
3255 	}
3256 
3257 	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
3258 	futex_wait_queue_me(hb, &q, to);
3259 
3260 	spin_lock(&hb->lock);
3261 	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3262 	spin_unlock(&hb->lock);
3263 	if (ret)
3264 		goto out_put_keys;
3265 
3266 	/*
3267 	 * In order for us to be here, we know our q.key == key2, and since
3268 	 * we took the hb->lock above, we also know that futex_requeue() has
3269 	 * completed and we no longer have to concern ourselves with a wakeup
3270 	 * race with the atomic proxy lock acquisition by the requeue code. The
3271 	 * futex_requeue dropped our key1 reference and incremented our key2
3272 	 * reference count.
3273 	 */
3274 
3275 	/* Check if the requeue code acquired the second futex for us. */
3276 	if (!q.rt_waiter) {
3277 		/*
3278 		 * Got the lock. We might not be the anticipated owner if we
3279 		 * did a lock-steal - fix up the PI-state in that case.
3280 		 */
3281 		if (q.pi_state && (q.pi_state->owner != current)) {
3282 			spin_lock(q.lock_ptr);
3283 			ret = fixup_pi_state_owner(uaddr2, &q, current);
3284 			/*
3285 			 * Drop the reference to the pi state which
3286 			 * the requeue_pi() code acquired for us.
3287 			 */
3288 			put_pi_state(q.pi_state);
3289 			spin_unlock(q.lock_ptr);
3290 			/*
3291 			 * Adjust the return value. It's either -EFAULT or
3292 			 * success (1) but the caller expects 0 for success.
3293 			 */
3294 			ret = ret < 0 ? ret : 0;
3295 		}
3296 	} else {
3297 		struct rt_mutex *pi_mutex;
3298 
3299 		/*
3300 		 * We have been woken up by futex_unlock_pi(), a timeout, or a
3301 		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3302 		 * the pi_state.
3303 		 */
3304 		WARN_ON(!q.pi_state);
3305 		pi_mutex = &q.pi_state->pi_mutex;
3306 		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3307 
3308 		spin_lock(q.lock_ptr);
3309 		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3310 			ret = 0;
3311 
3312 		debug_rt_mutex_free_waiter(&rt_waiter);
3313 		/*
3314 		 * Fixup the pi_state owner and possibly acquire the lock if we
3315 		 * haven't already.
3316 		 */
3317 		res = fixup_owner(uaddr2, &q, !ret);
3318 		/*
3319 		 * If fixup_owner() returned an error, proprogate that.  If it
3320 		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3321 		 */
3322 		if (res)
3323 			ret = (res < 0) ? res : 0;
3324 
3325 		/* Unqueue and drop the lock. */
3326 		unqueue_me_pi(&q);
3327 	}
3328 
3329 	if (ret == -EINTR) {
3330 		/*
3331 		 * We've already been requeued, but cannot restart by calling
3332 		 * futex_lock_pi() directly. We could restart this syscall, but
3333 		 * it would detect that the user space "val" changed and return
3334 		 * -EWOULDBLOCK.  Save the overhead of the restart and return
3335 		 * -EWOULDBLOCK directly.
3336 		 */
3337 		ret = -EWOULDBLOCK;
3338 	}
3339 
3340 out_put_keys:
3341 	put_futex_key(&q.key);
3342 out_key2:
3343 	put_futex_key(&key2);
3344 
3345 out:
3346 	if (to) {
3347 		hrtimer_cancel(&to->timer);
3348 		destroy_hrtimer_on_stack(&to->timer);
3349 	}
3350 	return ret;
3351 }
3352 
3353 /*
3354  * Support for robust futexes: the kernel cleans up held futexes at
3355  * thread exit time.
3356  *
3357  * Implementation: user-space maintains a per-thread list of locks it
3358  * is holding. Upon do_exit(), the kernel carefully walks this list,
3359  * and marks all locks that are owned by this thread with the
3360  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3361  * always manipulated with the lock held, so the list is private and
3362  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3363  * field, to allow the kernel to clean up if the thread dies after
3364  * acquiring the lock, but just before it could have added itself to
3365  * the list. There can only be one such pending lock.
