1 /*
2 * Resizable, Scalable, Concurrent Hash Table
3 *
4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7 *
8 * Code partially derived from nft_hash
9 * Rewritten with rehash code from br_multicast plus single list
10 * pointer as suggested by Josh Triplett
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/mm.h>
25 #include <linux/jhash.h>
26 #include <linux/random.h>
27 #include <linux/rhashtable.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
30
31 #define HASH_DEFAULT_SIZE 64UL
32 #define HASH_MIN_SIZE 4U
33 #define BUCKET_LOCKS_PER_CPU 128UL
34
head_hashfn(struct rhashtable * ht,const struct bucket_table * tbl,const struct rhash_head * he)35 static u32 head_hashfn(struct rhashtable *ht,
36 const struct bucket_table *tbl,
37 const struct rhash_head *he)
38 {
39 return rht_head_hashfn(ht, tbl, he, ht->p);
40 }
41
42 #ifdef CONFIG_PROVE_LOCKING
43 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
44
lockdep_rht_mutex_is_held(struct rhashtable * ht)45 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
46 {
47 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
48 }
49 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
50
lockdep_rht_bucket_is_held(const struct bucket_table * tbl,u32 hash)51 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
52 {
53 spinlock_t *lock = rht_bucket_lock(tbl, hash);
54
55 return (debug_locks) ? lockdep_is_held(lock) : 1;
56 }
57 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
58 #else
59 #define ASSERT_RHT_MUTEX(HT)
60 #endif
61
62
alloc_bucket_locks(struct rhashtable * ht,struct bucket_table * tbl,gfp_t gfp)63 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
64 gfp_t gfp)
65 {
66 unsigned int i, size;
67 #if defined(CONFIG_PROVE_LOCKING)
68 unsigned int nr_pcpus = 2;
69 #else
70 unsigned int nr_pcpus = num_possible_cpus();
71 #endif
72
73 nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
74 size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
75
76 /* Never allocate more than 0.5 locks per bucket */
77 size = min_t(unsigned int, size, tbl->size >> 1);
78
79 if (sizeof(spinlock_t) != 0) {
80 #ifdef CONFIG_NUMA
81 if (size * sizeof(spinlock_t) > PAGE_SIZE &&
82 gfp == GFP_KERNEL)
83 tbl->locks = vmalloc(size * sizeof(spinlock_t));
84 else
85 #endif
86 tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
87 gfp);
88 if (!tbl->locks)
89 return -ENOMEM;
90 for (i = 0; i < size; i++)
91 spin_lock_init(&tbl->locks[i]);
92 }
93 tbl->locks_mask = size - 1;
94
95 return 0;
96 }
97
bucket_table_free(const struct bucket_table * tbl)98 static void bucket_table_free(const struct bucket_table *tbl)
99 {
100 if (tbl)
101 kvfree(tbl->locks);
102
103 kvfree(tbl);
104 }
105
bucket_table_free_rcu(struct rcu_head * head)106 static void bucket_table_free_rcu(struct rcu_head *head)
107 {
108 bucket_table_free(container_of(head, struct bucket_table, rcu));
109 }
110
bucket_table_alloc(struct rhashtable * ht,size_t nbuckets,gfp_t gfp)111 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
112 size_t nbuckets,
113 gfp_t gfp)
114 {
115 struct bucket_table *tbl = NULL;
116 size_t size;
117 int i;
118
119 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
120 if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
121 gfp != GFP_KERNEL)
122 tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
123 if (tbl == NULL && gfp == GFP_KERNEL)
124 tbl = vzalloc(size);
125 if (tbl == NULL)
126 return NULL;
127
128 tbl->size = nbuckets;
129
130 if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
131 bucket_table_free(tbl);
132 return NULL;
133 }
134
135 INIT_LIST_HEAD(&tbl->walkers);
136
137 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
138
139 for (i = 0; i < nbuckets; i++)
140 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
141
142 return tbl;
143 }
144
rhashtable_last_table(struct rhashtable * ht,struct bucket_table * tbl)145 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
146 struct bucket_table *tbl)
147 {
148 struct bucket_table *new_tbl;
149
150 do {
151 new_tbl = tbl;
152 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
153 } while (tbl);
154
155 return new_tbl;
156 }
157
rhashtable_rehash_one(struct rhashtable * ht,unsigned int old_hash)158 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
159 {
160 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
161 struct bucket_table *new_tbl = rhashtable_last_table(ht,
162 rht_dereference_rcu(old_tbl->future_tbl, ht));
163 struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
164 int err = -ENOENT;
