1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63 #include "dedupe.h"
64
65 struct btrfs_iget_args {
66 struct btrfs_key *location;
67 struct btrfs_root *root;
68 };
69
70 struct btrfs_dio_data {
71 u64 outstanding_extents;
72 u64 reserve;
73 u64 unsubmitted_oe_range_start;
74 u64 unsubmitted_oe_range_end;
75 };
76
77 static const struct inode_operations btrfs_dir_inode_operations;
78 static const struct inode_operations btrfs_symlink_inode_operations;
79 static const struct inode_operations btrfs_dir_ro_inode_operations;
80 static const struct inode_operations btrfs_special_inode_operations;
81 static const struct inode_operations btrfs_file_inode_operations;
82 static const struct address_space_operations btrfs_aops;
83 static const struct address_space_operations btrfs_symlink_aops;
84 static const struct file_operations btrfs_dir_file_operations;
85 static const struct extent_io_ops btrfs_extent_io_ops;
86
87 static struct kmem_cache *btrfs_inode_cachep;
88 struct kmem_cache *btrfs_trans_handle_cachep;
89 struct kmem_cache *btrfs_transaction_cachep;
90 struct kmem_cache *btrfs_path_cachep;
91 struct kmem_cache *btrfs_free_space_cachep;
92
93 #define S_SHIFT 12
94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
102 };
103
104 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
105 static int btrfs_truncate(struct inode *inode);
106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
107 static noinline int cow_file_range(struct inode *inode,
108 struct page *locked_page,
109 u64 start, u64 end, u64 delalloc_end,
110 int *page_started, unsigned long *nr_written,
111 int unlock, struct btrfs_dedupe_hash *hash);
112 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
113 u64 len, u64 orig_start,
114 u64 block_start, u64 block_len,
115 u64 orig_block_len, u64 ram_bytes,
116 int type);
117
118 static int btrfs_dirty_inode(struct inode *inode);
119
120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_inode_set_ops(struct inode * inode)121 void btrfs_test_inode_set_ops(struct inode *inode)
122 {
123 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
124 }
125 #endif
126
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)127 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
128 struct inode *inode, struct inode *dir,
129 const struct qstr *qstr)
130 {
131 int err;
132
133 err = btrfs_init_acl(trans, inode, dir);
134 if (!err)
135 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
136 return err;
137 }
138
139 /*
140 * this does all the hard work for inserting an inline extent into
141 * the btree. The caller should have done a btrfs_drop_extents so that
142 * no overlapping inline items exist in the btree
143 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,int extent_inserted,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages)144 static int insert_inline_extent(struct btrfs_trans_handle *trans,
145 struct btrfs_path *path, int extent_inserted,
146 struct btrfs_root *root, struct inode *inode,
147 u64 start, size_t size, size_t compressed_size,
148 int compress_type,
149 struct page **compressed_pages)
150 {
151 struct extent_buffer *leaf;
152 struct page *page = NULL;
153 char *kaddr;
154 unsigned long ptr;
155 struct btrfs_file_extent_item *ei;
156 int err = 0;
157 int ret;
158 size_t cur_size = size;
159 unsigned long offset;
160
161 if (compressed_size && compressed_pages)
162 cur_size = compressed_size;
163
164 inode_add_bytes(inode, size);
165
166 if (!extent_inserted) {
167 struct btrfs_key key;
168 size_t datasize;
169
170 key.objectid = btrfs_ino(inode);
171 key.offset = start;
172 key.type = BTRFS_EXTENT_DATA_KEY;
173
174 datasize = btrfs_file_extent_calc_inline_size(cur_size);
175 path->leave_spinning = 1;
176 ret = btrfs_insert_empty_item(trans, root, path, &key,
177 datasize);
178 if (ret) {
179 err = ret;
180 goto fail;
181 }
182 }
183 leaf = path->nodes[0];
184 ei = btrfs_item_ptr(leaf, path->slots[0],
185 struct btrfs_file_extent_item);
186 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
187 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
188 btrfs_set_file_extent_encryption(leaf, ei, 0);
189 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
190 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
191 ptr = btrfs_file_extent_inline_start(ei);
192
193 if (compress_type != BTRFS_COMPRESS_NONE) {
194 struct page *cpage;
195 int i = 0;
196 while (compressed_size > 0) {
197 cpage = compressed_pages[i];
198 cur_size = min_t(unsigned long, compressed_size,
199 PAGE_SIZE);
200
201 kaddr = kmap_atomic(cpage);
202 write_extent_buffer(leaf, kaddr, ptr, cur_size);
203 kunmap_atomic(kaddr);
204
205 i++;
206 ptr += cur_size;
207 compressed_size -= cur_size;
208 }
209 btrfs_set_file_extent_compression(leaf, ei,
210 compress_type);
211 } else {
212 page = find_get_page(inode->i_mapping,
213 start >> PAGE_SHIFT);
214 btrfs_set_file_extent_compression(leaf, ei, 0);
215 kaddr = kmap_atomic(page);
216 offset = start & (PAGE_SIZE - 1);
217 write_extent_buffer(leaf, kaddr + offset, ptr, size);
218 kunmap_atomic(kaddr);
219 put_page(page);
220 }
221 btrfs_mark_buffer_dirty(leaf);
222 btrfs_release_path(path);
223
224 /*
225 * we're an inline extent, so nobody can
226 * extend the file past i_size without locking
227 * a page we already have locked.
228 *
229 * We must do any isize and inode updates
230 * before we unlock the pages. Otherwise we
231 * could end up racing with unlink.
232 */
233 BTRFS_I(inode)->disk_i_size = inode->i_size;
234 ret = btrfs_update_inode(trans, root, inode);
235
236 return ret;
237 fail:
238 return err;
239 }
240
241
242 /*
243 * conditionally insert an inline extent into the file. This
244 * does the checks required to make sure the data is small enough
245 * to fit as an inline extent.
246 */
cow_file_range_inline(struct btrfs_root * root,struct inode * inode,u64 start,u64 end,size_t compressed_size,int compress_type,struct page ** compressed_pages)247 static noinline int cow_file_range_inline(struct btrfs_root *root,
248 struct inode *inode, u64 start,
249 u64 end, size_t compressed_size,
250 int compress_type,
251 struct page **compressed_pages)
252 {
253 struct btrfs_trans_handle *trans;
254 u64 isize = i_size_read(inode);
255 u64 actual_end = min(end + 1, isize);
256 u64 inline_len = actual_end - start;
257 u64 aligned_end = ALIGN(end, root->sectorsize);
258 u64 data_len = inline_len;
259 int ret;
260 struct btrfs_path *path;
261 int extent_inserted = 0;
262 u32 extent_item_size;
263
264 if (compressed_size)
265 data_len = compressed_size;
266
267 if (start > 0 ||
268 actual_end > root->sectorsize ||
269 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
270 (!compressed_size &&
271 (actual_end & (root->sectorsize - 1)) == 0) ||
272 end + 1 < isize ||
273 data_len > root->fs_info->max_inline) {
274 return 1;
275 }
276
277 path = btrfs_alloc_path();
278 if (!path)
279 return -ENOMEM;
280
281 trans = btrfs_join_transaction(root);
282 if (IS_ERR(trans)) {
283 btrfs_free_path(path);
284 return PTR_ERR(trans);
285 }
286 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
287
288 if (compressed_size && compressed_pages)
289 extent_item_size = btrfs_file_extent_calc_inline_size(
290 compressed_size);
291 else
292 extent_item_size = btrfs_file_extent_calc_inline_size(
293 inline_len);
294
295 ret = __btrfs_drop_extents(trans, root, inode, path,
296 start, aligned_end, NULL,
297 1, 1, extent_item_size, &extent_inserted);
298 if (ret) {
299 btrfs_abort_transaction(trans, ret);
300 goto out;
301 }
302
303 if (isize > actual_end)
304 inline_len = min_t(u64, isize, actual_end);
305 ret = insert_inline_extent(trans, path, extent_inserted,
306 root, inode, start,
307 inline_len, compressed_size,
308 compress_type, compressed_pages);
309 if (ret && ret != -ENOSPC) {
310 btrfs_abort_transaction(trans, ret);
311 goto out;
312 } else if (ret == -ENOSPC) {
313 ret = 1;
314 goto out;
315 }
316
317 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
318 btrfs_delalloc_release_metadata(inode, end + 1 - start);
319 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
320 out:
321 /*
322 * Don't forget to free the reserved space, as for inlined extent
323 * it won't count as data extent, free them directly here.
324 * And at reserve time, it's always aligned to page size, so
325 * just free one page here.
326 */
327 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
328 btrfs_free_path(path);
329 btrfs_end_transaction(trans, root);
330 return ret;
331 }
332
333 struct async_extent {
334 u64 start;
335 u64 ram_size;
336 u64 compressed_size;
337 struct page **pages;
338 unsigned long nr_pages;
339 int compress_type;
340 struct list_head list;
341 };
342
343 struct async_cow {
344 struct inode *inode;
345 struct btrfs_root *root;
346 struct page *locked_page;
347 u64 start;
348 u64 end;
349 struct list_head extents;
350 struct btrfs_work work;
351 };
352
add_async_extent(struct async_cow * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)353 static noinline int add_async_extent(struct async_cow *cow,
354 u64 start, u64 ram_size,
355 u64 compressed_size,
356 struct page **pages,
357 unsigned long nr_pages,
358 int compress_type)
359 {
360 struct async_extent *async_extent;
361
362 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
363 BUG_ON(!async_extent); /* -ENOMEM */
364 async_extent->start = start;
365 async_extent->ram_size = ram_size;
366 async_extent->compressed_size = compressed_size;
367 async_extent->pages = pages;
368 async_extent->nr_pages = nr_pages;
369 async_extent->compress_type = compress_type;
370 list_add_tail(&async_extent->list, &cow->extents);
371 return 0;
372 }
373
inode_need_compress(struct inode * inode)374 static inline int inode_need_compress(struct inode *inode)
375 {
376 struct btrfs_root *root = BTRFS_I(inode)->root;
377
378 /* force compress */
379 if (btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
380 return 1;
381 /* bad compression ratios */
382 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
383 return 0;
384 if (btrfs_test_opt(root->fs_info, COMPRESS) ||
385 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
386 BTRFS_I(inode)->force_compress)
387 return 1;
388 return 0;
389 }
390
391 /*
392 * we create compressed extents in two phases. The first
393 * phase compresses a range of pages that have already been
394 * locked (both pages and state bits are locked).
395 *
396 * This is done inside an ordered work queue, and the compression
397 * is spread across many cpus. The actual IO submission is step
398 * two, and the ordered work queue takes care of making sure that
399 * happens in the same order things were put onto the queue by
400 * writepages and friends.
401 *
402 * If this code finds it can't get good compression, it puts an
403 * entry onto the work queue to write the uncompressed bytes. This
404 * makes sure that both compressed inodes and uncompressed inodes
405 * are written in the same order that the flusher thread sent them
406 * down.
407 */
compress_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,struct async_cow * async_cow,int * num_added)408 static noinline void compress_file_range(struct inode *inode,
409 struct page *locked_page,
410 u64 start, u64 end,
411 struct async_cow *async_cow,
412 int *num_added)
413 {
414 struct btrfs_root *root = BTRFS_I(inode)->root;
415 u64 num_bytes;
416 u64 blocksize = root->sectorsize;
417 u64 actual_end;
418 u64 isize = i_size_read(inode);
419 int ret = 0;
420 struct page **pages = NULL;
421 unsigned long nr_pages;
422 unsigned long nr_pages_ret = 0;
423 unsigned long total_compressed = 0;
424 unsigned long total_in = 0;
425 unsigned long max_compressed = SZ_128K;
426 unsigned long max_uncompressed = SZ_128K;
427 int i;
428 int will_compress;
429 int compress_type = root->fs_info->compress_type;
430 int redirty = 0;
431
432 /* if this is a small write inside eof, kick off a defrag */
433 if ((end - start + 1) < SZ_16K &&
434 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
435 btrfs_add_inode_defrag(NULL, inode);
436
437 actual_end = min_t(u64, isize, end + 1);
438 again:
439 will_compress = 0;
440 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
441 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
442
443 /*
444 * we don't want to send crud past the end of i_size through
445 * compression, that's just a waste of CPU time. So, if the
446 * end of the file is before the start of our current
447 * requested range of bytes, we bail out to the uncompressed
448 * cleanup code that can deal with all of this.
449 *
450 * It isn't really the fastest way to fix things, but this is a
451 * very uncommon corner.
452 */
453 if (actual_end <= start)
454 goto cleanup_and_bail_uncompressed;
455
456 total_compressed = actual_end - start;
457
458 /*
459 * skip compression for a small file range(<=blocksize) that
460 * isn't an inline extent, since it doesn't save disk space at all.
461 */
462 if (total_compressed <= blocksize &&
463 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
464 goto cleanup_and_bail_uncompressed;
465
466 /* we want to make sure that amount of ram required to uncompress
467 * an extent is reasonable, so we limit the total size in ram
468 * of a compressed extent to 128k. This is a crucial number
469 * because it also controls how easily we can spread reads across
470 * cpus for decompression.
471 *
472 * We also want to make sure the amount of IO required to do
473 * a random read is reasonably small, so we limit the size of
474 * a compressed extent to 128k.
475 */
476 total_compressed = min(total_compressed, max_uncompressed);
477 num_bytes = ALIGN(end - start + 1, blocksize);
478 num_bytes = max(blocksize, num_bytes);
479 total_in = 0;
480 ret = 0;
481
482 /*
483 * we do compression for mount -o compress and when the
484 * inode has not been flagged as nocompress. This flag can
485 * change at any time if we discover bad compression ratios.
486 */
487 if (inode_need_compress(inode)) {
488 WARN_ON(pages);
489 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
490 if (!pages) {
491 /* just bail out to the uncompressed code */
492 goto cont;
493 }
494
495 if (BTRFS_I(inode)->force_compress)
496 compress_type = BTRFS_I(inode)->force_compress;
497
498 /*
499 * we need to call clear_page_dirty_for_io on each
500 * page in the range. Otherwise applications with the file
501 * mmap'd can wander in and change the page contents while
502 * we are compressing them.
503 *
504 * If the compression fails for any reason, we set the pages
505 * dirty again later on.
506 */
507 extent_range_clear_dirty_for_io(inode, start, end);
508 redirty = 1;
509 ret = btrfs_compress_pages(compress_type,
510 inode->i_mapping, start,
511 total_compressed, pages,
512 nr_pages, &nr_pages_ret,
513 &total_in,
514 &total_compressed,
515 max_compressed);
516
517 if (!ret) {
518 unsigned long offset = total_compressed &
519 (PAGE_SIZE - 1);
520 struct page *page = pages[nr_pages_ret - 1];
521 char *kaddr;
522
523 /* zero the tail end of the last page, we might be
524 * sending it down to disk
525 */
526 if (offset) {
527 kaddr = kmap_atomic(page);
528 memset(kaddr + offset, 0,
529 PAGE_SIZE - offset);
530 kunmap_atomic(kaddr);
531 }
532 will_compress = 1;
533 }
534 }
535 cont:
536 if (start == 0) {
537 /* lets try to make an inline extent */
538 if (ret || total_in < (actual_end - start)) {
539 /* we didn't compress the entire range, try
540 * to make an uncompressed inline extent.
541 */
542 ret = cow_file_range_inline(root, inode, start, end,
543 0, 0, NULL);
544 } else {
545 /* try making a compressed inline extent */
546 ret = cow_file_range_inline(root, inode, start, end,
547 total_compressed,
548 compress_type, pages);
549 }
550 if (ret <= 0) {
551 unsigned long clear_flags = EXTENT_DELALLOC |
552 EXTENT_DEFRAG;
553 unsigned long page_error_op;
554
555 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
556 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
557
558 /*
559 * inline extent creation worked or returned error,
560 * we don't need to create any more async work items.
561 * Unlock and free up our temp pages.
562 */
563 extent_clear_unlock_delalloc(inode, start, end, end,
564 NULL, clear_flags,
565 PAGE_UNLOCK |
566 PAGE_CLEAR_DIRTY |
567 PAGE_SET_WRITEBACK |
568 page_error_op |
569 PAGE_END_WRITEBACK);
570 if (ret == 0)
571 btrfs_free_reserved_data_space_noquota(inode,
572 start,
573 end - start + 1);
574 goto free_pages_out;
575 }
576 }
577
578 if (will_compress) {
579 /*
580 * we aren't doing an inline extent round the compressed size
581 * up to a block size boundary so the allocator does sane
582 * things
583 */
584 total_compressed = ALIGN(total_compressed, blocksize);
585
586 /*
587 * one last check to make sure the compression is really a
588 * win, compare the page count read with the blocks on disk
589 */
590 total_in = ALIGN(total_in, PAGE_SIZE);
591 if (total_compressed >= total_in) {
592 will_compress = 0;
593 } else {
594 num_bytes = total_in;
595 *num_added += 1;
596
597 /*
598 * The async work queues will take care of doing actual
599 * allocation on disk for these compressed pages, and
600 * will submit them to the elevator.
601 */
602 add_async_extent(async_cow, start, num_bytes,
603 total_compressed, pages, nr_pages_ret,
604 compress_type);
605
606 if (start + num_bytes < end) {
607 start += num_bytes;
608 pages = NULL;
609 cond_resched();
610 goto again;
611 }
612 return;
613 }
614 }
615 if (pages) {
616 /*
617 * the compression code ran but failed to make things smaller,
618 * free any pages it allocated and our page pointer array
619 */
620 for (i = 0; i < nr_pages_ret; i++) {
621 WARN_ON(pages[i]->mapping);
622 put_page(pages[i]);
623 }
624 kfree(pages);
625 pages = NULL;
626 total_compressed = 0;
627 nr_pages_ret = 0;
628
629 /* flag the file so we don't compress in the future */
630 if (!btrfs_test_opt(root->fs_info, FORCE_COMPRESS) &&
631 !(BTRFS_I(inode)->force_compress)) {
632 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
633 }
634 }
635 cleanup_and_bail_uncompressed:
636 /*
637 * No compression, but we still need to write the pages in the file
638 * we've been given so far. redirty the locked page if it corresponds
639 * to our extent and set things up for the async work queue to run
640 * cow_file_range to do the normal delalloc dance.
641 */
642 if (page_offset(locked_page) >= start &&
643 page_offset(locked_page) <= end)
644 __set_page_dirty_nobuffers(locked_page);
645 /* unlocked later on in the async handlers */
646
647 if (redirty)
648 extent_range_redirty_for_io(inode, start, end);
649 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
650 BTRFS_COMPRESS_NONE);
651 *num_added += 1;
652
653 return;
654
655 free_pages_out:
656 for (i = 0; i < nr_pages_ret; i++) {
657 WARN_ON(pages[i]->mapping);
658 put_page(pages[i]);
659 }
660 kfree(pages);
661 }
662
free_async_extent_pages(struct async_extent * async_extent)663 static void free_async_extent_pages(struct async_extent *async_extent)
664 {
665 int i;
666
667 if (!async_extent->pages)
668 return;
669
670 for (i = 0; i < async_extent->nr_pages; i++) {
671 WARN_ON(async_extent->pages[i]->mapping);
672 put_page(async_extent->pages[i]);
673 }
674 kfree(async_extent->pages);
675 async_extent->nr_pages = 0;
676 async_extent->pages = NULL;
677 }
678
679 /*
680 * phase two of compressed writeback. This is the ordered portion
681 * of the code, which only gets called in the order the work was
682 * queued. We walk all the async extents created by compress_file_range
683 * and send them down to the disk.
684 */
submit_compressed_extents(struct inode * inode,struct async_cow * async_cow)685 static noinline void submit_compressed_extents(struct inode *inode,
686 struct async_cow *async_cow)
687 {
688 struct async_extent *async_extent;
689 u64 alloc_hint = 0;
690 struct btrfs_key ins;
691 struct extent_map *em;
692 struct btrfs_root *root = BTRFS_I(inode)->root;
693 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
694 struct extent_io_tree *io_tree;
695 int ret = 0;
696
697 again:
698 while (!list_empty(&async_cow->extents)) {
699 async_extent = list_entry(async_cow->extents.next,
700 struct async_extent, list);
701 list_del(&async_extent->list);
702
703 io_tree = &BTRFS_I(inode)->io_tree;
704
705 retry:
706 /* did the compression code fall back to uncompressed IO? */
707 if (!async_extent->pages) {
708 int page_started = 0;
709 unsigned long nr_written = 0;
710
711 lock_extent(io_tree, async_extent->start,
712 async_extent->start +
713 async_extent->ram_size - 1);
714
715 /* allocate blocks */
716 ret = cow_file_range(inode, async_cow->locked_page,
717 async_extent->start,
718 async_extent->start +
719 async_extent->ram_size - 1,
720 async_extent->start +
721 async_extent->ram_size - 1,
722 &page_started, &nr_written, 0,
723 NULL);
724
725 /* JDM XXX */
726
727 /*
728 * if page_started, cow_file_range inserted an
729 * inline extent and took care of all the unlocking
730 * and IO for us. Otherwise, we need to submit
731 * all those pages down to the drive.
732 */
733 if (!page_started && !ret)
734 extent_write_locked_range(io_tree,
735 inode, async_extent->start,
736 async_extent->start +
737 async_extent->ram_size - 1,
738 btrfs_get_extent,
739 WB_SYNC_ALL);
740 else if (ret)
741 unlock_page(async_cow->locked_page);
742 kfree(async_extent);
743 cond_resched();
744 continue;
745 }
746
747 lock_extent(io_tree, async_extent->start,
748 async_extent->start + async_extent->ram_size - 1);
749
750 ret = btrfs_reserve_extent(root, async_extent->ram_size,
751 async_extent->compressed_size,
752 async_extent->compressed_size,
753 0, alloc_hint, &ins, 1, 1);
754 if (ret) {
755 free_async_extent_pages(async_extent);
756
757 if (ret == -ENOSPC) {
758 unlock_extent(io_tree, async_extent->start,
759 async_extent->start +
760 async_extent->ram_size - 1);
761
762 /*
763 * we need to redirty the pages if we decide to
764 * fallback to uncompressed IO, otherwise we
765 * will not submit these pages down to lower
766 * layers.
767 */
768 extent_range_redirty_for_io(inode,
769 async_extent->start,
770 async_extent->start +
771 async_extent->ram_size - 1);
772
773 goto retry;
774 }
775 goto out_free;
776 }
777 /*
778 * here we're doing allocation and writeback of the
779 * compressed pages
780 */
781 btrfs_drop_extent_cache(inode, async_extent->start,
782 async_extent->start +
783 async_extent->ram_size - 1, 0);
784
785 em = alloc_extent_map();
786 if (!em) {
787 ret = -ENOMEM;
788 goto out_free_reserve;
789 }
790 em->start = async_extent->start;
791 em->len = async_extent->ram_size;
792 em->orig_start = em->start;
793 em->mod_start = em->start;
794 em->mod_len = em->len;
795
796 em->block_start = ins.objectid;
797 em->block_len = ins.offset;
798 em->orig_block_len = ins.offset;
799 em->ram_bytes = async_extent->ram_size;
800 em->bdev = root->fs_info->fs_devices->latest_bdev;
801 em->compress_type = async_extent->compress_type;
802 set_bit(EXTENT_FLAG_PINNED, &em->flags);
803 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
804 em->generation = -1;
805
806 while (1) {
807 write_lock(&em_tree->lock);
808 ret = add_extent_mapping(em_tree, em, 1);
809 write_unlock(&em_tree->lock);
810 if (ret != -EEXIST) {
811 free_extent_map(em);
812 break;
813 }
814 btrfs_drop_extent_cache(inode, async_extent->start,
815 async_extent->start +
816 async_extent->ram_size - 1, 0);
817 }
818
819 if (ret)
820 goto out_free_reserve;
821
822 ret = btrfs_add_ordered_extent_compress(inode,
823 async_extent->start,
824 ins.objectid,
825 async_extent->ram_size,
826 ins.offset,
827 BTRFS_ORDERED_COMPRESSED,
828 async_extent->compress_type);
829 if (ret) {
830 btrfs_drop_extent_cache(inode, async_extent->start,
831 async_extent->start +
832 async_extent->ram_size - 1, 0);
833 goto out_free_reserve;
834 }
835 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
836
837 /*
838 * clear dirty, set writeback and unlock the pages.
