1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
27 *
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 * lksctp developers <linux-sctp@vger.kernel.org>
31 *
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Jon Grimm <jgrimm@us.ibm.com>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Daisy Chang <daisyc@us.ibm.com>
40 * Ryan Layer <rmlayer@us.ibm.com>
41 * Kevin Gao <kevin.gao@intel.com>
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
50
51 #include <linux/slab.h>
52 #include <linux/in.h>
53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
56
57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62
63 /* 1st Level Abstractions. */
64
65 /* Initialize a new association from provided memory. */
sctp_association_init(struct sctp_association * asoc,const struct sctp_endpoint * ep,const struct sock * sk,sctp_scope_t scope,gfp_t gfp)66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
67 const struct sctp_endpoint *ep,
68 const struct sock *sk,
69 sctp_scope_t scope,
70 gfp_t gfp)
71 {
72 struct net *net = sock_net(sk);
73 struct sctp_sock *sp;
74 int i;
75 sctp_paramhdr_t *p;
76 int err;
77
78 /* Retrieve the SCTP per socket area. */
79 sp = sctp_sk((struct sock *)sk);
80
81 /* Discarding const is appropriate here. */
82 asoc->ep = (struct sctp_endpoint *)ep;
83 asoc->base.sk = (struct sock *)sk;
84
85 sctp_endpoint_hold(asoc->ep);
86 sock_hold(asoc->base.sk);
87
88 /* Initialize the common base substructure. */
89 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
90
91 /* Initialize the object handling fields. */
92 atomic_set(&asoc->base.refcnt, 1);
93
94 /* Initialize the bind addr area. */
95 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
96
97 asoc->state = SCTP_STATE_CLOSED;
98 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
99 asoc->user_frag = sp->user_frag;
100
101 /* Set the association max_retrans and RTO values from the
102 * socket values.
103 */
104 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
105 asoc->pf_retrans = net->sctp.pf_retrans;
106
107 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
108 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
109 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
110
111 /* Initialize the association's heartbeat interval based on the
112 * sock configured value.
113 */
114 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
115
116 /* Initialize path max retrans value. */
117 asoc->pathmaxrxt = sp->pathmaxrxt;
118
119 /* Initialize default path MTU. */
120 asoc->pathmtu = sp->pathmtu;
121
122 /* Set association default SACK delay */
123 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
124 asoc->sackfreq = sp->sackfreq;
125
126 /* Set the association default flags controlling
127 * Heartbeat, SACK delay, and Path MTU Discovery.
128 */
129 asoc->param_flags = sp->param_flags;
130
131 /* Initialize the maximum number of new data packets that can be sent
132 * in a burst.
133 */
134 asoc->max_burst = sp->max_burst;
135
136 /* initialize association timers */
137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
139 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
140
141 /* sctpimpguide Section 2.12.2
142 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
143 * recommended value of 5 times 'RTO.Max'.
144 */
145 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
146 = 5 * asoc->rto_max;
147
148 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
149 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
150
151 /* Initializes the timers */
152 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
153 setup_timer(&asoc->timers[i], sctp_timer_events[i],
154 (unsigned long)asoc);
155
156 /* Pull default initialization values from the sock options.
157 * Note: This assumes that the values have already been
158 * validated in the sock.
159 */
160 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
161 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
162 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
163
164 asoc->max_init_timeo =
165 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
166
167 /* Set the local window size for receive.
168 * This is also the rcvbuf space per association.
169 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
170 * 1500 bytes in one SCTP packet.
171 */
172 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
173 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
174 else
175 asoc->rwnd = sk->sk_rcvbuf/2;
176
177 asoc->a_rwnd = asoc->rwnd;
178
179 /* Use my own max window until I learn something better. */
180 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
181
182 /* Initialize the receive memory counter */
183 atomic_set(&asoc->rmem_alloc, 0);
184
185 init_waitqueue_head(&asoc->wait);
186
187 asoc->c.my_vtag = sctp_generate_tag(ep);
188 asoc->c.my_port = ep->base.bind_addr.port;
189
190 asoc->c.initial_tsn = sctp_generate_tsn(ep);
191
192 asoc->next_tsn = asoc->c.initial_tsn;
193
194 asoc->ctsn_ack_point = asoc->next_tsn - 1;
195 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
196 asoc->highest_sacked = asoc->ctsn_ack_point;
197 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
198
199 /* ADDIP Section 4.1 Asconf Chunk Procedures
200 *
201 * When an endpoint has an ASCONF signaled change to be sent to the
202 * remote endpoint it should do the following:
203 * ...
204 * A2) a serial number should be assigned to the chunk. The serial
205 * number SHOULD be a monotonically increasing number. The serial
206 * numbers SHOULD be initialized at the start of the
207 * association to the same value as the initial TSN.
208 */
209 asoc->addip_serial = asoc->c.initial_tsn;
210
211 INIT_LIST_HEAD(&asoc->addip_chunk_list);
212 INIT_LIST_HEAD(&asoc->asconf_ack_list);
213
214 /* Make an empty list of remote transport addresses. */
215 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
216
217 /* RFC 2960 5.1 Normal Establishment of an Association
218 *
219 * After the reception of the first data chunk in an
220 * association the endpoint must immediately respond with a
221 * sack to acknowledge the data chunk. Subsequent
222 * acknowledgements should be done as described in Section
223 * 6.2.
224 *
225 * [We implement this by telling a new association that it
226 * already received one packet.]
227 */
228 asoc->peer.sack_needed = 1;
229 asoc->peer.sack_generation = 1;
230
231 /* Assume that the peer will tell us if he recognizes ASCONF
232 * as part of INIT exchange.
233 * The sctp_addip_noauth option is there for backward compatibility
234 * and will revert old behavior.
235 */
236 if (net->sctp.addip_noauth)
237 asoc->peer.asconf_capable = 1;
238
239 /* Create an input queue. */
240 sctp_inq_init(&asoc->base.inqueue);
241 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
242
243 /* Create an output queue. */
244 sctp_outq_init(asoc, &asoc->outqueue);
245
246 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
247 goto fail_init;
248
249 /* Assume that peer would support both address types unless we are
250 * told otherwise.
