1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow = 2;
75 module_param(halt_poll_ns_grow, int, S_IRUGO);
76
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink;
79 module_param(halt_poll_ns_shrink, int, S_IRUGO);
80
81 /*
82 * Ordering of locks:
83 *
84 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85 */
86
87 DEFINE_SPINLOCK(kvm_lock);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89 LIST_HEAD(vm_list);
90
91 static cpumask_var_t cpus_hardware_enabled;
92 static int kvm_usage_count;
93 static atomic_t hardware_enable_failed;
94
95 struct kmem_cache *kvm_vcpu_cache;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97
98 static __read_mostly struct preempt_ops kvm_preempt_ops;
99
100 struct dentry *kvm_debugfs_dir;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104 unsigned long arg);
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107 unsigned long arg);
108 #endif
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
111
112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113
114 static void kvm_release_pfn_dirty(pfn_t pfn);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116
117 __visible bool kvm_rebooting;
118 EXPORT_SYMBOL_GPL(kvm_rebooting);
119
120 static bool largepages_enabled = true;
121
kvm_is_reserved_pfn(pfn_t pfn)122 bool kvm_is_reserved_pfn(pfn_t pfn)
123 {
124 if (pfn_valid(pfn))
125 return PageReserved(pfn_to_page(pfn));
126
127 return true;
128 }
129
130 /*
131 * Switches to specified vcpu, until a matching vcpu_put()
132 */
vcpu_load(struct kvm_vcpu * vcpu)133 int vcpu_load(struct kvm_vcpu *vcpu)
134 {
135 int cpu;
136
137 if (mutex_lock_killable(&vcpu->mutex))
138 return -EINTR;
139 cpu = get_cpu();
140 preempt_notifier_register(&vcpu->preempt_notifier);
141 kvm_arch_vcpu_load(vcpu, cpu);
142 put_cpu();
143 return 0;
144 }
145 EXPORT_SYMBOL_GPL(vcpu_load);
146
vcpu_put(struct kvm_vcpu * vcpu)147 void vcpu_put(struct kvm_vcpu *vcpu)
148 {
149 preempt_disable();
150 kvm_arch_vcpu_put(vcpu);
151 preempt_notifier_unregister(&vcpu->preempt_notifier);
152 preempt_enable();
153 mutex_unlock(&vcpu->mutex);
154 }
155 EXPORT_SYMBOL_GPL(vcpu_put);
156
ack_flush(void * _completed)157 static void ack_flush(void *_completed)
158 {
159 }
160
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)161 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
162 {
163 int i, cpu, me;
164 cpumask_var_t cpus;
165 bool called = true;
166 struct kvm_vcpu *vcpu;
167
168 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
169
170 me = get_cpu();
171 kvm_for_each_vcpu(i, vcpu, kvm) {
172 kvm_make_request(req, vcpu);
173 cpu = vcpu->cpu;
174
175 /* Set ->requests bit before we read ->mode */
176 smp_mb();
177
178 if (cpus != NULL && cpu != -1 && cpu != me &&
179 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
180 cpumask_set_cpu(cpu, cpus);
181 }
182 if (unlikely(cpus == NULL))
183 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
184 else if (!cpumask_empty(cpus))
185 smp_call_function_many(cpus, ack_flush, NULL, 1);
186 else
187 called = false;
188 put_cpu();
189 free_cpumask_var(cpus);
190 return called;
191 }
192
193 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
kvm_flush_remote_tlbs(struct kvm * kvm)194 void kvm_flush_remote_tlbs(struct kvm *kvm)
195 {
196 long dirty_count = kvm->tlbs_dirty;
197
198 smp_mb();
199 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
200 ++kvm->stat.remote_tlb_flush;
201 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
202 }
203 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
204 #endif
205
kvm_reload_remote_mmus(struct kvm * kvm)206 void kvm_reload_remote_mmus(struct kvm *kvm)
207 {
208 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
209 }
210
kvm_make_mclock_inprogress_request(struct kvm * kvm)211 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
212 {
213 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
214 }
215
kvm_make_scan_ioapic_request(struct kvm * kvm)216 void kvm_make_scan_ioapic_request(struct kvm *kvm)
217 {
218 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
219 }
220
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)221 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
222 {
223 struct page *page;
224 int r;
225
226 mutex_init(&vcpu->mutex);
227 vcpu->cpu = -1;
228 vcpu->kvm = kvm;
229 vcpu->vcpu_id = id;
230 vcpu->pid = NULL;
231 vcpu->halt_poll_ns = 0;
232 init_waitqueue_head(&vcpu->wq);
233 kvm_async_pf_vcpu_init(vcpu);
234
235 vcpu->pre_pcpu = -1;
236 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
237
238 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
239 if (!page) {
240 r = -ENOMEM;
241 goto fail;
242 }
243 vcpu->run = page_address(page);
244
245 kvm_vcpu_set_in_spin_loop(vcpu, false);
246 kvm_vcpu_set_dy_eligible(vcpu, false);
247 vcpu->preempted = false;
248
249 r = kvm_arch_vcpu_init(vcpu);
250 if (r < 0)
251 goto fail_free_run;
252 return 0;
253
254 fail_free_run:
255 free_page((unsigned long)vcpu->run);
256 fail:
257 return r;
258 }
259 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
260
kvm_vcpu_uninit(struct kvm_vcpu * vcpu)261 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
262 {
263 put_pid(vcpu->pid);
264 kvm_arch_vcpu_uninit(vcpu);
265 free_page((unsigned long)vcpu->run);
266 }
267 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
268
269 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)270 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
271 {
272 return container_of(mn, struct kvm, mmu_notifier);
273 }
274
kvm_mmu_notifier_invalidate_page(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)275 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
276 struct mm_struct *mm,
277 unsigned long address)
278 {
279 struct kvm *kvm = mmu_notifier_to_kvm(mn);
280 int need_tlb_flush, idx;
281
282 /*
283 * When ->invalidate_page runs, the linux pte has been zapped
284 * already but the page is still allocated until
285 * ->invalidate_page returns. So if we increase the sequence
286 * here the kvm page fault will notice if the spte can't be
287 * established because the page is going to be freed. If
288 * instead the kvm page fault establishes the spte before
289 * ->invalidate_page runs, kvm_unmap_hva will release it
290 * before returning.
291 *
292 * The sequence increase only need to be seen at spin_unlock
293 * time, and not at spin_lock time.
294 *
295 * Increasing the sequence after the spin_unlock would be
296 * unsafe because the kvm page fault could then establish the
297 * pte after kvm_unmap_hva returned, without noticing the page
298 * is going to be freed.
299 */
300 idx = srcu_read_lock(&kvm->srcu);
301 spin_lock(&kvm->mmu_lock);
302
303 kvm->mmu_notifier_seq++;
304 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
305 /* we've to flush the tlb before the pages can be freed */
306 if (need_tlb_flush)
307 kvm_flush_remote_tlbs(kvm);
308
309 spin_unlock(&kvm->mmu_lock);
310
311 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
312
313 srcu_read_unlock(&kvm->srcu, idx);
314 }
315
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)316 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
317 struct mm_struct *mm,
318 unsigned long address,
319 pte_t pte)
320 {
321 struct kvm *kvm = mmu_notifier_to_kvm(mn);
322 int idx;
323
324 idx = srcu_read_lock(&kvm->srcu);
325 spin_lock(&kvm->mmu_lock);
326 kvm->mmu_notifier_seq++;
327 kvm_set_spte_hva(kvm, address, pte);
328 spin_unlock(&kvm->mmu_lock);
329 srcu_read_unlock(&kvm->srcu, idx);
330 }
331
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)332 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
333 struct mm_struct *mm,
334 unsigned long start,
335 unsigned long end)
336 {
337 struct kvm *kvm = mmu_notifier_to_kvm(mn);
338 int need_tlb_flush = 0, idx;
339
340 idx = srcu_read_lock(&kvm->srcu);
341 spin_lock(&kvm->mmu_lock);
342 /*
343 * The count increase must become visible at unlock time as no
344 * spte can be established without taking the mmu_lock and
345 * count is also read inside the mmu_lock critical section.
346 */
347 kvm->mmu_notifier_count++;
348 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
349 /* we've to flush the tlb before the pages can be freed */
350 if (need_tlb_flush || kvm->tlbs_dirty)
351 kvm_flush_remote_tlbs(kvm);
352
353 spin_unlock(&kvm->mmu_lock);
354 srcu_read_unlock(&kvm->srcu, idx);
355 }
356
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)357 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
358 struct mm_struct *mm,
359 unsigned long start,
360 unsigned long end)
361 {
362 struct kvm *kvm = mmu_notifier_to_kvm(mn);
363
364 spin_lock(&kvm->mmu_lock);
365 /*
366 * This sequence increase will notify the kvm page fault that
367 * the page that is going to be mapped in the spte could have
368 * been freed.
369 */
370 kvm->mmu_notifier_seq++;
371 smp_wmb();
372 /*
373 * The above sequence increase must be visible before the
374 * below count decrease, which is ensured by the smp_wmb above
375 * in conjunction with the smp_rmb in mmu_notifier_retry().
376 */
377 kvm->mmu_notifier_count--;
378 spin_unlock(&kvm->mmu_lock);
379
380 BUG_ON(kvm->mmu_notifier_count < 0);
381 }
382
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)383 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
384 struct mm_struct *mm,
385 unsigned long start,
386 unsigned long end)
387 {
388 struct kvm *kvm = mmu_notifier_to_kvm(mn);
389 int young, idx;
390
391 idx = srcu_read_lock(&kvm->srcu);
392 spin_lock(&kvm->mmu_lock);
393
394 young = kvm_age_hva(kvm, start, end);
395 if (young)
396 kvm_flush_remote_tlbs(kvm);
397
398 spin_unlock(&kvm->mmu_lock);
399 srcu_read_unlock(&kvm->srcu, idx);
400
401 return young;
402 }
403
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)404 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
405 struct mm_struct *mm,
406 unsigned long start,
407 unsigned long end)
408 {
409 struct kvm *kvm = mmu_notifier_to_kvm(mn);
410 int young, idx;
411
412 idx = srcu_read_lock(&kvm->srcu);
413 spin_lock(&kvm->mmu_lock);
414 /*
415 * Even though we do not flush TLB, this will still adversely
416 * affect performance on pre-Haswell Intel EPT, where there is
417 * no EPT Access Bit to clear so that we have to tear down EPT
418 * tables instead. If we find this unacceptable, we can always
419 * add a parameter to kvm_age_hva so that it effectively doesn't
420 * do anything on clear_young.
421 *
422 * Also note that currently we never issue secondary TLB flushes
423 * from clear_young, leaving this job up to the regular system
424 * cadence. If we find this inaccurate, we might come up with a
425 * more sophisticated heuristic later.
426 */
427 young = kvm_age_hva(kvm, start, end);
428 spin_unlock(&kvm->mmu_lock);
429 srcu_read_unlock(&kvm->srcu, idx);
430
431 return young;
432 }
433
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)434 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
435 struct mm_struct *mm,
436 unsigned long address)
437 {
438 struct kvm *kvm = mmu_notifier_to_kvm(mn);
439 int young, idx;
440
441 idx = srcu_read_lock(&kvm->srcu);
442 spin_lock(&kvm->mmu_lock);
443 young = kvm_test_age_hva(kvm, address);
444 spin_unlock(&kvm->mmu_lock);
445 srcu_read_unlock(&kvm->srcu, idx);
446
447 return young;
448 }
449
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)450 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
451 struct mm_struct *mm)
452 {
453 struct kvm *kvm = mmu_notifier_to_kvm(mn);
454 int idx;
455
456 idx = srcu_read_lock(&kvm->srcu);
457 kvm_arch_flush_shadow_all(kvm);
458 srcu_read_unlock(&kvm->srcu, idx);
459 }
460
461 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
462 .invalidate_page = kvm_mmu_notifier_invalidate_page,
463 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
464 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
465 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
466 .clear_young = kvm_mmu_notifier_clear_young,
467 .test_young = kvm_mmu_notifier_test_young,
468 .change_pte = kvm_mmu_notifier_change_pte,
469 .release = kvm_mmu_notifier_release,
470 };
471
kvm_init_mmu_notifier(struct kvm * kvm)472 static int kvm_init_mmu_notifier(struct kvm *kvm)
473 {
474 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
475 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
476 }
477
478 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
479
kvm_init_mmu_notifier(struct kvm * kvm)480 static int kvm_init_mmu_notifier(struct kvm *kvm)
481 {
482 return 0;
483 }
484
485 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
486
kvm_alloc_memslots(void)487 static struct kvm_memslots *kvm_alloc_memslots(void)
488 {
489 int i;
490 struct kvm_memslots *slots;
491
492 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
493 if (!slots)
494 return NULL;
495
496 /*
497 * Init kvm generation close to the maximum to easily test the
498 * code of handling generation number wrap-around.