839 */
840 extent_clear_unlock_delalloc(inode, async_extent->start,
841 async_extent->start +
842 async_extent->ram_size - 1,
843 async_extent->start +
844 async_extent->ram_size - 1,
845 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
846 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
847 PAGE_SET_WRITEBACK);
848 ret = btrfs_submit_compressed_write(inode,
849 async_extent->start,
850 async_extent->ram_size,
851 ins.objectid,
852 ins.offset, async_extent->pages,
853 async_extent->nr_pages);
854 if (ret) {
855 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
856 struct page *p = async_extent->pages[0];
857 const u64 start = async_extent->start;
858 const u64 end = start + async_extent->ram_size - 1;
859
860 p->mapping = inode->i_mapping;
861 tree->ops->writepage_end_io_hook(p, start, end,
862 NULL, 0);
863 p->mapping = NULL;
864 extent_clear_unlock_delalloc(inode, start, end, end,
865 NULL, 0,
866 PAGE_END_WRITEBACK |
867 PAGE_SET_ERROR);
868 free_async_extent_pages(async_extent);
869 }
870 alloc_hint = ins.objectid + ins.offset;
871 kfree(async_extent);
872 cond_resched();
873 }
874 return;
875 out_free_reserve:
876 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
877 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
878 out_free:
879 extent_clear_unlock_delalloc(inode, async_extent->start,
880 async_extent->start +
881 async_extent->ram_size - 1,
882 async_extent->start +
883 async_extent->ram_size - 1,
884 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
885 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
886 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
887 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
888 PAGE_SET_ERROR);
889 free_async_extent_pages(async_extent);
890 kfree(async_extent);
891 goto again;
892 }
893
get_extent_allocation_hint(struct inode * inode,u64 start,u64 num_bytes)894 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
895 u64 num_bytes)
896 {
897 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
898 struct extent_map *em;
899 u64 alloc_hint = 0;
900
901 read_lock(&em_tree->lock);
902 em = search_extent_mapping(em_tree, start, num_bytes);
903 if (em) {
904 /*
905 * if block start isn't an actual block number then find the
906 * first block in this inode and use that as a hint. If that
907 * block is also bogus then just don't worry about it.
908 */
909 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
910 free_extent_map(em);
911 em = search_extent_mapping(em_tree, 0, 0);
912 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
913 alloc_hint = em->block_start;
914 if (em)
915 free_extent_map(em);
916 } else {
917 alloc_hint = em->block_start;
918 free_extent_map(em);
919 }
920 }
921 read_unlock(&em_tree->lock);
922
923 return alloc_hint;
924 }
925
926 /*
927 * when extent_io.c finds a delayed allocation range in the file,
928 * the call backs end up in this code. The basic idea is to
929 * allocate extents on disk for the range, and create ordered data structs
930 * in ram to track those extents.
931 *
932 * locked_page is the page that writepage had locked already. We use
933 * it to make sure we don't do extra locks or unlocks.
934 *
935 * *page_started is set to one if we unlock locked_page and do everything
936 * required to start IO on it. It may be clean and already done with
937 * IO when we return.
938 */
cow_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,u64 delalloc_end,int * page_started,unsigned long * nr_written,int unlock,struct btrfs_dedupe_hash * hash)939 static noinline int cow_file_range(struct inode *inode,
940 struct page *locked_page,
941 u64 start, u64 end, u64 delalloc_end,
942 int *page_started, unsigned long *nr_written,
943 int unlock, struct btrfs_dedupe_hash *hash)
944 {
945 struct btrfs_root *root = BTRFS_I(inode)->root;
946 u64 alloc_hint = 0;
947 u64 num_bytes;
948 unsigned long ram_size;
949 u64 disk_num_bytes;
950 u64 cur_alloc_size;
951 u64 blocksize = root->sectorsize;
952 struct btrfs_key ins;
953 struct extent_map *em;
954 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
955 int ret = 0;
956
957 if (btrfs_is_free_space_inode(inode)) {
958 WARN_ON_ONCE(1);
959 ret = -EINVAL;
960 goto out_unlock;
961 }
962
963 num_bytes = ALIGN(end - start + 1, blocksize);
964 num_bytes = max(blocksize, num_bytes);
965 disk_num_bytes = num_bytes;
966
967 /* if this is a small write inside eof, kick off defrag */
968 if (num_bytes < SZ_64K &&
969 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
970 btrfs_add_inode_defrag(NULL, inode);
971
972 if (start == 0) {
973 /* lets try to make an inline extent */
974 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
975 NULL);
976 if (ret == 0) {
977 extent_clear_unlock_delalloc(inode, start, end,
978 delalloc_end, NULL,
979 EXTENT_LOCKED | EXTENT_DELALLOC |
980 EXTENT_DEFRAG, PAGE_UNLOCK |
981 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
982 PAGE_END_WRITEBACK);
983 btrfs_free_reserved_data_space_noquota(inode, start,
984 end - start + 1);
985 *nr_written = *nr_written +
986 (end - start + PAGE_SIZE) / PAGE_SIZE;
987 *page_started = 1;
988 goto out;
989 } else if (ret < 0) {
990 goto out_unlock;
991 }
992 }
993
994 BUG_ON(disk_num_bytes >
995 btrfs_super_total_bytes(root->fs_info->super_copy));
996
997 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
998 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
999
1000 while (disk_num_bytes > 0) {
1001 unsigned long op;
1002
1003 cur_alloc_size = disk_num_bytes;
1004 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1005 root->sectorsize, 0, alloc_hint,
1006 &ins, 1, 1);
1007 if (ret < 0)
1008 goto out_unlock;
1009
1010 em = alloc_extent_map();
1011 if (!em) {
1012 ret = -ENOMEM;
1013 goto out_reserve;
1014 }
1015 em->start = start;
1016 em->orig_start = em->start;
1017 ram_size = ins.offset;
1018 em->len = ins.offset;
1019 em->mod_start = em->start;
1020 em->mod_len = em->len;
1021
1022 em->block_start = ins.objectid;
1023 em->block_len = ins.offset;
1024 em->orig_block_len = ins.offset;
1025 em->ram_bytes = ram_size;
1026 em->bdev = root->fs_info->fs_devices->latest_bdev;
1027 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1028 em->generation = -1;
1029
1030 while (1) {
1031 write_lock(&em_tree->lock);
1032 ret = add_extent_mapping(em_tree, em, 1);
1033 write_unlock(&em_tree->lock);
1034 if (ret != -EEXIST) {
1035 free_extent_map(em);
1036 break;
1037 }
1038 btrfs_drop_extent_cache(inode, start,
1039 start + ram_size - 1, 0);
1040 }
1041 if (ret)
1042 goto out_reserve;
1043
1044 cur_alloc_size = ins.offset;
1045 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1046 ram_size, cur_alloc_size, 0);
1047 if (ret)
1048 goto out_drop_extent_cache;
1049
1050 if (root->root_key.objectid ==
1051 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1052 ret = btrfs_reloc_clone_csums(inode, start,
1053 cur_alloc_size);
1054 if (ret)
1055 goto out_drop_extent_cache;
1056 }
1057
1058 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1059
1060 if (disk_num_bytes < cur_alloc_size)
1061 break;
1062
1063 /* we're not doing compressed IO, don't unlock the first
1064 * page (which the caller expects to stay locked), don't
1065 * clear any dirty bits and don't set any writeback bits
1066 *
1067 * Do set the Private2 bit so we know this page was properly
1068 * setup for writepage
1069 */
1070 op = unlock ? PAGE_UNLOCK : 0;
1071 op |= PAGE_SET_PRIVATE2;
1072
1073 extent_clear_unlock_delalloc(inode, start,
1074 start + ram_size - 1,
1075 delalloc_end, locked_page,
1076 EXTENT_LOCKED | EXTENT_DELALLOC,
1077 op);
1078 disk_num_bytes -= cur_alloc_size;
1079 num_bytes -= cur_alloc_size;
1080 alloc_hint = ins.objectid + ins.offset;
1081 start += cur_alloc_size;
1082 }
1083 out:
1084 return ret;
1085
1086 out_drop_extent_cache:
1087 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1088 out_reserve:
1089 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1090 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1091 out_unlock:
1092 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1093 locked_page,
1094 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1095 EXTENT_DELALLOC | EXTENT_DEFRAG,
1096 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1097 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1098 goto out;
1099 }
1100
1101 /*
1102 * work queue call back to started compression on a file and pages
1103 */
async_cow_start(struct btrfs_work * work)1104 static noinline void async_cow_start(struct btrfs_work *work)
1105 {
1106 struct async_cow *async_cow;
1107 int num_added = 0;
1108 async_cow = container_of(work, struct async_cow, work);
1109
1110 compress_file_range(async_cow->inode, async_cow->locked_page,
1111 async_cow->start, async_cow->end, async_cow,
1112 &num_added);
1113 if (num_added == 0) {
1114 btrfs_add_delayed_iput(async_cow->inode);
1115 async_cow->inode = NULL;
1116 }
1117 }
1118
1119 /*
1120 * work queue call back to submit previously compressed pages
1121 */
async_cow_submit(struct btrfs_work * work)1122 static noinline void async_cow_submit(struct btrfs_work *work)
1123 {
1124 struct async_cow *async_cow;
1125 struct btrfs_root *root;
1126 unsigned long nr_pages;
1127
1128 async_cow = container_of(work, struct async_cow, work);
1129
1130 root = async_cow->root;
1131 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1132 PAGE_SHIFT;
1133
1134 /*
1135 * atomic_sub_return implies a barrier for waitqueue_active
1136 */
1137 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1138 5 * SZ_1M &&
1139 waitqueue_active(&root->fs_info->async_submit_wait))
1140 wake_up(&root->fs_info->async_submit_wait);
1141
1142 if (async_cow->inode)
1143 submit_compressed_extents(async_cow->inode, async_cow);
1144 }
1145
async_cow_free(struct btrfs_work * work)1146 static noinline void async_cow_free(struct btrfs_work *work)
1147 {
1148 struct async_cow *async_cow;
1149 async_cow = container_of(work, struct async_cow, work);
1150 if (async_cow->inode)
1151 btrfs_add_delayed_iput(async_cow->inode);
1152 kfree(async_cow);
1153 }
1154
cow_file_range_async(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1155 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1156 u64 start, u64 end, int *page_started,
1157 unsigned long *nr_written)
1158 {
1159 struct async_cow *async_cow;
1160 struct btrfs_root *root = BTRFS_I(inode)->root;
1161 unsigned long nr_pages;
1162 u64 cur_end;
1163 int limit = 10 * SZ_1M;
1164
1165 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1166 1, 0, NULL, GFP_NOFS);
1167 while (start < end) {
1168 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1169 BUG_ON(!async_cow); /* -ENOMEM */
1170 async_cow->inode = igrab(inode);
1171 async_cow->root = root;
1172 async_cow->locked_page = locked_page;
1173 async_cow->start = start;
1174
1175 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1176 !btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
1177 cur_end = end;
1178 else
1179 cur_end = min(end, start + SZ_512K - 1);
1180
1181 async_cow->end = cur_end;
1182 INIT_LIST_HEAD(&async_cow->extents);
1183
1184 btrfs_init_work(&async_cow->work,
1185 btrfs_delalloc_helper,
1186 async_cow_start, async_cow_submit,
1187 async_cow_free);
1188
1189 nr_pages = (cur_end - start + PAGE_SIZE) >>
1190 PAGE_SHIFT;
1191 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1192
1193 btrfs_queue_work(root->fs_info->delalloc_workers,
1194 &async_cow->work);
1195
1196 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1197 wait_event(root->fs_info->async_submit_wait,
1198 (atomic_read(&root->fs_info->async_delalloc_pages) <
1199 limit));
1200 }
1201
1202 while (atomic_read(&root->fs_info->async_submit_draining) &&
1203 atomic_read(&root->fs_info->async_delalloc_pages)) {
1204 wait_event(root->fs_info->async_submit_wait,
1205 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1206 0));
1207 }
1208
1209 *nr_written += nr_pages;
1210 start = cur_end + 1;
1211 }
1212 *page_started = 1;
1213 return 0;
1214 }
1215
csum_exist_in_range(struct btrfs_root * root,u64 bytenr,u64 num_bytes)1216 static noinline int csum_exist_in_range(struct btrfs_root *root,
1217 u64 bytenr, u64 num_bytes)
1218 {
1219 int ret;
1220 struct btrfs_ordered_sum *sums;
1221 LIST_HEAD(list);
1222
1223 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1224 bytenr + num_bytes - 1, &list, 0);
1225 if (ret == 0 && list_empty(&list))
1226 return 0;
1227
1228 while (!list_empty(&list)) {
1229 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1230 list_del(&sums->list);
1231 kfree(sums);
1232 }
1233 return 1;
1234 }
1235
1236 /*
1237 * when nowcow writeback call back. This checks for snapshots or COW copies
1238 * of the extents that exist in the file, and COWs the file as required.
1239 *
1240 * If no cow copies or snapshots exist, we write directly to the existing
1241 * blocks on disk
1242 */
run_delalloc_nocow(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,int force,unsigned long * nr_written)1243 static noinline int run_delalloc_nocow(struct inode *inode,
1244 struct page *locked_page,
1245 u64 start, u64 end, int *page_started, int force,
1246 unsigned long *nr_written)
1247 {
1248 struct btrfs_root *root = BTRFS_I(inode)->root;
1249 struct btrfs_trans_handle *trans;
1250 struct extent_buffer *leaf;
1251 struct btrfs_path *path;
1252 struct btrfs_file_extent_item *fi;
1253 struct btrfs_key found_key;
1254 u64 cow_start;
1255 u64 cur_offset;
1256 u64 extent_end;
1257 u64 extent_offset;
1258 u64 disk_bytenr;
1259 u64 num_bytes;
1260 u64 disk_num_bytes;
1261 u64 ram_bytes;
1262 int extent_type;
1263 int ret, err;
1264 int type;
1265 int nocow;
1266 int check_prev = 1;
1267 bool nolock;
1268 u64 ino = btrfs_ino(inode);
1269
1270 path = btrfs_alloc_path();
1271 if (!path) {
1272 extent_clear_unlock_delalloc(inode, start, end, end,
1273 locked_page,
1274 EXTENT_LOCKED | EXTENT_DELALLOC |
1275 EXTENT_DO_ACCOUNTING |
1276 EXTENT_DEFRAG, PAGE_UNLOCK |
1277 PAGE_CLEAR_DIRTY |
1278 PAGE_SET_WRITEBACK |
1279 PAGE_END_WRITEBACK);
1280 return -ENOMEM;
1281 }
1282
1283 nolock = btrfs_is_free_space_inode(inode);
1284
1285 if (nolock)
1286 trans = btrfs_join_transaction_nolock(root);
1287 else
1288 trans = btrfs_join_transaction(root);
1289
1290 if (IS_ERR(trans)) {
1291 extent_clear_unlock_delalloc(inode, start, end, end,
1292 locked_page,
1293 EXTENT_LOCKED | EXTENT_DELALLOC |
1294 EXTENT_DO_ACCOUNTING |
1295 EXTENT_DEFRAG, PAGE_UNLOCK |
1296 PAGE_CLEAR_DIRTY |
1297 PAGE_SET_WRITEBACK |
1298 PAGE_END_WRITEBACK);
1299 btrfs_free_path(path);
1300 return PTR_ERR(trans);
1301 }
1302
1303 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1304
1305 cow_start = (u64)-1;
1306 cur_offset = start;
1307 while (1) {
1308 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1309 cur_offset, 0);
1310 if (ret < 0)
1311 goto error;
1312 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1313 leaf = path->nodes[0];
1314 btrfs_item_key_to_cpu(leaf, &found_key,
1315 path->slots[0] - 1);
1316 if (found_key.objectid == ino &&
1317 found_key.type == BTRFS_EXTENT_DATA_KEY)
1318 path->slots[0]--;
1319 }
1320 check_prev = 0;
1321 next_slot:
1322 leaf = path->nodes[0];
1323 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1324 ret = btrfs_next_leaf(root, path);
1325 if (ret < 0) {
1326 if (cow_start != (u64)-1)
1327 cur_offset = cow_start;
1328 goto error;
1329 }
1330 if (ret > 0)
1331 break;
1332 leaf = path->nodes[0];
1333 }
1334
1335 nocow = 0;
1336 disk_bytenr = 0;
1337 num_bytes = 0;
1338 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1339
1340 if (found_key.objectid > ino)
1341 break;
1342 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1343 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1344 path->slots[0]++;
1345 goto next_slot;
1346 }
1347 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1348 found_key.offset > end)
1349 break;
1350
1351 if (found_key.offset > cur_offset) {
1352 extent_end = found_key.offset;
1353 extent_type = 0;
1354 goto out_check;
1355 }
1356
1357 fi = btrfs_item_ptr(leaf, path->slots[0],
1358 struct btrfs_file_extent_item);
1359 extent_type = btrfs_file_extent_type(leaf, fi);
1360
1361 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1362 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1363 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1364 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1365 extent_offset = btrfs_file_extent_offset(leaf, fi);
1366 extent_end = found_key.offset +
1367 btrfs_file_extent_num_bytes(leaf, fi);
1368 disk_num_bytes =
1369 btrfs_file_extent_disk_num_bytes(leaf, fi);
1370 if (extent_end <= start) {
1371 path->slots[0]++;
1372 goto next_slot;
1373 }
1374 if (disk_bytenr == 0)
1375 goto out_check;
1376 if (btrfs_file_extent_compression(leaf, fi) ||
1377 btrfs_file_extent_encryption(leaf, fi) ||
1378 btrfs_file_extent_other_encoding(leaf, fi))
1379 goto out_check;
1380 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1381 goto out_check;
1382 if (btrfs_extent_readonly(root, disk_bytenr))
1383 goto out_check;
1384 if (btrfs_cross_ref_exist(trans, root, ino,
1385 found_key.offset -
1386 extent_offset, disk_bytenr))
1387 goto out_check;
1388 disk_bytenr += extent_offset;
1389 disk_bytenr += cur_offset - found_key.offset;
1390 num_bytes = min(end + 1, extent_end) - cur_offset;
1391 /*
1392 * if there are pending snapshots for this root,
1393 * we fall into common COW way.
1394 */
1395 if (!nolock) {
1396 err = btrfs_start_write_no_snapshoting(root);
1397 if (!err)
1398 goto out_check;
1399 }
1400 /*
1401 * force cow if csum exists in the range.
1402 * this ensure that csum for a given extent are
1403 * either valid or do not exist.
1404 */
1405 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1406 goto out_check;
1407 if (!btrfs_inc_nocow_writers(root->fs_info,
1408 disk_bytenr))
1409 goto out_check;
1410 nocow = 1;
1411 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1412 extent_end = found_key.offset +
1413 btrfs_file_extent_inline_len(leaf,
1414 path->slots[0], fi);
1415 extent_end = ALIGN(extent_end, root->sectorsize);
1416 } else {
1417 BUG_ON(1);
1418 }
1419 out_check:
1420 if (extent_end <= start) {
1421 path->slots[0]++;
1422 if (!nolock && nocow)
1423 btrfs_end_write_no_snapshoting(root);
1424 if (nocow)
1425 btrfs_dec_nocow_writers(root->fs_info,
1426 disk_bytenr);
1427 goto next_slot;
1428 }
1429 if (!nocow) {
1430 if (cow_start == (u64)-1)
1431 cow_start = cur_offset;
1432 cur_offset = extent_end;
1433 if (cur_offset > end)
1434 break;
1435 path->slots[0]++;
1436 goto next_slot;
1437 }
1438
1439 btrfs_release_path(path);
1440 if (cow_start != (u64)-1) {
1441 ret = cow_file_range(inode, locked_page,
1442 cow_start, found_key.offset - 1,
1443 end, page_started, nr_written, 1,
1444 NULL);
1445 if (ret) {
1446 if (!nolock && nocow)
1447 btrfs_end_write_no_snapshoting(root);
1448 if (nocow)
1449 btrfs_dec_nocow_writers(root->fs_info,
1450 disk_bytenr);
1451 goto error;
1452 }
1453 cow_start = (u64)-1;
1454 }
1455
1456 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1457 struct extent_map *em;
1458 struct extent_map_tree *em_tree;
1459 em_tree = &BTRFS_I(inode)->extent_tree;
1460 em = alloc_extent_map();
1461 BUG_ON(!em); /* -ENOMEM */
1462 em->start = cur_offset;
1463 em->orig_start = found_key.offset - extent_offset;
1464 em->len = num_bytes;
1465 em->block_len = num_bytes;
1466 em->block_start = disk_bytenr;
1467 em->orig_block_len = disk_num_bytes;
1468 em->ram_bytes = ram_bytes;
1469 em->bdev = root->fs_info->fs_devices->latest_bdev;
1470 em->mod_start = em->start;
1471 em->mod_len = em->len;
1472 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1473 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1474 em->generation = -1;
1475 while (1) {
1476 write_lock(&em_tree->lock);
1477 ret = add_extent_mapping(em_tree, em, 1);
1478 write_unlock(&em_tree->lock);
1479 if (ret != -EEXIST) {
1480 free_extent_map(em);
1481 break;
1482 }
1483 btrfs_drop_extent_cache(inode, em->start,
1484 em->start + em->len - 1, 0);
1485 }
1486 type = BTRFS_ORDERED_PREALLOC;
1487 } else {
1488 type = BTRFS_ORDERED_NOCOW;
1489 }
1490
1491 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1492 num_bytes, num_bytes, type);
1493 if (nocow)
1494 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
1495 BUG_ON(ret); /* -ENOMEM */
1496
1497 if (root->root_key.objectid ==
1498 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1499 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1500 num_bytes);
1501 if (ret) {
1502 if (!nolock && nocow)
1503 btrfs_end_write_no_snapshoting(root);
1504 goto error;
1505 }
1506 }
1507
1508 extent_clear_unlock_delalloc(inode, cur_offset,
1509 cur_offset + num_bytes - 1, end,
1510 locked_page, EXTENT_LOCKED |
1511 EXTENT_DELALLOC |
1512 EXTENT_CLEAR_DATA_RESV,
1513 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1514
1515 if (!nolock && nocow)
1516 btrfs_end_write_no_snapshoting(root);
1517 cur_offset = extent_end;
1518 if (cur_offset > end)
1519 break;
1520 }
1521 btrfs_release_path(path);
1522
1523 if (cur_offset <= end && cow_start == (u64)-1) {
1524 cow_start = cur_offset;
1525 cur_offset = end;
1526 }
1527
1528 if (cow_start != (u64)-1) {
1529 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1530 page_started, nr_written, 1, NULL);
1531 if (ret)
1532 goto error;
1533 }
1534
1535 error:
1536 err = btrfs_end_transaction(trans, root);
1537 if (!ret)
1538 ret = err;
1539
1540 if (ret && cur_offset < end)
1541 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1542 locked_page, EXTENT_LOCKED |
1543 EXTENT_DELALLOC | EXTENT_DEFRAG |
1544 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1545 PAGE_CLEAR_DIRTY |
1546 PAGE_SET_WRITEBACK |
1547 PAGE_END_WRITEBACK);
1548 btrfs_free_path(path);
1549 return ret;
1550 }
1551
need_force_cow(struct inode * inode,u64 start,u64 end)1552 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1553 {
1554
1555 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1556 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1557 return 0;
1558
1559 /*
1560 * @defrag_bytes is a hint value, no spinlock held here,
1561 * if is not zero, it means the file is defragging.
1562 * Force cow if given extent needs to be defragged.
1563 */
1564 if (BTRFS_I(inode)->defrag_bytes &&
1565 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1566 EXTENT_DEFRAG, 0, NULL))
1567 return 1;
1568
1569 return 0;
1570 }
1571
1572 /*
1573 * extent_io.c call back to do delayed allocation processing
1574 */
run_delalloc_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1575 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1576 u64 start, u64 end, int *page_started,
1577 unsigned long *nr_written)
1578 {
1579 int ret;
1580 int force_cow = need_force_cow(inode, start, end);
1581
1582 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1583 ret = run_delalloc_nocow(inode, locked_page, start, end,
1584 page_started, 1, nr_written);
1585 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1586 ret = run_delalloc_nocow(inode, locked_page, start, end,
1587 page_started, 0, nr_written);
1588 } else if (!inode_need_compress(inode)) {
1589 ret = cow_file_range(inode, locked_page, start, end, end,
1590 page_started, nr_written, 1, NULL);
1591 } else {
1592 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1593 &BTRFS_I(inode)->runtime_flags);
1594 ret = cow_file_range_async(inode, locked_page, start, end,
1595 page_started, nr_written);
1596 }
1597 return ret;
1598 }
1599
btrfs_split_extent_hook(struct inode * inode,struct extent_state * orig,u64 split)1600 static void btrfs_split_extent_hook(struct inode *inode,
1601 struct extent_state *orig, u64 split)
1602 {
1603 u64 size;
1604
1605 /* not delalloc, ignore it */
1606 if (!(orig->state & EXTENT_DELALLOC))
1607 return;
1608
1609 size = orig->end - orig->start + 1;
1610 if (size > BTRFS_MAX_EXTENT_SIZE) {
1611 u64 num_extents;
1612 u64 new_size;
1613
1614 /*
1615 * See the explanation in btrfs_merge_extent_hook, the same
1616 * applies here, just in reverse.
