• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'slab_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/rcupdate.h>
106 #include	<linux/string.h>
107 #include	<linux/uaccess.h>
108 #include	<linux/nodemask.h>
109 #include	<linux/kmemleak.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 #include	<linux/kmemcheck.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 
120 #include	<net/sock.h>
121 
122 #include	<asm/cacheflush.h>
123 #include	<asm/tlbflush.h>
124 #include	<asm/page.h>
125 
126 #include <trace/events/kmem.h>
127 
128 #include	"internal.h"
129 
130 #include	"slab.h"
131 
132 /*
133  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134  *		  0 for faster, smaller code (especially in the critical paths).
135  *
136  * STATS	- 1 to collect stats for /proc/slabinfo.
137  *		  0 for faster, smaller code (especially in the critical paths).
138  *
139  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140  */
141 
142 #ifdef CONFIG_DEBUG_SLAB
143 #define	DEBUG		1
144 #define	STATS		1
145 #define	FORCED_DEBUG	1
146 #else
147 #define	DEBUG		0
148 #define	STATS		0
149 #define	FORCED_DEBUG	0
150 #endif
151 
152 /* Shouldn't this be in a header file somewhere? */
153 #define	BYTES_PER_WORD		sizeof(void *)
154 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
155 
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159 
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162 
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168 
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170 
171 /*
172  * true if a page was allocated from pfmemalloc reserves for network-based
173  * swap
174  */
175 static bool pfmemalloc_active __read_mostly;
176 
177 /*
178  * struct array_cache
179  *
180  * Purpose:
181  * - LIFO ordering, to hand out cache-warm objects from _alloc
182  * - reduce the number of linked list operations
183  * - reduce spinlock operations
184  *
185  * The limit is stored in the per-cpu structure to reduce the data cache
186  * footprint.
187  *
188  */
189 struct array_cache {
190 	unsigned int avail;
191 	unsigned int limit;
192 	unsigned int batchcount;
193 	unsigned int touched;
194 	void *entry[];	/*
195 			 * Must have this definition in here for the proper
196 			 * alignment of array_cache. Also simplifies accessing
197 			 * the entries.
198 			 *
199 			 * Entries should not be directly dereferenced as
200 			 * entries belonging to slabs marked pfmemalloc will
201 			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
202 			 */
203 };
204 
205 struct alien_cache {
206 	spinlock_t lock;
207 	struct array_cache ac;
208 };
209 
210 #define SLAB_OBJ_PFMEMALLOC	1
is_obj_pfmemalloc(void * objp)211 static inline bool is_obj_pfmemalloc(void *objp)
212 {
213 	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214 }
215 
set_obj_pfmemalloc(void ** objp)216 static inline void set_obj_pfmemalloc(void **objp)
217 {
218 	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 	return;
220 }
221 
clear_obj_pfmemalloc(void ** objp)222 static inline void clear_obj_pfmemalloc(void **objp)
223 {
224 	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225 }
226 
227 /*
228  * bootstrap: The caches do not work without cpuarrays anymore, but the
229  * cpuarrays are allocated from the generic caches...
230  */
231 #define BOOT_CPUCACHE_ENTRIES	1
232 struct arraycache_init {
233 	struct array_cache cache;
234 	void *entries[BOOT_CPUCACHE_ENTRIES];
235 };
236 
237 /*
238  * Need this for bootstrapping a per node allocator.
239  */
240 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242 #define	CACHE_CACHE 0
243 #define	SIZE_NODE (MAX_NUMNODES)
244 
245 static int drain_freelist(struct kmem_cache *cache,
246 			struct kmem_cache_node *n, int tofree);
247 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
248 			int node, struct list_head *list);
249 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
250 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
251 static void cache_reap(struct work_struct *unused);
252 
253 static int slab_early_init = 1;
254 
255 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
256 
kmem_cache_node_init(struct kmem_cache_node * parent)257 static void kmem_cache_node_init(struct kmem_cache_node *parent)
258 {
259 	INIT_LIST_HEAD(&parent->slabs_full);
260 	INIT_LIST_HEAD(&parent->slabs_partial);
261 	INIT_LIST_HEAD(&parent->slabs_free);
262 	parent->shared = NULL;
263 	parent->alien = NULL;
264 	parent->colour_next = 0;
265 	spin_lock_init(&parent->list_lock);
266 	parent->free_objects = 0;
267 	parent->free_touched = 0;
268 }
269 
270 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
271 	do {								\
272 		INIT_LIST_HEAD(listp);					\
273 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
274 	} while (0)
275 
276 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
277 	do {								\
278 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
279 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
280 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
281 	} while (0)
282 
283 #define CFLGS_OFF_SLAB		(0x80000000UL)
284 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
285 #define OFF_SLAB_MIN_SIZE (max_t(size_t, PAGE_SIZE >> 5, KMALLOC_MIN_SIZE + 1))
286 
287 #define BATCHREFILL_LIMIT	16
288 /*
289  * Optimization question: fewer reaps means less probability for unnessary
290  * cpucache drain/refill cycles.
291  *
292  * OTOH the cpuarrays can contain lots of objects,
293  * which could lock up otherwise freeable slabs.
294  */
295 #define REAPTIMEOUT_AC		(2*HZ)
296 #define REAPTIMEOUT_NODE	(4*HZ)
297 
298 #if STATS
299 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
300 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
301 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
302 #define	STATS_INC_GROWN(x)	((x)->grown++)
303 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
304 #define	STATS_SET_HIGH(x)						\
305 	do {								\
306 		if ((x)->num_active > (x)->high_mark)			\
307 			(x)->high_mark = (x)->num_active;		\
308 	} while (0)
309 #define	STATS_INC_ERR(x)	((x)->errors++)
310 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
311 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
312 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
313 #define	STATS_SET_FREEABLE(x, i)					\
314 	do {								\
315 		if ((x)->max_freeable < i)				\
316 			(x)->max_freeable = i;				\
317 	} while (0)
318 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
319 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
320 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
321 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
322 #else
323 #define	STATS_INC_ACTIVE(x)	do { } while (0)
324 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
325 #define	STATS_INC_ALLOCED(x)	do { } while (0)
326 #define	STATS_INC_GROWN(x)	do { } while (0)
327 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
328 #define	STATS_SET_HIGH(x)	do { } while (0)
329 #define	STATS_INC_ERR(x)	do { } while (0)
330 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
331 #define	STATS_INC_NODEFREES(x)	do { } while (0)
332 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
333 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
334 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
335 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
336 #define STATS_INC_FREEHIT(x)	do { } while (0)
337 #define STATS_INC_FREEMISS(x)	do { } while (0)
338 #endif
339 
340 #if DEBUG
341 
342 /*
343  * memory layout of objects:
344  * 0		: objp
345  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
346  * 		the end of an object is aligned with the end of the real
347  * 		allocation. Catches writes behind the end of the allocation.
348  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
349  * 		redzone word.
350  * cachep->obj_offset: The real object.
351  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
352  * cachep->size - 1* BYTES_PER_WORD: last caller address
353  *					[BYTES_PER_WORD long]
354  */
obj_offset(struct kmem_cache * cachep)355 static int obj_offset(struct kmem_cache *cachep)
356 {
357 	return cachep->obj_offset;
358 }
359 
dbg_redzone1(struct kmem_cache * cachep,void * objp)360 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
361 {
362 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
363 	return (unsigned long long*) (objp + obj_offset(cachep) -
364 				      sizeof(unsigned long long));
365 }
366 
dbg_redzone2(struct kmem_cache * cachep,void * objp)367 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
368 {
369 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
370 	if (cachep->flags & SLAB_STORE_USER)
371 		return (unsigned long long *)(objp + cachep->size -
372 					      sizeof(unsigned long long) -
373 					      REDZONE_ALIGN);
374 	return (unsigned long long *) (objp + cachep->size -
375 				       sizeof(unsigned long long));
376 }
377 
dbg_userword(struct kmem_cache * cachep,void * objp)378 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
379 {
380 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
381 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
382 }
383 
384 #else
385 
386 #define obj_offset(x)			0
387 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
388 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
389 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
390 
391 #endif
392 
393 #ifdef CONFIG_DEBUG_SLAB_LEAK
394 
is_store_user_clean(struct kmem_cache * cachep)395 static inline bool is_store_user_clean(struct kmem_cache *cachep)
396 {
397 	return atomic_read(&cachep->store_user_clean) == 1;
398 }
399 
set_store_user_clean(struct kmem_cache * cachep)400 static inline void set_store_user_clean(struct kmem_cache *cachep)
401 {
402 	atomic_set(&cachep->store_user_clean, 1);
403 }
404 
set_store_user_dirty(struct kmem_cache * cachep)405 static inline void set_store_user_dirty(struct kmem_cache *cachep)
406 {
407 	if (is_store_user_clean(cachep))
408 		atomic_set(&cachep->store_user_clean, 0);
409 }
410 
411 #else
set_store_user_dirty(struct kmem_cache * cachep)412 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
413 
414 #endif
415 
416 /*
417  * Do not go above this order unless 0 objects fit into the slab or
418  * overridden on the command line.
419  */
420 #define	SLAB_MAX_ORDER_HI	1
421 #define	SLAB_MAX_ORDER_LO	0
422 static int slab_max_order = SLAB_MAX_ORDER_LO;
423 static bool slab_max_order_set __initdata;
424 
virt_to_cache(const void * obj)425 static inline struct kmem_cache *virt_to_cache(const void *obj)
426 {
427 	struct page *page = virt_to_head_page(obj);
428 	return page->slab_cache;
429 }
430 
index_to_obj(struct kmem_cache * cache,struct page * page,unsigned int idx)431 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
432 				 unsigned int idx)
433 {
434 	return page->s_mem + cache->size * idx;
435 }
436 
437 /*
438  * We want to avoid an expensive divide : (offset / cache->size)
439  *   Using the fact that size is a constant for a particular cache,
440  *   we can replace (offset / cache->size) by
441  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
442  */
obj_to_index(const struct kmem_cache * cache,const struct page * page,void * obj)443 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
444 					const struct page *page, void *obj)
445 {
446 	u32 offset = (obj - page->s_mem);
447 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
448 }
449 
450 /* internal cache of cache description objs */
451 static struct kmem_cache kmem_cache_boot = {
452 	.batchcount = 1,
453 	.limit = BOOT_CPUCACHE_ENTRIES,
454 	.shared = 1,
455 	.size = sizeof(struct kmem_cache),
456 	.name = "kmem_cache",
457 };
458 
459 #define BAD_ALIEN_MAGIC 0x01020304ul
460 
461 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
462 
cpu_cache_get(struct kmem_cache * cachep)463 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
464 {
465 	return this_cpu_ptr(cachep->cpu_cache);
466 }
467 
calculate_freelist_size(int nr_objs,size_t align)468 static size_t calculate_freelist_size(int nr_objs, size_t align)
469 {
470 	size_t freelist_size;
471 
472 	freelist_size = nr_objs * sizeof(freelist_idx_t);
473 	if (align)
474 		freelist_size = ALIGN(freelist_size, align);
475 
476 	return freelist_size;
477 }
478 
calculate_nr_objs(size_t slab_size,size_t buffer_size,size_t idx_size,size_t align)479 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
480 				size_t idx_size, size_t align)
481 {
482 	int nr_objs;
483 	size_t remained_size;
484 	size_t freelist_size;
485 
486 	/*
487 	 * Ignore padding for the initial guess. The padding
488 	 * is at most @align-1 bytes, and @buffer_size is at
489 	 * least @align. In the worst case, this result will
490 	 * be one greater than the number of objects that fit
491 	 * into the memory allocation when taking the padding
492 	 * into account.
493 	 */
494 	nr_objs = slab_size / (buffer_size + idx_size);
495 
496 	/*
497 	 * This calculated number will be either the right
498 	 * amount, or one greater than what we want.
499 	 */
500 	remained_size = slab_size - nr_objs * buffer_size;
501 	freelist_size = calculate_freelist_size(nr_objs, align);
502 	if (remained_size < freelist_size)
503 		nr_objs--;
504 
505 	return nr_objs;
506 }
507 
508 /*
509  * Calculate the number of objects and left-over bytes for a given buffer size.
510  */
cache_estimate(unsigned long gfporder,size_t buffer_size,size_t align,int flags,size_t * left_over,unsigned int * num)511 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
512 			   size_t align, int flags, size_t *left_over,
513 			   unsigned int *num)
514 {
515 	int nr_objs;
516 	size_t mgmt_size;
517 	size_t slab_size = PAGE_SIZE << gfporder;
518 
519 	/*
520 	 * The slab management structure can be either off the slab or
521 	 * on it. For the latter case, the memory allocated for a
522 	 * slab is used for:
523 	 *
524 	 * - One unsigned int for each object
525 	 * - Padding to respect alignment of @align
526 	 * - @buffer_size bytes for each object
527 	 *
528 	 * If the slab management structure is off the slab, then the
529 	 * alignment will already be calculated into the size. Because
530 	 * the slabs are all pages aligned, the objects will be at the
531 	 * correct alignment when allocated.
532 	 */
533 	if (flags & CFLGS_OFF_SLAB) {
534 		mgmt_size = 0;
535 		nr_objs = slab_size / buffer_size;
536 
537 	} else {
538 		nr_objs = calculate_nr_objs(slab_size, buffer_size,
539 					sizeof(freelist_idx_t), align);
540 		mgmt_size = calculate_freelist_size(nr_objs, align);
541 	}
542 	*num = nr_objs;
543 	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
544 }
545 
546 #if DEBUG
547 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
548 
__slab_error(const char * function,struct kmem_cache * cachep,char * msg)549 static void __slab_error(const char *function, struct kmem_cache *cachep,
550 			char *msg)
551 {
552 	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
553 	       function, cachep->name, msg);
554 	dump_stack();
555 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
556 }
557 #endif
558 
559 /*
560  * By default on NUMA we use alien caches to stage the freeing of
561  * objects allocated from other nodes. This causes massive memory
562  * inefficiencies when using fake NUMA setup to split memory into a
563  * large number of small nodes, so it can be disabled on the command
564  * line
565   */
566 
567 static int use_alien_caches __read_mostly = 1;
noaliencache_setup(char * s)568 static int __init noaliencache_setup(char *s)
569 {
570 	use_alien_caches = 0;
571 	return 1;
572 }
573 __setup("noaliencache", noaliencache_setup);
574 
slab_max_order_setup(char * str)575 static int __init slab_max_order_setup(char *str)
576 {
577 	get_option(&str, &slab_max_order);
578 	slab_max_order = slab_max_order < 0 ? 0 :
579 				min(slab_max_order, MAX_ORDER - 1);
580 	slab_max_order_set = true;
581 
582 	return 1;
583 }
584 __setup("slab_max_order=", slab_max_order_setup);
585 
586 #ifdef CONFIG_NUMA
587 /*
588  * Special reaping functions for NUMA systems called from cache_reap().
589  * These take care of doing round robin flushing of alien caches (containing
590  * objects freed on different nodes from which they were allocated) and the
591  * flushing of remote pcps by calling drain_node_pages.
592  */
593 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
594 
init_reap_node(int cpu)595 static void init_reap_node(int cpu)
596 {
597 	int node;
598 
599 	node = next_node(cpu_to_mem(cpu), node_online_map);
600 	if (node == MAX_NUMNODES)
601 		node = first_node(node_online_map);
602 
603 	per_cpu(slab_reap_node, cpu) = node;
604 }
605 
next_reap_node(void)606 static void next_reap_node(void)
607 {
608 	int node = __this_cpu_read(slab_reap_node);
609 
610 	node = next_node(node, node_online_map);
611 	if (unlikely(node >= MAX_NUMNODES))
612 		node = first_node(node_online_map);
613 	__this_cpu_write(slab_reap_node, node);
614 }
615 
616 #else
617 #define init_reap_node(cpu) do { } while (0)
618 #define next_reap_node(void) do { } while (0)
619 #endif
620 
621 /*
622  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
623  * via the workqueue/eventd.
624  * Add the CPU number into the expiration time to minimize the possibility of
625  * the CPUs getting into lockstep and contending for the global cache chain
626  * lock.
627  */
start_cpu_timer(int cpu)628 static void start_cpu_timer(int cpu)
629 {
630 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
631 
632 	/*
633 	 * When this gets called from do_initcalls via cpucache_init(),
634 	 * init_workqueues() has already run, so keventd will be setup
635 	 * at that time.
636 	 */
637 	if (keventd_up() && reap_work->work.func == NULL) {
638 		init_reap_node(cpu);
639 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
640 		schedule_delayed_work_on(cpu, reap_work,
641 					__round_jiffies_relative(HZ, cpu));
642 	}
643 }
644 
init_arraycache(struct array_cache * ac,int limit,int batch)645 static void init_arraycache(struct array_cache *ac, int limit, int batch)
646 {
647 	if (ac) {
648 		ac->avail = 0;
649 		ac->limit = limit;
650 		ac->batchcount = batch;
651 		ac->touched = 0;
652 	}
653 }
654 
alloc_arraycache(int node,int entries,int batchcount,gfp_t gfp)655 static struct array_cache *alloc_arraycache(int node, int entries,
656 					    int batchcount, gfp_t gfp)
657 {
658 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
659 	struct array_cache *ac = NULL;
660 
661 	ac = kmalloc_node(memsize, gfp, node);
662 	/*
663 	 * The array_cache structures contain pointers to free object.
664 	 * However, when such objects are allocated or transferred to another
665 	 * cache the pointers are not cleared and they could be counted as
666 	 * valid references during a kmemleak scan. Therefore, kmemleak must
667 	 * not scan such objects.
