1 /*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/slab.h>
16
17 #include <asm/page.h>
18 #include <asm/uaccess.h>
19
20 /*
21 * bitmaps provide an array of bits, implemented using an an
22 * array of unsigned longs. The number of valid bits in a
23 * given bitmap does _not_ need to be an exact multiple of
24 * BITS_PER_LONG.
25 *
26 * The possible unused bits in the last, partially used word
27 * of a bitmap are 'don't care'. The implementation makes
28 * no particular effort to keep them zero. It ensures that
29 * their value will not affect the results of any operation.
30 * The bitmap operations that return Boolean (bitmap_empty,
31 * for example) or scalar (bitmap_weight, for example) results
32 * carefully filter out these unused bits from impacting their
33 * results.
34 *
35 * These operations actually hold to a slightly stronger rule:
36 * if you don't input any bitmaps to these ops that have some
37 * unused bits set, then they won't output any set unused bits
38 * in output bitmaps.
39 *
40 * The byte ordering of bitmaps is more natural on little
41 * endian architectures. See the big-endian headers
42 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
43 * for the best explanations of this ordering.
44 */
45
__bitmap_equal(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)46 int __bitmap_equal(const unsigned long *bitmap1,
47 const unsigned long *bitmap2, unsigned int bits)
48 {
49 unsigned int k, lim = bits/BITS_PER_LONG;
50 for (k = 0; k < lim; ++k)
51 if (bitmap1[k] != bitmap2[k])
52 return 0;
53
54 if (bits % BITS_PER_LONG)
55 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
56 return 0;
57
58 return 1;
59 }
60 EXPORT_SYMBOL(__bitmap_equal);
61
__bitmap_complement(unsigned long * dst,const unsigned long * src,unsigned int bits)62 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
63 {
64 unsigned int k, lim = bits/BITS_PER_LONG;
65 for (k = 0; k < lim; ++k)
66 dst[k] = ~src[k];
67
68 if (bits % BITS_PER_LONG)
69 dst[k] = ~src[k];
70 }
71 EXPORT_SYMBOL(__bitmap_complement);
72
73 /**
74 * __bitmap_shift_right - logical right shift of the bits in a bitmap
75 * @dst : destination bitmap
76 * @src : source bitmap
77 * @shift : shift by this many bits
78 * @nbits : bitmap size, in bits
79 *
80 * Shifting right (dividing) means moving bits in the MS -> LS bit
81 * direction. Zeros are fed into the vacated MS positions and the
82 * LS bits shifted off the bottom are lost.
83 */
__bitmap_shift_right(unsigned long * dst,const unsigned long * src,unsigned shift,unsigned nbits)84 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
85 unsigned shift, unsigned nbits)
86 {
87 unsigned k, lim = BITS_TO_LONGS(nbits);
88 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
89 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
90 for (k = 0; off + k < lim; ++k) {
91 unsigned long upper, lower;
92
93 /*
94 * If shift is not word aligned, take lower rem bits of
95 * word above and make them the top rem bits of result.
96 */
97 if (!rem || off + k + 1 >= lim)
98 upper = 0;
99 else {
100 upper = src[off + k + 1];
101 if (off + k + 1 == lim - 1)
102 upper &= mask;
103 upper <<= (BITS_PER_LONG - rem);
104 }
105 lower = src[off + k];
106 if (off + k == lim - 1)
107 lower &= mask;
108 lower >>= rem;
109 dst[k] = lower | upper;
110 }
111 if (off)
112 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
113 }
114 EXPORT_SYMBOL(__bitmap_shift_right);
115
116
117 /**
118 * __bitmap_shift_left - logical left shift of the bits in a bitmap
119 * @dst : destination bitmap
120 * @src : source bitmap
121 * @shift : shift by this many bits
122 * @nbits : bitmap size, in bits
123 *
124 * Shifting left (multiplying) means moving bits in the LS -> MS
125 * direction. Zeros are fed into the vacated LS bit positions
126 * and those MS bits shifted off the top are lost.
127 */
128
__bitmap_shift_left(unsigned long * dst,const unsigned long * src,unsigned int shift,unsigned int nbits)129 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
130 unsigned int shift, unsigned int nbits)
131 {
132 int k;
133 unsigned int lim = BITS_TO_LONGS(nbits);
134 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
135 for (k = lim - off - 1; k >= 0; --k) {
136 unsigned long upper, lower;
137
138 /*
139 * If shift is not word aligned, take upper rem bits of
140 * word below and make them the bottom rem bits of result.