1617 */
1618 new_size = orig->end - split + 1;
1619 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1620 BTRFS_MAX_EXTENT_SIZE);
1621 new_size = split - orig->start;
1622 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1623 BTRFS_MAX_EXTENT_SIZE);
1624 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1625 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1626 return;
1627 }
1628
1629 spin_lock(&BTRFS_I(inode)->lock);
1630 BTRFS_I(inode)->outstanding_extents++;
1631 spin_unlock(&BTRFS_I(inode)->lock);
1632 }
1633
1634 /*
1635 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1636 * extents so we can keep track of new extents that are just merged onto old
1637 * extents, such as when we are doing sequential writes, so we can properly
1638 * account for the metadata space we'll need.
1639 */
btrfs_merge_extent_hook(struct inode * inode,struct extent_state * new,struct extent_state * other)1640 static void btrfs_merge_extent_hook(struct inode *inode,
1641 struct extent_state *new,
1642 struct extent_state *other)
1643 {
1644 u64 new_size, old_size;
1645 u64 num_extents;
1646
1647 /* not delalloc, ignore it */
1648 if (!(other->state & EXTENT_DELALLOC))
1649 return;
1650
1651 if (new->start > other->start)
1652 new_size = new->end - other->start + 1;
1653 else
1654 new_size = other->end - new->start + 1;
1655
1656 /* we're not bigger than the max, unreserve the space and go */
1657 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1658 spin_lock(&BTRFS_I(inode)->lock);
1659 BTRFS_I(inode)->outstanding_extents--;
1660 spin_unlock(&BTRFS_I(inode)->lock);
1661 return;
1662 }
1663
1664 /*
1665 * We have to add up either side to figure out how many extents were
1666 * accounted for before we merged into one big extent. If the number of
1667 * extents we accounted for is <= the amount we need for the new range
1668 * then we can return, otherwise drop. Think of it like this
1669 *
1670 * [ 4k][MAX_SIZE]
1671 *
1672 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1673 * need 2 outstanding extents, on one side we have 1 and the other side
1674 * we have 1 so they are == and we can return. But in this case
1675 *
1676 * [MAX_SIZE+4k][MAX_SIZE+4k]
1677 *
1678 * Each range on their own accounts for 2 extents, but merged together
1679 * they are only 3 extents worth of accounting, so we need to drop in
1680 * this case.
1681 */
1682 old_size = other->end - other->start + 1;
1683 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1684 BTRFS_MAX_EXTENT_SIZE);
1685 old_size = new->end - new->start + 1;
1686 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1687 BTRFS_MAX_EXTENT_SIZE);
1688
1689 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1690 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1691 return;
1692
1693 spin_lock(&BTRFS_I(inode)->lock);
1694 BTRFS_I(inode)->outstanding_extents--;
1695 spin_unlock(&BTRFS_I(inode)->lock);
1696 }
1697
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)1698 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1699 struct inode *inode)
1700 {
1701 spin_lock(&root->delalloc_lock);
1702 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1703 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1704 &root->delalloc_inodes);
1705 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1706 &BTRFS_I(inode)->runtime_flags);
1707 root->nr_delalloc_inodes++;
1708 if (root->nr_delalloc_inodes == 1) {
1709 spin_lock(&root->fs_info->delalloc_root_lock);
1710 BUG_ON(!list_empty(&root->delalloc_root));
1711 list_add_tail(&root->delalloc_root,
1712 &root->fs_info->delalloc_roots);
1713 spin_unlock(&root->fs_info->delalloc_root_lock);
1714 }
1715 }
1716 spin_unlock(&root->delalloc_lock);
1717 }
1718
btrfs_del_delalloc_inode(struct btrfs_root * root,struct inode * inode)1719 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1720 struct inode *inode)
1721 {
1722 spin_lock(&root->delalloc_lock);
1723 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1724 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1725 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1726 &BTRFS_I(inode)->runtime_flags);
1727 root->nr_delalloc_inodes--;
1728 if (!root->nr_delalloc_inodes) {
1729 spin_lock(&root->fs_info->delalloc_root_lock);
1730 BUG_ON(list_empty(&root->delalloc_root));
1731 list_del_init(&root->delalloc_root);
1732 spin_unlock(&root->fs_info->delalloc_root_lock);
1733 }
1734 }
1735 spin_unlock(&root->delalloc_lock);
1736 }
1737
1738 /*
1739 * extent_io.c set_bit_hook, used to track delayed allocation
1740 * bytes in this file, and to maintain the list of inodes that
1741 * have pending delalloc work to be done.
1742 */
btrfs_set_bit_hook(struct inode * inode,struct extent_state * state,unsigned * bits)1743 static void btrfs_set_bit_hook(struct inode *inode,
1744 struct extent_state *state, unsigned *bits)
1745 {
1746
1747 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1748 WARN_ON(1);
1749 /*
1750 * set_bit and clear bit hooks normally require _irqsave/restore
1751 * but in this case, we are only testing for the DELALLOC
1752 * bit, which is only set or cleared with irqs on
1753 */
1754 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1755 struct btrfs_root *root = BTRFS_I(inode)->root;
1756 u64 len = state->end + 1 - state->start;
1757 bool do_list = !btrfs_is_free_space_inode(inode);
1758
1759 if (*bits & EXTENT_FIRST_DELALLOC) {
1760 *bits &= ~EXTENT_FIRST_DELALLOC;
1761 } else {
1762 spin_lock(&BTRFS_I(inode)->lock);
1763 BTRFS_I(inode)->outstanding_extents++;
1764 spin_unlock(&BTRFS_I(inode)->lock);
1765 }
1766
1767 /* For sanity tests */
1768 if (btrfs_is_testing(root->fs_info))
1769 return;
1770
1771 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1772 root->fs_info->delalloc_batch);
1773 spin_lock(&BTRFS_I(inode)->lock);
1774 BTRFS_I(inode)->delalloc_bytes += len;
1775 if (*bits & EXTENT_DEFRAG)
1776 BTRFS_I(inode)->defrag_bytes += len;
1777 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1778 &BTRFS_I(inode)->runtime_flags))
1779 btrfs_add_delalloc_inodes(root, inode);
1780 spin_unlock(&BTRFS_I(inode)->lock);
1781 }
1782 }
1783
1784 /*
1785 * extent_io.c clear_bit_hook, see set_bit_hook for why
1786 */
btrfs_clear_bit_hook(struct inode * inode,struct extent_state * state,unsigned * bits)1787 static void btrfs_clear_bit_hook(struct inode *inode,
1788 struct extent_state *state,
1789 unsigned *bits)
1790 {
1791 u64 len = state->end + 1 - state->start;
1792 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1793 BTRFS_MAX_EXTENT_SIZE);
1794
1795 spin_lock(&BTRFS_I(inode)->lock);
1796 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1797 BTRFS_I(inode)->defrag_bytes -= len;
1798 spin_unlock(&BTRFS_I(inode)->lock);
1799
1800 /*
1801 * set_bit and clear bit hooks normally require _irqsave/restore
1802 * but in this case, we are only testing for the DELALLOC
1803 * bit, which is only set or cleared with irqs on
1804 */
1805 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1806 struct btrfs_root *root = BTRFS_I(inode)->root;
1807 bool do_list = !btrfs_is_free_space_inode(inode);
1808
1809 if (*bits & EXTENT_FIRST_DELALLOC) {
1810 *bits &= ~EXTENT_FIRST_DELALLOC;
1811 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1812 spin_lock(&BTRFS_I(inode)->lock);
1813 BTRFS_I(inode)->outstanding_extents -= num_extents;
1814 spin_unlock(&BTRFS_I(inode)->lock);
1815 }
1816
1817 /*
1818 * We don't reserve metadata space for space cache inodes so we
1819 * don't need to call dellalloc_release_metadata if there is an
1820 * error.
1821 */
1822 if (*bits & EXTENT_DO_ACCOUNTING &&
1823 root != root->fs_info->tree_root)
1824 btrfs_delalloc_release_metadata(inode, len);
1825
1826 /* For sanity tests. */
1827 if (btrfs_is_testing(root->fs_info))
1828 return;
1829
1830 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1831 && do_list && !(state->state & EXTENT_NORESERVE)
1832 && (*bits & (EXTENT_DO_ACCOUNTING |
1833 EXTENT_CLEAR_DATA_RESV)))
1834 btrfs_free_reserved_data_space_noquota(inode,
1835 state->start, len);
1836
1837 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1838 root->fs_info->delalloc_batch);
1839 spin_lock(&BTRFS_I(inode)->lock);
1840 BTRFS_I(inode)->delalloc_bytes -= len;
1841 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1842 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1843 &BTRFS_I(inode)->runtime_flags))
1844 btrfs_del_delalloc_inode(root, inode);
1845 spin_unlock(&BTRFS_I(inode)->lock);
1846 }
1847 }
1848
1849 /*
1850 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1851 * we don't create bios that span stripes or chunks
1852 *
1853 * return 1 if page cannot be merged to bio
1854 * return 0 if page can be merged to bio
1855 * return error otherwise
1856 */
btrfs_merge_bio_hook(struct page * page,unsigned long offset,size_t size,struct bio * bio,unsigned long bio_flags)1857 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1858 size_t size, struct bio *bio,
1859 unsigned long bio_flags)
1860 {
1861 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1862 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1863 u64 length = 0;
1864 u64 map_length;
1865 int ret;
1866
1867 if (bio_flags & EXTENT_BIO_COMPRESSED)
1868 return 0;
1869
1870 length = bio->bi_iter.bi_size;
1871 map_length = length;
1872 ret = btrfs_map_block(root->fs_info, bio_op(bio), logical,
1873 &map_length, NULL, 0);
1874 if (ret < 0)
1875 return ret;
1876 if (map_length < length + size)
1877 return 1;
1878 return 0;
1879 }
1880
1881 /*
1882 * in order to insert checksums into the metadata in large chunks,
1883 * we wait until bio submission time. All the pages in the bio are
1884 * checksummed and sums are attached onto the ordered extent record.
1885 *
1886 * At IO completion time the cums attached on the ordered extent record
1887 * are inserted into the btree
1888 */
__btrfs_submit_bio_start(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)1889 static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1890 int mirror_num, unsigned long bio_flags,
1891 u64 bio_offset)
1892 {
1893 struct btrfs_root *root = BTRFS_I(inode)->root;
1894 int ret = 0;
1895
1896 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1897 BUG_ON(ret); /* -ENOMEM */
1898 return 0;
1899 }
1900
1901 /*
1902 * in order to insert checksums into the metadata in large chunks,
1903 * we wait until bio submission time. All the pages in the bio are
1904 * checksummed and sums are attached onto the ordered extent record.
1905 *
1906 * At IO completion time the cums attached on the ordered extent record
1907 * are inserted into the btree
1908 */
__btrfs_submit_bio_done(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)1909 static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
1910 int mirror_num, unsigned long bio_flags,
1911 u64 bio_offset)
1912 {
1913 struct btrfs_root *root = BTRFS_I(inode)->root;
1914 int ret;
1915
1916 ret = btrfs_map_bio(root, bio, mirror_num, 1);
1917 if (ret) {
1918 bio->bi_error = ret;
1919 bio_endio(bio);
1920 }
1921 return ret;
1922 }
1923
1924 /*
1925 * extent_io.c submission hook. This does the right thing for csum calculation
1926 * on write, or reading the csums from the tree before a read
1927 */
btrfs_submit_bio_hook(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)1928 static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
1929 int mirror_num, unsigned long bio_flags,
1930 u64 bio_offset)
1931 {
1932 struct btrfs_root *root = BTRFS_I(inode)->root;
1933 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1934 int ret = 0;
1935 int skip_sum;
1936 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1937
1938 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1939
1940 if (btrfs_is_free_space_inode(inode))
1941 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1942
1943 if (bio_op(bio) != REQ_OP_WRITE) {
1944 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1945 if (ret)
1946 goto out;
1947
1948 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1949 ret = btrfs_submit_compressed_read(inode, bio,
1950 mirror_num,
1951 bio_flags);
1952 goto out;
1953 } else if (!skip_sum) {
1954 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1955 if (ret)
1956 goto out;
1957 }
1958 goto mapit;
1959 } else if (async && !skip_sum) {
1960 /* csum items have already been cloned */
1961 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1962 goto mapit;
1963 /* we're doing a write, do the async checksumming */
1964 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1965 inode, bio, mirror_num,
1966 bio_flags, bio_offset,
1967 __btrfs_submit_bio_start,
1968 __btrfs_submit_bio_done);
1969 goto out;
1970 } else if (!skip_sum) {
1971 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1972 if (ret)
1973 goto out;
1974 }
1975
1976 mapit:
1977 ret = btrfs_map_bio(root, bio, mirror_num, 0);
1978
1979 out:
1980 if (ret < 0) {
1981 bio->bi_error = ret;
1982 bio_endio(bio);
1983 }
1984 return ret;
1985 }
1986
1987 /*
1988 * given a list of ordered sums record them in the inode. This happens
1989 * at IO completion time based on sums calculated at bio submission time.
1990 */
add_pending_csums(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_offset,struct list_head * list)1991 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1992 struct inode *inode, u64 file_offset,
1993 struct list_head *list)
1994 {
1995 struct btrfs_ordered_sum *sum;
1996
1997 list_for_each_entry(sum, list, list) {
1998 trans->adding_csums = 1;
1999 btrfs_csum_file_blocks(trans,
2000 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2001 trans->adding_csums = 0;
2002 }
2003 return 0;
2004 }
2005
btrfs_set_extent_delalloc(struct inode * inode,u64 start,u64 end,struct extent_state ** cached_state,int dedupe)2006 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2007 struct extent_state **cached_state, int dedupe)
2008 {
2009 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2010 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2011 cached_state);
2012 }
2013
2014 /* see btrfs_writepage_start_hook for details on why this is required */
2015 struct btrfs_writepage_fixup {
2016 struct page *page;
2017 struct btrfs_work work;
2018 };
2019
btrfs_writepage_fixup_worker(struct btrfs_work * work)2020 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2021 {
2022 struct btrfs_writepage_fixup *fixup;
2023 struct btrfs_ordered_extent *ordered;
2024 struct extent_state *cached_state = NULL;
2025 struct page *page;
2026 struct inode *inode;
2027 u64 page_start;
2028 u64 page_end;
2029 int ret;
2030
2031 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2032 page = fixup->page;
2033 again:
2034 lock_page(page);
2035 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2036 ClearPageChecked(page);
2037 goto out_page;
2038 }
2039
2040 inode = page->mapping->host;
2041 page_start = page_offset(page);
2042 page_end = page_offset(page) + PAGE_SIZE - 1;
2043
2044 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2045 &cached_state);
2046
2047 /* already ordered? We're done */
2048 if (PagePrivate2(page))
2049 goto out;
2050
2051 ordered = btrfs_lookup_ordered_range(inode, page_start,
2052 PAGE_SIZE);
2053 if (ordered) {
2054 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2055 page_end, &cached_state, GFP_NOFS);
2056 unlock_page(page);
2057 btrfs_start_ordered_extent(inode, ordered, 1);
2058 btrfs_put_ordered_extent(ordered);
2059 goto again;
2060 }
2061
2062 ret = btrfs_delalloc_reserve_space(inode, page_start,
2063 PAGE_SIZE);
2064 if (ret) {
2065 mapping_set_error(page->mapping, ret);
2066 end_extent_writepage(page, ret, page_start, page_end);
2067 ClearPageChecked(page);
2068 goto out;
2069 }
2070
2071 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
2072 &cached_state, 0);
2073 if (ret) {
2074 mapping_set_error(page->mapping, ret);
2075 end_extent_writepage(page, ret, page_start, page_end);
2076 ClearPageChecked(page);
2077 goto out;
2078 }
2079
2080 ClearPageChecked(page);
2081 set_page_dirty(page);
2082 out:
2083 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2084 &cached_state, GFP_NOFS);
2085 out_page:
2086 unlock_page(page);
2087 put_page(page);
2088 kfree(fixup);
2089 }
2090
2091 /*
2092 * There are a few paths in the higher layers of the kernel that directly
2093 * set the page dirty bit without asking the filesystem if it is a
2094 * good idea. This causes problems because we want to make sure COW
2095 * properly happens and the data=ordered rules are followed.
2096 *
2097 * In our case any range that doesn't have the ORDERED bit set
2098 * hasn't been properly setup for IO. We kick off an async process
2099 * to fix it up. The async helper will wait for ordered extents, set
2100 * the delalloc bit and make it safe to write the page.
2101 */
btrfs_writepage_start_hook(struct page * page,u64 start,u64 end)2102 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2103 {
2104 struct inode *inode = page->mapping->host;
2105 struct btrfs_writepage_fixup *fixup;
2106 struct btrfs_root *root = BTRFS_I(inode)->root;
2107
2108 /* this page is properly in the ordered list */
2109 if (TestClearPagePrivate2(page))
2110 return 0;
2111
2112 if (PageChecked(page))
2113 return -EAGAIN;
2114
2115 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2116 if (!fixup)
2117 return -EAGAIN;
2118
2119 SetPageChecked(page);
2120 get_page(page);
2121 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2122 btrfs_writepage_fixup_worker, NULL, NULL);
2123 fixup->page = page;
2124 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2125 return -EBUSY;
2126 }
2127
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_pos,u64 disk_bytenr,u64 disk_num_bytes,u64 num_bytes,u64 ram_bytes,u8 compression,u8 encryption,u16 other_encoding,int extent_type)2128 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2129 struct inode *inode, u64 file_pos,
2130 u64 disk_bytenr, u64 disk_num_bytes,
2131 u64 num_bytes, u64 ram_bytes,
2132 u8 compression, u8 encryption,
2133 u16 other_encoding, int extent_type)
2134 {
2135 struct btrfs_root *root = BTRFS_I(inode)->root;
2136 struct btrfs_file_extent_item *fi;
2137 struct btrfs_path *path;
2138 struct extent_buffer *leaf;
2139 struct btrfs_key ins;
2140 int extent_inserted = 0;
2141 int ret;
2142
2143 path = btrfs_alloc_path();
2144 if (!path)
2145 return -ENOMEM;
2146
2147 /*
2148 * we may be replacing one extent in the tree with another.
2149 * The new extent is pinned in the extent map, and we don't want
2150 * to drop it from the cache until it is completely in the btree.
2151 *
2152 * So, tell btrfs_drop_extents to leave this extent in the cache.
2153 * the caller is expected to unpin it and allow it to be merged
2154 * with the others.
2155 */
2156 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2157 file_pos + num_bytes, NULL, 0,
2158 1, sizeof(*fi), &extent_inserted);
2159 if (ret)
2160 goto out;
2161
2162 if (!extent_inserted) {
2163 ins.objectid = btrfs_ino(inode);
2164 ins.offset = file_pos;
2165 ins.type = BTRFS_EXTENT_DATA_KEY;
2166
2167 path->leave_spinning = 1;
2168 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2169 sizeof(*fi));
2170 if (ret)
2171 goto out;
2172 }
2173 leaf = path->nodes[0];
2174 fi = btrfs_item_ptr(leaf, path->slots[0],
2175 struct btrfs_file_extent_item);
2176 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2177 btrfs_set_file_extent_type(leaf, fi, extent_type);
2178 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2179 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2180 btrfs_set_file_extent_offset(leaf, fi, 0);
2181 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2182 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2183 btrfs_set_file_extent_compression(leaf, fi, compression);
2184 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2185 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2186
2187 btrfs_mark_buffer_dirty(leaf);
2188 btrfs_release_path(path);
2189
2190 inode_add_bytes(inode, num_bytes);
2191
2192 ins.objectid = disk_bytenr;
2193 ins.offset = disk_num_bytes;
2194 ins.type = BTRFS_EXTENT_ITEM_KEY;
2195 ret = btrfs_alloc_reserved_file_extent(trans, root,
2196 root->root_key.objectid,
2197 btrfs_ino(inode), file_pos,
2198 ram_bytes, &ins);
2199 /*
2200 * Release the reserved range from inode dirty range map, as it is
2201 * already moved into delayed_ref_head
2202 */
2203 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2204 out:
2205 btrfs_free_path(path);
2206
2207 return ret;
2208 }
2209
2210 /* snapshot-aware defrag */
2211 struct sa_defrag_extent_backref {
2212 struct rb_node node;
2213 struct old_sa_defrag_extent *old;
2214 u64 root_id;
2215 u64 inum;
2216 u64 file_pos;
2217 u64 extent_offset;
2218 u64 num_bytes;
2219 u64 generation;
2220 };
2221
2222 struct old_sa_defrag_extent {
2223 struct list_head list;
2224 struct new_sa_defrag_extent *new;
2225
2226 u64 extent_offset;
2227 u64 bytenr;
2228 u64 offset;
2229 u64 len;
2230 int count;
2231 };
2232
2233 struct new_sa_defrag_extent {
2234 struct rb_root root;
2235 struct list_head head;
2236 struct btrfs_path *path;
2237 struct inode *inode;
2238 u64 file_pos;
2239 u64 len;
2240 u64 bytenr;
2241 u64 disk_len;
2242 u8 compress_type;
2243 };
2244
backref_comp(struct sa_defrag_extent_backref * b1,struct sa_defrag_extent_backref * b2)2245 static int backref_comp(struct sa_defrag_extent_backref *b1,
2246 struct sa_defrag_extent_backref *b2)
2247 {
2248 if (b1->root_id < b2->root_id)
2249 return -1;
2250 else if (b1->root_id > b2->root_id)
2251 return 1;
2252
2253 if (b1->inum < b2->inum)
2254 return -1;
2255 else if (b1->inum > b2->inum)
2256 return 1;
2257
2258 if (b1->file_pos < b2->file_pos)
2259 return -1;
2260 else if (b1->file_pos > b2->file_pos)
2261 return 1;
2262
2263 /*
2264 * [------------------------------] ===> (a range of space)
2265 * |<--->| |<---->| =============> (fs/file tree A)
2266 * |<---------------------------->| ===> (fs/file tree B)
2267 *
2268 * A range of space can refer to two file extents in one tree while
2269 * refer to only one file extent in another tree.
2270 *
2271 * So we may process a disk offset more than one time(two extents in A)
2272 * and locate at the same extent(one extent in B), then insert two same
2273 * backrefs(both refer to the extent in B).
2274 */
2275 return 0;
2276 }
2277
backref_insert(struct rb_root * root,struct sa_defrag_extent_backref * backref)2278 static void backref_insert(struct rb_root *root,
2279 struct sa_defrag_extent_backref *backref)
2280 {
2281 struct rb_node **p = &root->rb_node;
2282 struct rb_node *parent = NULL;
2283 struct sa_defrag_extent_backref *entry;
2284 int ret;
2285
2286 while (*p) {
2287 parent = *p;
2288 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2289
2290 ret = backref_comp(backref, entry);
2291 if (ret < 0)
2292 p = &(*p)->rb_left;
2293 else
2294 p = &(*p)->rb_right;
2295 }
2296
2297 rb_link_node(&backref->node, parent, p);
2298 rb_insert_color(&backref->node, root);
2299 }
2300
2301 /*
2302 * Note the backref might has changed, and in this case we just return 0.
2303 */
record_one_backref(u64 inum,u64 offset,u64 root_id,void * ctx)2304 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2305 void *ctx)
2306 {
2307 struct btrfs_file_extent_item *extent;
2308 struct btrfs_fs_info *fs_info;
2309 struct old_sa_defrag_extent *old = ctx;
2310 struct new_sa_defrag_extent *new = old->new;
2311 struct btrfs_path *path = new->path;
2312 struct btrfs_key key;
2313 struct btrfs_root *root;
2314 struct sa_defrag_extent_backref *backref;
2315 struct extent_buffer *leaf;
2316 struct inode *inode = new->inode;
2317 int slot;
2318 int ret;
2319 u64 extent_offset;
2320 u64 num_bytes;
2321
2322 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2323 inum == btrfs_ino(inode))
2324 return 0;
2325
2326 key.objectid = root_id;
2327 key.type = BTRFS_ROOT_ITEM_KEY;
2328 key.offset = (u64)-1;
2329
2330 fs_info = BTRFS_I(inode)->root->fs_info;
2331 root = btrfs_read_fs_root_no_name(fs_info, &key);
2332 if (IS_ERR(root)) {
2333 if (PTR_ERR(root) == -ENOENT)
2334 return 0;
2335 WARN_ON(1);
2336 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2337 inum, offset, root_id);
2338 return PTR_ERR(root);
2339 }
2340
2341 key.objectid = inum;
2342 key.type = BTRFS_EXTENT_DATA_KEY;
2343 if (offset > (u64)-1 << 32)
2344 key.offset = 0;
2345 else
2346 key.offset = offset;
2347
2348 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2349 if (WARN_ON(ret < 0))
2350 return ret;
2351 ret = 0;
2352
2353 while (1) {
2354 cond_resched();
2355
2356 leaf = path->nodes[0];
2357 slot = path->slots[0];
2358
2359 if (slot >= btrfs_header_nritems(leaf)) {
2360 ret = btrfs_next_leaf(root, path);
2361 if (ret < 0) {
2362 goto out;
2363 } else if (ret > 0) {
2364 ret = 0;
2365 goto out;
2366 }
2367 continue;
2368 }
2369
2370 path->slots[0]++;
2371
2372 btrfs_item_key_to_cpu(leaf, &key, slot);
2373
2374 if (key.objectid > inum)
2375 goto out;
2376
2377 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2378 continue;
2379
2380 extent = btrfs_item_ptr(leaf, slot,
2381 struct btrfs_file_extent_item);
2382
2383 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2384 continue;
2385
2386 /*
2387 * 'offset' refers to the exact key.offset,
2388 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2389 * (key.offset - extent_offset).