668 	 */
669 	kmemleak_no_scan(ac);
670 	init_arraycache(ac, entries, batchcount);
671 	return ac;
672 }
673 
is_slab_pfmemalloc(struct page * page)674 static inline bool is_slab_pfmemalloc(struct page *page)
675 {
676 	return PageSlabPfmemalloc(page);
677 }
678 
679 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
recheck_pfmemalloc_active(struct kmem_cache * cachep,struct array_cache * ac)680 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
681 						struct array_cache *ac)
682 {
683 	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
684 	struct page *page;
685 	unsigned long flags;
686 
687 	if (!pfmemalloc_active)
688 		return;
689 
690 	spin_lock_irqsave(&n->list_lock, flags);
691 	list_for_each_entry(page, &n->slabs_full, lru)
692 		if (is_slab_pfmemalloc(page))
693 			goto out;
694 
695 	list_for_each_entry(page, &n->slabs_partial, lru)
696 		if (is_slab_pfmemalloc(page))
697 			goto out;
698 
699 	list_for_each_entry(page, &n->slabs_free, lru)
700 		if (is_slab_pfmemalloc(page))
701 			goto out;
702 
703 	pfmemalloc_active = false;
704 out:
705 	spin_unlock_irqrestore(&n->list_lock, flags);
706 }
707 
__ac_get_obj(struct kmem_cache * cachep,struct array_cache * ac,gfp_t flags,bool force_refill)708 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
709 						gfp_t flags, bool force_refill)
710 {
711 	int i;
712 	void *objp = ac->entry[--ac->avail];
713 
714 	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
715 	if (unlikely(is_obj_pfmemalloc(objp))) {
716 		struct kmem_cache_node *n;
717 
718 		if (gfp_pfmemalloc_allowed(flags)) {
719 			clear_obj_pfmemalloc(&objp);
720 			return objp;
721 		}
722 
723 		/* The caller cannot use PFMEMALLOC objects, find another one */
724 		for (i = 0; i < ac->avail; i++) {
725 			/* If a !PFMEMALLOC object is found, swap them */
726 			if (!is_obj_pfmemalloc(ac->entry[i])) {
727 				objp = ac->entry[i];
728 				ac->entry[i] = ac->entry[ac->avail];
729 				ac->entry[ac->avail] = objp;
730 				return objp;
731 			}
732 		}
733 
734 		/*
735 		 * If there are empty slabs on the slabs_free list and we are
736 		 * being forced to refill the cache, mark this one !pfmemalloc.
737 		 */
738 		n = get_node(cachep, numa_mem_id());
739 		if (!list_empty(&n->slabs_free) && force_refill) {
740 			struct page *page = virt_to_head_page(objp);
741 			ClearPageSlabPfmemalloc(page);
742 			clear_obj_pfmemalloc(&objp);
743 			recheck_pfmemalloc_active(cachep, ac);
744 			return objp;
745 		}
746 
747 		/* No !PFMEMALLOC objects available */
748 		ac->avail++;
749 		objp = NULL;
750 	}
751 
752 	return objp;
753 }
754 
ac_get_obj(struct kmem_cache * cachep,struct array_cache * ac,gfp_t flags,bool force_refill)755 static inline void *ac_get_obj(struct kmem_cache *cachep,
756 			struct array_cache *ac, gfp_t flags, bool force_refill)
757 {
758 	void *objp;
759 
760 	if (unlikely(sk_memalloc_socks()))
761 		objp = __ac_get_obj(cachep, ac, flags, force_refill);
762 	else
763 		objp = ac->entry[--ac->avail];
764 
765 	return objp;
766 }
767 
__ac_put_obj(struct kmem_cache * cachep,struct array_cache * ac,void * objp)768 static noinline void *__ac_put_obj(struct kmem_cache *cachep,
769 			struct array_cache *ac, void *objp)
770 {
771 	if (unlikely(pfmemalloc_active)) {
772 		/* Some pfmemalloc slabs exist, check if this is one */
773 		struct page *page = virt_to_head_page(objp);
774 		if (PageSlabPfmemalloc(page))
775 			set_obj_pfmemalloc(&objp);
776 	}
777 
778 	return objp;
779 }
780 
ac_put_obj(struct kmem_cache * cachep,struct array_cache * ac,void * objp)781 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
782 								void *objp)
783 {
784 	if (unlikely(sk_memalloc_socks()))
785 		objp = __ac_put_obj(cachep, ac, objp);
786 
787 	ac->entry[ac->avail++] = objp;
788 }
789 
790 /*
791  * Transfer objects in one arraycache to another.
792  * Locking must be handled by the caller.
793  *
794  * Return the number of entries transferred.
795  */
transfer_objects(struct array_cache * to,struct array_cache * from,unsigned int max)796 static int transfer_objects(struct array_cache *to,
797 		struct array_cache *from, unsigned int max)
798 {
799 	/* Figure out how many entries to transfer */
800 	int nr = min3(from->avail, max, to->limit - to->avail);
801 
802 	if (!nr)
803 		return 0;
804 
805 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
806 			sizeof(void *) *nr);
807 
808 	from->avail -= nr;
809 	to->avail += nr;
810 	return nr;
811 }
812 
813 #ifndef CONFIG_NUMA
814 
815 #define drain_alien_cache(cachep, alien) do { } while (0)
816 #define reap_alien(cachep, n) do { } while (0)
817 
alloc_alien_cache(int node,int limit,gfp_t gfp)818 static inline struct alien_cache **alloc_alien_cache(int node,
819 						int limit, gfp_t gfp)
820 {
821 	return (struct alien_cache **)BAD_ALIEN_MAGIC;
822 }
823 
free_alien_cache(struct alien_cache ** ac_ptr)824 static inline void free_alien_cache(struct alien_cache **ac_ptr)
825 {
826 }
827 
cache_free_alien(struct kmem_cache * cachep,void * objp)828 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
829 {
830 	return 0;
831 }
832 
alternate_node_alloc(struct kmem_cache * cachep,gfp_t flags)833 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
834 		gfp_t flags)
835 {
836 	return NULL;
837 }
838 
____cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid)839 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
840 		 gfp_t flags, int nodeid)
841 {
842 	return NULL;
843 }
844 
gfp_exact_node(gfp_t flags)845 static inline gfp_t gfp_exact_node(gfp_t flags)
846 {
847 	return flags;
848 }
849 
850 #else	/* CONFIG_NUMA */
851 
852 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
853 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
854 
__alloc_alien_cache(int node,int entries,int batch,gfp_t gfp)855 static struct alien_cache *__alloc_alien_cache(int node, int entries,
856 						int batch, gfp_t gfp)
857 {
858 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
859 	struct alien_cache *alc = NULL;
860 
861 	alc = kmalloc_node(memsize, gfp, node);
862 	if (alc) {
863 		kmemleak_no_scan(alc);
864 		init_arraycache(&alc->ac, entries, batch);
865 		spin_lock_init(&alc->lock);
866 	}
867 	return alc;
868 }
869 
alloc_alien_cache(int node,int limit,gfp_t gfp)870 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
871 {
872 	struct alien_cache **alc_ptr;
873 	size_t memsize = sizeof(void *) * nr_node_ids;
874 	int i;
875 
876 	if (limit > 1)
877 		limit = 12;
878 	alc_ptr = kzalloc_node(memsize, gfp, node);
879 	if (!alc_ptr)
880 		return NULL;
881 
882 	for_each_node(i) {
883 		if (i == node || !node_online(i))
884 			continue;
885 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
886 		if (!alc_ptr[i]) {
887 			for (i--; i >= 0; i--)
888 				kfree(alc_ptr[i]);
889 			kfree(alc_ptr);
890 			return NULL;
891 		}
892 	}
893 	return alc_ptr;
894 }
895 
free_alien_cache(struct alien_cache ** alc_ptr)896 static void free_alien_cache(struct alien_cache **alc_ptr)
897 {
898 	int i;
899 
900 	if (!alc_ptr)
901 		return;
902 	for_each_node(i)
903 	    kfree(alc_ptr[i]);
904 	kfree(alc_ptr);
905 }
906 
__drain_alien_cache(struct kmem_cache * cachep,struct array_cache * ac,int node,struct list_head * list)907 static void __drain_alien_cache(struct kmem_cache *cachep,
908 				struct array_cache *ac, int node,
909 				struct list_head *list)
910 {
911 	struct kmem_cache_node *n = get_node(cachep, node);
912 
913 	if (ac->avail) {
914 		spin_lock(&n->list_lock);
915 		/*
916 		 * Stuff objects into the remote nodes shared array first.
917 		 * That way we could avoid the overhead of putting the objects
918 		 * into the free lists and getting them back later.
919 		 */
920 		if (n->shared)
921 			transfer_objects(n->shared, ac, ac->limit);
922 
923 		free_block(cachep, ac->entry, ac->avail, node, list);
924 		ac->avail = 0;
925 		spin_unlock(&n->list_lock);
926 	}
927 }
928 
929 /*
930  * Called from cache_reap() to regularly drain alien caches round robin.
931  */
reap_alien(struct kmem_cache * cachep,struct kmem_cache_node * n)932 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
933 {
934 	int node = __this_cpu_read(slab_reap_node);
935 
936 	if (n->alien) {
937 		struct alien_cache *alc = n->alien[node];
938 		struct array_cache *ac;
939 
940 		if (alc) {
941 			ac = &alc->ac;
942 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
943 				LIST_HEAD(list);
944 
945 				__drain_alien_cache(cachep, ac, node, &list);
946 				spin_unlock_irq(&alc->lock);
947 				slabs_destroy(cachep, &list);
948 			}
949 		}
950 	}
951 }
952 
drain_alien_cache(struct kmem_cache * cachep,struct alien_cache ** alien)953 static void drain_alien_cache(struct kmem_cache *cachep,
954 				struct alien_cache **alien)
955 {
956 	int i = 0;
957 	struct alien_cache *alc;
958 	struct array_cache *ac;
959 	unsigned long flags;
960 
961 	for_each_online_node(i) {
962 		alc = alien[i];
963 		if (alc) {
964 			LIST_HEAD(list);
965 
966 			ac = &alc->ac;
967 			spin_lock_irqsave(&alc->lock, flags);
968 			__drain_alien_cache(cachep, ac, i, &list);
969 			spin_unlock_irqrestore(&alc->lock, flags);
970 			slabs_destroy(cachep, &list);
971 		}
972 	}
973 }
974 
__cache_free_alien(struct kmem_cache * cachep,void * objp,int node,int page_node)975 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
976 				int node, int page_node)
977 {
978 	struct kmem_cache_node *n;
979 	struct alien_cache *alien = NULL;
980 	struct array_cache *ac;
981 	LIST_HEAD(list);
982 
983 	n = get_node(cachep, node);
984 	STATS_INC_NODEFREES(cachep);
985 	if (n->alien && n->alien[page_node]) {
986 		alien = n->alien[page_node];
987 		ac = &alien->ac;
988 		spin_lock(&alien->lock);
989 		if (unlikely(ac->avail == ac->limit)) {
990 			STATS_INC_ACOVERFLOW(cachep);
991 			__drain_alien_cache(cachep, ac, page_node, &list);
992 		}
993 		ac_put_obj(cachep, ac, objp);
994 		spin_unlock(&alien->lock);
995 		slabs_destroy(cachep, &list);
996 	} else {
997 		n = get_node(cachep, page_node);
998 		spin_lock(&n->list_lock);
999 		free_block(cachep, &objp, 1, page_node, &list);
1000 		spin_unlock(&n->list_lock);
1001 		slabs_destroy(cachep, &list);
1002 	}
1003 	return 1;
1004 }
1005 
cache_free_alien(struct kmem_cache * cachep,void * objp)1006 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1007 {
1008 	int page_node = page_to_nid(virt_to_page(objp));
1009 	int node = numa_mem_id();
1010 	/*
1011 	 * Make sure we are not freeing a object from another node to the array
1012 	 * cache on this cpu.
1013 	 */
1014 	if (likely(node == page_node))
1015 		return 0;
1016 
1017 	return __cache_free_alien(cachep, objp, node, page_node);
1018 }
1019 
1020 /*
1021  * Construct gfp mask to allocate from a specific node but do not direct reclaim
1022  * or warn about failures. kswapd may still wake to reclaim in the background.
1023  */
gfp_exact_node(gfp_t flags)1024 static inline gfp_t gfp_exact_node(gfp_t flags)
1025 {
1026 	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_DIRECT_RECLAIM;
1027 }
1028 #endif
1029 
1030 /*
1031  * Allocates and initializes node for a node on each slab cache, used for
1032  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1033  * will be allocated off-node since memory is not yet online for the new node.
1034  * When hotplugging memory or a cpu, existing node are not replaced if
1035  * already in use.
1036  *
1037  * Must hold slab_mutex.
1038  */
init_cache_node_node(int node)1039 static int init_cache_node_node(int node)
1040 {
1041 	struct kmem_cache *cachep;
1042 	struct kmem_cache_node *n;
1043 	const size_t memsize = sizeof(struct kmem_cache_node);
1044 
1045 	list_for_each_entry(cachep, &slab_caches, list) {
1046 		/*
1047 		 * Set up the kmem_cache_node for cpu before we can
1048 		 * begin anything. Make sure some other cpu on this
1049 		 * node has not already allocated this
1050 		 */
1051 		n = get_node(cachep, node);
1052 		if (!n) {
1053 			n = kmalloc_node(memsize, GFP_KERNEL, node);
1054 			if (!n)
1055 				return -ENOMEM;
1056 			kmem_cache_node_init(n);
1057 			n->next_reap = jiffies + REAPTIMEOUT_NODE +
1058 			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1059 
1060 			/*
1061 			 * The kmem_cache_nodes don't come and go as CPUs
1062 			 * come and go.  slab_mutex is sufficient
1063 			 * protection here.
1064 			 */
1065 			cachep->node[node] = n;
1066 		}
1067 
1068 		spin_lock_irq(&n->list_lock);
1069 		n->free_limit =
1070 			(1 + nr_cpus_node(node)) *
1071 			cachep->batchcount + cachep->num;
1072 		spin_unlock_irq(&n->list_lock);
1073 	}
1074 	return 0;
1075 }
1076 
slabs_tofree(struct kmem_cache * cachep,struct kmem_cache_node * n)1077 static inline int slabs_tofree(struct kmem_cache *cachep,
1078 						struct kmem_cache_node *n)
1079 {
1080 	return (n->free_objects + cachep->num - 1) / cachep->num;
1081 }
1082 
cpuup_canceled(long cpu)1083 static void cpuup_canceled(long cpu)
1084 {
1085 	struct kmem_cache *cachep;
1086 	struct kmem_cache_node *n = NULL;
1087 	int node = cpu_to_mem(cpu);
1088 	const struct cpumask *mask = cpumask_of_node(node);
1089 
1090 	list_for_each_entry(cachep, &slab_caches, list) {
1091 		struct array_cache *nc;
1092 		struct array_cache *shared;
1093 		struct alien_cache **alien;
1094 		LIST_HEAD(list);
1095 
1096 		n = get_node(cachep, node);
1097 		if (!n)
1098 			continue;
1099 
1100 		spin_lock_irq(&n->list_lock);
1101 
1102 		/* Free limit for this kmem_cache_node */
1103 		n->free_limit -= cachep->batchcount;
1104 
1105 		/* cpu is dead; no one can alloc from it. */
1106 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1107 		if (nc) {
1108 			free_block(cachep, nc->entry, nc->avail, node, &list);
1109 			nc->avail = 0;
1110 		}
1111 
1112 		if (!cpumask_empty(mask)) {
1113 			spin_unlock_irq(&n->list_lock);
1114 			goto free_slab;
1115 		}
1116 
1117 		shared = n->shared;
1118 		if (shared) {
1119 			free_block(cachep, shared->entry,
1120 				   shared->avail, node, &list);
1121 			n->shared = NULL;
1122 		}
1123 
1124 		alien = n->alien;
1125 		n->alien = NULL;
1126 
1127 		spin_unlock_irq(&n->list_lock);
1128 
1129 		kfree(shared);
1130 		if (alien) {
1131 			drain_alien_cache(cachep, alien);
1132 			free_alien_cache(alien);
1133 		}
1134 
1135 free_slab:
1136 		slabs_destroy(cachep, &list);
1137 	}
1138 	/*
1139 	 * In the previous loop, all the objects were freed to
1140 	 * the respective cache's slabs,  now we can go ahead and
1141 	 * shrink each nodelist to its limit.
1142 	 */
1143 	list_for_each_entry(cachep, &slab_caches, list) {
1144 		n = get_node(cachep, node);
1145 		if (!n)
1146 			continue;
1147 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1148 	}
1149 }
1150 
cpuup_prepare(long cpu)1151 static int cpuup_prepare(long cpu)
1152 {
1153 	struct kmem_cache *cachep;
1154 	struct kmem_cache_node *n = NULL;
1155 	int node = cpu_to_mem(cpu);
1156 	int err;
1157 
1158 	/*
1159 	 * We need to do this right in the beginning since
1160 	 * alloc_arraycache's are going to use this list.