165 struct rhash_head *head, *next, *entry;
166 spinlock_t *new_bucket_lock;
167 unsigned int new_hash;
168
169 rht_for_each(entry, old_tbl, old_hash) {
170 err = 0;
171 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
172
173 if (rht_is_a_nulls(next))
174 break;
175
176 pprev = &entry->next;
177 }
178
179 if (err)
180 goto out;
181
182 new_hash = head_hashfn(ht, new_tbl, entry);
183
184 new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
185
186 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
187 head = rht_dereference_bucket(new_tbl->buckets[new_hash],
188 new_tbl, new_hash);
189
190 RCU_INIT_POINTER(entry->next, head);
191
192 rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
193 spin_unlock(new_bucket_lock);
194
195 rcu_assign_pointer(*pprev, next);
196
197 out:
198 return err;
199 }
200
rhashtable_rehash_chain(struct rhashtable * ht,unsigned int old_hash)201 static void rhashtable_rehash_chain(struct rhashtable *ht,
202 unsigned int old_hash)
203 {
204 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
205 spinlock_t *old_bucket_lock;
206
207 old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
208
209 spin_lock_bh(old_bucket_lock);
210 while (!rhashtable_rehash_one(ht, old_hash))
211 ;
212 old_tbl->rehash++;
213 spin_unlock_bh(old_bucket_lock);
214 }
215
rhashtable_rehash_attach(struct rhashtable * ht,struct bucket_table * old_tbl,struct bucket_table * new_tbl)216 static int rhashtable_rehash_attach(struct rhashtable *ht,
217 struct bucket_table *old_tbl,
218 struct bucket_table *new_tbl)
219 {
220 /* Protect future_tbl using the first bucket lock. */
221 spin_lock_bh(old_tbl->locks);
222
223 /* Did somebody beat us to it? */
224 if (rcu_access_pointer(old_tbl->future_tbl)) {
225 spin_unlock_bh(old_tbl->locks);
226 return -EEXIST;
227 }
228
229 /* Make insertions go into the new, empty table right away. Deletions
230 * and lookups will be attempted in both tables until we synchronize.
231 */
232 rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
233
234 /* Ensure the new table is visible to readers. */
235 smp_wmb();
236
237 spin_unlock_bh(old_tbl->locks);
238
239 return 0;
240 }
241
rhashtable_rehash_table(struct rhashtable * ht)242 static int rhashtable_rehash_table(struct rhashtable *ht)
243 {
244 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
245 struct bucket_table *new_tbl;
246 struct rhashtable_walker *walker;
247 unsigned int old_hash;
248
249 new_tbl = rht_dereference(old_tbl->future_tbl, ht);
250 if (!new_tbl)
251 return 0;
252
253 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
254 rhashtable_rehash_chain(ht, old_hash);
255 cond_resched();
256 }
257
258 /* Publish the new table pointer. */
259 rcu_assign_pointer(ht->tbl, new_tbl);
260
261 spin_lock(&ht->lock);
262 list_for_each_entry(walker, &old_tbl->walkers, list)
263 walker->tbl = NULL;
264 spin_unlock(&ht->lock);
265
266 /* Wait for readers. All new readers will see the new
267 * table, and thus no references to the old table will
268 * remain.
269 */
270 call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
271
272 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
273 }
274
275 /**
276 * rhashtable_expand - Expand hash table while allowing concurrent lookups
277 * @ht: the hash table to expand
278 *
279 * A secondary bucket array is allocated and the hash entries are migrated.
280 *
281 * This function may only be called in a context where it is safe to call
282 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
283 *
284 * The caller must ensure that no concurrent resizing occurs by holding
285 * ht->mutex.
286 *
287 * It is valid to have concurrent insertions and deletions protected by per
288 * bucket locks or concurrent RCU protected lookups and traversals.
289 */
rhashtable_expand(struct rhashtable * ht)290 static int rhashtable_expand(struct rhashtable *ht)
291 {
292 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
293 int err;
294
295 ASSERT_RHT_MUTEX(ht);
296
297 old_tbl = rhashtable_last_table(ht, old_tbl);
298
299 new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
300 if (new_tbl == NULL)
301 return -ENOMEM;
302
303 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
304 if (err)
305 bucket_table_free(new_tbl);
306
307 return err;
308 }
309
310 /**
311 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
312 * @ht: the hash table to shrink
313 *
314 * This function shrinks the hash table to fit, i.e., the smallest
315 * size would not cause it to expand right away automatically.
