1 /*
2 * ALSA driver for ICEnsemble ICE1724 (Envy24)
3 *
4 * Lowlevel functions for Terratec PHASE 22
5 *
6 * Copyright (c) 2005 Misha Zhilin <misha@epiphan.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
24 /* PHASE 22 overview:
25 * Audio controller: VIA Envy24HT-S (slightly trimmed down Envy24HT, 4in/4out)
26 * Analog chip: AK4524 (partially via Philip's 74HCT125)
27 * Digital receiver: CS8414-CS (supported in this release)
28 * PHASE 22 revision 2.0 and Terrasoniq/Musonik TS22PCI have CS8416
29 * (support status unknown, please test and report)
30 *
31 * Envy connects to AK4524
32 * - CS directly from GPIO 10
33 * - CCLK via 74HCT125's gate #4 from GPIO 4
34 * - CDTI via 74HCT125's gate #2 from GPIO 5
35 * CDTI may be completely blocked by 74HCT125's gate #1
36 * controlled by GPIO 3
37 */
38
39 /* PHASE 28 overview:
40 * Audio controller: VIA Envy24HT (full untrimmed version, 4in/8out)
41 * Analog chip: WM8770 (8 channel 192k DAC, 2 channel 96k ADC)
42 * Digital receiver: CS8414-CS (supported in this release)
43 */
44
45 #include <linux/delay.h>
46 #include <linux/interrupt.h>
47 #include <linux/init.h>
48 #include <linux/slab.h>
49 #include <linux/mutex.h>
50
51 #include <sound/core.h>
52
53 #include "ice1712.h"
54 #include "envy24ht.h"
55 #include "phase.h"
56 #include <sound/tlv.h>
57
58 /* AC97 register cache for Phase28 */
59 struct phase28_spec {
60 unsigned short master[2];
61 unsigned short vol[8];
62 };
63
64 /* WM8770 registers */
65 #define WM_DAC_ATTEN 0x00 /* DAC1-8 analog attenuation */
66 #define WM_DAC_MASTER_ATTEN 0x08 /* DAC master analog attenuation */
67 #define WM_DAC_DIG_ATTEN 0x09 /* DAC1-8 digital attenuation */
68 #define WM_DAC_DIG_MASTER_ATTEN 0x11 /* DAC master digital attenuation */
69 #define WM_PHASE_SWAP 0x12 /* DAC phase */
70 #define WM_DAC_CTRL1 0x13 /* DAC control bits */
71 #define WM_MUTE 0x14 /* mute controls */
72 #define WM_DAC_CTRL2 0x15 /* de-emphasis and zefo-flag */
73 #define WM_INT_CTRL 0x16 /* interface control */
74 #define WM_MASTER 0x17 /* master clock and mode */
75 #define WM_POWERDOWN 0x18 /* power-down controls */
76 #define WM_ADC_GAIN 0x19 /* ADC gain L(19)/R(1a) */
77 #define WM_ADC_MUX 0x1b /* input MUX */
78 #define WM_OUT_MUX1 0x1c /* output MUX */
79 #define WM_OUT_MUX2 0x1e /* output MUX */
80 #define WM_RESET 0x1f /* software reset */
81
82
83 /*
84 * Logarithmic volume values for WM8770
85 * Computed as 20 * Log10(255 / x)
86 */
87 static const unsigned char wm_vol[256] = {
88 127, 48, 42, 39, 36, 34, 33, 31, 30, 29, 28, 27, 27, 26, 25, 25, 24,
89 24, 23, 23, 22, 22, 21, 21, 21, 20, 20, 20, 19, 19, 19, 18, 18, 18, 18,
90 17, 17, 17, 17, 16, 16, 16, 16, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14,
91 14, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11,
92 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9,
93 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7,
94 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5,
95 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
96 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
