• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68 
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72 
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow = 2;
75 module_param(halt_poll_ns_grow, int, S_IRUGO);
76 
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink;
79 module_param(halt_poll_ns_shrink, int, S_IRUGO);
80 
81 /*
82  * Ordering of locks:
83  *
84  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85  */
86 
87 DEFINE_SPINLOCK(kvm_lock);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89 LIST_HEAD(vm_list);
90 
91 static cpumask_var_t cpus_hardware_enabled;
92 static int kvm_usage_count;
93 static atomic_t hardware_enable_failed;
94 
95 struct kmem_cache *kvm_vcpu_cache;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97 
98 static __read_mostly struct preempt_ops kvm_preempt_ops;
99 
100 struct dentry *kvm_debugfs_dir;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102 
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104 			   unsigned long arg);
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107 				  unsigned long arg);
108 #endif
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
111 
112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113 
114 static void kvm_release_pfn_dirty(pfn_t pfn);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116 
117 __visible bool kvm_rebooting;
118 EXPORT_SYMBOL_GPL(kvm_rebooting);
119 
120 static bool largepages_enabled = true;
121 
kvm_is_reserved_pfn(pfn_t pfn)122 bool kvm_is_reserved_pfn(pfn_t pfn)
123 {
124 	if (pfn_valid(pfn))
125 		return PageReserved(pfn_to_page(pfn));
126 
127 	return true;
128 }
129 
130 /*
131  * Switches to specified vcpu, until a matching vcpu_put()
132  */
vcpu_load(struct kvm_vcpu * vcpu)133 int vcpu_load(struct kvm_vcpu *vcpu)
134 {
135 	int cpu;
136 
137 	if (mutex_lock_killable(&vcpu->mutex))
138 		return -EINTR;
139 	cpu = get_cpu();
140 	preempt_notifier_register(&vcpu->preempt_notifier);
141 	kvm_arch_vcpu_load(vcpu, cpu);
142 	put_cpu();
143 	return 0;
144 }
145 EXPORT_SYMBOL_GPL(vcpu_load);
146 
vcpu_put(struct kvm_vcpu * vcpu)147 void vcpu_put(struct kvm_vcpu *vcpu)
148 {
149 	preempt_disable();
150 	kvm_arch_vcpu_put(vcpu);
151 	preempt_notifier_unregister(&vcpu->preempt_notifier);
152 	preempt_enable();
153 	mutex_unlock(&vcpu->mutex);
154 }
155 EXPORT_SYMBOL_GPL(vcpu_put);
156 
ack_flush(void * _completed)157 static void ack_flush(void *_completed)
158 {
159 }
160 
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)161 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
162 {
163 	int i, cpu, me;
164 	cpumask_var_t cpus;
165 	bool called = true;
166 	struct kvm_vcpu *vcpu;
167 
168 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
169 
170 	me = get_cpu();
171 	kvm_for_each_vcpu(i, vcpu, kvm) {
172 		kvm_make_request(req, vcpu);
173 		cpu = vcpu->cpu;
174 
175 		/* Set ->requests bit before we read ->mode */
176 		smp_mb();
177 
178 		if (cpus != NULL && cpu != -1 && cpu != me &&
179 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
180 			cpumask_set_cpu(cpu, cpus);
181 	}
182 	if (unlikely(cpus == NULL))
183 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
184 	else if (!cpumask_empty(cpus))
185 		smp_call_function_many(cpus, ack_flush, NULL, 1);
186 	else
187 		called = false;
188 	put_cpu();
189 	free_cpumask_var(cpus);
190 	return called;
191 }
192 
193 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
kvm_flush_remote_tlbs(struct kvm * kvm)194 void kvm_flush_remote_tlbs(struct kvm *kvm)
195 {
196 	long dirty_count = kvm->tlbs_dirty;
197 
198 	smp_mb();
199 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
200 		++kvm->stat.remote_tlb_flush;
201 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
202 }
203 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
204 #endif
205 
kvm_reload_remote_mmus(struct kvm * kvm)206 void kvm_reload_remote_mmus(struct kvm *kvm)
207 {
208 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
209 }
210 
kvm_make_mclock_inprogress_request(struct kvm * kvm)211 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
212 {
213 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
214 }
215 
kvm_make_scan_ioapic_request(struct kvm * kvm)216 void kvm_make_scan_ioapic_request(struct kvm *kvm)
217 {
218 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
219 }
220 
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)221 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
222 {
223 	struct page *page;
224 	int r;
225 
226 	mutex_init(&vcpu->mutex);
227 	vcpu->cpu = -1;
228 	vcpu->kvm = kvm;
229 	vcpu->vcpu_id = id;
230 	vcpu->pid = NULL;
231 	vcpu->halt_poll_ns = 0;
232 	init_waitqueue_head(&vcpu->wq);
233 	kvm_async_pf_vcpu_init(vcpu);
234 
235 	vcpu->pre_pcpu = -1;
236 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
237 
238 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
239 	if (!page) {
240 		r = -ENOMEM;
241 		goto fail;
242 	}
243 	vcpu->run = page_address(page);
244 
245 	kvm_vcpu_set_in_spin_loop(vcpu, false);
246 	kvm_vcpu_set_dy_eligible(vcpu, false);
247 	vcpu->preempted = false;
248 
249 	r = kvm_arch_vcpu_init(vcpu);
250 	if (r < 0)
251 		goto fail_free_run;
252 	return 0;
253 
254 fail_free_run:
255 	free_page((unsigned long)vcpu->run);
256 fail:
257 	return r;
258 }
259 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
260 
kvm_vcpu_uninit(struct kvm_vcpu * vcpu)261 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
262 {
263 	put_pid(vcpu->pid);
264 	kvm_arch_vcpu_uninit(vcpu);
265 	free_page((unsigned long)vcpu->run);
266 }
267 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
268 
269 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)270 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
271 {
272 	return container_of(mn, struct kvm, mmu_notifier);
273 }
274 
kvm_mmu_notifier_invalidate_page(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)275 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
276 					     struct mm_struct *mm,
277 					     unsigned long address)
278 {
279 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
280 	int need_tlb_flush, idx;
281 
282 	/*
283 	 * When ->invalidate_page runs, the linux pte has been zapped
284 	 * already but the page is still allocated until
285 	 * ->invalidate_page returns. So if we increase the sequence
286 	 * here the kvm page fault will notice if the spte can't be
287 	 * established because the page is going to be freed. If
288 	 * instead the kvm page fault establishes the spte before
289 	 * ->invalidate_page runs, kvm_unmap_hva will release it
290 	 * before returning.
291 	 *
292 	 * The sequence increase only need to be seen at spin_unlock
293 	 * time, and not at spin_lock time.
294 	 *
295 	 * Increasing the sequence after the spin_unlock would be
296 	 * unsafe because the kvm page fault could then establish the
297 	 * pte after kvm_unmap_hva returned, without noticing the page
298 	 * is going to be freed.
299 	 */
300 	idx = srcu_read_lock(&kvm->srcu);
301 	spin_lock(&kvm->mmu_lock);
302 
303 	kvm->mmu_notifier_seq++;
304 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
305 	/* we've to flush the tlb before the pages can be freed */
306 	if (need_tlb_flush)
307 		kvm_flush_remote_tlbs(kvm);
308 
309 	spin_unlock(&kvm->mmu_lock);
310 
311 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
312 
313 	srcu_read_unlock(&kvm->srcu, idx);
314 }
315 
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)316 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
317 					struct mm_struct *mm,
318 					unsigned long address,
319 					pte_t pte)
320 {
321 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
322 	int idx;
323 
324 	idx = srcu_read_lock(&kvm->srcu);
325 	spin_lock(&kvm->mmu_lock);
326 	kvm->mmu_notifier_seq++;
327 	kvm_set_spte_hva(kvm, address, pte);
328 	spin_unlock(&kvm->mmu_lock);
329 	srcu_read_unlock(&kvm->srcu, idx);
330 }
331 
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)332 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
333 						    struct mm_struct *mm,
334 						    unsigned long start,
335 						    unsigned long end)
336 {
337 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
338 	int need_tlb_flush = 0, idx;
339 
340 	idx = srcu_read_lock(&kvm->srcu);
341 	spin_lock(&kvm->mmu_lock);
342 	/*
343 	 * The count increase must become visible at unlock time as no
344 	 * spte can be established without taking the mmu_lock and
345 	 * count is also read inside the mmu_lock critical section.
346 	 */
347 	kvm->mmu_notifier_count++;
348 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
349 	/* we've to flush the tlb before the pages can be freed */
350 	if (need_tlb_flush || kvm->tlbs_dirty)
351 		kvm_flush_remote_tlbs(kvm);
352 
353 	spin_unlock(&kvm->mmu_lock);
354 	srcu_read_unlock(&kvm->srcu, idx);
355 }
356 
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)357 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
358 						  struct mm_struct *mm,
359 						  unsigned long start,
360 						  unsigned long end)
361 {
362 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
363 
364 	spin_lock(&kvm->mmu_lock);
365 	/*
366 	 * This sequence increase will notify the kvm page fault that
367 	 * the page that is going to be mapped in the spte could have
368 	 * been freed.
369 	 */
370 	kvm->mmu_notifier_seq++;
371 	smp_wmb();
372 	/*
373 	 * The above sequence increase must be visible before the
374 	 * below count decrease, which is ensured by the smp_wmb above
375 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
376 	 */
377 	kvm->mmu_notifier_count--;
378 	spin_unlock(&kvm->mmu_lock);
379 
380 	BUG_ON(kvm->mmu_notifier_count < 0);
381 }
382 
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)383 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
384 					      struct mm_struct *mm,
385 					      unsigned long start,
386 					      unsigned long end)
387 {
388 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
389 	int young, idx;
390 
391 	idx = srcu_read_lock(&kvm->srcu);
392 	spin_lock(&kvm->mmu_lock);
393 
394 	young = kvm_age_hva(kvm, start, end);
395 	if (young)
396 		kvm_flush_remote_tlbs(kvm);
397 
398 	spin_unlock(&kvm->mmu_lock);
399 	srcu_read_unlock(&kvm->srcu, idx);
400 
401 	return young;
402 }
403 
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)404 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
405 					struct mm_struct *mm,
406 					unsigned long start,
407 					unsigned long end)
408 {
409 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
410 	int young, idx;
411 
412 	idx = srcu_read_lock(&kvm->srcu);
413 	spin_lock(&kvm->mmu_lock);
414 	/*
415 	 * Even though we do not flush TLB, this will still adversely
416 	 * affect performance on pre-Haswell Intel EPT, where there is
417 	 * no EPT Access Bit to clear so that we have to tear down EPT
418 	 * tables instead. If we find this unacceptable, we can always
419 	 * add a parameter to kvm_age_hva so that it effectively doesn't
420 	 * do anything on clear_young.
421 	 *
422 	 * Also note that currently we never issue secondary TLB flushes
423 	 * from clear_young, leaving this job up to the regular system
424 	 * cadence. If we find this inaccurate, we might come up with a
425 	 * more sophisticated heuristic later.
426 	 */
427 	young = kvm_age_hva(kvm, start, end);
428 	spin_unlock(&kvm->mmu_lock);
429 	srcu_read_unlock(&kvm->srcu, idx);
430 
431 	return young;
432 }
433 
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)434 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
435 				       struct mm_struct *mm,
436 				       unsigned long address)
437 {
438 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
439 	int young, idx;
440 
441 	idx = srcu_read_lock(&kvm->srcu);
442 	spin_lock(&kvm->mmu_lock);
443 	young = kvm_test_age_hva(kvm, address);
444 	spin_unlock(&kvm->mmu_lock);
445 	srcu_read_unlock(&kvm->srcu, idx);
446 
447 	return young;
448 }
449 
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)450 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
451 				     struct mm_struct *mm)
452 {
453 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
454 	int idx;
455 
456 	idx = srcu_read_lock(&kvm->srcu);
457 	kvm_arch_flush_shadow_all(kvm);
458 	srcu_read_unlock(&kvm->srcu, idx);
459 }
460 
461 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
462 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
463 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
464 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
465 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
466 	.clear_young		= kvm_mmu_notifier_clear_young,
467 	.test_young		= kvm_mmu_notifier_test_young,
468 	.change_pte		= kvm_mmu_notifier_change_pte,
469 	.release		= kvm_mmu_notifier_release,
470 };
471 
kvm_init_mmu_notifier(struct kvm * kvm)472 static int kvm_init_mmu_notifier(struct kvm *kvm)
473 {
474 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
475 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
476 }
477 
478 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
479 
kvm_init_mmu_notifier(struct kvm * kvm)480 static int kvm_init_mmu_notifier(struct kvm *kvm)
481 {
482 	return 0;
483 }
484 
485 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
486 
kvm_alloc_memslots(void)487 static struct kvm_memslots *kvm_alloc_memslots(void)
488 {
489 	int i;
490 	struct kvm_memslots *slots;
491 
492 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
493 	if (!slots)
494 		return NULL;
495 
496 	/*
497 	 * Init kvm generation close to the maximum to easily test the
498 	 * code of handling generation number wrap-around.
499 	 */
500 	slots->generation = -150;
501 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
502 		slots->id_to_index[i] = slots->memslots[i].id = i;
503 
504 	return slots;
505 }
506 
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)507 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
508 {
509 	if (!memslot->dirty_bitmap)
510 		return;
511 
512 	kvfree(memslot->dirty_bitmap);
513 	memslot->dirty_bitmap = NULL;
514 }
515 
516 /*
517  * Free any memory in @free but not in @dont.