316 *
317 * The caller must ensure that no concurrent resizing occurs by holding
318 * ht->mutex.
319 *
320 * The caller must ensure that no concurrent table mutations take place.
321 * It is however valid to have concurrent lookups if they are RCU protected.
322 *
323 * It is valid to have concurrent insertions and deletions protected by per
324 * bucket locks or concurrent RCU protected lookups and traversals.
325 */
rhashtable_shrink(struct rhashtable * ht)326 static int rhashtable_shrink(struct rhashtable *ht)
327 {
328 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
329 unsigned int size;
330 int err;
331
332 ASSERT_RHT_MUTEX(ht);
333
334 size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2);
335 if (size < ht->p.min_size)
336 size = ht->p.min_size;
337
338 if (old_tbl->size <= size)
339 return 0;
340
341 if (rht_dereference(old_tbl->future_tbl, ht))
342 return -EEXIST;
343
344 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
345 if (new_tbl == NULL)
346 return -ENOMEM;
347
348 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
349 if (err)
350 bucket_table_free(new_tbl);
351
352 return err;
353 }
354
rht_deferred_worker(struct work_struct * work)355 static void rht_deferred_worker(struct work_struct *work)
356 {
357 struct rhashtable *ht;
358 struct bucket_table *tbl;
359 int err = 0;
360
361 ht = container_of(work, struct rhashtable, run_work);
362 mutex_lock(&ht->mutex);
363
364 tbl = rht_dereference(ht->tbl, ht);
365 tbl = rhashtable_last_table(ht, tbl);
366
367 if (rht_grow_above_75(ht, tbl))
368 rhashtable_expand(ht);
369 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
370 rhashtable_shrink(ht);
371
372 err = rhashtable_rehash_table(ht);
373
374 mutex_unlock(&ht->mutex);
375
376 if (err)
377 schedule_work(&ht->run_work);
378 }
379
rhashtable_check_elasticity(struct rhashtable * ht,struct bucket_table * tbl,unsigned int hash)380 static bool rhashtable_check_elasticity(struct rhashtable *ht,
381 struct bucket_table *tbl,
382 unsigned int hash)
383 {
384 unsigned int elasticity = ht->elasticity;
385 struct rhash_head *head;
386
387 rht_for_each(head, tbl, hash)
388 if (!--elasticity)
389 return true;
390
391 return false;
392 }
393
rhashtable_insert_rehash(struct rhashtable * ht,struct bucket_table * tbl)394 int rhashtable_insert_rehash(struct rhashtable *ht,
395 struct bucket_table *tbl)
396 {
397 struct bucket_table *old_tbl;
398 struct bucket_table *new_tbl;
399 unsigned int size;
400 int err;
401
402 old_tbl = rht_dereference_rcu(ht->tbl, ht);
403
404 size = tbl->size;
405
406 err = -EBUSY;
407
408 if (rht_grow_above_75(ht, tbl))
409 size *= 2;
410 /* Do not schedule more than one rehash */
411 else if (old_tbl != tbl)
412 goto fail;
413
414 err = -ENOMEM;
415
416 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
417 if (new_tbl == NULL)
418 goto fail;
419
420 err = rhashtable_rehash_attach(ht, tbl, new_tbl);
421 if (err) {
422 bucket_table_free(new_tbl);
423 if (err == -EEXIST)
424 err = 0;
425 } else
426 schedule_work(&ht->run_work);
427
428 return err;
429
430 fail:
431 /* Do not fail the insert if someone else did a rehash. */
432 if (likely(rcu_dereference_raw(tbl->future_tbl)))
433 return 0;
434
435 /* Schedule async rehash to retry allocation in process context. */
436 if (err == -ENOMEM)
437 schedule_work(&ht->run_work);
438
439 return err;
440 }
441 EXPORT_SYMBOL_GPL(rhashtable_insert_rehash);
442
rhashtable_insert_slow(struct rhashtable * ht,const void * key,struct rhash_head * obj,struct bucket_table * tbl,void ** data)443 struct bucket_table *rhashtable_insert_slow(struct rhashtable *ht,
444 const void *key,
445 struct rhash_head *obj,
446 struct bucket_table *tbl,
447 void **data)
448 {
449 struct rhash_head *head;
450 unsigned int hash;
451 int err;
452
453 tbl = rhashtable_last_table(ht, tbl);
454 hash = head_hashfn(ht, tbl, obj);
455 spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
456