141 */
142 if (rem && k > 0)
143 lower = src[k - 1] >> (BITS_PER_LONG - rem);
144 else
145 lower = 0;
146 upper = src[k] << rem;
147 dst[k + off] = lower | upper;
148 }
149 if (off)
150 memset(dst, 0, off*sizeof(unsigned long));
151 }
152 EXPORT_SYMBOL(__bitmap_shift_left);
153
__bitmap_and(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)154 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
155 const unsigned long *bitmap2, unsigned int bits)
156 {
157 unsigned int k;
158 unsigned int lim = bits/BITS_PER_LONG;
159 unsigned long result = 0;
160
161 for (k = 0; k < lim; k++)
162 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
163 if (bits % BITS_PER_LONG)
164 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
165 BITMAP_LAST_WORD_MASK(bits));
166 return result != 0;
167 }
168 EXPORT_SYMBOL(__bitmap_and);
169
__bitmap_or(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)170 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
171 const unsigned long *bitmap2, unsigned int bits)
172 {
173 unsigned int k;
174 unsigned int nr = BITS_TO_LONGS(bits);
175
176 for (k = 0; k < nr; k++)
177 dst[k] = bitmap1[k] | bitmap2[k];
178 }
179 EXPORT_SYMBOL(__bitmap_or);
180
__bitmap_xor(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)181 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
182 const unsigned long *bitmap2, unsigned int bits)
183 {
184 unsigned int k;
185 unsigned int nr = BITS_TO_LONGS(bits);
186
187 for (k = 0; k < nr; k++)
188 dst[k] = bitmap1[k] ^ bitmap2[k];
189 }
190 EXPORT_SYMBOL(__bitmap_xor);
191
__bitmap_andnot(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)192 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
193 const unsigned long *bitmap2, unsigned int bits)
194 {
195 unsigned int k;
196 unsigned int lim = bits/BITS_PER_LONG;
197 unsigned long result = 0;
198
199 for (k = 0; k < lim; k++)
200 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
201 if (bits % BITS_PER_LONG)
202 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
203 BITMAP_LAST_WORD_MASK(bits));
204 return result != 0;
205 }
206 EXPORT_SYMBOL(__bitmap_andnot);
207
__bitmap_intersects(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)208 int __bitmap_intersects(const unsigned long *bitmap1,
209 const unsigned long *bitmap2, unsigned int bits)
210 {
211 unsigned int k, lim = bits/BITS_PER_LONG;
212 for (k = 0; k < lim; ++k)
213 if (bitmap1[k] & bitmap2[k])
214 return 1;
215
216 if (bits % BITS_PER_LONG)
217 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
218 return 1;
219 return 0;
220 }
221 EXPORT_SYMBOL(__bitmap_intersects);
222
__bitmap_subset(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)223 int __bitmap_subset(const unsigned long *bitmap1,
224 const unsigned long *bitmap2, unsigned int bits)
225 {
226 unsigned int k, lim = bits/BITS_PER_LONG;
227 for (k = 0; k < lim; ++k)
228 if (bitmap1[k] & ~bitmap2[k])
229 return 0;
230
231 if (bits % BITS_PER_LONG)
232 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
233 return 0;
234 return 1;
235 }
236 EXPORT_SYMBOL(__bitmap_subset);
237
__bitmap_weight(const unsigned long * bitmap,unsigned int bits)238 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
239 {
240 unsigned int k, lim = bits/BITS_PER_LONG;
241 int w = 0;
242
243 for (k = 0; k < lim; k++)
244 w += hweight_long(bitmap[k]);
245
246 if (bits % BITS_PER_LONG)
247 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
248
249 return w;
250 }
251 EXPORT_SYMBOL(__bitmap_weight);
252
bitmap_set(unsigned long * map,unsigned int start,int len)253 void bitmap_set(unsigned long *map, unsigned int start, int len)
254 {
255 unsigned long *p = map + BIT_WORD(start);
256 const unsigned int size = start + len;
257 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
258 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
259
260 while (len - bits_to_set >= 0) {
261 *p |= mask_to_set;
262 len -= bits_to_set;
263 bits_to_set = BITS_PER_LONG;
264 mask_to_set = ~0UL;
265 p++;
266 }
267 if (len) {
268 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
269 *p |= mask_to_set;
270 }
271 }
272 EXPORT_SYMBOL(bitmap_set);
273
bitmap_clear(unsigned long * map,unsigned int start,int len)274 void bitmap_clear(unsigned long *map, unsigned int start, int len)
275 {
276 unsigned long *p = map + BIT_WORD(start);
277 const unsigned int size = start + len;
278 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
279 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
280
281 while (len - bits_to_clear >= 0) {
282 *p &= ~mask_to_clear;
283 len -= bits_to_clear;
284 bits_to_clear = BITS_PER_LONG;
285 mask_to_clear = ~0UL;
286 p++;
287 }
288 if (len) {
289 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
290 *p &= ~mask_to_clear;
291 }
292 }
293 EXPORT_SYMBOL(bitmap_clear);
294
295 /**
296 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
297 * @map: The address to base the search on
298 * @size: The bitmap size in bits
299 * @start: The bitnumber to start searching at
300 * @nr: The number of zeroed bits we're looking for
301 * @align_mask: Alignment mask for zero area
302 * @align_offset: Alignment offset for zero area.
