1 /* Keyring handling
2 *
3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
24
25 /*
26 * When plumbing the depths of the key tree, this sets a hard limit
27 * set on how deep we're willing to go.
28 */
29 #define KEYRING_SEARCH_MAX_DEPTH 6
30
31 /*
32 * We keep all named keyrings in a hash to speed looking them up.
33 */
34 #define KEYRING_NAME_HASH_SIZE (1 << 5)
35
36 /*
37 * We mark pointers we pass to the associative array with bit 1 set if
38 * they're keyrings and clear otherwise.
39 */
40 #define KEYRING_PTR_SUBTYPE 0x2UL
41
keyring_ptr_is_keyring(const struct assoc_array_ptr * x)42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43 {
44 return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45 }
keyring_ptr_to_key(const struct assoc_array_ptr * x)46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47 {
48 void *object = assoc_array_ptr_to_leaf(x);
49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50 }
keyring_key_to_ptr(struct key * key)51 static inline void *keyring_key_to_ptr(struct key *key)
52 {
53 if (key->type == &key_type_keyring)
54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 return key;
56 }
57
58 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
60
keyring_hash(const char * desc)61 static inline unsigned keyring_hash(const char *desc)
62 {
63 unsigned bucket = 0;
64
65 for (; *desc; desc++)
66 bucket += (unsigned char)*desc;
67
68 return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69 }
70
71 /*
72 * The keyring key type definition. Keyrings are simply keys of this type and
73 * can be treated as ordinary keys in addition to having their own special
74 * operations.
75 */
76 static int keyring_preparse(struct key_preparsed_payload *prep);
77 static void keyring_free_preparse(struct key_preparsed_payload *prep);
78 static int keyring_instantiate(struct key *keyring,
79 struct key_preparsed_payload *prep);
80 static void keyring_revoke(struct key *keyring);
81 static void keyring_destroy(struct key *keyring);
82 static void keyring_describe(const struct key *keyring, struct seq_file *m);
83 static long keyring_read(const struct key *keyring,
84 char __user *buffer, size_t buflen);
85
86 struct key_type key_type_keyring = {
87 .name = "keyring",
88 .def_datalen = 0,
89 .preparse = keyring_preparse,
90 .free_preparse = keyring_free_preparse,
91 .instantiate = keyring_instantiate,
92 .revoke = keyring_revoke,
93 .destroy = keyring_destroy,
94 .describe = keyring_describe,
95 .read = keyring_read,
96 };
97 EXPORT_SYMBOL(key_type_keyring);
98
99 /*
100 * Semaphore to serialise link/link calls to prevent two link calls in parallel
101 * introducing a cycle.
102 */
103 static DECLARE_RWSEM(keyring_serialise_link_sem);
104
105 /*
106 * Publish the name of a keyring so that it can be found by name (if it has
107 * one).
108 */
keyring_publish_name(struct key * keyring)109 static void keyring_publish_name(struct key *keyring)
110 {
111 int bucket;
112
113 if (keyring->description) {
114 bucket = keyring_hash(keyring->description);
115
116 write_lock(&keyring_name_lock);
117
118 if (!keyring_name_hash[bucket].next)
119 INIT_LIST_HEAD(&keyring_name_hash[bucket]);
120
121 list_add_tail(&keyring->name_link,
122 &keyring_name_hash[bucket]);
123
124 write_unlock(&keyring_name_lock);
125 }
126 }
127
128 /*
129 * Preparse a keyring payload
130 */
keyring_preparse(struct key_preparsed_payload * prep)131 static int keyring_preparse(struct key_preparsed_payload *prep)
132 {
133 return prep->datalen != 0 ? -EINVAL : 0;
134 }
135
136 /*
137 * Free a preparse of a user defined key payload
138 */
keyring_free_preparse(struct key_preparsed_payload * prep)139 static void keyring_free_preparse(struct key_preparsed_payload *prep)
140 {
141 }
142
143 /*
144 * Initialise a keyring.
145 *
146 * Returns 0 on success, -EINVAL if given any data.
147 */
keyring_instantiate(struct key * keyring,struct key_preparsed_payload * prep)148 static int keyring_instantiate(struct key *keyring,
149 struct key_preparsed_payload *prep)
150 {
151 assoc_array_init(&keyring->keys);
152 /* make the keyring available by name if it has one */
153 keyring_publish_name(keyring);
154 return 0;
155 }
156
157 /*
158 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
159 * fold the carry back too, but that requires inline asm.
160 */
mult_64x32_and_fold(u64 x,u32 y)161 static u64 mult_64x32_and_fold(u64 x, u32 y)
162 {
163 u64 hi = (u64)(u32)(x >> 32) * y;
164 u64 lo = (u64)(u32)(x) * y;
165 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
166 }
167
168 /*
169 * Hash a key type and description.
170 */
hash_key_type_and_desc(const struct keyring_index_key * index_key)171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
172 {
173 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
174 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
175 const char *description = index_key->description;
176 unsigned long hash, type;
177 u32 piece;
178 u64 acc;
179 int n, desc_len = index_key->desc_len;
180
181 type = (unsigned long)index_key->type;
182
183 acc = mult_64x32_and_fold(type, desc_len + 13);
184 acc = mult_64x32_and_fold(acc, 9207);
185 for (;;) {
186 n = desc_len;
187 if (n <= 0)
188 break;
189 if (n > 4)
190 n = 4;
191 piece = 0;
192 memcpy(&piece, description, n);
193 description += n;
194 desc_len -= n;
195 acc = mult_64x32_and_fold(acc, piece);
196 acc = mult_64x32_and_fold(acc, 9207);
197 }
198
199 /* Fold the hash down to 32 bits if need be. */
200 hash = acc;
201 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
202 hash ^= acc >> 32;
203
204 /* Squidge all the keyrings into a separate part of the tree to
205 * ordinary keys by making sure the lowest level segment in the hash is
206 * zero for keyrings and non-zero otherwise.