2390 */
2391 if (key.offset != offset)
2392 continue;
2393
2394 extent_offset = btrfs_file_extent_offset(leaf, extent);
2395 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2396
2397 if (extent_offset >= old->extent_offset + old->offset +
2398 old->len || extent_offset + num_bytes <=
2399 old->extent_offset + old->offset)
2400 continue;
2401 break;
2402 }
2403
2404 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2405 if (!backref) {
2406 ret = -ENOENT;
2407 goto out;
2408 }
2409
2410 backref->root_id = root_id;
2411 backref->inum = inum;
2412 backref->file_pos = offset;
2413 backref->num_bytes = num_bytes;
2414 backref->extent_offset = extent_offset;
2415 backref->generation = btrfs_file_extent_generation(leaf, extent);
2416 backref->old = old;
2417 backref_insert(&new->root, backref);
2418 old->count++;
2419 out:
2420 btrfs_release_path(path);
2421 WARN_ON(ret);
2422 return ret;
2423 }
2424
record_extent_backrefs(struct btrfs_path * path,struct new_sa_defrag_extent * new)2425 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2426 struct new_sa_defrag_extent *new)
2427 {
2428 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2429 struct old_sa_defrag_extent *old, *tmp;
2430 int ret;
2431
2432 new->path = path;
2433
2434 list_for_each_entry_safe(old, tmp, &new->head, list) {
2435 ret = iterate_inodes_from_logical(old->bytenr +
2436 old->extent_offset, fs_info,
2437 path, record_one_backref,
2438 old);
2439 if (ret < 0 && ret != -ENOENT)
2440 return false;
2441
2442 /* no backref to be processed for this extent */
2443 if (!old->count) {
2444 list_del(&old->list);
2445 kfree(old);
2446 }
2447 }
2448
2449 if (list_empty(&new->head))
2450 return false;
2451
2452 return true;
2453 }
2454
relink_is_mergable(struct extent_buffer * leaf,struct btrfs_file_extent_item * fi,struct new_sa_defrag_extent * new)2455 static int relink_is_mergable(struct extent_buffer *leaf,
2456 struct btrfs_file_extent_item *fi,
2457 struct new_sa_defrag_extent *new)
2458 {
2459 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2460 return 0;
2461
2462 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2463 return 0;
2464
2465 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2466 return 0;
2467
2468 if (btrfs_file_extent_encryption(leaf, fi) ||
2469 btrfs_file_extent_other_encoding(leaf, fi))
2470 return 0;
2471
2472 return 1;
2473 }
2474
2475 /*
2476 * Note the backref might has changed, and in this case we just return 0.
2477 */
relink_extent_backref(struct btrfs_path * path,struct sa_defrag_extent_backref * prev,struct sa_defrag_extent_backref * backref)2478 static noinline int relink_extent_backref(struct btrfs_path *path,
2479 struct sa_defrag_extent_backref *prev,
2480 struct sa_defrag_extent_backref *backref)
2481 {
2482 struct btrfs_file_extent_item *extent;
2483 struct btrfs_file_extent_item *item;
2484 struct btrfs_ordered_extent *ordered;
2485 struct btrfs_trans_handle *trans;
2486 struct btrfs_fs_info *fs_info;
2487 struct btrfs_root *root;
2488 struct btrfs_key key;
2489 struct extent_buffer *leaf;
2490 struct old_sa_defrag_extent *old = backref->old;
2491 struct new_sa_defrag_extent *new = old->new;
2492 struct inode *src_inode = new->inode;
2493 struct inode *inode;
2494 struct extent_state *cached = NULL;
2495 int ret = 0;
2496 u64 start;
2497 u64 len;
2498 u64 lock_start;
2499 u64 lock_end;
2500 bool merge = false;
2501 int index;
2502
2503 if (prev && prev->root_id == backref->root_id &&
2504 prev->inum == backref->inum &&
2505 prev->file_pos + prev->num_bytes == backref->file_pos)
2506 merge = true;
2507
2508 /* step 1: get root */
2509 key.objectid = backref->root_id;
2510 key.type = BTRFS_ROOT_ITEM_KEY;
2511 key.offset = (u64)-1;
2512
2513 fs_info = BTRFS_I(src_inode)->root->fs_info;
2514 index = srcu_read_lock(&fs_info->subvol_srcu);
2515
2516 root = btrfs_read_fs_root_no_name(fs_info, &key);
2517 if (IS_ERR(root)) {
2518 srcu_read_unlock(&fs_info->subvol_srcu, index);
2519 if (PTR_ERR(root) == -ENOENT)
2520 return 0;
2521 return PTR_ERR(root);
2522 }
2523
2524 if (btrfs_root_readonly(root)) {
2525 srcu_read_unlock(&fs_info->subvol_srcu, index);
2526 return 0;
2527 }
2528
2529 /* step 2: get inode */
2530 key.objectid = backref->inum;
2531 key.type = BTRFS_INODE_ITEM_KEY;
2532 key.offset = 0;
2533
2534 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2535 if (IS_ERR(inode)) {
2536 srcu_read_unlock(&fs_info->subvol_srcu, index);
2537 return 0;
2538 }
2539
2540 srcu_read_unlock(&fs_info->subvol_srcu, index);
2541
2542 /* step 3: relink backref */
2543 lock_start = backref->file_pos;
2544 lock_end = backref->file_pos + backref->num_bytes - 1;
2545 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2546 &cached);
2547
2548 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2549 if (ordered) {
2550 btrfs_put_ordered_extent(ordered);
2551 goto out_unlock;
2552 }
2553
2554 trans = btrfs_join_transaction(root);
2555 if (IS_ERR(trans)) {
2556 ret = PTR_ERR(trans);
2557 goto out_unlock;
2558 }
2559
2560 key.objectid = backref->inum;
2561 key.type = BTRFS_EXTENT_DATA_KEY;
2562 key.offset = backref->file_pos;
2563
2564 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2565 if (ret < 0) {
2566 goto out_free_path;
2567 } else if (ret > 0) {
2568 ret = 0;
2569 goto out_free_path;
2570 }
2571
2572 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2573 struct btrfs_file_extent_item);
2574
2575 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2576 backref->generation)
2577 goto out_free_path;
2578
2579 btrfs_release_path(path);
2580
2581 start = backref->file_pos;
2582 if (backref->extent_offset < old->extent_offset + old->offset)
2583 start += old->extent_offset + old->offset -
2584 backref->extent_offset;
2585
2586 len = min(backref->extent_offset + backref->num_bytes,
2587 old->extent_offset + old->offset + old->len);
2588 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2589
2590 ret = btrfs_drop_extents(trans, root, inode, start,
2591 start + len, 1);
2592 if (ret)
2593 goto out_free_path;
2594 again:
2595 key.objectid = btrfs_ino(inode);
2596 key.type = BTRFS_EXTENT_DATA_KEY;
2597 key.offset = start;
2598
2599 path->leave_spinning = 1;
2600 if (merge) {
2601 struct btrfs_file_extent_item *fi;
2602 u64 extent_len;
2603 struct btrfs_key found_key;
2604
2605 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2606 if (ret < 0)
2607 goto out_free_path;
2608
2609 path->slots[0]--;
2610 leaf = path->nodes[0];
2611 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2612
2613 fi = btrfs_item_ptr(leaf, path->slots[0],
2614 struct btrfs_file_extent_item);
2615 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2616
2617 if (extent_len + found_key.offset == start &&
2618 relink_is_mergable(leaf, fi, new)) {
2619 btrfs_set_file_extent_num_bytes(leaf, fi,
2620 extent_len + len);
2621 btrfs_mark_buffer_dirty(leaf);
2622 inode_add_bytes(inode, len);
2623
2624 ret = 1;
2625 goto out_free_path;
2626 } else {
2627 merge = false;
2628 btrfs_release_path(path);
2629 goto again;
2630 }
2631 }
2632
2633 ret = btrfs_insert_empty_item(trans, root, path, &key,
2634 sizeof(*extent));
2635 if (ret) {
2636 btrfs_abort_transaction(trans, ret);
2637 goto out_free_path;
2638 }
2639
2640 leaf = path->nodes[0];
2641 item = btrfs_item_ptr(leaf, path->slots[0],
2642 struct btrfs_file_extent_item);
2643 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2644 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2645 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2646 btrfs_set_file_extent_num_bytes(leaf, item, len);
2647 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2648 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2649 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2650 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2651 btrfs_set_file_extent_encryption(leaf, item, 0);
2652 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2653
2654 btrfs_mark_buffer_dirty(leaf);
2655 inode_add_bytes(inode, len);
2656 btrfs_release_path(path);
2657
2658 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2659 new->disk_len, 0,
2660 backref->root_id, backref->inum,
2661 new->file_pos); /* start - extent_offset */
2662 if (ret) {
2663 btrfs_abort_transaction(trans, ret);
2664 goto out_free_path;
2665 }
2666
2667 ret = 1;
2668 out_free_path:
2669 btrfs_release_path(path);
2670 path->leave_spinning = 0;
2671 btrfs_end_transaction(trans, root);
2672 out_unlock:
2673 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2674 &cached, GFP_NOFS);
2675 iput(inode);
2676 return ret;
2677 }
2678
free_sa_defrag_extent(struct new_sa_defrag_extent * new)2679 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2680 {
2681 struct old_sa_defrag_extent *old, *tmp;
2682
2683 if (!new)
2684 return;
2685
2686 list_for_each_entry_safe(old, tmp, &new->head, list) {
2687 kfree(old);
2688 }
2689 kfree(new);
2690 }
2691
relink_file_extents(struct new_sa_defrag_extent * new)2692 static void relink_file_extents(struct new_sa_defrag_extent *new)
2693 {
2694 struct btrfs_path *path;
2695 struct sa_defrag_extent_backref *backref;
2696 struct sa_defrag_extent_backref *prev = NULL;
2697 struct inode *inode;
2698 struct btrfs_root *root;
2699 struct rb_node *node;
2700 int ret;
2701
2702 inode = new->inode;
2703 root = BTRFS_I(inode)->root;
2704
2705 path = btrfs_alloc_path();
2706 if (!path)
2707 return;
2708
2709 if (!record_extent_backrefs(path, new)) {
2710 btrfs_free_path(path);
2711 goto out;
2712 }
2713 btrfs_release_path(path);
2714
2715 while (1) {
2716 node = rb_first(&new->root);
2717 if (!node)
2718 break;
2719 rb_erase(node, &new->root);
2720
2721 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2722
2723 ret = relink_extent_backref(path, prev, backref);
2724 WARN_ON(ret < 0);
2725
2726 kfree(prev);
2727
2728 if (ret == 1)
2729 prev = backref;
2730 else
2731 prev = NULL;
2732 cond_resched();
2733 }
2734 kfree(prev);
2735
2736 btrfs_free_path(path);
2737 out:
2738 free_sa_defrag_extent(new);
2739
2740 atomic_dec(&root->fs_info->defrag_running);
2741 wake_up(&root->fs_info->transaction_wait);
2742 }
2743
2744 static struct new_sa_defrag_extent *
record_old_file_extents(struct inode * inode,struct btrfs_ordered_extent * ordered)2745 record_old_file_extents(struct inode *inode,
2746 struct btrfs_ordered_extent *ordered)
2747 {
2748 struct btrfs_root *root = BTRFS_I(inode)->root;
2749 struct btrfs_path *path;
2750 struct btrfs_key key;
2751 struct old_sa_defrag_extent *old;
2752 struct new_sa_defrag_extent *new;
2753 int ret;
2754
2755 new = kmalloc(sizeof(*new), GFP_NOFS);
2756 if (!new)
2757 return NULL;
2758
2759 new->inode = inode;
2760 new->file_pos = ordered->file_offset;
2761 new->len = ordered->len;
2762 new->bytenr = ordered->start;
2763 new->disk_len = ordered->disk_len;
2764 new->compress_type = ordered->compress_type;
2765 new->root = RB_ROOT;
2766 INIT_LIST_HEAD(&new->head);
2767
2768 path = btrfs_alloc_path();
2769 if (!path)
2770 goto out_kfree;
2771
2772 key.objectid = btrfs_ino(inode);
2773 key.type = BTRFS_EXTENT_DATA_KEY;
2774 key.offset = new->file_pos;
2775
2776 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2777 if (ret < 0)
2778 goto out_free_path;
2779 if (ret > 0 && path->slots[0] > 0)
2780 path->slots[0]--;
2781
2782 /* find out all the old extents for the file range */
2783 while (1) {
2784 struct btrfs_file_extent_item *extent;
2785 struct extent_buffer *l;
2786 int slot;
2787 u64 num_bytes;
2788 u64 offset;
2789 u64 end;
2790 u64 disk_bytenr;
2791 u64 extent_offset;
2792
2793 l = path->nodes[0];
2794 slot = path->slots[0];
2795
2796 if (slot >= btrfs_header_nritems(l)) {
2797 ret = btrfs_next_leaf(root, path);
2798 if (ret < 0)
2799 goto out_free_path;
2800 else if (ret > 0)
2801 break;
2802 continue;
2803 }
2804
2805 btrfs_item_key_to_cpu(l, &key, slot);
2806
2807 if (key.objectid != btrfs_ino(inode))
2808 break;
2809 if (key.type != BTRFS_EXTENT_DATA_KEY)
2810 break;
2811 if (key.offset >= new->file_pos + new->len)
2812 break;
2813
2814 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2815
2816 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2817 if (key.offset + num_bytes < new->file_pos)
2818 goto next;
2819
2820 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2821 if (!disk_bytenr)
2822 goto next;
2823
2824 extent_offset = btrfs_file_extent_offset(l, extent);
2825
2826 old = kmalloc(sizeof(*old), GFP_NOFS);
2827 if (!old)
2828 goto out_free_path;
2829
2830 offset = max(new->file_pos, key.offset);
2831 end = min(new->file_pos + new->len, key.offset + num_bytes);
2832
2833 old->bytenr = disk_bytenr;
2834 old->extent_offset = extent_offset;
2835 old->offset = offset - key.offset;
2836 old->len = end - offset;
2837 old->new = new;
2838 old->count = 0;
2839 list_add_tail(&old->list, &new->head);
2840 next:
2841 path->slots[0]++;
2842 cond_resched();
2843 }
2844
2845 btrfs_free_path(path);
2846 atomic_inc(&root->fs_info->defrag_running);
2847
2848 return new;
2849
2850 out_free_path:
2851 btrfs_free_path(path);
2852 out_kfree:
2853 free_sa_defrag_extent(new);
2854 return NULL;
2855 }
2856
btrfs_release_delalloc_bytes(struct btrfs_root * root,u64 start,u64 len)2857 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2858 u64 start, u64 len)
2859 {
2860 struct btrfs_block_group_cache *cache;
2861
2862 cache = btrfs_lookup_block_group(root->fs_info, start);
2863 ASSERT(cache);
2864
2865 spin_lock(&cache->lock);
2866 cache->delalloc_bytes -= len;
2867 spin_unlock(&cache->lock);
2868
2869 btrfs_put_block_group(cache);
2870 }
2871
2872 /* as ordered data IO finishes, this gets called so we can finish
2873 * an ordered extent if the range of bytes in the file it covers are
2874 * fully written.
2875 */
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)2876 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2877 {
2878 struct inode *inode = ordered_extent->inode;
2879 struct btrfs_root *root = BTRFS_I(inode)->root;
2880 struct btrfs_trans_handle *trans = NULL;
2881 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2882 struct extent_state *cached_state = NULL;
2883 struct new_sa_defrag_extent *new = NULL;
2884 int compress_type = 0;
2885 int ret = 0;
2886 u64 logical_len = ordered_extent->len;
2887 bool nolock;
2888 bool truncated = false;
2889
2890 nolock = btrfs_is_free_space_inode(inode);
2891
2892 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2893 ret = -EIO;
2894 goto out;
2895 }
2896
2897 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2898 ordered_extent->file_offset +
2899 ordered_extent->len - 1);
2900
2901 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2902 truncated = true;
2903 logical_len = ordered_extent->truncated_len;
2904 /* Truncated the entire extent, don't bother adding */
2905 if (!logical_len)
2906 goto out;
2907 }
2908
2909 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2910 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2911
2912 /*
2913 * For mwrite(mmap + memset to write) case, we still reserve
2914 * space for NOCOW range.
2915 * As NOCOW won't cause a new delayed ref, just free the space
2916 */
2917 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2918 ordered_extent->len);
2919 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2920 if (nolock)
2921 trans = btrfs_join_transaction_nolock(root);
2922 else
2923 trans = btrfs_join_transaction(root);
2924 if (IS_ERR(trans)) {
2925 ret = PTR_ERR(trans);
2926 trans = NULL;
2927 goto out;
2928 }
2929 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2930 ret = btrfs_update_inode_fallback(trans, root, inode);
2931 if (ret) /* -ENOMEM or corruption */
2932 btrfs_abort_transaction(trans, ret);
2933 goto out;
2934 }
2935
2936 lock_extent_bits(io_tree, ordered_extent->file_offset,
2937 ordered_extent->file_offset + ordered_extent->len - 1,
2938 &cached_state);
2939
2940 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2941 ordered_extent->file_offset + ordered_extent->len - 1,
2942 EXTENT_DEFRAG, 1, cached_state);
2943 if (ret) {
2944 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2945 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2946 /* the inode is shared */
2947 new = record_old_file_extents(inode, ordered_extent);
2948
2949 clear_extent_bit(io_tree, ordered_extent->file_offset,
2950 ordered_extent->file_offset + ordered_extent->len - 1,
2951 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2952 }
2953
2954 if (nolock)
2955 trans = btrfs_join_transaction_nolock(root);
2956 else
2957 trans = btrfs_join_transaction(root);
2958 if (IS_ERR(trans)) {
2959 ret = PTR_ERR(trans);
2960 trans = NULL;
2961 goto out_unlock;
2962 }
2963
2964 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2965
2966 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2967 compress_type = ordered_extent->compress_type;
2968 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2969 BUG_ON(compress_type);
2970 ret = btrfs_mark_extent_written(trans, inode,
2971 ordered_extent->file_offset,
2972 ordered_extent->file_offset +
2973 logical_len);
2974 } else {
2975 BUG_ON(root == root->fs_info->tree_root);
2976 ret = insert_reserved_file_extent(trans, inode,
2977 ordered_extent->file_offset,
2978 ordered_extent->start,
2979 ordered_extent->disk_len,
2980 logical_len, logical_len,
2981 compress_type, 0, 0,
2982 BTRFS_FILE_EXTENT_REG);
2983 if (!ret)
2984 btrfs_release_delalloc_bytes(root,
2985 ordered_extent->start,
2986 ordered_extent->disk_len);
2987 }
2988 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2989 ordered_extent->file_offset, ordered_extent->len,
2990 trans->transid);
2991 if (ret < 0) {
2992 btrfs_abort_transaction(trans, ret);
2993 goto out_unlock;
2994 }
2995
2996 add_pending_csums(trans, inode, ordered_extent->file_offset,
2997 &ordered_extent->list);
2998
2999 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3000 ret = btrfs_update_inode_fallback(trans, root, inode);
3001 if (ret) { /* -ENOMEM or corruption */
3002 btrfs_abort_transaction(trans, ret);
3003 goto out_unlock;
3004 }
3005 ret = 0;
3006 out_unlock:
3007 unlock_extent_cached(io_tree, ordered_extent->file_offset,
3008 ordered_extent->file_offset +
3009 ordered_extent->len - 1, &cached_state, GFP_NOFS);
3010 out:
3011 if (root != root->fs_info->tree_root)
3012 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
3013 if (trans)
3014 btrfs_end_transaction(trans, root);
3015
3016 if (ret || truncated) {
3017 u64 start, end;
3018
3019 if (truncated)
3020 start = ordered_extent->file_offset + logical_len;
3021 else
3022 start = ordered_extent->file_offset;
3023 end = ordered_extent->file_offset + ordered_extent->len - 1;
3024 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3025
3026 /* Drop the cache for the part of the extent we didn't write. */
3027 btrfs_drop_extent_cache(inode, start, end, 0);
3028
3029 /*
3030 * If the ordered extent had an IOERR or something else went
3031 * wrong we need to return the space for this ordered extent
3032 * back to the allocator. We only free the extent in the
3033 * truncated case if we didn't write out the extent at all.
3034 */
3035 if ((ret || !logical_len) &&
3036 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3037 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3038 btrfs_free_reserved_extent(root, ordered_extent->start,
3039 ordered_extent->disk_len, 1);
3040 }
3041
3042
3043 /*
3044 * This needs to be done to make sure anybody waiting knows we are done
3045 * updating everything for this ordered extent.
3046 */
3047 btrfs_remove_ordered_extent(inode, ordered_extent);
3048
3049 /* for snapshot-aware defrag */
3050 if (new) {
3051 if (ret) {
3052 free_sa_defrag_extent(new);
3053 atomic_dec(&root->fs_info->defrag_running);
3054 } else {
3055 relink_file_extents(new);
3056 }
3057 }
3058
3059 /* once for us */
3060 btrfs_put_ordered_extent(ordered_extent);
3061 /* once for the tree */
3062 btrfs_put_ordered_extent(ordered_extent);
3063
3064 return ret;
3065 }
3066
finish_ordered_fn(struct btrfs_work * work)3067 static void finish_ordered_fn(struct btrfs_work *work)
3068 {
3069 struct btrfs_ordered_extent *ordered_extent;
3070 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3071 btrfs_finish_ordered_io(ordered_extent);
3072 }
3073
btrfs_writepage_end_io_hook(struct page * page,u64 start,u64 end,struct extent_state * state,int uptodate)3074 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3075 struct extent_state *state, int uptodate)
3076 {
3077 struct inode *inode = page->mapping->host;
3078 struct btrfs_root *root = BTRFS_I(inode)->root;
3079 struct btrfs_ordered_extent *ordered_extent = NULL;
3080 struct btrfs_workqueue *wq;
3081 btrfs_work_func_t func;
3082
3083 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3084
3085 ClearPagePrivate2(page);
3086 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3087 end - start + 1, uptodate))
3088 return 0;
3089
3090 if (btrfs_is_free_space_inode(inode)) {
3091 wq = root->fs_info->endio_freespace_worker;
3092 func = btrfs_freespace_write_helper;
3093 } else {
3094 wq = root->fs_info->endio_write_workers;
3095 func = btrfs_endio_write_helper;
3096 }
3097
3098 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3099 NULL);
3100 btrfs_queue_work(wq, &ordered_extent->work);
3101
3102 return 0;
3103 }
3104
__readpage_endio_check(struct inode * inode,struct btrfs_io_bio * io_bio,int icsum,struct page * page,int pgoff,u64 start,size_t len)3105 static int __readpage_endio_check(struct inode *inode,
3106 struct btrfs_io_bio *io_bio,
3107 int icsum, struct page *page,
3108 int pgoff, u64 start, size_t len)
3109 {
3110 char *kaddr;
3111 u32 csum_expected;
3112 u32 csum = ~(u32)0;
3113
3114 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3115
3116 kaddr = kmap_atomic(page);
3117 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3118 btrfs_csum_final(csum, (char *)&csum);
3119 if (csum != csum_expected)
3120 goto zeroit;
3121
3122 kunmap_atomic(kaddr);
3123 return 0;
3124 zeroit:
3125 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3126 "csum failed ino %llu off %llu csum %u expected csum %u",
3127 btrfs_ino(inode), start, csum, csum_expected);
3128 memset(kaddr + pgoff, 1, len);
3129 flush_dcache_page(page);
3130 kunmap_atomic(kaddr);
3131 if (csum_expected == 0)
3132 return 0;
3133 return -EIO;
3134 }
3135
3136 /*
3137 * when reads are done, we need to check csums to verify the data is correct
3138 * if there's a match, we allow the bio to finish. If not, the code in
3139 * extent_io.c will try to find good copies for us.