97 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
98 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
99 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
100 };
101
102 #define WM_VOL_MAX (sizeof(wm_vol) - 1)
103 #define WM_VOL_MUTE 0x8000
104
105 static struct snd_akm4xxx akm_phase22 = {
106 .type = SND_AK4524,
107 .num_dacs = 2,
108 .num_adcs = 2,
109 };
110
111 static struct snd_ak4xxx_private akm_phase22_priv = {
112 .caddr = 2,
113 .cif = 1,
114 .data_mask = 1 << 4,
115 .clk_mask = 1 << 5,
116 .cs_mask = 1 << 10,
117 .cs_addr = 1 << 10,
118 .cs_none = 0,
119 .add_flags = 1 << 3,
120 .mask_flags = 0,
121 };
122
phase22_init(struct snd_ice1712 * ice)123 static int phase22_init(struct snd_ice1712 *ice)
124 {
125 struct snd_akm4xxx *ak;
126 int err;
127
128 /* Configure DAC/ADC description for generic part of ice1724 */
129 switch (ice->eeprom.subvendor) {
130 case VT1724_SUBDEVICE_PHASE22:
131 case VT1724_SUBDEVICE_TS22:
132 ice->num_total_dacs = 2;
133 ice->num_total_adcs = 2;
134 ice->vt1720 = 1; /* Envy24HT-S have 16 bit wide GPIO */
135 break;
136 default:
137 snd_BUG();
138 return -EINVAL;
139 }
140
141 /* Initialize analog chips */
142 ice->akm = kzalloc(sizeof(struct snd_akm4xxx), GFP_KERNEL);
143 ak = ice->akm;
144 if (!ak)
145 return -ENOMEM;
146 ice->akm_codecs = 1;
147 switch (ice->eeprom.subvendor) {
148 case VT1724_SUBDEVICE_PHASE22:
149 case VT1724_SUBDEVICE_TS22:
150 err = snd_ice1712_akm4xxx_init(ak, &akm_phase22,
151 &akm_phase22_priv, ice);
152 if (err < 0)
153 return err;
154 break;
155 }
156
157 return 0;
158 }
159
phase22_add_controls(struct snd_ice1712 * ice)160 static int phase22_add_controls(struct snd_ice1712 *ice)
161 {
162 int err = 0;
163
164 switch (ice->eeprom.subvendor) {
165 case VT1724_SUBDEVICE_PHASE22:
166 case VT1724_SUBDEVICE_TS22:
167 err = snd_ice1712_akm4xxx_build_controls(ice);
168 if (err < 0)
169 return err;
170 }
171 return 0;
172 }
173
174 static unsigned char phase22_eeprom[] = {
175 [ICE_EEP2_SYSCONF] = 0x28, /* clock 512, mpu 401,
176 spdif-in/1xADC, 1xDACs */
177 [ICE_EEP2_ACLINK] = 0x80, /* I2S */
178 [ICE_EEP2_I2S] = 0xf0, /* vol, 96k, 24bit */
179 [ICE_EEP2_SPDIF] = 0xc3, /* out-en, out-int, spdif-in */
180 [ICE_EEP2_GPIO_DIR] = 0xff,
181 [ICE_EEP2_GPIO_DIR1] = 0xff,
182 [ICE_EEP2_GPIO_DIR2] = 0xff,
183 [ICE_EEP2_GPIO_MASK] = 0x00,
184 [ICE_EEP2_GPIO_MASK1] = 0x00,
185 [ICE_EEP2_GPIO_MASK2] = 0x00,
186 [ICE_EEP2_GPIO_STATE] = 0x00,
187 [ICE_EEP2_GPIO_STATE1] = 0x00,
188 [ICE_EEP2_GPIO_STATE2] = 0x00,
189 };
190
191 static unsigned char phase28_eeprom[] = {
192 [ICE_EEP2_SYSCONF] = 0x2b, /* clock 512, mpu401,
193 spdif-in/1xADC, 4xDACs */
194 [ICE_EEP2_ACLINK] = 0x80, /* I2S */
195 [ICE_EEP2_I2S] = 0xfc, /* vol, 96k, 24bit, 192k */
196 [ICE_EEP2_SPDIF] = 0xc3, /* out-en, out-int, spdif-in */
197 [ICE_EEP2_GPIO_DIR] = 0xff,
198 [ICE_EEP2_GPIO_DIR1] = 0xff,
199 [ICE_EEP2_GPIO_DIR2] = 0x5f,
200 [ICE_EEP2_GPIO_MASK] = 0x00,
201 [ICE_EEP2_GPIO_MASK1] = 0x00,
202 [ICE_EEP2_GPIO_MASK2] = 0x00,
203 [ICE_EEP2_GPIO_STATE] = 0x00,