1161 	 * kmalloc_node allows us to add the slab to the right
1162 	 * kmem_cache_node and not this cpu's kmem_cache_node
1163 	 */
1164 	err = init_cache_node_node(node);
1165 	if (err < 0)
1166 		goto bad;
1167 
1168 	/*
1169 	 * Now we can go ahead with allocating the shared arrays and
1170 	 * array caches
1171 	 */
1172 	list_for_each_entry(cachep, &slab_caches, list) {
1173 		struct array_cache *shared = NULL;
1174 		struct alien_cache **alien = NULL;
1175 
1176 		if (cachep->shared) {
1177 			shared = alloc_arraycache(node,
1178 				cachep->shared * cachep->batchcount,
1179 				0xbaadf00d, GFP_KERNEL);
1180 			if (!shared)
1181 				goto bad;
1182 		}
1183 		if (use_alien_caches) {
1184 			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1185 			if (!alien) {
1186 				kfree(shared);
1187 				goto bad;
1188 			}
1189 		}
1190 		n = get_node(cachep, node);
1191 		BUG_ON(!n);
1192 
1193 		spin_lock_irq(&n->list_lock);
1194 		if (!n->shared) {
1195 			/*
1196 			 * We are serialised from CPU_DEAD or
1197 			 * CPU_UP_CANCELLED by the cpucontrol lock
1198 			 */
1199 			n->shared = shared;
1200 			shared = NULL;
1201 		}
1202 #ifdef CONFIG_NUMA
1203 		if (!n->alien) {
1204 			n->alien = alien;
1205 			alien = NULL;
1206 		}
1207 #endif
1208 		spin_unlock_irq(&n->list_lock);
1209 		kfree(shared);
1210 		free_alien_cache(alien);
1211 	}
1212 
1213 	return 0;
1214 bad:
1215 	cpuup_canceled(cpu);
1216 	return -ENOMEM;
1217 }
1218 
cpuup_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)1219 static int cpuup_callback(struct notifier_block *nfb,
1220 				    unsigned long action, void *hcpu)
1221 {
1222 	long cpu = (long)hcpu;
1223 	int err = 0;
1224 
1225 	switch (action) {
1226 	case CPU_UP_PREPARE:
1227 	case CPU_UP_PREPARE_FROZEN:
1228 		mutex_lock(&slab_mutex);
1229 		err = cpuup_prepare(cpu);
1230 		mutex_unlock(&slab_mutex);
1231 		break;
1232 	case CPU_ONLINE:
1233 	case CPU_ONLINE_FROZEN:
1234 		start_cpu_timer(cpu);
1235 		break;
1236 #ifdef CONFIG_HOTPLUG_CPU
1237   	case CPU_DOWN_PREPARE:
1238   	case CPU_DOWN_PREPARE_FROZEN:
1239 		/*
1240 		 * Shutdown cache reaper. Note that the slab_mutex is
1241 		 * held so that if cache_reap() is invoked it cannot do
1242 		 * anything expensive but will only modify reap_work
1243 		 * and reschedule the timer.
1244 		*/
1245 		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1246 		/* Now the cache_reaper is guaranteed to be not running. */
1247 		per_cpu(slab_reap_work, cpu).work.func = NULL;
1248   		break;
1249   	case CPU_DOWN_FAILED:
1250   	case CPU_DOWN_FAILED_FROZEN:
1251 		start_cpu_timer(cpu);
1252   		break;
1253 	case CPU_DEAD:
1254 	case CPU_DEAD_FROZEN:
1255 		/*
1256 		 * Even if all the cpus of a node are down, we don't free the
1257 		 * kmem_cache_node of any cache. This to avoid a race between
1258 		 * cpu_down, and a kmalloc allocation from another cpu for
1259 		 * memory from the node of the cpu going down.  The node
1260 		 * structure is usually allocated from kmem_cache_create() and
1261 		 * gets destroyed at kmem_cache_destroy().
1262 		 */
1263 		/* fall through */
1264 #endif
1265 	case CPU_UP_CANCELED:
1266 	case CPU_UP_CANCELED_FROZEN:
1267 		mutex_lock(&slab_mutex);
1268 		cpuup_canceled(cpu);
1269 		mutex_unlock(&slab_mutex);
1270 		break;
1271 	}
1272 	return notifier_from_errno(err);
1273 }
1274 
1275 static struct notifier_block cpucache_notifier = {
1276 	&cpuup_callback, NULL, 0
1277 };
1278 
1279 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1280 /*
1281  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1282  * Returns -EBUSY if all objects cannot be drained so that the node is not
1283  * removed.
1284  *
1285  * Must hold slab_mutex.
1286  */
drain_cache_node_node(int node)1287 static int __meminit drain_cache_node_node(int node)
1288 {
1289 	struct kmem_cache *cachep;
1290 	int ret = 0;
1291 
1292 	list_for_each_entry(cachep, &slab_caches, list) {
1293 		struct kmem_cache_node *n;
1294 
1295 		n = get_node(cachep, node);
1296 		if (!n)
1297 			continue;
1298 
1299 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1300 
1301 		if (!list_empty(&n->slabs_full) ||
1302 		    !list_empty(&n->slabs_partial)) {
1303 			ret = -EBUSY;
1304 			break;
1305 		}
1306 	}
1307 	return ret;
1308 }
1309 
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)1310 static int __meminit slab_memory_callback(struct notifier_block *self,
1311 					unsigned long action, void *arg)
1312 {
1313 	struct memory_notify *mnb = arg;
1314 	int ret = 0;
1315 	int nid;
1316 
1317 	nid = mnb->status_change_nid;
1318 	if (nid < 0)
1319 		goto out;
1320 
1321 	switch (action) {
1322 	case MEM_GOING_ONLINE:
1323 		mutex_lock(&slab_mutex);
1324 		ret = init_cache_node_node(nid);
1325 		mutex_unlock(&slab_mutex);
1326 		break;
1327 	case MEM_GOING_OFFLINE:
1328 		mutex_lock(&slab_mutex);
1329 		ret = drain_cache_node_node(nid);
1330 		mutex_unlock(&slab_mutex);
1331 		break;
1332 	case MEM_ONLINE:
1333 	case MEM_OFFLINE:
1334 	case MEM_CANCEL_ONLINE:
1335 	case MEM_CANCEL_OFFLINE:
1336 		break;
1337 	}
1338 out:
1339 	return notifier_from_errno(ret);
1340 }
1341 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1342 
1343 /*
1344  * swap the static kmem_cache_node with kmalloced memory
1345  */
init_list(struct kmem_cache * cachep,struct kmem_cache_node * list,int nodeid)1346 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1347 				int nodeid)
1348 {
1349 	struct kmem_cache_node *ptr;
1350 
1351 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1352 	BUG_ON(!ptr);
1353 
1354 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1355 	/*
1356 	 * Do not assume that spinlocks can be initialized via memcpy:
1357 	 */
1358 	spin_lock_init(&ptr->list_lock);
1359 
1360 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1361 	cachep->node[nodeid] = ptr;
1362 }
1363 
1364 /*
1365  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1366  * size of kmem_cache_node.
1367  */
set_up_node(struct kmem_cache * cachep,int index)1368 static void __init set_up_node(struct kmem_cache *cachep, int index)
1369 {
1370 	int node;
1371 
1372 	for_each_online_node(node) {
1373 		cachep->node[node] = &init_kmem_cache_node[index + node];
1374 		cachep->node[node]->next_reap = jiffies +
1375 		    REAPTIMEOUT_NODE +
1376 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1377 	}
1378 }
1379 
1380 /*
1381  * Initialisation.  Called after the page allocator have been initialised and
1382  * before smp_init().
1383  */
kmem_cache_init(void)1384 void __init kmem_cache_init(void)
1385 {
1386 	int i;
1387 
1388 	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1389 					sizeof(struct rcu_head));
1390 	kmem_cache = &kmem_cache_boot;
1391 
1392 	if (num_possible_nodes() == 1)
1393 		use_alien_caches = 0;
1394 
1395 	for (i = 0; i < NUM_INIT_LISTS; i++)
1396 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1397 
1398 	/*
1399 	 * Fragmentation resistance on low memory - only use bigger
1400 	 * page orders on machines with more than 32MB of memory if
1401 	 * not overridden on the command line.
1402 	 */
1403 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1404 		slab_max_order = SLAB_MAX_ORDER_HI;
1405 
1406 	/* Bootstrap is tricky, because several objects are allocated
1407 	 * from caches that do not exist yet:
1408 	 * 1) initialize the kmem_cache cache: it contains the struct
1409 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1410 	 *    kmem_cache is statically allocated.
1411 	 *    Initially an __init data area is used for the head array and the
1412 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1413 	 *    array at the end of the bootstrap.
1414 	 * 2) Create the first kmalloc cache.
1415 	 *    The struct kmem_cache for the new cache is allocated normally.
1416 	 *    An __init data area is used for the head array.
1417 	 * 3) Create the remaining kmalloc caches, with minimally sized
1418 	 *    head arrays.
1419 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1420 	 *    kmalloc cache with kmalloc allocated arrays.
1421 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1422 	 *    the other cache's with kmalloc allocated memory.
1423 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1424 	 */
1425 
1426 	/* 1) create the kmem_cache */
1427 
1428 	/*
1429 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1430 	 */
1431 	create_boot_cache(kmem_cache, "kmem_cache",
1432 		offsetof(struct kmem_cache, node) +
1433 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1434 				  SLAB_HWCACHE_ALIGN);
1435 	list_add(&kmem_cache->list, &slab_caches);
1436 	slab_state = PARTIAL;
1437 
1438 	/*
1439 	 * Initialize the caches that provide memory for the  kmem_cache_node
1440 	 * structures first.  Without this, further allocations will bug.
1441 	 */
1442 	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1443 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1444 	slab_state = PARTIAL_NODE;
1445 	setup_kmalloc_cache_index_table();
1446 
1447 	slab_early_init = 0;
1448 
1449 	/* 5) Replace the bootstrap kmem_cache_node */
1450 	{
1451 		int nid;
1452 
1453 		for_each_online_node(nid) {
1454 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1455 
1456 			init_list(kmalloc_caches[INDEX_NODE],
1457 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1458 		}
1459 	}
1460 
1461 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1462 }
1463 
kmem_cache_init_late(void)1464 void __init kmem_cache_init_late(void)
1465 {
1466 	struct kmem_cache *cachep;
1467 
1468 	slab_state = UP;
1469 
1470 	/* 6) resize the head arrays to their final sizes */
1471 	mutex_lock(&slab_mutex);
1472 	list_for_each_entry(cachep, &slab_caches, list)
1473 		if (enable_cpucache(cachep, GFP_NOWAIT))
1474 			BUG();
1475 	mutex_unlock(&slab_mutex);
1476 
1477 	/* Done! */
1478 	slab_state = FULL;
1479 
1480 	/*
1481 	 * Register a cpu startup notifier callback that initializes
1482 	 * cpu_cache_get for all new cpus
1483 	 */
1484 	register_cpu_notifier(&cpucache_notifier);
1485 
1486 #ifdef CONFIG_NUMA
1487 	/*
1488 	 * Register a memory hotplug callback that initializes and frees
1489 	 * node.
1490 	 */
1491 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1492 #endif
1493 
1494 	/*
1495 	 * The reap timers are started later, with a module init call: That part
1496 	 * of the kernel is not yet operational.
1497 	 */
1498 }
1499 
cpucache_init(void)1500 static int __init cpucache_init(void)
1501 {
1502 	int cpu;
1503 
1504 	/*
1505 	 * Register the timers that return unneeded pages to the page allocator
1506 	 */
1507 	for_each_online_cpu(cpu)
1508 		start_cpu_timer(cpu);
1509 
1510 	/* Done! */
1511 	slab_state = FULL;
1512 	return 0;
1513 }
1514 __initcall(cpucache_init);
1515 
1516 static noinline void
slab_out_of_memory(struct kmem_cache * cachep,gfp_t gfpflags,int nodeid)1517 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1518 {
1519 #if DEBUG
1520 	struct kmem_cache_node *n;
1521 	struct page *page;
1522 	unsigned long flags;
1523 	int node;
1524 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1525 				      DEFAULT_RATELIMIT_BURST);
1526 
1527 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1528 		return;
1529 
1530 	printk(KERN_WARNING
1531 		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1532 		nodeid, gfpflags);
1533 	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1534 		cachep->name, cachep->size, cachep->gfporder);
1535 
1536 	for_each_kmem_cache_node(cachep, node, n) {
1537 		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1538 		unsigned long active_slabs = 0, num_slabs = 0;
1539 
1540 		spin_lock_irqsave(&n->list_lock, flags);
1541 		list_for_each_entry(page, &n->slabs_full, lru) {
1542 			active_objs += cachep->num;
1543 			active_slabs++;
1544 		}
1545 		list_for_each_entry(page, &n->slabs_partial, lru) {
1546 			active_objs += page->active;
1547 			active_slabs++;
1548 		}
1549 		list_for_each_entry(page, &n->slabs_free, lru)
1550 			num_slabs++;
1551 
1552 		free_objects += n->free_objects;
1553 		spin_unlock_irqrestore(&n->list_lock, flags);
1554 
1555 		num_slabs += active_slabs;
1556 		num_objs = num_slabs * cachep->num;
1557 		printk(KERN_WARNING
1558 			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1559 			node, active_slabs, num_slabs, active_objs, num_objs,
1560 			free_objects);
1561 	}
1562 #endif
1563 }
1564 
1565 /*
1566  * Interface to system's page allocator. No need to hold the
1567  * kmem_cache_node ->list_lock.
1568  *
1569  * If we requested dmaable memory, we will get it. Even if we
1570  * did not request dmaable memory, we might get it, but that
1571  * would be relatively rare and ignorable.
1572  */
kmem_getpages(struct kmem_cache * cachep,gfp_t flags,int nodeid)1573 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1574 								int nodeid)
1575 {
1576 	struct page *page;
1577 	int nr_pages;
1578 
1579 	flags |= cachep->allocflags;
1580 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1581 		flags |= __GFP_RECLAIMABLE;
1582 
1583 	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1584 	if (!page) {
1585 		slab_out_of_memory(cachep, flags, nodeid);
1586 		return NULL;
1587 	}
1588 
1589 	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1590 		__free_pages(page, cachep->gfporder);
1591 		return NULL;
1592 	}
1593 
1594 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1595 	if (page_is_pfmemalloc(page))
1596 		pfmemalloc_active = true;
1597 
1598 	nr_pages = (1 << cachep->gfporder);
1599 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1600 		add_zone_page_state(page_zone(page),
1601 			NR_SLAB_RECLAIMABLE, nr_pages);
1602 	else
1603 		add_zone_page_state(page_zone(page),
1604 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1605 	__SetPageSlab(page);
1606 	if (page_is_pfmemalloc(page))
1607 		SetPageSlabPfmemalloc(page);
1608 
1609 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1610 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1611 
1612 		if (cachep->ctor)
1613 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1614 		else
1615 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1616 	}
1617 
1618 	return page;
1619 }
1620 
1621 /*
1622  * Interface to system's page release.