499 */
500 slots->generation = -150;
501 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
502 slots->id_to_index[i] = slots->memslots[i].id = i;
503
504 return slots;
505 }
506
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)507 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
508 {
509 if (!memslot->dirty_bitmap)
510 return;
511
512 kvfree(memslot->dirty_bitmap);
513 memslot->dirty_bitmap = NULL;
514 }
515
516 /*
517 * Free any memory in @free but not in @dont.
518 */
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)519 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
520 struct kvm_memory_slot *dont)
521 {
522 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
523 kvm_destroy_dirty_bitmap(free);
524
525 kvm_arch_free_memslot(kvm, free, dont);
526
527 free->npages = 0;
528 }
529
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)530 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
531 {
532 struct kvm_memory_slot *memslot;
533
534 if (!slots)
535 return;
536
537 kvm_for_each_memslot(memslot, slots)
538 kvm_free_memslot(kvm, memslot, NULL);
539
540 kvfree(slots);
541 }
542
kvm_create_vm(unsigned long type)543 static struct kvm *kvm_create_vm(unsigned long type)
544 {
545 int r, i;
546 struct kvm *kvm = kvm_arch_alloc_vm();
547
548 if (!kvm)
549 return ERR_PTR(-ENOMEM);
550
551 spin_lock_init(&kvm->mmu_lock);
552 atomic_inc(¤t->mm->mm_count);
553 kvm->mm = current->mm;
554 kvm_eventfd_init(kvm);
555 mutex_init(&kvm->lock);
556 mutex_init(&kvm->irq_lock);
557 mutex_init(&kvm->slots_lock);
558 atomic_set(&kvm->users_count, 1);
559 INIT_LIST_HEAD(&kvm->devices);
560
561 r = kvm_arch_init_vm(kvm, type);
562 if (r)
563 goto out_err_no_disable;
564
565 r = hardware_enable_all();
566 if (r)
567 goto out_err_no_disable;
568
569 #ifdef CONFIG_HAVE_KVM_IRQFD
570 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
571 #endif
572
573 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
574
575 r = -ENOMEM;
576 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
577 kvm->memslots[i] = kvm_alloc_memslots();
578 if (!kvm->memslots[i])
579 goto out_err_no_srcu;
580 }
581
582 if (init_srcu_struct(&kvm->srcu))
583 goto out_err_no_srcu;
584 if (init_srcu_struct(&kvm->irq_srcu))
585 goto out_err_no_irq_srcu;
586 for (i = 0; i < KVM_NR_BUSES; i++) {
587 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
588 GFP_KERNEL);
589 if (!kvm->buses[i])
590 goto out_err;
591 }
592
593 r = kvm_init_mmu_notifier(kvm);
594 if (r)
595 goto out_err;
596
597 spin_lock(&kvm_lock);
598 list_add(&kvm->vm_list, &vm_list);
599 spin_unlock(&kvm_lock);
600
601 preempt_notifier_inc();
602
603 return kvm;
604
605 out_err:
606 cleanup_srcu_struct(&kvm->irq_srcu);
607 out_err_no_irq_srcu:
608 cleanup_srcu_struct(&kvm->srcu);
609 out_err_no_srcu:
610 hardware_disable_all();
611 out_err_no_disable:
612 for (i = 0; i < KVM_NR_BUSES; i++)
613 kfree(kvm->buses[i]);
614 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
615 kvm_free_memslots(kvm, kvm->memslots[i]);
616 kvm_arch_free_vm(kvm);
617 mmdrop(current->mm);
618 return ERR_PTR(r);
619 }
620
621 /*
622 * Avoid using vmalloc for a small buffer.
623 * Should not be used when the size is statically known.
624 */
kvm_kvzalloc(unsigned long size)625 void *kvm_kvzalloc(unsigned long size)
626 {
627 if (size > PAGE_SIZE)
628 return vzalloc(size);
629 else
630 return kzalloc(size, GFP_KERNEL);
631 }
632
kvm_destroy_devices(struct kvm * kvm)633 static void kvm_destroy_devices(struct kvm *kvm)
634 {
635 struct list_head *node, *tmp;
636
637 list_for_each_safe(node, tmp, &kvm->devices) {
638 struct kvm_device *dev =
639 list_entry(node, struct kvm_device, vm_node);
640
641 list_del(node);
642 dev->ops->destroy(dev);
643 }
644 }
645
kvm_destroy_vm(struct kvm * kvm)646 static void kvm_destroy_vm(struct kvm *kvm)
647 {
648 int i;
649 struct mm_struct *mm = kvm->mm;
650
651 kvm_arch_sync_events(kvm);
652 spin_lock(&kvm_lock);
653 list_del(&kvm->vm_list);
654 spin_unlock(&kvm_lock);
655 kvm_free_irq_routing(kvm);
656 for (i = 0; i < KVM_NR_BUSES; i++) {
657 if (kvm->buses[i])
658 kvm_io_bus_destroy(kvm->buses[i]);
659 kvm->buses[i] = NULL;
660 }
661 kvm_coalesced_mmio_free(kvm);
662 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
663 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
664 #else
665 kvm_arch_flush_shadow_all(kvm);
666 #endif
667 kvm_arch_destroy_vm(kvm);
668 kvm_destroy_devices(kvm);
669 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
670 kvm_free_memslots(kvm, kvm->memslots[i]);
671 cleanup_srcu_struct(&kvm->irq_srcu);
672 cleanup_srcu_struct(&kvm->srcu);
673 kvm_arch_free_vm(kvm);
674 preempt_notifier_dec();
675 hardware_disable_all();
676 mmdrop(mm);
677 }
678
kvm_get_kvm(struct kvm * kvm)679 void kvm_get_kvm(struct kvm *kvm)
680 {
681 atomic_inc(&kvm->users_count);
682 }
683 EXPORT_SYMBOL_GPL(kvm_get_kvm);
684
kvm_put_kvm(struct kvm * kvm)685 void kvm_put_kvm(struct kvm *kvm)
686 {
687 if (atomic_dec_and_test(&kvm->users_count))
688 kvm_destroy_vm(kvm);
689 }
690 EXPORT_SYMBOL_GPL(kvm_put_kvm);
691
692
kvm_vm_release(struct inode * inode,struct file * filp)693 static int kvm_vm_release(struct inode *inode, struct file *filp)
694 {
695 struct kvm *kvm = filp->private_data;
696
697 kvm_irqfd_release(kvm);
698
699 kvm_put_kvm(kvm);
700 return 0;
701 }
702
703 /*
704 * Allocation size is twice as large as the actual dirty bitmap size.
705 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
706 */
kvm_create_dirty_bitmap(struct kvm_memory_slot * memslot)707 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
708 {
709 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
710
711 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
712 if (!memslot->dirty_bitmap)
713 return -ENOMEM;
714
715 return 0;
716 }
717
718 /*
719 * Insert memslot and re-sort memslots based on their GFN,
720 * so binary search could be used to lookup GFN.
721 * Sorting algorithm takes advantage of having initially
722 * sorted array and known changed memslot position.
723 */
update_memslots(struct kvm_memslots * slots,struct kvm_memory_slot * new)724 static void update_memslots(struct kvm_memslots *slots,
725 struct kvm_memory_slot *new)
726 {
727 int id = new->id;
728 int i = slots->id_to_index[id];
729 struct kvm_memory_slot *mslots = slots->memslots;
730
731 WARN_ON(mslots[i].id != id);
732 if (!new->npages) {
733 WARN_ON(!mslots[i].npages);
734 if (mslots[i].npages)
735 slots->used_slots--;
736 } else {
737 if (!mslots[i].npages)
738 slots->used_slots++;
739 }
740
741 while (i < KVM_MEM_SLOTS_NUM - 1 &&
742 new->base_gfn <= mslots[i + 1].base_gfn) {
743 if (!mslots[i + 1].npages)
744 break;
745 mslots[i] = mslots[i + 1];
746 slots->id_to_index[mslots[i].id] = i;
747 i++;
748 }
749
750 /*
751 * The ">=" is needed when creating a slot with base_gfn == 0,
752 * so that it moves before all those with base_gfn == npages == 0.
753 *
754 * On the other hand, if new->npages is zero, the above loop has
755 * already left i pointing to the beginning of the empty part of
756 * mslots, and the ">=" would move the hole backwards in this
757 * case---which is wrong. So skip the loop when deleting a slot.
758 */
759 if (new->npages) {
760 while (i > 0 &&
761 new->base_gfn >= mslots[i - 1].base_gfn) {
762 mslots[i] = mslots[i - 1];
763 slots->id_to_index[mslots[i].id] = i;
764 i--;
765 }
766 } else
767 WARN_ON_ONCE(i != slots->used_slots);
768
769 mslots[i] = *new;
770 slots->id_to_index[mslots[i].id] = i;
771 }
772
check_memory_region_flags(const struct kvm_userspace_memory_region * mem)773 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
774 {
775 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
776
777 #ifdef __KVM_HAVE_READONLY_MEM
778 valid_flags |= KVM_MEM_READONLY;
779 #endif
780
781 if (mem->flags & ~valid_flags)
782 return -EINVAL;
783
784 return 0;
785 }
786
install_new_memslots(struct kvm * kvm,int as_id,struct kvm_memslots * slots)787 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
788 int as_id, struct kvm_memslots *slots)
789 {
790 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
791
792 /*
793 * Set the low bit in the generation, which disables SPTE caching
794 * until the end of synchronize_srcu_expedited.
795 */
796 WARN_ON(old_memslots->generation & 1);
797 slots->generation = old_memslots->generation + 1;
798
799 rcu_assign_pointer(kvm->memslots[as_id], slots);
800 synchronize_srcu_expedited(&kvm->srcu);
801
802 /*
803 * Increment the new memslot generation a second time. This prevents
804 * vm exits that race with memslot updates from caching a memslot
805 * generation that will (potentially) be valid forever.
806 */
807 slots->generation++;
808
809 kvm_arch_memslots_updated(kvm, slots);
810
811 return old_memslots;
812 }
813
814 /*
815 * Allocate some memory and give it an address in the guest physical address
816 * space.
817 *
818 * Discontiguous memory is allowed, mostly for framebuffers.
819 *
820 * Must be called holding kvm->slots_lock for write.
821 */
__kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)822 int __kvm_set_memory_region(struct kvm *kvm,
823 const struct kvm_userspace_memory_region *mem)
824 {
825 int r;
826 gfn_t base_gfn;
827 unsigned long npages;
828 struct kvm_memory_slot *slot;
829 struct kvm_memory_slot old, new;
830 struct kvm_memslots *slots = NULL, *old_memslots;
831 int as_id, id;
832 enum kvm_mr_change change;
833
834 r = check_memory_region_flags(mem);
835 if (r)
836 goto out;
837
838 r = -EINVAL;
839 as_id = mem->slot >> 16;
840 id = (u16)mem->slot;
841
842 /* General sanity checks */
843 if (mem->memory_size & (PAGE_SIZE - 1))
844 goto out;
845 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
846 goto out;
847 /* We can read the guest memory with __xxx_user() later on. */
848 if ((id < KVM_USER_MEM_SLOTS) &&
849 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
850 !access_ok(VERIFY_WRITE,
851 (void __user *)(unsigned long)mem->userspace_addr,
852 mem->memory_size)))
853 goto out;
854 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
855 goto out;
856 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
857 goto out;
858
859 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
860 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
861 npages = mem->memory_size >> PAGE_SHIFT;
862
863 if (npages > KVM_MEM_MAX_NR_PAGES)
864 goto out;
865
866 new = old = *slot;
867
868 new.id = id;
869 new.base_gfn = base_gfn;
870 new.npages = npages;
871 new.flags = mem->flags;
872
873 if (npages) {
874 if (!old.npages)
875 change = KVM_MR_CREATE;
876 else { /* Modify an existing slot. */
877 if ((mem->userspace_addr != old.userspace_addr) ||
878 (npages != old.npages) ||
879 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
880 goto out;
881
882 if (base_gfn != old.base_gfn)
883 change = KVM_MR_MOVE;
884 else if (new.flags != old.flags)
885 change = KVM_MR_FLAGS_ONLY;
886 else { /* Nothing to change. */
887 r = 0;
888 goto out;
889 }
890 }
891 } else {
892 if (!old.npages)
893 goto out;
894
895 change = KVM_MR_DELETE;
896 new.base_gfn = 0;
897 new.flags = 0;
898 }
899
900 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
901 /* Check for overlaps */
902 r = -EEXIST;
903 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
904 if (slot->id == id)
905 continue;
906 if (!((base_gfn + npages <= slot->base_gfn) ||
907 (base_gfn >= slot->base_gfn + slot->npages)))
908 goto out;
909 }
910 }
911
912 /* Free page dirty bitmap if unneeded */
913 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
914 new.dirty_bitmap = NULL;
915
916 r = -ENOMEM;
917 if (change == KVM_MR_CREATE) {
918 new.userspace_addr = mem->userspace_addr;
919
920 if (kvm_arch_create_memslot(kvm, &new, npages))
921 goto out_free;
922 }
923
924 /* Allocate page dirty bitmap if needed */
925 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
926 if (kvm_create_dirty_bitmap(&new) < 0)
927 goto out_free;
928 }
929
930 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
931 if (!slots)
932 goto out_free;
933 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
934
935 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
936 slot = id_to_memslot(slots, id);
937 slot->flags |= KVM_MEMSLOT_INVALID;
938
939 old_memslots = install_new_memslots(kvm, as_id, slots);
940
941 /* slot was deleted or moved, clear iommu mapping */
942 kvm_iommu_unmap_pages(kvm, &old);
943 /* From this point no new shadow pages pointing to a deleted,
944 * or moved, memslot will be created.
