1 /*
2 * SLOB Allocator: Simple List Of Blocks
3 *
4 * Matt Mackall <mpm@selenic.com> 12/30/03
5 *
6 * NUMA support by Paul Mundt, 2007.
7 *
8 * How SLOB works:
9 *
10 * The core of SLOB is a traditional K&R style heap allocator, with
11 * support for returning aligned objects. The granularity of this
12 * allocator is as little as 2 bytes, however typically most architectures
13 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
14 *
15 * The slob heap is a set of linked list of pages from alloc_pages(),
16 * and within each page, there is a singly-linked list of free blocks
17 * (slob_t). The heap is grown on demand. To reduce fragmentation,
18 * heap pages are segregated into three lists, with objects less than
19 * 256 bytes, objects less than 1024 bytes, and all other objects.
20 *
21 * Allocation from heap involves first searching for a page with
22 * sufficient free blocks (using a next-fit-like approach) followed by
23 * a first-fit scan of the page. Deallocation inserts objects back
24 * into the free list in address order, so this is effectively an
25 * address-ordered first fit.
26 *
27 * Above this is an implementation of kmalloc/kfree. Blocks returned
28 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
29 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
30 * alloc_pages() directly, allocating compound pages so the page order
31 * does not have to be separately tracked.
32 * These objects are detected in kfree() because PageSlab()
33 * is false for them.
34 *
35 * SLAB is emulated on top of SLOB by simply calling constructors and
36 * destructors for every SLAB allocation. Objects are returned with the
37 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
38 * case the low-level allocator will fragment blocks to create the proper
39 * alignment. Again, objects of page-size or greater are allocated by
40 * calling alloc_pages(). As SLAB objects know their size, no separate
41 * size bookkeeping is necessary and there is essentially no allocation
42 * space overhead, and compound pages aren't needed for multi-page
43 * allocations.
44 *
45 * NUMA support in SLOB is fairly simplistic, pushing most of the real
46 * logic down to the page allocator, and simply doing the node accounting
47 * on the upper levels. In the event that a node id is explicitly
48 * provided, __alloc_pages_node() with the specified node id is used
49 * instead. The common case (or when the node id isn't explicitly provided)
50 * will default to the current node, as per numa_node_id().
51 *
52 * Node aware pages are still inserted in to the global freelist, and
53 * these are scanned for by matching against the node id encoded in the
54 * page flags. As a result, block allocations that can be satisfied from
55 * the freelist will only be done so on pages residing on the same node,
56 * in order to prevent random node placement.
57 */
58
59 #include <linux/kernel.h>
60 #include <linux/slab.h>
61
62 #include <linux/mm.h>
63 #include <linux/swap.h> /* struct reclaim_state */
64 #include <linux/cache.h>
65 #include <linux/init.h>
66 #include <linux/export.h>
67 #include <linux/rcupdate.h>
68 #include <linux/list.h>
69 #include <linux/kmemleak.h>
70
71 #include <trace/events/kmem.h>
72
73 #include <linux/atomic.h>
74
75 #include "slab.h"
76 /*
77 * slob_block has a field 'units', which indicates size of block if +ve,
78 * or offset of next block if -ve (in SLOB_UNITs).
79 *
80 * Free blocks of size 1 unit simply contain the offset of the next block.
81 * Those with larger size contain their size in the first SLOB_UNIT of
82 * memory, and the offset of the next free block in the second SLOB_UNIT.
83 */
84 #if PAGE_SIZE <= (32767 * 2)
85 typedef s16 slobidx_t;
86 #else
87 typedef s32 slobidx_t;
88 #endif
89
90 struct slob_block {
91 slobidx_t units;
92 };
93 typedef struct slob_block slob_t;
94
95 /*
96 * All partially free slob pages go on these lists.
97 */
98 #define SLOB_BREAK1 256
99 #define SLOB_BREAK2 1024
100 static LIST_HEAD(free_slob_small);
101 static LIST_HEAD(free_slob_medium);
102 static LIST_HEAD(free_slob_large);
103
104 /*
105 * slob_page_free: true for pages on free_slob_pages list.