518  */
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)519 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
520 			      struct kvm_memory_slot *dont)
521 {
522 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
523 		kvm_destroy_dirty_bitmap(free);
524 
525 	kvm_arch_free_memslot(kvm, free, dont);
526 
527 	free->npages = 0;
528 }
529 
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)530 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
531 {
532 	struct kvm_memory_slot *memslot;
533 
534 	if (!slots)
535 		return;
536 
537 	kvm_for_each_memslot(memslot, slots)
538 		kvm_free_memslot(kvm, memslot, NULL);
539 
540 	kvfree(slots);
541 }
542 
kvm_create_vm(unsigned long type)543 static struct kvm *kvm_create_vm(unsigned long type)
544 {
545 	int r, i;
546 	struct kvm *kvm = kvm_arch_alloc_vm();
547 
548 	if (!kvm)
549 		return ERR_PTR(-ENOMEM);
550 
551 	spin_lock_init(&kvm->mmu_lock);
552 	atomic_inc(&current->mm->mm_count);
553 	kvm->mm = current->mm;
554 	kvm_eventfd_init(kvm);
555 	mutex_init(&kvm->lock);
556 	mutex_init(&kvm->irq_lock);
557 	mutex_init(&kvm->slots_lock);
558 	atomic_set(&kvm->users_count, 1);
559 	INIT_LIST_HEAD(&kvm->devices);
560 
561 	r = kvm_arch_init_vm(kvm, type);
562 	if (r)
563 		goto out_err_no_disable;
564 
565 	r = hardware_enable_all();
566 	if (r)
567 		goto out_err_no_disable;
568 
569 #ifdef CONFIG_HAVE_KVM_IRQFD
570 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
571 #endif
572 
573 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
574 
575 	r = -ENOMEM;
576 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
577 		kvm->memslots[i] = kvm_alloc_memslots();
578 		if (!kvm->memslots[i])
579 			goto out_err_no_srcu;
580 	}
581 
582 	if (init_srcu_struct(&kvm->srcu))
583 		goto out_err_no_srcu;
584 	if (init_srcu_struct(&kvm->irq_srcu))
585 		goto out_err_no_irq_srcu;
586 	for (i = 0; i < KVM_NR_BUSES; i++) {
587 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
588 					GFP_KERNEL);
589 		if (!kvm->buses[i])
590 			goto out_err;
591 	}
592 
593 	r = kvm_init_mmu_notifier(kvm);
594 	if (r)
595 		goto out_err;
596 
597 	spin_lock(&kvm_lock);
598 	list_add(&kvm->vm_list, &vm_list);
599 	spin_unlock(&kvm_lock);
600 
601 	preempt_notifier_inc();
602 
603 	return kvm;
604 
605 out_err:
606 	cleanup_srcu_struct(&kvm->irq_srcu);
607 out_err_no_irq_srcu:
608 	cleanup_srcu_struct(&kvm->srcu);
609 out_err_no_srcu:
610 	hardware_disable_all();
611 out_err_no_disable:
612 	for (i = 0; i < KVM_NR_BUSES; i++)
613 		kfree(kvm->buses[i]);
614 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
615 		kvm_free_memslots(kvm, kvm->memslots[i]);
616 	kvm_arch_free_vm(kvm);
617 	mmdrop(current->mm);
618 	return ERR_PTR(r);
619 }
620 
621 /*
622  * Avoid using vmalloc for a small buffer.
623  * Should not be used when the size is statically known.
624  */
kvm_kvzalloc(unsigned long size)625 void *kvm_kvzalloc(unsigned long size)
626 {
627 	if (size > PAGE_SIZE)
628 		return vzalloc(size);
629 	else
630 		return kzalloc(size, GFP_KERNEL);
631 }
632 
kvm_destroy_devices(struct kvm * kvm)633 static void kvm_destroy_devices(struct kvm *kvm)
634 {
635 	struct list_head *node, *tmp;
636 
637 	list_for_each_safe(node, tmp, &kvm->devices) {
638 		struct kvm_device *dev =
639 			list_entry(node, struct kvm_device, vm_node);
640 
641 		list_del(node);
642 		dev->ops->destroy(dev);
643 	}
644 }
645 
kvm_destroy_vm(struct kvm * kvm)646 static void kvm_destroy_vm(struct kvm *kvm)
647 {
648 	int i;
649 	struct mm_struct *mm = kvm->mm;
650 
651 	kvm_arch_sync_events(kvm);
652 	spin_lock(&kvm_lock);
653 	list_del(&kvm->vm_list);
654 	spin_unlock(&kvm_lock);
655 	kvm_free_irq_routing(kvm);
656 	for (i = 0; i < KVM_NR_BUSES; i++) {
657 		if (kvm->buses[i])
658 			kvm_io_bus_destroy(kvm->buses[i]);
659 		kvm->buses[i] = NULL;
660 	}
661 	kvm_coalesced_mmio_free(kvm);
662 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
663 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
664 #else
665 	kvm_arch_flush_shadow_all(kvm);
666 #endif
667 	kvm_arch_destroy_vm(kvm);
668 	kvm_destroy_devices(kvm);
669 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
670 		kvm_free_memslots(kvm, kvm->memslots[i]);
671 	cleanup_srcu_struct(&kvm->irq_srcu);
672 	cleanup_srcu_struct(&kvm->srcu);
673 	kvm_arch_free_vm(kvm);
674 	preempt_notifier_dec();
675 	hardware_disable_all();
676 	mmdrop(mm);
677 }
678 
kvm_get_kvm(struct kvm * kvm)679 void kvm_get_kvm(struct kvm *kvm)
680 {
681 	atomic_inc(&kvm->users_count);
682 }
683 EXPORT_SYMBOL_GPL(kvm_get_kvm);
684 
kvm_put_kvm(struct kvm * kvm)685 void kvm_put_kvm(struct kvm *kvm)
686 {
687 	if (atomic_dec_and_test(&kvm->users_count))
688 		kvm_destroy_vm(kvm);
689 }
690 EXPORT_SYMBOL_GPL(kvm_put_kvm);
691 
692 
kvm_vm_release(struct inode * inode,struct file * filp)693 static int kvm_vm_release(struct inode *inode, struct file *filp)
694 {
695 	struct kvm *kvm = filp->private_data;
696 
697 	kvm_irqfd_release(kvm);
698 
699 	kvm_put_kvm(kvm);
700 	return 0;
701 }
702 
703 /*
704  * Allocation size is twice as large as the actual dirty bitmap size.
705  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
706  */
kvm_create_dirty_bitmap(struct kvm_memory_slot * memslot)707 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
708 {
709 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
710 
711 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
712 	if (!memslot->dirty_bitmap)
713 		return -ENOMEM;
714 
715 	return 0;
716 }
717 
718 /*
719  * Insert memslot and re-sort memslots based on their GFN,
720  * so binary search could be used to lookup GFN.
721  * Sorting algorithm takes advantage of having initially
722  * sorted array and known changed memslot position.
723  */
update_memslots(struct kvm_memslots * slots,struct kvm_memory_slot * new)724 static void update_memslots(struct kvm_memslots *slots,
725 			    struct kvm_memory_slot *new)
726 {
727 	int id = new->id;
728 	int i = slots->id_to_index[id];
729 	struct kvm_memory_slot *mslots = slots->memslots;
730 
731 	WARN_ON(mslots[i].id != id);
732 	if (!new->npages) {
733 		WARN_ON(!mslots[i].npages);
734 		if (mslots[i].npages)
735 			slots->used_slots--;
736 	} else {
737 		if (!mslots[i].npages)
738 			slots->used_slots++;
739 	}
740 
741 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
742 	       new->base_gfn <= mslots[i + 1].base_gfn) {
743 		if (!mslots[i + 1].npages)
744 			break;
745 		mslots[i] = mslots[i + 1];
746 		slots->id_to_index[mslots[i].id] = i;
747 		i++;
748 	}
749 
750 	/*
751 	 * The ">=" is needed when creating a slot with base_gfn == 0,
752 	 * so that it moves before all those with base_gfn == npages == 0.
753 	 *
754 	 * On the other hand, if new->npages is zero, the above loop has
755 	 * already left i pointing to the beginning of the empty part of
756 	 * mslots, and the ">=" would move the hole backwards in this
757 	 * case---which is wrong.  So skip the loop when deleting a slot.
758 	 */
759 	if (new->npages) {
760 		while (i > 0 &&
761 		       new->base_gfn >= mslots[i - 1].base_gfn) {
762 			mslots[i] = mslots[i - 1];
763 			slots->id_to_index[mslots[i].id] = i;
764 			i--;
765 		}
766 	} else
767 		WARN_ON_ONCE(i != slots->used_slots);
768 
769 	mslots[i] = *new;
770 	slots->id_to_index[mslots[i].id] = i;
771 }
772 
check_memory_region_flags(const struct kvm_userspace_memory_region * mem)773 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
774 {
775 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
776 
777 #ifdef __KVM_HAVE_READONLY_MEM
778 	valid_flags |= KVM_MEM_READONLY;
779 #endif
780 
781 	if (mem->flags & ~valid_flags)
782 		return -EINVAL;
783 
784 	return 0;
785 }
786 
install_new_memslots(struct kvm * kvm,int as_id,struct kvm_memslots * slots)787 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
788 		int as_id, struct kvm_memslots *slots)
789 {
790 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
791 
792 	/*
793 	 * Set the low bit in the generation, which disables SPTE caching
794 	 * until the end of synchronize_srcu_expedited.
795 	 */
796 	WARN_ON(old_memslots->generation & 1);
797 	slots->generation = old_memslots->generation + 1;
798 
799 	rcu_assign_pointer(kvm->memslots[as_id], slots);
800 	synchronize_srcu_expedited(&kvm->srcu);
801 
802 	/*
803 	 * Increment the new memslot generation a second time. This prevents
804 	 * vm exits that race with memslot updates from caching a memslot
805 	 * generation that will (potentially) be valid forever.
806 	 */
807 	slots->generation++;
808 
809 	kvm_arch_memslots_updated(kvm, slots);
810 
811 	return old_memslots;
812 }
813 
814 /*
815  * Allocate some memory and give it an address in the guest physical address
816  * space.
817  *
818  * Discontiguous memory is allowed, mostly for framebuffers.
819  *
820  * Must be called holding kvm->slots_lock for write.
821  */
__kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)822 int __kvm_set_memory_region(struct kvm *kvm,
823 			    const struct kvm_userspace_memory_region *mem)
824 {
825 	int r;
826 	gfn_t base_gfn;
827 	unsigned long npages;
828 	struct kvm_memory_slot *slot;
829 	struct kvm_memory_slot old, new;
830 	struct kvm_memslots *slots = NULL, *old_memslots;
831 	int as_id, id;
832 	enum kvm_mr_change change;
833 
834 	r = check_memory_region_flags(mem);
835 	if (r)
836 		goto out;
837 
838 	r = -EINVAL;
839 	as_id = mem->slot >> 16;
840 	id = (u16)mem->slot;
841 
842 	/* General sanity checks */
843 	if (mem->memory_size & (PAGE_SIZE - 1))
844 		goto out;
845 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
846 		goto out;
847 	/* We can read the guest memory with __xxx_user() later on. */
848 	if ((id < KVM_USER_MEM_SLOTS) &&
849 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
850 	     !access_ok(VERIFY_WRITE,
851 			(void __user *)(unsigned long)mem->userspace_addr,
852 			mem->memory_size)))
853 		goto out;
854 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
855 		goto out;
856 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
857 		goto out;
858 
859 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
860 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
861 	npages = mem->memory_size >> PAGE_SHIFT;
862 
863 	if (npages > KVM_MEM_MAX_NR_PAGES)
864 		goto out;
865 
866 	new = old = *slot;
867 
868 	new.id = id;
869 	new.base_gfn = base_gfn;
870 	new.npages = npages;
871 	new.flags = mem->flags;
872 
873 	if (npages) {
874 		if (!old.npages)
875 			change = KVM_MR_CREATE;
876 		else { /* Modify an existing slot. */
877 			if ((mem->userspace_addr != old.userspace_addr) ||
878 			    (npages != old.npages) ||
879 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
880 				goto out;
881 
882 			if (base_gfn != old.base_gfn)
883 				change = KVM_MR_MOVE;
884 			else if (new.flags != old.flags)
885 				change = KVM_MR_FLAGS_ONLY;
886 			else { /* Nothing to change. */
887 				r = 0;
888 				goto out;
889 			}
890 		}
891 	} else {
892 		if (!old.npages)
893 			goto out;
894 
895 		change = KVM_MR_DELETE;
896 		new.base_gfn = 0;
897 		new.flags = 0;
898 	}
899 
900 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
901 		/* Check for overlaps */
902 		r = -EEXIST;
903 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
904 			if (slot->id == id)
905 				continue;
906 			if (!((base_gfn + npages <= slot->base_gfn) ||
907 			      (base_gfn >= slot->base_gfn + slot->npages)))
908 				goto out;
909 		}
910 	}
911 
912 	/* Free page dirty bitmap if unneeded */
913 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
914 		new.dirty_bitmap = NULL;
915 
916 	r = -ENOMEM;
917 	if (change == KVM_MR_CREATE) {
918 		new.userspace_addr = mem->userspace_addr;
919 
920 		if (kvm_arch_create_memslot(kvm, &new, npages))
921 			goto out_free;
922 	}
923 
924 	/* Allocate page dirty bitmap if needed */
925 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
926 		if (kvm_create_dirty_bitmap(&new) < 0)
927 			goto out_free;
928 	}
929 
930 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
931 	if (!slots)
932 		goto out_free;
933 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
934 
935 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
936 		slot = id_to_memslot(slots, id);
937 		slot->flags |= KVM_MEMSLOT_INVALID;
938 
939 		old_memslots = install_new_memslots(kvm, as_id, slots);
940 
941 		/* slot was deleted or moved, clear iommu mapping */
942 		kvm_iommu_unmap_pages(kvm, &old);
943 		/* From this point no new shadow pages pointing to a deleted,
944 		 * or moved, memslot will be created.