207 */
208 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
209 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
210 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
211 return (hash + (hash << level_shift)) & ~fan_mask;
212 return hash;
213 }
214
215 /*
216 * Build the next index key chunk.
217 *
218 * On 32-bit systems the index key is laid out as:
219 *
220 * 0 4 5 9...
221 * hash desclen typeptr desc[]
222 *
223 * On 64-bit systems:
224 *
225 * 0 8 9 17...
226 * hash desclen typeptr desc[]
227 *
228 * We return it one word-sized chunk at a time.
229 */
keyring_get_key_chunk(const void * data,int level)230 static unsigned long keyring_get_key_chunk(const void *data, int level)
231 {
232 const struct keyring_index_key *index_key = data;
233 unsigned long chunk = 0;
234 long offset = 0;
235 int desc_len = index_key->desc_len, n = sizeof(chunk);
236
237 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
238 switch (level) {
239 case 0:
240 return hash_key_type_and_desc(index_key);
241 case 1:
242 return ((unsigned long)index_key->type << 8) | desc_len;
243 case 2:
244 if (desc_len == 0)
245 return (u8)((unsigned long)index_key->type >>
246 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
247 n--;
248 offset = 1;
249 default:
250 offset += sizeof(chunk) - 1;
251 offset += (level - 3) * sizeof(chunk);
252 if (offset >= desc_len)
253 return 0;
254 desc_len -= offset;
255 if (desc_len > n)
256 desc_len = n;
257 offset += desc_len;
258 do {
259 chunk <<= 8;
260 chunk |= ((u8*)index_key->description)[--offset];
261 } while (--desc_len > 0);
262
263 if (level == 2) {
264 chunk <<= 8;
265 chunk |= (u8)((unsigned long)index_key->type >>
266 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
267 }
268 return chunk;
269 }
270 }
271
keyring_get_object_key_chunk(const void * object,int level)272 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
273 {
274 const struct key *key = keyring_ptr_to_key(object);
275 return keyring_get_key_chunk(&key->index_key, level);
276 }
277
keyring_compare_object(const void * object,const void * data)278 static bool keyring_compare_object(const void *object, const void *data)
279 {
280 const struct keyring_index_key *index_key = data;
281 const struct key *key = keyring_ptr_to_key(object);
282
283 return key->index_key.type == index_key->type &&
284 key->index_key.desc_len == index_key->desc_len &&
285 memcmp(key->index_key.description, index_key->description,
286 index_key->desc_len) == 0;
287 }
288
289 /*
290 * Compare the index keys of a pair of objects and determine the bit position
291 * at which they differ - if they differ.
292 */
keyring_diff_objects(const void * object,const void * data)293 static int keyring_diff_objects(const void *object, const void *data)
294 {
295 const struct key *key_a = keyring_ptr_to_key(object);
296 const struct keyring_index_key *a = &key_a->index_key;
297 const struct keyring_index_key *b = data;
298 unsigned long seg_a, seg_b;
299 int level, i;
300
301 level = 0;
302 seg_a = hash_key_type_and_desc(a);
303 seg_b = hash_key_type_and_desc(b);
304 if ((seg_a ^ seg_b) != 0)
305 goto differ;
306
307 /* The number of bits contributed by the hash is controlled by a
308 * constant in the assoc_array headers. Everything else thereafter we
309 * can deal with as being machine word-size dependent.
310 */
311 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
312 seg_a = a->desc_len;
313 seg_b = b->desc_len;
314 if ((seg_a ^ seg_b) != 0)
315 goto differ;
316
317 /* The next bit may not work on big endian */
318 level++;
319 seg_a = (unsigned long)a->type;
320 seg_b = (unsigned long)b->type;
321 if ((seg_a ^ seg_b) != 0)
322 goto differ;
323
324 level += sizeof(unsigned long);
325 if (a->desc_len == 0)
326 goto same;
327
328 i = 0;
329 if (((unsigned long)a->description | (unsigned long)b->description) &
330 (sizeof(unsigned long) - 1)) {
331 do {
332 seg_a = *(unsigned long *)(a->description + i);
333 seg_b = *(unsigned long *)(b->description + i);
334 if ((seg_a ^ seg_b) != 0)
335 goto differ_plus_i;
336 i += sizeof(unsigned long);
337 } while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
338 }
339
340 for (; i < a->desc_len; i++) {
341 seg_a = *(unsigned char *)(a->description + i);
342 seg_b = *(unsigned char *)(b->description + i);
343 if ((seg_a ^ seg_b) != 0)
344 goto differ_plus_i;
345 }
346
347 same:
348 return -1;
349
350 differ_plus_i:
351 level += i;
352 differ:
353 i = level * 8 + __ffs(seg_a ^ seg_b);
354 return i;
355 }
356
357 /*
358 * Free an object after stripping the keyring flag off of the pointer.
359 */
keyring_free_object(void * object)360 static void keyring_free_object(void *object)
361 {
362 key_put(keyring_ptr_to_key(object));
363 }
364
365 /*
366 * Operations for keyring management by the index-tree routines.