3140 */
btrfs_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)3141 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3142 u64 phy_offset, struct page *page,
3143 u64 start, u64 end, int mirror)
3144 {
3145 size_t offset = start - page_offset(page);
3146 struct inode *inode = page->mapping->host;
3147 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3148 struct btrfs_root *root = BTRFS_I(inode)->root;
3149
3150 if (PageChecked(page)) {
3151 ClearPageChecked(page);
3152 return 0;
3153 }
3154
3155 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3156 return 0;
3157
3158 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3159 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3160 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3161 return 0;
3162 }
3163
3164 phy_offset >>= inode->i_sb->s_blocksize_bits;
3165 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3166 start, (size_t)(end - start + 1));
3167 }
3168
btrfs_add_delayed_iput(struct inode * inode)3169 void btrfs_add_delayed_iput(struct inode *inode)
3170 {
3171 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3172 struct btrfs_inode *binode = BTRFS_I(inode);
3173
3174 if (atomic_add_unless(&inode->i_count, -1, 1))
3175 return;
3176
3177 spin_lock(&fs_info->delayed_iput_lock);
3178 if (binode->delayed_iput_count == 0) {
3179 ASSERT(list_empty(&binode->delayed_iput));
3180 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3181 } else {
3182 binode->delayed_iput_count++;
3183 }
3184 spin_unlock(&fs_info->delayed_iput_lock);
3185 }
3186
btrfs_run_delayed_iputs(struct btrfs_root * root)3187 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3188 {
3189 struct btrfs_fs_info *fs_info = root->fs_info;
3190
3191 spin_lock(&fs_info->delayed_iput_lock);
3192 while (!list_empty(&fs_info->delayed_iputs)) {
3193 struct btrfs_inode *inode;
3194
3195 inode = list_first_entry(&fs_info->delayed_iputs,
3196 struct btrfs_inode, delayed_iput);
3197 if (inode->delayed_iput_count) {
3198 inode->delayed_iput_count--;
3199 list_move_tail(&inode->delayed_iput,
3200 &fs_info->delayed_iputs);
3201 } else {
3202 list_del_init(&inode->delayed_iput);
3203 }
3204 spin_unlock(&fs_info->delayed_iput_lock);
3205 iput(&inode->vfs_inode);
3206 spin_lock(&fs_info->delayed_iput_lock);
3207 }
3208 spin_unlock(&fs_info->delayed_iput_lock);
3209 }
3210
3211 /*
3212 * This is called in transaction commit time. If there are no orphan
3213 * files in the subvolume, it removes orphan item and frees block_rsv
3214 * structure.
3215 */
btrfs_orphan_commit_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)3216 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3217 struct btrfs_root *root)
3218 {
3219 struct btrfs_block_rsv *block_rsv;
3220 int ret;
3221
3222 if (atomic_read(&root->orphan_inodes) ||
3223 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3224 return;
3225
3226 spin_lock(&root->orphan_lock);
3227 if (atomic_read(&root->orphan_inodes)) {
3228 spin_unlock(&root->orphan_lock);
3229 return;
3230 }
3231
3232 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3233 spin_unlock(&root->orphan_lock);
3234 return;
3235 }
3236
3237 block_rsv = root->orphan_block_rsv;
3238 root->orphan_block_rsv = NULL;
3239 spin_unlock(&root->orphan_lock);
3240
3241 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3242 btrfs_root_refs(&root->root_item) > 0) {
3243 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3244 root->root_key.objectid);
3245 if (ret)
3246 btrfs_abort_transaction(trans, ret);
3247 else
3248 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3249 &root->state);
3250 }
3251
3252 if (block_rsv) {
3253 WARN_ON(block_rsv->size > 0);
3254 btrfs_free_block_rsv(root, block_rsv);
3255 }
3256 }
3257
3258 /*
3259 * This creates an orphan entry for the given inode in case something goes
3260 * wrong in the middle of an unlink/truncate.
3261 *
3262 * NOTE: caller of this function should reserve 5 units of metadata for
3263 * this function.
3264 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct inode * inode)3265 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3266 {
3267 struct btrfs_root *root = BTRFS_I(inode)->root;
3268 struct btrfs_block_rsv *block_rsv = NULL;
3269 int reserve = 0;
3270 int insert = 0;
3271 int ret;
3272
3273 if (!root->orphan_block_rsv) {
3274 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3275 if (!block_rsv)
3276 return -ENOMEM;
3277 }
3278
3279 spin_lock(&root->orphan_lock);
3280 if (!root->orphan_block_rsv) {
3281 root->orphan_block_rsv = block_rsv;
3282 } else if (block_rsv) {
3283 btrfs_free_block_rsv(root, block_rsv);
3284 block_rsv = NULL;
3285 }
3286
3287 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3288 &BTRFS_I(inode)->runtime_flags)) {
3289 #if 0
3290 /*
3291 * For proper ENOSPC handling, we should do orphan
3292 * cleanup when mounting. But this introduces backward
3293 * compatibility issue.
3294 */
3295 if (!xchg(&root->orphan_item_inserted, 1))
3296 insert = 2;
3297 else
3298 insert = 1;
3299 #endif
3300 insert = 1;
3301 atomic_inc(&root->orphan_inodes);
3302 }
3303
3304 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3305 &BTRFS_I(inode)->runtime_flags))
3306 reserve = 1;
3307 spin_unlock(&root->orphan_lock);
3308
3309 /* grab metadata reservation from transaction handle */
3310 if (reserve) {
3311 ret = btrfs_orphan_reserve_metadata(trans, inode);
3312 ASSERT(!ret);
3313 if (ret) {
3314 atomic_dec(&root->orphan_inodes);
3315 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3316 &BTRFS_I(inode)->runtime_flags);
3317 if (insert)
3318 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3319 &BTRFS_I(inode)->runtime_flags);
3320 return ret;
3321 }
3322 }
3323
3324 /* insert an orphan item to track this unlinked/truncated file */
3325 if (insert >= 1) {
3326 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3327 if (ret) {
3328 atomic_dec(&root->orphan_inodes);
3329 if (reserve) {
3330 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3331 &BTRFS_I(inode)->runtime_flags);
3332 btrfs_orphan_release_metadata(inode);
3333 }
3334 if (ret != -EEXIST) {
3335 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3336 &BTRFS_I(inode)->runtime_flags);
3337 btrfs_abort_transaction(trans, ret);
3338 return ret;
3339 }
3340 }
3341 ret = 0;
3342 }
3343
3344 /* insert an orphan item to track subvolume contains orphan files */
3345 if (insert >= 2) {
3346 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3347 root->root_key.objectid);
3348 if (ret && ret != -EEXIST) {
3349 btrfs_abort_transaction(trans, ret);
3350 return ret;
3351 }
3352 }
3353 return 0;
3354 }
3355
3356 /*
3357 * We have done the truncate/delete so we can go ahead and remove the orphan
3358 * item for this particular inode.
3359 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct inode * inode)3360 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3361 struct inode *inode)
3362 {
3363 struct btrfs_root *root = BTRFS_I(inode)->root;
3364 int delete_item = 0;
3365 int release_rsv = 0;
3366 int ret = 0;
3367
3368 spin_lock(&root->orphan_lock);
3369 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3370 &BTRFS_I(inode)->runtime_flags))
3371 delete_item = 1;
3372
3373 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3374 &BTRFS_I(inode)->runtime_flags))
3375 release_rsv = 1;
3376 spin_unlock(&root->orphan_lock);
3377
3378 if (delete_item) {
3379 atomic_dec(&root->orphan_inodes);
3380 if (trans)
3381 ret = btrfs_del_orphan_item(trans, root,
3382 btrfs_ino(inode));
3383 }
3384
3385 if (release_rsv)
3386 btrfs_orphan_release_metadata(inode);
3387
3388 return ret;
3389 }
3390
3391 /*
3392 * this cleans up any orphans that may be left on the list from the last use
3393 * of this root.
3394 */
btrfs_orphan_cleanup(struct btrfs_root * root)3395 int btrfs_orphan_cleanup(struct btrfs_root *root)
3396 {
3397 struct btrfs_path *path;
3398 struct extent_buffer *leaf;
3399 struct btrfs_key key, found_key;
3400 struct btrfs_trans_handle *trans;
3401 struct inode *inode;
3402 u64 last_objectid = 0;
3403 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3404
3405 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3406 return 0;
3407
3408 path = btrfs_alloc_path();
3409 if (!path) {
3410 ret = -ENOMEM;
3411 goto out;
3412 }
3413 path->reada = READA_BACK;
3414
3415 key.objectid = BTRFS_ORPHAN_OBJECTID;
3416 key.type = BTRFS_ORPHAN_ITEM_KEY;
3417 key.offset = (u64)-1;
3418
3419 while (1) {
3420 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3421 if (ret < 0)
3422 goto out;
3423
3424 /*
3425 * if ret == 0 means we found what we were searching for, which
3426 * is weird, but possible, so only screw with path if we didn't
3427 * find the key and see if we have stuff that matches
3428 */
3429 if (ret > 0) {
3430 ret = 0;
3431 if (path->slots[0] == 0)
3432 break;
3433 path->slots[0]--;
3434 }
3435
3436 /* pull out the item */
3437 leaf = path->nodes[0];
3438 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3439
3440 /* make sure the item matches what we want */
3441 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3442 break;
3443 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3444 break;
3445
3446 /* release the path since we're done with it */
3447 btrfs_release_path(path);
3448
3449 /*
3450 * this is where we are basically btrfs_lookup, without the
3451 * crossing root thing. we store the inode number in the
3452 * offset of the orphan item.
3453 */
3454
3455 if (found_key.offset == last_objectid) {
3456 btrfs_err(root->fs_info,
3457 "Error removing orphan entry, stopping orphan cleanup");
3458 ret = -EINVAL;
3459 goto out;
3460 }
3461
3462 last_objectid = found_key.offset;
3463
3464 found_key.objectid = found_key.offset;
3465 found_key.type = BTRFS_INODE_ITEM_KEY;
3466 found_key.offset = 0;
3467 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3468 ret = PTR_ERR_OR_ZERO(inode);
3469 if (ret && ret != -ENOENT)
3470 goto out;
3471
3472 if (ret == -ENOENT && root == root->fs_info->tree_root) {
3473 struct btrfs_root *dead_root;
3474 struct btrfs_fs_info *fs_info = root->fs_info;
3475 int is_dead_root = 0;
3476
3477 /*
3478 * this is an orphan in the tree root. Currently these
3479 * could come from 2 sources:
3480 * a) a snapshot deletion in progress
3481 * b) a free space cache inode
3482 * We need to distinguish those two, as the snapshot
3483 * orphan must not get deleted.
3484 * find_dead_roots already ran before us, so if this
3485 * is a snapshot deletion, we should find the root
3486 * in the dead_roots list
3487 */
3488 spin_lock(&fs_info->trans_lock);
3489 list_for_each_entry(dead_root, &fs_info->dead_roots,
3490 root_list) {
3491 if (dead_root->root_key.objectid ==
3492 found_key.objectid) {
3493 is_dead_root = 1;
3494 break;
3495 }
3496 }
3497 spin_unlock(&fs_info->trans_lock);
3498 if (is_dead_root) {
3499 /* prevent this orphan from being found again */
3500 key.offset = found_key.objectid - 1;
3501 continue;
3502 }
3503 }
3504 /*
3505 * Inode is already gone but the orphan item is still there,
3506 * kill the orphan item.
3507 */
3508 if (ret == -ENOENT) {
3509 trans = btrfs_start_transaction(root, 1);
3510 if (IS_ERR(trans)) {
3511 ret = PTR_ERR(trans);
3512 goto out;
3513 }
3514 btrfs_debug(root->fs_info, "auto deleting %Lu",
3515 found_key.objectid);
3516 ret = btrfs_del_orphan_item(trans, root,
3517 found_key.objectid);
3518 btrfs_end_transaction(trans, root);
3519 if (ret)
3520 goto out;
3521 continue;
3522 }
3523
3524 /*
3525 * add this inode to the orphan list so btrfs_orphan_del does
3526 * the proper thing when we hit it
3527 */
3528 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3529 &BTRFS_I(inode)->runtime_flags);
3530 atomic_inc(&root->orphan_inodes);
3531
3532 /* if we have links, this was a truncate, lets do that */
3533 if (inode->i_nlink) {
3534 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3535 iput(inode);
3536 continue;
3537 }
3538 nr_truncate++;
3539
3540 /* 1 for the orphan item deletion. */
3541 trans = btrfs_start_transaction(root, 1);
3542 if (IS_ERR(trans)) {
3543 iput(inode);
3544 ret = PTR_ERR(trans);
3545 goto out;
3546 }
3547 ret = btrfs_orphan_add(trans, inode);
3548 btrfs_end_transaction(trans, root);
3549 if (ret) {
3550 iput(inode);
3551 goto out;
3552 }
3553
3554 ret = btrfs_truncate(inode);
3555 if (ret)
3556 btrfs_orphan_del(NULL, inode);
3557 } else {
3558 nr_unlink++;
3559 }
3560
3561 /* this will do delete_inode and everything for us */
3562 iput(inode);
3563 if (ret)
3564 goto out;
3565 }
3566 /* release the path since we're done with it */
3567 btrfs_release_path(path);
3568
3569 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3570
3571 if (root->orphan_block_rsv)
3572 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3573 (u64)-1);
3574
3575 if (root->orphan_block_rsv ||
3576 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3577 trans = btrfs_join_transaction(root);
3578 if (!IS_ERR(trans))
3579 btrfs_end_transaction(trans, root);
3580 }
3581
3582 if (nr_unlink)
3583 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3584 if (nr_truncate)
3585 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3586
3587 out:
3588 if (ret)
3589 btrfs_err(root->fs_info,
3590 "could not do orphan cleanup %d", ret);
3591 btrfs_free_path(path);
3592 return ret;
3593 }
3594
3595 /*
3596 * very simple check to peek ahead in the leaf looking for xattrs. If we
3597 * don't find any xattrs, we know there can't be any acls.
3598 *
3599 * slot is the slot the inode is in, objectid is the objectid of the inode
3600 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3601 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3602 int slot, u64 objectid,
3603 int *first_xattr_slot)
3604 {
3605 u32 nritems = btrfs_header_nritems(leaf);
3606 struct btrfs_key found_key;
3607 static u64 xattr_access = 0;
3608 static u64 xattr_default = 0;
3609 int scanned = 0;
3610
3611 if (!xattr_access) {
3612 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3613 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3614 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3615 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3616 }
3617
3618 slot++;
3619 *first_xattr_slot = -1;
3620 while (slot < nritems) {
3621 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3622
3623 /* we found a different objectid, there must not be acls */
3624 if (found_key.objectid != objectid)
3625 return 0;
3626
3627 /* we found an xattr, assume we've got an acl */
3628 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3629 if (*first_xattr_slot == -1)
3630 *first_xattr_slot = slot;
3631 if (found_key.offset == xattr_access ||
3632 found_key.offset == xattr_default)
3633 return 1;
3634 }
3635
3636 /*
3637 * we found a key greater than an xattr key, there can't
3638 * be any acls later on
3639 */
3640 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3641 return 0;
3642
3643 slot++;
3644 scanned++;
3645
3646 /*
3647 * it goes inode, inode backrefs, xattrs, extents,
3648 * so if there are a ton of hard links to an inode there can
3649 * be a lot of backrefs. Don't waste time searching too hard,
3650 * this is just an optimization
3651 */
3652 if (scanned >= 8)
3653 break;
3654 }
3655 /* we hit the end of the leaf before we found an xattr or
3656 * something larger than an xattr. We have to assume the inode
3657 * has acls
3658 */
3659 if (*first_xattr_slot == -1)
3660 *first_xattr_slot = slot;
3661 return 1;
3662 }
3663
3664 /*
3665 * read an inode from the btree into the in-memory inode
3666 */
btrfs_read_locked_inode(struct inode * inode)3667 static int btrfs_read_locked_inode(struct inode *inode)
3668 {
3669 struct btrfs_path *path;
3670 struct extent_buffer *leaf;
3671 struct btrfs_inode_item *inode_item;
3672 struct btrfs_root *root = BTRFS_I(inode)->root;
3673 struct btrfs_key location;
3674 unsigned long ptr;
3675 int maybe_acls;
3676 u32 rdev;
3677 int ret;
3678 bool filled = false;
3679 int first_xattr_slot;
3680
3681 ret = btrfs_fill_inode(inode, &rdev);
3682 if (!ret)
3683 filled = true;
3684
3685 path = btrfs_alloc_path();
3686 if (!path) {
3687 ret = -ENOMEM;
3688 goto make_bad;
3689 }
3690
3691 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3692
3693 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3694 if (ret) {
3695 if (ret > 0)
3696 ret = -ENOENT;
3697 goto make_bad;
3698 }
3699
3700 leaf = path->nodes[0];
3701
3702 if (filled)
3703 goto cache_index;
3704
3705 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3706 struct btrfs_inode_item);
3707 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3708 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3709 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3710 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3711 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3712
3713 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3714 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3715
3716 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3717 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3718
3719 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3720 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3721
3722 BTRFS_I(inode)->i_otime.tv_sec =
3723 btrfs_timespec_sec(leaf, &inode_item->otime);
3724 BTRFS_I(inode)->i_otime.tv_nsec =
3725 btrfs_timespec_nsec(leaf, &inode_item->otime);
3726
3727 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3728 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3729 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3730
3731 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3732 inode->i_generation = BTRFS_I(inode)->generation;
3733 inode->i_rdev = 0;
3734 rdev = btrfs_inode_rdev(leaf, inode_item);
3735
3736 BTRFS_I(inode)->index_cnt = (u64)-1;
3737 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3738
3739 cache_index:
3740 /*
3741 * If we were modified in the current generation and evicted from memory
3742 * and then re-read we need to do a full sync since we don't have any
3743 * idea about which extents were modified before we were evicted from
3744 * cache.
3745 *
3746 * This is required for both inode re-read from disk and delayed inode
3747 * in delayed_nodes_tree.
3748 */
3749 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3750 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3751 &BTRFS_I(inode)->runtime_flags);
3752
3753 /*
3754 * We don't persist the id of the transaction where an unlink operation
3755 * against the inode was last made. So here we assume the inode might
3756 * have been evicted, and therefore the exact value of last_unlink_trans
3757 * lost, and set it to last_trans to avoid metadata inconsistencies
3758 * between the inode and its parent if the inode is fsync'ed and the log
3759 * replayed. For example, in the scenario:
3760 *
3761 * touch mydir/foo
3762 * ln mydir/foo mydir/bar
3763 * sync
3764 * unlink mydir/bar
3765 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3766 * xfs_io -c fsync mydir/foo
3767 * <power failure>
3768 * mount fs, triggers fsync log replay
3769 *
3770 * We must make sure that when we fsync our inode foo we also log its
3771 * parent inode, otherwise after log replay the parent still has the
3772 * dentry with the "bar" name but our inode foo has a link count of 1
3773 * and doesn't have an inode ref with the name "bar" anymore.
3774 *
3775 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3776 * but it guarantees correctness at the expense of occasional full
3777 * transaction commits on fsync if our inode is a directory, or if our
3778 * inode is not a directory, logging its parent unnecessarily.
3779 */
3780 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3781
3782 path->slots[0]++;
3783 if (inode->i_nlink != 1 ||
3784 path->slots[0] >= btrfs_header_nritems(leaf))
3785 goto cache_acl;
3786
3787 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3788 if (location.objectid != btrfs_ino(inode))
3789 goto cache_acl;
3790
3791 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3792 if (location.type == BTRFS_INODE_REF_KEY) {
3793 struct btrfs_inode_ref *ref;
3794
3795 ref = (struct btrfs_inode_ref *)ptr;
3796 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3797 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3798 struct btrfs_inode_extref *extref;
3799
3800 extref = (struct btrfs_inode_extref *)ptr;
3801 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3802 extref);
3803 }
3804 cache_acl:
3805 /*
3806 * try to precache a NULL acl entry for files that don't have
3807 * any xattrs or acls
3808 */
3809 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3810 btrfs_ino(inode), &first_xattr_slot);
3811 if (first_xattr_slot != -1) {
3812 path->slots[0] = first_xattr_slot;
3813 ret = btrfs_load_inode_props(inode, path);
3814 if (ret)
3815 btrfs_err(root->fs_info,
3816 "error loading props for ino %llu (root %llu): %d",
3817 btrfs_ino(inode),
3818 root->root_key.objectid, ret);
3819 }
3820 btrfs_free_path(path);
3821
3822 if (!maybe_acls)
3823 cache_no_acl(inode);
3824
3825 switch (inode->i_mode & S_IFMT) {
3826 case S_IFREG:
3827 inode->i_mapping->a_ops = &btrfs_aops;
3828 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3829 inode->i_fop = &btrfs_file_operations;
3830 inode->i_op = &btrfs_file_inode_operations;
3831 break;
3832 case S_IFDIR:
3833 inode->i_fop = &btrfs_dir_file_operations;
3834 inode->i_op = &btrfs_dir_inode_operations;
3835 break;
3836 case S_IFLNK:
3837 inode->i_op = &btrfs_symlink_inode_operations;
3838 inode_nohighmem(inode);
3839 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3840 break;
3841 default:
3842 inode->i_op = &btrfs_special_inode_operations;
3843 init_special_inode(inode, inode->i_mode, rdev);
3844 break;
3845 }
3846
3847 btrfs_update_iflags(inode);
3848 return 0;
3849
3850 make_bad:
3851 btrfs_free_path(path);
3852 make_bad_inode(inode);
3853 return ret;
3854 }
3855
3856 /*
3857 * given a leaf and an inode, copy the inode fields into the leaf
3858 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)3859 static void fill_inode_item(struct btrfs_trans_handle *trans,
3860 struct extent_buffer *leaf,
3861 struct btrfs_inode_item *item,
3862 struct inode *inode)
3863 {
3864 struct btrfs_map_token token;
3865
3866 btrfs_init_map_token(&token);
3867
3868 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3869 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3870 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3871 &token);
3872 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3873 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3874
3875 btrfs_set_token_timespec_sec(leaf, &item->atime,
3876 inode->i_atime.tv_sec, &token);
3877 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3878 inode->i_atime.tv_nsec, &token);
3879
3880 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3881 inode->i_mtime.tv_sec, &token);
3882 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3883 inode->i_mtime.tv_nsec, &token);
3884
3885 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3886 inode->i_ctime.tv_sec, &token);
3887 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3888 inode->i_ctime.tv_nsec, &token);
3889
3890 btrfs_set_token_timespec_sec(leaf, &item->otime,
3891 BTRFS_I(inode)->i_otime.tv_sec, &token);
3892 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3893 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3894
3895 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3896 &token);
3897 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3898 &token);
3899 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3900 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3901 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3902 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3903 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3904 }
3905
3906 /*
3907 * copy everything in the in-memory inode into the btree.
3908 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3909 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3910 struct btrfs_root *root, struct inode *inode)
3911 {
3912 struct btrfs_inode_item *inode_item;
3913 struct btrfs_path *path;
3914 struct extent_buffer *leaf;
3915 int ret;
3916
3917 path = btrfs_alloc_path();
3918 if (!path)
3919 return -ENOMEM;
3920
3921 path->leave_spinning = 1;
3922 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3923 1);
3924 if (ret) {
3925 if (ret > 0)
3926 ret = -ENOENT;
3927 goto failed;
3928 }
3929
3930 leaf = path->nodes[0];
3931 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3932 struct btrfs_inode_item);
3933
3934 fill_inode_item(trans, leaf, inode_item, inode);
3935 btrfs_mark_buffer_dirty(leaf);
3936 btrfs_set_inode_last_trans(trans, inode);
3937 ret = 0;
3938 failed:
3939 btrfs_free_path(path);
3940 return ret;
3941 }
3942
3943 /*
3944 * copy everything in the in-memory inode into the btree.
3945 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3946 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3947 struct btrfs_root *root, struct inode *inode)
3948 {
3949 int ret;
3950
3951 /*
3952 * If the inode is a free space inode, we can deadlock during commit
3953 * if we put it into the delayed code.