457 err = -EEXIST;
458 if (key) {
459 *data = rhashtable_lookup_fast(ht, key, ht->p);
460 if (*data)
461 goto exit;
462 }
463
464 err = -E2BIG;
465 if (unlikely(rht_grow_above_max(ht, tbl)))
466 goto exit;
467
468 err = -EAGAIN;
469 if (rhashtable_check_elasticity(ht, tbl, hash) ||
470 rht_grow_above_100(ht, tbl))
471 goto exit;
472
473 err = 0;
474
475 head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
476
477 RCU_INIT_POINTER(obj->next, head);
478
479 rcu_assign_pointer(tbl->buckets[hash], obj);
480
481 atomic_inc(&ht->nelems);
482
483 exit:
484 spin_unlock(rht_bucket_lock(tbl, hash));
485
486 if (err == 0)
487 return NULL;
488 else if (err == -EAGAIN)
489 return tbl;
490 else
491 return ERR_PTR(err);
492 }
493 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
494
495 /**
496 * rhashtable_walk_init - Initialise an iterator
497 * @ht: Table to walk over
498 * @iter: Hash table Iterator
499 *
500 * This function prepares a hash table walk.
501 *
502 * Note that if you restart a walk after rhashtable_walk_stop you
503 * may see the same object twice. Also, you may miss objects if
504 * there are removals in between rhashtable_walk_stop and the next
505 * call to rhashtable_walk_start.
506 *
507 * For a completely stable walk you should construct your own data
508 * structure outside the hash table.
509 *
510 * This function may sleep so you must not call it from interrupt
511 * context or with spin locks held.
512 *
513 * You must call rhashtable_walk_exit if this function returns
514 * successfully.
515 */
rhashtable_walk_init(struct rhashtable * ht,struct rhashtable_iter * iter)516 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
517 {
518 iter->ht = ht;
519 iter->p = NULL;
520 iter->slot = 0;
521 iter->skip = 0;
522
523 iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
524 if (!iter->walker)
525 return -ENOMEM;
526
527 spin_lock(&ht->lock);
528 iter->walker->tbl =
529 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
530 list_add(&iter->walker->list, &iter->walker->tbl->walkers);
531 spin_unlock(&ht->lock);
532
533 return 0;
534 }
535 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
536
537 /**
538 * rhashtable_walk_exit - Free an iterator
539 * @iter: Hash table Iterator
540 *
541 * This function frees resources allocated by rhashtable_walk_init.
542 */
rhashtable_walk_exit(struct rhashtable_iter * iter)543 void rhashtable_walk_exit(struct rhashtable_iter *iter)
544 {
545 spin_lock(&iter->ht->lock);
546 if (iter->walker->tbl)
547 list_del(&iter->walker->list);
548 spin_unlock(&iter->ht->lock);
549 kfree(iter->walker);
550 }
551 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
552
553 /**
554 * rhashtable_walk_start - Start a hash table walk
555 * @iter: Hash table iterator
556 *
557 * Start a hash table walk. Note that we take the RCU lock in all
558 * cases including when we return an error. So you must always call
559 * rhashtable_walk_stop to clean up.
560 *
561 * Returns zero if successful.
562 *
563 * Returns -EAGAIN if resize event occured. Note that the iterator
564 * will rewind back to the beginning and you may use it immediately
565 * by calling rhashtable_walk_next.
566 */
rhashtable_walk_start(struct rhashtable_iter * iter)567 int rhashtable_walk_start(struct rhashtable_iter *iter)
568 __acquires(RCU)
569 {
570 struct rhashtable *ht = iter->ht;
571
572 rcu_read_lock();
573
574 spin_lock(&ht->lock);
575 if (iter->walker->tbl)
576 list_del(&iter->walker->list);
577 spin_unlock(&ht->lock);
578
579 if (!iter->walker->tbl) {
580 iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
581 return -EAGAIN;
582 }
583
584 return 0;
585 }
586 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
587
588 /**
589 * rhashtable_walk_next - Return the next object and advance the iterator
590 * @iter: Hash table iterator
591 *
592 * Note that you must call rhashtable_walk_stop when you are finished
593 * with the walk.