367 */
368 static const struct assoc_array_ops keyring_assoc_array_ops = {
369 .get_key_chunk = keyring_get_key_chunk,
370 .get_object_key_chunk = keyring_get_object_key_chunk,
371 .compare_object = keyring_compare_object,
372 .diff_objects = keyring_diff_objects,
373 .free_object = keyring_free_object,
374 };
375
376 /*
377 * Clean up a keyring when it is destroyed. Unpublish its name if it had one
378 * and dispose of its data.
379 *
380 * The garbage collector detects the final key_put(), removes the keyring from
381 * the serial number tree and then does RCU synchronisation before coming here,
382 * so we shouldn't need to worry about code poking around here with the RCU
383 * readlock held by this time.
384 */
keyring_destroy(struct key * keyring)385 static void keyring_destroy(struct key *keyring)
386 {
387 if (keyring->description) {
388 write_lock(&keyring_name_lock);
389
390 if (keyring->name_link.next != NULL &&
391 !list_empty(&keyring->name_link))
392 list_del(&keyring->name_link);
393
394 write_unlock(&keyring_name_lock);
395 }
396
397 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
398 }
399
400 /*
401 * Describe a keyring for /proc.
402 */
keyring_describe(const struct key * keyring,struct seq_file * m)403 static void keyring_describe(const struct key *keyring, struct seq_file *m)
404 {
405 if (keyring->description)
406 seq_puts(m, keyring->description);
407 else
408 seq_puts(m, "[anon]");
409
410 if (key_is_positive(keyring)) {
411 if (keyring->keys.nr_leaves_on_tree != 0)
412 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
413 else
414 seq_puts(m, ": empty");
415 }
416 }
417
418 struct keyring_read_iterator_context {
419 size_t buflen;
420 size_t count;
421 key_serial_t __user *buffer;
422 };
423
keyring_read_iterator(const void * object,void * data)424 static int keyring_read_iterator(const void *object, void *data)
425 {
426 struct keyring_read_iterator_context *ctx = data;
427 const struct key *key = keyring_ptr_to_key(object);
428 int ret;
429
430 kenter("{%s,%d},,{%zu/%zu}",
431 key->type->name, key->serial, ctx->count, ctx->buflen);
432
433 if (ctx->count >= ctx->buflen)
434 return 1;
435
436 ret = put_user(key->serial, ctx->buffer);
437 if (ret < 0)
438 return ret;
439 ctx->buffer++;
440 ctx->count += sizeof(key->serial);
441 return 0;
442 }
443
444 /*
445 * Read a list of key IDs from the keyring's contents in binary form
446 *
447 * The keyring's semaphore is read-locked by the caller. This prevents someone
448 * from modifying it under us - which could cause us to read key IDs multiple
449 * times.
450 */
keyring_read(const struct key * keyring,char __user * buffer,size_t buflen)451 static long keyring_read(const struct key *keyring,
452 char __user *buffer, size_t buflen)
453 {
454 struct keyring_read_iterator_context ctx;
455 long ret;
456
457 kenter("{%d},,%zu", key_serial(keyring), buflen);
458
459 if (buflen & (sizeof(key_serial_t) - 1))
460 return -EINVAL;
461
462 /* Copy as many key IDs as fit into the buffer */
463 if (buffer && buflen) {
464 ctx.buffer = (key_serial_t __user *)buffer;
465 ctx.buflen = buflen;
466 ctx.count = 0;
467 ret = assoc_array_iterate(&keyring->keys,
468 keyring_read_iterator, &ctx);
469 if (ret < 0) {
470 kleave(" = %ld [iterate]", ret);
471 return ret;
472 }
473 }
474
475 /* Return the size of the buffer needed */
476 ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
477 if (ret <= buflen)
478 kleave("= %ld [ok]", ret);
479 else
480 kleave("= %ld [buffer too small]", ret);
481 return ret;
482 }
483
484 /*
485 * Allocate a keyring and link into the destination keyring.
486 */
keyring_alloc(const char * description,kuid_t uid,kgid_t gid,const struct cred * cred,key_perm_t perm,unsigned long flags,struct key * dest)487 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
488 const struct cred *cred, key_perm_t perm,
489 unsigned long flags, struct key *dest)
490 {
491 struct key *keyring;
492 int ret;
493
494 keyring = key_alloc(&key_type_keyring, description,
495 uid, gid, cred, perm, flags);
496 if (!IS_ERR(keyring)) {
497 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
498 if (ret < 0) {
499 key_put(keyring);
500 keyring = ERR_PTR(ret);
501 }
502 }
503
504 return keyring;
505 }
506 EXPORT_SYMBOL(keyring_alloc);
507
508 /*
509 * By default, we keys found by getting an exact match on their descriptions.
510 */
key_default_cmp(const struct key * key,const struct key_match_data * match_data)511 bool key_default_cmp(const struct key *key,
512 const struct key_match_data *match_data)
513 {
514 return strcmp(key->description, match_data->raw_data) == 0;
515 }
516
517 /*
518 * Iteration function to consider each key found.