3954 *
3955 * The data relocation inode should also be directly updated
3956 * without delay
3957 */
3958 if (!btrfs_is_free_space_inode(inode)
3959 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3960 && !test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
3961 btrfs_update_root_times(trans, root);
3962
3963 ret = btrfs_delayed_update_inode(trans, root, inode);
3964 if (!ret)
3965 btrfs_set_inode_last_trans(trans, inode);
3966 return ret;
3967 }
3968
3969 return btrfs_update_inode_item(trans, root, inode);
3970 }
3971
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3972 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3973 struct btrfs_root *root,
3974 struct inode *inode)
3975 {
3976 int ret;
3977
3978 ret = btrfs_update_inode(trans, root, inode);
3979 if (ret == -ENOSPC)
3980 return btrfs_update_inode_item(trans, root, inode);
3981 return ret;
3982 }
3983
3984 /*
3985 * unlink helper that gets used here in inode.c and in the tree logging
3986 * recovery code. It remove a link in a directory with a given name, and
3987 * also drops the back refs in the inode to the directory
3988 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct inode * inode,const char * name,int name_len)3989 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3990 struct btrfs_root *root,
3991 struct inode *dir, struct inode *inode,
3992 const char *name, int name_len)
3993 {
3994 struct btrfs_path *path;
3995 int ret = 0;
3996 struct extent_buffer *leaf;
3997 struct btrfs_dir_item *di;
3998 struct btrfs_key key;
3999 u64 index;
4000 u64 ino = btrfs_ino(inode);
4001 u64 dir_ino = btrfs_ino(dir);
4002
4003 path = btrfs_alloc_path();
4004 if (!path) {
4005 ret = -ENOMEM;
4006 goto out;
4007 }
4008
4009 path->leave_spinning = 1;
4010 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4011 name, name_len, -1);
4012 if (IS_ERR(di)) {
4013 ret = PTR_ERR(di);
4014 goto err;
4015 }
4016 if (!di) {
4017 ret = -ENOENT;
4018 goto err;
4019 }
4020 leaf = path->nodes[0];
4021 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4022 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4023 if (ret)
4024 goto err;
4025 btrfs_release_path(path);
4026
4027 /*
4028 * If we don't have dir index, we have to get it by looking up
4029 * the inode ref, since we get the inode ref, remove it directly,
4030 * it is unnecessary to do delayed deletion.
4031 *
4032 * But if we have dir index, needn't search inode ref to get it.
4033 * Since the inode ref is close to the inode item, it is better
4034 * that we delay to delete it, and just do this deletion when
4035 * we update the inode item.
4036 */
4037 if (BTRFS_I(inode)->dir_index) {
4038 ret = btrfs_delayed_delete_inode_ref(inode);
4039 if (!ret) {
4040 index = BTRFS_I(inode)->dir_index;
4041 goto skip_backref;
4042 }
4043 }
4044
4045 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4046 dir_ino, &index);
4047 if (ret) {
4048 btrfs_info(root->fs_info,
4049 "failed to delete reference to %.*s, inode %llu parent %llu",
4050 name_len, name, ino, dir_ino);
4051 btrfs_abort_transaction(trans, ret);
4052 goto err;
4053 }
4054 skip_backref:
4055 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4056 if (ret) {
4057 btrfs_abort_transaction(trans, ret);
4058 goto err;
4059 }
4060
4061 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
4062 inode, dir_ino);
4063 if (ret != 0 && ret != -ENOENT) {
4064 btrfs_abort_transaction(trans, ret);
4065 goto err;
4066 }
4067
4068 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4069 dir, index);
4070 if (ret == -ENOENT)
4071 ret = 0;
4072 else if (ret)
4073 btrfs_abort_transaction(trans, ret);
4074 err:
4075 btrfs_free_path(path);
4076 if (ret)
4077 goto out;
4078
4079 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4080 inode_inc_iversion(inode);
4081 inode_inc_iversion(dir);
4082 inode->i_ctime = dir->i_mtime =
4083 dir->i_ctime = current_time(inode);
4084 ret = btrfs_update_inode(trans, root, dir);
4085 out:
4086 return ret;
4087 }
4088
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct inode * inode,const char * name,int name_len)4089 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4090 struct btrfs_root *root,
4091 struct inode *dir, struct inode *inode,
4092 const char *name, int name_len)
4093 {
4094 int ret;
4095 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4096 if (!ret) {
4097 drop_nlink(inode);
4098 ret = btrfs_update_inode(trans, root, inode);
4099 }
4100 return ret;
4101 }
4102
4103 /*
4104 * helper to start transaction for unlink and rmdir.
4105 *
4106 * unlink and rmdir are special in btrfs, they do not always free space, so
4107 * if we cannot make our reservations the normal way try and see if there is
4108 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4109 * allow the unlink to occur.
4110 */
__unlink_start_trans(struct inode * dir)4111 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4112 {
4113 struct btrfs_root *root = BTRFS_I(dir)->root;
4114
4115 /*
4116 * 1 for the possible orphan item
4117 * 1 for the dir item
4118 * 1 for the dir index
4119 * 1 for the inode ref
4120 * 1 for the inode
4121 */
4122 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4123 }
4124
btrfs_unlink(struct inode * dir,struct dentry * dentry)4125 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4126 {
4127 struct btrfs_root *root = BTRFS_I(dir)->root;
4128 struct btrfs_trans_handle *trans;
4129 struct inode *inode = d_inode(dentry);
4130 int ret;
4131
4132 trans = __unlink_start_trans(dir);
4133 if (IS_ERR(trans))
4134 return PTR_ERR(trans);
4135
4136 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4137
4138 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4139 dentry->d_name.name, dentry->d_name.len);
4140 if (ret)
4141 goto out;
4142
4143 if (inode->i_nlink == 0) {
4144 ret = btrfs_orphan_add(trans, inode);
4145 if (ret)
4146 goto out;
4147 }
4148
4149 out:
4150 btrfs_end_transaction(trans, root);
4151 btrfs_btree_balance_dirty(root);
4152 return ret;
4153 }
4154
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,u64 objectid,const char * name,int name_len)4155 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4156 struct btrfs_root *root,
4157 struct inode *dir, u64 objectid,
4158 const char *name, int name_len)
4159 {
4160 struct btrfs_path *path;
4161 struct extent_buffer *leaf;
4162 struct btrfs_dir_item *di;
4163 struct btrfs_key key;
4164 u64 index;
4165 int ret;
4166 u64 dir_ino = btrfs_ino(dir);
4167
4168 path = btrfs_alloc_path();
4169 if (!path)
4170 return -ENOMEM;
4171
4172 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4173 name, name_len, -1);
4174 if (IS_ERR_OR_NULL(di)) {
4175 if (!di)
4176 ret = -ENOENT;
4177 else
4178 ret = PTR_ERR(di);
4179 goto out;
4180 }
4181
4182 leaf = path->nodes[0];
4183 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4184 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4185 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4186 if (ret) {
4187 btrfs_abort_transaction(trans, ret);
4188 goto out;
4189 }
4190 btrfs_release_path(path);
4191
4192 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4193 objectid, root->root_key.objectid,
4194 dir_ino, &index, name, name_len);
4195 if (ret < 0) {
4196 if (ret != -ENOENT) {
4197 btrfs_abort_transaction(trans, ret);
4198 goto out;
4199 }
4200 di = btrfs_search_dir_index_item(root, path, dir_ino,
4201 name, name_len);
4202 if (IS_ERR_OR_NULL(di)) {
4203 if (!di)
4204 ret = -ENOENT;
4205 else
4206 ret = PTR_ERR(di);
4207 btrfs_abort_transaction(trans, ret);
4208 goto out;
4209 }
4210
4211 leaf = path->nodes[0];
4212 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4213 btrfs_release_path(path);
4214 index = key.offset;
4215 }
4216 btrfs_release_path(path);
4217
4218 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4219 if (ret) {
4220 btrfs_abort_transaction(trans, ret);
4221 goto out;
4222 }
4223
4224 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4225 inode_inc_iversion(dir);
4226 dir->i_mtime = dir->i_ctime = current_time(dir);
4227 ret = btrfs_update_inode_fallback(trans, root, dir);
4228 if (ret)
4229 btrfs_abort_transaction(trans, ret);
4230 out:
4231 btrfs_free_path(path);
4232 return ret;
4233 }
4234
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4235 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4236 {
4237 struct inode *inode = d_inode(dentry);
4238 int err = 0;
4239 struct btrfs_root *root = BTRFS_I(dir)->root;
4240 struct btrfs_trans_handle *trans;
4241 u64 last_unlink_trans;
4242
4243 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4244 return -ENOTEMPTY;
4245 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4246 return -EPERM;
4247
4248 trans = __unlink_start_trans(dir);
4249 if (IS_ERR(trans))
4250 return PTR_ERR(trans);
4251
4252 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4253 err = btrfs_unlink_subvol(trans, root, dir,
4254 BTRFS_I(inode)->location.objectid,
4255 dentry->d_name.name,
4256 dentry->d_name.len);
4257 goto out;
4258 }
4259
4260 err = btrfs_orphan_add(trans, inode);
4261 if (err)
4262 goto out;
4263
4264 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4265
4266 /* now the directory is empty */
4267 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4268 dentry->d_name.name, dentry->d_name.len);
4269 if (!err) {
4270 btrfs_i_size_write(inode, 0);
4271 /*
4272 * Propagate the last_unlink_trans value of the deleted dir to
4273 * its parent directory. This is to prevent an unrecoverable
4274 * log tree in the case we do something like this:
4275 * 1) create dir foo
4276 * 2) create snapshot under dir foo
4277 * 3) delete the snapshot
4278 * 4) rmdir foo
4279 * 5) mkdir foo
4280 * 6) fsync foo or some file inside foo
4281 */
4282 if (last_unlink_trans >= trans->transid)
4283 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4284 }
4285 out:
4286 btrfs_end_transaction(trans, root);
4287 btrfs_btree_balance_dirty(root);
4288
4289 return err;
4290 }
4291
truncate_space_check(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytes_deleted)4292 static int truncate_space_check(struct btrfs_trans_handle *trans,
4293 struct btrfs_root *root,
4294 u64 bytes_deleted)
4295 {
4296 int ret;
4297
4298 /*
4299 * This is only used to apply pressure to the enospc system, we don't
4300 * intend to use this reservation at all.
4301 */
4302 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4303 bytes_deleted *= root->nodesize;
4304 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4305 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4306 if (!ret) {
4307 trace_btrfs_space_reservation(root->fs_info, "transaction",
4308 trans->transid,
4309 bytes_deleted, 1);
4310 trans->bytes_reserved += bytes_deleted;
4311 }
4312 return ret;
4313
4314 }
4315
truncate_inline_extent(struct inode * inode,struct btrfs_path * path,struct btrfs_key * found_key,const u64 item_end,const u64 new_size)4316 static int truncate_inline_extent(struct inode *inode,
4317 struct btrfs_path *path,
4318 struct btrfs_key *found_key,
4319 const u64 item_end,
4320 const u64 new_size)
4321 {
4322 struct extent_buffer *leaf = path->nodes[0];
4323 int slot = path->slots[0];
4324 struct btrfs_file_extent_item *fi;
4325 u32 size = (u32)(new_size - found_key->offset);
4326 struct btrfs_root *root = BTRFS_I(inode)->root;
4327
4328 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4329
4330 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4331 loff_t offset = new_size;
4332 loff_t page_end = ALIGN(offset, PAGE_SIZE);
4333
4334 /*
4335 * Zero out the remaining of the last page of our inline extent,
4336 * instead of directly truncating our inline extent here - that
4337 * would be much more complex (decompressing all the data, then
4338 * compressing the truncated data, which might be bigger than
4339 * the size of the inline extent, resize the extent, etc).
4340 * We release the path because to get the page we might need to
4341 * read the extent item from disk (data not in the page cache).
4342 */
4343 btrfs_release_path(path);
4344 return btrfs_truncate_block(inode, offset, page_end - offset,
4345 0);
4346 }
4347
4348 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4349 size = btrfs_file_extent_calc_inline_size(size);
4350 btrfs_truncate_item(root, path, size, 1);
4351
4352 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4353 inode_sub_bytes(inode, item_end + 1 - new_size);
4354
4355 return 0;
4356 }
4357
4358 /*
4359 * this can truncate away extent items, csum items and directory items.
4360 * It starts at a high offset and removes keys until it can't find
4361 * any higher than new_size
4362 *
4363 * csum items that cross the new i_size are truncated to the new size
4364 * as well.
4365 *
4366 * min_type is the minimum key type to truncate down to. If set to 0, this
4367 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4368 */
btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 new_size,u32 min_type)4369 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4370 struct btrfs_root *root,
4371 struct inode *inode,
4372 u64 new_size, u32 min_type)
4373 {
4374 struct btrfs_path *path;
4375 struct extent_buffer *leaf;
4376 struct btrfs_file_extent_item *fi;
4377 struct btrfs_key key;
4378 struct btrfs_key found_key;
4379 u64 extent_start = 0;
4380 u64 extent_num_bytes = 0;
4381 u64 extent_offset = 0;
4382 u64 item_end = 0;
4383 u64 last_size = new_size;
4384 u32 found_type = (u8)-1;
4385 int found_extent;
4386 int del_item;
4387 int pending_del_nr = 0;
4388 int pending_del_slot = 0;
4389 int extent_type = -1;
4390 int ret;
4391 int err = 0;
4392 u64 ino = btrfs_ino(inode);
4393 u64 bytes_deleted = 0;
4394 bool be_nice = 0;
4395 bool should_throttle = 0;
4396 bool should_end = 0;
4397
4398 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4399
4400 /*
4401 * for non-free space inodes and ref cows, we want to back off from
4402 * time to time
4403 */
4404 if (!btrfs_is_free_space_inode(inode) &&
4405 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4406 be_nice = 1;
4407
4408 path = btrfs_alloc_path();
4409 if (!path)
4410 return -ENOMEM;
4411 path->reada = READA_BACK;
4412
4413 /*
4414 * We want to drop from the next block forward in case this new size is
4415 * not block aligned since we will be keeping the last block of the
4416 * extent just the way it is.
4417 */
4418 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4419 root == root->fs_info->tree_root)
4420 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4421 root->sectorsize), (u64)-1, 0);
4422
4423 /*
4424 * This function is also used to drop the items in the log tree before
4425 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4426 * it is used to drop the loged items. So we shouldn't kill the delayed
4427 * items.
4428 */
4429 if (min_type == 0 && root == BTRFS_I(inode)->root)
4430 btrfs_kill_delayed_inode_items(inode);
4431
4432 key.objectid = ino;
4433 key.offset = (u64)-1;
4434 key.type = (u8)-1;
4435
4436 search_again:
4437 /*
4438 * with a 16K leaf size and 128MB extents, you can actually queue
4439 * up a huge file in a single leaf. Most of the time that
4440 * bytes_deleted is > 0, it will be huge by the time we get here
4441 */
4442 if (be_nice && bytes_deleted > SZ_32M) {
4443 if (btrfs_should_end_transaction(trans, root)) {
4444 err = -EAGAIN;
4445 goto error;
4446 }
4447 }
4448
4449
4450 path->leave_spinning = 1;
4451 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4452 if (ret < 0) {
4453 err = ret;
4454 goto out;
4455 }
4456
4457 if (ret > 0) {
4458 /* there are no items in the tree for us to truncate, we're
4459 * done
4460 */
4461 if (path->slots[0] == 0)
4462 goto out;
4463 path->slots[0]--;
4464 }
4465
4466 while (1) {
4467 fi = NULL;
4468 leaf = path->nodes[0];
4469 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4470 found_type = found_key.type;
4471
4472 if (found_key.objectid != ino)
4473 break;
4474
4475 if (found_type < min_type)
4476 break;
4477
4478 item_end = found_key.offset;
4479 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4480 fi = btrfs_item_ptr(leaf, path->slots[0],
4481 struct btrfs_file_extent_item);
4482 extent_type = btrfs_file_extent_type(leaf, fi);
4483 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4484 item_end +=
4485 btrfs_file_extent_num_bytes(leaf, fi);
4486 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4487 item_end += btrfs_file_extent_inline_len(leaf,
4488 path->slots[0], fi);
4489 }
4490 item_end--;
4491 }
4492 if (found_type > min_type) {
4493 del_item = 1;
4494 } else {
4495 if (item_end < new_size) {
4496 /*
4497 * With NO_HOLES mode, for the following mapping
4498 *
4499 * [0-4k][hole][8k-12k]
4500 *
4501 * if truncating isize down to 6k, it ends up
4502 * isize being 8k.
4503 */
4504 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
4505 last_size = new_size;
4506 break;
4507 }
4508 if (found_key.offset >= new_size)
4509 del_item = 1;
4510 else
4511 del_item = 0;
4512 }
4513 found_extent = 0;
4514 /* FIXME, shrink the extent if the ref count is only 1 */
4515 if (found_type != BTRFS_EXTENT_DATA_KEY)
4516 goto delete;
4517
4518 if (del_item)
4519 last_size = found_key.offset;
4520 else
4521 last_size = new_size;
4522
4523 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4524 u64 num_dec;
4525 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4526 if (!del_item) {
4527 u64 orig_num_bytes =
4528 btrfs_file_extent_num_bytes(leaf, fi);
4529 extent_num_bytes = ALIGN(new_size -
4530 found_key.offset,
4531 root->sectorsize);
4532 btrfs_set_file_extent_num_bytes(leaf, fi,
4533 extent_num_bytes);
4534 num_dec = (orig_num_bytes -
4535 extent_num_bytes);
4536 if (test_bit(BTRFS_ROOT_REF_COWS,
4537 &root->state) &&
4538 extent_start != 0)
4539 inode_sub_bytes(inode, num_dec);
4540 btrfs_mark_buffer_dirty(leaf);
4541 } else {
4542 extent_num_bytes =
4543 btrfs_file_extent_disk_num_bytes(leaf,
4544 fi);
4545 extent_offset = found_key.offset -
4546 btrfs_file_extent_offset(leaf, fi);
4547
4548 /* FIXME blocksize != 4096 */
4549 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4550 if (extent_start != 0) {
4551 found_extent = 1;
4552 if (test_bit(BTRFS_ROOT_REF_COWS,
4553 &root->state))
4554 inode_sub_bytes(inode, num_dec);
4555 }
4556 }
4557 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4558 /*
4559 * we can't truncate inline items that have had
4560 * special encodings
4561 */
4562 if (!del_item &&
4563 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4564 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4565
4566 /*
4567 * Need to release path in order to truncate a
4568 * compressed extent. So delete any accumulated
4569 * extent items so far.
4570 */
4571 if (btrfs_file_extent_compression(leaf, fi) !=
4572 BTRFS_COMPRESS_NONE && pending_del_nr) {
4573 err = btrfs_del_items(trans, root, path,
4574 pending_del_slot,
4575 pending_del_nr);
4576 if (err) {
4577 btrfs_abort_transaction(trans,
4578 err);
4579 goto error;
4580 }
4581 pending_del_nr = 0;
4582 }
4583
4584 err = truncate_inline_extent(inode, path,
4585 &found_key,
4586 item_end,
4587 new_size);
4588 if (err) {
4589 btrfs_abort_transaction(trans, err);
4590 goto error;
4591 }
4592 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4593 &root->state)) {
4594 inode_sub_bytes(inode, item_end + 1 - new_size);
4595 }
4596 }
4597 delete:
4598 if (del_item) {
4599 if (!pending_del_nr) {
4600 /* no pending yet, add ourselves */
4601 pending_del_slot = path->slots[0];
4602 pending_del_nr = 1;
4603 } else if (pending_del_nr &&
4604 path->slots[0] + 1 == pending_del_slot) {
4605 /* hop on the pending chunk */
4606 pending_del_nr++;
4607 pending_del_slot = path->slots[0];
4608 } else {
4609 BUG();
4610 }
4611 } else {
4612 break;
4613 }
4614 should_throttle = 0;
4615
4616 if (found_extent &&
4617 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4618 root == root->fs_info->tree_root)) {
4619 btrfs_set_path_blocking(path);
4620 bytes_deleted += extent_num_bytes;
4621 ret = btrfs_free_extent(trans, root, extent_start,
4622 extent_num_bytes, 0,
4623 btrfs_header_owner(leaf),
4624 ino, extent_offset);
4625 BUG_ON(ret);
4626 if (btrfs_should_throttle_delayed_refs(trans, root))
4627 btrfs_async_run_delayed_refs(root,
4628 trans->delayed_ref_updates * 2,
4629 trans->transid, 0);
4630 if (be_nice) {
4631 if (truncate_space_check(trans, root,
4632 extent_num_bytes)) {
4633 should_end = 1;
4634 }
4635 if (btrfs_should_throttle_delayed_refs(trans,
4636 root)) {
4637 should_throttle = 1;
4638 }
4639 }
4640 }
4641
4642 if (found_type == BTRFS_INODE_ITEM_KEY)
4643 break;
4644
4645 if (path->slots[0] == 0 ||
4646 path->slots[0] != pending_del_slot ||
4647 should_throttle || should_end) {
4648 if (pending_del_nr) {
4649 ret = btrfs_del_items(trans, root, path,
4650 pending_del_slot,
4651 pending_del_nr);
4652 if (ret) {
4653 btrfs_abort_transaction(trans, ret);
4654 goto error;
4655 }
4656 pending_del_nr = 0;
4657 }
4658 btrfs_release_path(path);
4659 if (should_throttle) {
4660 unsigned long updates = trans->delayed_ref_updates;
4661 if (updates) {
4662 trans->delayed_ref_updates = 0;
4663 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4664 if (ret && !err)
4665 err = ret;
4666 }
4667 }
4668 /*
4669 * if we failed to refill our space rsv, bail out
4670 * and let the transaction restart
4671 */
4672 if (should_end) {
4673 err = -EAGAIN;
4674 goto error;
4675 }
4676 goto search_again;
4677 } else {
4678 path->slots[0]--;
4679 }
4680 }
4681 out:
4682 if (pending_del_nr) {
4683 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4684 pending_del_nr);
4685 if (ret)
4686 btrfs_abort_transaction(trans, ret);
4687 }
4688 error:
4689 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4690 btrfs_ordered_update_i_size(inode, last_size, NULL);
4691
4692 btrfs_free_path(path);
4693
4694 if (be_nice && bytes_deleted > SZ_32M) {
4695 unsigned long updates = trans->delayed_ref_updates;
4696 if (updates) {
4697 trans->delayed_ref_updates = 0;
4698 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4699 if (ret && !err)
4700 err = ret;
4701 }
4702 }
4703 return err;
4704 }
4705
4706 /*
4707 * btrfs_truncate_block - read, zero a chunk and write a block
4708 * @inode - inode that we're zeroing
4709 * @from - the offset to start zeroing
4710 * @len - the length to zero, 0 to zero the entire range respective to the
4711 * offset
4712 * @front - zero up to the offset instead of from the offset on
4713 *
4714 * This will find the block for the "from" offset and cow the block and zero the
4715 * part we want to zero. This is used with truncate and hole punching.
4716 */
btrfs_truncate_block(struct inode * inode,loff_t from,loff_t len,int front)4717 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4718 int front)
4719 {
4720 struct address_space *mapping = inode->i_mapping;
4721 struct btrfs_root *root = BTRFS_I(inode)->root;
4722 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4723 struct btrfs_ordered_extent *ordered;
4724 struct extent_state *cached_state = NULL;
4725 char *kaddr;
4726 u32 blocksize = root->sectorsize;
4727 pgoff_t index = from >> PAGE_SHIFT;
4728 unsigned offset = from & (blocksize - 1);
4729 struct page *page;
4730 gfp_t mask = btrfs_alloc_write_mask(mapping);
4731 int ret = 0;
4732 u64 block_start;
4733 u64 block_end;
4734
4735 if ((offset & (blocksize - 1)) == 0 &&
4736 (!len || ((len & (blocksize - 1)) == 0)))
4737 goto out;
4738
4739 ret = btrfs_delalloc_reserve_space(inode,
4740 round_down(from, blocksize), blocksize);
4741 if (ret)
4742 goto out;
4743
4744 again:
4745 page = find_or_create_page(mapping, index, mask);
4746 if (!page) {
4747 btrfs_delalloc_release_space(inode,
4748 round_down(from, blocksize),
4749 blocksize);
4750 ret = -ENOMEM;
4751 goto out;
4752 }
4753
4754 block_start = round_down(from, blocksize);
4755 block_end = block_start + blocksize - 1;
4756
4757 if (!PageUptodate(page)) {
4758 ret = btrfs_readpage(NULL, page);
4759 lock_page(page);
4760 if (page->mapping != mapping) {
4761 unlock_page(page);
4762 put_page(page);
4763 goto again;
4764 }
4765 if (!PageUptodate(page)) {
4766 ret = -EIO;
4767 goto out_unlock;
4768 }
4769 }
4770 wait_on_page_writeback(page);
4771
4772 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4773 set_page_extent_mapped(page);
4774
4775 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4776 if (ordered) {
4777 unlock_extent_cached(io_tree, block_start, block_end,
4778 &cached_state, GFP_NOFS);
4779 unlock_page(page);
4780 put_page(page);
4781 btrfs_start_ordered_extent(inode, ordered, 1);
4782 btrfs_put_ordered_extent(ordered);
4783 goto again;
4784 }
4785
4786 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4787 EXTENT_DIRTY | EXTENT_DELALLOC |
4788 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4789 0, 0, &cached_state, GFP_NOFS);
4790
4791 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4792 &cached_state, 0);
4793 if (ret) {
4794 unlock_extent_cached(io_tree, block_start, block_end,
4795 &cached_state, GFP_NOFS);
4796 goto out_unlock;
4797 }
4798
4799 if (offset != blocksize) {
4800 if (!len)
4801 len = blocksize - offset;
4802 kaddr = kmap(page);
4803 if (front)
4804 memset(kaddr + (block_start - page_offset(page)),
4805 0, offset);
4806 else
4807 memset(kaddr + (block_start - page_offset(page)) + offset,
4808 0, len);
4809 flush_dcache_page(page);
4810 kunmap(page);
4811 }
4812 ClearPageChecked(page);
4813 set_page_dirty(page);
4814 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4815 GFP_NOFS);
4816
4817 out_unlock:
4818 if (ret)
4819 btrfs_delalloc_release_space(inode, block_start,
4820 blocksize);
4821 unlock_page(page);
4822 put_page(page);
4823 out:
4824 return ret;
4825 }
4826
maybe_insert_hole(struct btrfs_root * root,struct inode * inode,u64 offset,u64 len)4827 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4828 u64 offset, u64 len)
4829 {
4830 struct btrfs_trans_handle *trans;
4831 int ret;
4832
4833 /*
4834 * Still need to make sure the inode looks like it's been updated so
4835 * that any holes get logged if we fsync.