106 */
slob_page_free(struct page * sp)107 static inline int slob_page_free(struct page *sp)
108 {
109 return PageSlobFree(sp);
110 }
111
set_slob_page_free(struct page * sp,struct list_head * list)112 static void set_slob_page_free(struct page *sp, struct list_head *list)
113 {
114 list_add(&sp->lru, list);
115 __SetPageSlobFree(sp);
116 }
117
clear_slob_page_free(struct page * sp)118 static inline void clear_slob_page_free(struct page *sp)
119 {
120 list_del(&sp->lru);
121 __ClearPageSlobFree(sp);
122 }
123
124 #define SLOB_UNIT sizeof(slob_t)
125 #define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT)
126
127 /*
128 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
129 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
130 * the block using call_rcu.
131 */
132 struct slob_rcu {
133 struct rcu_head head;
134 int size;
135 };
136
137 /*
138 * slob_lock protects all slob allocator structures.
139 */
140 static DEFINE_SPINLOCK(slob_lock);
141
142 /*
143 * Encode the given size and next info into a free slob block s.
144 */
set_slob(slob_t * s,slobidx_t size,slob_t * next)145 static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
146 {
147 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
148 slobidx_t offset = next - base;
149
150 if (size > 1) {
151 s[0].units = size;
152 s[1].units = offset;
153 } else
154 s[0].units = -offset;
155 }
156
157 /*
158 * Return the size of a slob block.
159 */
slob_units(slob_t * s)160 static slobidx_t slob_units(slob_t *s)
161 {
162 if (s->units > 0)
163 return s->units;
164 return 1;
165 }
166
167 /*
168 * Return the next free slob block pointer after this one.
169 */
slob_next(slob_t * s)170 static slob_t *slob_next(slob_t *s)
171 {
172 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
173 slobidx_t next;
174
175 if (s[0].units < 0)
176 next = -s[0].units;
177 else
178 next = s[1].units;
179 return base+next;
180 }
181
182 /*
183 * Returns true if s is the last free block in its page.
184 */
slob_last(slob_t * s)185 static int slob_last(slob_t *s)
186 {
187 return !((unsigned long)slob_next(s) & ~PAGE_MASK);
188 }
189
slob_new_pages(gfp_t gfp,int order,int node)190 static void *slob_new_pages(gfp_t gfp, int order, int node)
191 {
192 void *page;
193
194 #ifdef CONFIG_NUMA
195 if (node != NUMA_NO_NODE)
196 page = __alloc_pages_node(node, gfp, order);
197 else
198 #endif
199 page = alloc_pages(gfp, order);
200
201 if (!page)
202 return NULL;
203
204 return page_address(page);
205 }
206
slob_free_pages(void * b,int order)207 static void slob_free_pages(void *b, int order)
208 {
209 if (current->reclaim_state)
210 current->reclaim_state->reclaimed_slab += 1 << order;
211 free_pages((unsigned long)b, order);
212 }
213
214 /*
215 * Allocate a slob block within a given slob_page sp.
216 */
slob_page_alloc(struct page * sp,size_t size,int align)217 static void *slob_page_alloc(struct page *sp, size_t size, int align)
218 {
219 slob_t *prev, *cur, *aligned = NULL;
220 int delta = 0, units = SLOB_UNITS(size);
221
222 for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
223 slobidx_t avail = slob_units(cur);
224
225 if (align) {
226 aligned = (slob_t *)ALIGN((unsigned long)cur, align);
227 delta = aligned - cur;
228 }
229 if (avail >= units + delta) { /* room enough? */
230 slob_t *next;
231
232 if (delta) { /* need to fragment head to align? */
233 next = slob_next(cur);
234 set_slob(aligned, avail - delta, next);
235 set_slob(cur, delta, aligned);
236 prev = cur;
237 cur = aligned;
238 avail = slob_units(cur);
239 }
240
241 next = slob_next(cur);
242 if (avail == units) { /* exact fit? unlink. */
243 if (prev)
244 set_slob(prev, slob_units(prev), next);
245 else
246 sp->freelist = next;
247 } else { /* fragment */
248 if (prev)
249 set_slob(prev, slob_units(prev), cur + units);
250 else
251 sp->freelist = cur + units;
252 set_slob(cur + units, avail - units, next);
253 }
254
255 sp->units -= units;
256 if (!sp->units)
257 clear_slob_page_free(sp);
258 return cur;
259 }
260 if (slob_last(cur))
261 return NULL;
262 }
263 }
264
265 /*
266 * slob_alloc: entry point into the slob allocator.