519 */
keyring_search_iterator(const void * object,void * iterator_data)520 static int keyring_search_iterator(const void *object, void *iterator_data)
521 {
522 struct keyring_search_context *ctx = iterator_data;
523 const struct key *key = keyring_ptr_to_key(object);
524 unsigned long kflags = READ_ONCE(key->flags);
525 short state = READ_ONCE(key->state);
526
527 kenter("{%d}", key->serial);
528
529 /* ignore keys not of this type */
530 if (key->type != ctx->index_key.type) {
531 kleave(" = 0 [!type]");
532 return 0;
533 }
534
535 /* skip invalidated, revoked and expired keys */
536 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
537 if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
538 (1 << KEY_FLAG_REVOKED))) {
539 ctx->result = ERR_PTR(-EKEYREVOKED);
540 kleave(" = %d [invrev]", ctx->skipped_ret);
541 goto skipped;
542 }
543
544 if (key->expiry && ctx->now.tv_sec >= key->expiry) {
545 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
546 ctx->result = ERR_PTR(-EKEYEXPIRED);
547 kleave(" = %d [expire]", ctx->skipped_ret);
548 goto skipped;
549 }
550 }
551
552 /* keys that don't match */
553 if (!ctx->match_data.cmp(key, &ctx->match_data)) {
554 kleave(" = 0 [!match]");
555 return 0;
556 }
557
558 /* key must have search permissions */
559 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
560 key_task_permission(make_key_ref(key, ctx->possessed),
561 ctx->cred, KEY_NEED_SEARCH) < 0) {
562 ctx->result = ERR_PTR(-EACCES);
563 kleave(" = %d [!perm]", ctx->skipped_ret);
564 goto skipped;
565 }
566
567 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
568 /* we set a different error code if we pass a negative key */
569 if (state < 0) {
570 ctx->result = ERR_PTR(state);
571 kleave(" = %d [neg]", ctx->skipped_ret);
572 goto skipped;
573 }
574 }
575
576 /* Found */
577 ctx->result = make_key_ref(key, ctx->possessed);
578 kleave(" = 1 [found]");
579 return 1;
580
581 skipped:
582 return ctx->skipped_ret;
583 }
584
585 /*
586 * Search inside a keyring for a key. We can search by walking to it
587 * directly based on its index-key or we can iterate over the entire
588 * tree looking for it, based on the match function.
589 */
search_keyring(struct key * keyring,struct keyring_search_context * ctx)590 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
591 {
592 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
593 const void *object;
594
595 object = assoc_array_find(&keyring->keys,
596 &keyring_assoc_array_ops,
597 &ctx->index_key);
598 return object ? ctx->iterator(object, ctx) : 0;
599 }
600 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
601 }
602
603 /*
604 * Search a tree of keyrings that point to other keyrings up to the maximum
605 * depth.
606 */
search_nested_keyrings(struct key * keyring,struct keyring_search_context * ctx)607 static bool search_nested_keyrings(struct key *keyring,
608 struct keyring_search_context *ctx)
609 {
610 struct {
611 struct key *keyring;
612 struct assoc_array_node *node;
613 int slot;
614 } stack[KEYRING_SEARCH_MAX_DEPTH];
615
616 struct assoc_array_shortcut *shortcut;
617 struct assoc_array_node *node;
618 struct assoc_array_ptr *ptr;
619 struct key *key;
620 int sp = 0, slot;
621
622 kenter("{%d},{%s,%s}",
623 keyring->serial,
624 ctx->index_key.type->name,
625 ctx->index_key.description);
626
627 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
628 BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
629 (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
630
631 /* Check to see if this top-level keyring is what we are looking for
632 * and whether it is valid or not.
633 */
634 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
635 keyring_compare_object(keyring, &ctx->index_key)) {
636 ctx->skipped_ret = 2;
637 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
638 case 1:
639 goto found;
640 case 2:
641 return false;
642 default:
643 break;
644 }
645 }
646
647 ctx->skipped_ret = 0;
648
649 /* Start processing a new keyring */
650 descend_to_keyring:
651 kdebug("descend to %d", keyring->serial);
652 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
653 (1 << KEY_FLAG_REVOKED)))
654 goto not_this_keyring;
655
656 /* Search through the keys in this keyring before its searching its
657 * subtrees.
658 */
659 if (search_keyring(keyring, ctx))
660 goto found;
661
662 /* Then manually iterate through the keyrings nested in this one.
663 *
664 * Start from the root node of the index tree. Because of the way the
665 * hash function has been set up, keyrings cluster on the leftmost
666 * branch of the root node (root slot 0) or in the root node itself.
667 * Non-keyrings avoid the leftmost branch of the root entirely (root
668 * slots 1-15).
669 */
670 ptr = ACCESS_ONCE(keyring->keys.root);
671 if (!ptr)
672 goto not_this_keyring;
673
674 if (assoc_array_ptr_is_shortcut(ptr)) {
675 /* If the root is a shortcut, either the keyring only contains
676 * keyring pointers (everything clusters behind root slot 0) or
677 * doesn't contain any keyring pointers.
678 */
679 shortcut = assoc_array_ptr_to_shortcut(ptr);
680 smp_read_barrier_depends();
681 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
682 goto not_this_keyring;
683
684 ptr = ACCESS_ONCE(shortcut->next_node);
685 node = assoc_array_ptr_to_node(ptr);
686 goto begin_node;
687 }
688
689 node = assoc_array_ptr_to_node(ptr);
690 smp_read_barrier_depends();
691
692 ptr = node->slots[0];
693 if (!assoc_array_ptr_is_meta(ptr))
694 goto begin_node;
695
696 descend_to_node:
697 /* Descend to a more distal node in this keyring's content tree and go
698 * through that.