945 *
946 * validation of sp->gfn happens in:
947 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
948 * - kvm_is_visible_gfn (mmu_check_roots)
949 */
950 kvm_arch_flush_shadow_memslot(kvm, slot);
951
952 /*
953 * We can re-use the old_memslots from above, the only difference
954 * from the currently installed memslots is the invalid flag. This
955 * will get overwritten by update_memslots anyway.
956 */
957 slots = old_memslots;
958 }
959
960 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
961 if (r)
962 goto out_slots;
963
964 /* actual memory is freed via old in kvm_free_memslot below */
965 if (change == KVM_MR_DELETE) {
966 new.dirty_bitmap = NULL;
967 memset(&new.arch, 0, sizeof(new.arch));
968 }
969
970 update_memslots(slots, &new);
971 old_memslots = install_new_memslots(kvm, as_id, slots);
972
973 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
974
975 kvm_free_memslot(kvm, &old, &new);
976 kvfree(old_memslots);
977
978 /*
979 * IOMMU mapping: New slots need to be mapped. Old slots need to be
980 * un-mapped and re-mapped if their base changes. Since base change
981 * unmapping is handled above with slot deletion, mapping alone is
982 * needed here. Anything else the iommu might care about for existing
983 * slots (size changes, userspace addr changes and read-only flag
984 * changes) is disallowed above, so any other attribute changes getting
985 * here can be skipped.
986 */
987 if (as_id == 0 && (change == KVM_MR_CREATE || change == KVM_MR_MOVE)) {
988 r = kvm_iommu_map_pages(kvm, &new);
989 return r;
990 }
991
992 return 0;
993
994 out_slots:
995 kvfree(slots);
996 out_free:
997 kvm_free_memslot(kvm, &new, &old);
998 out:
999 return r;
1000 }
1001 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1002
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1003 int kvm_set_memory_region(struct kvm *kvm,
1004 const struct kvm_userspace_memory_region *mem)
1005 {
1006 int r;
1007
1008 mutex_lock(&kvm->slots_lock);
1009 r = __kvm_set_memory_region(kvm, mem);
1010 mutex_unlock(&kvm->slots_lock);
1011 return r;
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1014
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem)1015 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1016 struct kvm_userspace_memory_region *mem)
1017 {
1018 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1019 return -EINVAL;
1020
1021 return kvm_set_memory_region(kvm, mem);
1022 }
1023
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty)1024 int kvm_get_dirty_log(struct kvm *kvm,
1025 struct kvm_dirty_log *log, int *is_dirty)
1026 {
1027 struct kvm_memslots *slots;
1028 struct kvm_memory_slot *memslot;
1029 int r, i, as_id, id;
1030 unsigned long n;
1031 unsigned long any = 0;
1032
1033 r = -EINVAL;
1034 as_id = log->slot >> 16;
1035 id = (u16)log->slot;
1036 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1037 goto out;
1038
1039 slots = __kvm_memslots(kvm, as_id);
1040 memslot = id_to_memslot(slots, id);
1041 r = -ENOENT;
1042 if (!memslot->dirty_bitmap)
1043 goto out;
1044
1045 n = kvm_dirty_bitmap_bytes(memslot);
1046
1047 for (i = 0; !any && i < n/sizeof(long); ++i)
1048 any = memslot->dirty_bitmap[i];
1049
1050 r = -EFAULT;
1051 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1052 goto out;
1053
1054 if (any)
1055 *is_dirty = 1;
1056
1057 r = 0;
1058 out:
1059 return r;
1060 }
1061 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1062
1063 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1064 /**
1065 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1066 * are dirty write protect them for next write.
1067 * @kvm: pointer to kvm instance
1068 * @log: slot id and address to which we copy the log
1069 * @is_dirty: flag set if any page is dirty
1070 *
1071 * We need to keep it in mind that VCPU threads can write to the bitmap
1072 * concurrently. So, to avoid losing track of dirty pages we keep the
1073 * following order:
1074 *
1075 * 1. Take a snapshot of the bit and clear it if needed.
1076 * 2. Write protect the corresponding page.
1077 * 3. Copy the snapshot to the userspace.
1078 * 4. Upon return caller flushes TLB's if needed.
1079 *
1080 * Between 2 and 4, the guest may write to the page using the remaining TLB
1081 * entry. This is not a problem because the page is reported dirty using
1082 * the snapshot taken before and step 4 ensures that writes done after
1083 * exiting to userspace will be logged for the next call.
1084 *
1085 */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log,bool * is_dirty)1086 int kvm_get_dirty_log_protect(struct kvm *kvm,
1087 struct kvm_dirty_log *log, bool *is_dirty)
1088 {
1089 struct kvm_memslots *slots;
1090 struct kvm_memory_slot *memslot;
1091 int r, i, as_id, id;
1092 unsigned long n;
1093 unsigned long *dirty_bitmap;
1094 unsigned long *dirty_bitmap_buffer;
1095
1096 r = -EINVAL;
1097 as_id = log->slot >> 16;
1098 id = (u16)log->slot;
1099 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1100 goto out;
1101
1102 slots = __kvm_memslots(kvm, as_id);
1103 memslot = id_to_memslot(slots, id);
1104
1105 dirty_bitmap = memslot->dirty_bitmap;
1106 r = -ENOENT;
1107 if (!dirty_bitmap)
1108 goto out;
1109
1110 n = kvm_dirty_bitmap_bytes(memslot);
1111
1112 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1113 memset(dirty_bitmap_buffer, 0, n);
1114
1115 spin_lock(&kvm->mmu_lock);
1116 *is_dirty = false;
1117 for (i = 0; i < n / sizeof(long); i++) {
1118 unsigned long mask;
1119 gfn_t offset;
1120
1121 if (!dirty_bitmap[i])
1122 continue;
1123
1124 *is_dirty = true;
1125
1126 mask = xchg(&dirty_bitmap[i], 0);
1127 dirty_bitmap_buffer[i] = mask;
1128
1129 if (mask) {
1130 offset = i * BITS_PER_LONG;
1131 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1132 offset, mask);
1133 }
1134 }
1135
1136 spin_unlock(&kvm->mmu_lock);
1137
1138 r = -EFAULT;
1139 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1140 goto out;
1141
1142 r = 0;
1143 out:
1144 return r;
1145 }
1146 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1147 #endif
1148
kvm_largepages_enabled(void)1149 bool kvm_largepages_enabled(void)
1150 {
1151 return largepages_enabled;
1152 }
1153
kvm_disable_largepages(void)1154 void kvm_disable_largepages(void)
1155 {
1156 largepages_enabled = false;
1157 }
1158 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1159
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)1160 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1161 {
1162 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1163 }
1164 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1165
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)1166 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1167 {
1168 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1169 }
1170
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)1171 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1172 {
1173 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1174
1175 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1176 memslot->flags & KVM_MEMSLOT_INVALID)
1177 return 0;
1178
1179 return 1;
1180 }
1181 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1182
kvm_host_page_size(struct kvm * kvm,gfn_t gfn)1183 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1184 {
1185 struct vm_area_struct *vma;
1186 unsigned long addr, size;
1187
1188 size = PAGE_SIZE;
1189
1190 addr = gfn_to_hva(kvm, gfn);
1191 if (kvm_is_error_hva(addr))
1192 return PAGE_SIZE;
1193
1194 down_read(¤t->mm->mmap_sem);
1195 vma = find_vma(current->mm, addr);
1196 if (!vma)
1197 goto out;
1198
1199 size = vma_kernel_pagesize(vma);
1200
1201 out:
1202 up_read(¤t->mm->mmap_sem);
1203
1204 return size;
1205 }
1206
memslot_is_readonly(struct kvm_memory_slot * slot)1207 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1208 {
1209 return slot->flags & KVM_MEM_READONLY;
1210 }
1211
__gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)1212 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1213 gfn_t *nr_pages, bool write)
1214 {
1215 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1216 return KVM_HVA_ERR_BAD;
1217
1218 if (memslot_is_readonly(slot) && write)
1219 return KVM_HVA_ERR_RO_BAD;
1220
1221 if (nr_pages)
1222 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1223
1224 return __gfn_to_hva_memslot(slot, gfn);
1225 }
1226
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)1227 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1228 gfn_t *nr_pages)
1229 {
1230 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1231 }
1232
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1233 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1234 gfn_t gfn)
1235 {
1236 return gfn_to_hva_many(slot, gfn, NULL);
1237 }
1238 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1239
gfn_to_hva(struct kvm * kvm,gfn_t gfn)1240 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1241 {
1242 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1243 }
1244 EXPORT_SYMBOL_GPL(gfn_to_hva);
1245
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)1246 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1247 {
1248 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1249 }
1250 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1251
1252 /*
1253 * If writable is set to false, the hva returned by this function is only
1254 * allowed to be read.
1255 */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)1256 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1257 gfn_t gfn, bool *writable)
1258 {
1259 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1260
1261 if (!kvm_is_error_hva(hva) && writable)
1262 *writable = !memslot_is_readonly(slot);
1263
1264 return hva;
1265 }
1266
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)1267 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1268 {
1269 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1270
1271 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1272 }
1273
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)1274 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1275 {
1276 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1277
1278 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1279 }
1280
get_user_page_nowait(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,int write,struct page ** page)1281 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1282 unsigned long start, int write, struct page **page)
1283 {
1284 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1285
1286 if (write)
1287 flags |= FOLL_WRITE;
1288
1289 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1290 }
1291
check_user_page_hwpoison(unsigned long addr)1292 static inline int check_user_page_hwpoison(unsigned long addr)
1293 {
1294 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1295
1296 rc = __get_user_pages(current, current->mm, addr, 1,
1297 flags, NULL, NULL, NULL);
1298 return rc == -EHWPOISON;
1299 }
1300
1301 /*
1302 * The atomic path to get the writable pfn which will be stored in @pfn,
1303 * true indicates success, otherwise false is returned.
1304 */
hva_to_pfn_fast(unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable,pfn_t * pfn)1305 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1306 bool write_fault, bool *writable, pfn_t *pfn)
1307 {
1308 struct page *page[1];
1309 int npages;
1310
1311 if (!(async || atomic))
1312 return false;
1313
1314 /*
1315 * Fast pin a writable pfn only if it is a write fault request
1316 * or the caller allows to map a writable pfn for a read fault
1317 * request.
1318 */
1319 if (!(write_fault || writable))
1320 return false;
1321
1322 npages = __get_user_pages_fast(addr, 1, 1, page);
1323 if (npages == 1) {
1324 *pfn = page_to_pfn(page[0]);
1325
1326 if (writable)
1327 *writable = true;
1328 return true;
1329 }
1330
1331 return false;
1332 }
1333
1334 /*
1335 * The slow path to get the pfn of the specified host virtual address,
1336 * 1 indicates success, -errno is returned if error is detected.
1337 */
hva_to_pfn_slow(unsigned long addr,bool * async,bool write_fault,bool * writable,pfn_t * pfn)1338 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1339 bool *writable, pfn_t *pfn)
1340 {
1341 struct page *page[1];
1342 int npages = 0;
1343
1344 might_sleep();
1345
1346 if (writable)
1347 *writable = write_fault;
1348
1349 if (async) {
1350 down_read(¤t->mm->mmap_sem);
1351 npages = get_user_page_nowait(current, current->mm,
1352 addr, write_fault, page);
1353 up_read(¤t->mm->mmap_sem);
1354 } else {
1355 unsigned int flags = FOLL_TOUCH | FOLL_HWPOISON;
1356
1357 if (write_fault)
1358 flags |= FOLL_WRITE;
1359
1360 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1361 page, flags);
1362 }
1363 if (npages != 1)
1364 return npages;
1365
1366 /* map read fault as writable if possible */
1367 if (unlikely(!write_fault) && writable) {
1368 struct page *wpage[1];
1369
1370 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1371 if (npages == 1) {
1372 *writable = true;
1373 put_page(page[0]);
1374 page[0] = wpage[0];
1375 }
1376
1377 npages = 1;
1378 }
1379 *pfn = page_to_pfn(page[0]);
1380 return npages;
1381 }
1382
vma_is_valid(struct vm_area_struct * vma,bool write_fault)1383 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1384 {
1385 if (unlikely(!(vma->vm_flags & VM_READ)))
1386 return false;
1387
1388 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1389 return false;
1390
1391 return true;
1392 }
1393
1394 /*
1395 * Pin guest page in memory and return its pfn.