204 [ICE_EEP2_GPIO_STATE1] = 0x00,
205 [ICE_EEP2_GPIO_STATE2] = 0x00,
206 };
207
208 /*
209 * write data in the SPI mode
210 */
phase28_spi_write(struct snd_ice1712 * ice,unsigned int cs,unsigned int data,int bits)211 static void phase28_spi_write(struct snd_ice1712 *ice, unsigned int cs,
212 unsigned int data, int bits)
213 {
214 unsigned int tmp;
215 int i;
216
217 tmp = snd_ice1712_gpio_read(ice);
218
219 snd_ice1712_gpio_set_mask(ice, ~(PHASE28_WM_RW|PHASE28_SPI_MOSI|
220 PHASE28_SPI_CLK|PHASE28_WM_CS));
221 tmp |= PHASE28_WM_RW;
222 tmp &= ~cs;
223 snd_ice1712_gpio_write(ice, tmp);
224 udelay(1);
225
226 for (i = bits - 1; i >= 0; i--) {
227 tmp &= ~PHASE28_SPI_CLK;
228 snd_ice1712_gpio_write(ice, tmp);
229 udelay(1);
230 if (data & (1 << i))
231 tmp |= PHASE28_SPI_MOSI;
232 else
233 tmp &= ~PHASE28_SPI_MOSI;
234 snd_ice1712_gpio_write(ice, tmp);
235 udelay(1);
236 tmp |= PHASE28_SPI_CLK;
237 snd_ice1712_gpio_write(ice, tmp);
238 udelay(1);
239 }
240
241 tmp &= ~PHASE28_SPI_CLK;
242 tmp |= cs;
243 snd_ice1712_gpio_write(ice, tmp);
244 udelay(1);
245 tmp |= PHASE28_SPI_CLK;
246 snd_ice1712_gpio_write(ice, tmp);
247 udelay(1);
248 }
249
250 /*
251 * get the current register value of WM codec
252 */
wm_get(struct snd_ice1712 * ice,int reg)253 static unsigned short wm_get(struct snd_ice1712 *ice, int reg)
254 {
255 reg <<= 1;
256 return ((unsigned short)ice->akm[0].images[reg] << 8) |
257 ice->akm[0].images[reg + 1];
258 }
259
260 /*
261 * set the register value of WM codec
262 */
wm_put_nocache(struct snd_ice1712 * ice,int reg,unsigned short val)263 static void wm_put_nocache(struct snd_ice1712 *ice, int reg, unsigned short val)
264 {
265 phase28_spi_write(ice, PHASE28_WM_CS, (reg << 9) | (val & 0x1ff), 16);
266 }
267
268 /*
269 * set the register value of WM codec and remember it
270 */
wm_put(struct snd_ice1712 * ice,int reg,unsigned short val)271 static void wm_put(struct snd_ice1712 *ice, int reg, unsigned short val)
272 {
273 wm_put_nocache(ice, reg, val);
274 reg <<= 1;
275 ice->akm[0].images[reg] = val >> 8;
276 ice->akm[0].images[reg + 1] = val;
277 }
278
wm_set_vol(struct snd_ice1712 * ice,unsigned int index,unsigned short vol,unsigned short master)279 static void wm_set_vol(struct snd_ice1712 *ice, unsigned int index,
280 unsigned short vol, unsigned short master)
281 {
282 unsigned char nvol;
283
284 if ((master & WM_VOL_MUTE) || (vol & WM_VOL_MUTE))
285 nvol = 0;
286 else
287 nvol = 127 - wm_vol[(((vol & ~WM_VOL_MUTE) *
288 (master & ~WM_VOL_MUTE)) / 127) & WM_VOL_MAX];
289
290 wm_put(ice, index, nvol);
291 wm_put_nocache(ice, index, 0x180 | nvol);
292 }
293
294 /*
295 * DAC mute control
296 */
297 #define wm_pcm_mute_info snd_ctl_boolean_mono_info
298
wm_pcm_mute_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)299 static int wm_pcm_mute_get(struct snd_kcontrol *kcontrol,
300 struct snd_ctl_elem_value *ucontrol)
301 {
302 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
303
304 mutex_lock(&ice->gpio_mutex);
305 ucontrol->value.integer.value[0] = (wm_get(ice, WM_MUTE) & 0x10) ?