1623  */
kmem_freepages(struct kmem_cache * cachep,struct page * page)1624 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1625 {
1626 	const unsigned long nr_freed = (1 << cachep->gfporder);
1627 
1628 	kmemcheck_free_shadow(page, cachep->gfporder);
1629 
1630 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1631 		sub_zone_page_state(page_zone(page),
1632 				NR_SLAB_RECLAIMABLE, nr_freed);
1633 	else
1634 		sub_zone_page_state(page_zone(page),
1635 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1636 
1637 	BUG_ON(!PageSlab(page));
1638 	__ClearPageSlabPfmemalloc(page);
1639 	__ClearPageSlab(page);
1640 	page_mapcount_reset(page);
1641 	page->mapping = NULL;
1642 
1643 	if (current->reclaim_state)
1644 		current->reclaim_state->reclaimed_slab += nr_freed;
1645 	__free_kmem_pages(page, cachep->gfporder);
1646 }
1647 
kmem_rcu_free(struct rcu_head * head)1648 static void kmem_rcu_free(struct rcu_head *head)
1649 {
1650 	struct kmem_cache *cachep;
1651 	struct page *page;
1652 
1653 	page = container_of(head, struct page, rcu_head);
1654 	cachep = page->slab_cache;
1655 
1656 	kmem_freepages(cachep, page);
1657 }
1658 
1659 #if DEBUG
is_debug_pagealloc_cache(struct kmem_cache * cachep)1660 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1661 {
1662 	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1663 		(cachep->size % PAGE_SIZE) == 0)
1664 		return true;
1665 
1666 	return false;
1667 }
1668 
1669 #ifdef CONFIG_DEBUG_PAGEALLOC
store_stackinfo(struct kmem_cache * cachep,unsigned long * addr,unsigned long caller)1670 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1671 			    unsigned long caller)
1672 {
1673 	int size = cachep->object_size;
1674 
1675 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1676 
1677 	if (size < 5 * sizeof(unsigned long))
1678 		return;
1679 
1680 	*addr++ = 0x12345678;
1681 	*addr++ = caller;
1682 	*addr++ = smp_processor_id();
1683 	size -= 3 * sizeof(unsigned long);
1684 	{
1685 		unsigned long *sptr = &caller;
1686 		unsigned long svalue;
1687 
1688 		while (!kstack_end(sptr)) {
1689 			svalue = *sptr++;
1690 			if (kernel_text_address(svalue)) {
1691 				*addr++ = svalue;
1692 				size -= sizeof(unsigned long);
1693 				if (size <= sizeof(unsigned long))
1694 					break;
1695 			}
1696 		}
1697 
1698 	}
1699 	*addr++ = 0x87654321;
1700 }
1701 
slab_kernel_map(struct kmem_cache * cachep,void * objp,int map,unsigned long caller)1702 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1703 				int map, unsigned long caller)
1704 {
1705 	if (!is_debug_pagealloc_cache(cachep))
1706 		return;
1707 
1708 	if (caller)
1709 		store_stackinfo(cachep, objp, caller);
1710 
1711 	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1712 }
1713 
1714 #else
slab_kernel_map(struct kmem_cache * cachep,void * objp,int map,unsigned long caller)1715 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1716 				int map, unsigned long caller) {}
1717 
1718 #endif
1719 
poison_obj(struct kmem_cache * cachep,void * addr,unsigned char val)1720 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1721 {
1722 	int size = cachep->object_size;
1723 	addr = &((char *)addr)[obj_offset(cachep)];
1724 
1725 	memset(addr, val, size);
1726 	*(unsigned char *)(addr + size - 1) = POISON_END;
1727 }
1728 
dump_line(char * data,int offset,int limit)1729 static void dump_line(char *data, int offset, int limit)
1730 {
1731 	int i;
1732 	unsigned char error = 0;
1733 	int bad_count = 0;
1734 
1735 	printk(KERN_ERR "%03x: ", offset);
1736 	for (i = 0; i < limit; i++) {
1737 		if (data[offset + i] != POISON_FREE) {
1738 			error = data[offset + i];
1739 			bad_count++;
1740 		}
1741 	}
1742 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1743 			&data[offset], limit, 1);
1744 
1745 	if (bad_count == 1) {
1746 		error ^= POISON_FREE;
1747 		if (!(error & (error - 1))) {
1748 			printk(KERN_ERR "Single bit error detected. Probably bad RAM.\n");
1749 #ifdef CONFIG_X86
1750 			printk(KERN_ERR "Run memtest86+ or a similar memory test tool.\n");
1751 #else
1752 			printk(KERN_ERR "Run a memory test tool.\n");
1753 #endif
1754 		}
1755 	}
1756 }
1757 #endif
1758 
1759 #if DEBUG
1760 
print_objinfo(struct kmem_cache * cachep,void * objp,int lines)1761 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1762 {
1763 	int i, size;
1764 	char *realobj;
1765 
1766 	if (cachep->flags & SLAB_RED_ZONE) {
1767 		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1768 			*dbg_redzone1(cachep, objp),
1769 			*dbg_redzone2(cachep, objp));
1770 	}
1771 
1772 	if (cachep->flags & SLAB_STORE_USER) {
1773 		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1774 		       *dbg_userword(cachep, objp),
1775 		       *dbg_userword(cachep, objp));
1776 	}
1777 	realobj = (char *)objp + obj_offset(cachep);
1778 	size = cachep->object_size;
1779 	for (i = 0; i < size && lines; i += 16, lines--) {
1780 		int limit;
1781 		limit = 16;
1782 		if (i + limit > size)
1783 			limit = size - i;
1784 		dump_line(realobj, i, limit);
1785 	}
1786 }
1787 
check_poison_obj(struct kmem_cache * cachep,void * objp)1788 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1789 {
1790 	char *realobj;
1791 	int size, i;
1792 	int lines = 0;
1793 
1794 	if (is_debug_pagealloc_cache(cachep))
1795 		return;
1796 
1797 	realobj = (char *)objp + obj_offset(cachep);
1798 	size = cachep->object_size;
1799 
1800 	for (i = 0; i < size; i++) {
1801 		char exp = POISON_FREE;
1802 		if (i == size - 1)
1803 			exp = POISON_END;
1804 		if (realobj[i] != exp) {
1805 			int limit;
1806 			/* Mismatch ! */
1807 			/* Print header */
1808 			if (lines == 0) {
1809 				printk(KERN_ERR
1810 					"Slab corruption (%s): %s start=%p, len=%d\n",
1811 					print_tainted(), cachep->name, realobj, size);
1812 				print_objinfo(cachep, objp, 0);
1813 			}
1814 			/* Hexdump the affected line */
1815 			i = (i / 16) * 16;
1816 			limit = 16;
1817 			if (i + limit > size)
1818 				limit = size - i;
1819 			dump_line(realobj, i, limit);
1820 			i += 16;
1821 			lines++;
1822 			/* Limit to 5 lines */
1823 			if (lines > 5)
1824 				break;
1825 		}
1826 	}
1827 	if (lines != 0) {
1828 		/* Print some data about the neighboring objects, if they
1829 		 * exist:
1830 		 */
1831 		struct page *page = virt_to_head_page(objp);
1832 		unsigned int objnr;
1833 
1834 		objnr = obj_to_index(cachep, page, objp);
1835 		if (objnr) {
1836 			objp = index_to_obj(cachep, page, objnr - 1);
1837 			realobj = (char *)objp + obj_offset(cachep);
1838 			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1839 			       realobj, size);
1840 			print_objinfo(cachep, objp, 2);
1841 		}
1842 		if (objnr + 1 < cachep->num) {
1843 			objp = index_to_obj(cachep, page, objnr + 1);
1844 			realobj = (char *)objp + obj_offset(cachep);
1845 			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1846 			       realobj, size);
1847 			print_objinfo(cachep, objp, 2);
1848 		}
1849 	}
1850 }
1851 #endif
1852 
1853 #if DEBUG
slab_destroy_debugcheck(struct kmem_cache * cachep,struct page * page)1854 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1855 						struct page *page)
1856 {
1857 	int i;
1858 	for (i = 0; i < cachep->num; i++) {
1859 		void *objp = index_to_obj(cachep, page, i);
1860 
1861 		if (cachep->flags & SLAB_POISON) {
1862 			check_poison_obj(cachep, objp);
1863 			slab_kernel_map(cachep, objp, 1, 0);
1864 		}
1865 		if (cachep->flags & SLAB_RED_ZONE) {
1866 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1867 				slab_error(cachep, "start of a freed object was overwritten");
1868 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1869 				slab_error(cachep, "end of a freed object was overwritten");
1870 		}
1871 	}
1872 }
1873 #else
slab_destroy_debugcheck(struct kmem_cache * cachep,struct page * page)1874 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1875 						struct page *page)
1876 {
1877 }
1878 #endif
1879 
1880 /**
1881  * slab_destroy - destroy and release all objects in a slab
1882  * @cachep: cache pointer being destroyed
1883  * @page: page pointer being destroyed
1884  *
1885  * Destroy all the objs in a slab page, and release the mem back to the system.
1886  * Before calling the slab page must have been unlinked from the cache. The
1887  * kmem_cache_node ->list_lock is not held/needed.
1888  */
slab_destroy(struct kmem_cache * cachep,struct page * page)1889 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1890 {
1891 	void *freelist;
1892 
1893 	freelist = page->freelist;
1894 	slab_destroy_debugcheck(cachep, page);
1895 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1896 		call_rcu(&page->rcu_head, kmem_rcu_free);
1897 	else
1898 		kmem_freepages(cachep, page);
1899 
1900 	/*
1901 	 * From now on, we don't use freelist
1902 	 * although actual page can be freed in rcu context
1903 	 */
1904 	if (OFF_SLAB(cachep))
1905 		kmem_cache_free(cachep->freelist_cache, freelist);
1906 }
1907 
slabs_destroy(struct kmem_cache * cachep,struct list_head * list)1908 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1909 {
1910 	struct page *page, *n;
1911 
1912 	list_for_each_entry_safe(page, n, list, lru) {
1913 		list_del(&page->lru);
1914 		slab_destroy(cachep, page);
1915 	}
1916 }
1917 
1918 /**
1919  * calculate_slab_order - calculate size (page order) of slabs
1920  * @cachep: pointer to the cache that is being created
1921  * @size: size of objects to be created in this cache.
1922  * @align: required alignment for the objects.
1923  * @flags: slab allocation flags
1924  *
1925  * Also calculates the number of objects per slab.
1926  *
1927  * This could be made much more intelligent.  For now, try to avoid using
1928  * high order pages for slabs.  When the gfp() functions are more friendly
1929  * towards high-order requests, this should be changed.
1930  */
calculate_slab_order(struct kmem_cache * cachep,size_t size,size_t align,unsigned long flags)1931 static size_t calculate_slab_order(struct kmem_cache *cachep,
1932 			size_t size, size_t align, unsigned long flags)
1933 {
1934 	unsigned long offslab_limit;
1935 	size_t left_over = 0;
1936 	int gfporder;
1937 
1938 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1939 		unsigned int num;
1940 		size_t remainder;
1941 
1942 		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1943 		if (!num)
1944 			continue;
1945 
1946 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1947 		if (num > SLAB_OBJ_MAX_NUM)
1948 			break;
1949 
1950 		if (flags & CFLGS_OFF_SLAB) {
1951 			/*
1952 			 * Max number of objs-per-slab for caches which
1953 			 * use off-slab slabs. Needed to avoid a possible
1954 			 * looping condition in cache_grow().
1955 			 */
1956 			offslab_limit = size;
1957 			offslab_limit /= sizeof(freelist_idx_t);
1958 
1959  			if (num > offslab_limit)
1960 				break;
1961 		}
1962 
1963 		/* Found something acceptable - save it away */
1964 		cachep->num = num;
1965 		cachep->gfporder = gfporder;
1966 		left_over = remainder;
1967 
1968 		/*
1969 		 * A VFS-reclaimable slab tends to have most allocations
1970 		 * as GFP_NOFS and we really don't want to have to be allocating
1971 		 * higher-order pages when we are unable to shrink dcache.
1972 		 */
1973 		if (flags & SLAB_RECLAIM_ACCOUNT)
1974 			break;
1975 
1976 		/*
1977 		 * Large number of objects is good, but very large slabs are
1978 		 * currently bad for the gfp()s.
1979 		 */
1980 		if (gfporder >= slab_max_order)
1981 			break;
1982 
1983 		/*
1984 		 * Acceptable internal fragmentation?
1985 		 */
1986 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1987 			break;
1988 	}
1989 	return left_over;
1990 }
1991 
alloc_kmem_cache_cpus(struct kmem_cache * cachep,int entries,int batchcount)1992 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1993 		struct kmem_cache *cachep, int entries, int batchcount)
1994 {
1995 	int cpu;
1996 	size_t size;
1997 	struct array_cache __percpu *cpu_cache;
1998 
1999 	size = sizeof(void *) * entries + sizeof(struct array_cache);
2000 	cpu_cache = __alloc_percpu(size, sizeof(void *));
2001 
2002 	if (!cpu_cache)
2003 		return NULL;
2004 
2005 	for_each_possible_cpu(cpu) {
2006 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
2007 				entries, batchcount);
2008 	}
2009 
2010 	return cpu_cache;
2011 }
2012 
setup_cpu_cache(struct kmem_cache * cachep,gfp_t gfp)2013 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2014 {
2015 	if (slab_state >= FULL)
2016 		return enable_cpucache(cachep, gfp);
2017 
2018 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2019 	if (!cachep->cpu_cache)
2020 		return 1;
2021 
2022 	if (slab_state == DOWN) {
2023 		/* Creation of first cache (kmem_cache). */
2024 		set_up_node(kmem_cache, CACHE_CACHE);
2025 	} else if (slab_state == PARTIAL) {
2026 		/* For kmem_cache_node */
2027 		set_up_node(cachep, SIZE_NODE);
2028 	} else {
2029 		int node;
2030 
2031 		for_each_online_node(node) {
2032 			cachep->node[node] = kmalloc_node(
2033 				sizeof(struct kmem_cache_node), gfp, node);
2034 			BUG_ON(!cachep->node[node]);
2035 			kmem_cache_node_init(cachep->node[node]);
2036 		}
2037 	}
2038 
2039 	cachep->node[numa_mem_id()]->next_reap =
2040 			jiffies + REAPTIMEOUT_NODE +
2041 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
2042 
2043 	cpu_cache_get(cachep)->avail = 0;
2044 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2045 	cpu_cache_get(cachep)->batchcount = 1;
2046 	cpu_cache_get(cachep)->touched = 0;
2047 	cachep->batchcount = 1;
2048 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2049 	return 0;
2050 }
2051 
kmem_cache_flags(unsigned long object_size,unsigned long flags,const char * name,void (* ctor)(void *))2052 unsigned long kmem_cache_flags(unsigned long object_size,
2053 	unsigned long flags, const char *name,
2054 	void (*ctor)(void *))
2055 {
2056 	return flags;
2057 }
2058 
2059 struct kmem_cache *
__kmem_cache_alias(const char * name,size_t size,size_t align,unsigned long flags,void (* ctor)(void *))2060 __kmem_cache_alias(const char *name, size_t size, size_t align,
2061 		   unsigned long flags, void (*ctor)(void *))
2062 {
2063 	struct kmem_cache *cachep;
2064 
2065 	cachep = find_mergeable(size, align, flags, name, ctor);
2066 	if (cachep) {
2067 		cachep->refcount++;
2068 
2069 		/*
2070 		 * Adjust the object sizes so that we clear
2071 		 * the complete object on kzalloc.
2072 		 */
2073 		cachep->object_size = max_t(int, cachep->object_size, size);
2074 	}
2075 	return cachep;
2076 }
2077 
2078 /**
2079  * __kmem_cache_create - Create a cache.
2080  * @cachep: cache management descriptor
2081  * @flags: SLAB flags
2082  *
2083  * Returns a ptr to the cache on success, NULL on failure.
2084  * Cannot be called within a int, but can be interrupted.
2085  * The @ctor is run when new pages are allocated by the cache.
2086  *
2087  * The flags are
2088  *
2089  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2090  * to catch references to uninitialised memory.
2091  *
2092  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2093  * for buffer overruns.
2094  *
2095  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2096  * cacheline.  This can be beneficial if you're counting cycles as closely
2097  * as davem.
2098  */
2099 int
__kmem_cache_create(struct kmem_cache * cachep,unsigned long flags)2100 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2101 {
2102 	size_t left_over, freelist_size;
2103 	size_t ralign = BYTES_PER_WORD;
2104 	gfp_t gfp;
2105 	int err;
2106 	size_t size = cachep->size;
2107 
2108 #if DEBUG
2109 #if FORCED_DEBUG
2110 	/*
2111 	 * Enable redzoning and last user accounting, except for caches with
2112 	 * large objects, if the increased size would increase the object size
2113 	 * above the next power of two: caches with object sizes just above a
2114 	 * power of two have a significant amount of internal fragmentation.
2115 	 */
2116 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2117 						2 * sizeof(unsigned long long)))
2118 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2119 	if (!(flags & SLAB_DESTROY_BY_RCU))
2120 		flags |= SLAB_POISON;
2121 #endif
2122 	if (flags & SLAB_DESTROY_BY_RCU)
2123 		BUG_ON(flags & SLAB_POISON);
2124 #endif
2125 
2126 	/*
2127 	 * Check that size is in terms of words.  This is needed to avoid
2128 	 * unaligned accesses for some archs when redzoning is used, and makes
2129 	 * sure any on-slab bufctl's are also correctly aligned.
2130 	 */
2131 	if (size & (BYTES_PER_WORD - 1)) {
2132 		size += (BYTES_PER_WORD - 1);
2133 		size &= ~(BYTES_PER_WORD - 1);
2134 	}
2135 
2136 	if (flags & SLAB_RED_ZONE) {
2137 		ralign = REDZONE_ALIGN;
2138 		/* If redzoning, ensure that the second redzone is suitably
2139 		 * aligned, by adjusting the object size accordingly. */
2140 		size += REDZONE_ALIGN - 1;
2141 		size &= ~(REDZONE_ALIGN - 1);
2142 	}
2143 
2144 	/* 3) caller mandated alignment */
2145 	if (ralign < cachep->align) {
2146 		ralign = cachep->align;
2147 	}
2148 	/* disable debug if necessary */
2149 	if (ralign > __alignof__(unsigned long long))
2150 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2151 	/*
2152 	 * 4) Store it.
2153 	 */
2154 	cachep->align = ralign;
2155 
2156 	if (slab_is_available())
2157 		gfp = GFP_KERNEL;
2158 	else
2159 		gfp = GFP_NOWAIT;
2160 
2161 #if DEBUG
2162 
2163 	/*
2164 	 * Both debugging options require word-alignment which is calculated
2165 	 * into align above.
2166 	 */
2167 	if (flags & SLAB_RED_ZONE) {
2168 		/* add space for red zone words */
2169 		cachep->obj_offset += sizeof(unsigned long long);
2170 		size += 2 * sizeof(unsigned long long);
2171 	}
2172 	if (flags & SLAB_STORE_USER) {
2173 		/* user store requires one word storage behind the end of
2174 		 * the real object. But if the second red zone needs to be
2175 		 * aligned to 64 bits, we must allow that much space.
2176 		 */
2177 		if (flags & SLAB_RED_ZONE)
2178 			size += REDZONE_ALIGN;
2179 		else
2180 			size += BYTES_PER_WORD;
2181 	}
2182 #endif
2183 
2184 	kasan_cache_create(cachep, &size, &flags);
2185 
2186 	size = ALIGN(size, cachep->align);
2187 	/*
2188 	 * We should restrict the number of objects in a slab to implement
2189 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2190 	 */
2191 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2192 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2193 
2194 #if DEBUG
2195 	/*
2196 	 * To activate debug pagealloc, off-slab management is necessary
2197 	 * requirement. In early phase of initialization, small sized slab
2198 	 * doesn't get initialized so it would not be possible. So, we need
2199 	 * to check size >= 256. It guarantees that all necessary small
2200 	 * sized slab is initialized in current slab initialization sequence.
2201 	 */
2202 	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2203 		!slab_early_init && size >= kmalloc_size(INDEX_NODE) &&
2204 		size >= 256 && cachep->object_size > cache_line_size() &&
2205 		size < PAGE_SIZE) {
2206 		cachep->obj_offset += PAGE_SIZE - size;
2207 		size = PAGE_SIZE;
2208 	}
2209 #endif
2210 
2211 	/*
2212 	 * Determine if the slab management is 'on' or 'off' slab.
2213 	 * (bootstrapping cannot cope with offslab caches so don't do
2214 	 * it too early on. Always use on-slab management when
2215 	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2216 	 */
2217 	if (size >= OFF_SLAB_MIN_SIZE && !slab_early_init &&
2218 	    !(flags & SLAB_NOLEAKTRACE)) {
2219 		/*
2220 		 * Size is large, assume best to place the slab management obj
2221 		 * off-slab (should allow better packing of objs).
2222 		 */
2223 		flags |= CFLGS_OFF_SLAB;
2224 	}
2225 
2226 	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2227 
2228 	if (!cachep->num)
2229 		return -E2BIG;
2230 
2231 	freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2232 
2233 	/*
2234 	 * If the slab has been placed off-slab, and we have enough space then
2235 	 * move it on-slab. This is at the expense of any extra colouring.