3366  */
3367 
3368 /**
3369  * sys_set_robust_list() - Set the robust-futex list head of a task
3370  * @head:	pointer to the list-head
3371  * @len:	length of the list-head, as userspace expects
3372  */
SYSCALL_DEFINE2(set_robust_list,struct robust_list_head __user *,head,size_t,len)3373 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3374 		size_t, len)
3375 {
3376 	if (!futex_cmpxchg_enabled)
3377 		return -ENOSYS;
3378 	/*
3379 	 * The kernel knows only one size for now:
3380 	 */
3381 	if (unlikely(len != sizeof(*head)))
3382 		return -EINVAL;
3383 
3384 	current->robust_list = head;
3385 
3386 	return 0;
3387 }
3388 
3389 /**
3390  * sys_get_robust_list() - Get the robust-futex list head of a task
3391  * @pid:	pid of the process [zero for current task]
3392  * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
3393  * @len_ptr:	pointer to a length field, the kernel fills in the header size
3394  */
SYSCALL_DEFINE3(get_robust_list,int,pid,struct robust_list_head __user * __user *,head_ptr,size_t __user *,len_ptr)3395 SYSCALL_DEFINE3(get_robust_list, int, pid,
3396 		struct robust_list_head __user * __user *, head_ptr,
3397 		size_t __user *, len_ptr)
3398 {
3399 	struct robust_list_head __user *head;
3400 	unsigned long ret;
3401 	struct task_struct *p;
3402 
3403 	if (!futex_cmpxchg_enabled)
3404 		return -ENOSYS;
3405 
3406 	rcu_read_lock();
3407 
3408 	ret = -ESRCH;
3409 	if (!pid)
3410 		p = current;
3411 	else {
3412 		p = find_task_by_vpid(pid);
3413 		if (!p)
3414 			goto err_unlock;
3415 	}
3416 
3417 	ret = -EPERM;
3418 	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3419 		goto err_unlock;
3420 
3421 	head = p->robust_list;
3422 	rcu_read_unlock();
3423 
3424 	if (put_user(sizeof(*head), len_ptr))
3425 		return -EFAULT;
3426 	return put_user(head, head_ptr);
3427 
3428 err_unlock:
3429 	rcu_read_unlock();
3430 
3431 	return ret;
3432 }
3433 
3434 /*
3435  * Process a futex-list entry, check whether it's owned by the
3436  * dying task, and do notification if so:
3437  */
handle_futex_death(u32 __user * uaddr,struct task_struct * curr,int pi)3438 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3439 {
3440 	u32 uval, uninitialized_var(nval), mval;
3441 
3442 	/* Futex address must be 32bit aligned */
3443 	if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3444 		return -1;
3445 
3446 retry:
3447 	if (get_user(uval, uaddr))
3448 		return -1;
3449 
3450 	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3451 		/*
3452 		 * Ok, this dying thread is truly holding a futex
3453 		 * of interest. Set the OWNER_DIED bit atomically
3454 		 * via cmpxchg, and if the value had FUTEX_WAITERS
3455 		 * set, wake up a waiter (if any). (We have to do a
3456 		 * futex_wake() even if OWNER_DIED is already set -
3457 		 * to handle the rare but possible case of recursive
3458 		 * thread-death.) The rest of the cleanup is done in
3459 		 * userspace.
3460 		 */
3461 		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3462 		/*
3463 		 * We are not holding a lock here, but we want to have
3464 		 * the pagefault_disable/enable() protection because
3465 		 * we want to handle the fault gracefully. If the
3466 		 * access fails we try to fault in the futex with R/W
3467 		 * verification via get_user_pages. get_user() above
3468 		 * does not guarantee R/W access. If that fails we
3469 		 * give up and leave the futex locked.