303 *
304 * The @align_mask should be one less than a power of 2; the effect is that
305 * the bit offset of all zero areas this function finds plus @align_offset
306 * is multiple of that power of 2.
307 */
bitmap_find_next_zero_area_off(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,unsigned long align_mask,unsigned long align_offset)308 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
309 unsigned long size,
310 unsigned long start,
311 unsigned int nr,
312 unsigned long align_mask,
313 unsigned long align_offset)
314 {
315 unsigned long index, end, i;
316 again:
317 index = find_next_zero_bit(map, size, start);
318
319 /* Align allocation */
320 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
321
322 end = index + nr;
323 if (end > size)
324 return end;
325 i = find_next_bit(map, end, index);
326 if (i < end) {
327 start = i + 1;
328 goto again;
329 }
330 return index;
331 }
332 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
333
334 /*
335 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
336 * second version by Paul Jackson, third by Joe Korty.
337 */
338
339 #define CHUNKSZ 32
340 #define nbits_to_hold_value(val) fls(val)
341 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
342
343 /**
344 * __bitmap_parse - convert an ASCII hex string into a bitmap.
345 * @buf: pointer to buffer containing string.
346 * @buflen: buffer size in bytes. If string is smaller than this
347 * then it must be terminated with a \0.
348 * @is_user: location of buffer, 0 indicates kernel space
349 * @maskp: pointer to bitmap array that will contain result.
350 * @nmaskbits: size of bitmap, in bits.
351 *
352 * Commas group hex digits into chunks. Each chunk defines exactly 32
353 * bits of the resultant bitmask. No chunk may specify a value larger
354 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
355 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
356 * characters and for grouping errors such as "1,,5", ",44", "," and "".
357 * Leading and trailing whitespace accepted, but not embedded whitespace.
358 */
__bitmap_parse(const char * buf,unsigned int buflen,int is_user,unsigned long * maskp,int nmaskbits)359 int __bitmap_parse(const char *buf, unsigned int buflen,
360 int is_user, unsigned long *maskp,
361 int nmaskbits)
362 {
363 int c, old_c, totaldigits, ndigits, nchunks, nbits;
364 u32 chunk;
365 const char __user __force *ubuf = (const char __user __force *)buf;
366
367 bitmap_zero(maskp, nmaskbits);
368
369 nchunks = nbits = totaldigits = c = 0;
370 do {
371 chunk = 0;
372 ndigits = totaldigits;
373
374 /* Get the next chunk of the bitmap */
375 while (buflen) {
376 old_c = c;
377 if (is_user) {
378 if (__get_user(c, ubuf++))
379 return -EFAULT;
380 }
381 else
382 c = *buf++;
383 buflen--;
384 if (isspace(c))
385 continue;
386
387 /*
388 * If the last character was a space and the current
389 * character isn't '\0', we've got embedded whitespace.
390 * This is a no-no, so throw an error.
391 */
392 if (totaldigits && c && isspace(old_c))
393 return -EINVAL;
394
395 /* A '\0' or a ',' signal the end of the chunk */
396 if (c == '\0' || c == ',')
397 break;
398
399 if (!isxdigit(c))
400 return -EINVAL;
401
402 /*
403 * Make sure there are at least 4 free bits in 'chunk'.
404 * If not, this hexdigit will overflow 'chunk', so
405 * throw an error.
406 */
407 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
408 return -EOVERFLOW;
409
410 chunk = (chunk << 4) | hex_to_bin(c);
411 totaldigits++;
412 }
413 if (ndigits == totaldigits)
414 return -EINVAL;
415 if (nchunks == 0 && chunk == 0)
416 continue;
417
418 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
419 *maskp |= chunk;
420 nchunks++;
421 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
422 if (nbits > nmaskbits)
423 return -EOVERFLOW;
424 } while (buflen && c == ',');
425
426 return 0;
427 }
428 EXPORT_SYMBOL(__bitmap_parse);
429
430 /**
431 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
432 *
433 * @ubuf: pointer to user buffer containing string.
434 * @ulen: buffer size in bytes. If string is smaller than this
435 * then it must be terminated with a \0.
436 * @maskp: pointer to bitmap array that will contain result.
437 * @nmaskbits: size of bitmap, in bits.
438 *
439 * Wrapper for __bitmap_parse(), providing it with user buffer.
440 *
441 * We cannot have this as an inline function in bitmap.h because it needs
442 * linux/uaccess.h to get the access_ok() declaration and this causes
443 * cyclic dependencies.