699 */
700 kdebug("descend");
701 if (assoc_array_ptr_is_shortcut(ptr)) {
702 shortcut = assoc_array_ptr_to_shortcut(ptr);
703 smp_read_barrier_depends();
704 ptr = ACCESS_ONCE(shortcut->next_node);
705 BUG_ON(!assoc_array_ptr_is_node(ptr));
706 }
707 node = assoc_array_ptr_to_node(ptr);
708
709 begin_node:
710 kdebug("begin_node");
711 smp_read_barrier_depends();
712 slot = 0;
713 ascend_to_node:
714 /* Go through the slots in a node */
715 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
716 ptr = ACCESS_ONCE(node->slots[slot]);
717
718 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
719 goto descend_to_node;
720
721 if (!keyring_ptr_is_keyring(ptr))
722 continue;
723
724 key = keyring_ptr_to_key(ptr);
725
726 if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
727 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
728 ctx->result = ERR_PTR(-ELOOP);
729 return false;
730 }
731 goto not_this_keyring;
732 }
733
734 /* Search a nested keyring */
735 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
736 key_task_permission(make_key_ref(key, ctx->possessed),
737 ctx->cred, KEY_NEED_SEARCH) < 0)
738 continue;
739
740 /* stack the current position */
741 stack[sp].keyring = keyring;
742 stack[sp].node = node;
743 stack[sp].slot = slot;
744 sp++;
745
746 /* begin again with the new keyring */
747 keyring = key;
748 goto descend_to_keyring;
749 }
750
751 /* We've dealt with all the slots in the current node, so now we need
752 * to ascend to the parent and continue processing there.
753 */
754 ptr = ACCESS_ONCE(node->back_pointer);
755 slot = node->parent_slot;
756
757 if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
758 shortcut = assoc_array_ptr_to_shortcut(ptr);
759 smp_read_barrier_depends();
760 ptr = ACCESS_ONCE(shortcut->back_pointer);
761 slot = shortcut->parent_slot;
762 }
763 if (!ptr)
764 goto not_this_keyring;
765 node = assoc_array_ptr_to_node(ptr);
766 smp_read_barrier_depends();
767 slot++;
768
769 /* If we've ascended to the root (zero backpointer), we must have just
770 * finished processing the leftmost branch rather than the root slots -
771 * so there can't be any more keyrings for us to find.
772 */
773 if (node->back_pointer) {
774 kdebug("ascend %d", slot);
775 goto ascend_to_node;
776 }
777
778 /* The keyring we're looking at was disqualified or didn't contain a
779 * matching key.
780 */
781 not_this_keyring:
782 kdebug("not_this_keyring %d", sp);
783 if (sp <= 0) {
784 kleave(" = false");
785 return false;
786 }
787
788 /* Resume the processing of a keyring higher up in the tree */
789 sp--;
790 keyring = stack[sp].keyring;
791 node = stack[sp].node;
792 slot = stack[sp].slot + 1;
793 kdebug("ascend to %d [%d]", keyring->serial, slot);
794 goto ascend_to_node;
795
796 /* We found a viable match */
797 found:
798 key = key_ref_to_ptr(ctx->result);
799 key_check(key);
800 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
801 key->last_used_at = ctx->now.tv_sec;
802 keyring->last_used_at = ctx->now.tv_sec;
803 while (sp > 0)
804 stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
805 }
806 kleave(" = true");
807 return true;
808 }
809
810 /**
811 * keyring_search_aux - Search a keyring tree for a key matching some criteria
812 * @keyring_ref: A pointer to the keyring with possession indicator.
813 * @ctx: The keyring search context.
814 *
815 * Search the supplied keyring tree for a key that matches the criteria given.
816 * The root keyring and any linked keyrings must grant Search permission to the
817 * caller to be searchable and keys can only be found if they too grant Search
818 * to the caller. The possession flag on the root keyring pointer controls use
819 * of the possessor bits in permissions checking of the entire tree. In
820 * addition, the LSM gets to forbid keyring searches and key matches.
821 *
822 * The search is performed as a breadth-then-depth search up to the prescribed
823 * limit (KEYRING_SEARCH_MAX_DEPTH).
824 *
825 * Keys are matched to the type provided and are then filtered by the match
826 * function, which is given the description to use in any way it sees fit. The
827 * match function may use any attributes of a key that it wishes to to
828 * determine the match. Normally the match function from the key type would be
829 * used.
830 *
831 * RCU can be used to prevent the keyring key lists from disappearing without
832 * the need to take lots of locks.
833 *
834 * Returns a pointer to the found key and increments the key usage count if
835 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
836 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
837 * specified keyring wasn't a keyring.
838 *
839 * In the case of a successful return, the possession attribute from
840 * @keyring_ref is propagated to the returned key reference.
841 */
keyring_search_aux(key_ref_t keyring_ref,struct keyring_search_context * ctx)842 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
843 struct keyring_search_context *ctx)
844 {
845 struct key *keyring;
846 long err;
847
848 ctx->iterator = keyring_search_iterator;
849 ctx->possessed = is_key_possessed(keyring_ref);
850 ctx->result = ERR_PTR(-EAGAIN);
851
852 keyring = key_ref_to_ptr(keyring_ref);
853 key_check(keyring);
854
855 if (keyring->type != &key_type_keyring)
856 return ERR_PTR(-ENOTDIR);
857
858 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
859 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
860 if (err < 0)
861 return ERR_PTR(err);
862 }
863
864 rcu_read_lock();
865 ctx->now = current_kernel_time();
866 if (search_nested_keyrings(keyring, ctx))
867 __key_get(key_ref_to_ptr(ctx->result));
868 rcu_read_unlock();
869 return ctx->result;
870 }
871
872 /**
873 * keyring_search - Search the supplied keyring tree for a matching key
874 * @keyring: The root of the keyring tree to be searched.
875 * @type: The type of keyring we want to find.
876 * @description: The name of the keyring we want to find.
877 *
878 * As keyring_search_aux() above, but using the current task's credentials and
879 * type's default matching function and preferred search method.