251 */
252 asoc->peer.ipv4_address = 1;
253 if (asoc->base.sk->sk_family == PF_INET6)
254 asoc->peer.ipv6_address = 1;
255 INIT_LIST_HEAD(&asoc->asocs);
256
257 asoc->default_stream = sp->default_stream;
258 asoc->default_ppid = sp->default_ppid;
259 asoc->default_flags = sp->default_flags;
260 asoc->default_context = sp->default_context;
261 asoc->default_timetolive = sp->default_timetolive;
262 asoc->default_rcv_context = sp->default_rcv_context;
263
264 /* AUTH related initializations */
265 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
266 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
267 if (err)
268 goto fail_init;
269
270 asoc->active_key_id = ep->active_key_id;
271
272 /* Save the hmacs and chunks list into this association */
273 if (ep->auth_hmacs_list)
274 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
275 ntohs(ep->auth_hmacs_list->param_hdr.length));
276 if (ep->auth_chunk_list)
277 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
278 ntohs(ep->auth_chunk_list->param_hdr.length));
279
280 /* Get the AUTH random number for this association */
281 p = (sctp_paramhdr_t *)asoc->c.auth_random;
282 p->type = SCTP_PARAM_RANDOM;
283 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
284 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
285
286 return asoc;
287
288 fail_init:
289 sock_put(asoc->base.sk);
290 sctp_endpoint_put(asoc->ep);
291 return NULL;
292 }
293
294 /* Allocate and initialize a new association */
sctp_association_new(const struct sctp_endpoint * ep,const struct sock * sk,sctp_scope_t scope,gfp_t gfp)295 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
296 const struct sock *sk,
297 sctp_scope_t scope,
298 gfp_t gfp)
299 {
300 struct sctp_association *asoc;
301
302 asoc = kzalloc(sizeof(*asoc), gfp);
303 if (!asoc)
304 goto fail;
305
306 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
307 goto fail_init;
308
309 SCTP_DBG_OBJCNT_INC(assoc);
310
311 pr_debug("Created asoc %p\n", asoc);
312
313 return asoc;
314
315 fail_init:
316 kfree(asoc);
317 fail:
318 return NULL;
319 }
320
321 /* Free this association if possible. There may still be users, so
322 * the actual deallocation may be delayed.
323 */
sctp_association_free(struct sctp_association * asoc)324 void sctp_association_free(struct sctp_association *asoc)
325 {
326 struct sock *sk = asoc->base.sk;
327 struct sctp_transport *transport;
328 struct list_head *pos, *temp;
329 int i;
330
331 /* Only real associations count against the endpoint, so
332 * don't bother for if this is a temporary association.
333 */
334 if (!list_empty(&asoc->asocs)) {
335 list_del(&asoc->asocs);
336
337 /* Decrement the backlog value for a TCP-style listening
338 * socket.
339 */
340 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
341 sk->sk_ack_backlog--;
342 }
343
344 /* Mark as dead, so other users can know this structure is
345 * going away.
346 */
347 asoc->base.dead = true;
348
349 /* Dispose of any data lying around in the outqueue. */
350 sctp_outq_free(&asoc->outqueue);
351
352 /* Dispose of any pending messages for the upper layer. */
353 sctp_ulpq_free(&asoc->ulpq);
354
355 /* Dispose of any pending chunks on the inqueue. */
356 sctp_inq_free(&asoc->base.inqueue);
357
358 sctp_tsnmap_free(&asoc->peer.tsn_map);
359
360 /* Free ssnmap storage. */
361 sctp_ssnmap_free(asoc->ssnmap);
362
363 /* Clean up the bound address list. */
364 sctp_bind_addr_free(&asoc->base.bind_addr);
365
366 /* Do we need to go through all of our timers and
367 * delete them? To be safe we will try to delete all, but we
368 * should be able to go through and make a guess based
369 * on our state.
370 */
371 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
372 if (del_timer(&asoc->timers[i]))
373 sctp_association_put(asoc);
374 }
375
376 /* Free peer's cached cookie. */
377 kfree(asoc->peer.cookie);
378 kfree(asoc->peer.peer_random);
379 kfree(asoc->peer.peer_chunks);
380 kfree(asoc->peer.peer_hmacs);
381
382 /* Release the transport structures. */
383 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
384 transport = list_entry(pos, struct sctp_transport, transports);
385 list_del_rcu(pos);
386 sctp_transport_free(transport);
387 }
388
389 asoc->peer.transport_count = 0;
390
391 sctp_asconf_queue_teardown(asoc);
392
393 /* Free pending address space being deleted */
394 kfree(asoc->asconf_addr_del_pending);
395
396 /* AUTH - Free the endpoint shared keys */
397 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
398
399 /* AUTH - Free the association shared key */
400 sctp_auth_key_put(asoc->asoc_shared_key);
401
402 sctp_association_put(asoc);
403 }
404
405 /* Cleanup and free up an association. */
sctp_association_destroy(struct sctp_association * asoc)406 static void sctp_association_destroy(struct sctp_association *asoc)
407 {
408 if (unlikely(!asoc->base.dead)) {
409 WARN(1, "Attempt to destroy undead association %p!\n", asoc);
410 return;
411 }
412
413 sctp_endpoint_put(asoc->ep);
414 sock_put(asoc->base.sk);
415
416 if (asoc->assoc_id != 0) {
417 spin_lock_bh(&sctp_assocs_id_lock);
418 idr_remove(&sctp_assocs_id, asoc->assoc_id);
419 spin_unlock_bh(&sctp_assocs_id_lock);
420 }
421
422 WARN_ON(atomic_read(&asoc->rmem_alloc));
423
424 kfree(asoc);
425 SCTP_DBG_OBJCNT_DEC(assoc);
426 }
427
428 /* Change the primary destination address for the peer. */
sctp_assoc_set_primary(struct sctp_association * asoc,struct sctp_transport * transport)429 void sctp_assoc_set_primary(struct sctp_association *asoc,
430 struct sctp_transport *transport)
431 {
432 int changeover = 0;
433
434 /* it's a changeover only if we already have a primary path
435 * that we are changing
436 */
437 if (asoc->peer.primary_path != NULL &&
438 asoc->peer.primary_path != transport)
439 changeover = 1 ;
440
441 asoc->peer.primary_path = transport;
442
443 /* Set a default msg_name for events. */
444 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
445 sizeof(union sctp_addr));
446
447 /* If the primary path is changing, assume that the
448 * user wants to use this new path.
449 */
450 if ((transport->state == SCTP_ACTIVE) ||
451 (transport->state == SCTP_UNKNOWN))
452 asoc->peer.active_path = transport;
453
454 /*
455 * SFR-CACC algorithm:
456 * Upon the receipt of a request to change the primary
457 * destination address, on the data structure for the new
458 * primary destination, the sender MUST do the following:
459 *
460 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
461 * to this destination address earlier. The sender MUST set
462 * CYCLING_CHANGEOVER to indicate that this switch is a
463 * double switch to the same destination address.
464 *
465 * Really, only bother is we have data queued or outstanding on
466 * the association.
467 */
468 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
469 return;
470
471 if (transport->cacc.changeover_active)
472 transport->cacc.cycling_changeover = changeover;
473
474 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
475 * a changeover has occurred.
476 */
477 transport->cacc.changeover_active = changeover;
478
479 /* 3) The sender MUST store the next TSN to be sent in
480 * next_tsn_at_change.