444 */
bitmap_parse_user(const char __user * ubuf,unsigned int ulen,unsigned long * maskp,int nmaskbits)445 int bitmap_parse_user(const char __user *ubuf,
446 unsigned int ulen, unsigned long *maskp,
447 int nmaskbits)
448 {
449 if (!access_ok(VERIFY_READ, ubuf, ulen))
450 return -EFAULT;
451 return __bitmap_parse((const char __force *)ubuf,
452 ulen, 1, maskp, nmaskbits);
453
454 }
455 EXPORT_SYMBOL(bitmap_parse_user);
456
457 /**
458 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
459 * @list: indicates whether the bitmap must be list
460 * @buf: page aligned buffer into which string is placed
461 * @maskp: pointer to bitmap to convert
462 * @nmaskbits: size of bitmap, in bits
463 *
464 * Output format is a comma-separated list of decimal numbers and
465 * ranges if list is specified or hex digits grouped into comma-separated
466 * sets of 8 digits/set. Returns the number of characters written to buf.
467 *
468 * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
469 * sufficient storage remains at @buf to accommodate the
470 * bitmap_print_to_pagebuf() output.
471 */
bitmap_print_to_pagebuf(bool list,char * buf,const unsigned long * maskp,int nmaskbits)472 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
473 int nmaskbits)
474 {
475 ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
476 int n = 0;
477
478 if (len > 1)
479 n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
480 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
481 return n;
482 }
483 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
484
485 /**
486 * __bitmap_parselist - convert list format ASCII string to bitmap
487 * @buf: read nul-terminated user string from this buffer
488 * @buflen: buffer size in bytes. If string is smaller than this
489 * then it must be terminated with a \0.
490 * @is_user: location of buffer, 0 indicates kernel space
491 * @maskp: write resulting mask here
492 * @nmaskbits: number of bits in mask to be written
493 *
494 * Input format is a comma-separated list of decimal numbers and
495 * ranges. Consecutively set bits are shown as two hyphen-separated
496 * decimal numbers, the smallest and largest bit numbers set in
497 * the range.
498 *
499 * Returns 0 on success, -errno on invalid input strings.
500 * Error values:
501 * %-EINVAL: second number in range smaller than first
502 * %-EINVAL: invalid character in string
503 * %-ERANGE: bit number specified too large for mask
504 */
__bitmap_parselist(const char * buf,unsigned int buflen,int is_user,unsigned long * maskp,int nmaskbits)505 static int __bitmap_parselist(const char *buf, unsigned int buflen,
506 int is_user, unsigned long *maskp,
507 int nmaskbits)
508 {
509 unsigned a, b;
510 int c, old_c, totaldigits, ndigits;
511 const char __user __force *ubuf = (const char __user __force *)buf;
512 int at_start, in_range;
513
514 totaldigits = c = 0;
515 bitmap_zero(maskp, nmaskbits);
516 do {
517 at_start = 1;
518 in_range = 0;
519 a = b = 0;
520 ndigits = totaldigits;
521
522 /* Get the next cpu# or a range of cpu#'s */
523 while (buflen) {
524 old_c = c;
525 if (is_user) {
526 if (__get_user(c, ubuf++))
527 return -EFAULT;
528 } else
529 c = *buf++;
530 buflen--;
531 if (isspace(c))
532 continue;
533
534 /* A '\0' or a ',' signal the end of a cpu# or range */
535 if (c == '\0' || c == ',')
536 break;
537 /*
538 * whitespaces between digits are not allowed,
539 * but it's ok if whitespaces are on head or tail.
540 * when old_c is whilespace,
541 * if totaldigits == ndigits, whitespace is on head.
542 * if whitespace is on tail, it should not run here.
543 * as c was ',' or '\0',
544 * the last code line has broken the current loop.
545 */
546 if ((totaldigits != ndigits) && isspace(old_c))
547 return -EINVAL;
548
549 if (c == '-') {
550 if (at_start || in_range)
551 return -EINVAL;
552 b = 0;
553 in_range = 1;
554 at_start = 1;
555 continue;
556 }
557
558 if (!isdigit(c))
559 return -EINVAL;
560
561 b = b * 10 + (c - '0');
562 if (!in_range)
563 a = b;
564 at_start = 0;
565 totaldigits++;
566 }
567 if (ndigits == totaldigits)
568 continue;
569 /* if no digit is after '-', it's wrong*/
570 if (at_start && in_range)
571 return -EINVAL;
572 if (!(a <= b))
573 return -EINVAL;
574 if (b >= nmaskbits)
575 return -ERANGE;
576 while (a <= b) {
577 set_bit(a, maskp);
578 a++;
579 }
580 } while (buflen && c == ',');
581 return 0;
582 }
583
bitmap_parselist(const char * bp,unsigned long * maskp,int nmaskbits)584 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
585 {
586 char *nl = strchrnul(bp, '\n');
587 int len = nl - bp;
588
589 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
590 }
591 EXPORT_SYMBOL(bitmap_parselist);
592
593
594 /**
595 * bitmap_parselist_user()
596 *
597 * @ubuf: pointer to user buffer containing string.