1396 * @addr: host virtual address which maps memory to the guest
1397 * @atomic: whether this function can sleep
1398 * @async: whether this function need to wait IO complete if the
1399 * host page is not in the memory
1400 * @write_fault: whether we should get a writable host page
1401 * @writable: whether it allows to map a writable host page for !@write_fault
1402 *
1403 * The function will map a writable host page for these two cases:
1404 * 1): @write_fault = true
1405 * 2): @write_fault = false && @writable, @writable will tell the caller
1406 * whether the mapping is writable.
1407 */
hva_to_pfn(unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable)1408 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1409 bool write_fault, bool *writable)
1410 {
1411 struct vm_area_struct *vma;
1412 pfn_t pfn = 0;
1413 int npages;
1414
1415 /* we can do it either atomically or asynchronously, not both */
1416 BUG_ON(atomic && async);
1417
1418 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1419 return pfn;
1420
1421 if (atomic)
1422 return KVM_PFN_ERR_FAULT;
1423
1424 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1425 if (npages == 1)
1426 return pfn;
1427
1428 down_read(¤t->mm->mmap_sem);
1429 if (npages == -EHWPOISON ||
1430 (!async && check_user_page_hwpoison(addr))) {
1431 pfn = KVM_PFN_ERR_HWPOISON;
1432 goto exit;
1433 }
1434
1435 vma = find_vma_intersection(current->mm, addr, addr + 1);
1436
1437 if (vma == NULL)
1438 pfn = KVM_PFN_ERR_FAULT;
1439 else if ((vma->vm_flags & VM_PFNMAP)) {
1440 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1441 vma->vm_pgoff;
1442 BUG_ON(!kvm_is_reserved_pfn(pfn));
1443 } else {
1444 if (async && vma_is_valid(vma, write_fault))
1445 *async = true;
1446 pfn = KVM_PFN_ERR_FAULT;
1447 }
1448 exit:
1449 up_read(¤t->mm->mmap_sem);
1450 return pfn;
1451 }
1452
__gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn,bool atomic,bool * async,bool write_fault,bool * writable)1453 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1454 bool *async, bool write_fault, bool *writable)
1455 {
1456 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1457
1458 if (addr == KVM_HVA_ERR_RO_BAD)
1459 return KVM_PFN_ERR_RO_FAULT;
1460
1461 if (kvm_is_error_hva(addr))
1462 return KVM_PFN_NOSLOT;
1463
1464 /* Do not map writable pfn in the readonly memslot. */
1465 if (writable && memslot_is_readonly(slot)) {
1466 *writable = false;
1467 writable = NULL;
1468 }
1469
1470 return hva_to_pfn(addr, atomic, async, write_fault,
1471 writable);
1472 }
1473 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1474
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)1475 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1476 bool *writable)
1477 {
1478 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1479 write_fault, writable);
1480 }
1481 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1482
gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1483 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1484 {
1485 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1486 }
1487 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1488
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot * slot,gfn_t gfn)1489 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1490 {
1491 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1492 }
1493 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1494
gfn_to_pfn_atomic(struct kvm * kvm,gfn_t gfn)1495 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1496 {
1497 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1498 }
1499 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1500
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu * vcpu,gfn_t gfn)1501 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1502 {
1503 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1504 }
1505 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1506
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)1507 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1508 {
1509 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1510 }
1511 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1512
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn)1513 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1514 {
1515 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1516 }
1517 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1518
gfn_to_page_many_atomic(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)1519 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1520 struct page **pages, int nr_pages)
1521 {
1522 unsigned long addr;
1523 gfn_t entry;
1524
1525 addr = gfn_to_hva_many(slot, gfn, &entry);
1526 if (kvm_is_error_hva(addr))
1527 return -1;
1528
1529 if (entry < nr_pages)
1530 return 0;
1531
1532 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1533 }
1534 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1535
kvm_pfn_to_page(pfn_t pfn)1536 static struct page *kvm_pfn_to_page(pfn_t pfn)
1537 {
1538 if (is_error_noslot_pfn(pfn))
1539 return KVM_ERR_PTR_BAD_PAGE;
1540
1541 if (kvm_is_reserved_pfn(pfn)) {
1542 WARN_ON(1);
1543 return KVM_ERR_PTR_BAD_PAGE;
1544 }
1545
1546 return pfn_to_page(pfn);
1547 }
1548
gfn_to_page(struct kvm * kvm,gfn_t gfn)1549 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1550 {
1551 pfn_t pfn;
1552
1553 pfn = gfn_to_pfn(kvm, gfn);
1554
1555 return kvm_pfn_to_page(pfn);
1556 }
1557 EXPORT_SYMBOL_GPL(gfn_to_page);
1558
kvm_vcpu_gfn_to_page(struct kvm_vcpu * vcpu,gfn_t gfn)1559 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1560 {
1561 pfn_t pfn;
1562
1563 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1564
1565 return kvm_pfn_to_page(pfn);
1566 }
1567 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1568
kvm_release_page_clean(struct page * page)1569 void kvm_release_page_clean(struct page *page)
1570 {
1571 WARN_ON(is_error_page(page));
1572
1573 kvm_release_pfn_clean(page_to_pfn(page));
1574 }
1575 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1576
kvm_release_pfn_clean(pfn_t pfn)1577 void kvm_release_pfn_clean(pfn_t pfn)
1578 {
1579 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1580 put_page(pfn_to_page(pfn));
1581 }
1582 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1583
kvm_release_page_dirty(struct page * page)1584 void kvm_release_page_dirty(struct page *page)
1585 {
1586 WARN_ON(is_error_page(page));
1587
1588 kvm_release_pfn_dirty(page_to_pfn(page));
1589 }
1590 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1591
kvm_release_pfn_dirty(pfn_t pfn)1592 static void kvm_release_pfn_dirty(pfn_t pfn)
1593 {
1594 kvm_set_pfn_dirty(pfn);
1595 kvm_release_pfn_clean(pfn);
1596 }
1597
kvm_set_pfn_dirty(pfn_t pfn)1598 void kvm_set_pfn_dirty(pfn_t pfn)
1599 {
1600 if (!kvm_is_reserved_pfn(pfn)) {
1601 struct page *page = pfn_to_page(pfn);
1602
1603 if (!PageReserved(page))
1604 SetPageDirty(page);
1605 }
1606 }
1607 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1608
kvm_set_pfn_accessed(pfn_t pfn)1609 void kvm_set_pfn_accessed(pfn_t pfn)
1610 {
1611 if (!kvm_is_reserved_pfn(pfn))
1612 mark_page_accessed(pfn_to_page(pfn));
1613 }
1614 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1615
kvm_get_pfn(pfn_t pfn)1616 void kvm_get_pfn(pfn_t pfn)
1617 {
1618 if (!kvm_is_reserved_pfn(pfn))
1619 get_page(pfn_to_page(pfn));
1620 }
1621 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1622
next_segment(unsigned long len,int offset)1623 static int next_segment(unsigned long len, int offset)
1624 {
1625 if (len > PAGE_SIZE - offset)
1626 return PAGE_SIZE - offset;
1627 else
1628 return len;
1629 }
1630
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)1631 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1632 void *data, int offset, int len)
1633 {
1634 int r;
1635 unsigned long addr;
1636
1637 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1638 if (kvm_is_error_hva(addr))
1639 return -EFAULT;
1640 r = __copy_from_user(data, (void __user *)addr + offset, len);
1641 if (r)
1642 return -EFAULT;
1643 return 0;
1644 }
1645
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)1646 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1647 int len)
1648 {
1649 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1650
1651 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1652 }
1653 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1654
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)1655 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1656 int offset, int len)
1657 {
1658 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1659
1660 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1661 }
1662 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1663
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)1664 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1665 {
1666 gfn_t gfn = gpa >> PAGE_SHIFT;
1667 int seg;
1668 int offset = offset_in_page(gpa);
1669 int ret;
1670
1671 while ((seg = next_segment(len, offset)) != 0) {
1672 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1673 if (ret < 0)
1674 return ret;
1675 offset = 0;
1676 len -= seg;
1677 data += seg;
1678 ++gfn;
1679 }
1680 return 0;
1681 }
1682 EXPORT_SYMBOL_GPL(kvm_read_guest);
1683
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)1684 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1685 {
1686 gfn_t gfn = gpa >> PAGE_SHIFT;
1687 int seg;
1688 int offset = offset_in_page(gpa);
1689 int ret;
1690
1691 while ((seg = next_segment(len, offset)) != 0) {
1692 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1693 if (ret < 0)
1694 return ret;
1695 offset = 0;
1696 len -= seg;
1697 data += seg;
1698 ++gfn;
1699 }
1700 return 0;
1701 }
1702 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1703
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)1704 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1705 void *data, int offset, unsigned long len)
1706 {
1707 int r;
1708 unsigned long addr;
1709
1710 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1711 if (kvm_is_error_hva(addr))
1712 return -EFAULT;
1713 pagefault_disable();
1714 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1715 pagefault_enable();
1716 if (r)
1717 return -EFAULT;
1718 return 0;
1719 }
1720
kvm_read_guest_atomic(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)1721 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1722 unsigned long len)
1723 {
1724 gfn_t gfn = gpa >> PAGE_SHIFT;
1725 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1726 int offset = offset_in_page(gpa);
1727
1728 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1729 }
1730 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1731
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)1732 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1733 void *data, unsigned long len)
1734 {
1735 gfn_t gfn = gpa >> PAGE_SHIFT;
1736 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1737 int offset = offset_in_page(gpa);
1738
1739 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1740 }
1741 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1742
__kvm_write_guest_page(struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)1743 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1744 const void *data, int offset, int len)
1745 {
1746 int r;
1747 unsigned long addr;
1748
1749 addr = gfn_to_hva_memslot(memslot, gfn);
1750 if (kvm_is_error_hva(addr))
1751 return -EFAULT;
1752 r = __copy_to_user((void __user *)addr + offset, data, len);
1753 if (r)
1754 return -EFAULT;
1755 mark_page_dirty_in_slot(memslot, gfn);
1756 return 0;
1757 }
1758
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)1759 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1760 const void *data, int offset, int len)
1761 {
1762 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1763
1764 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1765 }
1766 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1767
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)1768 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1769 const void *data, int offset, int len)
1770 {
1771 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1772
1773 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1774 }
1775 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1776
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)1777 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1778 unsigned long len)
1779 {
1780 gfn_t gfn = gpa >> PAGE_SHIFT;
1781 int seg;
1782 int offset = offset_in_page(gpa);
1783 int ret;
1784
1785 while ((seg = next_segment(len, offset)) != 0) {
1786 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1787 if (ret < 0)
1788 return ret;
1789 offset = 0;
1790 len -= seg;
1791 data += seg;
1792 ++gfn;
1793 }
1794 return 0;
1795 }
1796 EXPORT_SYMBOL_GPL(kvm_write_guest);
1797
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)1798 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1799 unsigned long len)
1800 {
1801 gfn_t gfn = gpa >> PAGE_SHIFT;
1802 int seg;
1803 int offset = offset_in_page(gpa);
1804 int ret;
1805
1806 while ((seg = next_segment(len, offset)) != 0) {
1807 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1808 if (ret < 0)
1809 return ret;
1810 offset = 0;
1811 len -= seg;
1812 data += seg;
1813 ++gfn;
1814 }
1815 return 0;
1816 }
1817 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1818
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)1819 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1820 gpa_t gpa, unsigned long len)
1821 {
1822 struct kvm_memslots *slots = kvm_memslots(kvm);
1823 int offset = offset_in_page(gpa);
1824 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1825 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1826 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1827 gfn_t nr_pages_avail;
1828
1829 ghc->gpa = gpa;
1830 ghc->generation = slots->generation;
1831 ghc->len = len;
1832 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1833 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1834 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1835 ghc->hva += offset;
1836 } else {
1837 /*
1838 * If the requested region crosses two memslots, we still
1839 * verify that the entire region is valid here.