945 		 *
946 		 * validation of sp->gfn happens in:
947 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
948 		 *	- kvm_is_visible_gfn (mmu_check_roots)
949 		 */
950 		kvm_arch_flush_shadow_memslot(kvm, slot);
951 
952 		/*
953 		 * We can re-use the old_memslots from above, the only difference
954 		 * from the currently installed memslots is the invalid flag.  This
955 		 * will get overwritten by update_memslots anyway.
956 		 */
957 		slots = old_memslots;
958 	}
959 
960 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
961 	if (r)
962 		goto out_slots;
963 
964 	/* actual memory is freed via old in kvm_free_memslot below */
965 	if (change == KVM_MR_DELETE) {
966 		new.dirty_bitmap = NULL;
967 		memset(&new.arch, 0, sizeof(new.arch));
968 	}
969 
970 	update_memslots(slots, &new);
971 	old_memslots = install_new_memslots(kvm, as_id, slots);
972 
973 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
974 
975 	kvm_free_memslot(kvm, &old, &new);
976 	kvfree(old_memslots);
977 
978 	/*
979 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
980 	 * un-mapped and re-mapped if their base changes.  Since base change
981 	 * unmapping is handled above with slot deletion, mapping alone is
982 	 * needed here.  Anything else the iommu might care about for existing
983 	 * slots (size changes, userspace addr changes and read-only flag
984 	 * changes) is disallowed above, so any other attribute changes getting
985 	 * here can be skipped.
986 	 */
987 	if (as_id == 0 && (change == KVM_MR_CREATE || change == KVM_MR_MOVE)) {
988 		r = kvm_iommu_map_pages(kvm, &new);
989 		return r;
990 	}
991 
992 	return 0;
993 
994 out_slots:
995 	kvfree(slots);
996 out_free:
997 	kvm_free_memslot(kvm, &new, &old);
998 out:
999 	return r;
1000 }
1001 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1002 
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1003 int kvm_set_memory_region(struct kvm *kvm,
1004 			  const struct kvm_userspace_memory_region *mem)
1005 {
1006 	int r;
1007 
1008 	mutex_lock(&kvm->slots_lock);
1009 	r = __kvm_set_memory_region(kvm, mem);
1010 	mutex_unlock(&kvm->slots_lock);
1011 	return r;
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1014 
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem)1015 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1016 					  struct kvm_userspace_memory_region *mem)
1017 {
1018 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1019 		return -EINVAL;
1020 
1021 	return kvm_set_memory_region(kvm, mem);
1022 }
1023 
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty)1024 int kvm_get_dirty_log(struct kvm *kvm,
1025 			struct kvm_dirty_log *log, int *is_dirty)
1026 {
1027 	struct kvm_memslots *slots;
1028 	struct kvm_memory_slot *memslot;
1029 	int r, i, as_id, id;
1030 	unsigned long n;
1031 	unsigned long any = 0;
1032 
1033 	r = -EINVAL;
1034 	as_id = log->slot >> 16;
1035 	id = (u16)log->slot;
1036 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1037 		goto out;
1038 
1039 	slots = __kvm_memslots(kvm, as_id);
1040 	memslot = id_to_memslot(slots, id);
1041 	r = -ENOENT;
1042 	if (!memslot->dirty_bitmap)
1043 		goto out;
1044 
1045 	n = kvm_dirty_bitmap_bytes(memslot);
1046 
1047 	for (i = 0; !any && i < n/sizeof(long); ++i)
1048 		any = memslot->dirty_bitmap[i];
1049 
1050 	r = -EFAULT;
1051 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1052 		goto out;
1053 
1054 	if (any)
1055 		*is_dirty = 1;
1056 
1057 	r = 0;
1058 out:
1059 	return r;
1060 }
1061 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1062 
1063 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1064 /**
1065  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1066  *	are dirty write protect them for next write.
1067  * @kvm:	pointer to kvm instance
1068  * @log:	slot id and address to which we copy the log
1069  * @is_dirty:	flag set if any page is dirty
1070  *
1071  * We need to keep it in mind that VCPU threads can write to the bitmap
1072  * concurrently. So, to avoid losing track of dirty pages we keep the
1073  * following order:
1074  *
1075  *    1. Take a snapshot of the bit and clear it if needed.
1076  *    2. Write protect the corresponding page.
1077  *    3. Copy the snapshot to the userspace.
1078  *    4. Upon return caller flushes TLB's if needed.
1079  *
1080  * Between 2 and 4, the guest may write to the page using the remaining TLB
1081  * entry.  This is not a problem because the page is reported dirty using
1082  * the snapshot taken before and step 4 ensures that writes done after
1083  * exiting to userspace will be logged for the next call.
1084  *
1085  */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log,bool * is_dirty)1086 int kvm_get_dirty_log_protect(struct kvm *kvm,
1087 			struct kvm_dirty_log *log, bool *is_dirty)
1088 {
1089 	struct kvm_memslots *slots;
1090 	struct kvm_memory_slot *memslot;
1091 	int r, i, as_id, id;
1092 	unsigned long n;
1093 	unsigned long *dirty_bitmap;
1094 	unsigned long *dirty_bitmap_buffer;
1095 
1096 	r = -EINVAL;
1097 	as_id = log->slot >> 16;
1098 	id = (u16)log->slot;
1099 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1100 		goto out;
1101 
1102 	slots = __kvm_memslots(kvm, as_id);
1103 	memslot = id_to_memslot(slots, id);
1104 
1105 	dirty_bitmap = memslot->dirty_bitmap;
1106 	r = -ENOENT;
1107 	if (!dirty_bitmap)
1108 		goto out;
1109 
1110 	n = kvm_dirty_bitmap_bytes(memslot);
1111 
1112 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1113 	memset(dirty_bitmap_buffer, 0, n);
1114 
1115 	spin_lock(&kvm->mmu_lock);
1116 	*is_dirty = false;
1117 	for (i = 0; i < n / sizeof(long); i++) {
1118 		unsigned long mask;
1119 		gfn_t offset;
1120 
1121 		if (!dirty_bitmap[i])
1122 			continue;
1123 
1124 		*is_dirty = true;
1125 
1126 		mask = xchg(&dirty_bitmap[i], 0);
1127 		dirty_bitmap_buffer[i] = mask;
1128 
1129 		if (mask) {
1130 			offset = i * BITS_PER_LONG;
1131 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1132 								offset, mask);
1133 		}
1134 	}
1135 
1136 	spin_unlock(&kvm->mmu_lock);
1137 
1138 	r = -EFAULT;
1139 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1140 		goto out;
1141 
1142 	r = 0;
1143 out:
1144 	return r;
1145 }
1146 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1147 #endif
1148 
kvm_largepages_enabled(void)1149 bool kvm_largepages_enabled(void)
1150 {
1151 	return largepages_enabled;
1152 }
1153 
kvm_disable_largepages(void)1154 void kvm_disable_largepages(void)
1155 {
1156 	largepages_enabled = false;
1157 }
1158 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1159 
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)1160 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1161 {
1162 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1163 }
1164 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1165 
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)1166 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1167 {
1168 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1169 }
1170 
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)1171 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1172 {
1173 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1174 
1175 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1176 	      memslot->flags & KVM_MEMSLOT_INVALID)
1177 		return 0;
1178 
1179 	return 1;
1180 }
1181 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1182 
kvm_host_page_size(struct kvm * kvm,gfn_t gfn)1183 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1184 {
1185 	struct vm_area_struct *vma;
1186 	unsigned long addr, size;
1187 
1188 	size = PAGE_SIZE;
1189 
1190 	addr = gfn_to_hva(kvm, gfn);
1191 	if (kvm_is_error_hva(addr))
1192 		return PAGE_SIZE;
1193 
1194 	down_read(&current->mm->mmap_sem);
1195 	vma = find_vma(current->mm, addr);
1196 	if (!vma)
1197 		goto out;
1198 
1199 	size = vma_kernel_pagesize(vma);
1200 
1201 out:
1202 	up_read(&current->mm->mmap_sem);
1203 
1204 	return size;
1205 }
1206 
memslot_is_readonly(struct kvm_memory_slot * slot)1207 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1208 {
1209 	return slot->flags & KVM_MEM_READONLY;
1210 }
1211 
__gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)1212 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1213 				       gfn_t *nr_pages, bool write)
1214 {
1215 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1216 		return KVM_HVA_ERR_BAD;
1217 
1218 	if (memslot_is_readonly(slot) && write)
1219 		return KVM_HVA_ERR_RO_BAD;
1220 
1221 	if (nr_pages)
1222 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1223 
1224 	return __gfn_to_hva_memslot(slot, gfn);
1225 }
1226 
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)1227 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1228 				     gfn_t *nr_pages)
1229 {
1230 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1231 }
1232 
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1233 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1234 					gfn_t gfn)
1235 {
1236 	return gfn_to_hva_many(slot, gfn, NULL);
1237 }
1238 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1239 
gfn_to_hva(struct kvm * kvm,gfn_t gfn)1240 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1241 {
1242 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1243 }
1244 EXPORT_SYMBOL_GPL(gfn_to_hva);
1245 
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)1246 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1247 {
1248 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1249 }
1250 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1251 
1252 /*
1253  * If writable is set to false, the hva returned by this function is only
1254  * allowed to be read.
1255  */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)1256 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1257 				      gfn_t gfn, bool *writable)
1258 {
1259 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1260 
1261 	if (!kvm_is_error_hva(hva) && writable)
1262 		*writable = !memslot_is_readonly(slot);
1263 
1264 	return hva;
1265 }
1266 
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)1267 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1268 {
1269 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1270 
1271 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1272 }
1273 
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)1274 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1275 {
1276 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1277 
1278 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1279 }
1280 
get_user_page_nowait(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,int write,struct page ** page)1281 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1282 	unsigned long start, int write, struct page **page)
1283 {
1284 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1285 
1286 	if (write)
1287 		flags |= FOLL_WRITE;
1288 
1289 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1290 }
1291 
check_user_page_hwpoison(unsigned long addr)1292 static inline int check_user_page_hwpoison(unsigned long addr)
1293 {
1294 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1295 
1296 	rc = __get_user_pages(current, current->mm, addr, 1,
1297 			      flags, NULL, NULL, NULL);
1298 	return rc == -EHWPOISON;
1299 }
1300 
1301 /*
1302  * The atomic path to get the writable pfn which will be stored in @pfn,
1303  * true indicates success, otherwise false is returned.
1304  */
hva_to_pfn_fast(unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable,pfn_t * pfn)1305 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1306 			    bool write_fault, bool *writable, pfn_t *pfn)
1307 {
1308 	struct page *page[1];
1309 	int npages;
1310 
1311 	if (!(async || atomic))
1312 		return false;
1313 
1314 	/*
1315 	 * Fast pin a writable pfn only if it is a write fault request
1316 	 * or the caller allows to map a writable pfn for a read fault
1317 	 * request.
1318 	 */
1319 	if (!(write_fault || writable))
1320 		return false;
1321 
1322 	npages = __get_user_pages_fast(addr, 1, 1, page);
1323 	if (npages == 1) {
1324 		*pfn = page_to_pfn(page[0]);
1325 
1326 		if (writable)
1327 			*writable = true;
1328 		return true;
1329 	}
1330 
1331 	return false;
1332 }
1333 
1334 /*
1335  * The slow path to get the pfn of the specified host virtual address,
1336  * 1 indicates success, -errno is returned if error is detected.
1337  */
hva_to_pfn_slow(unsigned long addr,bool * async,bool write_fault,bool * writable,pfn_t * pfn)1338 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1339 			   bool *writable, pfn_t *pfn)
1340 {
1341 	struct page *page[1];
1342 	int npages = 0;
1343 
1344 	might_sleep();
1345 
1346 	if (writable)
1347 		*writable = write_fault;
1348 
1349 	if (async) {
1350 		down_read(&current->mm->mmap_sem);
1351 		npages = get_user_page_nowait(current, current->mm,
1352 					      addr, write_fault, page);
1353 		up_read(&current->mm->mmap_sem);
1354 	} else {
1355 		unsigned int flags = FOLL_TOUCH | FOLL_HWPOISON;
1356 
1357 		if (write_fault)
1358 			flags |= FOLL_WRITE;
1359 
1360 		npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1361 						   page, flags);
1362 	}
1363 	if (npages != 1)
1364 		return npages;
1365 
1366 	/* map read fault as writable if possible */
1367 	if (unlikely(!write_fault) && writable) {
1368 		struct page *wpage[1];
1369 
1370 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1371 		if (npages == 1) {
1372 			*writable = true;
1373 			put_page(page[0]);
1374 			page[0] = wpage[0];
1375 		}
1376 
1377 		npages = 1;
1378 	}
1379 	*pfn = page_to_pfn(page[0]);
1380 	return npages;
1381 }
1382 
vma_is_valid(struct vm_area_struct * vma,bool write_fault)1383 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1384 {
1385 	if (unlikely(!(vma->vm_flags & VM_READ)))
1386 		return false;
1387 
1388 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1389 		return false;
1390 
1391 	return true;
1392 }
1393 
1394 /*
1395  * Pin guest page in memory and return its pfn.