598 * @ulen: buffer size in bytes. If string is smaller than this
599 * then it must be terminated with a \0.
600 * @maskp: pointer to bitmap array that will contain result.
601 * @nmaskbits: size of bitmap, in bits.
602 *
603 * Wrapper for bitmap_parselist(), providing it with user buffer.
604 *
605 * We cannot have this as an inline function in bitmap.h because it needs
606 * linux/uaccess.h to get the access_ok() declaration and this causes
607 * cyclic dependencies.
608 */
bitmap_parselist_user(const char __user * ubuf,unsigned int ulen,unsigned long * maskp,int nmaskbits)609 int bitmap_parselist_user(const char __user *ubuf,
610 unsigned int ulen, unsigned long *maskp,
611 int nmaskbits)
612 {
613 if (!access_ok(VERIFY_READ, ubuf, ulen))
614 return -EFAULT;
615 return __bitmap_parselist((const char __force *)ubuf,
616 ulen, 1, maskp, nmaskbits);
617 }
618 EXPORT_SYMBOL(bitmap_parselist_user);
619
620
621 /**
622 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
623 * @buf: pointer to a bitmap
624 * @pos: a bit position in @buf (0 <= @pos < @nbits)
625 * @nbits: number of valid bit positions in @buf
626 *
627 * Map the bit at position @pos in @buf (of length @nbits) to the
628 * ordinal of which set bit it is. If it is not set or if @pos
629 * is not a valid bit position, map to -1.
630 *
631 * If for example, just bits 4 through 7 are set in @buf, then @pos
632 * values 4 through 7 will get mapped to 0 through 3, respectively,
633 * and other @pos values will get mapped to -1. When @pos value 7
634 * gets mapped to (returns) @ord value 3 in this example, that means
635 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
636 *
637 * The bit positions 0 through @bits are valid positions in @buf.
638 */
bitmap_pos_to_ord(const unsigned long * buf,unsigned int pos,unsigned int nbits)639 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
640 {
641 if (pos >= nbits || !test_bit(pos, buf))
642 return -1;
643
644 return __bitmap_weight(buf, pos);
645 }
646
647 /**
648 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
649 * @buf: pointer to bitmap
650 * @ord: ordinal bit position (n-th set bit, n >= 0)
651 * @nbits: number of valid bit positions in @buf
652 *
653 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
654 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
655 * >= weight(buf), returns @nbits.
656 *
657 * If for example, just bits 4 through 7 are set in @buf, then @ord
658 * values 0 through 3 will get mapped to 4 through 7, respectively,
659 * and all other @ord values returns @nbits. When @ord value 3
660 * gets mapped to (returns) @pos value 7 in this example, that means
661 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
662 *
663 * The bit positions 0 through @nbits-1 are valid positions in @buf.
664 */
bitmap_ord_to_pos(const unsigned long * buf,unsigned int ord,unsigned int nbits)665 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
666 {
667 unsigned int pos;
668
669 for (pos = find_first_bit(buf, nbits);
670 pos < nbits && ord;
671 pos = find_next_bit(buf, nbits, pos + 1))
672 ord--;
673
674 return pos;
675 }
676
677 /**
678 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
679 * @dst: remapped result
680 * @src: subset to be remapped
681 * @old: defines domain of map
682 * @new: defines range of map
683 * @nbits: number of bits in each of these bitmaps
684 *
685 * Let @old and @new define a mapping of bit positions, such that
686 * whatever position is held by the n-th set bit in @old is mapped
687 * to the n-th set bit in @new. In the more general case, allowing
688 * for the possibility that the weight 'w' of @new is less than the
689 * weight of @old, map the position of the n-th set bit in @old to
690 * the position of the m-th set bit in @new, where m == n % w.
691 *
692 * If either of the @old and @new bitmaps are empty, or if @src and
693 * @dst point to the same location, then this routine copies @src
694 * to @dst.
695 *
696 * The positions of unset bits in @old are mapped to themselves
697 * (the identify map).
698 *
699 * Apply the above specified mapping to @src, placing the result in
700 * @dst, clearing any bits previously set in @dst.
701 *
702 * For example, lets say that @old has bits 4 through 7 set, and
703 * @new has bits 12 through 15 set. This defines the mapping of bit
704 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
705 * bit positions unchanged. So if say @src comes into this routine
706 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
707 * 13 and 15 set.