481 */
482 transport->cacc.next_tsn_at_change = asoc->next_tsn;
483 }
484
485 /* Remove a transport from an association. */
sctp_assoc_rm_peer(struct sctp_association * asoc,struct sctp_transport * peer)486 void sctp_assoc_rm_peer(struct sctp_association *asoc,
487 struct sctp_transport *peer)
488 {
489 struct sctp_transport *transport;
490 struct list_head *pos;
491 struct sctp_chunk *ch;
492
493 pr_debug("%s: association:%p addr:%pISpc\n",
494 __func__, asoc, &peer->ipaddr.sa);
495
496 /* If we are to remove the current retran_path, update it
497 * to the next peer before removing this peer from the list.
498 */
499 if (asoc->peer.retran_path == peer)
500 sctp_assoc_update_retran_path(asoc);
501
502 /* Remove this peer from the list. */
503 list_del_rcu(&peer->transports);
504
505 /* Get the first transport of asoc. */
506 pos = asoc->peer.transport_addr_list.next;
507 transport = list_entry(pos, struct sctp_transport, transports);
508
509 /* Update any entries that match the peer to be deleted. */
510 if (asoc->peer.primary_path == peer)
511 sctp_assoc_set_primary(asoc, transport);
512 if (asoc->peer.active_path == peer)
513 asoc->peer.active_path = transport;
514 if (asoc->peer.retran_path == peer)
515 asoc->peer.retran_path = transport;
516 if (asoc->peer.last_data_from == peer)
517 asoc->peer.last_data_from = transport;
518
519 /* If we remove the transport an INIT was last sent to, set it to
520 * NULL. Combined with the update of the retran path above, this
521 * will cause the next INIT to be sent to the next available
522 * transport, maintaining the cycle.
523 */
524 if (asoc->init_last_sent_to == peer)
525 asoc->init_last_sent_to = NULL;
526
527 /* If we remove the transport an SHUTDOWN was last sent to, set it
528 * to NULL. Combined with the update of the retran path above, this
529 * will cause the next SHUTDOWN to be sent to the next available
530 * transport, maintaining the cycle.
531 */
532 if (asoc->shutdown_last_sent_to == peer)
533 asoc->shutdown_last_sent_to = NULL;
534
535 /* If we remove the transport an ASCONF was last sent to, set it to
536 * NULL.
537 */
538 if (asoc->addip_last_asconf &&
539 asoc->addip_last_asconf->transport == peer)
540 asoc->addip_last_asconf->transport = NULL;
541
542 /* If we have something on the transmitted list, we have to
543 * save it off. The best place is the active path.
544 */
545 if (!list_empty(&peer->transmitted)) {
546 struct sctp_transport *active = asoc->peer.active_path;
547
548 /* Reset the transport of each chunk on this list */
549 list_for_each_entry(ch, &peer->transmitted,
550 transmitted_list) {
551 ch->transport = NULL;
552 ch->rtt_in_progress = 0;
553 }
554
555 list_splice_tail_init(&peer->transmitted,
556 &active->transmitted);
557
558 /* Start a T3 timer here in case it wasn't running so
559 * that these migrated packets have a chance to get
560 * retransmitted.
561 */
562 if (!timer_pending(&active->T3_rtx_timer))
563 if (!mod_timer(&active->T3_rtx_timer,
564 jiffies + active->rto))
565 sctp_transport_hold(active);
566 }
567
568 list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list)
569 if (ch->transport == peer)
570 ch->transport = NULL;
571
572 asoc->peer.transport_count--;
573
574 sctp_transport_free(peer);
575 }
576
577 /* Add a transport address to an association. */
sctp_assoc_add_peer(struct sctp_association * asoc,const union sctp_addr * addr,const gfp_t gfp,const int peer_state)578 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
579 const union sctp_addr *addr,
580 const gfp_t gfp,
581 const int peer_state)
582 {
583 struct net *net = sock_net(asoc->base.sk);
584 struct sctp_transport *peer;
585 struct sctp_sock *sp;
586 unsigned short port;
587
588 sp = sctp_sk(asoc->base.sk);
589
590 /* AF_INET and AF_INET6 share common port field. */
591 port = ntohs(addr->v4.sin_port);
592
593 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
594 asoc, &addr->sa, peer_state);
595
596 /* Set the port if it has not been set yet. */
597 if (0 == asoc->peer.port)
598 asoc->peer.port = port;
599
600 /* Check to see if this is a duplicate. */
601 peer = sctp_assoc_lookup_paddr(asoc, addr);
602 if (peer) {
603 /* An UNKNOWN state is only set on transports added by
604 * user in sctp_connectx() call. Such transports should be
605 * considered CONFIRMED per RFC 4960, Section 5.4.
606 */
607 if (peer->state == SCTP_UNKNOWN) {
608 peer->state = SCTP_ACTIVE;
609 }
610 return peer;
611 }
612
613 peer = sctp_transport_new(net, addr, gfp);
614 if (!peer)
615 return NULL;
616
617 sctp_transport_set_owner(peer, asoc);
618
619 /* Initialize the peer's heartbeat interval based on the
620 * association configured value.
621 */
622 peer->hbinterval = asoc->hbinterval;
623
624 /* Set the path max_retrans. */
625 peer->pathmaxrxt = asoc->pathmaxrxt;
626
627 /* And the partial failure retrans threshold */
628 peer->pf_retrans = asoc->pf_retrans;
629
630 /* Initialize the peer's SACK delay timeout based on the
631 * association configured value.
632 */
633 peer->sackdelay = asoc->sackdelay;
634 peer->sackfreq = asoc->sackfreq;
635
636 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
637 * based on association setting.
638 */
639 peer->param_flags = asoc->param_flags;
640
641 sctp_transport_route(peer, NULL, sp);
642
643 /* Initialize the pmtu of the transport. */
644 if (peer->param_flags & SPP_PMTUD_DISABLE) {
645 if (asoc->pathmtu)
646 peer->pathmtu = asoc->pathmtu;
647 else
648 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
649 }
650
651 /* If this is the first transport addr on this association,
652 * initialize the association PMTU to the peer's PMTU.
653 * If not and the current association PMTU is higher than the new
654 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
655 */
656 if (asoc->pathmtu)
657 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
658 else
659 asoc->pathmtu = peer->pathmtu;
660
661 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
662 asoc->pathmtu);
663
664 peer->pmtu_pending = 0;
665
666 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
667
668 /* The asoc->peer.port might not be meaningful yet, but
669 * initialize the packet structure anyway.
670 */
671 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
672 asoc->peer.port);
673
674 /* 7.2.1 Slow-Start
675 *
676 * o The initial cwnd before DATA transmission or after a sufficiently
677 * long idle period MUST be set to
678 * min(4*MTU, max(2*MTU, 4380 bytes))
679 *
680 * o The initial value of ssthresh MAY be arbitrarily high
681 * (for example, implementations MAY use the size of the
682 * receiver advertised window).
683 */
684 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
685
686 /* At this point, we may not have the receiver's advertised window,
687 * so initialize ssthresh to the default value and it will be set
688 * later when we process the INIT.