3470 		 */
3471 		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3472 			if (fault_in_user_writeable(uaddr))
3473 				return -1;
3474 			goto retry;
3475 		}
3476 		if (nval != uval)
3477 			goto retry;
3478 
3479 		/*
3480 		 * Wake robust non-PI futexes here. The wakeup of
3481 		 * PI futexes happens in exit_pi_state():
3482 		 */
3483 		if (!pi && (uval & FUTEX_WAITERS))
3484 			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3485 	}
3486 	return 0;
3487 }
3488 
3489 /*
3490  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3491  */
fetch_robust_entry(struct robust_list __user ** entry,struct robust_list __user * __user * head,unsigned int * pi)3492 static inline int fetch_robust_entry(struct robust_list __user **entry,
3493 				     struct robust_list __user * __user *head,
3494 				     unsigned int *pi)
3495 {
3496 	unsigned long uentry;
3497 
3498 	if (get_user(uentry, (unsigned long __user *)head))
3499 		return -EFAULT;
3500 
3501 	*entry = (void __user *)(uentry & ~1UL);
3502 	*pi = uentry & 1;
3503 
3504 	return 0;
3505 }
3506 
3507 /*
3508  * Walk curr->robust_list (very carefully, it's a userspace list!)
3509  * and mark any locks found there dead, and notify any waiters.
3510  *
3511  * We silently return on any sign of list-walking problem.
3512  */
exit_robust_list(struct task_struct * curr)3513 static void exit_robust_list(struct task_struct *curr)
3514 {
3515 	struct robust_list_head __user *head = curr->robust_list;
3516 	struct robust_list __user *entry, *next_entry, *pending;
3517 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3518 	unsigned int uninitialized_var(next_pi);
3519 	unsigned long futex_offset;
3520 	int rc;
3521 
3522 	if (!futex_cmpxchg_enabled)
3523 		return;
3524 
3525 	/*
3526 	 * Fetch the list head (which was registered earlier, via
3527 	 * sys_set_robust_list()):
3528 	 */
3529 	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3530 		return;
3531 	/*
3532 	 * Fetch the relative futex offset:
3533 	 */
3534 	if (get_user(futex_offset, &head->futex_offset))
3535 		return;
3536 	/*
3537 	 * Fetch any possibly pending lock-add first, and handle it
3538 	 * if it exists:
3539 	 */
3540 	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3541 		return;
3542 
3543 	next_entry = NULL;	/* avoid warning with gcc */
3544 	while (entry != &head->list) {
3545 		/*
3546 		 * Fetch the next entry in the list before calling
3547 		 * handle_futex_death:
3548 		 */
3549 		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3550 		/*
3551 		 * A pending lock might already be on the list, so
3552 		 * don't process it twice:
3553 		 */
3554 		if (entry != pending)
3555 			if (handle_futex_death((void __user *)entry + futex_offset,
3556 						curr, pi))
3557 				return;
3558 		if (rc)
3559 			return;
3560 		entry = next_entry;
3561 		pi = next_pi;
3562 		/*
3563 		 * Avoid excessively long or circular lists:
3564 		 */
3565 		if (!--limit)
3566 			break;
3567 
3568 		cond_resched();
3569 	}
3570 
3571 	if (pending)
3572 		handle_futex_death((void __user *)pending + futex_offset,
3573 				   curr, pip);
3574 }
3575 
futex_cleanup(struct task_struct * tsk)3576 static void futex_cleanup(struct task_struct *tsk)
3577 {
3578 	if (unlikely(tsk->robust_list)) {
3579 		exit_robust_list(tsk);
3580 		tsk->robust_list = NULL;
3581 	}
3582 
3583 #ifdef CONFIG_COMPAT
3584 	if (unlikely(tsk->compat_robust_list)) {
3585 		compat_exit_robust_list(tsk);
3586 		tsk->compat_robust_list = NULL;
3587 	}
3588 #endif
3589 
3590 	if (unlikely(!list_empty(&tsk->pi_state_list)))
3591 		exit_pi_state_list(tsk);
3592 }
3593 
3594 /**
3595  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3596  * @tsk:	task to set the state on
3597  *
3598  * Set the futex exit state of the task lockless. The futex waiter code
3599  * observes that state when a task is exiting and loops until the task has
3600  * actually finished the futex cleanup. The worst case for this is that the
3601  * waiter runs through the wait loop until the state becomes visible.