708 */
bitmap_remap(unsigned long * dst,const unsigned long * src,const unsigned long * old,const unsigned long * new,unsigned int nbits)709 void bitmap_remap(unsigned long *dst, const unsigned long *src,
710 const unsigned long *old, const unsigned long *new,
711 unsigned int nbits)
712 {
713 unsigned int oldbit, w;
714
715 if (dst == src) /* following doesn't handle inplace remaps */
716 return;
717 bitmap_zero(dst, nbits);
718
719 w = bitmap_weight(new, nbits);
720 for_each_set_bit(oldbit, src, nbits) {
721 int n = bitmap_pos_to_ord(old, oldbit, nbits);
722
723 if (n < 0 || w == 0)
724 set_bit(oldbit, dst); /* identity map */
725 else
726 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
727 }
728 }
729 EXPORT_SYMBOL(bitmap_remap);
730
731 /**
732 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
733 * @oldbit: bit position to be mapped
734 * @old: defines domain of map
735 * @new: defines range of map
736 * @bits: number of bits in each of these bitmaps
737 *
738 * Let @old and @new define a mapping of bit positions, such that
739 * whatever position is held by the n-th set bit in @old is mapped
740 * to the n-th set bit in @new. In the more general case, allowing
741 * for the possibility that the weight 'w' of @new is less than the
742 * weight of @old, map the position of the n-th set bit in @old to
743 * the position of the m-th set bit in @new, where m == n % w.
744 *
745 * The positions of unset bits in @old are mapped to themselves
746 * (the identify map).
747 *
748 * Apply the above specified mapping to bit position @oldbit, returning
749 * the new bit position.
750 *
751 * For example, lets say that @old has bits 4 through 7 set, and
752 * @new has bits 12 through 15 set. This defines the mapping of bit
753 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
754 * bit positions unchanged. So if say @oldbit is 5, then this routine
755 * returns 13.
756 */
bitmap_bitremap(int oldbit,const unsigned long * old,const unsigned long * new,int bits)757 int bitmap_bitremap(int oldbit, const unsigned long *old,
758 const unsigned long *new, int bits)
759 {
760 int w = bitmap_weight(new, bits);
761 int n = bitmap_pos_to_ord(old, oldbit, bits);
762 if (n < 0 || w == 0)
763 return oldbit;
764 else
765 return bitmap_ord_to_pos(new, n % w, bits);
766 }
767 EXPORT_SYMBOL(bitmap_bitremap);
768
769 /**
770 * bitmap_onto - translate one bitmap relative to another
771 * @dst: resulting translated bitmap
772 * @orig: original untranslated bitmap
773 * @relmap: bitmap relative to which translated
774 * @bits: number of bits in each of these bitmaps
775 *
776 * Set the n-th bit of @dst iff there exists some m such that the
777 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
778 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
779 * (If you understood the previous sentence the first time your
780 * read it, you're overqualified for your current job.)
781 *
782 * In other words, @orig is mapped onto (surjectively) @dst,
783 * using the map { <n, m> | the n-th bit of @relmap is the
784 * m-th set bit of @relmap }.
785 *
786 * Any set bits in @orig above bit number W, where W is the
787 * weight of (number of set bits in) @relmap are mapped nowhere.
788 * In particular, if for all bits m set in @orig, m >= W, then
789 * @dst will end up empty. In situations where the possibility
790 * of such an empty result is not desired, one way to avoid it is
791 * to use the bitmap_fold() operator, below, to first fold the
792 * @orig bitmap over itself so that all its set bits x are in the
793 * range 0 <= x < W. The bitmap_fold() operator does this by
794 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
795 *
796 * Example [1] for bitmap_onto():
797 * Let's say @relmap has bits 30-39 set, and @orig has bits
798 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
799 * @dst will have bits 31, 33, 35, 37 and 39 set.
800 *
801 * When bit 0 is set in @orig, it means turn on the bit in
802 * @dst corresponding to whatever is the first bit (if any)
803 * that is turned on in @relmap. Since bit 0 was off in the
804 * above example, we leave off that bit (bit 30) in @dst.
805 *
806 * When bit 1 is set in @orig (as in the above example), it
807 * means turn on the bit in @dst corresponding to whatever
808 * is the second bit that is turned on in @relmap. The second
809 * bit in @relmap that was turned on in the above example was
810 * bit 31, so we turned on bit 31 in @dst.
811 *
812 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
813 * because they were the 4th, 6th, 8th and 10th set bits
814 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
815 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
816 *
817 * When bit 11 is set in @orig, it means turn on the bit in
818 * @dst corresponding to whatever is the twelfth bit that is
819 * turned on in @relmap. In the above example, there were
820 * only ten bits turned on in @relmap (30..39), so that bit
821 * 11 was set in @orig had no affect on @dst.
822 *
823 * Example [2] for bitmap_fold() + bitmap_onto():
824 * Let's say @relmap has these ten bits set:
825 * 40 41 42 43 45 48 53 61 74 95
826 * (for the curious, that's 40 plus the first ten terms of the
827 * Fibonacci sequence.)