689 */
690 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
691
692 peer->partial_bytes_acked = 0;
693 peer->flight_size = 0;
694 peer->burst_limited = 0;
695
696 /* Set the transport's RTO.initial value */
697 peer->rto = asoc->rto_initial;
698 sctp_max_rto(asoc, peer);
699
700 /* Set the peer's active state. */
701 peer->state = peer_state;
702
703 /* Attach the remote transport to our asoc. */
704 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
705 asoc->peer.transport_count++;
706
707 /* If we do not yet have a primary path, set one. */
708 if (!asoc->peer.primary_path) {
709 sctp_assoc_set_primary(asoc, peer);
710 asoc->peer.retran_path = peer;
711 }
712
713 if (asoc->peer.active_path == asoc->peer.retran_path &&
714 peer->state != SCTP_UNCONFIRMED) {
715 asoc->peer.retran_path = peer;
716 }
717
718 return peer;
719 }
720
721 /* Delete a transport address from an association. */
sctp_assoc_del_peer(struct sctp_association * asoc,const union sctp_addr * addr)722 void sctp_assoc_del_peer(struct sctp_association *asoc,
723 const union sctp_addr *addr)
724 {
725 struct list_head *pos;
726 struct list_head *temp;
727 struct sctp_transport *transport;
728
729 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
730 transport = list_entry(pos, struct sctp_transport, transports);
731 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
732 /* Do book keeping for removing the peer and free it. */
733 sctp_assoc_rm_peer(asoc, transport);
734 break;
735 }
736 }
737 }
738
739 /* Lookup a transport by address. */
sctp_assoc_lookup_paddr(const struct sctp_association * asoc,const union sctp_addr * address)740 struct sctp_transport *sctp_assoc_lookup_paddr(
741 const struct sctp_association *asoc,
742 const union sctp_addr *address)
743 {
744 struct sctp_transport *t;
745
746 /* Cycle through all transports searching for a peer address. */
747
748 list_for_each_entry(t, &asoc->peer.transport_addr_list,
749 transports) {
750 if (sctp_cmp_addr_exact(address, &t->ipaddr))
751 return t;
752 }
753
754 return NULL;
755 }
756
757 /* Remove all transports except a give one */
sctp_assoc_del_nonprimary_peers(struct sctp_association * asoc,struct sctp_transport * primary)758 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
759 struct sctp_transport *primary)
760 {
761 struct sctp_transport *temp;
762 struct sctp_transport *t;
763
764 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
765 transports) {
766 /* if the current transport is not the primary one, delete it */
767 if (t != primary)
768 sctp_assoc_rm_peer(asoc, t);
769 }
770 }
771
772 /* Engage in transport control operations.
773 * Mark the transport up or down and send a notification to the user.
774 * Select and update the new active and retran paths.
775 */
sctp_assoc_control_transport(struct sctp_association * asoc,struct sctp_transport * transport,sctp_transport_cmd_t command,sctp_sn_error_t error)776 void sctp_assoc_control_transport(struct sctp_association *asoc,
777 struct sctp_transport *transport,
778 sctp_transport_cmd_t command,
779 sctp_sn_error_t error)
780 {
781 struct sctp_ulpevent *event;
782 struct sockaddr_storage addr;
783 int spc_state = 0;
784 bool ulp_notify = true;
785
786 /* Record the transition on the transport. */
787 switch (command) {
788 case SCTP_TRANSPORT_UP:
789 /* If we are moving from UNCONFIRMED state due
790 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
791 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
792 */
793 if (SCTP_UNCONFIRMED == transport->state &&
794 SCTP_HEARTBEAT_SUCCESS == error)
795 spc_state = SCTP_ADDR_CONFIRMED;
796 else
797 spc_state = SCTP_ADDR_AVAILABLE;
798 /* Don't inform ULP about transition from PF to
799 * active state and set cwnd to 1 MTU, see SCTP
800 * Quick failover draft section 5.1, point 5
801 */
802 if (transport->state == SCTP_PF) {
803 ulp_notify = false;
804 transport->cwnd = asoc->pathmtu;
805 }
806 transport->state = SCTP_ACTIVE;
807 break;
808
809 case SCTP_TRANSPORT_DOWN:
810 /* If the transport was never confirmed, do not transition it
811 * to inactive state. Also, release the cached route since
812 * there may be a better route next time.
813 */
814 if (transport->state != SCTP_UNCONFIRMED)
815 transport->state = SCTP_INACTIVE;
816 else {
817 dst_release(transport->dst);
818 transport->dst = NULL;
819 ulp_notify = false;
820 }
821
822 spc_state = SCTP_ADDR_UNREACHABLE;
823 break;
824
825 case SCTP_TRANSPORT_PF:
826 transport->state = SCTP_PF;
827 ulp_notify = false;
828 break;
829
830 default:
831 return;
832 }
833
834 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification
835 * to the user.
836 */
837 if (ulp_notify) {
838 memset(&addr, 0, sizeof(struct sockaddr_storage));
839 memcpy(&addr, &transport->ipaddr,
840 transport->af_specific->sockaddr_len);
841
842 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
843 0, spc_state, error, GFP_ATOMIC);
844 if (event)
845 sctp_ulpq_tail_event(&asoc->ulpq, event);
846 }
847
848 /* Select new active and retran paths. */
849 sctp_select_active_and_retran_path(asoc);
850 }
851
852 /* Hold a reference to an association. */
sctp_association_hold(struct sctp_association * asoc)853 void sctp_association_hold(struct sctp_association *asoc)
854 {
855 atomic_inc(&asoc->base.refcnt);
856 }
857
858 /* Release a reference to an association and cleanup
859 * if there are no more references.
860 */
sctp_association_put(struct sctp_association * asoc)861 void sctp_association_put(struct sctp_association *asoc)
862 {
863 if (atomic_dec_and_test(&asoc->base.refcnt))
864 sctp_association_destroy(asoc);
865 }
866
867 /* Allocate the next TSN, Transmission Sequence Number, for the given
868 * association.
869 */
sctp_association_get_next_tsn(struct sctp_association * asoc)870 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
871 {
872 /* From Section 1.6 Serial Number Arithmetic:
873 * Transmission Sequence Numbers wrap around when they reach
874 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
875 * after transmitting TSN = 2*32 - 1 is TSN = 0.
876 */
877 __u32 retval = asoc->next_tsn;
878 asoc->next_tsn++;
879 asoc->unack_data++;
880
881 return retval;
882 }
883
884 /* Compare two addresses to see if they match. Wildcard addresses
885 * only match themselves.
886 */
sctp_cmp_addr_exact(const union sctp_addr * ss1,const union sctp_addr * ss2)887 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
888 const union sctp_addr *ss2)
889 {
890 struct sctp_af *af;
891
892 af = sctp_get_af_specific(ss1->sa.sa_family);
893 if (unlikely(!af))
894 return 0;
895
896 return af->cmp_addr(ss1, ss2);
897 }
898
899 /* Return an ecne chunk to get prepended to a packet.
900 * Note: We are sly and return a shared, prealloced chunk. FIXME:
901 * No we don't, but we could/should.