594 *
595 * Returns the next object or NULL when the end of the table is reached.
596 *
597 * Returns -EAGAIN if resize event occured. Note that the iterator
598 * will rewind back to the beginning and you may continue to use it.
599 */
rhashtable_walk_next(struct rhashtable_iter * iter)600 void *rhashtable_walk_next(struct rhashtable_iter *iter)
601 {
602 struct bucket_table *tbl = iter->walker->tbl;
603 struct rhashtable *ht = iter->ht;
604 struct rhash_head *p = iter->p;
605
606 if (p) {
607 p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
608 goto next;
609 }
610
611 for (; iter->slot < tbl->size; iter->slot++) {
612 int skip = iter->skip;
613
614 rht_for_each_rcu(p, tbl, iter->slot) {
615 if (!skip)
616 break;
617 skip--;
618 }
619
620 next:
621 if (!rht_is_a_nulls(p)) {
622 iter->skip++;
623 iter->p = p;
624 return rht_obj(ht, p);
625 }
626
627 iter->skip = 0;
628 }
629
630 iter->p = NULL;
631
632 /* Ensure we see any new tables. */
633 smp_rmb();
634
635 iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
636 if (iter->walker->tbl) {
637 iter->slot = 0;
638 iter->skip = 0;
639 return ERR_PTR(-EAGAIN);
640 }
641
642 return NULL;
643 }
644 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
645
646 /**
647 * rhashtable_walk_stop - Finish a hash table walk
648 * @iter: Hash table iterator
649 *
650 * Finish a hash table walk.
651 */
rhashtable_walk_stop(struct rhashtable_iter * iter)652 void rhashtable_walk_stop(struct rhashtable_iter *iter)
653 __releases(RCU)
654 {
655 struct rhashtable *ht;
656 struct bucket_table *tbl = iter->walker->tbl;
657
658 if (!tbl)
659 goto out;
660
661 ht = iter->ht;
662
663 spin_lock(&ht->lock);
664 if (tbl->rehash < tbl->size)
665 list_add(&iter->walker->list, &tbl->walkers);
666 else
667 iter->walker->tbl = NULL;
668 spin_unlock(&ht->lock);
669
670 iter->p = NULL;
671
672 out:
673 rcu_read_unlock();
674 }
675 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
676
rounded_hashtable_size(const struct rhashtable_params * params)677 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
678 {
679 size_t retsize;
680
681 if (params->nelem_hint)
682 retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
683 (unsigned long)params->min_size);
684 else
685 retsize = max(HASH_DEFAULT_SIZE,
686 (unsigned long)params->min_size);
687
688 return retsize;
689 }
690
rhashtable_jhash2(const void * key,u32 length,u32 seed)691 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
692 {
693 return jhash2(key, length, seed);
694 }
695
696 /**
697 * rhashtable_init - initialize a new hash table
698 * @ht: hash table to be initialized
699 * @params: configuration parameters
700 *
701 * Initializes a new hash table based on the provided configuration
702 * parameters. A table can be configured either with a variable or
703 * fixed length key:
704 *
705 * Configuration Example 1: Fixed length keys
706 * struct test_obj {
707 * int key;
708 * void * my_member;
709 * struct rhash_head node;
710 * };
711 *
712 * struct rhashtable_params params = {
713 * .head_offset = offsetof(struct test_obj, node),
714 * .key_offset = offsetof(struct test_obj, key),
715 * .key_len = sizeof(int),
716 * .hashfn = jhash,
717 * .nulls_base = (1U << RHT_BASE_SHIFT),
718 * };
719 *
720 * Configuration Example 2: Variable length keys
721 * struct test_obj {
722 * [...]