2236 	 */
2237 	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2238 		flags &= ~CFLGS_OFF_SLAB;
2239 		left_over -= freelist_size;
2240 	}
2241 
2242 	if (flags & CFLGS_OFF_SLAB) {
2243 		/* really off slab. No need for manual alignment */
2244 		freelist_size = calculate_freelist_size(cachep->num, 0);
2245 	}
2246 
2247 	cachep->colour_off = cache_line_size();
2248 	/* Offset must be a multiple of the alignment. */
2249 	if (cachep->colour_off < cachep->align)
2250 		cachep->colour_off = cachep->align;
2251 	cachep->colour = left_over / cachep->colour_off;
2252 	cachep->freelist_size = freelist_size;
2253 	cachep->flags = flags;
2254 	cachep->allocflags = __GFP_COMP;
2255 	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2256 		cachep->allocflags |= GFP_DMA;
2257 	cachep->size = size;
2258 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2259 
2260 #if DEBUG
2261 	/*
2262 	 * If we're going to use the generic kernel_map_pages()
2263 	 * poisoning, then it's going to smash the contents of
2264 	 * the redzone and userword anyhow, so switch them off.
2265 	 */
2266 	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2267 		(cachep->flags & SLAB_POISON) &&
2268 		is_debug_pagealloc_cache(cachep))
2269 		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2270 #endif
2271 
2272 	if (OFF_SLAB(cachep)) {
2273 		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2274 		/*
2275 		 * This is a possibility for one of the kmalloc_{dma,}_caches.
2276 		 * But since we go off slab only for object size greater than
2277 		 * OFF_SLAB_MIN_SIZE, and kmalloc_{dma,}_caches get created
2278 		 * in ascending order,this should not happen at all.
2279 		 * But leave a BUG_ON for some lucky dude.
2280 		 */
2281 		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2282 	}
2283 
2284 	err = setup_cpu_cache(cachep, gfp);
2285 	if (err) {
2286 		__kmem_cache_shutdown(cachep);
2287 		return err;
2288 	}
2289 
2290 	return 0;
2291 }
2292 
2293 #if DEBUG
check_irq_off(void)2294 static void check_irq_off(void)
2295 {
2296 	BUG_ON(!irqs_disabled());
2297 }
2298 
check_irq_on(void)2299 static void check_irq_on(void)
2300 {
2301 	BUG_ON(irqs_disabled());
2302 }
2303 
check_spinlock_acquired(struct kmem_cache * cachep)2304 static void check_spinlock_acquired(struct kmem_cache *cachep)
2305 {
2306 #ifdef CONFIG_SMP
2307 	check_irq_off();
2308 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2309 #endif
2310 }
2311 
check_spinlock_acquired_node(struct kmem_cache * cachep,int node)2312 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2313 {
2314 #ifdef CONFIG_SMP
2315 	check_irq_off();
2316 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2317 #endif
2318 }
2319 
2320 #else
2321 #define check_irq_off()	do { } while(0)
2322 #define check_irq_on()	do { } while(0)
2323 #define check_spinlock_acquired(x) do { } while(0)
2324 #define check_spinlock_acquired_node(x, y) do { } while(0)
2325 #endif
2326 
2327 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2328 			struct array_cache *ac,
2329 			int force, int node);
2330 
do_drain(void * arg)2331 static void do_drain(void *arg)
2332 {
2333 	struct kmem_cache *cachep = arg;
2334 	struct array_cache *ac;
2335 	int node = numa_mem_id();
2336 	struct kmem_cache_node *n;
2337 	LIST_HEAD(list);
2338 
2339 	check_irq_off();
2340 	ac = cpu_cache_get(cachep);
2341 	n = get_node(cachep, node);
2342 	spin_lock(&n->list_lock);
2343 	free_block(cachep, ac->entry, ac->avail, node, &list);
2344 	spin_unlock(&n->list_lock);
2345 	slabs_destroy(cachep, &list);
2346 	ac->avail = 0;
2347 }
2348 
drain_cpu_caches(struct kmem_cache * cachep)2349 static void drain_cpu_caches(struct kmem_cache *cachep)
2350 {
2351 	struct kmem_cache_node *n;
2352 	int node;
2353 
2354 	on_each_cpu(do_drain, cachep, 1);
2355 	check_irq_on();
2356 	for_each_kmem_cache_node(cachep, node, n)
2357 		if (n->alien)
2358 			drain_alien_cache(cachep, n->alien);
2359 
2360 	for_each_kmem_cache_node(cachep, node, n)
2361 		drain_array(cachep, n, n->shared, 1, node);
2362 }
2363 
2364 /*
2365  * Remove slabs from the list of free slabs.
2366  * Specify the number of slabs to drain in tofree.
2367  *
2368  * Returns the actual number of slabs released.
2369  */
drain_freelist(struct kmem_cache * cache,struct kmem_cache_node * n,int tofree)2370 static int drain_freelist(struct kmem_cache *cache,
2371 			struct kmem_cache_node *n, int tofree)
2372 {
2373 	struct list_head *p;
2374 	int nr_freed;
2375 	struct page *page;
2376 
2377 	nr_freed = 0;
2378 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2379 
2380 		spin_lock_irq(&n->list_lock);
2381 		p = n->slabs_free.prev;
2382 		if (p == &n->slabs_free) {
2383 			spin_unlock_irq(&n->list_lock);
2384 			goto out;
2385 		}
2386 
2387 		page = list_entry(p, struct page, lru);
2388 #if DEBUG
2389 		BUG_ON(page->active);
2390 #endif
2391 		list_del(&page->lru);
2392 		/*
2393 		 * Safe to drop the lock. The slab is no longer linked
2394 		 * to the cache.
2395 		 */
2396 		n->free_objects -= cache->num;
2397 		spin_unlock_irq(&n->list_lock);
2398 		slab_destroy(cache, page);
2399 		nr_freed++;
2400 	}
2401 out:
2402 	return nr_freed;
2403 }
2404 
__kmem_cache_shrink(struct kmem_cache * cachep,bool deactivate)2405 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2406 {
2407 	int ret = 0;
2408 	int node;
2409 	struct kmem_cache_node *n;
2410 
2411 	drain_cpu_caches(cachep);
2412 
2413 	check_irq_on();
2414 	for_each_kmem_cache_node(cachep, node, n) {
2415 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2416 
2417 		ret += !list_empty(&n->slabs_full) ||
2418 			!list_empty(&n->slabs_partial);
2419 	}
2420 	return (ret ? 1 : 0);
2421 }
2422 
__kmem_cache_shutdown(struct kmem_cache * cachep)2423 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2424 {
2425 	int i;
2426 	struct kmem_cache_node *n;
2427 	int rc = __kmem_cache_shrink(cachep, false);
2428 
2429 	if (rc)
2430 		return rc;
2431 
2432 	free_percpu(cachep->cpu_cache);
2433 
2434 	/* NUMA: free the node structures */
2435 	for_each_kmem_cache_node(cachep, i, n) {
2436 		kfree(n->shared);
2437 		free_alien_cache(n->alien);
2438 		kfree(n);
2439 		cachep->node[i] = NULL;
2440 	}
2441 	return 0;
2442 }
2443 
2444 /*
2445  * Get the memory for a slab management obj.
2446  *
2447  * For a slab cache when the slab descriptor is off-slab, the
2448  * slab descriptor can't come from the same cache which is being created,
2449  * Because if it is the case, that means we defer the creation of
2450  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2451  * And we eventually call down to __kmem_cache_create(), which
2452  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2453  * This is a "chicken-and-egg" problem.
2454  *
2455  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2456  * which are all initialized during kmem_cache_init().
2457  */
alloc_slabmgmt(struct kmem_cache * cachep,struct page * page,int colour_off,gfp_t local_flags,int nodeid)2458 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2459 				   struct page *page, int colour_off,
2460 				   gfp_t local_flags, int nodeid)
2461 {
2462 	void *freelist;
2463 	void *addr = page_address(page);
2464 
2465 	if (OFF_SLAB(cachep)) {
2466 		/* Slab management obj is off-slab. */
2467 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2468 					      local_flags, nodeid);
2469 		if (!freelist)
2470 			return NULL;
2471 	} else {
2472 		freelist = addr + colour_off;
2473 		colour_off += cachep->freelist_size;
2474 	}
2475 	page->active = 0;
2476 	page->s_mem = addr + colour_off;
2477 	return freelist;
2478 }
2479 
get_free_obj(struct page * page,unsigned int idx)2480 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2481 {
2482 	return ((freelist_idx_t *)page->freelist)[idx];
2483 }
2484 
set_free_obj(struct page * page,unsigned int idx,freelist_idx_t val)2485 static inline void set_free_obj(struct page *page,
2486 					unsigned int idx, freelist_idx_t val)
2487 {
2488 	((freelist_idx_t *)(page->freelist))[idx] = val;
2489 }
2490 
cache_init_objs_debug(struct kmem_cache * cachep,struct page * page)2491 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2492 {
2493 #if DEBUG
2494 	int i;
2495 
2496 	for (i = 0; i < cachep->num; i++) {
2497 		void *objp = index_to_obj(cachep, page, i);
2498 		kasan_init_slab_obj(cachep, objp);
2499 		if (cachep->flags & SLAB_STORE_USER)
2500 			*dbg_userword(cachep, objp) = NULL;
2501 
2502 		if (cachep->flags & SLAB_RED_ZONE) {
2503 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2504 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2505 		}
2506 		/*
2507 		 * Constructors are not allowed to allocate memory from the same
2508 		 * cache which they are a constructor for.  Otherwise, deadlock.
2509 		 * They must also be threaded.
2510 		 */
2511 		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2512 			kasan_unpoison_object_data(cachep,
2513 						   objp + obj_offset(cachep));
2514 			cachep->ctor(objp + obj_offset(cachep));
2515 			kasan_poison_object_data(
2516 				cachep, objp + obj_offset(cachep));
2517 		}
2518 
2519 		if (cachep->flags & SLAB_RED_ZONE) {
2520 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2521 				slab_error(cachep, "constructor overwrote the end of an object");
2522 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2523 				slab_error(cachep, "constructor overwrote the start of an object");
2524 		}
2525 		/* need to poison the objs? */
2526 		if (cachep->flags & SLAB_POISON) {
2527 			poison_obj(cachep, objp, POISON_FREE);
2528 			slab_kernel_map(cachep, objp, 0, 0);
2529 		}
2530 	}
2531 #endif
2532 }
2533 
cache_init_objs(struct kmem_cache * cachep,struct page * page)2534 static void cache_init_objs(struct kmem_cache *cachep,
2535 			    struct page *page)
2536 {
2537 	int i;
2538 	void *objp;
2539 
2540 	cache_init_objs_debug(cachep, page);
2541 
2542 	for (i = 0; i < cachep->num; i++) {
2543 		/* constructor could break poison info */
2544 		if (DEBUG == 0 && cachep->ctor) {
2545 			objp = index_to_obj(cachep, page, i);
2546 			kasan_unpoison_object_data(cachep, objp);
2547 			cachep->ctor(objp);
2548 			kasan_poison_object_data(cachep, objp);
2549 		}
2550 
2551 		set_free_obj(page, i, i);
2552 	}
2553 }
2554 
kmem_flagcheck(struct kmem_cache * cachep,gfp_t flags)2555 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2556 {
2557 	if (CONFIG_ZONE_DMA_FLAG) {
2558 		if (flags & GFP_DMA)
2559 			BUG_ON(!(cachep->allocflags & GFP_DMA));
2560 		else
2561 			BUG_ON(cachep->allocflags & GFP_DMA);
2562 	}
2563 }
2564 
slab_get_obj(struct kmem_cache * cachep,struct page * page,int nodeid)2565 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2566 				int nodeid)
2567 {
2568 	void *objp;
2569 
2570 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2571 	page->active++;
2572 #if DEBUG
2573 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2574 #endif
2575 
2576 #if DEBUG
2577 	if (cachep->flags & SLAB_STORE_USER)
2578 		set_store_user_dirty(cachep);
2579 #endif
2580 
2581 	return objp;
2582 }
2583 
slab_put_obj(struct kmem_cache * cachep,struct page * page,void * objp,int nodeid)2584 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2585 				void *objp, int nodeid)
2586 {
2587 	unsigned int objnr = obj_to_index(cachep, page, objp);
2588 #if DEBUG
2589 	unsigned int i;
2590 
2591 	/* Verify that the slab belongs to the intended node */
2592 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2593 
2594 	/* Verify double free bug */
2595 	for (i = page->active; i < cachep->num; i++) {
2596 		if (get_free_obj(page, i) == objnr) {
2597 			printk(KERN_ERR "slab: double free detected in cache '%s', objp %p\n",
2598 			       cachep->name, objp);
2599 			BUG();
2600 		}
2601 	}
2602 #endif
2603 	page->active--;
2604 	set_free_obj(page, page->active, objnr);
2605 }
2606 
2607 /*
2608  * Map pages beginning at addr to the given cache and slab. This is required
2609  * for the slab allocator to be able to lookup the cache and slab of a
2610  * virtual address for kfree, ksize, and slab debugging.
2611  */
slab_map_pages(struct kmem_cache * cache,struct page * page,void * freelist)2612 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2613 			   void *freelist)
2614 {
2615 	page->slab_cache = cache;
2616 	page->freelist = freelist;
2617 }
2618 
2619 /*
2620  * Grow (by 1) the number of slabs within a cache.  This is called by
2621  * kmem_cache_alloc() when there are no active objs left in a cache.
2622  */
cache_grow(struct kmem_cache * cachep,gfp_t flags,int nodeid,struct page * page)2623 static int cache_grow(struct kmem_cache *cachep,
2624 		gfp_t flags, int nodeid, struct page *page)
2625 {
2626 	void *freelist;
2627 	size_t offset;
2628 	gfp_t local_flags;
2629 	struct kmem_cache_node *n;
2630 
2631 	/*
2632 	 * Be lazy and only check for valid flags here,  keeping it out of the
2633 	 * critical path in kmem_cache_alloc().
2634 	 */
2635 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2636 		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2637 		BUG();
2638 	}
2639 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2640 
2641 	/* Take the node list lock to change the colour_next on this node */
2642 	check_irq_off();
2643 	n = get_node(cachep, nodeid);
2644 	spin_lock(&n->list_lock);
2645 
2646 	/* Get colour for the slab, and cal the next value. */
2647 	offset = n->colour_next;
2648 	n->colour_next++;
2649 	if (n->colour_next >= cachep->colour)
2650 		n->colour_next = 0;
2651 	spin_unlock(&n->list_lock);
2652 
2653 	offset *= cachep->colour_off;
2654 
2655 	if (gfpflags_allow_blocking(local_flags))
2656 		local_irq_enable();
2657 
2658 	/*
2659 	 * The test for missing atomic flag is performed here, rather than
2660 	 * the more obvious place, simply to reduce the critical path length
2661 	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2662 	 * will eventually be caught here (where it matters).
2663 	 */
2664 	kmem_flagcheck(cachep, flags);
2665 
2666 	/*
2667 	 * Get mem for the objs.  Attempt to allocate a physical page from
2668 	 * 'nodeid'.
2669 	 */
2670 	if (!page)
2671 		page = kmem_getpages(cachep, local_flags, nodeid);
2672 	if (!page)
2673 		goto failed;
2674 
2675 	/* Get slab management. */
2676 	freelist = alloc_slabmgmt(cachep, page, offset,
2677 			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2678 	if (!freelist)
2679 		goto opps1;
2680 
2681 	slab_map_pages(cachep, page, freelist);
2682 
2683 	kasan_poison_slab(page);
2684 	cache_init_objs(cachep, page);
2685 
2686 	if (gfpflags_allow_blocking(local_flags))
2687 		local_irq_disable();
2688 	check_irq_off();
2689 	spin_lock(&n->list_lock);
2690 
2691 	/* Make slab active. */
2692 	list_add_tail(&page->lru, &(n->slabs_free));
2693 	STATS_INC_GROWN(cachep);
2694 	n->free_objects += cachep->num;
2695 	spin_unlock(&n->list_lock);
2696 	return 1;
2697 opps1:
2698 	kmem_freepages(cachep, page);
2699 failed:
2700 	if (gfpflags_allow_blocking(local_flags))
2701 		local_irq_disable();
2702 	return 0;
2703 }
2704 
2705 #if DEBUG
2706 
2707 /*
2708  * Perform extra freeing checks:
2709  * - detect bad pointers.
2710  * - POISON/RED_ZONE checking
2711  */
kfree_debugcheck(const void * objp)2712 static void kfree_debugcheck(const void *objp)
2713 {
2714 	if (!virt_addr_valid(objp)) {
2715 		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2716 		       (unsigned long)objp);
2717 		BUG();
2718 	}
2719 }
2720 
verify_redzone_free(struct kmem_cache * cache,void * obj)2721 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2722 {
2723 	unsigned long long redzone1, redzone2;
2724 
2725 	redzone1 = *dbg_redzone1(cache, obj);
2726 	redzone2 = *dbg_redzone2(cache, obj);
2727 
2728 	/*
2729 	 * Redzone is ok.