267 */
slob_alloc(size_t size,gfp_t gfp,int align,int node)268 static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
269 {
270 struct page *sp;
271 struct list_head *prev;
272 struct list_head *slob_list;
273 slob_t *b = NULL;
274 unsigned long flags;
275
276 if (size < SLOB_BREAK1)
277 slob_list = &free_slob_small;
278 else if (size < SLOB_BREAK2)
279 slob_list = &free_slob_medium;
280 else
281 slob_list = &free_slob_large;
282
283 spin_lock_irqsave(&slob_lock, flags);
284 /* Iterate through each partially free page, try to find room */
285 list_for_each_entry(sp, slob_list, lru) {
286 #ifdef CONFIG_NUMA
287 /*
288 * If there's a node specification, search for a partial
289 * page with a matching node id in the freelist.
290 */
291 if (node != NUMA_NO_NODE && page_to_nid(sp) != node)
292 continue;
293 #endif
294 /* Enough room on this page? */
295 if (sp->units < SLOB_UNITS(size))
296 continue;
297
298 /* Attempt to alloc */
299 prev = sp->lru.prev;
300 b = slob_page_alloc(sp, size, align);
301 if (!b)
302 continue;
303
304 /* Improve fragment distribution and reduce our average
305 * search time by starting our next search here. (see
306 * Knuth vol 1, sec 2.5, pg 449) */
307 if (prev != slob_list->prev &&
308 slob_list->next != prev->next)
309 list_move_tail(slob_list, prev->next);
310 break;
311 }
312 spin_unlock_irqrestore(&slob_lock, flags);
313
314 /* Not enough space: must allocate a new page */
315 if (!b) {
316 b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
317 if (!b)
318 return NULL;
319 sp = virt_to_page(b);
320 __SetPageSlab(sp);
321
322 spin_lock_irqsave(&slob_lock, flags);
323 sp->units = SLOB_UNITS(PAGE_SIZE);
324 sp->freelist = b;
325 INIT_LIST_HEAD(&sp->lru);
326 set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
327 set_slob_page_free(sp, slob_list);
328 b = slob_page_alloc(sp, size, align);
329 BUG_ON(!b);
330 spin_unlock_irqrestore(&slob_lock, flags);
331 }
332 if (unlikely((gfp & __GFP_ZERO) && b))
333 memset(b, 0, size);
334 return b;
335 }
336
337 /*
338 * slob_free: entry point into the slob allocator.
339 */
slob_free(void * block,int size)340 static void slob_free(void *block, int size)
341 {
342 struct page *sp;
343 slob_t *prev, *next, *b = (slob_t *)block;
344 slobidx_t units;
345 unsigned long flags;
346 struct list_head *slob_list;
347
348 if (unlikely(ZERO_OR_NULL_PTR(block)))
349 return;
350 BUG_ON(!size);
351
352 sp = virt_to_page(block);
353 units = SLOB_UNITS(size);
354
355 spin_lock_irqsave(&slob_lock, flags);
356
357 if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
358 /* Go directly to page allocator. Do not pass slob allocator */
359 if (slob_page_free(sp))
360 clear_slob_page_free(sp);
361 spin_unlock_irqrestore(&slob_lock, flags);
362 __ClearPageSlab(sp);
363 page_mapcount_reset(sp);
364 slob_free_pages(b, 0);
365 return;
366 }
367
368 if (!slob_page_free(sp)) {
369 /* This slob page is about to become partially free. Easy! */
370 sp->units = units;
371 sp->freelist = b;
372 set_slob(b, units,
373 (void *)((unsigned long)(b +
374 SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
375 if (size < SLOB_BREAK1)
376 slob_list = &free_slob_small;
377 else if (size < SLOB_BREAK2)
378 slob_list = &free_slob_medium;
379 else
380 slob_list = &free_slob_large;
381 set_slob_page_free(sp, slob_list);
382 goto out;
383 }
384
385 /*
386 * Otherwise the page is already partially free, so find reinsertion
387 * point.