3602  *
3603  * This is called from the recursive fault handling path in do_exit().
3604  *
3605  * This is best effort. Either the futex exit code has run already or
3606  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3607  * take it over. If not, the problem is pushed back to user space. If the
3608  * futex exit code did not run yet, then an already queued waiter might
3609  * block forever, but there is nothing which can be done about that.
3610  */
futex_exit_recursive(struct task_struct * tsk)3611 void futex_exit_recursive(struct task_struct *tsk)
3612 {
3613 	/* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3614 	if (tsk->futex_state == FUTEX_STATE_EXITING)
3615 		mutex_unlock(&tsk->futex_exit_mutex);
3616 	tsk->futex_state = FUTEX_STATE_DEAD;
3617 }
3618 
futex_cleanup_begin(struct task_struct * tsk)3619 static void futex_cleanup_begin(struct task_struct *tsk)
3620 {
3621 	/*
3622 	 * Prevent various race issues against a concurrent incoming waiter
3623 	 * including live locks by forcing the waiter to block on
3624 	 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3625 	 * attach_to_pi_owner().
3626 	 */
3627 	mutex_lock(&tsk->futex_exit_mutex);
3628 
3629 	/*
3630 	 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3631 	 *
3632 	 * This ensures that all subsequent checks of tsk->futex_state in
3633 	 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3634 	 * tsk->pi_lock held.
3635 	 *
3636 	 * It guarantees also that a pi_state which was queued right before
3637 	 * the state change under tsk->pi_lock by a concurrent waiter must
3638 	 * be observed in exit_pi_state_list().
3639 	 */
3640 	raw_spin_lock_irq(&tsk->pi_lock);
3641 	tsk->futex_state = FUTEX_STATE_EXITING;
3642 	raw_spin_unlock_irq(&tsk->pi_lock);
3643 }
3644 
futex_cleanup_end(struct task_struct * tsk,int state)3645 static void futex_cleanup_end(struct task_struct *tsk, int state)
3646 {
3647 	/*
3648 	 * Lockless store. The only side effect is that an observer might
3649 	 * take another loop until it becomes visible.
3650 	 */
3651 	tsk->futex_state = state;
3652 	/*
3653 	 * Drop the exit protection. This unblocks waiters which observed
3654 	 * FUTEX_STATE_EXITING to reevaluate the state.
3655 	 */
3656 	mutex_unlock(&tsk->futex_exit_mutex);
3657 }
3658 
futex_exec_release(struct task_struct * tsk)3659 void futex_exec_release(struct task_struct *tsk)
3660 {
3661 	/*
3662 	 * The state handling is done for consistency, but in the case of
3663 	 * exec() there is no way to prevent futher damage as the PID stays
3664 	 * the same. But for the unlikely and arguably buggy case that a
3665 	 * futex is held on exec(), this provides at least as much state
3666 	 * consistency protection which is possible.
3667 	 */
3668 	futex_cleanup_begin(tsk);
3669 	futex_cleanup(tsk);
3670 	/*
3671 	 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3672 	 * exec a new binary.