306 0 : 1;
307 mutex_unlock(&ice->gpio_mutex);
308 return 0;
309 }
310
wm_pcm_mute_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)311 static int wm_pcm_mute_put(struct snd_kcontrol *kcontrol,
312 struct snd_ctl_elem_value *ucontrol)
313 {
314 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
315 unsigned short nval, oval;
316 int change;
317
318 snd_ice1712_save_gpio_status(ice);
319 oval = wm_get(ice, WM_MUTE);
320 nval = (oval & ~0x10) | (ucontrol->value.integer.value[0] ? 0 : 0x10);
321 change = (nval != oval);
322 if (change)
323 wm_put(ice, WM_MUTE, nval);
324 snd_ice1712_restore_gpio_status(ice);
325
326 return change;
327 }
328
329 /*
330 * Master volume attenuation mixer control
331 */
wm_master_vol_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)332 static int wm_master_vol_info(struct snd_kcontrol *kcontrol,
333 struct snd_ctl_elem_info *uinfo)
334 {
335 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
336 uinfo->count = 2;
337 uinfo->value.integer.min = 0;
338 uinfo->value.integer.max = WM_VOL_MAX;
339 return 0;
340 }
341
wm_master_vol_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)342 static int wm_master_vol_get(struct snd_kcontrol *kcontrol,
343 struct snd_ctl_elem_value *ucontrol)
344 {
345 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
346 struct phase28_spec *spec = ice->spec;
347 int i;
348 for (i = 0; i < 2; i++)
349 ucontrol->value.integer.value[i] = spec->master[i] &
350 ~WM_VOL_MUTE;
351 return 0;
352 }
353
wm_master_vol_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)354 static int wm_master_vol_put(struct snd_kcontrol *kcontrol,
355 struct snd_ctl_elem_value *ucontrol)
356 {
357 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
358 struct phase28_spec *spec = ice->spec;
359 int ch, change = 0;
360
361 snd_ice1712_save_gpio_status(ice);
362 for (ch = 0; ch < 2; ch++) {
363 unsigned int vol = ucontrol->value.integer.value[ch];
364 if (vol > WM_VOL_MAX)
365 continue;
366 vol |= spec->master[ch] & WM_VOL_MUTE;
367 if (vol != spec->master[ch]) {
368 int dac;
369 spec->master[ch] = vol;
370 for (dac = 0; dac < ice->num_total_dacs; dac += 2)
371 wm_set_vol(ice, WM_DAC_ATTEN + dac + ch,
372 spec->vol[dac + ch],
373 spec->master[ch]);
374 change = 1;
375 }
376 }
377 snd_ice1712_restore_gpio_status(ice);
378 return change;
379 }
380
phase28_init(struct snd_ice1712 * ice)381 static int phase28_init(struct snd_ice1712 *ice)
382 {
383 static const unsigned short wm_inits_phase28[] = {
384 /* These come first to reduce init pop noise */
385 0x1b, 0x044, /* ADC Mux (AC'97 source) */
386 0x1c, 0x00B, /* Out Mux1 (VOUT1 = DAC+AUX, VOUT2 = DAC) */
387 0x1d, 0x009, /* Out Mux2 (VOUT2 = DAC, VOUT3 = DAC) */
388
389 0x18, 0x000, /* All power-up */
390
391 0x16, 0x122, /* I2S, normal polarity, 24bit */
392 0x17, 0x022, /* 256fs, slave mode */
393 0x00, 0, /* DAC1 analog mute */
394 0x01, 0, /* DAC2 analog mute */
395 0x02, 0, /* DAC3 analog mute */
396 0x03, 0, /* DAC4 analog mute */
397 0x04, 0, /* DAC5 analog mute */
398 0x05, 0, /* DAC6 analog mute */
399 0x06, 0, /* DAC7 analog mute */
400 0x07, 0, /* DAC8 analog mute */
401 0x08, 0x100, /* master analog mute */
402 0x09, 0xff, /* DAC1 digital full */
403 0x0a, 0xff, /* DAC2 digital full */
404 0x0b, 0xff, /* DAC3 digital full */
405 0x0c, 0xff, /* DAC4 digital full */
406 0x0d, 0xff, /* DAC5 digital full */
407 0x0e, 0xff, /* DAC6 digital full */
408 0x0f, 0xff, /* DAC7 digital full */
409 0x10, 0xff, /* DAC8 digital full */
410 0x11, 0x1ff, /* master digital full */
411 0x12, 0x000, /* phase normal */
412 0x13, 0x090, /* unmute DAC L/R */
413 0x14, 0x000, /* all unmute */
414 0x15, 0x000, /* no deemphasis, no ZFLG */
415 0x19, 0x000, /* -12dB ADC/L */
416 0x1a, 0x000, /* -12dB ADC/R */
417 (unsigned short)-1
418 };
419
420 unsigned int tmp;
421 struct snd_akm4xxx *ak;
422 struct phase28_spec *spec;
423 const unsigned short *p;
424 int i;
425
426 ice->num_total_dacs = 8;
427 ice->num_total_adcs = 2;
428
429 spec = kzalloc(sizeof(*spec), GFP_KERNEL);
430 if (!spec)
431 return -ENOMEM;
432 ice->spec = spec;
433
