1 /*
2 * Syncookies implementation for the Linux kernel
3 *
4 * Copyright (C) 1997 Andi Kleen
5 * Based on ideas by D.J.Bernstein and Eric Schenk.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/tcp.h>
14 #include <linux/slab.h>
15 #include <linux/random.h>
16 #include <linux/cryptohash.h>
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <net/tcp.h>
20 #include <net/route.h>
21
22 extern int sysctl_tcp_syncookies;
23
24 static u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS] __read_mostly;
25
26 #define COOKIEBITS 24 /* Upper bits store count */
27 #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
28
29 /* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
30 * stores TCP options:
31 *
32 * MSB LSB
33 * | 31 ... 6 | 5 | 4 | 3 2 1 0 |
34 * | Timestamp | ECN | SACK | WScale |
35 *
36 * When we receive a valid cookie-ACK, we look at the echoed tsval (if
37 * any) to figure out which TCP options we should use for the rebuilt
38 * connection.
39 *
40 * A WScale setting of '0xf' (which is an invalid scaling value)
41 * means that original syn did not include the TCP window scaling option.
42 */
43 #define TS_OPT_WSCALE_MASK 0xf
44 #define TS_OPT_SACK BIT(4)
45 #define TS_OPT_ECN BIT(5)
46 /* There is no TS_OPT_TIMESTAMP:
47 * if ACK contains timestamp option, we already know it was
48 * requested/supported by the syn/synack exchange.
49 */
50 #define TSBITS 6
51 #define TSMASK (((__u32)1 << TSBITS) - 1)
52
53 static DEFINE_PER_CPU(__u32 [16 + 5 + SHA_WORKSPACE_WORDS],
54 ipv4_cookie_scratch);
55
cookie_hash(__be32 saddr,__be32 daddr,__be16 sport,__be16 dport,u32 count,int c)56 static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
57 u32 count, int c)
58 {
59 __u32 *tmp;
60
61 net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
62
63 tmp = this_cpu_ptr(ipv4_cookie_scratch);
64 memcpy(tmp + 4, syncookie_secret[c], sizeof(syncookie_secret[c]));
65 tmp[0] = (__force u32)saddr;
66 tmp[1] = (__force u32)daddr;
67 tmp[2] = ((__force u32)sport << 16) + (__force u32)dport;
68 tmp[3] = count;
69 sha_transform(tmp + 16, (__u8 *)tmp, tmp + 16 + 5);
70
71 return tmp[17];
72 }
73
74
75 /*
76 * when syncookies are in effect and tcp timestamps are enabled we encode
77 * tcp options in the lower bits of the timestamp value that will be
78 * sent in the syn-ack.
79 * Since subsequent timestamps use the normal tcp_time_stamp value, we
80 * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
81 */
cookie_init_timestamp(struct request_sock * req)82 __u32 cookie_init_timestamp(struct request_sock *req)
83 {
84 struct inet_request_sock *ireq;
85 u32 ts, ts_now = tcp_time_stamp;
86 u32 options = 0;
87
88 ireq = inet_rsk(req);
89
90 options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
91 if (ireq->sack_ok)
92 options |= TS_OPT_SACK;
93 if (ireq->ecn_ok)
94 options |= TS_OPT_ECN;
95
96 ts = ts_now & ~TSMASK;
97 ts |= options;
98 if (ts > ts_now) {
99 ts >>= TSBITS;
100 ts--;
101 ts <<= TSBITS;
102 ts |= options;
103 }
104 return ts;
105 }
106
107
secure_tcp_syn_cookie(__be32 saddr,__be32 daddr,__be16 sport,__be16 dport,__u32 sseq,__u32 data)108 static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
109 __be16 dport, __u32 sseq, __u32 data)
110 {
111 /*
112 * Compute the secure sequence number.
113 * The output should be:
114 * HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
115 * + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
116 * Where sseq is their sequence number and count increases every
117 * minute by 1.
118 * As an extra hack, we add a small "data" value that encodes the
119 * MSS into the second hash value.
120 */
121 u32 count = tcp_cookie_time();
122 return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
123 sseq + (count << COOKIEBITS) +
124 ((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
125 & COOKIEMASK));
126 }
127
128 /*
129 * This retrieves the small "data" value from the syncookie.
130 * If the syncookie is bad, the data returned will be out of
131 * range. This must be checked by the caller.
132 *
133 * The count value used to generate the cookie must be less than
134 * MAX_SYNCOOKIE_AGE minutes in the past.
135 * The return value (__u32)-1 if this test fails.