902 */
sctp_get_ecne_prepend(struct sctp_association * asoc)903 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
904 {
905 if (!asoc->need_ecne)
906 return NULL;
907
908 /* Send ECNE if needed.
909 * Not being able to allocate a chunk here is not deadly.
910 */
911 return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
912 }
913
914 /*
915 * Find which transport this TSN was sent on.
916 */
sctp_assoc_lookup_tsn(struct sctp_association * asoc,__u32 tsn)917 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
918 __u32 tsn)
919 {
920 struct sctp_transport *active;
921 struct sctp_transport *match;
922 struct sctp_transport *transport;
923 struct sctp_chunk *chunk;
924 __be32 key = htonl(tsn);
925
926 match = NULL;
927
928 /*
929 * FIXME: In general, find a more efficient data structure for
930 * searching.
931 */
932
933 /*
934 * The general strategy is to search each transport's transmitted
935 * list. Return which transport this TSN lives on.
936 *
937 * Let's be hopeful and check the active_path first.
938 * Another optimization would be to know if there is only one
939 * outbound path and not have to look for the TSN at all.
940 *
941 */
942
943 active = asoc->peer.active_path;
944
945 list_for_each_entry(chunk, &active->transmitted,
946 transmitted_list) {
947
948 if (key == chunk->subh.data_hdr->tsn) {
949 match = active;
950 goto out;
951 }
952 }
953
954 /* If not found, go search all the other transports. */
955 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
956 transports) {
957
958 if (transport == active)
959 continue;
960 list_for_each_entry(chunk, &transport->transmitted,
961 transmitted_list) {
962 if (key == chunk->subh.data_hdr->tsn) {
963 match = transport;
964 goto out;
965 }
966 }
967 }
968 out:
969 return match;
970 }
971
972 /* Is this the association we are looking for? */
sctp_assoc_is_match(struct sctp_association * asoc,struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr)973 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
974 struct net *net,
975 const union sctp_addr *laddr,
976 const union sctp_addr *paddr)
977 {
978 struct sctp_transport *transport;
979
980 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
981 (htons(asoc->peer.port) == paddr->v4.sin_port) &&
982 net_eq(sock_net(asoc->base.sk), net)) {
983 transport = sctp_assoc_lookup_paddr(asoc, paddr);
984 if (!transport)
985 goto out;
986
987 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
988 sctp_sk(asoc->base.sk)))
989 goto out;
990 }
991 transport = NULL;
992
993 out:
994 return transport;
995 }
996
997 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
sctp_assoc_bh_rcv(struct work_struct * work)998 static void sctp_assoc_bh_rcv(struct work_struct *work)
999 {
1000 struct sctp_association *asoc =
1001 container_of(work, struct sctp_association,
1002 base.inqueue.immediate);
1003 struct net *net = sock_net(asoc->base.sk);
1004 struct sctp_endpoint *ep;
1005 struct sctp_chunk *chunk;
1006 struct sctp_inq *inqueue;
1007 sctp_subtype_t subtype;
1008 int first_time = 1; /* is this the first time through the loop */
1009 int error = 0;
1010 int state;
1011
1012 /* The association should be held so we should be safe. */
1013 ep = asoc->ep;
1014
1015 inqueue = &asoc->base.inqueue;
1016 sctp_association_hold(asoc);
1017 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1018 state = asoc->state;
1019 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1020
1021 /* If the first chunk in the packet is AUTH, do special
1022 * processing specified in Section 6.3 of SCTP-AUTH spec
1023 */
1024 if (first_time && subtype.chunk == SCTP_CID_AUTH) {
1025 struct sctp_chunkhdr *next_hdr;
1026
1027 next_hdr = sctp_inq_peek(inqueue);
1028 if (!next_hdr)
1029 goto normal;
1030
1031 /* If the next chunk is COOKIE-ECHO, skip the AUTH
1032 * chunk while saving a pointer to it so we can do
1033 * Authentication later (during cookie-echo
1034 * processing).
1035 */
1036 if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1037 chunk->auth_chunk = skb_clone(chunk->skb,
1038 GFP_ATOMIC);
1039 chunk->auth = 1;
1040 continue;
1041 }
1042 }
1043
1044 normal:
1045 /* SCTP-AUTH, Section 6.3:
1046 * The receiver has a list of chunk types which it expects
1047 * to be received only after an AUTH-chunk. This list has
1048 * been sent to the peer during the association setup. It
1049 * MUST silently discard these chunks if they are not placed
1050 * after an AUTH chunk in the packet.
1051 */
1052 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1053 continue;
1054
1055 /* Remember where the last DATA chunk came from so we
1056 * know where to send the SACK.
1057 */
1058 if (sctp_chunk_is_data(chunk))
1059 asoc->peer.last_data_from = chunk->transport;
1060 else {
1061 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1062 asoc->stats.ictrlchunks++;
1063 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1064 asoc->stats.isacks++;
1065 }
1066
1067 if (chunk->transport)
1068 chunk->transport->last_time_heard = ktime_get();
1069
1070 /* Run through the state machine. */
1071 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1072 state, ep, asoc, chunk, GFP_ATOMIC);
1073
1074 /* Check to see if the association is freed in response to
1075 * the incoming chunk. If so, get out of the while loop.
1076 */
1077 if (asoc->base.dead)
1078 break;
1079
1080 /* If there is an error on chunk, discard this packet. */
1081 if (error && chunk)
1082 chunk->pdiscard = 1;
1083
1084 if (first_time)
1085 first_time = 0;
1086 }
1087 sctp_association_put(asoc);
1088 }
1089
1090 /* This routine moves an association from its old sk to a new sk. */
sctp_assoc_migrate(struct sctp_association * assoc,struct sock * newsk)1091 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1092 {
1093 struct sctp_sock *newsp = sctp_sk(newsk);
1094 struct sock *oldsk = assoc->base.sk;
1095
1096 /* Delete the association from the old endpoint's list of
1097 * associations.
1098 */
1099 list_del_init(&assoc->asocs);
1100
1101 /* Decrement the backlog value for a TCP-style socket. */
1102 if (sctp_style(oldsk, TCP))
1103 oldsk->sk_ack_backlog--;
1104
1105 /* Release references to the old endpoint and the sock. */
1106 sctp_endpoint_put(assoc->ep);
1107 sock_put(assoc->base.sk);
1108
1109 /* Get a reference to the new endpoint. */
1110 assoc->ep = newsp->ep;
1111 sctp_endpoint_hold(assoc->ep);
1112
1113 /* Get a reference to the new sock. */
1114 assoc->base.sk = newsk;
1115 sock_hold(assoc->base.sk);
1116
1117 /* Add the association to the new endpoint's list of associations. */
1118 sctp_endpoint_add_asoc(newsp->ep, assoc);
1119 }
1120
1121 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
sctp_assoc_update(struct sctp_association * asoc,struct sctp_association * new)1122 void sctp_assoc_update(struct sctp_association *asoc,
1123 struct sctp_association *new)
1124 {
1125 struct sctp_transport *trans;
1126 struct list_head *pos, *temp;
1127
1128 /* Copy in new parameters of peer. */
1129 asoc->c = new->c;
1130 asoc->peer.rwnd = new->peer.rwnd;
1131 asoc->peer.sack_needed = new->peer.sack_needed;
1132 asoc->peer.auth_capable = new->peer.auth_capable;
1133 asoc->peer.i = new->peer.i;
1134 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1135 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1136
1137 /* Remove any peer addresses not present in the new association. */
1138 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1139 trans = list_entry(pos, struct sctp_transport, transports);
1140 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1141 sctp_assoc_rm_peer(asoc, trans);
1142 continue;
1143 }
1144
1145 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1146 sctp_transport_reset(trans);
1147 }
1148
1149 /* If the case is A (association restart), use
1150 * initial_tsn as next_tsn. If the case is B, use
1151 * current next_tsn in case data sent to peer
1152 * has been discarded and needs retransmission.