1396  * @addr: host virtual address which maps memory to the guest
1397  * @atomic: whether this function can sleep
1398  * @async: whether this function need to wait IO complete if the
1399  *         host page is not in the memory
1400  * @write_fault: whether we should get a writable host page
1401  * @writable: whether it allows to map a writable host page for !@write_fault
1402  *
1403  * The function will map a writable host page for these two cases:
1404  * 1): @write_fault = true
1405  * 2): @write_fault = false && @writable, @writable will tell the caller
1406  *     whether the mapping is writable.
1407  */
hva_to_pfn(unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable)1408 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1409 			bool write_fault, bool *writable)
1410 {
1411 	struct vm_area_struct *vma;
1412 	pfn_t pfn = 0;
1413 	int npages;
1414 
1415 	/* we can do it either atomically or asynchronously, not both */
1416 	BUG_ON(atomic && async);
1417 
1418 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1419 		return pfn;
1420 
1421 	if (atomic)
1422 		return KVM_PFN_ERR_FAULT;
1423 
1424 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1425 	if (npages == 1)
1426 		return pfn;
1427 
1428 	down_read(&current->mm->mmap_sem);
1429 	if (npages == -EHWPOISON ||
1430 	      (!async && check_user_page_hwpoison(addr))) {
1431 		pfn = KVM_PFN_ERR_HWPOISON;
1432 		goto exit;
1433 	}
1434 
1435 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1436 
1437 	if (vma == NULL)
1438 		pfn = KVM_PFN_ERR_FAULT;
1439 	else if ((vma->vm_flags & VM_PFNMAP)) {
1440 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1441 			vma->vm_pgoff;
1442 		BUG_ON(!kvm_is_reserved_pfn(pfn));
1443 	} else {
1444 		if (async && vma_is_valid(vma, write_fault))
1445 			*async = true;
1446 		pfn = KVM_PFN_ERR_FAULT;
1447 	}
1448 exit:
1449 	up_read(&current->mm->mmap_sem);
1450 	return pfn;
1451 }
1452 
__gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn,bool atomic,bool * async,bool write_fault,bool * writable)1453 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1454 			   bool *async, bool write_fault, bool *writable)
1455 {
1456 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1457 
1458 	if (addr == KVM_HVA_ERR_RO_BAD)
1459 		return KVM_PFN_ERR_RO_FAULT;
1460 
1461 	if (kvm_is_error_hva(addr))
1462 		return KVM_PFN_NOSLOT;
1463 
1464 	/* Do not map writable pfn in the readonly memslot. */
1465 	if (writable && memslot_is_readonly(slot)) {
1466 		*writable = false;
1467 		writable = NULL;
1468 	}
1469 
1470 	return hva_to_pfn(addr, atomic, async, write_fault,
1471 			  writable);
1472 }
1473 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1474 
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)1475 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1476 		      bool *writable)
1477 {
1478 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1479 				    write_fault, writable);
1480 }
1481 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1482 
gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1483 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1484 {
1485 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1486 }
1487 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1488 
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot * slot,gfn_t gfn)1489 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1490 {
1491 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1492 }
1493 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1494 
gfn_to_pfn_atomic(struct kvm * kvm,gfn_t gfn)1495 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1496 {
1497 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1498 }
1499 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1500 
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu * vcpu,gfn_t gfn)1501 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1502 {
1503 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1504 }
1505 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1506 
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)1507 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1508 {
1509 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1510 }
1511 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1512 
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn)1513 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1514 {
1515 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1516 }
1517 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1518 
gfn_to_page_many_atomic(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)1519 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1520 			    struct page **pages, int nr_pages)
1521 {
1522 	unsigned long addr;
1523 	gfn_t entry;
1524 
1525 	addr = gfn_to_hva_many(slot, gfn, &entry);
1526 	if (kvm_is_error_hva(addr))
1527 		return -1;
1528 
1529 	if (entry < nr_pages)
1530 		return 0;
1531 
1532 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1533 }
1534 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1535 
kvm_pfn_to_page(pfn_t pfn)1536 static struct page *kvm_pfn_to_page(pfn_t pfn)
1537 {
1538 	if (is_error_noslot_pfn(pfn))
1539 		return KVM_ERR_PTR_BAD_PAGE;
1540 
1541 	if (kvm_is_reserved_pfn(pfn)) {
1542 		WARN_ON(1);
1543 		return KVM_ERR_PTR_BAD_PAGE;
1544 	}
1545 
1546 	return pfn_to_page(pfn);
1547 }
1548 
gfn_to_page(struct kvm * kvm,gfn_t gfn)1549 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1550 {
1551 	pfn_t pfn;
1552 
1553 	pfn = gfn_to_pfn(kvm, gfn);
1554 
1555 	return kvm_pfn_to_page(pfn);
1556 }
1557 EXPORT_SYMBOL_GPL(gfn_to_page);
1558 
kvm_vcpu_gfn_to_page(struct kvm_vcpu * vcpu,gfn_t gfn)1559 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1560 {
1561 	pfn_t pfn;
1562 
1563 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1564 
1565 	return kvm_pfn_to_page(pfn);
1566 }
1567 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1568 
kvm_release_page_clean(struct page * page)1569 void kvm_release_page_clean(struct page *page)
1570 {
1571 	WARN_ON(is_error_page(page));
1572 
1573 	kvm_release_pfn_clean(page_to_pfn(page));
1574 }
1575 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1576 
kvm_release_pfn_clean(pfn_t pfn)1577 void kvm_release_pfn_clean(pfn_t pfn)
1578 {
1579 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1580 		put_page(pfn_to_page(pfn));
1581 }
1582 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1583 
kvm_release_page_dirty(struct page * page)1584 void kvm_release_page_dirty(struct page *page)
1585 {
1586 	WARN_ON(is_error_page(page));
1587 
1588 	kvm_release_pfn_dirty(page_to_pfn(page));
1589 }
1590 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1591 
kvm_release_pfn_dirty(pfn_t pfn)1592 static void kvm_release_pfn_dirty(pfn_t pfn)
1593 {
1594 	kvm_set_pfn_dirty(pfn);
1595 	kvm_release_pfn_clean(pfn);
1596 }
1597 
kvm_set_pfn_dirty(pfn_t pfn)1598 void kvm_set_pfn_dirty(pfn_t pfn)
1599 {
1600 	if (!kvm_is_reserved_pfn(pfn)) {
1601 		struct page *page = pfn_to_page(pfn);
1602 
1603 		if (!PageReserved(page))
1604 			SetPageDirty(page);
1605 	}
1606 }
1607 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1608 
kvm_set_pfn_accessed(pfn_t pfn)1609 void kvm_set_pfn_accessed(pfn_t pfn)
1610 {
1611 	if (!kvm_is_reserved_pfn(pfn))
1612 		mark_page_accessed(pfn_to_page(pfn));
1613 }
1614 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1615 
kvm_get_pfn(pfn_t pfn)1616 void kvm_get_pfn(pfn_t pfn)
1617 {
1618 	if (!kvm_is_reserved_pfn(pfn))
1619 		get_page(pfn_to_page(pfn));
1620 }
1621 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1622 
next_segment(unsigned long len,int offset)1623 static int next_segment(unsigned long len, int offset)
1624 {
1625 	if (len > PAGE_SIZE - offset)
1626 		return PAGE_SIZE - offset;
1627 	else
1628 		return len;
1629 }
1630 
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)1631 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1632 				 void *data, int offset, int len)
1633 {
1634 	int r;
1635 	unsigned long addr;
1636 
1637 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1638 	if (kvm_is_error_hva(addr))
1639 		return -EFAULT;
1640 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1641 	if (r)
1642 		return -EFAULT;
1643 	return 0;
1644 }
1645 
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)1646 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1647 			int len)
1648 {
1649 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1650 
1651 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1652 }
1653 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1654 
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)1655 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1656 			     int offset, int len)
1657 {
1658 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1659 
1660 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1661 }
1662 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1663 
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)1664 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1665 {
1666 	gfn_t gfn = gpa >> PAGE_SHIFT;
1667 	int seg;
1668 	int offset = offset_in_page(gpa);
1669 	int ret;
1670 
1671 	while ((seg = next_segment(len, offset)) != 0) {
1672 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1673 		if (ret < 0)
1674 			return ret;
1675 		offset = 0;
1676 		len -= seg;
1677 		data += seg;
1678 		++gfn;
1679 	}
1680 	return 0;
1681 }
1682 EXPORT_SYMBOL_GPL(kvm_read_guest);
1683 
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)1684 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1685 {
1686 	gfn_t gfn = gpa >> PAGE_SHIFT;
1687 	int seg;
1688 	int offset = offset_in_page(gpa);
1689 	int ret;
1690 
1691 	while ((seg = next_segment(len, offset)) != 0) {
1692 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1693 		if (ret < 0)
1694 			return ret;
1695 		offset = 0;
1696 		len -= seg;
1697 		data += seg;
1698 		++gfn;
1699 	}
1700 	return 0;
1701 }
1702 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1703 
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)1704 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1705 			           void *data, int offset, unsigned long len)
1706 {
1707 	int r;
1708 	unsigned long addr;
1709 
1710 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1711 	if (kvm_is_error_hva(addr))
1712 		return -EFAULT;
1713 	pagefault_disable();
1714 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1715 	pagefault_enable();
1716 	if (r)
1717 		return -EFAULT;
1718 	return 0;
1719 }
1720 
kvm_read_guest_atomic(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)1721 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1722 			  unsigned long len)
1723 {
1724 	gfn_t gfn = gpa >> PAGE_SHIFT;
1725 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1726 	int offset = offset_in_page(gpa);
1727 
1728 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1729 }
1730 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1731 
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)1732 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1733 			       void *data, unsigned long len)
1734 {
1735 	gfn_t gfn = gpa >> PAGE_SHIFT;
1736 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1737 	int offset = offset_in_page(gpa);
1738 
1739 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1740 }
1741 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1742 
__kvm_write_guest_page(struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)1743 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1744 			          const void *data, int offset, int len)
1745 {
1746 	int r;
1747 	unsigned long addr;
1748 
1749 	addr = gfn_to_hva_memslot(memslot, gfn);
1750 	if (kvm_is_error_hva(addr))
1751 		return -EFAULT;
1752 	r = __copy_to_user((void __user *)addr + offset, data, len);
1753 	if (r)
1754 		return -EFAULT;
1755 	mark_page_dirty_in_slot(memslot, gfn);
1756 	return 0;
1757 }
1758 
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)1759 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1760 			 const void *data, int offset, int len)
1761 {
1762 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1763 
1764 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1765 }
1766 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1767 
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)1768 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1769 			      const void *data, int offset, int len)
1770 {
1771 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1772 
1773 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1774 }
1775 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1776 
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)1777 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1778 		    unsigned long len)
1779 {
1780 	gfn_t gfn = gpa >> PAGE_SHIFT;
1781 	int seg;
1782 	int offset = offset_in_page(gpa);
1783 	int ret;
1784 
1785 	while ((seg = next_segment(len, offset)) != 0) {
1786 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1787 		if (ret < 0)
1788 			return ret;
1789 		offset = 0;
1790 		len -= seg;
1791 		data += seg;
1792 		++gfn;
1793 	}
1794 	return 0;
1795 }
1796 EXPORT_SYMBOL_GPL(kvm_write_guest);
1797 
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)1798 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1799 		         unsigned long len)
1800 {
1801 	gfn_t gfn = gpa >> PAGE_SHIFT;
1802 	int seg;
1803 	int offset = offset_in_page(gpa);
1804 	int ret;
1805 
1806 	while ((seg = next_segment(len, offset)) != 0) {
1807 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1808 		if (ret < 0)
1809 			return ret;
1810 		offset = 0;
1811 		len -= seg;
1812 		data += seg;
1813 		++gfn;
1814 	}
1815 	return 0;
1816 }
1817 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1818 
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)1819 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1820 			      gpa_t gpa, unsigned long len)
1821 {
1822 	struct kvm_memslots *slots = kvm_memslots(kvm);
1823 	int offset = offset_in_page(gpa);
1824 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1825 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1826 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1827 	gfn_t nr_pages_avail;
1828 
1829 	ghc->gpa = gpa;
1830 	ghc->generation = slots->generation;
1831 	ghc->len = len;
1832 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1833 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1834 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1835 		ghc->hva += offset;
1836 	} else {
1837 		/*
1838 		 * If the requested region crosses two memslots, we still
1839 		 * verify that the entire region is valid here.