434 /* Initialize analog chips */
435 ice->akm = kzalloc(sizeof(struct snd_akm4xxx), GFP_KERNEL);
436 ak = ice->akm;
437 if (!ak)
438 return -ENOMEM;
439 ice->akm_codecs = 1;
440
441 snd_ice1712_gpio_set_dir(ice, 0x5fffff); /* fix this for time being */
442
443 /* reset the wm codec as the SPI mode */
444 snd_ice1712_save_gpio_status(ice);
445 snd_ice1712_gpio_set_mask(ice, ~(PHASE28_WM_RESET|PHASE28_WM_CS|
446 PHASE28_HP_SEL));
447
448 tmp = snd_ice1712_gpio_read(ice);
449 tmp &= ~PHASE28_WM_RESET;
450 snd_ice1712_gpio_write(ice, tmp);
451 udelay(1);
452 tmp |= PHASE28_WM_CS;
453 snd_ice1712_gpio_write(ice, tmp);
454 udelay(1);
455 tmp |= PHASE28_WM_RESET;
456 snd_ice1712_gpio_write(ice, tmp);
457 udelay(1);
458
459 p = wm_inits_phase28;
460 for (; *p != (unsigned short)-1; p += 2)
461 wm_put(ice, p[0], p[1]);
462
463 snd_ice1712_restore_gpio_status(ice);
464
465 spec->master[0] = WM_VOL_MUTE;
466 spec->master[1] = WM_VOL_MUTE;
467 for (i = 0; i < ice->num_total_dacs; i++) {
468 spec->vol[i] = WM_VOL_MUTE;
469 wm_set_vol(ice, i, spec->vol[i], spec->master[i % 2]);
470 }
471
472 return 0;
473 }
474
475 /*
476 * DAC volume attenuation mixer control
477 */
wm_vol_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)478 static int wm_vol_info(struct snd_kcontrol *kcontrol,
479 struct snd_ctl_elem_info *uinfo)
480 {
481 int voices = kcontrol->private_value >> 8;
482 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
483 uinfo->count = voices;
484 uinfo->value.integer.min = 0; /* mute (-101dB) */
485 uinfo->value.integer.max = 0x7F; /* 0dB */
486 return 0;
487 }
488
wm_vol_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)489 static int wm_vol_get(struct snd_kcontrol *kcontrol,
490 struct snd_ctl_elem_value *ucontrol)
491 {
492 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
493 struct phase28_spec *spec = ice->spec;
494 int i, ofs, voices;
495
496 voices = kcontrol->private_value >> 8;
497 ofs = kcontrol->private_value & 0xff;
498 for (i = 0; i < voices; i++)
499 ucontrol->value.integer.value[i] =
500 spec->vol[ofs+i] & ~WM_VOL_MUTE;
501 return 0;
502 }
503
wm_vol_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)504 static int wm_vol_put(struct snd_kcontrol *kcontrol,
505 struct snd_ctl_elem_value *ucontrol)
506 {
507 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
508 struct phase28_spec *spec = ice->spec;
509 int i, idx, ofs, voices;
510 int change = 0;
511
512 voices = kcontrol->private_value >> 8;
513 ofs = kcontrol->private_value & 0xff;
514 snd_ice1712_save_gpio_status(ice);
515 for (i = 0; i < voices; i++) {
516 unsigned int vol;
517 vol = ucontrol->value.integer.value[i];
518 if (vol > 0x7f)
519 continue;
520 vol |= spec->vol[ofs+i] & WM_VOL_MUTE;
521 if (vol != spec->vol[ofs+i]) {
522 spec->vol[ofs+i] = vol;
523 idx = WM_DAC_ATTEN + ofs + i;
524 wm_set_vol(ice, idx, spec->vol[ofs+i],
525 spec->master[i]);
526 change = 1;
527 }
528 }
529 snd_ice1712_restore_gpio_status(ice);
530 return change;
531 }
532
533 /*
534 * WM8770 mute control
535 */
wm_mute_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)536 static int wm_mute_info(struct snd_kcontrol *kcontrol,
537 struct snd_ctl_elem_info *uinfo) {
538 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
539 uinfo->count = kcontrol->private_value >> 8;
540 uinfo->value.integer.min = 0;
541 uinfo->value.integer.max = 1;
542 return 0;
543 }
544
wm_mute_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)545 static int wm_mute_get(struct snd_kcontrol *kcontrol,
546 struct snd_ctl_elem_value *ucontrol)
547 {
548 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
549 struct phase28_spec *spec = ice->spec;
550 int voices, ofs, i;
551
552 voices = kcontrol->private_value >> 8;
553 ofs = kcontrol->private_value & 0xFF;
554
555 for (i = 0; i < voices; i++)
556 ucontrol->value.integer.value[i] =
557 (spec->vol[ofs+i] & WM_VOL_MUTE) ? 0 : 1;
558 return 0;
559 }
560
wm_mute_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)561 static int wm_mute_put(struct snd_kcontrol *kcontrol,
562 struct snd_ctl_elem_value *ucontrol)
563 {