2730 	 */
2731 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2732 		return;
2733 
2734 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2735 		slab_error(cache, "double free detected");
2736 	else
2737 		slab_error(cache, "memory outside object was overwritten");
2738 
2739 	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2740 			obj, redzone1, redzone2);
2741 }
2742 
cache_free_debugcheck(struct kmem_cache * cachep,void * objp,unsigned long caller)2743 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2744 				   unsigned long caller)
2745 {
2746 	unsigned int objnr;
2747 	struct page *page;
2748 
2749 	BUG_ON(virt_to_cache(objp) != cachep);
2750 
2751 	objp -= obj_offset(cachep);
2752 	kfree_debugcheck(objp);
2753 	page = virt_to_head_page(objp);
2754 
2755 	if (cachep->flags & SLAB_RED_ZONE) {
2756 		verify_redzone_free(cachep, objp);
2757 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2758 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2759 	}
2760 	if (cachep->flags & SLAB_STORE_USER) {
2761 		set_store_user_dirty(cachep);
2762 		*dbg_userword(cachep, objp) = (void *)caller;
2763 	}
2764 
2765 	objnr = obj_to_index(cachep, page, objp);
2766 
2767 	BUG_ON(objnr >= cachep->num);
2768 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2769 
2770 	if (cachep->flags & SLAB_POISON) {
2771 		poison_obj(cachep, objp, POISON_FREE);
2772 		slab_kernel_map(cachep, objp, 0, caller);
2773 	}
2774 	return objp;
2775 }
2776 
2777 #else
2778 #define kfree_debugcheck(x) do { } while(0)
2779 #define cache_free_debugcheck(x,objp,z) (objp)
2780 #endif
2781 
cache_alloc_refill(struct kmem_cache * cachep,gfp_t flags,bool force_refill)2782 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2783 							bool force_refill)
2784 {
2785 	int batchcount;
2786 	struct kmem_cache_node *n;
2787 	struct array_cache *ac;
2788 	int node;
2789 
2790 	check_irq_off();
2791 	node = numa_mem_id();
2792 	if (unlikely(force_refill))
2793 		goto force_grow;
2794 retry:
2795 	ac = cpu_cache_get(cachep);
2796 	batchcount = ac->batchcount;
2797 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2798 		/*
2799 		 * If there was little recent activity on this cache, then
2800 		 * perform only a partial refill.  Otherwise we could generate
2801 		 * refill bouncing.
2802 		 */
2803 		batchcount = BATCHREFILL_LIMIT;
2804 	}
2805 	n = get_node(cachep, node);
2806 
2807 	BUG_ON(ac->avail > 0 || !n);
2808 	spin_lock(&n->list_lock);
2809 
2810 	/* See if we can refill from the shared array */
2811 	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2812 		n->shared->touched = 1;
2813 		goto alloc_done;
2814 	}
2815 
2816 	while (batchcount > 0) {
2817 		struct list_head *entry;
2818 		struct page *page;
2819 		/* Get slab alloc is to come from. */
2820 		entry = n->slabs_partial.next;
2821 		if (entry == &n->slabs_partial) {
2822 			n->free_touched = 1;
2823 			entry = n->slabs_free.next;
2824 			if (entry == &n->slabs_free)
2825 				goto must_grow;
2826 		}
2827 
2828 		page = list_entry(entry, struct page, lru);
2829 		check_spinlock_acquired(cachep);
2830 
2831 		/*
2832 		 * The slab was either on partial or free list so
2833 		 * there must be at least one object available for
2834 		 * allocation.
2835 		 */
2836 		BUG_ON(page->active >= cachep->num);
2837 
2838 		while (page->active < cachep->num && batchcount--) {
2839 			STATS_INC_ALLOCED(cachep);
2840 			STATS_INC_ACTIVE(cachep);
2841 			STATS_SET_HIGH(cachep);
2842 
2843 			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2844 									node));
2845 		}
2846 
2847 		/* move slabp to correct slabp list: */
2848 		list_del(&page->lru);
2849 		if (page->active == cachep->num)
2850 			list_add(&page->lru, &n->slabs_full);
2851 		else
2852 			list_add(&page->lru, &n->slabs_partial);
2853 	}
2854 
2855 must_grow:
2856 	n->free_objects -= ac->avail;
2857 alloc_done:
2858 	spin_unlock(&n->list_lock);
2859 
2860 	if (unlikely(!ac->avail)) {
2861 		int x;
2862 force_grow:
2863 		x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2864 
2865 		/* cache_grow can reenable interrupts, then ac could change. */
2866 		ac = cpu_cache_get(cachep);
2867 		node = numa_mem_id();
2868 
2869 		/* no objects in sight? abort */
2870 		if (!x && (ac->avail == 0 || force_refill))
2871 			return NULL;
2872 
2873 		if (!ac->avail)		/* objects refilled by interrupt? */
2874 			goto retry;
2875 	}
2876 	ac->touched = 1;
2877 
2878 	return ac_get_obj(cachep, ac, flags, force_refill);
2879 }
2880 
cache_alloc_debugcheck_before(struct kmem_cache * cachep,gfp_t flags)2881 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2882 						gfp_t flags)
2883 {
2884 	might_sleep_if(gfpflags_allow_blocking(flags));
2885 #if DEBUG
2886 	kmem_flagcheck(cachep, flags);
2887 #endif
2888 }
2889 
2890 #if DEBUG
cache_alloc_debugcheck_after(struct kmem_cache * cachep,gfp_t flags,void * objp,unsigned long caller)2891 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2892 				gfp_t flags, void *objp, unsigned long caller)
2893 {
2894 	if (!objp)
2895 		return objp;
2896 	if (cachep->flags & SLAB_POISON) {
2897 		check_poison_obj(cachep, objp);
2898 		slab_kernel_map(cachep, objp, 1, 0);
2899 		poison_obj(cachep, objp, POISON_INUSE);
2900 	}
2901 	if (cachep->flags & SLAB_STORE_USER)
2902 		*dbg_userword(cachep, objp) = (void *)caller;
2903 
2904 	if (cachep->flags & SLAB_RED_ZONE) {
2905 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2906 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2907 			slab_error(cachep, "double free, or memory outside object was overwritten");
2908 			printk(KERN_ERR
2909 				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2910 				objp, *dbg_redzone1(cachep, objp),
2911 				*dbg_redzone2(cachep, objp));
2912 		}
2913 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2914 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2915 	}
2916 
2917 	objp += obj_offset(cachep);
2918 	if (cachep->ctor && cachep->flags & SLAB_POISON)
2919 		cachep->ctor(objp);
2920 	if (ARCH_SLAB_MINALIGN &&
2921 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2922 		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2923 		       objp, (int)ARCH_SLAB_MINALIGN);
2924 	}
2925 	return objp;
2926 }
2927 #else
2928 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2929 #endif
2930 
slab_should_failslab(struct kmem_cache * cachep,gfp_t flags)2931 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2932 {
2933 	if (unlikely(cachep == kmem_cache))
2934 		return false;
2935 
2936 	return should_failslab(cachep->object_size, flags, cachep->flags);
2937 }
2938 
____cache_alloc(struct kmem_cache * cachep,gfp_t flags)2939 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2940 {
2941 	void *objp;
2942 	struct array_cache *ac;
2943 	bool force_refill = false;
2944 
2945 	check_irq_off();
2946 
2947 	ac = cpu_cache_get(cachep);
2948 	if (likely(ac->avail)) {
2949 		ac->touched = 1;
2950 		objp = ac_get_obj(cachep, ac, flags, false);
2951 
2952 		/*
2953 		 * Allow for the possibility all avail objects are not allowed
2954 		 * by the current flags
2955 		 */
2956 		if (objp) {
2957 			STATS_INC_ALLOCHIT(cachep);
2958 			goto out;
2959 		}
2960 		force_refill = true;
2961 	}
2962 
2963 	STATS_INC_ALLOCMISS(cachep);
2964 	objp = cache_alloc_refill(cachep, flags, force_refill);
2965 	/*
2966 	 * the 'ac' may be updated by cache_alloc_refill(),
2967 	 * and kmemleak_erase() requires its correct value.
2968 	 */
2969 	ac = cpu_cache_get(cachep);
2970 
2971 out:
2972 	/*
2973 	 * To avoid a false negative, if an object that is in one of the
2974 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2975 	 * treat the array pointers as a reference to the object.
2976 	 */
2977 	if (objp)
2978 		kmemleak_erase(&ac->entry[ac->avail]);
2979 	return objp;
2980 }
2981 
2982 #ifdef CONFIG_NUMA
2983 /*
2984  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2985  *
2986  * If we are in_interrupt, then process context, including cpusets and
2987  * mempolicy, may not apply and should not be used for allocation policy.
2988  */
alternate_node_alloc(struct kmem_cache * cachep,gfp_t flags)2989 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2990 {
2991 	int nid_alloc, nid_here;
2992 
2993 	if (in_interrupt() || (flags & __GFP_THISNODE))
2994 		return NULL;
2995 	nid_alloc = nid_here = numa_mem_id();
2996 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2997 		nid_alloc = cpuset_slab_spread_node();
2998 	else if (current->mempolicy)
2999 		nid_alloc = mempolicy_slab_node();
3000 	if (nid_alloc != nid_here)
3001 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3002 	return NULL;
3003 }
3004 
3005 /*
3006  * Fallback function if there was no memory available and no objects on a
3007  * certain node and fall back is permitted. First we scan all the
3008  * available node for available objects. If that fails then we
3009  * perform an allocation without specifying a node. This allows the page
3010  * allocator to do its reclaim / fallback magic. We then insert the
3011  * slab into the proper nodelist and then allocate from it.
3012  */
fallback_alloc(struct kmem_cache * cache,gfp_t flags)3013 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3014 {
3015 	struct zonelist *zonelist;
3016 	gfp_t local_flags;
3017 	struct zoneref *z;
3018 	struct zone *zone;
3019 	enum zone_type high_zoneidx = gfp_zone(flags);
3020 	void *obj = NULL;
3021 	int nid;
3022 	unsigned int cpuset_mems_cookie;
3023 
3024 	if (flags & __GFP_THISNODE)
3025 		return NULL;
3026 
3027 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3028 
3029 retry_cpuset:
3030 	cpuset_mems_cookie = read_mems_allowed_begin();
3031 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3032 
3033 retry:
3034 	/*
3035 	 * Look through allowed nodes for objects available
3036 	 * from existing per node queues.
3037 	 */
3038 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3039 		nid = zone_to_nid(zone);
3040 
3041 		if (cpuset_zone_allowed(zone, flags) &&
3042 			get_node(cache, nid) &&
3043 			get_node(cache, nid)->free_objects) {
3044 				obj = ____cache_alloc_node(cache,
3045 					gfp_exact_node(flags), nid);
3046 				if (obj)
3047 					break;
3048 		}
3049 	}
3050 
3051 	if (!obj) {
3052 		/*
3053 		 * This allocation will be performed within the constraints
3054 		 * of the current cpuset / memory policy requirements.
3055 		 * We may trigger various forms of reclaim on the allowed
3056 		 * set and go into memory reserves if necessary.
3057 		 */
3058 		struct page *page;
3059 
3060 		if (gfpflags_allow_blocking(local_flags))
3061 			local_irq_enable();
3062 		kmem_flagcheck(cache, flags);
3063 		page = kmem_getpages(cache, local_flags, numa_mem_id());
3064 		if (gfpflags_allow_blocking(local_flags))
3065 			local_irq_disable();
3066 		if (page) {
3067 			/*
3068 			 * Insert into the appropriate per node queues
3069 			 */
3070 			nid = page_to_nid(page);
3071 			if (cache_grow(cache, flags, nid, page)) {
3072 				obj = ____cache_alloc_node(cache,
3073 					gfp_exact_node(flags), nid);
3074 				if (!obj)
3075 					/*
3076 					 * Another processor may allocate the
3077 					 * objects in the slab since we are
3078 					 * not holding any locks.
3079 					 */
3080 					goto retry;
3081 			} else {
3082 				/* cache_grow already freed obj */
3083 				obj = NULL;
3084 			}
3085 		}
3086 	}
3087 
3088 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3089 		goto retry_cpuset;
3090 	return obj;
3091 }
3092 
3093 /*
3094  * A interface to enable slab creation on nodeid
3095  */
____cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid)3096 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3097 				int nodeid)
3098 {
3099 	struct list_head *entry;
3100 	struct page *page;
3101 	struct kmem_cache_node *n;
3102 	void *obj;
3103 	int x;
3104 
3105 	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3106 	n = get_node(cachep, nodeid);
3107 	BUG_ON(!n);
3108 
3109 retry:
3110 	check_irq_off();
3111 	spin_lock(&n->list_lock);
3112 	entry = n->slabs_partial.next;
3113 	if (entry == &n->slabs_partial) {
3114 		n->free_touched = 1;
3115 		entry = n->slabs_free.next;
3116 		if (entry == &n->slabs_free)
3117 			goto must_grow;
3118 	}
3119 
3120 	page = list_entry(entry, struct page, lru);
3121 	check_spinlock_acquired_node(cachep, nodeid);
3122 
3123 	STATS_INC_NODEALLOCS(cachep);
3124 	STATS_INC_ACTIVE(cachep);
3125 	STATS_SET_HIGH(cachep);
3126 
3127 	BUG_ON(page->active == cachep->num);
3128 
3129 	obj = slab_get_obj(cachep, page, nodeid);
3130 	n->free_objects--;
3131 	/* move slabp to correct slabp list: */
3132 	list_del(&page->lru);
3133 
3134 	if (page->active == cachep->num)
3135 		list_add(&page->lru, &n->slabs_full);
3136 	else
3137 		list_add(&page->lru, &n->slabs_partial);
3138 
3139 	spin_unlock(&n->list_lock);
3140 	goto done;
3141 
3142 must_grow:
3143 	spin_unlock(&n->list_lock);
3144 	x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3145 	if (x)
3146 		goto retry;
3147 
3148 	return fallback_alloc(cachep, flags);
3149 
3150 done:
3151 	return obj;
3152 }
3153 
3154 static __always_inline void *
slab_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid,unsigned long caller)3155 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3156 		   unsigned long caller)
3157 {
3158 	unsigned long save_flags;
3159 	void *ptr;
3160 	int slab_node = numa_mem_id();
3161 
3162 	flags &= gfp_allowed_mask;
3163 
3164 	lockdep_trace_alloc(flags);
3165 
3166 	if (slab_should_failslab(cachep, flags))
3167 		return NULL;
3168 
3169 	cachep = memcg_kmem_get_cache(cachep, flags);
3170 
3171 	cache_alloc_debugcheck_before(cachep, flags);
3172 	local_irq_save(save_flags);
3173 
3174 	if (nodeid == NUMA_NO_NODE)
3175 		nodeid = slab_node;
3176 
3177 	if (unlikely(!get_node(cachep, nodeid))) {
3178 		/* Node not bootstrapped yet */
3179 		ptr = fallback_alloc(cachep, flags);
3180 		goto out;
3181 	}
3182 
3183 	if (nodeid == slab_node) {
3184 		/*
3185 		 * Use the locally cached objects if possible.
3186 		 * However ____cache_alloc does not allow fallback
3187 		 * to other nodes. It may fail while we still have
3188 		 * objects on other nodes available.
3189 		 */
3190 		ptr = ____cache_alloc(cachep, flags);
3191 		if (ptr)
3192 			goto out;
3193 	}
3194 	/* ___cache_alloc_node can fall back to other nodes */
3195 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3196   out:
3197 	local_irq_restore(save_flags);
3198 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3199 	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3200 				 flags);
3201 
3202 	if (likely(ptr)) {
3203 		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3204 		if (unlikely(flags & __GFP_ZERO))
3205 			memset(ptr, 0, cachep->object_size);
3206 	}
3207 
3208 	memcg_kmem_put_cache(cachep);
3209 	return ptr;
3210 }
3211 
3212 static __always_inline void *
__do_cache_alloc(struct kmem_cache * cache,gfp_t flags)3213 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3214 {
3215 	void *objp;
3216 
3217 	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3218 		objp = alternate_node_alloc(cache, flags);
3219 		if (objp)
3220 			goto out;
3221 	}
3222 	objp = ____cache_alloc(cache, flags);
3223 
3224 	/*
3225 	 * We may just have run out of memory on the local node.
3226 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3227 	 */
3228 	if (!objp)
3229 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3230 
3231   out:
3232 	return objp;
3233 }
3234 #else
3235 
3236 static __always_inline void *
__do_cache_alloc(struct kmem_cache * cachep,gfp_t flags)3237 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3238 {
3239 	return ____cache_alloc(cachep, flags);
3240 }
3241 
3242 #endif /* CONFIG_NUMA */
3243 
3244 static __always_inline void *
slab_alloc(struct kmem_cache * cachep,gfp_t flags,unsigned long caller)3245 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3246 {
3247 	unsigned long save_flags;
3248 	void *objp;
3249 
3250 	flags &= gfp_allowed_mask;
3251 
3252 	lockdep_trace_alloc(flags);
3253 
3254 	if (slab_should_failslab(cachep, flags))
3255 		return NULL;
3256 
3257 	cachep = memcg_kmem_get_cache(cachep, flags);
3258 
3259 	cache_alloc_debugcheck_before(cachep, flags);
3260 	local_irq_save(save_flags);
3261 	objp = __do_cache_alloc(cachep, flags);
3262 	local_irq_restore(save_flags);
3263 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3264 	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3265 				 flags);
3266 	prefetchw(objp);
3267 
3268 	if (likely(objp)) {
3269 		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3270 		if (unlikely(flags & __GFP_ZERO))
3271 			memset(objp, 0, cachep->object_size);
3272 	}
3273 
3274 	memcg_kmem_put_cache(cachep);
3275 	return objp;
3276 }
3277 
3278 /*
3279  * Caller needs to acquire correct kmem_cache_node's list_lock
3280  * @list: List of detached free slabs should be freed by caller
3281  */
free_block(struct kmem_cache * cachep,void ** objpp,int nr_objects,int node,struct list_head * list)3282 static void free_block(struct kmem_cache *cachep, void **objpp,
3283 			int nr_objects, int node, struct list_head *list)
3284 {
3285 	int i;
3286 	struct kmem_cache_node *n = get_node(cachep, node);
3287 
3288 	for (i = 0; i < nr_objects; i++) {
3289 		void *objp;
3290 		struct page *page;
3291 
3292 		clear_obj_pfmemalloc(&objpp[i]);
3293 		objp = objpp[i];
3294 
3295 		page = virt_to_head_page(objp);
3296 		list_del(&page->lru);
3297 		check_spinlock_acquired_node(cachep, node);
3298 		slab_put_obj(cachep, page, objp, node);
3299 		STATS_DEC_ACTIVE(cachep);
3300 		n->free_objects++;
3301 
3302 		/* fixup slab chains */
3303 		if (page->active == 0) {
3304 			if (n->free_objects > n->free_limit) {
3305 				n->free_objects -= cachep->num;
3306 				list_add_tail(&page->lru, list);
3307 			} else {
3308 				list_add(&page->lru, &n->slabs_free);
3309 			}
3310 		} else {
3311 			/* Unconditionally move a slab to the end of the
3312 			 * partial list on free - maximum time for the
3313 			 * other objects to be freed, too.