1840 		 */
1841 		while (start_gfn <= end_gfn) {
1842 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1843 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1844 						   &nr_pages_avail);
1845 			if (kvm_is_error_hva(ghc->hva))
1846 				return -EFAULT;
1847 			start_gfn += nr_pages_avail;
1848 		}
1849 		/* Use the slow path for cross page reads and writes. */
1850 		ghc->memslot = NULL;
1851 	}
1852 	return 0;
1853 }
1854 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1855 
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)1856 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1857 			   void *data, unsigned long len)
1858 {
1859 	struct kvm_memslots *slots = kvm_memslots(kvm);
1860 	int r;
1861 
1862 	BUG_ON(len > ghc->len);
1863 
1864 	if (slots->generation != ghc->generation)
1865 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1866 
1867 	if (kvm_is_error_hva(ghc->hva))
1868 		return -EFAULT;
1869 
1870 	if (unlikely(!ghc->memslot))
1871 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1872 
1873 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1874 	if (r)
1875 		return -EFAULT;
1876 	mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1877 
1878 	return 0;
1879 }
1880 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1881 
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)1882 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1883 			   void *data, unsigned long len)
1884 {
1885 	struct kvm_memslots *slots = kvm_memslots(kvm);
1886 	int r;
1887 
1888 	BUG_ON(len > ghc->len);
1889 
1890 	if (slots->generation != ghc->generation)
1891 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1892 
1893 	if (kvm_is_error_hva(ghc->hva))
1894 		return -EFAULT;
1895 
1896 	if (unlikely(!ghc->memslot))
1897 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1898 
1899 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1900 	if (r)
1901 		return -EFAULT;
1902 
1903 	return 0;
1904 }
1905 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1906 
kvm_clear_guest_page(struct kvm * kvm,gfn_t gfn,int offset,int len)1907 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1908 {
1909 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1910 
1911 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1912 }
1913 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1914 
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)1915 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1916 {
1917 	gfn_t gfn = gpa >> PAGE_SHIFT;
1918 	int seg;
1919 	int offset = offset_in_page(gpa);
1920 	int ret;
1921 
1922 	while ((seg = next_segment(len, offset)) != 0) {
1923 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1924 		if (ret < 0)
1925 			return ret;
1926 		offset = 0;
1927 		len -= seg;
1928 		++gfn;
1929 	}
1930 	return 0;
1931 }
1932 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1933 
mark_page_dirty_in_slot(struct kvm_memory_slot * memslot,gfn_t gfn)1934 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1935 				    gfn_t gfn)
1936 {
1937 	if (memslot && memslot->dirty_bitmap) {
1938 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1939 
1940 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1941 	}
1942 }
1943 
mark_page_dirty(struct kvm * kvm,gfn_t gfn)1944 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1945 {
1946 	struct kvm_memory_slot *memslot;
1947 
1948 	memslot = gfn_to_memslot(kvm, gfn);
1949 	mark_page_dirty_in_slot(memslot, gfn);
1950 }
1951 EXPORT_SYMBOL_GPL(mark_page_dirty);
1952 
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)1953 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1954 {
1955 	struct kvm_memory_slot *memslot;
1956 
1957 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1958 	mark_page_dirty_in_slot(memslot, gfn);
1959 }
1960 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1961 
grow_halt_poll_ns(struct kvm_vcpu * vcpu)1962 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1963 {
1964 	int old, val;
1965 
1966 	old = val = vcpu->halt_poll_ns;
1967 	/* 10us base */
1968 	if (val == 0 && halt_poll_ns_grow)
1969 		val = 10000;
1970 	else
1971 		val *= halt_poll_ns_grow;
1972 
1973 	if (val > halt_poll_ns)
1974 		val = halt_poll_ns;
1975 
1976 	vcpu->halt_poll_ns = val;
1977 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1978 }
1979 
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)1980 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1981 {
1982 	int old, val;
1983 
1984 	old = val = vcpu->halt_poll_ns;
1985 	if (halt_poll_ns_shrink == 0)
1986 		val = 0;
1987 	else
1988 		val /= halt_poll_ns_shrink;
1989 
1990 	vcpu->halt_poll_ns = val;
1991 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1992 }
1993 
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)1994 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1995 {
1996 	if (kvm_arch_vcpu_runnable(vcpu)) {
1997 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
1998 		return -EINTR;
1999 	}
2000 	if (kvm_cpu_has_pending_timer(vcpu))
2001 		return -EINTR;
2002 	if (signal_pending(current))
2003 		return -EINTR;
2004 
2005 	return 0;
2006 }
2007 
2008 /*
2009  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2010  */
kvm_vcpu_block(struct kvm_vcpu * vcpu)2011 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2012 {
2013 	ktime_t start, cur;
2014 	DEFINE_WAIT(wait);
2015 	bool waited = false;
2016 	u64 block_ns;
2017 
2018 	start = cur = ktime_get();
2019 	if (vcpu->halt_poll_ns) {
2020 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2021 
2022 		++vcpu->stat.halt_attempted_poll;
2023 		do {
2024 			/*
2025 			 * This sets KVM_REQ_UNHALT if an interrupt
2026 			 * arrives.
2027 			 */
2028 			if (kvm_vcpu_check_block(vcpu) < 0) {
2029 				++vcpu->stat.halt_successful_poll;
2030 				goto out;
2031 			}
2032 			cur = ktime_get();
2033 		} while (single_task_running() && ktime_before(cur, stop));
2034 	}
2035 
2036 	kvm_arch_vcpu_blocking(vcpu);
2037 
2038 	for (;;) {
2039 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2040 
2041 		if (kvm_vcpu_check_block(vcpu) < 0)
2042 			break;
2043 
2044 		waited = true;
2045 		schedule();
2046 	}
2047 
2048 	finish_wait(&vcpu->wq, &wait);
2049 	cur = ktime_get();
2050 
2051 	kvm_arch_vcpu_unblocking(vcpu);
2052 out:
2053 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2054 
2055 	if (halt_poll_ns) {
2056 		if (block_ns <= vcpu->halt_poll_ns)
2057 			;
2058 		/* we had a long block, shrink polling */
2059 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2060 			shrink_halt_poll_ns(vcpu);
2061 		/* we had a short halt and our poll time is too small */
2062 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2063 			block_ns < halt_poll_ns)
2064 			grow_halt_poll_ns(vcpu);
2065 	} else
2066 		vcpu->halt_poll_ns = 0;
2067 
2068 	trace_kvm_vcpu_wakeup(block_ns, waited);
2069 }
2070 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2071 
2072 #ifndef CONFIG_S390
2073 /*
2074  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2075  */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)2076 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2077 {
2078 	int me;
2079 	int cpu = vcpu->cpu;
2080 	wait_queue_head_t *wqp;
2081 
2082 	wqp = kvm_arch_vcpu_wq(vcpu);
2083 	if (waitqueue_active(wqp)) {
2084 		wake_up_interruptible(wqp);
2085 		++vcpu->stat.halt_wakeup;
2086 	}
2087 
2088 	me = get_cpu();
2089 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2090 		if (kvm_arch_vcpu_should_kick(vcpu))
2091 			smp_send_reschedule(cpu);
2092 	put_cpu();
2093 }
2094 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2095 #endif /* !CONFIG_S390 */
2096 
kvm_vcpu_yield_to(struct kvm_vcpu * target)2097 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2098 {
2099 	struct pid *pid;
2100 	struct task_struct *task = NULL;
2101 	int ret = 0;
2102 
2103 	rcu_read_lock();
2104 	pid = rcu_dereference(target->pid);
2105 	if (pid)
2106 		task = get_pid_task(pid, PIDTYPE_PID);
2107 	rcu_read_unlock();
2108 	if (!task)
2109 		return ret;
2110 	ret = yield_to(task, 1);
2111 	put_task_struct(task);
2112 
2113 	return ret;
2114 }
2115 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2116 
2117 /*
2118  * Helper that checks whether a VCPU is eligible for directed yield.
2119  * Most eligible candidate to yield is decided by following heuristics:
2120  *
2121  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2122  *  (preempted lock holder), indicated by @in_spin_loop.
2123  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2124  *
2125  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2126  *  chance last time (mostly it has become eligible now since we have probably
2127  *  yielded to lockholder in last iteration. This is done by toggling
2128  *  @dy_eligible each time a VCPU checked for eligibility.)
2129  *
2130  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2131  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2132  *  burning. Giving priority for a potential lock-holder increases lock
2133  *  progress.
2134  *
2135  *  Since algorithm is based on heuristics, accessing another VCPU data without
2136  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2137  *  and continue with next VCPU and so on.
2138  */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)2139 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2140 {
2141 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2142 	bool eligible;
2143 
2144 	eligible = !vcpu->spin_loop.in_spin_loop ||
2145 		    vcpu->spin_loop.dy_eligible;
2146 
2147 	if (vcpu->spin_loop.in_spin_loop)
2148 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2149 
2150 	return eligible;
2151 #else
2152 	return true;
2153 #endif
2154 }
2155 
kvm_vcpu_on_spin(struct kvm_vcpu * me)2156 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2157 {
2158 	struct kvm *kvm = me->kvm;
2159 	struct kvm_vcpu *vcpu;
2160 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2161 	int yielded = 0;
2162 	int try = 3;
2163 	int pass;
2164 	int i;
2165 
2166 	kvm_vcpu_set_in_spin_loop(me, true);
2167 	/*
2168 	 * We boost the priority of a VCPU that is runnable but not
2169 	 * currently running, because it got preempted by something
2170 	 * else and called schedule in __vcpu_run.  Hopefully that
2171 	 * VCPU is holding the lock that we need and will release it.
2172 	 * We approximate round-robin by starting at the last boosted VCPU.
2173 	 */
2174 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2175 		kvm_for_each_vcpu(i, vcpu, kvm) {
2176 			if (!pass && i <= last_boosted_vcpu) {
2177 				i = last_boosted_vcpu;
2178 				continue;
2179 			} else if (pass && i > last_boosted_vcpu)
2180 				break;
2181 			if (!ACCESS_ONCE(vcpu->preempted))
2182 				continue;
2183 			if (vcpu == me)
2184 				continue;
2185 			if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2186 				continue;
2187 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2188 				continue;
2189 
2190 			yielded = kvm_vcpu_yield_to(vcpu);
2191 			if (yielded > 0) {
2192 				kvm->last_boosted_vcpu = i;
2193 				break;
2194 			} else if (yielded < 0) {
2195 				try--;
2196 				if (!try)
2197 					break;
2198 			}
2199 		}
2200 	}
2201 	kvm_vcpu_set_in_spin_loop(me, false);
2202 
2203 	/* Ensure vcpu is not eligible during next spinloop */
2204 	kvm_vcpu_set_dy_eligible(me, false);
2205 }
2206 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2207 
kvm_vcpu_fault(struct vm_area_struct * vma,struct vm_fault * vmf)2208 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2209 {
2210 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2211 	struct page *page;
2212 
2213 	if (vmf->pgoff == 0)
2214 		page = virt_to_page(vcpu->run);
2215 #ifdef CONFIG_X86
2216 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2217 		page = virt_to_page(vcpu->arch.pio_data);
2218 #endif
2219 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2220 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2221 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2222 #endif
2223 	else
2224 		return kvm_arch_vcpu_fault(vcpu, vmf);
2225 	get_page(page);
2226 	vmf->page = page;
2227 	return 0;
2228 }
2229 
2230 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2231 	.fault = kvm_vcpu_fault,
2232 };
2233 
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)2234 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2235 {
2236 	vma->vm_ops = &kvm_vcpu_vm_ops;
2237 	return 0;
2238 }
2239 
kvm_vcpu_release(struct inode * inode,struct file * filp)2240 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2241 {
2242 	struct kvm_vcpu *vcpu = filp->private_data;
2243 
2244 	kvm_put_kvm(vcpu->kvm);
2245 	return 0;
2246 }
2247 
2248 static struct file_operations kvm_vcpu_fops = {
2249 	.release        = kvm_vcpu_release,
2250 	.unlocked_ioctl = kvm_vcpu_ioctl,
2251 #ifdef CONFIG_KVM_COMPAT
2252 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2253 #endif
2254 	.mmap           = kvm_vcpu_mmap,
2255 	.llseek		= noop_llseek,
2256 };
2257 
2258 /*
2259  * Allocates an inode for the vcpu.
2260  */
create_vcpu_fd(struct kvm_vcpu * vcpu)2261 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2262 {
2263 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2264 }
2265 
2266 /*
2267  * Creates some virtual cpus.  Good luck creating more than one.
2268  */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)2269 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2270 {
2271 	int r;
2272 	struct kvm_vcpu *vcpu, *v;
2273 
2274 	if (id >= KVM_MAX_VCPUS)
2275 		return -EINVAL;
2276 
2277 	vcpu = kvm_arch_vcpu_create(kvm, id);
2278 	if (IS_ERR(vcpu))
2279 		return PTR_ERR(vcpu);
2280 
2281 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2282 
2283 	r = kvm_arch_vcpu_setup(vcpu);
2284 	if (r)
2285 		goto vcpu_destroy;
2286 
2287 	mutex_lock(&kvm->lock);
2288 	if (!kvm_vcpu_compatible(vcpu)) {
2289 		r = -EINVAL;
2290 		goto unlock_vcpu_destroy;
2291 	}
2292 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2293 		r = -EINVAL;
2294 		goto unlock_vcpu_destroy;
2295 	}
2296 
2297 	kvm_for_each_vcpu(r, v, kvm)
2298 		if (v->vcpu_id == id) {
2299 			r = -EEXIST;
2300 			goto unlock_vcpu_destroy;
2301 		}
2302 
2303 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2304 
2305 	/* Now it's all set up, let userspace reach it */
2306 	kvm_get_kvm(kvm);
2307 	r = create_vcpu_fd(vcpu);
2308 	if (r < 0) {
2309 		kvm_put_kvm(kvm);
2310 		goto unlock_vcpu_destroy;
2311 	}
2312 
2313 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2314 
2315 	/*
2316 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2317 	 * before kvm->online_vcpu's incremented value.