564 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
565 struct phase28_spec *spec = ice->spec;
566 int change = 0, voices, ofs, i;
567
568 voices = kcontrol->private_value >> 8;
569 ofs = kcontrol->private_value & 0xFF;
570
571 snd_ice1712_save_gpio_status(ice);
572 for (i = 0; i < voices; i++) {
573 int val = (spec->vol[ofs + i] & WM_VOL_MUTE) ? 0 : 1;
574 if (ucontrol->value.integer.value[i] != val) {
575 spec->vol[ofs + i] &= ~WM_VOL_MUTE;
576 spec->vol[ofs + i] |=
577 ucontrol->value.integer.value[i] ? 0 :
578 WM_VOL_MUTE;
579 wm_set_vol(ice, ofs + i, spec->vol[ofs + i],
580 spec->master[i]);
581 change = 1;
582 }
583 }
584 snd_ice1712_restore_gpio_status(ice);
585
586 return change;
587 }
588
589 /*
590 * WM8770 master mute control
591 */
592 #define wm_master_mute_info snd_ctl_boolean_stereo_info
593
wm_master_mute_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)594 static int wm_master_mute_get(struct snd_kcontrol *kcontrol,
595 struct snd_ctl_elem_value *ucontrol)
596 {
597 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
598 struct phase28_spec *spec = ice->spec;
599
600 ucontrol->value.integer.value[0] =
601 (spec->master[0] & WM_VOL_MUTE) ? 0 : 1;
602 ucontrol->value.integer.value[1] =
603 (spec->master[1] & WM_VOL_MUTE) ? 0 : 1;
604 return 0;
605 }
606
wm_master_mute_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)607 static int wm_master_mute_put(struct snd_kcontrol *kcontrol,
608 struct snd_ctl_elem_value *ucontrol)
609 {
610 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
611 struct phase28_spec *spec = ice->spec;
612 int change = 0, i;
613
614 snd_ice1712_save_gpio_status(ice);
615 for (i = 0; i < 2; i++) {
616 int val = (spec->master[i] & WM_VOL_MUTE) ? 0 : 1;
617 if (ucontrol->value.integer.value[i] != val) {
618 int dac;
619 spec->master[i] &= ~WM_VOL_MUTE;
620 spec->master[i] |=
621 ucontrol->value.integer.value[i] ? 0 :
622 WM_VOL_MUTE;
623 for (dac = 0; dac < ice->num_total_dacs; dac += 2)
624 wm_set_vol(ice, WM_DAC_ATTEN + dac + i,
625 spec->vol[dac + i],
626 spec->master[i]);
627 change = 1;
628 }
629 }
630 snd_ice1712_restore_gpio_status(ice);
631
632 return change;
633 }
634
635 /* digital master volume */
636 #define PCM_0dB 0xff
637 #define PCM_RES 128 /* -64dB */
638 #define PCM_MIN (PCM_0dB - PCM_RES)
wm_pcm_vol_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)639 static int wm_pcm_vol_info(struct snd_kcontrol *kcontrol,
640 struct snd_ctl_elem_info *uinfo)
641 {
642 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
643 uinfo->count = 1;
644 uinfo->value.integer.min = 0; /* mute (-64dB) */
645 uinfo->value.integer.max = PCM_RES; /* 0dB */
646 return 0;
647 }
648
wm_pcm_vol_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)649 static int wm_pcm_vol_get(struct snd_kcontrol *kcontrol,
650 struct snd_ctl_elem_value *ucontrol)
651 {
652 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
653 unsigned short val;
654
655 mutex_lock(&ice->gpio_mutex);
656 val = wm_get(ice, WM_DAC_DIG_MASTER_ATTEN) & 0xff;
657 val = val > PCM_MIN ? (val - PCM_MIN) : 0;
658 ucontrol->value.integer.value[0] = val;
659 mutex_unlock(&ice->gpio_mutex);
660 return 0;
661 }
662
wm_pcm_vol_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)663 static int wm_pcm_vol_put(struct snd_kcontrol *kcontrol,
664 struct snd_ctl_elem_value *ucontrol)
665 {
666 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
667 unsigned short ovol, nvol;
668 int change = 0;
669
670 nvol = ucontrol->value.integer.value[0];
671 if (nvol > PCM_RES)
672 return -EINVAL;
673 snd_ice1712_save_gpio_status(ice);
674 nvol = (nvol ? (nvol + PCM_MIN) : 0) & 0xff;
675 ovol = wm_get(ice, WM_DAC_DIG_MASTER_ATTEN) & 0xff;
676 if (ovol != nvol) {
677 wm_put(ice, WM_DAC_DIG_MASTER_ATTEN, nvol); /* prelatch */
678 /* update */
679 wm_put_nocache(ice, WM_DAC_DIG_MASTER_ATTEN, nvol | 0x100);
680 change = 1;
681 }
682 snd_ice1712_restore_gpio_status(ice);
683 return change;
684 }
685
686 /*
687 * Deemphasis
688 */
689 #define phase28_deemp_info snd_ctl_boolean_mono_info
690