1153 */
1154 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1155 asoc->next_tsn = new->next_tsn;
1156 asoc->ctsn_ack_point = new->ctsn_ack_point;
1157 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1158
1159 /* Reinitialize SSN for both local streams
1160 * and peer's streams.
1161 */
1162 sctp_ssnmap_clear(asoc->ssnmap);
1163
1164 /* Flush the ULP reassembly and ordered queue.
1165 * Any data there will now be stale and will
1166 * cause problems.
1167 */
1168 sctp_ulpq_flush(&asoc->ulpq);
1169
1170 /* reset the overall association error count so
1171 * that the restarted association doesn't get torn
1172 * down on the next retransmission timer.
1173 */
1174 asoc->overall_error_count = 0;
1175
1176 } else {
1177 /* Add any peer addresses from the new association. */
1178 list_for_each_entry(trans, &new->peer.transport_addr_list,
1179 transports) {
1180 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1181 sctp_assoc_add_peer(asoc, &trans->ipaddr,
1182 GFP_ATOMIC, trans->state);
1183 }
1184
1185 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1186 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1187 if (!asoc->ssnmap) {
1188 /* Move the ssnmap. */
1189 asoc->ssnmap = new->ssnmap;
1190 new->ssnmap = NULL;
1191 }
1192
1193 if (!asoc->assoc_id) {
1194 /* get a new association id since we don't have one
1195 * yet.
1196 */
1197 sctp_assoc_set_id(asoc, GFP_ATOMIC);
1198 }
1199 }
1200
1201 /* SCTP-AUTH: Save the peer parameters from the new associations
1202 * and also move the association shared keys over
1203 */
1204 kfree(asoc->peer.peer_random);
1205 asoc->peer.peer_random = new->peer.peer_random;
1206 new->peer.peer_random = NULL;
1207
1208 kfree(asoc->peer.peer_chunks);
1209 asoc->peer.peer_chunks = new->peer.peer_chunks;
1210 new->peer.peer_chunks = NULL;
1211
1212 kfree(asoc->peer.peer_hmacs);
1213 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1214 new->peer.peer_hmacs = NULL;
1215
1216 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1217 }
1218
1219 /* Update the retran path for sending a retransmitted packet.
1220 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1221 *
1222 * When there is outbound data to send and the primary path
1223 * becomes inactive (e.g., due to failures), or where the
1224 * SCTP user explicitly requests to send data to an
1225 * inactive destination transport address, before reporting
1226 * an error to its ULP, the SCTP endpoint should try to send
1227 * the data to an alternate active destination transport
1228 * address if one exists.
1229 *
1230 * When retransmitting data that timed out, if the endpoint
1231 * is multihomed, it should consider each source-destination
1232 * address pair in its retransmission selection policy.
1233 * When retransmitting timed-out data, the endpoint should
1234 * attempt to pick the most divergent source-destination
1235 * pair from the original source-destination pair to which
1236 * the packet was transmitted.
1237 *
1238 * Note: Rules for picking the most divergent source-destination
1239 * pair are an implementation decision and are not specified
1240 * within this document.
1241 *
1242 * Our basic strategy is to round-robin transports in priorities
1243 * according to sctp_trans_score() e.g., if no such
1244 * transport with state SCTP_ACTIVE exists, round-robin through
1245 * SCTP_UNKNOWN, etc. You get the picture.
1246 */
sctp_trans_score(const struct sctp_transport * trans)1247 static u8 sctp_trans_score(const struct sctp_transport *trans)
1248 {
1249 switch (trans->state) {
1250 case SCTP_ACTIVE:
1251 return 3; /* best case */
1252 case SCTP_UNKNOWN:
1253 return 2;
1254 case SCTP_PF:
1255 return 1;
1256 default: /* case SCTP_INACTIVE */
1257 return 0; /* worst case */
1258 }
1259 }
1260
sctp_trans_elect_tie(struct sctp_transport * trans1,struct sctp_transport * trans2)1261 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1262 struct sctp_transport *trans2)
1263 {
1264 if (trans1->error_count > trans2->error_count) {
1265 return trans2;
1266 } else if (trans1->error_count == trans2->error_count &&
1267 ktime_after(trans2->last_time_heard,
1268 trans1->last_time_heard)) {
1269 return trans2;
1270 } else {
1271 return trans1;
1272 }
1273 }
1274
sctp_trans_elect_best(struct sctp_transport * curr,struct sctp_transport * best)1275 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1276 struct sctp_transport *best)
1277 {
1278 u8 score_curr, score_best;
1279
1280 if (best == NULL || curr == best)
1281 return curr;
1282
1283 score_curr = sctp_trans_score(curr);
1284 score_best = sctp_trans_score(best);
1285
1286 /* First, try a score-based selection if both transport states
1287 * differ. If we're in a tie, lets try to make a more clever
1288 * decision here based on error counts and last time heard.
1289 */
1290 if (score_curr > score_best)
1291 return curr;
1292 else if (score_curr == score_best)
1293 return sctp_trans_elect_tie(best, curr);
1294 else
1295 return best;
1296 }
1297
sctp_assoc_update_retran_path(struct sctp_association * asoc)1298 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1299 {
1300 struct sctp_transport *trans = asoc->peer.retran_path;
1301 struct sctp_transport *trans_next = NULL;
1302
1303 /* We're done as we only have the one and only path. */
1304 if (asoc->peer.transport_count == 1)
1305 return;
1306 /* If active_path and retran_path are the same and active,
1307 * then this is the only active path. Use it.