388 */
389 sp->units += units;
390
391 if (b < (slob_t *)sp->freelist) {
392 if (b + units == sp->freelist) {
393 units += slob_units(sp->freelist);
394 sp->freelist = slob_next(sp->freelist);
395 }
396 set_slob(b, units, sp->freelist);
397 sp->freelist = b;
398 } else {
399 prev = sp->freelist;
400 next = slob_next(prev);
401 while (b > next) {
402 prev = next;
403 next = slob_next(prev);
404 }
405
406 if (!slob_last(prev) && b + units == next) {
407 units += slob_units(next);
408 set_slob(b, units, slob_next(next));
409 } else
410 set_slob(b, units, next);
411
412 if (prev + slob_units(prev) == b) {
413 units = slob_units(b) + slob_units(prev);
414 set_slob(prev, units, slob_next(b));
415 } else
416 set_slob(prev, slob_units(prev), b);
417 }
418 out:
419 spin_unlock_irqrestore(&slob_lock, flags);
420 }
421
422 /*
423 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
424 */
425
426 static __always_inline void *
__do_kmalloc_node(size_t size,gfp_t gfp,int node,unsigned long caller)427 __do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
428 {
429 unsigned int *m;
430 int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
431 void *ret;
432
433 gfp &= gfp_allowed_mask;
434
435 lockdep_trace_alloc(gfp);
436
437 if (size < PAGE_SIZE - align) {
438 if (!size)
439 return ZERO_SIZE_PTR;
440
441 m = slob_alloc(size + align, gfp, align, node);
442
443 if (!m)
444 return NULL;
445 *m = size;
446 ret = (void *)m + align;
447
448 trace_kmalloc_node(caller, ret,
449 size, size + align, gfp, node);
450 } else {
451 unsigned int order = get_order(size);
452
453 if (likely(order))
454 gfp |= __GFP_COMP;
455 ret = slob_new_pages(gfp, order, node);
456
457 trace_kmalloc_node(caller, ret,
458 size, PAGE_SIZE << order, gfp, node);
459 }
460
461 kmemleak_alloc(ret, size, 1, gfp);
462 return ret;
463 }
464
__kmalloc(size_t size,gfp_t gfp)465 void *__kmalloc(size_t size, gfp_t gfp)
466 {
467 return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
468 }
469 EXPORT_SYMBOL(__kmalloc);
470
__kmalloc_track_caller(size_t size,gfp_t gfp,unsigned long caller)471 void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
472 {
473 return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
474 }
475 EXPORT_SYMBOL(__kmalloc_track_caller);
476
477 #ifdef CONFIG_NUMA
__kmalloc_node_track_caller(size_t size,gfp_t gfp,int node,unsigned long caller)478 void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
479 int node, unsigned long caller)
480 {
481 return __do_kmalloc_node(size, gfp, node, caller);
482 }
483 EXPORT_SYMBOL(__kmalloc_node_track_caller);
484 #endif
485
kfree(const void * block)486 void kfree(const void *block)
487 {
488 struct page *sp;
489
490 trace_kfree(_RET_IP_, block);
491
492 if (unlikely(ZERO_OR_NULL_PTR(block)))
493 return;
494 kmemleak_free(block);
495
496 sp = virt_to_page(block);
497 if (PageSlab(sp)) {
498 int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
499 unsigned int *m = (unsigned int *)(block - align);
500 slob_free(m, *m + align);
501 } else
502 __free_pages(sp, compound_order(sp));
503 }
504 EXPORT_SYMBOL(kfree);
505
506 /* can't use ksize for kmem_cache_alloc memory, only kmalloc */
ksize(const void * block)507 size_t ksize(const void *block)
508 {
509 struct page *sp;
510 int align;
511 unsigned int *m;
512
513 BUG_ON(!block);
514 if (unlikely(block == ZERO_SIZE_PTR))
515 return 0;
516
517 sp = virt_to_page(block);
518 if (unlikely(!PageSlab(sp)))
519 return PAGE_SIZE << compound_order(sp);
520
521 align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
522 m = (unsigned int *)(block - align);
523 return SLOB_UNITS(*m) * SLOB_UNIT;
524 }
525 EXPORT_SYMBOL(ksize);
526
__kmem_cache_create(struct kmem_cache * c,unsigned long flags)527 int __kmem_cache_create(struct kmem_cache *c, unsigned long flags)
528 {