4836 */
4837 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4838 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4839 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4840 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4841 return 0;
4842 }
4843
4844 /*
4845 * 1 - for the one we're dropping
4846 * 1 - for the one we're adding
4847 * 1 - for updating the inode.
4848 */
4849 trans = btrfs_start_transaction(root, 3);
4850 if (IS_ERR(trans))
4851 return PTR_ERR(trans);
4852
4853 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4854 if (ret) {
4855 btrfs_abort_transaction(trans, ret);
4856 btrfs_end_transaction(trans, root);
4857 return ret;
4858 }
4859
4860 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4861 0, 0, len, 0, len, 0, 0, 0);
4862 if (ret)
4863 btrfs_abort_transaction(trans, ret);
4864 else
4865 btrfs_update_inode(trans, root, inode);
4866 btrfs_end_transaction(trans, root);
4867 return ret;
4868 }
4869
4870 /*
4871 * This function puts in dummy file extents for the area we're creating a hole
4872 * for. So if we are truncating this file to a larger size we need to insert
4873 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4874 * the range between oldsize and size
4875 */
btrfs_cont_expand(struct inode * inode,loff_t oldsize,loff_t size)4876 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4877 {
4878 struct btrfs_root *root = BTRFS_I(inode)->root;
4879 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4880 struct extent_map *em = NULL;
4881 struct extent_state *cached_state = NULL;
4882 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4883 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4884 u64 block_end = ALIGN(size, root->sectorsize);
4885 u64 last_byte;
4886 u64 cur_offset;
4887 u64 hole_size;
4888 int err = 0;
4889
4890 /*
4891 * If our size started in the middle of a block we need to zero out the
4892 * rest of the block before we expand the i_size, otherwise we could
4893 * expose stale data.
4894 */
4895 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4896 if (err)
4897 return err;
4898
4899 if (size <= hole_start)
4900 return 0;
4901
4902 while (1) {
4903 struct btrfs_ordered_extent *ordered;
4904
4905 lock_extent_bits(io_tree, hole_start, block_end - 1,
4906 &cached_state);
4907 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4908 block_end - hole_start);
4909 if (!ordered)
4910 break;
4911 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4912 &cached_state, GFP_NOFS);
4913 btrfs_start_ordered_extent(inode, ordered, 1);
4914 btrfs_put_ordered_extent(ordered);
4915 }
4916
4917 cur_offset = hole_start;
4918 while (1) {
4919 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4920 block_end - cur_offset, 0);
4921 if (IS_ERR(em)) {
4922 err = PTR_ERR(em);
4923 em = NULL;
4924 break;
4925 }
4926 last_byte = min(extent_map_end(em), block_end);
4927 last_byte = ALIGN(last_byte , root->sectorsize);
4928 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4929 struct extent_map *hole_em;
4930 hole_size = last_byte - cur_offset;
4931
4932 err = maybe_insert_hole(root, inode, cur_offset,
4933 hole_size);
4934 if (err)
4935 break;
4936 btrfs_drop_extent_cache(inode, cur_offset,
4937 cur_offset + hole_size - 1, 0);
4938 hole_em = alloc_extent_map();
4939 if (!hole_em) {
4940 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4941 &BTRFS_I(inode)->runtime_flags);
4942 goto next;
4943 }
4944 hole_em->start = cur_offset;
4945 hole_em->len = hole_size;
4946 hole_em->orig_start = cur_offset;
4947
4948 hole_em->block_start = EXTENT_MAP_HOLE;
4949 hole_em->block_len = 0;
4950 hole_em->orig_block_len = 0;
4951 hole_em->ram_bytes = hole_size;
4952 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4953 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4954 hole_em->generation = root->fs_info->generation;
4955
4956 while (1) {
4957 write_lock(&em_tree->lock);
4958 err = add_extent_mapping(em_tree, hole_em, 1);
4959 write_unlock(&em_tree->lock);
4960 if (err != -EEXIST)
4961 break;
4962 btrfs_drop_extent_cache(inode, cur_offset,
4963 cur_offset +
4964 hole_size - 1, 0);
4965 }
4966 free_extent_map(hole_em);
4967 }
4968 next:
4969 free_extent_map(em);
4970 em = NULL;
4971 cur_offset = last_byte;
4972 if (cur_offset >= block_end)
4973 break;
4974 }
4975 free_extent_map(em);
4976 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4977 GFP_NOFS);
4978 return err;
4979 }
4980
btrfs_setsize(struct inode * inode,struct iattr * attr)4981 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4982 {
4983 struct btrfs_root *root = BTRFS_I(inode)->root;
4984 struct btrfs_trans_handle *trans;
4985 loff_t oldsize = i_size_read(inode);
4986 loff_t newsize = attr->ia_size;
4987 int mask = attr->ia_valid;
4988 int ret;
4989
4990 /*
4991 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4992 * special case where we need to update the times despite not having
4993 * these flags set. For all other operations the VFS set these flags
4994 * explicitly if it wants a timestamp update.
4995 */
4996 if (newsize != oldsize) {
4997 inode_inc_iversion(inode);
4998 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4999 inode->i_ctime = inode->i_mtime =
5000 current_time(inode);
5001 }
5002
5003 if (newsize > oldsize) {
5004 /*
5005 * Don't do an expanding truncate while snapshoting is ongoing.
5006 * This is to ensure the snapshot captures a fully consistent
5007 * state of this file - if the snapshot captures this expanding
5008 * truncation, it must capture all writes that happened before
5009 * this truncation.
5010 */
5011 btrfs_wait_for_snapshot_creation(root);
5012 ret = btrfs_cont_expand(inode, oldsize, newsize);
5013 if (ret) {
5014 btrfs_end_write_no_snapshoting(root);
5015 return ret;
5016 }
5017
5018 trans = btrfs_start_transaction(root, 1);
5019 if (IS_ERR(trans)) {
5020 btrfs_end_write_no_snapshoting(root);
5021 return PTR_ERR(trans);
5022 }
5023
5024 i_size_write(inode, newsize);
5025 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5026 pagecache_isize_extended(inode, oldsize, newsize);
5027 ret = btrfs_update_inode(trans, root, inode);
5028 btrfs_end_write_no_snapshoting(root);
5029 btrfs_end_transaction(trans, root);
5030 } else {
5031
5032 /*
5033 * We're truncating a file that used to have good data down to
5034 * zero. Make sure it gets into the ordered flush list so that
5035 * any new writes get down to disk quickly.
5036 */
5037 if (newsize == 0)
5038 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5039 &BTRFS_I(inode)->runtime_flags);
5040
5041 /*
5042 * 1 for the orphan item we're going to add
5043 * 1 for the orphan item deletion.
5044 */
5045 trans = btrfs_start_transaction(root, 2);
5046 if (IS_ERR(trans))
5047 return PTR_ERR(trans);
5048
5049 /*
5050 * We need to do this in case we fail at _any_ point during the
5051 * actual truncate. Once we do the truncate_setsize we could
5052 * invalidate pages which forces any outstanding ordered io to
5053 * be instantly completed which will give us extents that need
5054 * to be truncated. If we fail to get an orphan inode down we
5055 * could have left over extents that were never meant to live,
5056 * so we need to guarantee from this point on that everything
5057 * will be consistent.
5058 */
5059 ret = btrfs_orphan_add(trans, inode);
5060 btrfs_end_transaction(trans, root);
5061 if (ret)
5062 return ret;
5063
5064 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5065 truncate_setsize(inode, newsize);
5066
5067 /* Disable nonlocked read DIO to avoid the end less truncate */
5068 btrfs_inode_block_unlocked_dio(inode);
5069 inode_dio_wait(inode);
5070 btrfs_inode_resume_unlocked_dio(inode);
5071
5072 ret = btrfs_truncate(inode);
5073 if (ret && inode->i_nlink) {
5074 int err;
5075
5076 /*
5077 * failed to truncate, disk_i_size is only adjusted down
5078 * as we remove extents, so it should represent the true
5079 * size of the inode, so reset the in memory size and
5080 * delete our orphan entry.
5081 */
5082 trans = btrfs_join_transaction(root);
5083 if (IS_ERR(trans)) {
5084 btrfs_orphan_del(NULL, inode);
5085 return ret;
5086 }
5087 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5088 err = btrfs_orphan_del(trans, inode);
5089 if (err)
5090 btrfs_abort_transaction(trans, err);
5091 btrfs_end_transaction(trans, root);
5092 }
5093 }
5094
5095 return ret;
5096 }
5097
btrfs_setattr(struct dentry * dentry,struct iattr * attr)5098 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5099 {
5100 struct inode *inode = d_inode(dentry);
5101 struct btrfs_root *root = BTRFS_I(inode)->root;
5102 int err;
5103
5104 if (btrfs_root_readonly(root))
5105 return -EROFS;
5106
5107 err = setattr_prepare(dentry, attr);
5108 if (err)
5109 return err;
5110
5111 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5112 err = btrfs_setsize(inode, attr);
5113 if (err)
5114 return err;
5115 }
5116
5117 if (attr->ia_valid) {
5118 setattr_copy(inode, attr);
5119 inode_inc_iversion(inode);
5120 err = btrfs_dirty_inode(inode);
5121
5122 if (!err && attr->ia_valid & ATTR_MODE)
5123 err = posix_acl_chmod(inode, inode->i_mode);
5124 }
5125
5126 return err;
5127 }
5128
5129 /*
5130 * While truncating the inode pages during eviction, we get the VFS calling
5131 * btrfs_invalidatepage() against each page of the inode. This is slow because
5132 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5133 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5134 * extent_state structures over and over, wasting lots of time.
5135 *
5136 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5137 * those expensive operations on a per page basis and do only the ordered io
5138 * finishing, while we release here the extent_map and extent_state structures,
5139 * without the excessive merging and splitting.
5140 */
evict_inode_truncate_pages(struct inode * inode)5141 static void evict_inode_truncate_pages(struct inode *inode)
5142 {
5143 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5144 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5145 struct rb_node *node;
5146
5147 ASSERT(inode->i_state & I_FREEING);
5148 truncate_inode_pages_final(&inode->i_data);
5149
5150 write_lock(&map_tree->lock);
5151 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5152 struct extent_map *em;
5153
5154 node = rb_first(&map_tree->map);
5155 em = rb_entry(node, struct extent_map, rb_node);
5156 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5157 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5158 remove_extent_mapping(map_tree, em);
5159 free_extent_map(em);
5160 if (need_resched()) {
5161 write_unlock(&map_tree->lock);
5162 cond_resched();
5163 write_lock(&map_tree->lock);
5164 }
5165 }
5166 write_unlock(&map_tree->lock);
5167
5168 /*
5169 * Keep looping until we have no more ranges in the io tree.
5170 * We can have ongoing bios started by readpages (called from readahead)
5171 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5172 * still in progress (unlocked the pages in the bio but did not yet
5173 * unlocked the ranges in the io tree). Therefore this means some
5174 * ranges can still be locked and eviction started because before
5175 * submitting those bios, which are executed by a separate task (work
5176 * queue kthread), inode references (inode->i_count) were not taken
5177 * (which would be dropped in the end io callback of each bio).
5178 * Therefore here we effectively end up waiting for those bios and
5179 * anyone else holding locked ranges without having bumped the inode's
5180 * reference count - if we don't do it, when they access the inode's
5181 * io_tree to unlock a range it may be too late, leading to an
5182 * use-after-free issue.
5183 */
5184 spin_lock(&io_tree->lock);
5185 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5186 struct extent_state *state;
5187 struct extent_state *cached_state = NULL;
5188 u64 start;
5189 u64 end;
5190
5191 node = rb_first(&io_tree->state);
5192 state = rb_entry(node, struct extent_state, rb_node);
5193 start = state->start;
5194 end = state->end;
5195 spin_unlock(&io_tree->lock);
5196
5197 lock_extent_bits(io_tree, start, end, &cached_state);
5198
5199 /*
5200 * If still has DELALLOC flag, the extent didn't reach disk,
5201 * and its reserved space won't be freed by delayed_ref.
5202 * So we need to free its reserved space here.
5203 * (Refer to comment in btrfs_invalidatepage, case 2)
5204 *
5205 * Note, end is the bytenr of last byte, so we need + 1 here.
5206 */
5207 if (state->state & EXTENT_DELALLOC)
5208 btrfs_qgroup_free_data(inode, start, end - start + 1);
5209
5210 clear_extent_bit(io_tree, start, end,
5211 EXTENT_LOCKED | EXTENT_DIRTY |
5212 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5213 EXTENT_DEFRAG, 1, 1,
5214 &cached_state, GFP_NOFS);
5215
5216 cond_resched();
5217 spin_lock(&io_tree->lock);
5218 }
5219 spin_unlock(&io_tree->lock);
5220 }
5221
btrfs_evict_inode(struct inode * inode)5222 void btrfs_evict_inode(struct inode *inode)
5223 {
5224 struct btrfs_trans_handle *trans;
5225 struct btrfs_root *root = BTRFS_I(inode)->root;
5226 struct btrfs_block_rsv *rsv, *global_rsv;
5227 int steal_from_global = 0;
5228 u64 min_size;
5229 int ret;
5230
5231 trace_btrfs_inode_evict(inode);
5232
5233 if (!root) {
5234 clear_inode(inode);
5235 return;
5236 }
5237
5238 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5239
5240 evict_inode_truncate_pages(inode);
5241
5242 if (inode->i_nlink &&
5243 ((btrfs_root_refs(&root->root_item) != 0 &&
5244 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5245 btrfs_is_free_space_inode(inode)))
5246 goto no_delete;
5247
5248 if (is_bad_inode(inode)) {
5249 btrfs_orphan_del(NULL, inode);
5250 goto no_delete;
5251 }
5252 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5253 if (!special_file(inode->i_mode))
5254 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5255
5256 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5257
5258 if (test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
5259 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5260 &BTRFS_I(inode)->runtime_flags));
5261 goto no_delete;
5262 }
5263
5264 if (inode->i_nlink > 0) {
5265 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5266 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5267 goto no_delete;
5268 }
5269
5270 ret = btrfs_commit_inode_delayed_inode(inode);
5271 if (ret) {
5272 btrfs_orphan_del(NULL, inode);
5273 goto no_delete;
5274 }
5275
5276 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5277 if (!rsv) {
5278 btrfs_orphan_del(NULL, inode);
5279 goto no_delete;
5280 }
5281 rsv->size = min_size;
5282 rsv->failfast = 1;
5283 global_rsv = &root->fs_info->global_block_rsv;
5284
5285 btrfs_i_size_write(inode, 0);
5286
5287 /*
5288 * This is a bit simpler than btrfs_truncate since we've already
5289 * reserved our space for our orphan item in the unlink, so we just
5290 * need to reserve some slack space in case we add bytes and update
5291 * inode item when doing the truncate.
5292 */
5293 while (1) {
5294 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5295 BTRFS_RESERVE_FLUSH_LIMIT);
5296
5297 /*
5298 * Try and steal from the global reserve since we will
5299 * likely not use this space anyway, we want to try as
5300 * hard as possible to get this to work.
5301 */
5302 if (ret)
5303 steal_from_global++;
5304 else
5305 steal_from_global = 0;
5306 ret = 0;
5307
5308 /*
5309 * steal_from_global == 0: we reserved stuff, hooray!
5310 * steal_from_global == 1: we didn't reserve stuff, boo!
5311 * steal_from_global == 2: we've committed, still not a lot of
5312 * room but maybe we'll have room in the global reserve this
5313 * time.
5314 * steal_from_global == 3: abandon all hope!
5315 */
5316 if (steal_from_global > 2) {
5317 btrfs_warn(root->fs_info,
5318 "Could not get space for a delete, will truncate on mount %d",
5319 ret);
5320 btrfs_orphan_del(NULL, inode);
5321 btrfs_free_block_rsv(root, rsv);
5322 goto no_delete;
5323 }
5324
5325 trans = btrfs_join_transaction(root);
5326 if (IS_ERR(trans)) {
5327 btrfs_orphan_del(NULL, inode);
5328 btrfs_free_block_rsv(root, rsv);
5329 goto no_delete;
5330 }
5331
5332 /*
5333 * We can't just steal from the global reserve, we need to make
5334 * sure there is room to do it, if not we need to commit and try
5335 * again.
5336 */
5337 if (steal_from_global) {
5338 if (!btrfs_check_space_for_delayed_refs(trans, root))
5339 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5340 min_size, 0);
5341 else
5342 ret = -ENOSPC;
5343 }
5344
5345 /*
5346 * Couldn't steal from the global reserve, we have too much
5347 * pending stuff built up, commit the transaction and try it
5348 * again.
5349 */
5350 if (ret) {
5351 ret = btrfs_commit_transaction(trans, root);
5352 if (ret) {
5353 btrfs_orphan_del(NULL, inode);
5354 btrfs_free_block_rsv(root, rsv);
5355 goto no_delete;
5356 }
5357 continue;
5358 } else {
5359 steal_from_global = 0;
5360 }
5361
5362 trans->block_rsv = rsv;
5363
5364 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5365 if (ret != -ENOSPC && ret != -EAGAIN)
5366 break;
5367
5368 trans->block_rsv = &root->fs_info->trans_block_rsv;
5369 btrfs_end_transaction(trans, root);
5370 trans = NULL;
5371 btrfs_btree_balance_dirty(root);
5372 }
5373
5374 btrfs_free_block_rsv(root, rsv);
5375
5376 /*
5377 * Errors here aren't a big deal, it just means we leave orphan items
5378 * in the tree. They will be cleaned up on the next mount.
5379 */
5380 if (ret == 0) {
5381 trans->block_rsv = root->orphan_block_rsv;
5382 btrfs_orphan_del(trans, inode);
5383 } else {
5384 btrfs_orphan_del(NULL, inode);
5385 }
5386
5387 trans->block_rsv = &root->fs_info->trans_block_rsv;
5388 if (!(root == root->fs_info->tree_root ||
5389 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5390 btrfs_return_ino(root, btrfs_ino(inode));
5391
5392 btrfs_end_transaction(trans, root);
5393 btrfs_btree_balance_dirty(root);
5394 no_delete:
5395 btrfs_remove_delayed_node(inode);
5396 clear_inode(inode);
5397 }
5398
5399 /*
5400 * this returns the key found in the dir entry in the location pointer.
5401 * If no dir entries were found, location->objectid is 0.
5402 */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location)5403 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5404 struct btrfs_key *location)
5405 {
5406 const char *name = dentry->d_name.name;
5407 int namelen = dentry->d_name.len;
5408 struct btrfs_dir_item *di;
5409 struct btrfs_path *path;
5410 struct btrfs_root *root = BTRFS_I(dir)->root;
5411 int ret = 0;
5412
5413 path = btrfs_alloc_path();
5414 if (!path)
5415 return -ENOMEM;
5416
5417 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5418 namelen, 0);
5419 if (IS_ERR(di))
5420 ret = PTR_ERR(di);
5421
5422 if (IS_ERR_OR_NULL(di))
5423 goto out_err;
5424
5425 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5426 out:
5427 btrfs_free_path(path);
5428 return ret;
5429 out_err:
5430 location->objectid = 0;
5431 goto out;
5432 }
5433
5434 /*
5435 * when we hit a tree root in a directory, the btrfs part of the inode
5436 * needs to be changed to reflect the root directory of the tree root. This
5437 * is kind of like crossing a mount point.
5438 */
fixup_tree_root_location(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5439 static int fixup_tree_root_location(struct btrfs_root *root,
5440 struct inode *dir,
5441 struct dentry *dentry,
5442 struct btrfs_key *location,
5443 struct btrfs_root **sub_root)
5444 {
5445 struct btrfs_path *path;
5446 struct btrfs_root *new_root;
5447 struct btrfs_root_ref *ref;
5448 struct extent_buffer *leaf;
5449 struct btrfs_key key;
5450 int ret;
5451 int err = 0;
5452
5453 path = btrfs_alloc_path();
5454 if (!path) {
5455 err = -ENOMEM;
5456 goto out;
5457 }
5458
5459 err = -ENOENT;
5460 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5461 key.type = BTRFS_ROOT_REF_KEY;
5462 key.offset = location->objectid;
5463
5464 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5465 0, 0);
5466 if (ret) {
5467 if (ret < 0)
5468 err = ret;
5469 goto out;
5470 }
5471
5472 leaf = path->nodes[0];
5473 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5474 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5475 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5476 goto out;
5477
5478 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5479 (unsigned long)(ref + 1),
5480 dentry->d_name.len);
5481 if (ret)
5482 goto out;
5483
5484 btrfs_release_path(path);
5485
5486 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5487 if (IS_ERR(new_root)) {
5488 err = PTR_ERR(new_root);
5489 goto out;
5490 }
5491
5492 *sub_root = new_root;
5493 location->objectid = btrfs_root_dirid(&new_root->root_item);
5494 location->type = BTRFS_INODE_ITEM_KEY;
5495 location->offset = 0;
5496 err = 0;
5497 out:
5498 btrfs_free_path(path);
5499 return err;
5500 }
5501
inode_tree_add(struct inode * inode)5502 static void inode_tree_add(struct inode *inode)
5503 {
5504 struct btrfs_root *root = BTRFS_I(inode)->root;
5505 struct btrfs_inode *entry;
5506 struct rb_node **p;
5507 struct rb_node *parent;
5508 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5509 u64 ino = btrfs_ino(inode);
5510
5511 if (inode_unhashed(inode))
5512 return;
5513 parent = NULL;
5514 spin_lock(&root->inode_lock);
5515 p = &root->inode_tree.rb_node;
5516 while (*p) {
5517 parent = *p;
5518 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5519
5520 if (ino < btrfs_ino(&entry->vfs_inode))
5521 p = &parent->rb_left;
5522 else if (ino > btrfs_ino(&entry->vfs_inode))
5523 p = &parent->rb_right;
5524 else {
5525 WARN_ON(!(entry->vfs_inode.i_state &
5526 (I_WILL_FREE | I_FREEING)));
5527 rb_replace_node(parent, new, &root->inode_tree);
5528 RB_CLEAR_NODE(parent);
5529 spin_unlock(&root->inode_lock);
5530 return;
5531 }
5532 }
5533 rb_link_node(new, parent, p);
5534 rb_insert_color(new, &root->inode_tree);
5535 spin_unlock(&root->inode_lock);
5536 }
5537
inode_tree_del(struct inode * inode)5538 static void inode_tree_del(struct inode *inode)
5539 {
5540 struct btrfs_root *root = BTRFS_I(inode)->root;
5541 int empty = 0;
5542
5543 spin_lock(&root->inode_lock);
5544 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5545 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5546 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5547 empty = RB_EMPTY_ROOT(&root->inode_tree);
5548 }
5549 spin_unlock(&root->inode_lock);
5550
5551 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5552 synchronize_srcu(&root->fs_info->subvol_srcu);
5553 spin_lock(&root->inode_lock);
5554 empty = RB_EMPTY_ROOT(&root->inode_tree);
5555 spin_unlock(&root->inode_lock);
5556 if (empty)
5557 btrfs_add_dead_root(root);
5558 }
5559 }
5560
btrfs_invalidate_inodes(struct btrfs_root * root)5561 void btrfs_invalidate_inodes(struct btrfs_root *root)
5562 {
5563 struct rb_node *node;
5564 struct rb_node *prev;
5565 struct btrfs_inode *entry;
5566 struct inode *inode;
5567 u64 objectid = 0;
5568
5569 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5570 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5571
5572 spin_lock(&root->inode_lock);
5573 again:
5574 node = root->inode_tree.rb_node;
5575 prev = NULL;
5576 while (node) {
5577 prev = node;
5578 entry = rb_entry(node, struct btrfs_inode, rb_node);
5579
5580 if (objectid < btrfs_ino(&entry->vfs_inode))
5581 node = node->rb_left;
5582 else if (objectid > btrfs_ino(&entry->vfs_inode))
5583 node = node->rb_right;
5584 else
5585 break;
5586 }
5587 if (!node) {
5588 while (prev) {
5589 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5590 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5591 node = prev;
5592 break;
5593 }
5594 prev = rb_next(prev);
5595 }
5596 }
5597 while (node) {
5598 entry = rb_entry(node, struct btrfs_inode, rb_node);
5599 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5600 inode = igrab(&entry->vfs_inode);
5601 if (inode) {
5602 spin_unlock(&root->inode_lock);
5603 if (atomic_read(&inode->i_count) > 1)
5604 d_prune_aliases(inode);
5605 /*
5606 * btrfs_drop_inode will have it removed from
5607 * the inode cache when its usage count
5608 * hits zero.