2318 	 */
2319 	smp_wmb();
2320 	atomic_inc(&kvm->online_vcpus);
2321 
2322 	mutex_unlock(&kvm->lock);
2323 	kvm_arch_vcpu_postcreate(vcpu);
2324 	return r;
2325 
2326 unlock_vcpu_destroy:
2327 	mutex_unlock(&kvm->lock);
2328 vcpu_destroy:
2329 	kvm_arch_vcpu_destroy(vcpu);
2330 	return r;
2331 }
2332 
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)2333 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2334 {
2335 	if (sigset) {
2336 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2337 		vcpu->sigset_active = 1;
2338 		vcpu->sigset = *sigset;
2339 	} else
2340 		vcpu->sigset_active = 0;
2341 	return 0;
2342 }
2343 
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2344 static long kvm_vcpu_ioctl(struct file *filp,
2345 			   unsigned int ioctl, unsigned long arg)
2346 {
2347 	struct kvm_vcpu *vcpu = filp->private_data;
2348 	void __user *argp = (void __user *)arg;
2349 	int r;
2350 	struct kvm_fpu *fpu = NULL;
2351 	struct kvm_sregs *kvm_sregs = NULL;
2352 
2353 	if (vcpu->kvm->mm != current->mm)
2354 		return -EIO;
2355 
2356 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2357 		return -EINVAL;
2358 
2359 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2360 	/*
2361 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2362 	 * so vcpu_load() would break it.
2363 	 */
2364 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2365 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2366 #endif
2367 
2368 
2369 	r = vcpu_load(vcpu);
2370 	if (r)
2371 		return r;
2372 	switch (ioctl) {
2373 	case KVM_RUN:
2374 		r = -EINVAL;
2375 		if (arg)
2376 			goto out;
2377 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2378 			/* The thread running this VCPU changed. */
2379 			struct pid *oldpid = vcpu->pid;
2380 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2381 
2382 			rcu_assign_pointer(vcpu->pid, newpid);
2383 			if (oldpid)
2384 				synchronize_rcu();
2385 			put_pid(oldpid);
2386 		}
2387 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2388 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2389 		break;
2390 	case KVM_GET_REGS: {
2391 		struct kvm_regs *kvm_regs;
2392 
2393 		r = -ENOMEM;
2394 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2395 		if (!kvm_regs)
2396 			goto out;
2397 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2398 		if (r)
2399 			goto out_free1;
2400 		r = -EFAULT;
2401 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2402 			goto out_free1;
2403 		r = 0;
2404 out_free1:
2405 		kfree(kvm_regs);
2406 		break;
2407 	}
2408 	case KVM_SET_REGS: {
2409 		struct kvm_regs *kvm_regs;
2410 
2411 		r = -ENOMEM;
2412 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2413 		if (IS_ERR(kvm_regs)) {
2414 			r = PTR_ERR(kvm_regs);
2415 			goto out;
2416 		}
2417 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2418 		kfree(kvm_regs);
2419 		break;
2420 	}
2421 	case KVM_GET_SREGS: {
2422 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2423 		r = -ENOMEM;
2424 		if (!kvm_sregs)
2425 			goto out;
2426 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2427 		if (r)
2428 			goto out;
2429 		r = -EFAULT;
2430 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2431 			goto out;
2432 		r = 0;
2433 		break;
2434 	}
2435 	case KVM_SET_SREGS: {
2436 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2437 		if (IS_ERR(kvm_sregs)) {
2438 			r = PTR_ERR(kvm_sregs);
2439 			kvm_sregs = NULL;
2440 			goto out;
2441 		}
2442 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2443 		break;
2444 	}
2445 	case KVM_GET_MP_STATE: {
2446 		struct kvm_mp_state mp_state;
2447 
2448 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2449 		if (r)
2450 			goto out;
2451 		r = -EFAULT;
2452 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2453 			goto out;
2454 		r = 0;
2455 		break;
2456 	}
2457 	case KVM_SET_MP_STATE: {
2458 		struct kvm_mp_state mp_state;
2459 
2460 		r = -EFAULT;
2461 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2462 			goto out;
2463 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2464 		break;
2465 	}
2466 	case KVM_TRANSLATE: {
2467 		struct kvm_translation tr;
2468 
2469 		r = -EFAULT;
2470 		if (copy_from_user(&tr, argp, sizeof(tr)))
2471 			goto out;
2472 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2473 		if (r)
2474 			goto out;
2475 		r = -EFAULT;
2476 		if (copy_to_user(argp, &tr, sizeof(tr)))
2477 			goto out;
2478 		r = 0;
2479 		break;
2480 	}
2481 	case KVM_SET_GUEST_DEBUG: {
2482 		struct kvm_guest_debug dbg;
2483 
2484 		r = -EFAULT;
2485 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2486 			goto out;
2487 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2488 		break;
2489 	}
2490 	case KVM_SET_SIGNAL_MASK: {
2491 		struct kvm_signal_mask __user *sigmask_arg = argp;
2492 		struct kvm_signal_mask kvm_sigmask;
2493 		sigset_t sigset, *p;
2494 
2495 		p = NULL;
2496 		if (argp) {
2497 			r = -EFAULT;
2498 			if (copy_from_user(&kvm_sigmask, argp,
2499 					   sizeof(kvm_sigmask)))
2500 				goto out;
2501 			r = -EINVAL;
2502 			if (kvm_sigmask.len != sizeof(sigset))
2503 				goto out;
2504 			r = -EFAULT;
2505 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2506 					   sizeof(sigset)))
2507 				goto out;
2508 			p = &sigset;
2509 		}
2510 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2511 		break;
2512 	}
2513 	case KVM_GET_FPU: {
2514 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2515 		r = -ENOMEM;
2516 		if (!fpu)
2517 			goto out;
2518 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2519 		if (r)
2520 			goto out;
2521 		r = -EFAULT;
2522 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2523 			goto out;
2524 		r = 0;
2525 		break;
2526 	}
2527 	case KVM_SET_FPU: {
2528 		fpu = memdup_user(argp, sizeof(*fpu));
2529 		if (IS_ERR(fpu)) {
2530 			r = PTR_ERR(fpu);
2531 			fpu = NULL;
2532 			goto out;
2533 		}
2534 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2535 		break;
2536 	}
2537 	default:
2538 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2539 	}
2540 out:
2541 	vcpu_put(vcpu);
2542 	kfree(fpu);
2543 	kfree(kvm_sregs);
2544 	return r;
2545 }
2546 
2547 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2548 static long kvm_vcpu_compat_ioctl(struct file *filp,
2549 				  unsigned int ioctl, unsigned long arg)
2550 {
2551 	struct kvm_vcpu *vcpu = filp->private_data;
2552 	void __user *argp = compat_ptr(arg);
2553 	int r;
2554 
2555 	if (vcpu->kvm->mm != current->mm)
2556 		return -EIO;
2557 
2558 	switch (ioctl) {
2559 	case KVM_SET_SIGNAL_MASK: {
2560 		struct kvm_signal_mask __user *sigmask_arg = argp;
2561 		struct kvm_signal_mask kvm_sigmask;
2562 		compat_sigset_t csigset;
2563 		sigset_t sigset;
2564 
2565 		if (argp) {
2566 			r = -EFAULT;
2567 			if (copy_from_user(&kvm_sigmask, argp,
2568 					   sizeof(kvm_sigmask)))
2569 				goto out;
2570 			r = -EINVAL;
2571 			if (kvm_sigmask.len != sizeof(csigset))
2572 				goto out;
2573 			r = -EFAULT;
2574 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2575 					   sizeof(csigset)))
2576 				goto out;
2577 			sigset_from_compat(&sigset, &csigset);
2578 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2579 		} else
2580 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2581 		break;
2582 	}
2583 	default:
2584 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2585 	}
2586 
2587 out:
2588 	return r;
2589 }
2590 #endif
2591 
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)2592 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2593 				 int (*accessor)(struct kvm_device *dev,
2594 						 struct kvm_device_attr *attr),
2595 				 unsigned long arg)
2596 {
2597 	struct kvm_device_attr attr;
2598 
2599 	if (!accessor)
2600 		return -EPERM;
2601 
2602 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2603 		return -EFAULT;
2604 
2605 	return accessor(dev, &attr);
2606 }
2607 
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2608 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2609 			     unsigned long arg)
2610 {
2611 	struct kvm_device *dev = filp->private_data;
2612 
2613 	if (dev->kvm->mm != current->mm)
2614 		return -EIO;
2615 
2616 	switch (ioctl) {
2617 	case KVM_SET_DEVICE_ATTR:
2618 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2619 	case KVM_GET_DEVICE_ATTR:
2620 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2621 	case KVM_HAS_DEVICE_ATTR:
2622 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2623 	default:
2624 		if (dev->ops->ioctl)
2625 			return dev->ops->ioctl(dev, ioctl, arg);
2626 
2627 		return -ENOTTY;
2628 	}
2629 }
2630 
kvm_device_release(struct inode * inode,struct file * filp)2631 static int kvm_device_release(struct inode *inode, struct file *filp)
2632 {
2633 	struct kvm_device *dev = filp->private_data;
2634 	struct kvm *kvm = dev->kvm;
2635 
2636 	kvm_put_kvm(kvm);
2637 	return 0;
2638 }
2639 
2640 static const struct file_operations kvm_device_fops = {
2641 	.unlocked_ioctl = kvm_device_ioctl,
2642 #ifdef CONFIG_KVM_COMPAT
2643 	.compat_ioctl = kvm_device_ioctl,
2644 #endif
2645 	.release = kvm_device_release,
2646 };
2647 
kvm_device_from_filp(struct file * filp)2648 struct kvm_device *kvm_device_from_filp(struct file *filp)
2649 {
2650 	if (filp->f_op != &kvm_device_fops)
2651 		return NULL;
2652 
2653 	return filp->private_data;
2654 }
2655 
2656 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2657 #ifdef CONFIG_KVM_MPIC
2658 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2659 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2660 #endif
2661 
2662 #ifdef CONFIG_KVM_XICS
2663 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2664 #endif
2665 };
2666 
kvm_register_device_ops(struct kvm_device_ops * ops,u32 type)2667 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2668 {
2669 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2670 		return -ENOSPC;
2671 
2672 	if (kvm_device_ops_table[type] != NULL)
2673 		return -EEXIST;
2674 
2675 	kvm_device_ops_table[type] = ops;
2676 	return 0;
2677 }
2678 
kvm_unregister_device_ops(u32 type)2679 void kvm_unregister_device_ops(u32 type)
2680 {
2681 	if (kvm_device_ops_table[type] != NULL)
2682 		kvm_device_ops_table[type] = NULL;
2683 }
2684 
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)2685 static int kvm_ioctl_create_device(struct kvm *kvm,
2686 				   struct kvm_create_device *cd)
2687 {
2688 	struct kvm_device_ops *ops = NULL;
2689 	struct kvm_device *dev;
2690 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2691 	int ret;
2692 
2693 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2694 		return -ENODEV;
2695 
2696 	ops = kvm_device_ops_table[cd->type];
2697 	if (ops == NULL)
2698 		return -ENODEV;
2699 
2700 	if (test)
2701 		return 0;
2702 
2703 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2704 	if (!dev)
2705 		return -ENOMEM;
2706 
2707 	dev->ops = ops;
2708 	dev->kvm = kvm;
2709 
2710 	ret = ops->create(dev, cd->type);
2711 	if (ret < 0) {
2712 		kfree(dev);
2713 		return ret;
2714 	}
2715 
2716 	kvm_get_kvm(kvm);
2717 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2718 	if (ret < 0) {
2719 		kvm_put_kvm(kvm);
2720 		ops->destroy(dev);
2721 		return ret;
2722 	}
2723 
2724 	list_add(&dev->vm_node, &kvm->devices);
2725 	cd->fd = ret;
2726 	return 0;
2727 }
2728 
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)2729 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2730 {
2731 	switch (arg) {
2732 	case KVM_CAP_USER_MEMORY:
2733 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2734 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2735 	case KVM_CAP_INTERNAL_ERROR_DATA:
2736 #ifdef CONFIG_HAVE_KVM_MSI
2737 	case KVM_CAP_SIGNAL_MSI:
2738 #endif
2739 #ifdef CONFIG_HAVE_KVM_IRQFD
2740 	case KVM_CAP_IRQFD:
2741 	case KVM_CAP_IRQFD_RESAMPLE:
2742 #endif
2743 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2744 	case KVM_CAP_CHECK_EXTENSION_VM:
2745 		return 1;
2746 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2747 	case KVM_CAP_IRQ_ROUTING:
2748 		return KVM_MAX_IRQ_ROUTES;
2749 #endif
2750 #if KVM_ADDRESS_SPACE_NUM > 1