880 */
keyring_search(key_ref_t keyring,struct key_type * type,const char * description)881 key_ref_t keyring_search(key_ref_t keyring,
882 struct key_type *type,
883 const char *description)
884 {
885 struct keyring_search_context ctx = {
886 .index_key.type = type,
887 .index_key.description = description,
888 .index_key.desc_len = strlen(description),
889 .cred = current_cred(),
890 .match_data.cmp = key_default_cmp,
891 .match_data.raw_data = description,
892 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
893 .flags = KEYRING_SEARCH_DO_STATE_CHECK,
894 };
895 key_ref_t key;
896 int ret;
897
898 if (type->match_preparse) {
899 ret = type->match_preparse(&ctx.match_data);
900 if (ret < 0)
901 return ERR_PTR(ret);
902 }
903
904 key = keyring_search_aux(keyring, &ctx);
905
906 if (type->match_free)
907 type->match_free(&ctx.match_data);
908 return key;
909 }
910 EXPORT_SYMBOL(keyring_search);
911
912 /*
913 * Search the given keyring for a key that might be updated.
914 *
915 * The caller must guarantee that the keyring is a keyring and that the
916 * permission is granted to modify the keyring as no check is made here. The
917 * caller must also hold a lock on the keyring semaphore.
918 *
919 * Returns a pointer to the found key with usage count incremented if
920 * successful and returns NULL if not found. Revoked and invalidated keys are
921 * skipped over.
922 *
923 * If successful, the possession indicator is propagated from the keyring ref
924 * to the returned key reference.
925 */
find_key_to_update(key_ref_t keyring_ref,const struct keyring_index_key * index_key)926 key_ref_t find_key_to_update(key_ref_t keyring_ref,
927 const struct keyring_index_key *index_key)
928 {
929 struct key *keyring, *key;
930 const void *object;
931
932 keyring = key_ref_to_ptr(keyring_ref);
933
934 kenter("{%d},{%s,%s}",
935 keyring->serial, index_key->type->name, index_key->description);
936
937 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
938 index_key);
939
940 if (object)
941 goto found;
942
943 kleave(" = NULL");
944 return NULL;
945
946 found:
947 key = keyring_ptr_to_key(object);
948 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
949 (1 << KEY_FLAG_REVOKED))) {
950 kleave(" = NULL [x]");
951 return NULL;
952 }
953 __key_get(key);
954 kleave(" = {%d}", key->serial);
955 return make_key_ref(key, is_key_possessed(keyring_ref));
956 }
957
958 /*
959 * Find a keyring with the specified name.
960 *
961 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
962 * user in the current user namespace are considered. If @uid_keyring is %true,
963 * the keyring additionally must have been allocated as a user or user session
964 * keyring; otherwise, it must grant Search permission directly to the caller.
965 *
966 * Returns a pointer to the keyring with the keyring's refcount having being
967 * incremented on success. -ENOKEY is returned if a key could not be found.
968 */
find_keyring_by_name(const char * name,bool uid_keyring)969 struct key *find_keyring_by_name(const char *name, bool uid_keyring)
970 {
971 struct key *keyring;
972 int bucket;
973
974 if (!name)
975 return ERR_PTR(-EINVAL);
976
977 bucket = keyring_hash(name);
978
979 read_lock(&keyring_name_lock);
980
981 if (keyring_name_hash[bucket].next) {
982 /* search this hash bucket for a keyring with a matching name
983 * that's readable and that hasn't been revoked */
984 list_for_each_entry(keyring,
985 &keyring_name_hash[bucket],
986 name_link
987 ) {
988 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
989 continue;
990
991 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
992 continue;
993
994 if (strcmp(keyring->description, name) != 0)
995 continue;
996
997 if (uid_keyring) {
998 if (!test_bit(KEY_FLAG_UID_KEYRING,
999 &keyring->flags))
1000 continue;
1001 } else {
1002 if (key_permission(make_key_ref(keyring, 0),
1003 KEY_NEED_SEARCH) < 0)
1004 continue;
1005 }
1006
1007 /* we've got a match but we might end up racing with
1008 * key_cleanup() if the keyring is currently 'dead'
1009 * (ie. it has a zero usage count) */
1010 if (!atomic_inc_not_zero(&keyring->usage))
1011 continue;
1012 keyring->last_used_at = current_kernel_time().tv_sec;
1013 goto out;
1014 }
1015 }
1016
1017 keyring = ERR_PTR(-ENOKEY);
1018 out:
1019 read_unlock(&keyring_name_lock);
1020 return keyring;
1021 }
1022
keyring_detect_cycle_iterator(const void * object,void * iterator_data)1023 static int keyring_detect_cycle_iterator(const void *object,
1024 void *iterator_data)
1025 {
1026 struct keyring_search_context *ctx = iterator_data;
1027 const struct key *key = keyring_ptr_to_key(object);
1028
1029 kenter("{%d}", key->serial);
1030
1031 /* We might get a keyring with matching index-key that is nonetheless a
1032 * different keyring. */
1033 if (key != ctx->match_data.raw_data)
1034 return 0;
1035
1036 ctx->result = ERR_PTR(-EDEADLK);
1037 return 1;
1038 }
1039
1040 /*
1041 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1042 * tree A at the topmost level (ie: as a direct child of A).
1043 *
1044 * Since we are adding B to A at the top level, checking for cycles should just
1045 * be a matter of seeing if node A is somewhere in tree B.