3314 			 */
3315 			list_add_tail(&page->lru, &n->slabs_partial);
3316 		}
3317 	}
3318 }
3319 
cache_flusharray(struct kmem_cache * cachep,struct array_cache * ac)3320 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3321 {
3322 	int batchcount;
3323 	struct kmem_cache_node *n;
3324 	int node = numa_mem_id();
3325 	LIST_HEAD(list);
3326 
3327 	batchcount = ac->batchcount;
3328 #if DEBUG
3329 	BUG_ON(!batchcount || batchcount > ac->avail);
3330 #endif
3331 	check_irq_off();
3332 	n = get_node(cachep, node);
3333 	spin_lock(&n->list_lock);
3334 	if (n->shared) {
3335 		struct array_cache *shared_array = n->shared;
3336 		int max = shared_array->limit - shared_array->avail;
3337 		if (max) {
3338 			if (batchcount > max)
3339 				batchcount = max;
3340 			memcpy(&(shared_array->entry[shared_array->avail]),
3341 			       ac->entry, sizeof(void *) * batchcount);
3342 			shared_array->avail += batchcount;
3343 			goto free_done;
3344 		}
3345 	}
3346 
3347 	free_block(cachep, ac->entry, batchcount, node, &list);
3348 free_done:
3349 #if STATS
3350 	{
3351 		int i = 0;
3352 		struct list_head *p;
3353 
3354 		p = n->slabs_free.next;
3355 		while (p != &(n->slabs_free)) {
3356 			struct page *page;
3357 
3358 			page = list_entry(p, struct page, lru);
3359 			BUG_ON(page->active);
3360 
3361 			i++;
3362 			p = p->next;
3363 		}
3364 		STATS_SET_FREEABLE(cachep, i);
3365 	}
3366 #endif
3367 	spin_unlock(&n->list_lock);
3368 	slabs_destroy(cachep, &list);
3369 	ac->avail -= batchcount;
3370 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3371 }
3372 
3373 /*
3374  * Release an obj back to its cache. If the obj has a constructed state, it must
3375  * be in this state _before_ it is released.  Called with disabled ints.
3376  */
__cache_free(struct kmem_cache * cachep,void * objp,unsigned long caller)3377 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3378 				unsigned long caller)
3379 {
3380 	/* Put the object into the quarantine, don't touch it for now. */
3381 	if (kasan_slab_free(cachep, objp))
3382 		return;
3383 
3384 	___cache_free(cachep, objp, caller);
3385 }
3386 
___cache_free(struct kmem_cache * cachep,void * objp,unsigned long caller)3387 void ___cache_free(struct kmem_cache *cachep, void *objp,
3388 		unsigned long caller)
3389 {
3390 	struct array_cache *ac = cpu_cache_get(cachep);
3391 
3392 	check_irq_off();
3393 	kmemleak_free_recursive(objp, cachep->flags);
3394 	objp = cache_free_debugcheck(cachep, objp, caller);
3395 
3396 	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3397 
3398 	/*
3399 	 * Skip calling cache_free_alien() when the platform is not numa.
3400 	 * This will avoid cache misses that happen while accessing slabp (which
3401 	 * is per page memory  reference) to get nodeid. Instead use a global
3402 	 * variable to skip the call, which is mostly likely to be present in
3403 	 * the cache.
3404 	 */
3405 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3406 		return;
3407 
3408 	if (ac->avail < ac->limit) {
3409 		STATS_INC_FREEHIT(cachep);
3410 	} else {
3411 		STATS_INC_FREEMISS(cachep);
3412 		cache_flusharray(cachep, ac);
3413 	}
3414 
3415 	ac_put_obj(cachep, ac, objp);
3416 }
3417 
3418 /**
3419  * kmem_cache_alloc - Allocate an object
3420  * @cachep: The cache to allocate from.
3421  * @flags: See kmalloc().
3422  *
3423  * Allocate an object from this cache.  The flags are only relevant
3424  * if the cache has no available objects.
3425  */
kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)3426 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3427 {
3428 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3429 
3430 	kasan_slab_alloc(cachep, ret, flags);
3431 	trace_kmem_cache_alloc(_RET_IP_, ret,
3432 			       cachep->object_size, cachep->size, flags);
3433 
3434 	return ret;
3435 }
3436 EXPORT_SYMBOL(kmem_cache_alloc);
3437 
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)3438 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3439 {
3440 	__kmem_cache_free_bulk(s, size, p);
3441 }
3442 EXPORT_SYMBOL(kmem_cache_free_bulk);
3443 
kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)3444 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3445 								void **p)
3446 {
3447 	return __kmem_cache_alloc_bulk(s, flags, size, p);
3448 }
3449 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3450 
3451 #ifdef CONFIG_TRACING
3452 void *
kmem_cache_alloc_trace(struct kmem_cache * cachep,gfp_t flags,size_t size)3453 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3454 {
3455 	void *ret;
3456 
3457 	ret = slab_alloc(cachep, flags, _RET_IP_);
3458 
3459 	kasan_kmalloc(cachep, ret, size, flags);
3460 	trace_kmalloc(_RET_IP_, ret,
3461 		      size, cachep->size, flags);
3462 	return ret;
3463 }
3464 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3465 #endif
3466 
3467 #ifdef CONFIG_NUMA
3468 /**
3469  * kmem_cache_alloc_node - Allocate an object on the specified node
3470  * @cachep: The cache to allocate from.
3471  * @flags: See kmalloc().
3472  * @nodeid: node number of the target node.
3473  *
3474  * Identical to kmem_cache_alloc but it will allocate memory on the given
3475  * node, which can improve the performance for cpu bound structures.
3476  *
3477  * Fallback to other node is possible if __GFP_THISNODE is not set.
3478  */
kmem_cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid)3479 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3480 {
3481 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3482 
3483 	kasan_slab_alloc(cachep, ret, flags);
3484 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3485 				    cachep->object_size, cachep->size,
3486 				    flags, nodeid);
3487 
3488 	return ret;
3489 }
3490 EXPORT_SYMBOL(kmem_cache_alloc_node);
3491 
3492 #ifdef CONFIG_TRACING
kmem_cache_alloc_node_trace(struct kmem_cache * cachep,gfp_t flags,int nodeid,size_t size)3493 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3494 				  gfp_t flags,
3495 				  int nodeid,
3496 				  size_t size)
3497 {
3498 	void *ret;
3499 
3500 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3501 
3502 	kasan_kmalloc(cachep, ret, size, flags);
3503 	trace_kmalloc_node(_RET_IP_, ret,
3504 			   size, cachep->size,
3505 			   flags, nodeid);
3506 	return ret;
3507 }
3508 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3509 #endif
3510 
3511 static __always_inline void *
__do_kmalloc_node(size_t size,gfp_t flags,int node,unsigned long caller)3512 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3513 {
3514 	struct kmem_cache *cachep;
3515 	void *ret;
3516 
3517 	cachep = kmalloc_slab(size, flags);
3518 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3519 		return cachep;
3520 	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3521 	kasan_kmalloc(cachep, ret, size, flags);
3522 
3523 	return ret;
3524 }
3525 
__kmalloc_node(size_t size,gfp_t flags,int node)3526 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3527 {
3528 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3529 }
3530 EXPORT_SYMBOL(__kmalloc_node);
3531 
__kmalloc_node_track_caller(size_t size,gfp_t flags,int node,unsigned long caller)3532 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3533 		int node, unsigned long caller)
3534 {
3535 	return __do_kmalloc_node(size, flags, node, caller);
3536 }
3537 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3538 #endif /* CONFIG_NUMA */
3539 
3540 /**
3541  * __do_kmalloc - allocate memory
3542  * @size: how many bytes of memory are required.
3543  * @flags: the type of memory to allocate (see kmalloc).
3544  * @caller: function caller for debug tracking of the caller
3545  */
__do_kmalloc(size_t size,gfp_t flags,unsigned long caller)3546 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3547 					  unsigned long caller)
3548 {
3549 	struct kmem_cache *cachep;
3550 	void *ret;
3551 
3552 	cachep = kmalloc_slab(size, flags);
3553 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3554 		return cachep;
3555 	ret = slab_alloc(cachep, flags, caller);
3556 
3557 	kasan_kmalloc(cachep, ret, size, flags);
3558 	trace_kmalloc(caller, ret,
3559 		      size, cachep->size, flags);
3560 
3561 	return ret;
3562 }
3563 
__kmalloc(size_t size,gfp_t flags)3564 void *__kmalloc(size_t size, gfp_t flags)
3565 {
3566 	return __do_kmalloc(size, flags, _RET_IP_);
3567 }
3568 EXPORT_SYMBOL(__kmalloc);
3569 
__kmalloc_track_caller(size_t size,gfp_t flags,unsigned long caller)3570 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3571 {
3572 	return __do_kmalloc(size, flags, caller);
3573 }
3574 EXPORT_SYMBOL(__kmalloc_track_caller);
3575 
3576 /**
3577  * kmem_cache_free - Deallocate an object
3578  * @cachep: The cache the allocation was from.
3579  * @objp: The previously allocated object.
3580  *
3581  * Free an object which was previously allocated from this
3582  * cache.
3583  */
kmem_cache_free(struct kmem_cache * cachep,void * objp)3584 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3585 {
3586 	unsigned long flags;
3587 	cachep = cache_from_obj(cachep, objp);
3588 	if (!cachep)
3589 		return;
3590 
3591 	local_irq_save(flags);
3592 	debug_check_no_locks_freed(objp, cachep->object_size);
3593 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3594 		debug_check_no_obj_freed(objp, cachep->object_size);
3595 	__cache_free(cachep, objp, _RET_IP_);
3596 	local_irq_restore(flags);
3597 
3598 	trace_kmem_cache_free(_RET_IP_, objp);
3599 }
3600 EXPORT_SYMBOL(kmem_cache_free);
3601 
3602 /**
3603  * kfree - free previously allocated memory
3604  * @objp: pointer returned by kmalloc.
3605  *
3606  * If @objp is NULL, no operation is performed.
3607  *
3608  * Don't free memory not originally allocated by kmalloc()
3609  * or you will run into trouble.
3610  */
kfree(const void * objp)3611 void kfree(const void *objp)
3612 {
3613 	struct kmem_cache *c;
3614 	unsigned long flags;
3615 
3616 	trace_kfree(_RET_IP_, objp);
3617 
3618 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3619 		return;
3620 	local_irq_save(flags);
3621 	kfree_debugcheck(objp);
3622 	c = virt_to_cache(objp);
3623 	debug_check_no_locks_freed(objp, c->object_size);
3624 
3625 	debug_check_no_obj_freed(objp, c->object_size);
3626 	__cache_free(c, (void *)objp, _RET_IP_);
3627 	local_irq_restore(flags);
3628 }
3629 EXPORT_SYMBOL(kfree);
3630 
3631 /*
3632  * This initializes kmem_cache_node or resizes various caches for all nodes.
3633  */
alloc_kmem_cache_node(struct kmem_cache * cachep,gfp_t gfp)3634 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3635 {
3636 	int node;
3637 	struct kmem_cache_node *n;
3638 	struct array_cache *new_shared;
3639 	struct alien_cache **new_alien = NULL;
3640 
3641 	for_each_online_node(node) {
3642 
3643 		if (use_alien_caches) {
3644 			new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3645 			if (!new_alien)
3646 				goto fail;
3647 		}
3648 
3649 		new_shared = NULL;
3650 		if (cachep->shared) {
3651 			new_shared = alloc_arraycache(node,
3652 				cachep->shared*cachep->batchcount,
3653 					0xbaadf00d, gfp);
3654 			if (!new_shared) {
3655 				free_alien_cache(new_alien);
3656 				goto fail;
3657 			}
3658 		}
3659 
3660 		n = get_node(cachep, node);
3661 		if (n) {
3662 			struct array_cache *shared = n->shared;
3663 			LIST_HEAD(list);
3664 
3665 			spin_lock_irq(&n->list_lock);
3666 
3667 			if (shared)
3668 				free_block(cachep, shared->entry,
3669 						shared->avail, node, &list);
3670 
3671 			n->shared = new_shared;
3672 			if (!n->alien) {
3673 				n->alien = new_alien;
3674 				new_alien = NULL;
3675 			}
3676 			n->free_limit = (1 + nr_cpus_node(node)) *
3677 					cachep->batchcount + cachep->num;
3678 			spin_unlock_irq(&n->list_lock);
3679 			slabs_destroy(cachep, &list);
3680 			kfree(shared);
3681 			free_alien_cache(new_alien);
3682 			continue;
3683 		}
3684 		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3685 		if (!n) {
3686 			free_alien_cache(new_alien);
3687 			kfree(new_shared);
3688 			goto fail;
3689 		}
3690 
3691 		kmem_cache_node_init(n);
3692 		n->next_reap = jiffies + REAPTIMEOUT_NODE +
3693 				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3694 		n->shared = new_shared;
3695 		n->alien = new_alien;
3696 		n->free_limit = (1 + nr_cpus_node(node)) *
3697 					cachep->batchcount + cachep->num;
3698 		cachep->node[node] = n;
3699 	}
3700 	return 0;
3701 
3702 fail:
3703 	if (!cachep->list.next) {
3704 		/* Cache is not active yet. Roll back what we did */
3705 		node--;
3706 		while (node >= 0) {
3707 			n = get_node(cachep, node);
3708 			if (n) {
3709 				kfree(n->shared);
3710 				free_alien_cache(n->alien);
3711 				kfree(n);
3712 				cachep->node[node] = NULL;
3713 			}
3714 			node--;
3715 		}
3716 	}
3717 	return -ENOMEM;
3718 }
3719 
3720 /* Always called with the slab_mutex held */
__do_tune_cpucache(struct kmem_cache * cachep,int limit,int batchcount,int shared,gfp_t gfp)3721 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3722 				int batchcount, int shared, gfp_t gfp)
3723 {
3724 	struct array_cache __percpu *cpu_cache, *prev;
3725 	int cpu;
3726 
3727 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3728 	if (!cpu_cache)
3729 		return -ENOMEM;
3730 
3731 	prev = cachep->cpu_cache;
3732 	cachep->cpu_cache = cpu_cache;
3733 	kick_all_cpus_sync();
3734 
3735 	check_irq_on();
3736 	cachep->batchcount = batchcount;
3737 	cachep->limit = limit;
3738 	cachep->shared = shared;
3739 
3740 	if (!prev)
3741 		goto alloc_node;
3742 
3743 	for_each_online_cpu(cpu) {
3744 		LIST_HEAD(list);
3745 		int node;
3746 		struct kmem_cache_node *n;
3747 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3748 
3749 		node = cpu_to_mem(cpu);
3750 		n = get_node(cachep, node);
3751 		spin_lock_irq(&n->list_lock);
3752 		free_block(cachep, ac->entry, ac->avail, node, &list);
3753 		spin_unlock_irq(&n->list_lock);
3754 		slabs_destroy(cachep, &list);
3755 	}
3756 	free_percpu(prev);
3757 
3758 alloc_node:
3759 	return alloc_kmem_cache_node(cachep, gfp);
3760 }
3761 
do_tune_cpucache(struct kmem_cache * cachep,int limit,int batchcount,int shared,gfp_t gfp)3762 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3763 				int batchcount, int shared, gfp_t gfp)
3764 {
3765 	int ret;
3766 	struct kmem_cache *c;
3767 
3768 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3769 
3770 	if (slab_state < FULL)
3771 		return ret;
3772 
3773 	if ((ret < 0) || !is_root_cache(cachep))
3774 		return ret;
3775 
3776 	lockdep_assert_held(&slab_mutex);
3777 	for_each_memcg_cache(c, cachep) {
3778 		/* return value determined by the root cache only */
3779 		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3780 	}
3781 
3782 	return ret;
3783 }
3784 
3785 /* Called with slab_mutex held always */
enable_cpucache(struct kmem_cache * cachep,gfp_t gfp)3786 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3787 {
3788 	int err;
3789 	int limit = 0;
3790 	int shared = 0;
3791 	int batchcount = 0;
3792 
3793 	if (!is_root_cache(cachep)) {
3794 		struct kmem_cache *root = memcg_root_cache(cachep);
3795 		limit = root->limit;
3796 		shared = root->shared;
3797 		batchcount = root->batchcount;
3798 	}
3799 
3800 	if (limit && shared && batchcount)
3801 		goto skip_setup;
3802 	/*
3803 	 * The head array serves three purposes:
3804 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3805 	 * - reduce the number of spinlock operations.
3806 	 * - reduce the number of linked list operations on the slab and
3807 	 *   bufctl chains: array operations are cheaper.
3808 	 * The numbers are guessed, we should auto-tune as described by
3809 	 * Bonwick.