2751 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2752 		return KVM_ADDRESS_SPACE_NUM;
2753 #endif
2754 	default:
2755 		break;
2756 	}
2757 	return kvm_vm_ioctl_check_extension(kvm, arg);
2758 }
2759 
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2760 static long kvm_vm_ioctl(struct file *filp,
2761 			   unsigned int ioctl, unsigned long arg)
2762 {
2763 	struct kvm *kvm = filp->private_data;
2764 	void __user *argp = (void __user *)arg;
2765 	int r;
2766 
2767 	if (kvm->mm != current->mm)
2768 		return -EIO;
2769 	switch (ioctl) {
2770 	case KVM_CREATE_VCPU:
2771 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2772 		break;
2773 	case KVM_SET_USER_MEMORY_REGION: {
2774 		struct kvm_userspace_memory_region kvm_userspace_mem;
2775 
2776 		r = -EFAULT;
2777 		if (copy_from_user(&kvm_userspace_mem, argp,
2778 						sizeof(kvm_userspace_mem)))
2779 			goto out;
2780 
2781 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2782 		break;
2783 	}
2784 	case KVM_GET_DIRTY_LOG: {
2785 		struct kvm_dirty_log log;
2786 
2787 		r = -EFAULT;
2788 		if (copy_from_user(&log, argp, sizeof(log)))
2789 			goto out;
2790 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2791 		break;
2792 	}
2793 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2794 	case KVM_REGISTER_COALESCED_MMIO: {
2795 		struct kvm_coalesced_mmio_zone zone;
2796 
2797 		r = -EFAULT;
2798 		if (copy_from_user(&zone, argp, sizeof(zone)))
2799 			goto out;
2800 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2801 		break;
2802 	}
2803 	case KVM_UNREGISTER_COALESCED_MMIO: {
2804 		struct kvm_coalesced_mmio_zone zone;
2805 
2806 		r = -EFAULT;
2807 		if (copy_from_user(&zone, argp, sizeof(zone)))
2808 			goto out;
2809 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2810 		break;
2811 	}
2812 #endif
2813 	case KVM_IRQFD: {
2814 		struct kvm_irqfd data;
2815 
2816 		r = -EFAULT;
2817 		if (copy_from_user(&data, argp, sizeof(data)))
2818 			goto out;
2819 		r = kvm_irqfd(kvm, &data);
2820 		break;
2821 	}
2822 	case KVM_IOEVENTFD: {
2823 		struct kvm_ioeventfd data;
2824 
2825 		r = -EFAULT;
2826 		if (copy_from_user(&data, argp, sizeof(data)))
2827 			goto out;
2828 		r = kvm_ioeventfd(kvm, &data);
2829 		break;
2830 	}
2831 #ifdef CONFIG_HAVE_KVM_MSI
2832 	case KVM_SIGNAL_MSI: {
2833 		struct kvm_msi msi;
2834 
2835 		r = -EFAULT;
2836 		if (copy_from_user(&msi, argp, sizeof(msi)))
2837 			goto out;
2838 		r = kvm_send_userspace_msi(kvm, &msi);
2839 		break;
2840 	}
2841 #endif
2842 #ifdef __KVM_HAVE_IRQ_LINE
2843 	case KVM_IRQ_LINE_STATUS:
2844 	case KVM_IRQ_LINE: {
2845 		struct kvm_irq_level irq_event;
2846 
2847 		r = -EFAULT;
2848 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2849 			goto out;
2850 
2851 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2852 					ioctl == KVM_IRQ_LINE_STATUS);
2853 		if (r)
2854 			goto out;
2855 
2856 		r = -EFAULT;
2857 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2858 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2859 				goto out;
2860 		}
2861 
2862 		r = 0;
2863 		break;
2864 	}
2865 #endif
2866 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2867 	case KVM_SET_GSI_ROUTING: {
2868 		struct kvm_irq_routing routing;
2869 		struct kvm_irq_routing __user *urouting;
2870 		struct kvm_irq_routing_entry *entries;
2871 
2872 		r = -EFAULT;
2873 		if (copy_from_user(&routing, argp, sizeof(routing)))
2874 			goto out;
2875 		r = -EINVAL;
2876 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
2877 			goto out;
2878 		if (routing.flags)
2879 			goto out;
2880 		r = -ENOMEM;
2881 		entries = vmalloc(routing.nr * sizeof(*entries));
2882 		if (!entries)
2883 			goto out;
2884 		r = -EFAULT;
2885 		urouting = argp;
2886 		if (copy_from_user(entries, urouting->entries,
2887 				   routing.nr * sizeof(*entries)))
2888 			goto out_free_irq_routing;
2889 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2890 					routing.flags);
2891 out_free_irq_routing:
2892 		vfree(entries);
2893 		break;
2894 	}
2895 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2896 	case KVM_CREATE_DEVICE: {
2897 		struct kvm_create_device cd;
2898 
2899 		r = -EFAULT;
2900 		if (copy_from_user(&cd, argp, sizeof(cd)))
2901 			goto out;
2902 
2903 		r = kvm_ioctl_create_device(kvm, &cd);
2904 		if (r)
2905 			goto out;
2906 
2907 		r = -EFAULT;
2908 		if (copy_to_user(argp, &cd, sizeof(cd)))
2909 			goto out;
2910 
2911 		r = 0;
2912 		break;
2913 	}
2914 	case KVM_CHECK_EXTENSION:
2915 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2916 		break;
2917 	default:
2918 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2919 	}
2920 out:
2921 	return r;
2922 }
2923 
2924 #ifdef CONFIG_KVM_COMPAT
2925 struct compat_kvm_dirty_log {
2926 	__u32 slot;
2927 	__u32 padding1;
2928 	union {
2929 		compat_uptr_t dirty_bitmap; /* one bit per page */
2930 		__u64 padding2;
2931 	};
2932 };
2933 
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2934 static long kvm_vm_compat_ioctl(struct file *filp,
2935 			   unsigned int ioctl, unsigned long arg)
2936 {
2937 	struct kvm *kvm = filp->private_data;
2938 	int r;
2939 
2940 	if (kvm->mm != current->mm)
2941 		return -EIO;
2942 	switch (ioctl) {
2943 	case KVM_GET_DIRTY_LOG: {
2944 		struct compat_kvm_dirty_log compat_log;
2945 		struct kvm_dirty_log log;
2946 
2947 		r = -EFAULT;
2948 		if (copy_from_user(&compat_log, (void __user *)arg,
2949 				   sizeof(compat_log)))
2950 			goto out;
2951 		log.slot	 = compat_log.slot;
2952 		log.padding1	 = compat_log.padding1;
2953 		log.padding2	 = compat_log.padding2;
2954 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2955 
2956 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2957 		break;
2958 	}
2959 	default:
2960 		r = kvm_vm_ioctl(filp, ioctl, arg);
2961 	}
2962 
2963 out:
2964 	return r;
2965 }
2966 #endif
2967 
2968 static struct file_operations kvm_vm_fops = {
2969 	.release        = kvm_vm_release,
2970 	.unlocked_ioctl = kvm_vm_ioctl,
2971 #ifdef CONFIG_KVM_COMPAT
2972 	.compat_ioctl   = kvm_vm_compat_ioctl,
2973 #endif
2974 	.llseek		= noop_llseek,
2975 };
2976 
kvm_dev_ioctl_create_vm(unsigned long type)2977 static int kvm_dev_ioctl_create_vm(unsigned long type)
2978 {
2979 	int r;
2980 	struct kvm *kvm;
2981 
2982 	kvm = kvm_create_vm(type);
2983 	if (IS_ERR(kvm))
2984 		return PTR_ERR(kvm);
2985 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2986 	r = kvm_coalesced_mmio_init(kvm);
2987 	if (r < 0) {
2988 		kvm_put_kvm(kvm);
2989 		return r;
2990 	}
2991 #endif
2992 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2993 	if (r < 0)
2994 		kvm_put_kvm(kvm);
2995 
2996 	return r;
2997 }
2998 
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2999 static long kvm_dev_ioctl(struct file *filp,
3000 			  unsigned int ioctl, unsigned long arg)
3001 {
3002 	long r = -EINVAL;
3003 
3004 	switch (ioctl) {
3005 	case KVM_GET_API_VERSION:
3006 		if (arg)
3007 			goto out;
3008 		r = KVM_API_VERSION;
3009 		break;
3010 	case KVM_CREATE_VM:
3011 		r = kvm_dev_ioctl_create_vm(arg);
3012 		break;
3013 	case KVM_CHECK_EXTENSION:
3014 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3015 		break;
3016 	case KVM_GET_VCPU_MMAP_SIZE:
3017 		if (arg)
3018 			goto out;
3019 		r = PAGE_SIZE;     /* struct kvm_run */
3020 #ifdef CONFIG_X86
3021 		r += PAGE_SIZE;    /* pio data page */
3022 #endif
3023 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3024 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3025 #endif
3026 		break;
3027 	case KVM_TRACE_ENABLE:
3028 	case KVM_TRACE_PAUSE:
3029 	case KVM_TRACE_DISABLE:
3030 		r = -EOPNOTSUPP;
3031 		break;
3032 	default:
3033 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3034 	}
3035 out:
3036 	return r;
3037 }
3038 
3039 static struct file_operations kvm_chardev_ops = {
3040 	.unlocked_ioctl = kvm_dev_ioctl,
3041 	.compat_ioctl   = kvm_dev_ioctl,
3042 	.llseek		= noop_llseek,
3043 };
3044 
3045 static struct miscdevice kvm_dev = {
3046 	KVM_MINOR,
3047 	"kvm",
3048 	&kvm_chardev_ops,
3049 };
3050 
hardware_enable_nolock(void * junk)3051 static void hardware_enable_nolock(void *junk)
3052 {
3053 	int cpu = raw_smp_processor_id();
3054 	int r;
3055 
3056 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3057 		return;
3058 
3059 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3060 
3061 	r = kvm_arch_hardware_enable();
3062 
3063 	if (r) {
3064 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3065 		atomic_inc(&hardware_enable_failed);
3066 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3067 	}
3068 }
3069 
hardware_enable(void)3070 static void hardware_enable(void)
3071 {
3072 	raw_spin_lock(&kvm_count_lock);
3073 	if (kvm_usage_count)
3074 		hardware_enable_nolock(NULL);
3075 	raw_spin_unlock(&kvm_count_lock);
3076 }
3077 
hardware_disable_nolock(void * junk)3078 static void hardware_disable_nolock(void *junk)
3079 {
3080 	int cpu = raw_smp_processor_id();
3081 
3082 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3083 		return;
3084 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3085 	kvm_arch_hardware_disable();
3086 }
3087 
hardware_disable(void)3088 static void hardware_disable(void)
3089 {
3090 	raw_spin_lock(&kvm_count_lock);
3091 	if (kvm_usage_count)
3092 		hardware_disable_nolock(NULL);
3093 	raw_spin_unlock(&kvm_count_lock);
3094 }
3095 
hardware_disable_all_nolock(void)3096 static void hardware_disable_all_nolock(void)
3097 {
3098 	BUG_ON(!kvm_usage_count);
3099 
3100 	kvm_usage_count--;
3101 	if (!kvm_usage_count)
3102 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3103 }
3104 
hardware_disable_all(void)3105 static void hardware_disable_all(void)
3106 {
3107 	raw_spin_lock(&kvm_count_lock);
3108 	hardware_disable_all_nolock();
3109 	raw_spin_unlock(&kvm_count_lock);
3110 }
3111 
hardware_enable_all(void)3112 static int hardware_enable_all(void)
3113 {
3114 	int r = 0;
3115 
3116 	raw_spin_lock(&kvm_count_lock);
3117 
3118 	kvm_usage_count++;
3119 	if (kvm_usage_count == 1) {
3120 		atomic_set(&hardware_enable_failed, 0);
3121 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3122 
3123 		if (atomic_read(&hardware_enable_failed)) {
3124 			hardware_disable_all_nolock();
3125 			r = -EBUSY;
3126 		}
3127 	}
3128 
3129 	raw_spin_unlock(&kvm_count_lock);
3130 
3131 	return r;
3132 }
3133 
kvm_cpu_hotplug(struct notifier_block * notifier,unsigned long val,void * v)3134 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3135 			   void *v)
3136 {
3137 	val &= ~CPU_TASKS_FROZEN;
3138 	switch (val) {
3139 	case CPU_DYING:
3140 		hardware_disable();
3141 		break;
3142 	case CPU_STARTING:
3143 		hardware_enable();
3144 		break;
3145 	}
3146 	return NOTIFY_OK;
3147 }
3148 
kvm_reboot(struct notifier_block * notifier,unsigned long val,void * v)3149 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3150 		      void *v)
3151 {
3152 	/*
3153 	 * Some (well, at least mine) BIOSes hang on reboot if
3154 	 * in vmx root mode.
3155 	 *
3156 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3157 	 */
3158 	pr_info("kvm: exiting hardware virtualization\n");
3159 	kvm_rebooting = true;
3160 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3161 	return NOTIFY_OK;
3162 }
3163 
3164 static struct notifier_block kvm_reboot_notifier = {
3165 	.notifier_call = kvm_reboot,
3166 	.priority = 0,
3167 };
3168 
kvm_io_bus_destroy(struct kvm_io_bus * bus)3169 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3170 {
3171 	int i;
3172 
3173 	for (i = 0; i < bus->dev_count; i++) {
3174 		struct kvm_io_device *pos = bus->range[i].dev;
3175 
3176 		kvm_iodevice_destructor(pos);
3177 	}
3178 	kfree(bus);
3179 }
3180 
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)3181 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3182 				 const struct kvm_io_range *r2)
3183 {
3184 	gpa_t addr1 = r1->addr;
3185 	gpa_t addr2 = r2->addr;
3186 
3187 	if (addr1 < addr2)
3188 		return -1;
3189 
3190 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3191 	 * accept any overlapping write.  Any order is acceptable for
3192 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3193 	 * we process all of them.