1840 */
1841 while (start_gfn <= end_gfn) {
1842 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1843 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1844 &nr_pages_avail);
1845 if (kvm_is_error_hva(ghc->hva))
1846 return -EFAULT;
1847 start_gfn += nr_pages_avail;
1848 }
1849 /* Use the slow path for cross page reads and writes. */
1850 ghc->memslot = NULL;
1851 }
1852 return 0;
1853 }
1854 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1855
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)1856 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1857 void *data, unsigned long len)
1858 {
1859 struct kvm_memslots *slots = kvm_memslots(kvm);
1860 int r;
1861
1862 BUG_ON(len > ghc->len);
1863
1864 if (slots->generation != ghc->generation)
1865 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1866
1867 if (kvm_is_error_hva(ghc->hva))
1868 return -EFAULT;
1869
1870 if (unlikely(!ghc->memslot))
1871 return kvm_write_guest(kvm, ghc->gpa, data, len);
1872
1873 r = __copy_to_user((void __user *)ghc->hva, data, len);
1874 if (r)
1875 return -EFAULT;
1876 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1877
1878 return 0;
1879 }
1880 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1881
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)1882 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1883 void *data, unsigned long len)
1884 {
1885 struct kvm_memslots *slots = kvm_memslots(kvm);
1886 int r;
1887
1888 BUG_ON(len > ghc->len);
1889
1890 if (slots->generation != ghc->generation)
1891 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1892
1893 if (kvm_is_error_hva(ghc->hva))
1894 return -EFAULT;
1895
1896 if (unlikely(!ghc->memslot))
1897 return kvm_read_guest(kvm, ghc->gpa, data, len);
1898
1899 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1900 if (r)
1901 return -EFAULT;
1902
1903 return 0;
1904 }
1905 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1906
kvm_clear_guest_page(struct kvm * kvm,gfn_t gfn,int offset,int len)1907 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1908 {
1909 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1910
1911 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1912 }
1913 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1914
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)1915 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1916 {
1917 gfn_t gfn = gpa >> PAGE_SHIFT;
1918 int seg;
1919 int offset = offset_in_page(gpa);
1920 int ret;
1921
1922 while ((seg = next_segment(len, offset)) != 0) {
1923 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1924 if (ret < 0)
1925 return ret;
1926 offset = 0;
1927 len -= seg;
1928 ++gfn;
1929 }
1930 return 0;
1931 }
1932 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1933
mark_page_dirty_in_slot(struct kvm_memory_slot * memslot,gfn_t gfn)1934 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1935 gfn_t gfn)
1936 {
1937 if (memslot && memslot->dirty_bitmap) {
1938 unsigned long rel_gfn = gfn - memslot->base_gfn;
1939
1940 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1941 }
1942 }
1943
mark_page_dirty(struct kvm * kvm,gfn_t gfn)1944 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1945 {
1946 struct kvm_memory_slot *memslot;
1947
1948 memslot = gfn_to_memslot(kvm, gfn);
1949 mark_page_dirty_in_slot(memslot, gfn);
1950 }
1951 EXPORT_SYMBOL_GPL(mark_page_dirty);
1952
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)1953 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1954 {
1955 struct kvm_memory_slot *memslot;
1956
1957 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1958 mark_page_dirty_in_slot(memslot, gfn);
1959 }
1960 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1961
grow_halt_poll_ns(struct kvm_vcpu * vcpu)1962 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1963 {
1964 int old, val;
1965
1966 old = val = vcpu->halt_poll_ns;
1967 /* 10us base */
1968 if (val == 0 && halt_poll_ns_grow)
1969 val = 10000;
1970 else
1971 val *= halt_poll_ns_grow;
1972
1973 if (val > halt_poll_ns)
1974 val = halt_poll_ns;
1975
1976 vcpu->halt_poll_ns = val;
1977 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1978 }
1979
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)1980 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1981 {
1982 int old, val;
1983
1984 old = val = vcpu->halt_poll_ns;
1985 if (halt_poll_ns_shrink == 0)
1986 val = 0;
1987 else
1988 val /= halt_poll_ns_shrink;
1989
1990 vcpu->halt_poll_ns = val;
1991 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1992 }
1993
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)1994 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1995 {
1996 if (kvm_arch_vcpu_runnable(vcpu)) {
1997 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1998 return -EINTR;
1999 }
2000 if (kvm_cpu_has_pending_timer(vcpu))
2001 return -EINTR;
2002 if (signal_pending(current))
2003 return -EINTR;
2004
2005 return 0;
2006 }
2007
2008 /*
2009 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2010 */
kvm_vcpu_block(struct kvm_vcpu * vcpu)2011 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2012 {
2013 ktime_t start, cur;
2014 DEFINE_WAIT(wait);
2015 bool waited = false;
2016 u64 block_ns;
2017
2018 start = cur = ktime_get();
2019 if (vcpu->halt_poll_ns) {
2020 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2021
2022 ++vcpu->stat.halt_attempted_poll;
2023 do {
2024 /*
2025 * This sets KVM_REQ_UNHALT if an interrupt
2026 * arrives.
2027 */
2028 if (kvm_vcpu_check_block(vcpu) < 0) {
2029 ++vcpu->stat.halt_successful_poll;
2030 goto out;
2031 }
2032 cur = ktime_get();
2033 } while (single_task_running() && ktime_before(cur, stop));
2034 }
2035
2036 kvm_arch_vcpu_blocking(vcpu);
2037
2038 for (;;) {
2039 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2040
2041 if (kvm_vcpu_check_block(vcpu) < 0)
2042 break;
2043
2044 waited = true;
2045 schedule();
2046 }
2047
2048 finish_wait(&vcpu->wq, &wait);
2049 cur = ktime_get();
2050
2051 kvm_arch_vcpu_unblocking(vcpu);
2052 out:
2053 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2054
2055 if (halt_poll_ns) {
2056 if (block_ns <= vcpu->halt_poll_ns)
2057 ;
2058 /* we had a long block, shrink polling */
2059 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2060 shrink_halt_poll_ns(vcpu);
2061 /* we had a short halt and our poll time is too small */
2062 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2063 block_ns < halt_poll_ns)
2064 grow_halt_poll_ns(vcpu);
2065 } else
2066 vcpu->halt_poll_ns = 0;
2067
2068 trace_kvm_vcpu_wakeup(block_ns, waited);
2069 }
2070 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2071
2072 #ifndef CONFIG_S390
2073 /*
2074 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2075 */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)2076 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2077 {
2078 int me;
2079 int cpu = vcpu->cpu;
2080 wait_queue_head_t *wqp;
2081
2082 wqp = kvm_arch_vcpu_wq(vcpu);
2083 if (waitqueue_active(wqp)) {
2084 wake_up_interruptible(wqp);
2085 ++vcpu->stat.halt_wakeup;
2086 }
2087
2088 me = get_cpu();
2089 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2090 if (kvm_arch_vcpu_should_kick(vcpu))
2091 smp_send_reschedule(cpu);
2092 put_cpu();
2093 }
2094 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2095 #endif /* !CONFIG_S390 */
2096
kvm_vcpu_yield_to(struct kvm_vcpu * target)2097 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2098 {
2099 struct pid *pid;
2100 struct task_struct *task = NULL;
2101 int ret = 0;
2102
2103 rcu_read_lock();
2104 pid = rcu_dereference(target->pid);
2105 if (pid)
2106 task = get_pid_task(pid, PIDTYPE_PID);
2107 rcu_read_unlock();
2108 if (!task)
2109 return ret;
2110 ret = yield_to(task, 1);
2111 put_task_struct(task);
2112
2113 return ret;
2114 }
2115 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2116
2117 /*
2118 * Helper that checks whether a VCPU is eligible for directed yield.
2119 * Most eligible candidate to yield is decided by following heuristics:
2120 *
2121 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2122 * (preempted lock holder), indicated by @in_spin_loop.
2123 * Set at the beiginning and cleared at the end of interception/PLE handler.
2124 *
2125 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2126 * chance last time (mostly it has become eligible now since we have probably
2127 * yielded to lockholder in last iteration. This is done by toggling
2128 * @dy_eligible each time a VCPU checked for eligibility.)
2129 *
2130 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2131 * to preempted lock-holder could result in wrong VCPU selection and CPU
2132 * burning. Giving priority for a potential lock-holder increases lock
2133 * progress.
2134 *
2135 * Since algorithm is based on heuristics, accessing another VCPU data without
2136 * locking does not harm. It may result in trying to yield to same VCPU, fail
2137 * and continue with next VCPU and so on.
2138 */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)2139 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2140 {
2141 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2142 bool eligible;
2143
2144 eligible = !vcpu->spin_loop.in_spin_loop ||
2145 vcpu->spin_loop.dy_eligible;
2146
2147 if (vcpu->spin_loop.in_spin_loop)
2148 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2149
2150 return eligible;
2151 #else
2152 return true;
2153 #endif
2154 }
2155
kvm_vcpu_on_spin(struct kvm_vcpu * me)2156 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2157 {
2158 struct kvm *kvm = me->kvm;
2159 struct kvm_vcpu *vcpu;
2160 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2161 int yielded = 0;
2162 int try = 3;
2163 int pass;
2164 int i;
2165
2166 kvm_vcpu_set_in_spin_loop(me, true);
2167 /*
2168 * We boost the priority of a VCPU that is runnable but not
2169 * currently running, because it got preempted by something
2170 * else and called schedule in __vcpu_run. Hopefully that
2171 * VCPU is holding the lock that we need and will release it.
2172 * We approximate round-robin by starting at the last boosted VCPU.
2173 */
2174 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2175 kvm_for_each_vcpu(i, vcpu, kvm) {
2176 if (!pass && i <= last_boosted_vcpu) {
2177 i = last_boosted_vcpu;
2178 continue;
2179 } else if (pass && i > last_boosted_vcpu)
2180 break;
2181 if (!ACCESS_ONCE(vcpu->preempted))
2182 continue;
2183 if (vcpu == me)
2184 continue;
2185 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2186 continue;
2187 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2188 continue;
2189
2190 yielded = kvm_vcpu_yield_to(vcpu);
2191 if (yielded > 0) {
2192 kvm->last_boosted_vcpu = i;
2193 break;
2194 } else if (yielded < 0) {
2195 try--;
2196 if (!try)
2197 break;
2198 }
2199 }
2200 }
2201 kvm_vcpu_set_in_spin_loop(me, false);
2202
2203 /* Ensure vcpu is not eligible during next spinloop */
2204 kvm_vcpu_set_dy_eligible(me, false);
2205 }
2206 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2207
kvm_vcpu_fault(struct vm_area_struct * vma,struct vm_fault * vmf)2208 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2209 {
2210 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2211 struct page *page;
2212
2213 if (vmf->pgoff == 0)
2214 page = virt_to_page(vcpu->run);
2215 #ifdef CONFIG_X86
2216 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2217 page = virt_to_page(vcpu->arch.pio_data);
2218 #endif
2219 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2220 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2221 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2222 #endif
2223 else
2224 return kvm_arch_vcpu_fault(vcpu, vmf);
2225 get_page(page);
2226 vmf->page = page;
2227 return 0;
2228 }
2229
2230 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2231 .fault = kvm_vcpu_fault,
2232 };
2233
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)2234 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2235 {
2236 vma->vm_ops = &kvm_vcpu_vm_ops;
2237 return 0;
2238 }
2239
kvm_vcpu_release(struct inode * inode,struct file * filp)2240 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2241 {
2242 struct kvm_vcpu *vcpu = filp->private_data;
2243
2244 kvm_put_kvm(vcpu->kvm);
2245 return 0;
2246 }
2247
2248 static struct file_operations kvm_vcpu_fops = {
2249 .release = kvm_vcpu_release,
2250 .unlocked_ioctl = kvm_vcpu_ioctl,
2251 #ifdef CONFIG_KVM_COMPAT
2252 .compat_ioctl = kvm_vcpu_compat_ioctl,
2253 #endif
2254 .mmap = kvm_vcpu_mmap,
2255 .llseek = noop_llseek,
2256 };
2257
2258 /*
2259 * Allocates an inode for the vcpu.
2260 */
create_vcpu_fd(struct kvm_vcpu * vcpu)2261 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2262 {
2263 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2264 }
2265
2266 /*
2267 * Creates some virtual cpus. Good luck creating more than one.
2268 */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)2269 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2270 {
2271 int r;
2272 struct kvm_vcpu *vcpu, *v;
2273
2274 if (id >= KVM_MAX_VCPUS)
2275 return -EINVAL;
2276
2277 vcpu = kvm_arch_vcpu_create(kvm, id);
2278 if (IS_ERR(vcpu))
2279 return PTR_ERR(vcpu);
2280
2281 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2282
2283 r = kvm_arch_vcpu_setup(vcpu);
2284 if (r)
2285 goto vcpu_destroy;
2286
2287 mutex_lock(&kvm->lock);
2288 if (!kvm_vcpu_compatible(vcpu)) {
2289 r = -EINVAL;
2290 goto unlock_vcpu_destroy;
2291 }
2292 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2293 r = -EINVAL;
2294 goto unlock_vcpu_destroy;
2295 }
2296
2297 kvm_for_each_vcpu(r, v, kvm)
2298 if (v->vcpu_id == id) {
2299 r = -EEXIST;
2300 goto unlock_vcpu_destroy;
2301 }
2302
2303 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2304
2305 /* Now it's all set up, let userspace reach it */
2306 kvm_get_kvm(kvm);
2307 r = create_vcpu_fd(vcpu);
2308 if (r < 0) {
2309 kvm_put_kvm(kvm);
2310 goto unlock_vcpu_destroy;
2311 }
2312
2313 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2314
2315 /*
2316 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2317 * before kvm->online_vcpu's incremented value.