phase28_deemp_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)691 static int phase28_deemp_get(struct snd_kcontrol *kcontrol,
692 struct snd_ctl_elem_value *ucontrol)
693 {
694 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
695 ucontrol->value.integer.value[0] = (wm_get(ice, WM_DAC_CTRL2) & 0xf) ==
696 0xf;
697 return 0;
698 }
699
phase28_deemp_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)700 static int phase28_deemp_put(struct snd_kcontrol *kcontrol,
701 struct snd_ctl_elem_value *ucontrol)
702 {
703 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
704 int temp, temp2;
705 temp = wm_get(ice, WM_DAC_CTRL2);
706 temp2 = temp;
707 if (ucontrol->value.integer.value[0])
708 temp |= 0xf;
709 else
710 temp &= ~0xf;
711 if (temp != temp2) {
712 wm_put(ice, WM_DAC_CTRL2, temp);
713 return 1;
714 }
715 return 0;
716 }
717
718 /*
719 * ADC Oversampling
720 */
phase28_oversampling_info(struct snd_kcontrol * k,struct snd_ctl_elem_info * uinfo)721 static int phase28_oversampling_info(struct snd_kcontrol *k,
722 struct snd_ctl_elem_info *uinfo)
723 {
724 static const char * const texts[2] = { "128x", "64x" };
725
726 return snd_ctl_enum_info(uinfo, 1, 2, texts);
727 }
728
phase28_oversampling_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)729 static int phase28_oversampling_get(struct snd_kcontrol *kcontrol,
730 struct snd_ctl_elem_value *ucontrol)
731 {
732 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
733 ucontrol->value.enumerated.item[0] = (wm_get(ice, WM_MASTER) & 0x8) ==
734 0x8;
735 return 0;
736 }
737
phase28_oversampling_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)738 static int phase28_oversampling_put(struct snd_kcontrol *kcontrol,
739 struct snd_ctl_elem_value *ucontrol)
740 {
741 int temp, temp2;
742 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
743
744 temp = wm_get(ice, WM_MASTER);
745 temp2 = temp;
746
747 if (ucontrol->value.enumerated.item[0])
748 temp |= 0x8;
749 else
750 temp &= ~0x8;
751
752 if (temp != temp2) {
753 wm_put(ice, WM_MASTER, temp);
754 return 1;
755 }
756 return 0;
757 }
758
759 static const DECLARE_TLV_DB_SCALE(db_scale_wm_dac, -12700, 100, 1);
760 static const DECLARE_TLV_DB_SCALE(db_scale_wm_pcm, -6400, 50, 1);
761
762 static struct snd_kcontrol_new phase28_dac_controls[] = {
763 {
764 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
765 .name = "Master Playback Switch",
766 .info = wm_master_mute_info,
767 .get = wm_master_mute_get,
768 .put = wm_master_mute_put
769 },
770 {
771 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
772 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
773 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
774 .name = "Master Playback Volume",
775 .info = wm_master_vol_info,
776 .get = wm_master_vol_get,
777 .put = wm_master_vol_put,
778 .tlv = { .p = db_scale_wm_dac }
779 },
780 {
781 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
782 .name = "Front Playback Switch",
783 .info = wm_mute_info,
784 .get = wm_mute_get,
785 .put = wm_mute_put,
786 .private_value = (2 << 8) | 0
787 },
788 {
789 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
790 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
791 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
792 .name = "Front Playback Volume",
793 .info = wm_vol_info,
794 .get = wm_vol_get,
795 .put = wm_vol_put,
796 .private_value = (2 << 8) | 0,
797 .tlv = { .p = db_scale_wm_dac }
798 },
799 {
800 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
801 .name = "Rear Playback Switch",
802 .info = wm_mute_info,
803 .get = wm_mute_get,
804 .put = wm_mute_put,
805 .private_value = (2 << 8) | 2
806 },
807 {
808 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
809 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
810 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
811 .name = "Rear Playback Volume",
812 .info = wm_vol_info,
813 .get = wm_vol_get,
814 .put = wm_vol_put,
815 .private_value = (2 << 8) | 2,
816 .tlv = { .p = db_scale_wm_dac }
817 },
818 {
819 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
820 .name = "Center Playback Switch",
821 .info = wm_mute_info,