3673 	 */
3674 	futex_cleanup_end(tsk, FUTEX_STATE_OK);
3675 }
3676 
futex_exit_release(struct task_struct * tsk)3677 void futex_exit_release(struct task_struct *tsk)
3678 {
3679 	futex_cleanup_begin(tsk);
3680 	futex_cleanup(tsk);
3681 	futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3682 }
3683 
do_futex(u32 __user * uaddr,int op,u32 val,ktime_t * timeout,u32 __user * uaddr2,u32 val2,u32 val3)3684 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3685 		u32 __user *uaddr2, u32 val2, u32 val3)
3686 {
3687 	int cmd = op & FUTEX_CMD_MASK;
3688 	unsigned int flags = 0;
3689 
3690 	if (!(op & FUTEX_PRIVATE_FLAG))
3691 		flags |= FLAGS_SHARED;
3692 
3693 	if (op & FUTEX_CLOCK_REALTIME) {
3694 		flags |= FLAGS_CLOCKRT;
3695 		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3696 			return -ENOSYS;
3697 	}
3698 
3699 	switch (cmd) {
3700 	case FUTEX_LOCK_PI:
3701 	case FUTEX_UNLOCK_PI:
3702 	case FUTEX_TRYLOCK_PI:
3703 	case FUTEX_WAIT_REQUEUE_PI:
3704 	case FUTEX_CMP_REQUEUE_PI:
3705 		if (!futex_cmpxchg_enabled)
3706 			return -ENOSYS;
3707 	}
3708 
3709 	switch (cmd) {
3710 	case FUTEX_WAIT:
3711 		val3 = FUTEX_BITSET_MATCH_ANY;
3712 	case FUTEX_WAIT_BITSET:
3713 		return futex_wait(uaddr, flags, val, timeout, val3);
3714 	case FUTEX_WAKE:
3715 		val3 = FUTEX_BITSET_MATCH_ANY;
3716 	case FUTEX_WAKE_BITSET:
3717 		return futex_wake(uaddr, flags, val, val3);
3718 	case FUTEX_REQUEUE:
3719 		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3720 	case FUTEX_CMP_REQUEUE:
3721 		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3722 	case FUTEX_WAKE_OP:
3723 		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3724 	case FUTEX_LOCK_PI:
3725 		return futex_lock_pi(uaddr, flags, timeout, 0);
3726 	case FUTEX_UNLOCK_PI:
3727 		return futex_unlock_pi(uaddr, flags);
3728 	case FUTEX_TRYLOCK_PI:
3729 		return futex_lock_pi(uaddr, flags, NULL, 1);
3730 	case FUTEX_WAIT_REQUEUE_PI:
3731 		val3 = FUTEX_BITSET_MATCH_ANY;
3732 		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3733 					     uaddr2);
3734 	case FUTEX_CMP_REQUEUE_PI:
3735 		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3736 	}
3737 	return -ENOSYS;
3738 }
3739 
3740 
SYSCALL_DEFINE6(futex,u32 __user *,uaddr,int,op,u32,val,struct timespec __user *,utime,u32 __user *,uaddr2,u32,val3)3741 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3742 		struct timespec __user *, utime, u32 __user *, uaddr2,
3743 		u32, val3)
3744 {
3745 	struct timespec ts;
3746 	ktime_t t, *tp = NULL;
3747 	u32 val2 = 0;
3748 	int cmd = op & FUTEX_CMD_MASK;
3749 
3750 	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3751 		      cmd == FUTEX_WAIT_BITSET ||
3752 		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3753 		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3754 			return -EFAULT;
3755 		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3756 			return -EFAULT;
3757 		if (!timespec_valid(&ts))
3758 			return -EINVAL;
3759 
3760 		t = timespec_to_ktime(ts);
3761 		if (cmd == FUTEX_WAIT)
3762 			t = ktime_add_safe(ktime_get(), t);
3763 		tp = &t;
3764 	}
3765 	/*
3766 	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3767 	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3768 	 */
3769 	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3770 	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3771 		val2 = (u32) (unsigned long) utime;
3772 
3773 	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3774 }
3775 
3776 #ifdef CONFIG_COMPAT
3777 /*
3778  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3779  */
3780 static inline int
compat_fetch_robust_entry(compat_uptr_t * uentry,struct robust_list __user ** entry,compat_uptr_t __user * head,unsigned int * pi)3781 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3782 		   compat_uptr_t __user *head, unsigned int *pi)
3783 {
3784 	if (get_user(*uentry, head))
3785 		return -EFAULT;
3786 
3787 	*entry = compat_ptr((*uentry) & ~1);
3788 	*pi = (unsigned int)(*uentry) & 1;
3789 
3790 	return 0;
3791 }
3792 
futex_uaddr(struct robust_list __user * entry,compat_long_t futex_offset)3793 static void __user *futex_uaddr(struct robust_list __user *entry,
3794 				compat_long_t futex_offset)
3795 {
3796 	compat_uptr_t base = ptr_to_compat(entry);
3797 	void __user *uaddr = compat_ptr(base + futex_offset);
3798 
3799 	return uaddr;
3800 }
3801 
3802 /*
3803  * Walk curr->robust_list (very carefully, it's a userspace list!)