2318 */
2319 smp_wmb();
2320 atomic_inc(&kvm->online_vcpus);
2321
2322 mutex_unlock(&kvm->lock);
2323 kvm_arch_vcpu_postcreate(vcpu);
2324 return r;
2325
2326 unlock_vcpu_destroy:
2327 mutex_unlock(&kvm->lock);
2328 vcpu_destroy:
2329 kvm_arch_vcpu_destroy(vcpu);
2330 return r;
2331 }
2332
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)2333 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2334 {
2335 if (sigset) {
2336 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2337 vcpu->sigset_active = 1;
2338 vcpu->sigset = *sigset;
2339 } else
2340 vcpu->sigset_active = 0;
2341 return 0;
2342 }
2343
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2344 static long kvm_vcpu_ioctl(struct file *filp,
2345 unsigned int ioctl, unsigned long arg)
2346 {
2347 struct kvm_vcpu *vcpu = filp->private_data;
2348 void __user *argp = (void __user *)arg;
2349 int r;
2350 struct kvm_fpu *fpu = NULL;
2351 struct kvm_sregs *kvm_sregs = NULL;
2352
2353 if (vcpu->kvm->mm != current->mm)
2354 return -EIO;
2355
2356 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2357 return -EINVAL;
2358
2359 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2360 /*
2361 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2362 * so vcpu_load() would break it.
2363 */
2364 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2365 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2366 #endif
2367
2368
2369 r = vcpu_load(vcpu);
2370 if (r)
2371 return r;
2372 switch (ioctl) {
2373 case KVM_RUN:
2374 r = -EINVAL;
2375 if (arg)
2376 goto out;
2377 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2378 /* The thread running this VCPU changed. */
2379 struct pid *oldpid = vcpu->pid;
2380 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2381
2382 rcu_assign_pointer(vcpu->pid, newpid);
2383 if (oldpid)
2384 synchronize_rcu();
2385 put_pid(oldpid);
2386 }
2387 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2388 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2389 break;
2390 case KVM_GET_REGS: {
2391 struct kvm_regs *kvm_regs;
2392
2393 r = -ENOMEM;
2394 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2395 if (!kvm_regs)
2396 goto out;
2397 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2398 if (r)
2399 goto out_free1;
2400 r = -EFAULT;
2401 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2402 goto out_free1;
2403 r = 0;
2404 out_free1:
2405 kfree(kvm_regs);
2406 break;
2407 }
2408 case KVM_SET_REGS: {
2409 struct kvm_regs *kvm_regs;
2410
2411 r = -ENOMEM;
2412 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2413 if (IS_ERR(kvm_regs)) {
2414 r = PTR_ERR(kvm_regs);
2415 goto out;
2416 }
2417 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2418 kfree(kvm_regs);
2419 break;
2420 }
2421 case KVM_GET_SREGS: {
2422 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2423 r = -ENOMEM;
2424 if (!kvm_sregs)
2425 goto out;
2426 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2427 if (r)
2428 goto out;
2429 r = -EFAULT;
2430 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2431 goto out;
2432 r = 0;
2433 break;
2434 }
2435 case KVM_SET_SREGS: {
2436 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2437 if (IS_ERR(kvm_sregs)) {
2438 r = PTR_ERR(kvm_sregs);
2439 kvm_sregs = NULL;
2440 goto out;
2441 }
2442 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2443 break;
2444 }
2445 case KVM_GET_MP_STATE: {
2446 struct kvm_mp_state mp_state;
2447
2448 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2449 if (r)
2450 goto out;
2451 r = -EFAULT;
2452 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2453 goto out;
2454 r = 0;
2455 break;
2456 }
2457 case KVM_SET_MP_STATE: {
2458 struct kvm_mp_state mp_state;
2459
2460 r = -EFAULT;
2461 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2462 goto out;
2463 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2464 break;
2465 }
2466 case KVM_TRANSLATE: {
2467 struct kvm_translation tr;
2468
2469 r = -EFAULT;
2470 if (copy_from_user(&tr, argp, sizeof(tr)))
2471 goto out;
2472 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2473 if (r)
2474 goto out;
2475 r = -EFAULT;
2476 if (copy_to_user(argp, &tr, sizeof(tr)))
2477 goto out;
2478 r = 0;
2479 break;
2480 }
2481 case KVM_SET_GUEST_DEBUG: {
2482 struct kvm_guest_debug dbg;
2483
2484 r = -EFAULT;
2485 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2486 goto out;
2487 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2488 break;
2489 }
2490 case KVM_SET_SIGNAL_MASK: {
2491 struct kvm_signal_mask __user *sigmask_arg = argp;
2492 struct kvm_signal_mask kvm_sigmask;
2493 sigset_t sigset, *p;
2494
2495 p = NULL;
2496 if (argp) {
2497 r = -EFAULT;
2498 if (copy_from_user(&kvm_sigmask, argp,
2499 sizeof(kvm_sigmask)))
2500 goto out;
2501 r = -EINVAL;
2502 if (kvm_sigmask.len != sizeof(sigset))
2503 goto out;
2504 r = -EFAULT;
2505 if (copy_from_user(&sigset, sigmask_arg->sigset,
2506 sizeof(sigset)))
2507 goto out;
2508 p = &sigset;
2509 }
2510 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2511 break;
2512 }
2513 case KVM_GET_FPU: {
2514 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2515 r = -ENOMEM;
2516 if (!fpu)
2517 goto out;
2518 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2519 if (r)
2520 goto out;
2521 r = -EFAULT;
2522 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2523 goto out;
2524 r = 0;
2525 break;
2526 }
2527 case KVM_SET_FPU: {
2528 fpu = memdup_user(argp, sizeof(*fpu));
2529 if (IS_ERR(fpu)) {
2530 r = PTR_ERR(fpu);
2531 fpu = NULL;
2532 goto out;
2533 }
2534 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2535 break;
2536 }
2537 default:
2538 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2539 }
2540 out:
2541 vcpu_put(vcpu);
2542 kfree(fpu);
2543 kfree(kvm_sregs);
2544 return r;
2545 }
2546
2547 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2548 static long kvm_vcpu_compat_ioctl(struct file *filp,
2549 unsigned int ioctl, unsigned long arg)
2550 {
2551 struct kvm_vcpu *vcpu = filp->private_data;
2552 void __user *argp = compat_ptr(arg);
2553 int r;
2554
2555 if (vcpu->kvm->mm != current->mm)
2556 return -EIO;
2557
2558 switch (ioctl) {
2559 case KVM_SET_SIGNAL_MASK: {
2560 struct kvm_signal_mask __user *sigmask_arg = argp;
2561 struct kvm_signal_mask kvm_sigmask;
2562 compat_sigset_t csigset;
2563 sigset_t sigset;
2564
2565 if (argp) {
2566 r = -EFAULT;
2567 if (copy_from_user(&kvm_sigmask, argp,
2568 sizeof(kvm_sigmask)))
2569 goto out;
2570 r = -EINVAL;
2571 if (kvm_sigmask.len != sizeof(csigset))
2572 goto out;
2573 r = -EFAULT;
2574 if (copy_from_user(&csigset, sigmask_arg->sigset,
2575 sizeof(csigset)))
2576 goto out;
2577 sigset_from_compat(&sigset, &csigset);
2578 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2579 } else
2580 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2581 break;
2582 }
2583 default:
2584 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2585 }
2586
2587 out:
2588 return r;
2589 }
2590 #endif
2591
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)2592 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2593 int (*accessor)(struct kvm_device *dev,
2594 struct kvm_device_attr *attr),
2595 unsigned long arg)
2596 {
2597 struct kvm_device_attr attr;
2598
2599 if (!accessor)
2600 return -EPERM;
2601
2602 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2603 return -EFAULT;
2604
2605 return accessor(dev, &attr);
2606 }
2607
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2608 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2609 unsigned long arg)
2610 {
2611 struct kvm_device *dev = filp->private_data;
2612
2613 if (dev->kvm->mm != current->mm)
2614 return -EIO;
2615
2616 switch (ioctl) {
2617 case KVM_SET_DEVICE_ATTR:
2618 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2619 case KVM_GET_DEVICE_ATTR:
2620 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2621 case KVM_HAS_DEVICE_ATTR:
2622 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2623 default:
2624 if (dev->ops->ioctl)
2625 return dev->ops->ioctl(dev, ioctl, arg);
2626
2627 return -ENOTTY;
2628 }
2629 }
2630
kvm_device_release(struct inode * inode,struct file * filp)2631 static int kvm_device_release(struct inode *inode, struct file *filp)
2632 {
2633 struct kvm_device *dev = filp->private_data;
2634 struct kvm *kvm = dev->kvm;
2635
2636 kvm_put_kvm(kvm);
2637 return 0;
2638 }
2639
2640 static const struct file_operations kvm_device_fops = {
2641 .unlocked_ioctl = kvm_device_ioctl,
2642 #ifdef CONFIG_KVM_COMPAT
2643 .compat_ioctl = kvm_device_ioctl,
2644 #endif
2645 .release = kvm_device_release,
2646 };
2647
kvm_device_from_filp(struct file * filp)2648 struct kvm_device *kvm_device_from_filp(struct file *filp)
2649 {
2650 if (filp->f_op != &kvm_device_fops)
2651 return NULL;
2652
2653 return filp->private_data;
2654 }
2655
2656 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2657 #ifdef CONFIG_KVM_MPIC
2658 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2659 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2660 #endif
2661
2662 #ifdef CONFIG_KVM_XICS
2663 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2664 #endif
2665 };
2666
kvm_register_device_ops(struct kvm_device_ops * ops,u32 type)2667 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2668 {
2669 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2670 return -ENOSPC;
2671
2672 if (kvm_device_ops_table[type] != NULL)
2673 return -EEXIST;
2674
2675 kvm_device_ops_table[type] = ops;
2676 return 0;
2677 }
2678
kvm_unregister_device_ops(u32 type)2679 void kvm_unregister_device_ops(u32 type)
2680 {
2681 if (kvm_device_ops_table[type] != NULL)
2682 kvm_device_ops_table[type] = NULL;
2683 }
2684
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)2685 static int kvm_ioctl_create_device(struct kvm *kvm,
2686 struct kvm_create_device *cd)
2687 {
2688 struct kvm_device_ops *ops = NULL;
2689 struct kvm_device *dev;
2690 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2691 int ret;
2692
2693 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2694 return -ENODEV;
2695
2696 ops = kvm_device_ops_table[cd->type];
2697 if (ops == NULL)
2698 return -ENODEV;
2699
2700 if (test)
2701 return 0;
2702
2703 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2704 if (!dev)
2705 return -ENOMEM;
2706
2707 dev->ops = ops;
2708 dev->kvm = kvm;
2709
2710 ret = ops->create(dev, cd->type);
2711 if (ret < 0) {
2712 kfree(dev);
2713 return ret;
2714 }
2715
2716 kvm_get_kvm(kvm);
2717 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2718 if (ret < 0) {
2719 kvm_put_kvm(kvm);
2720 ops->destroy(dev);
2721 return ret;
2722 }
2723
2724 list_add(&dev->vm_node, &kvm->devices);
2725 cd->fd = ret;
2726 return 0;
2727 }
2728
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)2729 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2730 {
2731 switch (arg) {
2732 case KVM_CAP_USER_MEMORY:
2733 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2734 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2735 case KVM_CAP_INTERNAL_ERROR_DATA:
2736 #ifdef CONFIG_HAVE_KVM_MSI
2737 case KVM_CAP_SIGNAL_MSI:
2738 #endif
2739 #ifdef CONFIG_HAVE_KVM_IRQFD
2740 case KVM_CAP_IRQFD:
2741 case KVM_CAP_IRQFD_RESAMPLE:
2742 #endif
2743 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2744 case KVM_CAP_CHECK_EXTENSION_VM:
2745 return 1;
2746 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2747 case KVM_CAP_IRQ_ROUTING:
2748 return KVM_MAX_IRQ_ROUTES;
2749 #endif
2750 #if KVM_ADDRESS_SPACE_NUM > 1