822 .get = wm_mute_get,
823 .put = wm_mute_put,
824 .private_value = (1 << 8) | 4
825 },
826 {
827 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
828 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
829 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
830 .name = "Center Playback Volume",
831 .info = wm_vol_info,
832 .get = wm_vol_get,
833 .put = wm_vol_put,
834 .private_value = (1 << 8) | 4,
835 .tlv = { .p = db_scale_wm_dac }
836 },
837 {
838 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
839 .name = "LFE Playback Switch",
840 .info = wm_mute_info,
841 .get = wm_mute_get,
842 .put = wm_mute_put,
843 .private_value = (1 << 8) | 5
844 },
845 {
846 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
847 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
848 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
849 .name = "LFE Playback Volume",
850 .info = wm_vol_info,
851 .get = wm_vol_get,
852 .put = wm_vol_put,
853 .private_value = (1 << 8) | 5,
854 .tlv = { .p = db_scale_wm_dac }
855 },
856 {
857 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
858 .name = "Side Playback Switch",
859 .info = wm_mute_info,
860 .get = wm_mute_get,
861 .put = wm_mute_put,
862 .private_value = (2 << 8) | 6
863 },
864 {
865 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
866 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
867 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
868 .name = "Side Playback Volume",
869 .info = wm_vol_info,
870 .get = wm_vol_get,
871 .put = wm_vol_put,
872 .private_value = (2 << 8) | 6,
873 .tlv = { .p = db_scale_wm_dac }
874 }
875 };
876
877 static struct snd_kcontrol_new wm_controls[] = {
878 {
879 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
880 .name = "PCM Playback Switch",
881 .info = wm_pcm_mute_info,
882 .get = wm_pcm_mute_get,
883 .put = wm_pcm_mute_put
884 },
885 {
886 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
887 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
888 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
889 .name = "PCM Playback Volume",
890 .info = wm_pcm_vol_info,
891 .get = wm_pcm_vol_get,
892 .put = wm_pcm_vol_put,
893 .tlv = { .p = db_scale_wm_pcm }
894 },
895 {
896 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
897 .name = "DAC Deemphasis Switch",
898 .info = phase28_deemp_info,
899 .get = phase28_deemp_get,
900 .put = phase28_deemp_put
901 },
902 {
903 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
904 .name = "ADC Oversampling",
905 .info = phase28_oversampling_info,
906 .get = phase28_oversampling_get,
907 .put = phase28_oversampling_put
908 }
909 };
910
phase28_add_controls(struct snd_ice1712 * ice)911 static int phase28_add_controls(struct snd_ice1712 *ice)
912 {
913 unsigned int i, counts;
914 int err;
915
916 counts = ARRAY_SIZE(phase28_dac_controls);
917 for (i = 0; i < counts; i++) {
918 err = snd_ctl_add(ice->card,
919 snd_ctl_new1(&phase28_dac_controls[i],
920 ice));
921 if (err < 0)
922 return err;
923 }
924
925 for (i = 0; i < ARRAY_SIZE(wm_controls); i++) {
926 err = snd_ctl_add(ice->card,
927 snd_ctl_new1(&wm_controls[i], ice));
928 if (err < 0)
929 return err;
930 }
931
932 return 0;
933 }
934
935 struct snd_ice1712_card_info snd_vt1724_phase_cards[] = {
936 {
937 .subvendor = VT1724_SUBDEVICE_PHASE22,
938 .name = "Terratec PHASE 22",
939 .model = "phase22",
940 .chip_init = phase22_init,
941 .build_controls = phase22_add_controls,
942 .eeprom_size = sizeof(phase22_eeprom),
943 .eeprom_data = phase22_eeprom,
944 },
945 {
946 .subvendor = VT1724_SUBDEVICE_PHASE28,
947 .name = "Terratec PHASE 28",
948 .model = "phase28",
949 .chip_init = phase28_init,
950 .build_controls = phase28_add_controls,
951 .eeprom_size = sizeof(phase28_eeprom),
952 .eeprom_data = phase28_eeprom,
953 },
954 {
955 .subvendor = VT1724_SUBDEVICE_TS22,
956 .name = "Terrasoniq TS22 PCI",
957 .model = "TS22",
958 .chip_init = phase22_init,
959 .build_controls = phase22_add_controls,
960 .eeprom_size = sizeof(phase22_eeprom),
961 .eeprom_data = phase22_eeprom,
962 },
963 { } /* terminator */
964 };
965