1046 */
keyring_detect_cycle(struct key * A,struct key * B)1047 static int keyring_detect_cycle(struct key *A, struct key *B)
1048 {
1049 struct keyring_search_context ctx = {
1050 .index_key = A->index_key,
1051 .match_data.raw_data = A,
1052 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1053 .iterator = keyring_detect_cycle_iterator,
1054 .flags = (KEYRING_SEARCH_NO_STATE_CHECK |
1055 KEYRING_SEARCH_NO_UPDATE_TIME |
1056 KEYRING_SEARCH_NO_CHECK_PERM |
1057 KEYRING_SEARCH_DETECT_TOO_DEEP),
1058 };
1059
1060 rcu_read_lock();
1061 search_nested_keyrings(B, &ctx);
1062 rcu_read_unlock();
1063 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1064 }
1065
1066 /*
1067 * Preallocate memory so that a key can be linked into to a keyring.
1068 */
__key_link_begin(struct key * keyring,const struct keyring_index_key * index_key,struct assoc_array_edit ** _edit)1069 int __key_link_begin(struct key *keyring,
1070 const struct keyring_index_key *index_key,
1071 struct assoc_array_edit **_edit)
1072 __acquires(&keyring->sem)
1073 __acquires(&keyring_serialise_link_sem)
1074 {
1075 struct assoc_array_edit *edit;
1076 int ret;
1077
1078 kenter("%d,%s,%s,",
1079 keyring->serial, index_key->type->name, index_key->description);
1080
1081 BUG_ON(index_key->desc_len == 0);
1082
1083 if (keyring->type != &key_type_keyring)
1084 return -ENOTDIR;
1085
1086 down_write(&keyring->sem);
1087
1088 ret = -EKEYREVOKED;
1089 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1090 goto error_krsem;
1091
1092 /* serialise link/link calls to prevent parallel calls causing a cycle
1093 * when linking two keyring in opposite orders */
1094 if (index_key->type == &key_type_keyring)
1095 down_write(&keyring_serialise_link_sem);
1096
1097 /* Create an edit script that will insert/replace the key in the
1098 * keyring tree.
1099 */
1100 edit = assoc_array_insert(&keyring->keys,
1101 &keyring_assoc_array_ops,
1102 index_key,
1103 NULL);
1104 if (IS_ERR(edit)) {
1105 ret = PTR_ERR(edit);
1106 goto error_sem;
1107 }
1108
1109 /* If we're not replacing a link in-place then we're going to need some
1110 * extra quota.
1111 */
1112 if (!edit->dead_leaf) {
1113 ret = key_payload_reserve(keyring,
1114 keyring->datalen + KEYQUOTA_LINK_BYTES);
1115 if (ret < 0)
1116 goto error_cancel;
1117 }
1118
1119 *_edit = edit;
1120 kleave(" = 0");
1121 return 0;
1122
1123 error_cancel:
1124 assoc_array_cancel_edit(edit);
1125 error_sem:
1126 if (index_key->type == &key_type_keyring)
1127 up_write(&keyring_serialise_link_sem);
1128 error_krsem:
1129 up_write(&keyring->sem);
1130 kleave(" = %d", ret);
1131 return ret;
1132 }
1133
1134 /*
1135 * Check already instantiated keys aren't going to be a problem.
1136 *
1137 * The caller must have called __key_link_begin(). Don't need to call this for
1138 * keys that were created since __key_link_begin() was called.
1139 */
__key_link_check_live_key(struct key * keyring,struct key * key)1140 int __key_link_check_live_key(struct key *keyring, struct key *key)
1141 {
1142 if (key->type == &key_type_keyring)
1143 /* check that we aren't going to create a cycle by linking one
1144 * keyring to another */
1145 return keyring_detect_cycle(keyring, key);
1146 return 0;
1147 }
1148
1149 /*
1150 * Link a key into to a keyring.
1151 *
1152 * Must be called with __key_link_begin() having being called. Discards any
1153 * already extant link to matching key if there is one, so that each keyring
1154 * holds at most one link to any given key of a particular type+description
1155 * combination.
1156 */
__key_link(struct key * key,struct assoc_array_edit ** _edit)1157 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1158 {
1159 __key_get(key);
1160 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1161 assoc_array_apply_edit(*_edit);
1162 *_edit = NULL;
1163 }
1164
1165 /*
1166 * Finish linking a key into to a keyring.
1167 *
1168 * Must be called with __key_link_begin() having being called.
1169 */
__key_link_end(struct key * keyring,const struct keyring_index_key * index_key,struct assoc_array_edit * edit)1170 void __key_link_end(struct key *keyring,
1171 const struct keyring_index_key *index_key,
1172 struct assoc_array_edit *edit)
1173 __releases(&keyring->sem)
1174 __releases(&keyring_serialise_link_sem)
1175 {
1176 BUG_ON(index_key->type == NULL);
1177 kenter("%d,%s,", keyring->serial, index_key->type->name);
1178
1179 if (index_key->type == &key_type_keyring)
1180 up_write(&keyring_serialise_link_sem);
1181
1182 if (edit) {
1183 if (!edit->dead_leaf) {
1184 key_payload_reserve(keyring,
1185 keyring->datalen - KEYQUOTA_LINK_BYTES);
1186 }
1187 assoc_array_cancel_edit(edit);
1188 }
1189 up_write(&keyring->sem);
1190 }
1191
1192 /**
1193 * key_link - Link a key to a keyring
1194 * @keyring: The keyring to make the link in.
1195 * @key: The key to link to.
1196 *
1197 * Make a link in a keyring to a key, such that the keyring holds a reference
1198 * on that key and the key can potentially be found by searching that keyring.
1199 *
1200 * This function will write-lock the keyring's semaphore and will consume some
1201 * of the user's key data quota to hold the link.
1202 *
1203 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1204 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1205 * full, -EDQUOT if there is insufficient key data quota remaining to add
1206 * another link or -ENOMEM if there's insufficient memory.