2751 case KVM_CAP_MULTI_ADDRESS_SPACE:
2752 return KVM_ADDRESS_SPACE_NUM;
2753 #endif
2754 default:
2755 break;
2756 }
2757 return kvm_vm_ioctl_check_extension(kvm, arg);
2758 }
2759
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2760 static long kvm_vm_ioctl(struct file *filp,
2761 unsigned int ioctl, unsigned long arg)
2762 {
2763 struct kvm *kvm = filp->private_data;
2764 void __user *argp = (void __user *)arg;
2765 int r;
2766
2767 if (kvm->mm != current->mm)
2768 return -EIO;
2769 switch (ioctl) {
2770 case KVM_CREATE_VCPU:
2771 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2772 break;
2773 case KVM_SET_USER_MEMORY_REGION: {
2774 struct kvm_userspace_memory_region kvm_userspace_mem;
2775
2776 r = -EFAULT;
2777 if (copy_from_user(&kvm_userspace_mem, argp,
2778 sizeof(kvm_userspace_mem)))
2779 goto out;
2780
2781 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2782 break;
2783 }
2784 case KVM_GET_DIRTY_LOG: {
2785 struct kvm_dirty_log log;
2786
2787 r = -EFAULT;
2788 if (copy_from_user(&log, argp, sizeof(log)))
2789 goto out;
2790 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2791 break;
2792 }
2793 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2794 case KVM_REGISTER_COALESCED_MMIO: {
2795 struct kvm_coalesced_mmio_zone zone;
2796
2797 r = -EFAULT;
2798 if (copy_from_user(&zone, argp, sizeof(zone)))
2799 goto out;
2800 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2801 break;
2802 }
2803 case KVM_UNREGISTER_COALESCED_MMIO: {
2804 struct kvm_coalesced_mmio_zone zone;
2805
2806 r = -EFAULT;
2807 if (copy_from_user(&zone, argp, sizeof(zone)))
2808 goto out;
2809 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2810 break;
2811 }
2812 #endif
2813 case KVM_IRQFD: {
2814 struct kvm_irqfd data;
2815
2816 r = -EFAULT;
2817 if (copy_from_user(&data, argp, sizeof(data)))
2818 goto out;
2819 r = kvm_irqfd(kvm, &data);
2820 break;
2821 }
2822 case KVM_IOEVENTFD: {
2823 struct kvm_ioeventfd data;
2824
2825 r = -EFAULT;
2826 if (copy_from_user(&data, argp, sizeof(data)))
2827 goto out;
2828 r = kvm_ioeventfd(kvm, &data);
2829 break;
2830 }
2831 #ifdef CONFIG_HAVE_KVM_MSI
2832 case KVM_SIGNAL_MSI: {
2833 struct kvm_msi msi;
2834
2835 r = -EFAULT;
2836 if (copy_from_user(&msi, argp, sizeof(msi)))
2837 goto out;
2838 r = kvm_send_userspace_msi(kvm, &msi);
2839 break;
2840 }
2841 #endif
2842 #ifdef __KVM_HAVE_IRQ_LINE
2843 case KVM_IRQ_LINE_STATUS:
2844 case KVM_IRQ_LINE: {
2845 struct kvm_irq_level irq_event;
2846
2847 r = -EFAULT;
2848 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2849 goto out;
2850
2851 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2852 ioctl == KVM_IRQ_LINE_STATUS);
2853 if (r)
2854 goto out;
2855
2856 r = -EFAULT;
2857 if (ioctl == KVM_IRQ_LINE_STATUS) {
2858 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2859 goto out;
2860 }
2861
2862 r = 0;
2863 break;
2864 }
2865 #endif
2866 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2867 case KVM_SET_GSI_ROUTING: {
2868 struct kvm_irq_routing routing;
2869 struct kvm_irq_routing __user *urouting;
2870 struct kvm_irq_routing_entry *entries;
2871
2872 r = -EFAULT;
2873 if (copy_from_user(&routing, argp, sizeof(routing)))
2874 goto out;
2875 r = -EINVAL;
2876 if (routing.nr > KVM_MAX_IRQ_ROUTES)
2877 goto out;
2878 if (routing.flags)
2879 goto out;
2880 r = -ENOMEM;
2881 entries = vmalloc(routing.nr * sizeof(*entries));
2882 if (!entries)
2883 goto out;
2884 r = -EFAULT;
2885 urouting = argp;
2886 if (copy_from_user(entries, urouting->entries,
2887 routing.nr * sizeof(*entries)))
2888 goto out_free_irq_routing;
2889 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2890 routing.flags);
2891 out_free_irq_routing:
2892 vfree(entries);
2893 break;
2894 }
2895 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2896 case KVM_CREATE_DEVICE: {
2897 struct kvm_create_device cd;
2898
2899 r = -EFAULT;
2900 if (copy_from_user(&cd, argp, sizeof(cd)))
2901 goto out;
2902
2903 r = kvm_ioctl_create_device(kvm, &cd);
2904 if (r)
2905 goto out;
2906
2907 r = -EFAULT;
2908 if (copy_to_user(argp, &cd, sizeof(cd)))
2909 goto out;
2910
2911 r = 0;
2912 break;
2913 }
2914 case KVM_CHECK_EXTENSION:
2915 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2916 break;
2917 default:
2918 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2919 }
2920 out:
2921 return r;
2922 }
2923
2924 #ifdef CONFIG_KVM_COMPAT
2925 struct compat_kvm_dirty_log {
2926 __u32 slot;
2927 __u32 padding1;
2928 union {
2929 compat_uptr_t dirty_bitmap; /* one bit per page */
2930 __u64 padding2;
2931 };
2932 };
2933
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2934 static long kvm_vm_compat_ioctl(struct file *filp,
2935 unsigned int ioctl, unsigned long arg)
2936 {
2937 struct kvm *kvm = filp->private_data;
2938 int r;
2939
2940 if (kvm->mm != current->mm)
2941 return -EIO;
2942 switch (ioctl) {
2943 case KVM_GET_DIRTY_LOG: {
2944 struct compat_kvm_dirty_log compat_log;
2945 struct kvm_dirty_log log;
2946
2947 r = -EFAULT;
2948 if (copy_from_user(&compat_log, (void __user *)arg,
2949 sizeof(compat_log)))
2950 goto out;
2951 log.slot = compat_log.slot;
2952 log.padding1 = compat_log.padding1;
2953 log.padding2 = compat_log.padding2;
2954 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2955
2956 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2957 break;
2958 }
2959 default:
2960 r = kvm_vm_ioctl(filp, ioctl, arg);
2961 }
2962
2963 out:
2964 return r;
2965 }
2966 #endif
2967
2968 static struct file_operations kvm_vm_fops = {
2969 .release = kvm_vm_release,
2970 .unlocked_ioctl = kvm_vm_ioctl,
2971 #ifdef CONFIG_KVM_COMPAT
2972 .compat_ioctl = kvm_vm_compat_ioctl,
2973 #endif
2974 .llseek = noop_llseek,
2975 };
2976
kvm_dev_ioctl_create_vm(unsigned long type)2977 static int kvm_dev_ioctl_create_vm(unsigned long type)
2978 {
2979 int r;
2980 struct kvm *kvm;
2981
2982 kvm = kvm_create_vm(type);
2983 if (IS_ERR(kvm))
2984 return PTR_ERR(kvm);
2985 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2986 r = kvm_coalesced_mmio_init(kvm);
2987 if (r < 0) {
2988 kvm_put_kvm(kvm);
2989 return r;
2990 }
2991 #endif
2992 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2993 if (r < 0)
2994 kvm_put_kvm(kvm);
2995
2996 return r;
2997 }
2998
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2999 static long kvm_dev_ioctl(struct file *filp,
3000 unsigned int ioctl, unsigned long arg)
3001 {
3002 long r = -EINVAL;
3003
3004 switch (ioctl) {
3005 case KVM_GET_API_VERSION:
3006 if (arg)
3007 goto out;
3008 r = KVM_API_VERSION;
3009 break;
3010 case KVM_CREATE_VM:
3011 r = kvm_dev_ioctl_create_vm(arg);
3012 break;
3013 case KVM_CHECK_EXTENSION:
3014 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3015 break;
3016 case KVM_GET_VCPU_MMAP_SIZE:
3017 if (arg)
3018 goto out;
3019 r = PAGE_SIZE; /* struct kvm_run */
3020 #ifdef CONFIG_X86
3021 r += PAGE_SIZE; /* pio data page */
3022 #endif
3023 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3024 r += PAGE_SIZE; /* coalesced mmio ring page */
3025 #endif
3026 break;
3027 case KVM_TRACE_ENABLE:
3028 case KVM_TRACE_PAUSE:
3029 case KVM_TRACE_DISABLE:
3030 r = -EOPNOTSUPP;
3031 break;
3032 default:
3033 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3034 }
3035 out:
3036 return r;
3037 }
3038
3039 static struct file_operations kvm_chardev_ops = {
3040 .unlocked_ioctl = kvm_dev_ioctl,
3041 .compat_ioctl = kvm_dev_ioctl,
3042 .llseek = noop_llseek,
3043 };
3044
3045 static struct miscdevice kvm_dev = {
3046 KVM_MINOR,
3047 "kvm",
3048 &kvm_chardev_ops,
3049 };
3050
hardware_enable_nolock(void * junk)3051 static void hardware_enable_nolock(void *junk)
3052 {
3053 int cpu = raw_smp_processor_id();
3054 int r;
3055
3056 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3057 return;
3058
3059 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3060
3061 r = kvm_arch_hardware_enable();
3062
3063 if (r) {
3064 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3065 atomic_inc(&hardware_enable_failed);
3066 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3067 }
3068 }
3069
hardware_enable(void)3070 static void hardware_enable(void)
3071 {
3072 raw_spin_lock(&kvm_count_lock);
3073 if (kvm_usage_count)
3074 hardware_enable_nolock(NULL);
3075 raw_spin_unlock(&kvm_count_lock);
3076 }
3077
hardware_disable_nolock(void * junk)3078 static void hardware_disable_nolock(void *junk)
3079 {
3080 int cpu = raw_smp_processor_id();
3081
3082 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3083 return;
3084 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3085 kvm_arch_hardware_disable();
3086 }
3087
hardware_disable(void)3088 static void hardware_disable(void)
3089 {
3090 raw_spin_lock(&kvm_count_lock);
3091 if (kvm_usage_count)
3092 hardware_disable_nolock(NULL);
3093 raw_spin_unlock(&kvm_count_lock);
3094 }
3095
hardware_disable_all_nolock(void)3096 static void hardware_disable_all_nolock(void)
3097 {
3098 BUG_ON(!kvm_usage_count);
3099
3100 kvm_usage_count--;
3101 if (!kvm_usage_count)
3102 on_each_cpu(hardware_disable_nolock, NULL, 1);
3103 }
3104
hardware_disable_all(void)3105 static void hardware_disable_all(void)
3106 {
3107 raw_spin_lock(&kvm_count_lock);
3108 hardware_disable_all_nolock();
3109 raw_spin_unlock(&kvm_count_lock);
3110 }
3111
hardware_enable_all(void)3112 static int hardware_enable_all(void)
3113 {
3114 int r = 0;
3115
3116 raw_spin_lock(&kvm_count_lock);
3117
3118 kvm_usage_count++;
3119 if (kvm_usage_count == 1) {
3120 atomic_set(&hardware_enable_failed, 0);
3121 on_each_cpu(hardware_enable_nolock, NULL, 1);
3122
3123 if (atomic_read(&hardware_enable_failed)) {
3124 hardware_disable_all_nolock();
3125 r = -EBUSY;
3126 }
3127 }
3128
3129 raw_spin_unlock(&kvm_count_lock);
3130
3131 return r;
3132 }
3133
kvm_cpu_hotplug(struct notifier_block * notifier,unsigned long val,void * v)3134 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3135 void *v)
3136 {
3137 val &= ~CPU_TASKS_FROZEN;
3138 switch (val) {
3139 case CPU_DYING:
3140 hardware_disable();
3141 break;
3142 case CPU_STARTING:
3143 hardware_enable();
3144 break;
3145 }
3146 return NOTIFY_OK;
3147 }
3148
kvm_reboot(struct notifier_block * notifier,unsigned long val,void * v)3149 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3150 void *v)
3151 {
3152 /*
3153 * Some (well, at least mine) BIOSes hang on reboot if
3154 * in vmx root mode.
3155 *
3156 * And Intel TXT required VMX off for all cpu when system shutdown.
3157 */
3158 pr_info("kvm: exiting hardware virtualization\n");
3159 kvm_rebooting = true;
3160 on_each_cpu(hardware_disable_nolock, NULL, 1);
3161 return NOTIFY_OK;
3162 }
3163
3164 static struct notifier_block kvm_reboot_notifier = {
3165 .notifier_call = kvm_reboot,
3166 .priority = 0,
3167 };
3168
kvm_io_bus_destroy(struct kvm_io_bus * bus)3169 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3170 {
3171 int i;
3172
3173 for (i = 0; i < bus->dev_count; i++) {
3174 struct kvm_io_device *pos = bus->range[i].dev;
3175
3176 kvm_iodevice_destructor(pos);
3177 }
3178 kfree(bus);
3179 }
3180
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)3181 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3182 const struct kvm_io_range *r2)
3183 {
3184 gpa_t addr1 = r1->addr;
3185 gpa_t addr2 = r2->addr;
3186
3187 if (addr1 < addr2)
3188 return -1;
3189
3190 /* If r2->len == 0, match the exact address. If r2->len != 0,
3191 * accept any overlapping write. Any order is acceptable for
3192 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3193 * we process all of them.