3804  * and mark any locks found there dead, and notify any waiters.
3805  *
3806  * We silently return on any sign of list-walking problem.
3807  */
compat_exit_robust_list(struct task_struct * curr)3808 void compat_exit_robust_list(struct task_struct *curr)
3809 {
3810 	struct compat_robust_list_head __user *head = curr->compat_robust_list;
3811 	struct robust_list __user *entry, *next_entry, *pending;
3812 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3813 	unsigned int uninitialized_var(next_pi);
3814 	compat_uptr_t uentry, next_uentry, upending;
3815 	compat_long_t futex_offset;
3816 	int rc;
3817 
3818 	if (!futex_cmpxchg_enabled)
3819 		return;
3820 
3821 	/*
3822 	 * Fetch the list head (which was registered earlier, via
3823 	 * sys_set_robust_list()):
3824 	 */
3825 	if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3826 		return;
3827 	/*
3828 	 * Fetch the relative futex offset:
3829 	 */
3830 	if (get_user(futex_offset, &head->futex_offset))
3831 		return;
3832 	/*
3833 	 * Fetch any possibly pending lock-add first, and handle it
3834 	 * if it exists:
3835 	 */
3836 	if (compat_fetch_robust_entry(&upending, &pending,
3837 			       &head->list_op_pending, &pip))
3838 		return;
3839 
3840 	next_entry = NULL;	/* avoid warning with gcc */
3841 	while (entry != (struct robust_list __user *) &head->list) {
3842 		/*
3843 		 * Fetch the next entry in the list before calling
3844 		 * handle_futex_death:
3845 		 */
3846 		rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3847 			(compat_uptr_t __user *)&entry->next, &next_pi);
3848 		/*
3849 		 * A pending lock might already be on the list, so
3850 		 * dont process it twice:
3851 		 */
3852 		if (entry != pending) {
3853 			void __user *uaddr = futex_uaddr(entry, futex_offset);
3854 
3855 			if (handle_futex_death(uaddr, curr, pi))
3856 				return;
3857 		}
3858 		if (rc)
3859 			return;
3860 		uentry = next_uentry;
3861 		entry = next_entry;
3862 		pi = next_pi;
3863 		/*
3864 		 * Avoid excessively long or circular lists:
3865 		 */
3866 		if (!--limit)
3867 			break;
3868 
3869 		cond_resched();
3870 	}
3871 	if (pending) {
3872 		void __user *uaddr = futex_uaddr(pending, futex_offset);
3873 
3874 		handle_futex_death(uaddr, curr, pip);
3875 	}
3876 }
3877 
COMPAT_SYSCALL_DEFINE2(set_robust_list,struct compat_robust_list_head __user *,head,compat_size_t,len)3878 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3879 		struct compat_robust_list_head __user *, head,
3880 		compat_size_t, len)
3881 {
3882 	if (!futex_cmpxchg_enabled)
3883 		return -ENOSYS;
3884 
3885 	if (unlikely(len != sizeof(*head)))
3886 		return -EINVAL;
3887 
3888 	current->compat_robust_list = head;
3889 
3890 	return 0;
3891 }
3892 
COMPAT_SYSCALL_DEFINE3(get_robust_list,int,pid,compat_uptr_t __user *,head_ptr,compat_size_t __user *,len_ptr)3893 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3894 			compat_uptr_t __user *, head_ptr,
3895 			compat_size_t __user *, len_ptr)
3896 {
3897 	struct compat_robust_list_head __user *head;
3898 	unsigned long ret;
3899 	struct task_struct *p;
3900 
3901 	if (!futex_cmpxchg_enabled)
3902 		return -ENOSYS;
3903 
3904 	rcu_read_lock();
3905 
3906 	ret = -ESRCH;