1207 *
1208 * It is assumed that the caller has checked that it is permitted for a link to
1209 * be made (the keyring should have Write permission and the key Link
1210 * permission).
1211 */
key_link(struct key * keyring,struct key * key)1212 int key_link(struct key *keyring, struct key *key)
1213 {
1214 struct assoc_array_edit *edit;
1215 int ret;
1216
1217 kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1218
1219 key_check(keyring);
1220 key_check(key);
1221
1222 if (test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags) &&
1223 !test_bit(KEY_FLAG_TRUSTED, &key->flags))
1224 return -EPERM;
1225
1226 ret = __key_link_begin(keyring, &key->index_key, &edit);
1227 if (ret == 0) {
1228 kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1229 ret = __key_link_check_live_key(keyring, key);
1230 if (ret == 0)
1231 __key_link(key, &edit);
1232 __key_link_end(keyring, &key->index_key, edit);
1233 }
1234
1235 kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
1236 return ret;
1237 }
1238 EXPORT_SYMBOL(key_link);
1239
1240 /**
1241 * key_unlink - Unlink the first link to a key from a keyring.
1242 * @keyring: The keyring to remove the link from.
1243 * @key: The key the link is to.
1244 *
1245 * Remove a link from a keyring to a key.
1246 *
1247 * This function will write-lock the keyring's semaphore.
1248 *
1249 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1250 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1251 * memory.
1252 *
1253 * It is assumed that the caller has checked that it is permitted for a link to
1254 * be removed (the keyring should have Write permission; no permissions are
1255 * required on the key).
1256 */
key_unlink(struct key * keyring,struct key * key)1257 int key_unlink(struct key *keyring, struct key *key)
1258 {
1259 struct assoc_array_edit *edit;
1260 int ret;
1261
1262 key_check(keyring);
1263 key_check(key);
1264
1265 if (keyring->type != &key_type_keyring)
1266 return -ENOTDIR;
1267
1268 down_write(&keyring->sem);
1269
1270 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1271 &key->index_key);
1272 if (IS_ERR(edit)) {
1273 ret = PTR_ERR(edit);
1274 goto error;
1275 }
1276 ret = -ENOENT;
1277 if (edit == NULL)
1278 goto error;
1279
1280 assoc_array_apply_edit(edit);
1281 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1282 ret = 0;
1283
1284 error:
1285 up_write(&keyring->sem);
1286 return ret;
1287 }
1288 EXPORT_SYMBOL(key_unlink);
1289
1290 /**
1291 * keyring_clear - Clear a keyring
1292 * @keyring: The keyring to clear.
1293 *
1294 * Clear the contents of the specified keyring.
1295 *
1296 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1297 */
keyring_clear(struct key * keyring)1298 int keyring_clear(struct key *keyring)
1299 {
1300 struct assoc_array_edit *edit;
1301 int ret;
1302
1303 if (keyring->type != &key_type_keyring)
1304 return -ENOTDIR;
1305
1306 down_write(&keyring->sem);
1307
1308 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1309 if (IS_ERR(edit)) {
1310 ret = PTR_ERR(edit);
1311 } else {
1312 if (edit)
1313 assoc_array_apply_edit(edit);
1314 key_payload_reserve(keyring, 0);
1315 ret = 0;
1316 }
1317
1318 up_write(&keyring->sem);
1319 return ret;
1320 }
1321 EXPORT_SYMBOL(keyring_clear);
1322
1323 /*
1324 * Dispose of the links from a revoked keyring.
1325 *
1326 * This is called with the key sem write-locked.
1327 */
keyring_revoke(struct key * keyring)1328 static void keyring_revoke(struct key *keyring)
1329 {
1330 struct assoc_array_edit *edit;
1331
1332 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1333 if (!IS_ERR(edit)) {
1334 if (edit)
1335 assoc_array_apply_edit(edit);
1336 key_payload_reserve(keyring, 0);
1337 }
1338 }
1339
keyring_gc_select_iterator(void * object,void * iterator_data)1340 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1341 {
1342 struct key *key = keyring_ptr_to_key(object);
1343 time_t *limit = iterator_data;
1344
1345 if (key_is_dead(key, *limit))
1346 return false;
1347 key_get(key);
1348 return true;
1349 }
1350
keyring_gc_check_iterator(const void * object,void * iterator_data)1351 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1352 {
1353 const struct key *key = keyring_ptr_to_key(object);
1354 time_t *limit = iterator_data;
1355
1356 key_check(key);
1357 return key_is_dead(key, *limit);
1358 }
1359
1360 /*
1361 * Garbage collect pointers from a keyring.
1362 *
1363 * Not called with any locks held. The keyring's key struct will not be
1364 * deallocated under us as only our caller may deallocate it.
1365 */
keyring_gc(struct key * keyring,time_t limit)1366 void keyring_gc(struct key *keyring, time_t limit)
1367 {
1368 int result;
1369
1370 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1371
1372 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1373 (1 << KEY_FLAG_REVOKED)))
1374 goto dont_gc;
1375
1376 /* scan the keyring looking for dead keys */
1377 rcu_read_lock();
1378 result = assoc_array_iterate(&keyring->keys,
1379 keyring_gc_check_iterator, &limit);
1380 rcu_read_unlock();
1381 if (result == true)
1382 goto do_gc;
1383
1384 dont_gc:
1385 kleave(" [no gc]");
1386 return;
1387
1388 do_gc:
1389 down_write(&keyring->sem);
1390 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1391 keyring_gc_select_iterator, &limit);
1392 up_write(&keyring->sem);
1393 kleave(" [gc]");
1394 }
1395