3810 	 */
3811 	if (cachep->size > 131072)
3812 		limit = 1;
3813 	else if (cachep->size > PAGE_SIZE)
3814 		limit = 8;
3815 	else if (cachep->size > 1024)
3816 		limit = 24;
3817 	else if (cachep->size > 256)
3818 		limit = 54;
3819 	else
3820 		limit = 120;
3821 
3822 	/*
3823 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3824 	 * allocation behaviour: Most allocs on one cpu, most free operations
3825 	 * on another cpu. For these cases, an efficient object passing between
3826 	 * cpus is necessary. This is provided by a shared array. The array
3827 	 * replaces Bonwick's magazine layer.
3828 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3829 	 * to a larger limit. Thus disabled by default.
3830 	 */
3831 	shared = 0;
3832 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3833 		shared = 8;
3834 
3835 #if DEBUG
3836 	/*
3837 	 * With debugging enabled, large batchcount lead to excessively long
3838 	 * periods with disabled local interrupts. Limit the batchcount
3839 	 */
3840 	if (limit > 32)
3841 		limit = 32;
3842 #endif
3843 	batchcount = (limit + 1) / 2;
3844 skip_setup:
3845 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3846 	if (err)
3847 		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3848 		       cachep->name, -err);
3849 	return err;
3850 }
3851 
3852 /*
3853  * Drain an array if it contains any elements taking the node lock only if
3854  * necessary. Note that the node listlock also protects the array_cache
3855  * if drain_array() is used on the shared array.
3856  */
drain_array(struct kmem_cache * cachep,struct kmem_cache_node * n,struct array_cache * ac,int force,int node)3857 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3858 			 struct array_cache *ac, int force, int node)
3859 {
3860 	LIST_HEAD(list);
3861 	int tofree;
3862 
3863 	if (!ac || !ac->avail)
3864 		return;
3865 	if (ac->touched && !force) {
3866 		ac->touched = 0;
3867 	} else {
3868 		spin_lock_irq(&n->list_lock);
3869 		if (ac->avail) {
3870 			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3871 			if (tofree > ac->avail)
3872 				tofree = (ac->avail + 1) / 2;
3873 			free_block(cachep, ac->entry, tofree, node, &list);
3874 			ac->avail -= tofree;
3875 			memmove(ac->entry, &(ac->entry[tofree]),
3876 				sizeof(void *) * ac->avail);
3877 		}
3878 		spin_unlock_irq(&n->list_lock);
3879 		slabs_destroy(cachep, &list);
3880 	}
3881 }
3882 
3883 /**
3884  * cache_reap - Reclaim memory from caches.
3885  * @w: work descriptor
3886  *
3887  * Called from workqueue/eventd every few seconds.
3888  * Purpose:
3889  * - clear the per-cpu caches for this CPU.
3890  * - return freeable pages to the main free memory pool.
3891  *
3892  * If we cannot acquire the cache chain mutex then just give up - we'll try
3893  * again on the next iteration.
3894  */
cache_reap(struct work_struct * w)3895 static void cache_reap(struct work_struct *w)
3896 {
3897 	struct kmem_cache *searchp;
3898 	struct kmem_cache_node *n;
3899 	int node = numa_mem_id();
3900 	struct delayed_work *work = to_delayed_work(w);
3901 
3902 	if (!mutex_trylock(&slab_mutex))
3903 		/* Give up. Setup the next iteration. */
3904 		goto out;
3905 
3906 	list_for_each_entry(searchp, &slab_caches, list) {
3907 		check_irq_on();
3908 
3909 		/*
3910 		 * We only take the node lock if absolutely necessary and we
3911 		 * have established with reasonable certainty that
3912 		 * we can do some work if the lock was obtained.
3913 		 */
3914 		n = get_node(searchp, node);
3915 
3916 		reap_alien(searchp, n);
3917 
3918 		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3919 
3920 		/*
3921 		 * These are racy checks but it does not matter
3922 		 * if we skip one check or scan twice.
3923 		 */
3924 		if (time_after(n->next_reap, jiffies))
3925 			goto next;
3926 
3927 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
3928 
3929 		drain_array(searchp, n, n->shared, 0, node);
3930 
3931 		if (n->free_touched)
3932 			n->free_touched = 0;
3933 		else {
3934 			int freed;
3935 
3936 			freed = drain_freelist(searchp, n, (n->free_limit +
3937 				5 * searchp->num - 1) / (5 * searchp->num));
3938 			STATS_ADD_REAPED(searchp, freed);
3939 		}
3940 next:
3941 		cond_resched();
3942 	}
3943 	check_irq_on();
3944 	mutex_unlock(&slab_mutex);
3945 	next_reap_node();
3946 out:
3947 	/* Set up the next iteration */
3948 	schedule_delayed_work_on(smp_processor_id(), work,
3949 				round_jiffies_relative(REAPTIMEOUT_AC));
3950 }
3951 
3952 #ifdef CONFIG_SLABINFO
get_slabinfo(struct kmem_cache * cachep,struct slabinfo * sinfo)3953 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3954 {
3955 	struct page *page;
3956 	unsigned long active_objs;
3957 	unsigned long num_objs;
3958 	unsigned long active_slabs = 0;
3959 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3960 	const char *name;
3961 	char *error = NULL;
3962 	int node;
3963 	struct kmem_cache_node *n;
3964 
3965 	active_objs = 0;
3966 	num_slabs = 0;
3967 	for_each_kmem_cache_node(cachep, node, n) {
3968 
3969 		check_irq_on();
3970 		spin_lock_irq(&n->list_lock);
3971 
3972 		list_for_each_entry(page, &n->slabs_full, lru) {
3973 			if (page->active != cachep->num && !error)
3974 				error = "slabs_full accounting error";
3975 			active_objs += cachep->num;
3976 			active_slabs++;
3977 		}
3978 		list_for_each_entry(page, &n->slabs_partial, lru) {
3979 			if (page->active == cachep->num && !error)
3980 				error = "slabs_partial accounting error";
3981 			if (!page->active && !error)
3982 				error = "slabs_partial accounting error";
3983 			active_objs += page->active;
3984 			active_slabs++;
3985 		}
3986 		list_for_each_entry(page, &n->slabs_free, lru) {
3987 			if (page->active && !error)
3988 				error = "slabs_free accounting error";
3989 			num_slabs++;
3990 		}
3991 		free_objects += n->free_objects;
3992 		if (n->shared)
3993 			shared_avail += n->shared->avail;
3994 
3995 		spin_unlock_irq(&n->list_lock);
3996 	}
3997 	num_slabs += active_slabs;
3998 	num_objs = num_slabs * cachep->num;
3999 	if (num_objs - active_objs != free_objects && !error)
4000 		error = "free_objects accounting error";
4001 
4002 	name = cachep->name;
4003 	if (error)
4004 		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4005 
4006 	sinfo->active_objs = active_objs;
4007 	sinfo->num_objs = num_objs;
4008 	sinfo->active_slabs = active_slabs;
4009 	sinfo->num_slabs = num_slabs;
4010 	sinfo->shared_avail = shared_avail;
4011 	sinfo->limit = cachep->limit;
4012 	sinfo->batchcount = cachep->batchcount;
4013 	sinfo->shared = cachep->shared;
4014 	sinfo->objects_per_slab = cachep->num;
4015 	sinfo->cache_order = cachep->gfporder;
4016 }
4017 
slabinfo_show_stats(struct seq_file * m,struct kmem_cache * cachep)4018 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4019 {
4020 #if STATS
4021 	{			/* node stats */
4022 		unsigned long high = cachep->high_mark;
4023 		unsigned long allocs = cachep->num_allocations;
4024 		unsigned long grown = cachep->grown;
4025 		unsigned long reaped = cachep->reaped;
4026 		unsigned long errors = cachep->errors;
4027 		unsigned long max_freeable = cachep->max_freeable;
4028 		unsigned long node_allocs = cachep->node_allocs;
4029 		unsigned long node_frees = cachep->node_frees;
4030 		unsigned long overflows = cachep->node_overflow;
4031 
4032 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4033 			   allocs, high, grown,
4034 			   reaped, errors, max_freeable, node_allocs,
4035 			   node_frees, overflows);
4036 	}
4037 	/* cpu stats */
4038 	{
4039 		unsigned long allochit = atomic_read(&cachep->allochit);
4040 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4041 		unsigned long freehit = atomic_read(&cachep->freehit);
4042 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4043 
4044 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4045 			   allochit, allocmiss, freehit, freemiss);
4046 	}
4047 #endif
4048 }
4049 
4050 #define MAX_SLABINFO_WRITE 128
4051 /**
4052  * slabinfo_write - Tuning for the slab allocator
4053  * @file: unused
4054  * @buffer: user buffer
4055  * @count: data length
4056  * @ppos: unused
4057  */
slabinfo_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)4058 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4059 		       size_t count, loff_t *ppos)
4060 {
4061 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4062 	int limit, batchcount, shared, res;
4063 	struct kmem_cache *cachep;
4064 
4065 	if (count > MAX_SLABINFO_WRITE)
4066 		return -EINVAL;
4067 	if (copy_from_user(&kbuf, buffer, count))
4068 		return -EFAULT;
4069 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4070 
4071 	tmp = strchr(kbuf, ' ');
4072 	if (!tmp)
4073 		return -EINVAL;
4074 	*tmp = '\0';
4075 	tmp++;
4076 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4077 		return -EINVAL;
4078 
4079 	/* Find the cache in the chain of caches. */
4080 	mutex_lock(&slab_mutex);
4081 	res = -EINVAL;
4082 	list_for_each_entry(cachep, &slab_caches, list) {
4083 		if (!strcmp(cachep->name, kbuf)) {
4084 			if (limit < 1 || batchcount < 1 ||
4085 					batchcount > limit || shared < 0) {
4086 				res = 0;
4087 			} else {
4088 				res = do_tune_cpucache(cachep, limit,
4089 						       batchcount, shared,
4090 						       GFP_KERNEL);
4091 			}
4092 			break;
4093 		}
4094 	}
4095 	mutex_unlock(&slab_mutex);
4096 	if (res >= 0)
4097 		res = count;
4098 	return res;
4099 }
4100 
4101 #ifdef CONFIG_DEBUG_SLAB_LEAK
4102 
add_caller(unsigned long * n,unsigned long v)4103 static inline int add_caller(unsigned long *n, unsigned long v)
4104 {
4105 	unsigned long *p;
4106 	int l;
4107 	if (!v)
4108 		return 1;
4109 	l = n[1];
4110 	p = n + 2;
4111 	while (l) {
4112 		int i = l/2;
4113 		unsigned long *q = p + 2 * i;
4114 		if (*q == v) {
4115 			q[1]++;
4116 			return 1;
4117 		}
4118 		if (*q > v) {
4119 			l = i;
4120 		} else {
4121 			p = q + 2;
4122 			l -= i + 1;
4123 		}
4124 	}
4125 	if (++n[1] == n[0])
4126 		return 0;
4127 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4128 	p[0] = v;
4129 	p[1] = 1;
4130 	return 1;
4131 }
4132 
handle_slab(unsigned long * n,struct kmem_cache * c,struct page * page)4133 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4134 						struct page *page)
4135 {
4136 	void *p;
4137 	int i, j;
4138 	unsigned long v;
4139 
4140 	if (n[0] == n[1])
4141 		return;
4142 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4143 		bool active = true;
4144 
4145 		for (j = page->active; j < c->num; j++) {
4146 			if (get_free_obj(page, j) == i) {
4147 				active = false;
4148 				break;
4149 			}
4150 		}
4151 
4152 		if (!active)
4153 			continue;
4154 
4155 		/*
4156 		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4157 		 * mapping is established when actual object allocation and
4158 		 * we could mistakenly access the unmapped object in the cpu
4159 		 * cache.
4160 		 */
4161 		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4162 			continue;
4163 
4164 		if (!add_caller(n, v))
4165 			return;
4166 	}
4167 }
4168 
show_symbol(struct seq_file * m,unsigned long address)4169 static void show_symbol(struct seq_file *m, unsigned long address)
4170 {
4171 #ifdef CONFIG_KALLSYMS
4172 	unsigned long offset, size;
4173 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4174 
4175 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4176 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4177 		if (modname[0])
4178 			seq_printf(m, " [%s]", modname);
4179 		return;
4180 	}
4181 #endif
4182 	seq_printf(m, "%p", (void *)address);
4183 }
4184 
leaks_show(struct seq_file * m,void * p)4185 static int leaks_show(struct seq_file *m, void *p)
4186 {
4187 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4188 	struct page *page;
4189 	struct kmem_cache_node *n;
4190 	const char *name;
4191 	unsigned long *x = m->private;
4192 	int node;
4193 	int i;
4194 
4195 	if (!(cachep->flags & SLAB_STORE_USER))
4196 		return 0;
4197 	if (!(cachep->flags & SLAB_RED_ZONE))
4198 		return 0;
4199 
4200 	/*
4201 	 * Set store_user_clean and start to grab stored user information
4202 	 * for all objects on this cache. If some alloc/free requests comes
4203 	 * during the processing, information would be wrong so restart
4204 	 * whole processing.
4205 	 */
4206 	do {
4207 		set_store_user_clean(cachep);
4208 		drain_cpu_caches(cachep);
4209 
4210 		x[1] = 0;
4211 
4212 		for_each_kmem_cache_node(cachep, node, n) {
4213 
4214 			check_irq_on();
4215 			spin_lock_irq(&n->list_lock);
4216 
4217 			list_for_each_entry(page, &n->slabs_full, lru)
4218 				handle_slab(x, cachep, page);
4219 			list_for_each_entry(page, &n->slabs_partial, lru)
4220 				handle_slab(x, cachep, page);
4221 			spin_unlock_irq(&n->list_lock);
4222 		}
4223 	} while (!is_store_user_clean(cachep));
4224 
4225 	name = cachep->name;
4226 	if (x[0] == x[1]) {
4227 		/* Increase the buffer size */
4228 		mutex_unlock(&slab_mutex);
4229 		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4230 		if (!m->private) {
4231 			/* Too bad, we are really out */
4232 			m->private = x;
4233 			mutex_lock(&slab_mutex);
4234 			return -ENOMEM;
4235 		}
4236 		*(unsigned long *)m->private = x[0] * 2;
4237 		kfree(x);
4238 		mutex_lock(&slab_mutex);
4239 		/* Now make sure this entry will be retried */
4240 		m->count = m->size;
4241 		return 0;
4242 	}
4243 	for (i = 0; i < x[1]; i++) {
4244 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4245 		show_symbol(m, x[2*i+2]);
4246 		seq_putc(m, '\n');
4247 	}
4248 
4249 	return 0;
4250 }
4251 
4252 static const struct seq_operations slabstats_op = {
4253 	.start = slab_start,
4254 	.next = slab_next,
4255 	.stop = slab_stop,
4256 	.show = leaks_show,
4257 };
4258 
slabstats_open(struct inode * inode,struct file * file)4259 static int slabstats_open(struct inode *inode, struct file *file)
4260 {
4261 	unsigned long *n;
4262 
4263 	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4264 	if (!n)
4265 		return -ENOMEM;
4266 
4267 	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4268 
4269 	return 0;
4270 }
4271 
4272 static const struct file_operations proc_slabstats_operations = {
4273 	.open		= slabstats_open,
4274 	.read		= seq_read,
4275 	.llseek		= seq_lseek,
4276 	.release	= seq_release_private,
4277 };
4278 #endif
4279 
slab_proc_init(void)4280 static int __init slab_proc_init(void)
4281 {
4282 #ifdef CONFIG_DEBUG_SLAB_LEAK
4283 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4284 #endif
4285 	return 0;
4286 }
4287 module_init(slab_proc_init);
4288 #endif
4289 
4290 #ifdef CONFIG_HARDENED_USERCOPY
4291 /*
4292  * Rejects objects that are incorrectly sized.
4293  *
4294  * Returns NULL if check passes, otherwise const char * to name of cache
4295  * to indicate an error.
4296  */
__check_heap_object(const void * ptr,unsigned long n,struct page * page)4297 const char *__check_heap_object(const void *ptr, unsigned long n,
4298 				struct page *page)
4299 {
4300 	struct kmem_cache *cachep;
4301 	unsigned int objnr;
4302 	unsigned long offset;
4303 
4304 	/* Find and validate object. */
4305 	cachep = page->slab_cache;
4306 	objnr = obj_to_index(cachep, page, (void *)ptr);
4307 	BUG_ON(objnr >= cachep->num);
4308 
4309 	/* Find offset within object. */
4310 	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4311 
4312 	/* Allow address range falling entirely within object size. */
4313 	if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4314 		return NULL;
4315 
4316 	return cachep->name;
4317 }
4318 #endif /* CONFIG_HARDENED_USERCOPY */
4319 
4320 /**
4321  * ksize - get the actual amount of memory allocated for a given object
4322  * @objp: Pointer to the object
4323  *
4324  * kmalloc may internally round up allocations and return more memory
4325  * than requested. ksize() can be used to determine the actual amount of
4326  * memory allocated. The caller may use this additional memory, even though
4327  * a smaller amount of memory was initially specified with the kmalloc call.
4328  * The caller must guarantee that objp points to a valid object previously
4329  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4330  * must not be freed during the duration of the call.
4331  */
ksize(const void * objp)4332 size_t ksize(const void *objp)
4333 {
4334 	size_t size;
4335 
4336 	BUG_ON(!objp);
4337 	if (unlikely(objp == ZERO_SIZE_PTR))
4338 		return 0;
4339 
4340 	size = virt_to_cache(objp)->object_size;
4341 	/* We assume that ksize callers could use the whole allocated area,
4342 	 * so we need to unpoison this area.
4343 	 */
4344 	kasan_krealloc(objp, size, GFP_NOWAIT);
4345 
4346 	return size;
4347 }
4348 EXPORT_SYMBOL(ksize);
4349