828 *
829 * Further lets say we use the following code, invoking
830 * bitmap_fold() then bitmap_onto, as suggested above to
831 * avoid the possibility of an empty @dst result:
832 *
833 * unsigned long *tmp; // a temporary bitmap's bits
834 *
835 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
836 * bitmap_onto(dst, tmp, relmap, bits);
837 *
838 * Then this table shows what various values of @dst would be, for
839 * various @orig's. I list the zero-based positions of each set bit.
840 * The tmp column shows the intermediate result, as computed by
841 * using bitmap_fold() to fold the @orig bitmap modulo ten
842 * (the weight of @relmap).
843 *
844 * @orig tmp @dst
845 * 0 0 40
846 * 1 1 41
847 * 9 9 95
848 * 10 0 40 (*)
849 * 1 3 5 7 1 3 5 7 41 43 48 61
850 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
851 * 0 9 18 27 0 9 8 7 40 61 74 95
852 * 0 10 20 30 0 40
853 * 0 11 22 33 0 1 2 3 40 41 42 43
854 * 0 12 24 36 0 2 4 6 40 42 45 53
855 * 78 102 211 1 2 8 41 42 74 (*)
856 *
857 * (*) For these marked lines, if we hadn't first done bitmap_fold()
858 * into tmp, then the @dst result would have been empty.
859 *
860 * If either of @orig or @relmap is empty (no set bits), then @dst
861 * will be returned empty.
862 *
863 * If (as explained above) the only set bits in @orig are in positions
864 * m where m >= W, (where W is the weight of @relmap) then @dst will
865 * once again be returned empty.
866 *
867 * All bits in @dst not set by the above rule are cleared.
868 */
bitmap_onto(unsigned long * dst,const unsigned long * orig,const unsigned long * relmap,unsigned int bits)869 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
870 const unsigned long *relmap, unsigned int bits)
871 {
872 unsigned int n, m; /* same meaning as in above comment */
873
874 if (dst == orig) /* following doesn't handle inplace mappings */
875 return;
876 bitmap_zero(dst, bits);
877
878 /*
879 * The following code is a more efficient, but less
880 * obvious, equivalent to the loop:
881 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
882 * n = bitmap_ord_to_pos(orig, m, bits);
883 * if (test_bit(m, orig))
884 * set_bit(n, dst);
885 * }
886 */
887
888 m = 0;
889 for_each_set_bit(n, relmap, bits) {
890 /* m == bitmap_pos_to_ord(relmap, n, bits) */
891 if (test_bit(m, orig))
892 set_bit(n, dst);
893 m++;
894 }
895 }
896 EXPORT_SYMBOL(bitmap_onto);
897
898 /**
899 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
900 * @dst: resulting smaller bitmap
901 * @orig: original larger bitmap
902 * @sz: specified size
903 * @nbits: number of bits in each of these bitmaps
904 *
905 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
906 * Clear all other bits in @dst. See further the comment and
907 * Example [2] for bitmap_onto() for why and how to use this.
908 */
bitmap_fold(unsigned long * dst,const unsigned long * orig,unsigned int sz,unsigned int nbits)909 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
910 unsigned int sz, unsigned int nbits)
911 {
912 unsigned int oldbit;
913
914 if (dst == orig) /* following doesn't handle inplace mappings */
915 return;
916 bitmap_zero(dst, nbits);
917
918 for_each_set_bit(oldbit, orig, nbits)
919 set_bit(oldbit % sz, dst);
920 }
921 EXPORT_SYMBOL(bitmap_fold);
922
923 /*
924 * Common code for bitmap_*_region() routines.
925 * bitmap: array of unsigned longs corresponding to the bitmap
926 * pos: the beginning of the region
927 * order: region size (log base 2 of number of bits)
928 * reg_op: operation(s) to perform on that region of bitmap
929 *
930 * Can set, verify and/or release a region of bits in a bitmap,
931 * depending on which combination of REG_OP_* flag bits is set.
932 *
933 * A region of a bitmap is a sequence of bits in the bitmap, of
934 * some size '1 << order' (a power of two), aligned to that same
935 * '1 << order' power of two.
936 *
937 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
938 * Returns 0 in all other cases and reg_ops.
939 */
940
941 enum {
942 REG_OP_ISFREE, /* true if region is all zero bits */
943 REG_OP_ALLOC, /* set all bits in region */
944 REG_OP_RELEASE, /* clear all bits in region */
945 };
946
__reg_op(unsigned long * bitmap,unsigned int pos,int order,int reg_op)947 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
948 {
949 int nbits_reg; /* number of bits in region */
950 int index; /* index first long of region in bitmap */
951 int offset; /* bit offset region in bitmap[index] */
952 int nlongs_reg; /* num longs spanned by region in bitmap */
953 int nbitsinlong; /* num bits of region in each spanned long */
954 unsigned long mask; /* bitmask for one long of region */
955 int i; /* scans bitmap by longs */
956 int ret = 0; /* return value */
957
958 /*
959 * Either nlongs_reg == 1 (for small orders that fit in one long)
960 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
961 */
962 nbits_reg = 1 << order;
963 index = pos / BITS_PER_LONG;
964 offset = pos - (index * BITS_PER_LONG);
965 nlongs_reg = BITS_TO_LONGS(nbits_reg);
966 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
967
968 /*
969 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
970 * overflows if nbitsinlong == BITS_PER_LONG.
