• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
3  *
4  * Based on former do_div() implementation from asm-parisc/div64.h:
5  *	Copyright (C) 1999 Hewlett-Packard Co
6  *	Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
7  *
8  *
9  * Generic C version of 64bit/32bit division and modulo, with
10  * 64bit result and 32bit remainder.
11  *
12  * The fast case for (n>>32 == 0) is handled inline by do_div().
13  *
14  * Code generated for this function might be very inefficient
15  * for some CPUs. __div64_32() can be overridden by linking arch-specific
16  * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S.
17  */
18 
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/math64.h>
22 
23 /* Not needed on 64bit architectures */
24 #if BITS_PER_LONG == 32
25 
__div64_32(uint64_t * n,uint32_t base)26 uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
27 {
28 	uint64_t rem = *n;
29 	uint64_t b = base;
30 	uint64_t res, d = 1;
31 	uint32_t high = rem >> 32;
32 
33 	/* Reduce the thing a bit first */
34 	res = 0;
35 	if (high >= base) {
36 		high /= base;
37 		res = (uint64_t) high << 32;
38 		rem -= (uint64_t) (high*base) << 32;
39 	}
40 
41 	while ((int64_t)b > 0 && b < rem) {
42 		b = b+b;
43 		d = d+d;
44 	}
45 
46 	do {
47 		if (rem >= b) {
48 			rem -= b;
49 			res += d;
50 		}
51 		b >>= 1;
52 		d >>= 1;
53 	} while (d);
54 
55 	*n = res;
56 	return rem;
57 }
58 
59 EXPORT_SYMBOL(__div64_32);
60 
61 #ifndef div_s64_rem
div_s64_rem(s64 dividend,s32 divisor,s32 * remainder)62 s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
63 {
64 	u64 quotient;
65 
66 	if (dividend < 0) {
67 		quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
68 		*remainder = -*remainder;
69 		if (divisor > 0)
70 			quotient = -quotient;
71 	} else {
72 		quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
73 		if (divisor < 0)
74 			quotient = -quotient;
75 	}
76 	return quotient;
77 }
78 EXPORT_SYMBOL(div_s64_rem);
79 #endif
80 
81 /**
82  * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
83  * @dividend:	64bit dividend
84  * @divisor:	64bit divisor
85  * @remainder:  64bit remainder
86  *
87  * This implementation is a comparable to algorithm used by div64_u64.
88  * But this operation, which includes math for calculating the remainder,
89  * is kept distinct to avoid slowing down the div64_u64 operation on 32bit
90  * systems.
91  */
92 #ifndef div64_u64_rem
div64_u64_rem(u64 dividend,u64 divisor,u64 * remainder)93 u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
94 {
95 	u32 high = divisor >> 32;
96 	u64 quot;
97 
98 	if (high == 0) {
99 		u32 rem32;
100 		quot = div_u64_rem(dividend, divisor, &rem32);
101 		*remainder = rem32;
102 	} else {
103 		int n = fls(high);
104 		quot = div_u64(dividend >> n, divisor >> n);
105 
106 		if (quot != 0)
107 			quot--;
108 
109 		*remainder = dividend - quot * divisor;
110 		if (*remainder >= divisor) {
111 			quot++;
112 			*remainder -= divisor;
113 		}
114 	}
115 
116 	return quot;
117 }
118 EXPORT_SYMBOL(div64_u64_rem);
119 #endif
120 
121 /**
122  * div64_u64 - unsigned 64bit divide with 64bit divisor
123  * @dividend:	64bit dividend
124  * @divisor:	64bit divisor
125  *
126  * This implementation is a modified version of the algorithm proposed
127  * by the book 'Hacker's Delight'.  The original source and full proof
128  * can be found here and is available for use without restriction.
129  *
130  * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
131  */
132 #ifndef div64_u64
div64_u64(u64 dividend,u64 divisor)133 u64 div64_u64(u64 dividend, u64 divisor)
134 {
135 	u32 high = divisor >> 32;
136 	u64 quot;
137 
138 	if (high == 0) {
139 		quot = div_u64(dividend, divisor);
140 	} else {
141 		int n = fls(high);
142 		quot = div_u64(dividend >> n, divisor >> n);
143 
144 		if (quot != 0)
145 			quot--;
146 		if ((dividend - quot * divisor) >= divisor)
147 			quot++;
148 	}
149 
150 	return quot;
151 }
152 EXPORT_SYMBOL(div64_u64);
153 #endif
154 
155 /**
156  * div64_s64 - signed 64bit divide with 64bit divisor
157  * @dividend:	64bit dividend
158  * @divisor:	64bit divisor
159  */
160 #ifndef div64_s64
div64_s64(s64 dividend,s64 divisor)161 s64 div64_s64(s64 dividend, s64 divisor)
162 {
163 	s64 quot, t;
164 
165 	quot = div64_u64(abs(dividend), abs(divisor));
166 	t = (dividend ^ divisor) >> 63;
167 
168 	return (quot ^ t) - t;
169 }
170 EXPORT_SYMBOL(div64_s64);
171 #endif
172 
173 #endif /* BITS_PER_LONG == 32 */
174 
175 /*
176  * Iterative div/mod for use when dividend is not expected to be much
177  * bigger than divisor.
178  */
iter_div_u64_rem(u64 dividend,u32 divisor,u64 * remainder)179 u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
180 {
181 	return __iter_div_u64_rem(dividend, divisor, remainder);
182 }
183 EXPORT_SYMBOL(iter_div_u64_rem);
184