3194 	 */
3195 	if (r2->len) {
3196 		addr1 += r1->len;
3197 		addr2 += r2->len;
3198 	}
3199 
3200 	if (addr1 > addr2)
3201 		return 1;
3202 
3203 	return 0;
3204 }
3205 
kvm_io_bus_sort_cmp(const void * p1,const void * p2)3206 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3207 {
3208 	return kvm_io_bus_cmp(p1, p2);
3209 }
3210 
kvm_io_bus_insert_dev(struct kvm_io_bus * bus,struct kvm_io_device * dev,gpa_t addr,int len)3211 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3212 			  gpa_t addr, int len)
3213 {
3214 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3215 		.addr = addr,
3216 		.len = len,
3217 		.dev = dev,
3218 	};
3219 
3220 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3221 		kvm_io_bus_sort_cmp, NULL);
3222 
3223 	return 0;
3224 }
3225 
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)3226 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3227 			     gpa_t addr, int len)
3228 {
3229 	struct kvm_io_range *range, key;
3230 	int off;
3231 
3232 	key = (struct kvm_io_range) {
3233 		.addr = addr,
3234 		.len = len,
3235 	};
3236 
3237 	range = bsearch(&key, bus->range, bus->dev_count,
3238 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3239 	if (range == NULL)
3240 		return -ENOENT;
3241 
3242 	off = range - bus->range;
3243 
3244 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3245 		off--;
3246 
3247 	return off;
3248 }
3249 
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)3250 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3251 			      struct kvm_io_range *range, const void *val)
3252 {
3253 	int idx;
3254 
3255 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3256 	if (idx < 0)
3257 		return -EOPNOTSUPP;
3258 
3259 	while (idx < bus->dev_count &&
3260 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3261 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3262 					range->len, val))
3263 			return idx;
3264 		idx++;
3265 	}
3266 
3267 	return -EOPNOTSUPP;
3268 }
3269 
3270 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)3271 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3272 		     int len, const void *val)
3273 {
3274 	struct kvm_io_bus *bus;
3275 	struct kvm_io_range range;
3276 	int r;
3277 
3278 	range = (struct kvm_io_range) {
3279 		.addr = addr,
3280 		.len = len,
3281 	};
3282 
3283 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3284 	if (!bus)
3285 		return -ENOMEM;
3286 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3287 	return r < 0 ? r : 0;
3288 }
3289 
3290 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)3291 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3292 			    gpa_t addr, int len, const void *val, long cookie)
3293 {
3294 	struct kvm_io_bus *bus;
3295 	struct kvm_io_range range;
3296 
3297 	range = (struct kvm_io_range) {
3298 		.addr = addr,
3299 		.len = len,
3300 	};
3301 
3302 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3303 	if (!bus)
3304 		return -ENOMEM;
3305 
3306 	/* First try the device referenced by cookie. */
3307 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3308 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3309 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3310 					val))
3311 			return cookie;
3312 
3313 	/*
3314 	 * cookie contained garbage; fall back to search and return the
3315 	 * correct cookie value.
3316 	 */
3317 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3318 }
3319 
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)3320 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3321 			     struct kvm_io_range *range, void *val)
3322 {
3323 	int idx;
3324 
3325 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3326 	if (idx < 0)
3327 		return -EOPNOTSUPP;
3328 
3329 	while (idx < bus->dev_count &&
3330 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3331 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3332 				       range->len, val))
3333 			return idx;
3334 		idx++;
3335 	}
3336 
3337 	return -EOPNOTSUPP;
3338 }
3339 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3340 
3341 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)3342 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3343 		    int len, void *val)
3344 {
3345 	struct kvm_io_bus *bus;
3346 	struct kvm_io_range range;
3347 	int r;
3348 
3349 	range = (struct kvm_io_range) {
3350 		.addr = addr,
3351 		.len = len,
3352 	};
3353 
3354 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3355 	if (!bus)
3356 		return -ENOMEM;
3357 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3358 	return r < 0 ? r : 0;
3359 }
3360 
3361 
3362 /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)3363 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3364 			    int len, struct kvm_io_device *dev)
3365 {
3366 	struct kvm_io_bus *new_bus, *bus;
3367 
3368 	bus = kvm->buses[bus_idx];
3369 	if (!bus)
3370 		return -ENOMEM;
3371 
3372 	/* exclude ioeventfd which is limited by maximum fd */
3373 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3374 		return -ENOSPC;
3375 
3376 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3377 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3378 	if (!new_bus)
3379 		return -ENOMEM;
3380 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3381 	       sizeof(struct kvm_io_range)));
3382 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3383 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3384 	synchronize_srcu_expedited(&kvm->srcu);
3385 	kfree(bus);
3386 
3387 	return 0;
3388 }
3389 
3390 /* Caller must hold slots_lock. */
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)3391 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3392 			       struct kvm_io_device *dev)
3393 {
3394 	int i, j;
3395 	struct kvm_io_bus *new_bus, *bus;
3396 
3397 	bus = kvm->buses[bus_idx];
3398 	if (!bus)
3399 		return;
3400 
3401 	for (i = 0; i < bus->dev_count; i++)
3402 		if (bus->range[i].dev == dev) {
3403 			break;
3404 		}
3405 
3406 	if (i == bus->dev_count)
3407 		return;
3408 
3409 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3410 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3411 	if (new_bus) {
3412 		memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3413 		new_bus->dev_count--;
3414 		memcpy(new_bus->range + i, bus->range + i + 1,
3415 		       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3416 	} else {
3417 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3418 		for (j = 0; j < bus->dev_count; j++) {
3419 			if (j == i)
3420 				continue;
3421 			kvm_iodevice_destructor(bus->range[j].dev);
3422 		}
3423 	}
3424 
3425 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3426 	synchronize_srcu_expedited(&kvm->srcu);
3427 	kfree(bus);
3428 	return;
3429 }
3430 
3431 static struct notifier_block kvm_cpu_notifier = {
3432 	.notifier_call = kvm_cpu_hotplug,
3433 };
3434 
vm_stat_get(void * _offset,u64 * val)3435 static int vm_stat_get(void *_offset, u64 *val)
3436 {
3437 	unsigned offset = (long)_offset;
3438 	struct kvm *kvm;
3439 
3440 	*val = 0;
3441 	spin_lock(&kvm_lock);
3442 	list_for_each_entry(kvm, &vm_list, vm_list)
3443 		*val += *(u32 *)((void *)kvm + offset);
3444 	spin_unlock(&kvm_lock);
3445 	return 0;
3446 }
3447 
3448 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3449 
vcpu_stat_get(void * _offset,u64 * val)3450 static int vcpu_stat_get(void *_offset, u64 *val)
3451 {
3452 	unsigned offset = (long)_offset;
3453 	struct kvm *kvm;
3454 	struct kvm_vcpu *vcpu;
3455 	int i;
3456 
3457 	*val = 0;
3458 	spin_lock(&kvm_lock);
3459 	list_for_each_entry(kvm, &vm_list, vm_list)
3460 		kvm_for_each_vcpu(i, vcpu, kvm)
3461 			*val += *(u32 *)((void *)vcpu + offset);
3462 
3463 	spin_unlock(&kvm_lock);
3464 	return 0;
3465 }
3466 
3467 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3468 
3469 static const struct file_operations *stat_fops[] = {
3470 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3471 	[KVM_STAT_VM]   = &vm_stat_fops,
3472 };
3473 
kvm_init_debug(void)3474 static int kvm_init_debug(void)
3475 {
3476 	int r = -EEXIST;
3477 	struct kvm_stats_debugfs_item *p;
3478 
3479 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3480 	if (kvm_debugfs_dir == NULL)
3481 		goto out;
3482 
3483 	for (p = debugfs_entries; p->name; ++p) {
3484 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3485 						(void *)(long)p->offset,
3486 						stat_fops[p->kind]);
3487 		if (p->dentry == NULL)
3488 			goto out_dir;
3489 	}
3490 
3491 	return 0;
3492 
3493 out_dir:
3494 	debugfs_remove_recursive(kvm_debugfs_dir);
3495 out:
3496 	return r;
3497 }
3498 
kvm_exit_debug(void)3499 static void kvm_exit_debug(void)
3500 {
3501 	struct kvm_stats_debugfs_item *p;
3502 
3503 	for (p = debugfs_entries; p->name; ++p)
3504 		debugfs_remove(p->dentry);
3505 	debugfs_remove(kvm_debugfs_dir);
3506 }
3507 
kvm_suspend(void)3508 static int kvm_suspend(void)
3509 {
3510 	if (kvm_usage_count)
3511 		hardware_disable_nolock(NULL);
3512 	return 0;
3513 }
3514 
kvm_resume(void)3515 static void kvm_resume(void)
3516 {
3517 	if (kvm_usage_count) {
3518 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3519 		hardware_enable_nolock(NULL);
3520 	}
3521 }
3522 
3523 static struct syscore_ops kvm_syscore_ops = {
3524 	.suspend = kvm_suspend,
3525 	.resume = kvm_resume,
3526 };
3527 
3528 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)3529 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3530 {
3531 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3532 }
3533 
kvm_sched_in(struct preempt_notifier * pn,int cpu)3534 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3535 {
3536 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3537 
3538 	if (vcpu->preempted)
3539 		vcpu->preempted = false;
3540 
3541 	kvm_arch_sched_in(vcpu, cpu);
3542 
3543 	kvm_arch_vcpu_load(vcpu, cpu);
3544 }
3545 
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)3546 static void kvm_sched_out(struct preempt_notifier *pn,
3547 			  struct task_struct *next)
3548 {
3549 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3550 
3551 	if (current->state == TASK_RUNNING)
3552 		vcpu->preempted = true;
3553 	kvm_arch_vcpu_put(vcpu);
3554 }
3555 
kvm_init(void * opaque,unsigned vcpu_size,unsigned vcpu_align,struct module * module)3556 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3557 		  struct module *module)
3558 {
3559 	int r;
3560 	int cpu;
3561 
3562 	r = kvm_arch_init(opaque);
3563 	if (r)
3564 		goto out_fail;
3565 
3566 	/*
3567 	 * kvm_arch_init makes sure there's at most one caller
3568 	 * for architectures that support multiple implementations,
3569 	 * like intel and amd on x86.
3570 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3571 	 * conflicts in case kvm is already setup for another implementation.
3572 	 */
3573 	r = kvm_irqfd_init();
3574 	if (r)
3575 		goto out_irqfd;
3576 
3577 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3578 		r = -ENOMEM;
3579 		goto out_free_0;
3580 	}
3581 
3582 	r = kvm_arch_hardware_setup();
3583 	if (r < 0)
3584 		goto out_free_0a;
3585 
3586 	for_each_online_cpu(cpu) {
3587 		smp_call_function_single(cpu,
3588 				kvm_arch_check_processor_compat,
3589 				&r, 1);
3590 		if (r < 0)
3591 			goto out_free_1;
3592 	}
3593 
3594 	r = register_cpu_notifier(&kvm_cpu_notifier);
3595 	if (r)
3596 		goto out_free_2;
3597 	register_reboot_notifier(&kvm_reboot_notifier);
3598 
3599 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3600 	if (!vcpu_align)
3601 		vcpu_align = __alignof__(struct kvm_vcpu);
3602 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3603 					   0, NULL);
3604 	if (!kvm_vcpu_cache) {
3605 		r = -ENOMEM;
3606 		goto out_free_3;
3607 	}
3608 
3609 	r = kvm_async_pf_init();
3610 	if (r)
3611 		goto out_free;
3612 
3613 	kvm_chardev_ops.owner = module;
3614 	kvm_vm_fops.owner = module;
3615 	kvm_vcpu_fops.owner = module;
3616 
3617 	r = misc_register(&kvm_dev);
3618 	if (r) {
3619 		pr_err("kvm: misc device register failed\n");
3620 		goto out_unreg;
3621 	}
3622 
3623 	register_syscore_ops(&kvm_syscore_ops);
3624 
3625 	kvm_preempt_ops.sched_in = kvm_sched_in;
3626 	kvm_preempt_ops.sched_out = kvm_sched_out;
3627 
3628 	r = kvm_init_debug();
3629 	if (r) {
3630 		pr_err("kvm: create debugfs files failed\n");
3631 		goto out_undebugfs;
3632 	}
3633 
3634 	r = kvm_vfio_ops_init();
3635 	WARN_ON(r);
3636 
3637 	return 0;
3638 
3639 out_undebugfs:
3640 	unregister_syscore_ops(&kvm_syscore_ops);
3641 	misc_deregister(&kvm_dev);
3642 out_unreg:
3643 	kvm_async_pf_deinit();
3644 out_free:
3645 	kmem_cache_destroy(kvm_vcpu_cache);
3646 out_free_3:
3647 	unregister_reboot_notifier(&kvm_reboot_notifier);
3648 	unregister_cpu_notifier(&kvm_cpu_notifier);
3649 out_free_2:
3650 out_free_1:
3651 	kvm_arch_hardware_unsetup();
3652 out_free_0a:
3653 	free_cpumask_var(cpus_hardware_enabled);
3654 out_free_0:
3655 	kvm_irqfd_exit();
3656 out_irqfd:
3657 	kvm_arch_exit();
3658 out_fail:
3659 	return r;
3660 }
3661 EXPORT_SYMBOL_GPL(kvm_init);
3662 
kvm_exit(void)3663 void kvm_exit(void)
3664 {
3665 	kvm_exit_debug();
3666 	misc_deregister(&kvm_dev);
3667 	kmem_cache_destroy(kvm_vcpu_cache);
3668 	kvm_async_pf_deinit();
3669 	unregister_syscore_ops(&kvm_syscore_ops);
3670 	unregister_reboot_notifier(&kvm_reboot_notifier);
3671 	unregister_cpu_notifier(&kvm_cpu_notifier);
3672 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3673 	kvm_arch_hardware_unsetup();
3674 	kvm_arch_exit();
3675 	kvm_irqfd_exit();
3676 	free_cpumask_var(cpus_hardware_enabled);
3677 	kvm_vfio_ops_exit();
3678 }
3679 EXPORT_SYMBOL_GPL(kvm_exit);
3680