136 */
check_tcp_syn_cookie(__u32 cookie,__be32 saddr,__be32 daddr,__be16 sport,__be16 dport,__u32 sseq)137 static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
138 __be16 sport, __be16 dport, __u32 sseq)
139 {
140 u32 diff, count = tcp_cookie_time();
141
142 /* Strip away the layers from the cookie */
143 cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
144
145 /* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
146 diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
147 if (diff >= MAX_SYNCOOKIE_AGE)
148 return (__u32)-1;
149
150 return (cookie -
151 cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
152 & COOKIEMASK; /* Leaving the data behind */
153 }
154
155 /*
156 * MSS Values are chosen based on the 2011 paper
157 * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
158 * Values ..
159 * .. lower than 536 are rare (< 0.2%)
160 * .. between 537 and 1299 account for less than < 1.5% of observed values
161 * .. in the 1300-1349 range account for about 15 to 20% of observed mss values
162 * .. exceeding 1460 are very rare (< 0.04%)
163 *
164 * 1460 is the single most frequently announced mss value (30 to 46% depending
165 * on monitor location). Table must be sorted.
166 */
167 static __u16 const msstab[] = {
168 536,
169 1300,
170 1440, /* 1440, 1452: PPPoE */
171 1460,
172 };
173
174 /*
175 * Generate a syncookie. mssp points to the mss, which is returned
176 * rounded down to the value encoded in the cookie.
177 */
__cookie_v4_init_sequence(const struct iphdr * iph,const struct tcphdr * th,u16 * mssp)178 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
179 u16 *mssp)
180 {
181 int mssind;
182 const __u16 mss = *mssp;
183
184 for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
185 if (mss >= msstab[mssind])
186 break;
187 *mssp = msstab[mssind];
188
189 return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
190 th->source, th->dest, ntohl(th->seq),
191 mssind);
192 }
193 EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
194
cookie_v4_init_sequence(const struct sk_buff * skb,__u16 * mssp)195 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
196 {
197 const struct iphdr *iph = ip_hdr(skb);
198 const struct tcphdr *th = tcp_hdr(skb);
199
200 return __cookie_v4_init_sequence(iph, th, mssp);
201 }
202
203 /*
204 * Check if a ack sequence number is a valid syncookie.
205 * Return the decoded mss if it is, or 0 if not.
206 */
__cookie_v4_check(const struct iphdr * iph,const struct tcphdr * th,u32 cookie)207 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
208 u32 cookie)
209 {
210 __u32 seq = ntohl(th->seq) - 1;
211 __u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
212 th->source, th->dest, seq);
213
214 return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
215 }
216 EXPORT_SYMBOL_GPL(__cookie_v4_check);
217
tcp_get_cookie_sock(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct dst_entry * dst)218 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
219 struct request_sock *req,
220 struct dst_entry *dst)
221 {
222 struct inet_connection_sock *icsk = inet_csk(sk);
223 struct sock *child;
224 bool own_req;
225
226 child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
227 NULL, &own_req);
228 if (child) {
229 atomic_set(&req->rsk_refcnt, 1);
230 sock_rps_save_rxhash(child, skb);
231 if (!inet_csk_reqsk_queue_add(sk, req, child)) {
232 bh_unlock_sock(child);
233 sock_put(child);
234 child = NULL;
235 reqsk_put(req);
236 }
237 } else {
238 reqsk_free(req);
239 }
240 return child;
241 }
242 EXPORT_SYMBOL(tcp_get_cookie_sock);
243
244 /*
245 * when syncookies are in effect and tcp timestamps are enabled we stored
246 * additional tcp options in the timestamp.
247 * This extracts these options from the timestamp echo.
248 *
249 * return false if we decode a tcp option that is disabled
250 * on the host.
251 */
cookie_timestamp_decode(struct tcp_options_received * tcp_opt)252 bool cookie_timestamp_decode(struct tcp_options_received *tcp_opt)
253 {
254 /* echoed timestamp, lowest bits contain options */
255 u32 options = tcp_opt->rcv_tsecr;
256
257 if (!tcp_opt->saw_tstamp) {
258 tcp_clear_options(tcp_opt);
259 return true;
260 }
261
262 if (!sysctl_tcp_timestamps)
263 return false;
264
265 tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
266
267 if (tcp_opt->sack_ok && !sysctl_tcp_sack)
268 return false;
269
270 if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
271 return true; /* no window scaling */
272
273 tcp_opt->wscale_ok = 1;
274 tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
275
276 return sysctl_tcp_window_scaling != 0;
277 }
278 EXPORT_SYMBOL(cookie_timestamp_decode);
279
cookie_ecn_ok(const struct tcp_options_received * tcp_opt,const struct net * net,const struct dst_entry * dst)280 bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt,
281 const struct net *net, const struct dst_entry *dst)
282 {
283 bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN;
284
285 if (!ecn_ok)
286 return false;
287
288 if (net->ipv4.sysctl_tcp_ecn)
289 return true;
290
291 return dst_feature(dst, RTAX_FEATURE_ECN);
292 }
293 EXPORT_SYMBOL(cookie_ecn_ok);
294
295 /* On input, sk is a listener.