3907 	if (!pid)
3908 		p = current;
3909 	else {
3910 		p = find_task_by_vpid(pid);
3911 		if (!p)
3912 			goto err_unlock;
3913 	}
3914 
3915 	ret = -EPERM;
3916 	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3917 		goto err_unlock;
3918 
3919 	head = p->compat_robust_list;
3920 	rcu_read_unlock();
3921 
3922 	if (put_user(sizeof(*head), len_ptr))
3923 		return -EFAULT;
3924 	return put_user(ptr_to_compat(head), head_ptr);
3925 
3926 err_unlock:
3927 	rcu_read_unlock();
3928 
3929 	return ret;
3930 }
3931 
COMPAT_SYSCALL_DEFINE6(futex,u32 __user *,uaddr,int,op,u32,val,struct compat_timespec __user *,utime,u32 __user *,uaddr2,u32,val3)3932 COMPAT_SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3933 		struct compat_timespec __user *, utime, u32 __user *, uaddr2,
3934 		u32, val3)
3935 {
3936 	struct timespec ts;
3937 	ktime_t t, *tp = NULL;
3938 	int val2 = 0;
3939 	int cmd = op & FUTEX_CMD_MASK;
3940 
3941 	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3942 		      cmd == FUTEX_WAIT_BITSET ||
3943 		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3944 		if (compat_get_timespec(&ts, utime))
3945 			return -EFAULT;
3946 		if (!timespec_valid(&ts))
3947 			return -EINVAL;
3948 
3949 		t = timespec_to_ktime(ts);
3950 		if (cmd == FUTEX_WAIT)
3951 			t = ktime_add_safe(ktime_get(), t);
3952 		tp = &t;
3953 	}
3954 	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3955 	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3956 		val2 = (int) (unsigned long) utime;
3957 
3958 	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3959 }
3960 #endif /* CONFIG_COMPAT */
3961 
futex_detect_cmpxchg(void)3962 static void __init futex_detect_cmpxchg(void)
3963 {
3964 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3965 	u32 curval;
3966 
3967 	/*
3968 	 * This will fail and we want it. Some arch implementations do
3969 	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3970 	 * functionality. We want to know that before we call in any
3971 	 * of the complex code paths. Also we want to prevent
3972 	 * registration of robust lists in that case. NULL is
3973 	 * guaranteed to fault and we get -EFAULT on functional
3974 	 * implementation, the non-functional ones will return
3975 	 * -ENOSYS.
3976 	 */
3977 	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3978 		futex_cmpxchg_enabled = 1;
3979 #endif
3980 }
3981 
futex_init(void)3982 static int __init futex_init(void)
3983 {
3984 	unsigned int futex_shift;
3985 	unsigned long i;
3986 
3987 #if CONFIG_BASE_SMALL
3988 	futex_hashsize = 16;
3989 #else
3990 	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3991 #endif
3992 
3993 	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3994 					       futex_hashsize, 0,
3995 					       futex_hashsize < 256 ? HASH_SMALL : 0,
3996 					       &futex_shift, NULL,
3997 					       futex_hashsize, futex_hashsize);
3998 	futex_hashsize = 1UL << futex_shift;
3999 
4000 	futex_detect_cmpxchg();
4001 
4002 	for (i = 0; i < futex_hashsize; i++) {
4003 		atomic_set(&futex_queues[i].waiters, 0);
4004 		plist_head_init(&futex_queues[i].chain);
4005 		spin_lock_init(&futex_queues[i].lock);
4006 	}
4007 
4008 	return 0;
4009 }
4010 core_initcall(futex_init);
4011