529 if (flags & SLAB_DESTROY_BY_RCU) {
530 /* leave room for rcu footer at the end of object */
531 c->size += sizeof(struct slob_rcu);
532 }
533 c->flags = flags;
534 return 0;
535 }
536
slob_alloc_node(struct kmem_cache * c,gfp_t flags,int node)537 static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
538 {
539 void *b;
540
541 flags &= gfp_allowed_mask;
542
543 lockdep_trace_alloc(flags);
544
545 if (c->size < PAGE_SIZE) {
546 b = slob_alloc(c->size, flags, c->align, node);
547 trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
548 SLOB_UNITS(c->size) * SLOB_UNIT,
549 flags, node);
550 } else {
551 b = slob_new_pages(flags, get_order(c->size), node);
552 trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
553 PAGE_SIZE << get_order(c->size),
554 flags, node);
555 }
556
557 if (b && c->ctor)
558 c->ctor(b);
559
560 kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
561 return b;
562 }
563
kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)564 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
565 {
566 return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
567 }
568 EXPORT_SYMBOL(kmem_cache_alloc);
569
570 #ifdef CONFIG_NUMA
__kmalloc_node(size_t size,gfp_t gfp,int node)571 void *__kmalloc_node(size_t size, gfp_t gfp, int node)
572 {
573 return __do_kmalloc_node(size, gfp, node, _RET_IP_);
574 }
575 EXPORT_SYMBOL(__kmalloc_node);
576
kmem_cache_alloc_node(struct kmem_cache * cachep,gfp_t gfp,int node)577 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
578 {
579 return slob_alloc_node(cachep, gfp, node);
580 }
581 EXPORT_SYMBOL(kmem_cache_alloc_node);
582 #endif
583
__kmem_cache_free(void * b,int size)584 static void __kmem_cache_free(void *b, int size)
585 {
586 if (size < PAGE_SIZE)
587 slob_free(b, size);
588 else
589 slob_free_pages(b, get_order(size));
590 }
591
kmem_rcu_free(struct rcu_head * head)592 static void kmem_rcu_free(struct rcu_head *head)
593 {
594 struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
595 void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
596
597 __kmem_cache_free(b, slob_rcu->size);
598 }
599
kmem_cache_free(struct kmem_cache * c,void * b)600 void kmem_cache_free(struct kmem_cache *c, void *b)
601 {
602 kmemleak_free_recursive(b, c->flags);
603 if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
604 struct slob_rcu *slob_rcu;
605 slob_rcu = b + (c->size - sizeof(struct slob_rcu));
606 slob_rcu->size = c->size;
607 call_rcu(&slob_rcu->head, kmem_rcu_free);
608 } else {
609 __kmem_cache_free(b, c->size);
610 }
611
612 trace_kmem_cache_free(_RET_IP_, b);
613 }
614 EXPORT_SYMBOL(kmem_cache_free);
615
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)616 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
617 {
618 __kmem_cache_free_bulk(s, size, p);
619 }
620 EXPORT_SYMBOL(kmem_cache_free_bulk);
621
kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)622 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
623 void **p)
624 {
625 return __kmem_cache_alloc_bulk(s, flags, size, p);
626 }
627 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
628
__kmem_cache_shutdown(struct kmem_cache * c)629 int __kmem_cache_shutdown(struct kmem_cache *c)
630 {
631 /* No way to check for remaining objects */
632 return 0;
633 }
634
__kmem_cache_shrink(struct kmem_cache * d,bool deactivate)635 int __kmem_cache_shrink(struct kmem_cache *d, bool deactivate)
636 {
637 return 0;
638 }
639
640 struct kmem_cache kmem_cache_boot = {
641 .name = "kmem_cache",
642 .size = sizeof(struct kmem_cache),
643 .flags = SLAB_PANIC,
644 .align = ARCH_KMALLOC_MINALIGN,
645 };
646
kmem_cache_init(void)647 void __init kmem_cache_init(void)
648 {
649 kmem_cache = &kmem_cache_boot;
650 slab_state = UP;
651 }
652
kmem_cache_init_late(void)653 void __init kmem_cache_init_late(void)
654 {
655 slab_state = FULL;
656 }
657