723 * struct rhash_head node;
724 * };
725 *
726 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
727 * {
728 * struct test_obj *obj = data;
729 *
730 * return [... hash ...];
731 * }
732 *
733 * struct rhashtable_params params = {
734 * .head_offset = offsetof(struct test_obj, node),
735 * .hashfn = jhash,
736 * .obj_hashfn = my_hash_fn,
737 * };
738 */
rhashtable_init(struct rhashtable * ht,const struct rhashtable_params * params)739 int rhashtable_init(struct rhashtable *ht,
740 const struct rhashtable_params *params)
741 {
742 struct bucket_table *tbl;
743 size_t size;
744
745 if ((!params->key_len && !params->obj_hashfn) ||
746 (params->obj_hashfn && !params->obj_cmpfn))
747 return -EINVAL;
748
749 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
750 return -EINVAL;
751
752 memset(ht, 0, sizeof(*ht));
753 mutex_init(&ht->mutex);
754 spin_lock_init(&ht->lock);
755 memcpy(&ht->p, params, sizeof(*params));
756
757 if (params->min_size)
758 ht->p.min_size = roundup_pow_of_two(params->min_size);
759
760 if (params->max_size)
761 ht->p.max_size = rounddown_pow_of_two(params->max_size);
762
763 if (params->insecure_max_entries)
764 ht->p.insecure_max_entries =
765 rounddown_pow_of_two(params->insecure_max_entries);
766 else
767 ht->p.insecure_max_entries = ht->p.max_size * 2;
768
769 ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
770
771 size = rounded_hashtable_size(&ht->p);
772
773 /* The maximum (not average) chain length grows with the
774 * size of the hash table, at a rate of (log N)/(log log N).
775 * The value of 16 is selected so that even if the hash
776 * table grew to 2^32 you would not expect the maximum
777 * chain length to exceed it unless we are under attack
778 * (or extremely unlucky).
779 *
780 * As this limit is only to detect attacks, we don't need
781 * to set it to a lower value as you'd need the chain
782 * length to vastly exceed 16 to have any real effect
783 * on the system.
784 */
785 if (!params->insecure_elasticity)
786 ht->elasticity = 16;
787
788 if (params->locks_mul)
789 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
790 else
791 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
792
793 ht->key_len = ht->p.key_len;
794 if (!params->hashfn) {
795 ht->p.hashfn = jhash;
796
797 if (!(ht->key_len & (sizeof(u32) - 1))) {
798 ht->key_len /= sizeof(u32);
799 ht->p.hashfn = rhashtable_jhash2;
800 }
801 }
802
803 tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
804 if (tbl == NULL)
805 return -ENOMEM;
806
807 atomic_set(&ht->nelems, 0);
808
809 RCU_INIT_POINTER(ht->tbl, tbl);
810
811 INIT_WORK(&ht->run_work, rht_deferred_worker);
812
813 return 0;
814 }
815 EXPORT_SYMBOL_GPL(rhashtable_init);
816
817 /**
818 * rhashtable_free_and_destroy - free elements and destroy hash table
819 * @ht: the hash table to destroy
820 * @free_fn: callback to release resources of element
821 * @arg: pointer passed to free_fn
822 *
823 * Stops an eventual async resize. If defined, invokes free_fn for each
824 * element to releasal resources. Please note that RCU protected
825 * readers may still be accessing the elements. Releasing of resources
826 * must occur in a compatible manner. Then frees the bucket array.
827 *
828 * This function will eventually sleep to wait for an async resize
829 * to complete. The caller is responsible that no further write operations
830 * occurs in parallel.
831 */
rhashtable_free_and_destroy(struct rhashtable * ht,void (* free_fn)(void * ptr,void * arg),void * arg)832 void rhashtable_free_and_destroy(struct rhashtable *ht,
833 void (*free_fn)(void *ptr, void *arg),
834 void *arg)
835 {
836 const struct bucket_table *tbl;
837 unsigned int i;
838
839 cancel_work_sync(&ht->run_work);
840
841 mutex_lock(&ht->mutex);
842 tbl = rht_dereference(ht->tbl, ht);
843 if (free_fn) {
844 for (i = 0; i < tbl->size; i++) {
845 struct rhash_head *pos, *next;
846
847 cond_resched();
848 for (pos = rht_dereference(tbl->buckets[i], ht),
849 next = !rht_is_a_nulls(pos) ?
850 rht_dereference(pos->next, ht) : NULL;
851 !rht_is_a_nulls(pos);
852 pos = next,
853 next = !rht_is_a_nulls(pos) ?
854 rht_dereference(pos->next, ht) : NULL)
855 free_fn(rht_obj(ht, pos), arg);
856 }
857 }
858
859 bucket_table_free(tbl);
860 mutex_unlock(&ht->mutex);
861 }
862 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
863
rhashtable_destroy(struct rhashtable * ht)864 void rhashtable_destroy(struct rhashtable *ht)
865 {
866 return rhashtable_free_and_destroy(ht, NULL, NULL);
867 }
868 EXPORT_SYMBOL_GPL(rhashtable_destroy);
869