296 * Output is listener if incoming packet would not create a child
297 * NULL if memory could not be allocated.
298 */
cookie_v4_check(struct sock * sk,struct sk_buff * skb)299 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
300 {
301 struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
302 struct tcp_options_received tcp_opt;
303 struct inet_request_sock *ireq;
304 struct tcp_request_sock *treq;
305 struct tcp_sock *tp = tcp_sk(sk);
306 const struct tcphdr *th = tcp_hdr(skb);
307 __u32 cookie = ntohl(th->ack_seq) - 1;
308 struct sock *ret = sk;
309 struct request_sock *req;
310 int full_space, mss;
311 struct rtable *rt;
312 __u8 rcv_wscale;
313 struct flowi4 fl4;
314
315 if (!sysctl_tcp_syncookies || !th->ack || th->rst)
316 goto out;
317
318 if (tcp_synq_no_recent_overflow(sk))
319 goto out;
320
321 mss = __cookie_v4_check(ip_hdr(skb), th, cookie);
322 if (mss == 0) {
323 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
324 goto out;
325 }
326
327 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
328
329 /* check for timestamp cookie support */
330 memset(&tcp_opt, 0, sizeof(tcp_opt));
331 tcp_parse_options(skb, &tcp_opt, 0, NULL);
332
333 if (!cookie_timestamp_decode(&tcp_opt))
334 goto out;
335
336 ret = NULL;
337 req = inet_reqsk_alloc(&tcp_request_sock_ops, sk, false); /* for safety */
338 if (!req)
339 goto out;
340
341 ireq = inet_rsk(req);
342 treq = tcp_rsk(req);
343 treq->rcv_isn = ntohl(th->seq) - 1;
344 treq->snt_isn = cookie;
345 treq->txhash = net_tx_rndhash();
346 req->mss = mss;
347 ireq->ir_num = ntohs(th->dest);
348 ireq->ir_rmt_port = th->source;
349 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
350 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
351 ireq->ir_mark = inet_request_mark(sk, skb);
352 ireq->snd_wscale = tcp_opt.snd_wscale;
353 ireq->sack_ok = tcp_opt.sack_ok;
354 ireq->wscale_ok = tcp_opt.wscale_ok;
355 ireq->tstamp_ok = tcp_opt.saw_tstamp;
356 req->ts_recent = tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
357 treq->snt_synack.v64 = 0;
358 treq->tfo_listener = false;
359
360 ireq->ir_iif = sk->sk_bound_dev_if;
361
362 /* We throwed the options of the initial SYN away, so we hope
363 * the ACK carries the same options again (see RFC1122 4.2.3.8)
364 */
365 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(skb));
366
367 if (security_inet_conn_request(sk, skb, req)) {
368 reqsk_free(req);
369 goto out;
370 }
371
372 req->num_retrans = 0;
373
374 /*
375 * We need to lookup the route here to get at the correct
376 * window size. We should better make sure that the window size
377 * hasn't changed since we received the original syn, but I see
378 * no easy way to do this.
379 */
380 flowi4_init_output(&fl4, sk->sk_bound_dev_if, ireq->ir_mark,
381 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP,
382 inet_sk_flowi_flags(sk),
383 opt->srr ? opt->faddr : ireq->ir_rmt_addr,
384 ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid);
385 security_req_classify_flow(req, flowi4_to_flowi(&fl4));
386 rt = ip_route_output_key(sock_net(sk), &fl4);
387 if (IS_ERR(rt)) {
388 reqsk_free(req);
389 goto out;
390 }
391
392 /* Try to redo what tcp_v4_send_synack did. */
393 req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
394 /* limit the window selection if the user enforce a smaller rx buffer */
395 full_space = tcp_full_space(sk);
396 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
397 (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
398 req->rsk_window_clamp = full_space;
399
400 tcp_select_initial_window(full_space, req->mss,
401 &req->rsk_rcv_wnd, &req->rsk_window_clamp,
402 ireq->wscale_ok, &rcv_wscale,
403 dst_metric(&rt->dst, RTAX_INITRWND));
404
405 ireq->rcv_wscale = rcv_wscale;
406 ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
407
408 ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst);
409 /* ip_queue_xmit() depends on our flow being setup
410 * Normal sockets get it right from inet_csk_route_child_sock()
411 */
412 if (ret)
413 inet_sk(ret)->cork.fl.u.ip4 = fl4;
414 out: return ret;
415 }
416