971 */
972 mask = (1UL << (nbitsinlong - 1));
973 mask += mask - 1;
974 mask <<= offset;
975
976 switch (reg_op) {
977 case REG_OP_ISFREE:
978 for (i = 0; i < nlongs_reg; i++) {
979 if (bitmap[index + i] & mask)
980 goto done;
981 }
982 ret = 1; /* all bits in region free (zero) */
983 break;
984
985 case REG_OP_ALLOC:
986 for (i = 0; i < nlongs_reg; i++)
987 bitmap[index + i] |= mask;
988 break;
989
990 case REG_OP_RELEASE:
991 for (i = 0; i < nlongs_reg; i++)
992 bitmap[index + i] &= ~mask;
993 break;
994 }
995 done:
996 return ret;
997 }
998
999 /**
1000 * bitmap_find_free_region - find a contiguous aligned mem region
1001 * @bitmap: array of unsigned longs corresponding to the bitmap
1002 * @bits: number of bits in the bitmap
1003 * @order: region size (log base 2 of number of bits) to find
1004 *
1005 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1006 * allocate them (set them to one). Only consider regions of length
1007 * a power (@order) of two, aligned to that power of two, which
1008 * makes the search algorithm much faster.
1009 *
1010 * Return the bit offset in bitmap of the allocated region,
1011 * or -errno on failure.
1012 */
bitmap_find_free_region(unsigned long * bitmap,unsigned int bits,int order)1013 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1014 {
1015 unsigned int pos, end; /* scans bitmap by regions of size order */
1016
1017 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1018 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1019 continue;
1020 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1021 return pos;
1022 }
1023 return -ENOMEM;
1024 }
1025 EXPORT_SYMBOL(bitmap_find_free_region);
1026
1027 /**
1028 * bitmap_release_region - release allocated bitmap region
1029 * @bitmap: array of unsigned longs corresponding to the bitmap
1030 * @pos: beginning of bit region to release
1031 * @order: region size (log base 2 of number of bits) to release
1032 *
1033 * This is the complement to __bitmap_find_free_region() and releases
1034 * the found region (by clearing it in the bitmap).
1035 *
1036 * No return value.
1037 */
bitmap_release_region(unsigned long * bitmap,unsigned int pos,int order)1038 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1039 {
1040 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1041 }
1042 EXPORT_SYMBOL(bitmap_release_region);
1043
1044 /**
1045 * bitmap_allocate_region - allocate bitmap region
1046 * @bitmap: array of unsigned longs corresponding to the bitmap
1047 * @pos: beginning of bit region to allocate
1048 * @order: region size (log base 2 of number of bits) to allocate
1049 *
1050 * Allocate (set bits in) a specified region of a bitmap.
1051 *
1052 * Return 0 on success, or %-EBUSY if specified region wasn't
1053 * free (not all bits were zero).
1054 */
bitmap_allocate_region(unsigned long * bitmap,unsigned int pos,int order)1055 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1056 {
1057 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1058 return -EBUSY;
1059 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1060 }
1061 EXPORT_SYMBOL(bitmap_allocate_region);
1062
1063 /**
1064 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1065 * @dst: destination buffer
1066 * @src: bitmap to copy
1067 * @nbits: number of bits in the bitmap
1068 *
1069 * Require nbits % BITS_PER_LONG == 0.
1070 */
1071 #ifdef __BIG_ENDIAN
bitmap_copy_le(unsigned long * dst,const unsigned long * src,unsigned int nbits)1072 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1073 {
1074 unsigned int i;
1075
1076 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1077 if (BITS_PER_LONG == 64)
1078 dst[i] = cpu_to_le64(src[i]);
1079 else
1080 dst[i] = cpu_to_le32(src[i]);
1081 }
1082 }
1083 EXPORT_SYMBOL(bitmap_copy_le);
1084 #endif
1085
bitmap_alloc(unsigned int nbits,gfp_t flags)1086 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1087 {
1088 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1089 flags);
1090 }
1091 EXPORT_SYMBOL(bitmap_alloc);
1092
bitmap_zalloc(unsigned int nbits,gfp_t flags)1093 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1094 {
1095 return bitmap_alloc(nbits, flags | __GFP_ZERO);
1096 }
1097 EXPORT_SYMBOL(bitmap_zalloc);
1098
bitmap_free(const unsigned long * bitmap)1099 void bitmap_free(const unsigned long *bitmap)
1100 {
1101 kfree(bitmap);
1102 }
1103 EXPORT_SYMBOL(bitmap_free);
1104