1308 */
1309 if (asoc->peer.active_path == asoc->peer.retran_path &&
1310 asoc->peer.active_path->state == SCTP_ACTIVE)
1311 return;
1312
1313 /* Iterate from retran_path's successor back to retran_path. */
1314 for (trans = list_next_entry(trans, transports); 1;
1315 trans = list_next_entry(trans, transports)) {
1316 /* Manually skip the head element. */
1317 if (&trans->transports == &asoc->peer.transport_addr_list)
1318 continue;
1319 if (trans->state == SCTP_UNCONFIRMED)
1320 continue;
1321 trans_next = sctp_trans_elect_best(trans, trans_next);
1322 /* Active is good enough for immediate return. */
1323 if (trans_next->state == SCTP_ACTIVE)
1324 break;
1325 /* We've reached the end, time to update path. */
1326 if (trans == asoc->peer.retran_path)
1327 break;
1328 }
1329
1330 asoc->peer.retran_path = trans_next;
1331
1332 pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1333 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1334 }
1335
sctp_select_active_and_retran_path(struct sctp_association * asoc)1336 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1337 {
1338 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1339 struct sctp_transport *trans_pf = NULL;
1340
1341 /* Look for the two most recently used active transports. */
1342 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1343 transports) {
1344 /* Skip uninteresting transports. */
1345 if (trans->state == SCTP_INACTIVE ||
1346 trans->state == SCTP_UNCONFIRMED)
1347 continue;
1348 /* Keep track of the best PF transport from our
1349 * list in case we don't find an active one.
1350 */
1351 if (trans->state == SCTP_PF) {
1352 trans_pf = sctp_trans_elect_best(trans, trans_pf);
1353 continue;
1354 }
1355 /* For active transports, pick the most recent ones. */
1356 if (trans_pri == NULL ||
1357 ktime_after(trans->last_time_heard,
1358 trans_pri->last_time_heard)) {
1359 trans_sec = trans_pri;
1360 trans_pri = trans;
1361 } else if (trans_sec == NULL ||
1362 ktime_after(trans->last_time_heard,
1363 trans_sec->last_time_heard)) {
1364 trans_sec = trans;
1365 }
1366 }
1367
1368 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1369 *
1370 * By default, an endpoint should always transmit to the primary
1371 * path, unless the SCTP user explicitly specifies the
1372 * destination transport address (and possibly source transport
1373 * address) to use. [If the primary is active but not most recent,
1374 * bump the most recently used transport.]
1375 */
1376 if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1377 asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1378 asoc->peer.primary_path != trans_pri) {
1379 trans_sec = trans_pri;
1380 trans_pri = asoc->peer.primary_path;
1381 }
1382
1383 /* We did not find anything useful for a possible retransmission
1384 * path; either primary path that we found is the the same as
1385 * the current one, or we didn't generally find an active one.
1386 */
1387 if (trans_sec == NULL)
1388 trans_sec = trans_pri;
1389
1390 /* If we failed to find a usable transport, just camp on the
1391 * active or pick a PF iff it's the better choice.
1392 */
1393 if (trans_pri == NULL) {
1394 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1395 trans_sec = trans_pri;
1396 }
1397
1398 /* Set the active and retran transports. */
1399 asoc->peer.active_path = trans_pri;
1400 asoc->peer.retran_path = trans_sec;
1401 }
1402
1403 struct sctp_transport *
sctp_assoc_choose_alter_transport(struct sctp_association * asoc,struct sctp_transport * last_sent_to)1404 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1405 struct sctp_transport *last_sent_to)
1406 {
1407 /* If this is the first time packet is sent, use the active path,
1408 * else use the retran path. If the last packet was sent over the
1409 * retran path, update the retran path and use it.
1410 */
1411 if (last_sent_to == NULL) {
1412 return asoc->peer.active_path;
1413 } else {
1414 if (last_sent_to == asoc->peer.retran_path)
1415 sctp_assoc_update_retran_path(asoc);
1416
1417 return asoc->peer.retran_path;
1418 }
1419 }
1420
1421 /* Update the association's pmtu and frag_point by going through all the
1422 * transports. This routine is called when a transport's PMTU has changed.
1423 */
sctp_assoc_sync_pmtu(struct sock * sk,struct sctp_association * asoc)1424 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1425 {
1426 struct sctp_transport *t;
1427 __u32 pmtu = 0;
1428
1429 if (!asoc)
1430 return;
1431
1432 /* Get the lowest pmtu of all the transports. */
1433 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1434 transports) {
1435 if (t->pmtu_pending && t->dst) {
1436 sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1437 t->pmtu_pending = 0;
1438 }
1439 if (!pmtu || (t->pathmtu < pmtu))
1440 pmtu = t->pathmtu;
1441 }
1442
1443 if (pmtu) {
1444 asoc->pathmtu = pmtu;
1445 asoc->frag_point = sctp_frag_point(asoc, pmtu);
1446 }
1447
1448 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1449 asoc->pathmtu, asoc->frag_point);
1450 }
1451
1452 /* Should we send a SACK to update our peer? */
sctp_peer_needs_update(struct sctp_association * asoc)1453 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1454 {
1455 struct net *net = sock_net(asoc->base.sk);
1456 switch (asoc->state) {
1457 case SCTP_STATE_ESTABLISHED:
1458 case SCTP_STATE_SHUTDOWN_PENDING:
1459 case SCTP_STATE_SHUTDOWN_RECEIVED:
1460 case SCTP_STATE_SHUTDOWN_SENT:
1461 if ((asoc->rwnd > asoc->a_rwnd) &&
1462 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1463 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1464 asoc->pathmtu)))
1465 return true;
1466 break;
1467 default:
1468 break;
1469 }
1470 return false;
1471 }
1472
1473 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
sctp_assoc_rwnd_increase(struct sctp_association * asoc,unsigned int len)1474 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1475 {
1476 struct sctp_chunk *sack;
1477 struct timer_list *timer;
1478
1479 if (asoc->rwnd_over) {
1480 if (asoc->rwnd_over >= len) {
1481 asoc->rwnd_over -= len;
1482 } else {
1483 asoc->rwnd += (len - asoc->rwnd_over);
1484 asoc->rwnd_over = 0;
1485 }
1486 } else {
1487 asoc->rwnd += len;
1488 }
1489
1490 /* If we had window pressure, start recovering it
1491 * once our rwnd had reached the accumulated pressure
1492 * threshold. The idea is to recover slowly, but up
1493 * to the initial advertised window.
1494 */
1495 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1496 int change = min(asoc->pathmtu, asoc->rwnd_press);
1497 asoc->rwnd += change;
1498 asoc->rwnd_press -= change;
1499 }
1500
1501 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1502 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1503 asoc->a_rwnd);
1504
1505 /* Send a window update SACK if the rwnd has increased by at least the
1506 * minimum of the association's PMTU and half of the receive buffer.
1507 * The algorithm used is similar to the one described in
1508 * Section 4.2.3.3 of RFC 1122.