3194 */
3195 if (r2->len) {
3196 addr1 += r1->len;
3197 addr2 += r2->len;
3198 }
3199
3200 if (addr1 > addr2)
3201 return 1;
3202
3203 return 0;
3204 }
3205
kvm_io_bus_sort_cmp(const void * p1,const void * p2)3206 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3207 {
3208 return kvm_io_bus_cmp(p1, p2);
3209 }
3210
kvm_io_bus_insert_dev(struct kvm_io_bus * bus,struct kvm_io_device * dev,gpa_t addr,int len)3211 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3212 gpa_t addr, int len)
3213 {
3214 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3215 .addr = addr,
3216 .len = len,
3217 .dev = dev,
3218 };
3219
3220 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3221 kvm_io_bus_sort_cmp, NULL);
3222
3223 return 0;
3224 }
3225
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)3226 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3227 gpa_t addr, int len)
3228 {
3229 struct kvm_io_range *range, key;
3230 int off;
3231
3232 key = (struct kvm_io_range) {
3233 .addr = addr,
3234 .len = len,
3235 };
3236
3237 range = bsearch(&key, bus->range, bus->dev_count,
3238 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3239 if (range == NULL)
3240 return -ENOENT;
3241
3242 off = range - bus->range;
3243
3244 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3245 off--;
3246
3247 return off;
3248 }
3249
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)3250 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3251 struct kvm_io_range *range, const void *val)
3252 {
3253 int idx;
3254
3255 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3256 if (idx < 0)
3257 return -EOPNOTSUPP;
3258
3259 while (idx < bus->dev_count &&
3260 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3261 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3262 range->len, val))
3263 return idx;
3264 idx++;
3265 }
3266
3267 return -EOPNOTSUPP;
3268 }
3269
3270 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)3271 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3272 int len, const void *val)
3273 {
3274 struct kvm_io_bus *bus;
3275 struct kvm_io_range range;
3276 int r;
3277
3278 range = (struct kvm_io_range) {
3279 .addr = addr,
3280 .len = len,
3281 };
3282
3283 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3284 if (!bus)
3285 return -ENOMEM;
3286 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3287 return r < 0 ? r : 0;
3288 }
3289
3290 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)3291 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3292 gpa_t addr, int len, const void *val, long cookie)
3293 {
3294 struct kvm_io_bus *bus;
3295 struct kvm_io_range range;
3296
3297 range = (struct kvm_io_range) {
3298 .addr = addr,
3299 .len = len,
3300 };
3301
3302 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3303 if (!bus)
3304 return -ENOMEM;
3305
3306 /* First try the device referenced by cookie. */
3307 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3308 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3309 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3310 val))
3311 return cookie;
3312
3313 /*
3314 * cookie contained garbage; fall back to search and return the
3315 * correct cookie value.
3316 */
3317 return __kvm_io_bus_write(vcpu, bus, &range, val);
3318 }
3319
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)3320 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3321 struct kvm_io_range *range, void *val)
3322 {
3323 int idx;
3324
3325 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3326 if (idx < 0)
3327 return -EOPNOTSUPP;
3328
3329 while (idx < bus->dev_count &&
3330 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3331 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3332 range->len, val))
3333 return idx;
3334 idx++;
3335 }
3336
3337 return -EOPNOTSUPP;
3338 }
3339 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3340
3341 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)3342 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3343 int len, void *val)
3344 {
3345 struct kvm_io_bus *bus;
3346 struct kvm_io_range range;
3347 int r;
3348
3349 range = (struct kvm_io_range) {
3350 .addr = addr,
3351 .len = len,
3352 };
3353
3354 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3355 if (!bus)
3356 return -ENOMEM;
3357 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3358 return r < 0 ? r : 0;
3359 }
3360
3361
3362 /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)3363 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3364 int len, struct kvm_io_device *dev)
3365 {
3366 struct kvm_io_bus *new_bus, *bus;
3367
3368 bus = kvm->buses[bus_idx];
3369 if (!bus)
3370 return -ENOMEM;
3371
3372 /* exclude ioeventfd which is limited by maximum fd */
3373 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3374 return -ENOSPC;
3375
3376 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3377 sizeof(struct kvm_io_range)), GFP_KERNEL);
3378 if (!new_bus)
3379 return -ENOMEM;
3380 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3381 sizeof(struct kvm_io_range)));
3382 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3383 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3384 synchronize_srcu_expedited(&kvm->srcu);
3385 kfree(bus);
3386
3387 return 0;
3388 }
3389
3390 /* Caller must hold slots_lock. */
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)3391 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3392 struct kvm_io_device *dev)
3393 {
3394 int i, j;
3395 struct kvm_io_bus *new_bus, *bus;
3396
3397 bus = kvm->buses[bus_idx];
3398 if (!bus)
3399 return;
3400
3401 for (i = 0; i < bus->dev_count; i++)
3402 if (bus->range[i].dev == dev) {
3403 break;
3404 }
3405
3406 if (i == bus->dev_count)
3407 return;
3408
3409 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3410 sizeof(struct kvm_io_range)), GFP_KERNEL);
3411 if (new_bus) {
3412 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3413 new_bus->dev_count--;
3414 memcpy(new_bus->range + i, bus->range + i + 1,
3415 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3416 } else {
3417 pr_err("kvm: failed to shrink bus, removing it completely\n");
3418 for (j = 0; j < bus->dev_count; j++) {
3419 if (j == i)
3420 continue;
3421 kvm_iodevice_destructor(bus->range[j].dev);
3422 }
3423 }
3424
3425 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3426 synchronize_srcu_expedited(&kvm->srcu);
3427 kfree(bus);
3428 return;
3429 }
3430
3431 static struct notifier_block kvm_cpu_notifier = {
3432 .notifier_call = kvm_cpu_hotplug,
3433 };
3434
vm_stat_get(void * _offset,u64 * val)3435 static int vm_stat_get(void *_offset, u64 *val)
3436 {
3437 unsigned offset = (long)_offset;
3438 struct kvm *kvm;
3439
3440 *val = 0;
3441 spin_lock(&kvm_lock);
3442 list_for_each_entry(kvm, &vm_list, vm_list)
3443 *val += *(u32 *)((void *)kvm + offset);
3444 spin_unlock(&kvm_lock);
3445 return 0;
3446 }
3447
3448 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3449
vcpu_stat_get(void * _offset,u64 * val)3450 static int vcpu_stat_get(void *_offset, u64 *val)
3451 {
3452 unsigned offset = (long)_offset;
3453 struct kvm *kvm;
3454 struct kvm_vcpu *vcpu;
3455 int i;
3456
3457 *val = 0;
3458 spin_lock(&kvm_lock);
3459 list_for_each_entry(kvm, &vm_list, vm_list)
3460 kvm_for_each_vcpu(i, vcpu, kvm)
3461 *val += *(u32 *)((void *)vcpu + offset);
3462
3463 spin_unlock(&kvm_lock);
3464 return 0;
3465 }
3466
3467 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3468
3469 static const struct file_operations *stat_fops[] = {
3470 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3471 [KVM_STAT_VM] = &vm_stat_fops,
3472 };
3473
kvm_init_debug(void)3474 static int kvm_init_debug(void)
3475 {
3476 int r = -EEXIST;
3477 struct kvm_stats_debugfs_item *p;
3478
3479 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3480 if (kvm_debugfs_dir == NULL)
3481 goto out;
3482
3483 for (p = debugfs_entries; p->name; ++p) {
3484 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3485 (void *)(long)p->offset,
3486 stat_fops[p->kind]);
3487 if (p->dentry == NULL)
3488 goto out_dir;
3489 }
3490
3491 return 0;
3492
3493 out_dir:
3494 debugfs_remove_recursive(kvm_debugfs_dir);
3495 out:
3496 return r;
3497 }
3498
kvm_exit_debug(void)3499 static void kvm_exit_debug(void)
3500 {
3501 struct kvm_stats_debugfs_item *p;
3502
3503 for (p = debugfs_entries; p->name; ++p)
3504 debugfs_remove(p->dentry);
3505 debugfs_remove(kvm_debugfs_dir);
3506 }
3507
kvm_suspend(void)3508 static int kvm_suspend(void)
3509 {
3510 if (kvm_usage_count)
3511 hardware_disable_nolock(NULL);
3512 return 0;
3513 }
3514
kvm_resume(void)3515 static void kvm_resume(void)
3516 {
3517 if (kvm_usage_count) {
3518 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3519 hardware_enable_nolock(NULL);
3520 }
3521 }
3522
3523 static struct syscore_ops kvm_syscore_ops = {
3524 .suspend = kvm_suspend,
3525 .resume = kvm_resume,
3526 };
3527
3528 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)3529 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3530 {
3531 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3532 }
3533
kvm_sched_in(struct preempt_notifier * pn,int cpu)3534 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3535 {
3536 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3537
3538 if (vcpu->preempted)
3539 vcpu->preempted = false;
3540
3541 kvm_arch_sched_in(vcpu, cpu);
3542
3543 kvm_arch_vcpu_load(vcpu, cpu);
3544 }
3545
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)3546 static void kvm_sched_out(struct preempt_notifier *pn,
3547 struct task_struct *next)
3548 {
3549 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3550
3551 if (current->state == TASK_RUNNING)
3552 vcpu->preempted = true;
3553 kvm_arch_vcpu_put(vcpu);
3554 }
3555
kvm_init(void * opaque,unsigned vcpu_size,unsigned vcpu_align,struct module * module)3556 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3557 struct module *module)
3558 {
3559 int r;
3560 int cpu;
3561
3562 r = kvm_arch_init(opaque);
3563 if (r)
3564 goto out_fail;
3565
3566 /*
3567 * kvm_arch_init makes sure there's at most one caller
3568 * for architectures that support multiple implementations,
3569 * like intel and amd on x86.
3570 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3571 * conflicts in case kvm is already setup for another implementation.
3572 */
3573 r = kvm_irqfd_init();
3574 if (r)
3575 goto out_irqfd;
3576
3577 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3578 r = -ENOMEM;
3579 goto out_free_0;
3580 }
3581
3582 r = kvm_arch_hardware_setup();
3583 if (r < 0)
3584 goto out_free_0a;
3585
3586 for_each_online_cpu(cpu) {
3587 smp_call_function_single(cpu,
3588 kvm_arch_check_processor_compat,
3589 &r, 1);
3590 if (r < 0)
3591 goto out_free_1;
3592 }
3593
3594 r = register_cpu_notifier(&kvm_cpu_notifier);
3595 if (r)
3596 goto out_free_2;
3597 register_reboot_notifier(&kvm_reboot_notifier);
3598
3599 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3600 if (!vcpu_align)
3601 vcpu_align = __alignof__(struct kvm_vcpu);
3602 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3603 0, NULL);
3604 if (!kvm_vcpu_cache) {
3605 r = -ENOMEM;
3606 goto out_free_3;
3607 }
3608
3609 r = kvm_async_pf_init();
3610 if (r)
3611 goto out_free;
3612
3613 kvm_chardev_ops.owner = module;
3614 kvm_vm_fops.owner = module;
3615 kvm_vcpu_fops.owner = module;
3616
3617 r = misc_register(&kvm_dev);
3618 if (r) {
3619 pr_err("kvm: misc device register failed\n");
3620 goto out_unreg;
3621 }
3622
3623 register_syscore_ops(&kvm_syscore_ops);
3624
3625 kvm_preempt_ops.sched_in = kvm_sched_in;
3626 kvm_preempt_ops.sched_out = kvm_sched_out;
3627
3628 r = kvm_init_debug();
3629 if (r) {
3630 pr_err("kvm: create debugfs files failed\n");
3631 goto out_undebugfs;
3632 }
3633
3634 r = kvm_vfio_ops_init();
3635 WARN_ON(r);
3636
3637 return 0;
3638
3639 out_undebugfs:
3640 unregister_syscore_ops(&kvm_syscore_ops);
3641 misc_deregister(&kvm_dev);
3642 out_unreg:
3643 kvm_async_pf_deinit();
3644 out_free:
3645 kmem_cache_destroy(kvm_vcpu_cache);
3646 out_free_3:
3647 unregister_reboot_notifier(&kvm_reboot_notifier);
3648 unregister_cpu_notifier(&kvm_cpu_notifier);
3649 out_free_2:
3650 out_free_1:
3651 kvm_arch_hardware_unsetup();
3652 out_free_0a:
3653 free_cpumask_var(cpus_hardware_enabled);
3654 out_free_0:
3655 kvm_irqfd_exit();
3656 out_irqfd:
3657 kvm_arch_exit();
3658 out_fail:
3659 return r;
3660 }
3661 EXPORT_SYMBOL_GPL(kvm_init);
3662
kvm_exit(void)3663 void kvm_exit(void)
3664 {
3665 kvm_exit_debug();
3666 misc_deregister(&kvm_dev);
3667 kmem_cache_destroy(kvm_vcpu_cache);
3668 kvm_async_pf_deinit();
3669 unregister_syscore_ops(&kvm_syscore_ops);
3670 unregister_reboot_notifier(&kvm_reboot_notifier);
3671 unregister_cpu_notifier(&kvm_cpu_notifier);
3672 on_each_cpu(hardware_disable_nolock, NULL, 1);
3673 kvm_arch_hardware_unsetup();
3674 kvm_arch_exit();
3675 kvm_irqfd_exit();
3676 free_cpumask_var(cpus_hardware_enabled);
3677 kvm_vfio_ops_exit();
3678 }
3679 EXPORT_SYMBOL_GPL(kvm_exit);
3680