1509 */
1510 if (sctp_peer_needs_update(asoc)) {
1511 asoc->a_rwnd = asoc->rwnd;
1512
1513 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1514 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1515 asoc->a_rwnd);
1516
1517 sack = sctp_make_sack(asoc);
1518 if (!sack)
1519 return;
1520
1521 asoc->peer.sack_needed = 0;
1522
1523 sctp_outq_tail(&asoc->outqueue, sack);
1524
1525 /* Stop the SACK timer. */
1526 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1527 if (del_timer(timer))
1528 sctp_association_put(asoc);
1529 }
1530 }
1531
1532 /* Decrease asoc's rwnd by len. */
sctp_assoc_rwnd_decrease(struct sctp_association * asoc,unsigned int len)1533 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1534 {
1535 int rx_count;
1536 int over = 0;
1537
1538 if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1539 pr_debug("%s: association:%p has asoc->rwnd:%u, "
1540 "asoc->rwnd_over:%u!\n", __func__, asoc,
1541 asoc->rwnd, asoc->rwnd_over);
1542
1543 if (asoc->ep->rcvbuf_policy)
1544 rx_count = atomic_read(&asoc->rmem_alloc);
1545 else
1546 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1547
1548 /* If we've reached or overflowed our receive buffer, announce
1549 * a 0 rwnd if rwnd would still be positive. Store the
1550 * the potential pressure overflow so that the window can be restored
1551 * back to original value.
1552 */
1553 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1554 over = 1;
1555
1556 if (asoc->rwnd >= len) {
1557 asoc->rwnd -= len;
1558 if (over) {
1559 asoc->rwnd_press += asoc->rwnd;
1560 asoc->rwnd = 0;
1561 }
1562 } else {
1563 asoc->rwnd_over = len - asoc->rwnd;
1564 asoc->rwnd = 0;
1565 }
1566
1567 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1568 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1569 asoc->rwnd_press);
1570 }
1571
1572 /* Build the bind address list for the association based on info from the
1573 * local endpoint and the remote peer.
1574 */
sctp_assoc_set_bind_addr_from_ep(struct sctp_association * asoc,sctp_scope_t scope,gfp_t gfp)1575 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1576 sctp_scope_t scope, gfp_t gfp)
1577 {
1578 struct sock *sk = asoc->base.sk;
1579 int flags;
1580
1581 /* Use scoping rules to determine the subset of addresses from
1582 * the endpoint.
1583 */
1584 flags = (PF_INET6 == sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1585 if (!inet_v6_ipv6only(sk))
1586 flags |= SCTP_ADDR4_ALLOWED;
1587 if (asoc->peer.ipv4_address)
1588 flags |= SCTP_ADDR4_PEERSUPP;
1589 if (asoc->peer.ipv6_address)
1590 flags |= SCTP_ADDR6_PEERSUPP;
1591
1592 return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1593 &asoc->base.bind_addr,
1594 &asoc->ep->base.bind_addr,
1595 scope, gfp, flags);
1596 }
1597
1598 /* Build the association's bind address list from the cookie. */
sctp_assoc_set_bind_addr_from_cookie(struct sctp_association * asoc,struct sctp_cookie * cookie,gfp_t gfp)1599 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1600 struct sctp_cookie *cookie,
1601 gfp_t gfp)
1602 {
1603 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1604 int var_size3 = cookie->raw_addr_list_len;
1605 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1606
1607 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1608 asoc->ep->base.bind_addr.port, gfp);
1609 }
1610
1611 /* Lookup laddr in the bind address list of an association. */
sctp_assoc_lookup_laddr(struct sctp_association * asoc,const union sctp_addr * laddr)1612 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1613 const union sctp_addr *laddr)
1614 {
1615 int found = 0;
1616
1617 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1618 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1619 sctp_sk(asoc->base.sk)))
1620 found = 1;
1621
1622 return found;
1623 }
1624
1625 /* Set an association id for a given association */
sctp_assoc_set_id(struct sctp_association * asoc,gfp_t gfp)1626 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1627 {
1628 bool preload = gfpflags_allow_blocking(gfp);
1629 int ret;
1630
1631 /* If the id is already assigned, keep it. */
1632 if (asoc->assoc_id)
1633 return 0;
1634
1635 if (preload)
1636 idr_preload(gfp);
1637 spin_lock_bh(&sctp_assocs_id_lock);
1638 /* 0 is not a valid assoc_id, must be >= 1 */
1639 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1640 spin_unlock_bh(&sctp_assocs_id_lock);
1641 if (preload)
1642 idr_preload_end();
1643 if (ret < 0)
1644 return ret;
1645
1646 asoc->assoc_id = (sctp_assoc_t)ret;
1647 return 0;
1648 }
1649
1650 /* Free the ASCONF queue */
sctp_assoc_free_asconf_queue(struct sctp_association * asoc)1651 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1652 {
1653 struct sctp_chunk *asconf;
1654 struct sctp_chunk *tmp;
1655
1656 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1657 list_del_init(&asconf->list);
1658 sctp_chunk_free(asconf);
1659 }
1660 }
1661
1662 /* Free asconf_ack cache */
sctp_assoc_free_asconf_acks(struct sctp_association * asoc)1663 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1664 {
1665 struct sctp_chunk *ack;
1666 struct sctp_chunk *tmp;
1667
1668 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1669 transmitted_list) {
1670 list_del_init(&ack->transmitted_list);
1671 sctp_chunk_free(ack);
1672 }
1673 }
1674
1675 /* Clean up the ASCONF_ACK queue */
sctp_assoc_clean_asconf_ack_cache(const struct sctp_association * asoc)1676 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1677 {
1678 struct sctp_chunk *ack;
1679 struct sctp_chunk *tmp;
1680
1681 /* We can remove all the entries from the queue up to
1682 * the "Peer-Sequence-Number".
1683 */
1684 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1685 transmitted_list) {
1686 if (ack->subh.addip_hdr->serial ==
1687 htonl(asoc->peer.addip_serial))
1688 break;
1689
1690 list_del_init(&ack->transmitted_list);
1691 sctp_chunk_free(ack);
1692 }
1693 }
1694
1695 /* Find the ASCONF_ACK whose serial number matches ASCONF */
sctp_assoc_lookup_asconf_ack(const struct sctp_association * asoc,__be32 serial)1696 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1697 const struct sctp_association *asoc,
1698 __be32 serial)
1699 {
1700 struct sctp_chunk *ack;
1701
1702 /* Walk through the list of cached ASCONF-ACKs and find the
1703 * ack chunk whose serial number matches that of the request.
1704 */
1705 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1706 if (sctp_chunk_pending(ack))
1707 continue;
1708 if (ack->subh.addip_hdr->serial == serial) {
1709 sctp_chunk_hold(ack);
1710 return ack;
1711 }
1712 }
1713
1714 return NULL;
1715 }
1716
sctp_asconf_queue_teardown(struct sctp_association * asoc)1717 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1718 {
1719 /* Free any cached ASCONF_ACK chunk. */
1720 sctp_assoc_free_asconf_acks(asoc);
1721
1722 /* Free the ASCONF queue. */
1723 sctp_assoc_free_asconf_queue(asoc);
1724
1725 /* Free any cached ASCONF chunk. */
1726 if (asoc->addip_last_asconf)
1727 sctp_chunk_free(asoc->addip_last_asconf);
1728 }
1729