5609 */
5610 iput(inode);
5611 cond_resched();
5612 spin_lock(&root->inode_lock);
5613 goto again;
5614 }
5615
5616 if (cond_resched_lock(&root->inode_lock))
5617 goto again;
5618
5619 node = rb_next(node);
5620 }
5621 spin_unlock(&root->inode_lock);
5622 }
5623
btrfs_init_locked_inode(struct inode * inode,void * p)5624 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5625 {
5626 struct btrfs_iget_args *args = p;
5627 inode->i_ino = args->location->objectid;
5628 memcpy(&BTRFS_I(inode)->location, args->location,
5629 sizeof(*args->location));
5630 BTRFS_I(inode)->root = args->root;
5631 return 0;
5632 }
5633
btrfs_find_actor(struct inode * inode,void * opaque)5634 static int btrfs_find_actor(struct inode *inode, void *opaque)
5635 {
5636 struct btrfs_iget_args *args = opaque;
5637 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5638 args->root == BTRFS_I(inode)->root;
5639 }
5640
btrfs_iget_locked(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root)5641 static struct inode *btrfs_iget_locked(struct super_block *s,
5642 struct btrfs_key *location,
5643 struct btrfs_root *root)
5644 {
5645 struct inode *inode;
5646 struct btrfs_iget_args args;
5647 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5648
5649 args.location = location;
5650 args.root = root;
5651
5652 inode = iget5_locked(s, hashval, btrfs_find_actor,
5653 btrfs_init_locked_inode,
5654 (void *)&args);
5655 return inode;
5656 }
5657
5658 /* Get an inode object given its location and corresponding root.
5659 * Returns in *is_new if the inode was read from disk
5660 */
btrfs_iget(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * new)5661 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5662 struct btrfs_root *root, int *new)
5663 {
5664 struct inode *inode;
5665
5666 inode = btrfs_iget_locked(s, location, root);
5667 if (!inode)
5668 return ERR_PTR(-ENOMEM);
5669
5670 if (inode->i_state & I_NEW) {
5671 int ret;
5672
5673 ret = btrfs_read_locked_inode(inode);
5674 if (!is_bad_inode(inode)) {
5675 inode_tree_add(inode);
5676 unlock_new_inode(inode);
5677 if (new)
5678 *new = 1;
5679 } else {
5680 unlock_new_inode(inode);
5681 iput(inode);
5682 ASSERT(ret < 0);
5683 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5684 }
5685 }
5686
5687 return inode;
5688 }
5689
new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)5690 static struct inode *new_simple_dir(struct super_block *s,
5691 struct btrfs_key *key,
5692 struct btrfs_root *root)
5693 {
5694 struct inode *inode = new_inode(s);
5695
5696 if (!inode)
5697 return ERR_PTR(-ENOMEM);
5698
5699 BTRFS_I(inode)->root = root;
5700 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5701 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5702
5703 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5704 inode->i_op = &btrfs_dir_ro_inode_operations;
5705 inode->i_opflags &= ~IOP_XATTR;
5706 inode->i_fop = &simple_dir_operations;
5707 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5708 inode->i_mtime = current_time(inode);
5709 inode->i_atime = inode->i_mtime;
5710 inode->i_ctime = inode->i_mtime;
5711 BTRFS_I(inode)->i_otime = inode->i_mtime;
5712
5713 return inode;
5714 }
5715
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5716 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5717 {
5718 struct inode *inode;
5719 struct btrfs_root *root = BTRFS_I(dir)->root;
5720 struct btrfs_root *sub_root = root;
5721 struct btrfs_key location;
5722 int index;
5723 int ret = 0;
5724
5725 if (dentry->d_name.len > BTRFS_NAME_LEN)
5726 return ERR_PTR(-ENAMETOOLONG);
5727
5728 ret = btrfs_inode_by_name(dir, dentry, &location);
5729 if (ret < 0)
5730 return ERR_PTR(ret);
5731
5732 if (location.objectid == 0)
5733 return ERR_PTR(-ENOENT);
5734
5735 if (location.type == BTRFS_INODE_ITEM_KEY) {
5736 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5737 return inode;
5738 }
5739
5740 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5741
5742 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5743 ret = fixup_tree_root_location(root, dir, dentry,
5744 &location, &sub_root);
5745 if (ret < 0) {
5746 if (ret != -ENOENT)
5747 inode = ERR_PTR(ret);
5748 else
5749 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5750 } else {
5751 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5752 }
5753 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5754
5755 if (!IS_ERR(inode) && root != sub_root) {
5756 down_read(&root->fs_info->cleanup_work_sem);
5757 if (!(inode->i_sb->s_flags & MS_RDONLY))
5758 ret = btrfs_orphan_cleanup(sub_root);
5759 up_read(&root->fs_info->cleanup_work_sem);
5760 if (ret) {
5761 iput(inode);
5762 inode = ERR_PTR(ret);
5763 }
5764 }
5765
5766 return inode;
5767 }
5768
btrfs_dentry_delete(const struct dentry * dentry)5769 static int btrfs_dentry_delete(const struct dentry *dentry)
5770 {
5771 struct btrfs_root *root;
5772 struct inode *inode = d_inode(dentry);
5773
5774 if (!inode && !IS_ROOT(dentry))
5775 inode = d_inode(dentry->d_parent);
5776
5777 if (inode) {
5778 root = BTRFS_I(inode)->root;
5779 if (btrfs_root_refs(&root->root_item) == 0)
5780 return 1;
5781
5782 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5783 return 1;
5784 }
5785 return 0;
5786 }
5787
btrfs_dentry_release(struct dentry * dentry)5788 static void btrfs_dentry_release(struct dentry *dentry)
5789 {
5790 kfree(dentry->d_fsdata);
5791 }
5792
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5793 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5794 unsigned int flags)
5795 {
5796 struct inode *inode;
5797
5798 inode = btrfs_lookup_dentry(dir, dentry);
5799 if (IS_ERR(inode)) {
5800 if (PTR_ERR(inode) == -ENOENT)
5801 inode = NULL;
5802 else
5803 return ERR_CAST(inode);
5804 }
5805
5806 return d_splice_alias(inode, dentry);
5807 }
5808
5809 unsigned char btrfs_filetype_table[] = {
5810 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5811 };
5812
btrfs_real_readdir(struct file * file,struct dir_context * ctx)5813 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5814 {
5815 struct inode *inode = file_inode(file);
5816 struct btrfs_root *root = BTRFS_I(inode)->root;
5817 struct btrfs_item *item;
5818 struct btrfs_dir_item *di;
5819 struct btrfs_key key;
5820 struct btrfs_key found_key;
5821 struct btrfs_path *path;
5822 struct list_head ins_list;
5823 struct list_head del_list;
5824 int ret;
5825 struct extent_buffer *leaf;
5826 int slot;
5827 unsigned char d_type;
5828 int over = 0;
5829 u32 di_cur;
5830 u32 di_total;
5831 u32 di_len;
5832 int key_type = BTRFS_DIR_INDEX_KEY;
5833 char tmp_name[32];
5834 char *name_ptr;
5835 int name_len;
5836 int is_curr = 0; /* ctx->pos points to the current index? */
5837 bool emitted;
5838 bool put = false;
5839
5840 /* FIXME, use a real flag for deciding about the key type */
5841 if (root->fs_info->tree_root == root)
5842 key_type = BTRFS_DIR_ITEM_KEY;
5843
5844 if (!dir_emit_dots(file, ctx))
5845 return 0;
5846
5847 path = btrfs_alloc_path();
5848 if (!path)
5849 return -ENOMEM;
5850
5851 path->reada = READA_FORWARD;
5852
5853 if (key_type == BTRFS_DIR_INDEX_KEY) {
5854 INIT_LIST_HEAD(&ins_list);
5855 INIT_LIST_HEAD(&del_list);
5856 put = btrfs_readdir_get_delayed_items(inode, &ins_list,
5857 &del_list);
5858 }
5859
5860 key.type = key_type;
5861 key.offset = ctx->pos;
5862 key.objectid = btrfs_ino(inode);
5863
5864 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5865 if (ret < 0)
5866 goto err;
5867
5868 emitted = false;
5869 while (1) {
5870 leaf = path->nodes[0];
5871 slot = path->slots[0];
5872 if (slot >= btrfs_header_nritems(leaf)) {
5873 ret = btrfs_next_leaf(root, path);
5874 if (ret < 0)
5875 goto err;
5876 else if (ret > 0)
5877 break;
5878 continue;
5879 }
5880
5881 item = btrfs_item_nr(slot);
5882 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5883
5884 if (found_key.objectid != key.objectid)
5885 break;
5886 if (found_key.type != key_type)
5887 break;
5888 if (found_key.offset < ctx->pos)
5889 goto next;
5890 if (key_type == BTRFS_DIR_INDEX_KEY &&
5891 btrfs_should_delete_dir_index(&del_list,
5892 found_key.offset))
5893 goto next;
5894
5895 ctx->pos = found_key.offset;
5896 is_curr = 1;
5897
5898 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5899 di_cur = 0;
5900 di_total = btrfs_item_size(leaf, item);
5901
5902 while (di_cur < di_total) {
5903 struct btrfs_key location;
5904
5905 if (verify_dir_item(root, leaf, di))
5906 break;
5907
5908 name_len = btrfs_dir_name_len(leaf, di);
5909 if (name_len <= sizeof(tmp_name)) {
5910 name_ptr = tmp_name;
5911 } else {
5912 name_ptr = kmalloc(name_len, GFP_KERNEL);
5913 if (!name_ptr) {
5914 ret = -ENOMEM;
5915 goto err;
5916 }
5917 }
5918 read_extent_buffer(leaf, name_ptr,
5919 (unsigned long)(di + 1), name_len);
5920
5921 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5922 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5923
5924
5925 /* is this a reference to our own snapshot? If so
5926 * skip it.
5927 *
5928 * In contrast to old kernels, we insert the snapshot's
5929 * dir item and dir index after it has been created, so
5930 * we won't find a reference to our own snapshot. We
5931 * still keep the following code for backward
5932 * compatibility.
5933 */
5934 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5935 location.objectid == root->root_key.objectid) {
5936 over = 0;
5937 goto skip;
5938 }
5939 over = !dir_emit(ctx, name_ptr, name_len,
5940 location.objectid, d_type);
5941
5942 skip:
5943 if (name_ptr != tmp_name)
5944 kfree(name_ptr);
5945
5946 if (over)
5947 goto nopos;
5948 emitted = true;
5949 di_len = btrfs_dir_name_len(leaf, di) +
5950 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5951 di_cur += di_len;
5952 di = (struct btrfs_dir_item *)((char *)di + di_len);
5953 }
5954 next:
5955 path->slots[0]++;
5956 }
5957
5958 if (key_type == BTRFS_DIR_INDEX_KEY) {
5959 if (is_curr)
5960 ctx->pos++;
5961 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
5962 if (ret)
5963 goto nopos;
5964 }
5965
5966 /*
5967 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5968 * it was was set to the termination value in previous call. We assume
5969 * that "." and ".." were emitted if we reach this point and set the
5970 * termination value as well for an empty directory.
5971 */
5972 if (ctx->pos > 2 && !emitted)
5973 goto nopos;
5974
5975 /* Reached end of directory/root. Bump pos past the last item. */
5976 ctx->pos++;
5977
5978 /*
5979 * Stop new entries from being returned after we return the last
5980 * entry.
5981 *
5982 * New directory entries are assigned a strictly increasing
5983 * offset. This means that new entries created during readdir
5984 * are *guaranteed* to be seen in the future by that readdir.
5985 * This has broken buggy programs which operate on names as
5986 * they're returned by readdir. Until we re-use freed offsets
5987 * we have this hack to stop new entries from being returned
5988 * under the assumption that they'll never reach this huge
5989 * offset.
5990 *
5991 * This is being careful not to overflow 32bit loff_t unless the
5992 * last entry requires it because doing so has broken 32bit apps
5993 * in the past.
5994 */
5995 if (key_type == BTRFS_DIR_INDEX_KEY) {
5996 if (ctx->pos >= INT_MAX)
5997 ctx->pos = LLONG_MAX;
5998 else
5999 ctx->pos = INT_MAX;
6000 }
6001 nopos:
6002 ret = 0;
6003 err:
6004 if (put)
6005 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6006 btrfs_free_path(path);
6007 return ret;
6008 }
6009
btrfs_write_inode(struct inode * inode,struct writeback_control * wbc)6010 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
6011 {
6012 struct btrfs_root *root = BTRFS_I(inode)->root;
6013 struct btrfs_trans_handle *trans;
6014 int ret = 0;
6015 bool nolock = false;
6016
6017 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6018 return 0;
6019
6020 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
6021 nolock = true;
6022
6023 if (wbc->sync_mode == WB_SYNC_ALL) {
6024 if (nolock)
6025 trans = btrfs_join_transaction_nolock(root);
6026 else
6027 trans = btrfs_join_transaction(root);
6028 if (IS_ERR(trans))
6029 return PTR_ERR(trans);
6030 ret = btrfs_commit_transaction(trans, root);
6031 }
6032 return ret;
6033 }
6034
6035 /*
6036 * This is somewhat expensive, updating the tree every time the
6037 * inode changes. But, it is most likely to find the inode in cache.
6038 * FIXME, needs more benchmarking...there are no reasons other than performance
6039 * to keep or drop this code.
6040 */
btrfs_dirty_inode(struct inode * inode)6041 static int btrfs_dirty_inode(struct inode *inode)
6042 {
6043 struct btrfs_root *root = BTRFS_I(inode)->root;
6044 struct btrfs_trans_handle *trans;
6045 int ret;
6046
6047 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6048 return 0;
6049
6050 trans = btrfs_join_transaction(root);
6051 if (IS_ERR(trans))
6052 return PTR_ERR(trans);
6053
6054 ret = btrfs_update_inode(trans, root, inode);
6055 if (ret && ret == -ENOSPC) {
6056 /* whoops, lets try again with the full transaction */
6057 btrfs_end_transaction(trans, root);
6058 trans = btrfs_start_transaction(root, 1);
6059 if (IS_ERR(trans))
6060 return PTR_ERR(trans);
6061
6062 ret = btrfs_update_inode(trans, root, inode);
6063 }
6064 btrfs_end_transaction(trans, root);
6065 if (BTRFS_I(inode)->delayed_node)
6066 btrfs_balance_delayed_items(root);
6067
6068 return ret;
6069 }
6070
6071 /*
6072 * This is a copy of file_update_time. We need this so we can return error on
6073 * ENOSPC for updating the inode in the case of file write and mmap writes.
6074 */
btrfs_update_time(struct inode * inode,struct timespec * now,int flags)6075 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6076 int flags)
6077 {
6078 struct btrfs_root *root = BTRFS_I(inode)->root;
6079
6080 if (btrfs_root_readonly(root))
6081 return -EROFS;
6082
6083 if (flags & S_VERSION)
6084 inode_inc_iversion(inode);
6085 if (flags & S_CTIME)
6086 inode->i_ctime = *now;
6087 if (flags & S_MTIME)
6088 inode->i_mtime = *now;
6089 if (flags & S_ATIME)
6090 inode->i_atime = *now;
6091 return btrfs_dirty_inode(inode);
6092 }
6093
6094 /*
6095 * find the highest existing sequence number in a directory
6096 * and then set the in-memory index_cnt variable to reflect
6097 * free sequence numbers
6098 */
btrfs_set_inode_index_count(struct inode * inode)6099 static int btrfs_set_inode_index_count(struct inode *inode)
6100 {
6101 struct btrfs_root *root = BTRFS_I(inode)->root;
6102 struct btrfs_key key, found_key;
6103 struct btrfs_path *path;
6104 struct extent_buffer *leaf;
6105 int ret;
6106
6107 key.objectid = btrfs_ino(inode);
6108 key.type = BTRFS_DIR_INDEX_KEY;
6109 key.offset = (u64)-1;
6110
6111 path = btrfs_alloc_path();
6112 if (!path)
6113 return -ENOMEM;
6114
6115 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6116 if (ret < 0)
6117 goto out;
6118 /* FIXME: we should be able to handle this */
6119 if (ret == 0)
6120 goto out;
6121 ret = 0;
6122
6123 /*
6124 * MAGIC NUMBER EXPLANATION:
6125 * since we search a directory based on f_pos we have to start at 2
6126 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6127 * else has to start at 2
6128 */
6129 if (path->slots[0] == 0) {
6130 BTRFS_I(inode)->index_cnt = 2;
6131 goto out;
6132 }
6133
6134 path->slots[0]--;
6135
6136 leaf = path->nodes[0];
6137 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6138
6139 if (found_key.objectid != btrfs_ino(inode) ||
6140 found_key.type != BTRFS_DIR_INDEX_KEY) {
6141 BTRFS_I(inode)->index_cnt = 2;
6142 goto out;
6143 }
6144
6145 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6146 out:
6147 btrfs_free_path(path);
6148 return ret;
6149 }
6150
6151 /*
6152 * helper to find a free sequence number in a given directory. This current
6153 * code is very simple, later versions will do smarter things in the btree
6154 */
btrfs_set_inode_index(struct inode * dir,u64 * index)6155 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6156 {
6157 int ret = 0;
6158
6159 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6160 ret = btrfs_inode_delayed_dir_index_count(dir);
6161 if (ret) {
6162 ret = btrfs_set_inode_index_count(dir);
6163 if (ret)
6164 return ret;
6165 }
6166 }
6167
6168 *index = BTRFS_I(dir)->index_cnt;
6169 BTRFS_I(dir)->index_cnt++;
6170
6171 return ret;
6172 }
6173
btrfs_insert_inode_locked(struct inode * inode)6174 static int btrfs_insert_inode_locked(struct inode *inode)
6175 {
6176 struct btrfs_iget_args args;
6177 args.location = &BTRFS_I(inode)->location;
6178 args.root = BTRFS_I(inode)->root;
6179
6180 return insert_inode_locked4(inode,
6181 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6182 btrfs_find_actor, &args);
6183 }
6184
btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,umode_t mode,u64 * index)6185 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6186 struct btrfs_root *root,
6187 struct inode *dir,
6188 const char *name, int name_len,
6189 u64 ref_objectid, u64 objectid,
6190 umode_t mode, u64 *index)
6191 {
6192 struct inode *inode;
6193 struct btrfs_inode_item *inode_item;
6194 struct btrfs_key *location;
6195 struct btrfs_path *path;
6196 struct btrfs_inode_ref *ref;
6197 struct btrfs_key key[2];
6198 u32 sizes[2];
6199 int nitems = name ? 2 : 1;
6200 unsigned long ptr;
6201 int ret;
6202
6203 path = btrfs_alloc_path();
6204 if (!path)
6205 return ERR_PTR(-ENOMEM);
6206
6207 inode = new_inode(root->fs_info->sb);
6208 if (!inode) {
6209 btrfs_free_path(path);
6210 return ERR_PTR(-ENOMEM);
6211 }
6212
6213 /*
6214 * O_TMPFILE, set link count to 0, so that after this point,
6215 * we fill in an inode item with the correct link count.
6216 */
6217 if (!name)
6218 set_nlink(inode, 0);
6219
6220 /*
6221 * we have to initialize this early, so we can reclaim the inode
6222 * number if we fail afterwards in this function.
6223 */
6224 inode->i_ino = objectid;
6225
6226 if (dir && name) {
6227 trace_btrfs_inode_request(dir);
6228
6229 ret = btrfs_set_inode_index(dir, index);
6230 if (ret) {
6231 btrfs_free_path(path);
6232 iput(inode);
6233 return ERR_PTR(ret);
6234 }
6235 } else if (dir) {
6236 *index = 0;
6237 }
6238 /*
6239 * index_cnt is ignored for everything but a dir,
6240 * btrfs_get_inode_index_count has an explanation for the magic
6241 * number
6242 */
6243 BTRFS_I(inode)->index_cnt = 2;
6244 BTRFS_I(inode)->dir_index = *index;
6245 BTRFS_I(inode)->root = root;
6246 BTRFS_I(inode)->generation = trans->transid;
6247 inode->i_generation = BTRFS_I(inode)->generation;
6248
6249 /*
6250 * We could have gotten an inode number from somebody who was fsynced
6251 * and then removed in this same transaction, so let's just set full
6252 * sync since it will be a full sync anyway and this will blow away the
6253 * old info in the log.
6254 */
6255 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6256
6257 key[0].objectid = objectid;
6258 key[0].type = BTRFS_INODE_ITEM_KEY;
6259 key[0].offset = 0;
6260
6261 sizes[0] = sizeof(struct btrfs_inode_item);
6262
6263 if (name) {
6264 /*
6265 * Start new inodes with an inode_ref. This is slightly more
6266 * efficient for small numbers of hard links since they will
6267 * be packed into one item. Extended refs will kick in if we
6268 * add more hard links than can fit in the ref item.
6269 */
6270 key[1].objectid = objectid;
6271 key[1].type = BTRFS_INODE_REF_KEY;
6272 key[1].offset = ref_objectid;
6273
6274 sizes[1] = name_len + sizeof(*ref);
6275 }
6276
6277 location = &BTRFS_I(inode)->location;
6278 location->objectid = objectid;
6279 location->offset = 0;
6280 location->type = BTRFS_INODE_ITEM_KEY;
6281
6282 ret = btrfs_insert_inode_locked(inode);
6283 if (ret < 0)
6284 goto fail;
6285
6286 path->leave_spinning = 1;
6287 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6288 if (ret != 0)
6289 goto fail_unlock;
6290
6291 inode_init_owner(inode, dir, mode);
6292 inode_set_bytes(inode, 0);
6293
6294 inode->i_mtime = current_time(inode);
6295 inode->i_atime = inode->i_mtime;
6296 inode->i_ctime = inode->i_mtime;
6297 BTRFS_I(inode)->i_otime = inode->i_mtime;
6298
6299 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6300 struct btrfs_inode_item);
6301 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6302 sizeof(*inode_item));
6303 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6304
6305 if (name) {
6306 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6307 struct btrfs_inode_ref);
6308 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6309 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6310 ptr = (unsigned long)(ref + 1);
6311 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6312 }
6313
6314 btrfs_mark_buffer_dirty(path->nodes[0]);
6315 btrfs_free_path(path);
6316
6317 btrfs_inherit_iflags(inode, dir);
6318
6319 if (S_ISREG(mode)) {
6320 if (btrfs_test_opt(root->fs_info, NODATASUM))
6321 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6322 if (btrfs_test_opt(root->fs_info, NODATACOW))
6323 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6324 BTRFS_INODE_NODATASUM;
6325 }
6326
6327 inode_tree_add(inode);
6328
6329 trace_btrfs_inode_new(inode);
6330 btrfs_set_inode_last_trans(trans, inode);
6331
6332 btrfs_update_root_times(trans, root);
6333
6334 ret = btrfs_inode_inherit_props(trans, inode, dir);
6335 if (ret)
6336 btrfs_err(root->fs_info,
6337 "error inheriting props for ino %llu (root %llu): %d",
6338 btrfs_ino(inode), root->root_key.objectid, ret);
6339
6340 return inode;
6341
6342 fail_unlock:
6343 unlock_new_inode(inode);
6344 fail:
6345 if (dir && name)
6346 BTRFS_I(dir)->index_cnt--;
6347 btrfs_free_path(path);
6348 iput(inode);
6349 return ERR_PTR(ret);
6350 }
6351
btrfs_inode_type(struct inode * inode)6352 static inline u8 btrfs_inode_type(struct inode *inode)
6353 {
6354 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6355 }
6356
6357 /*
6358 * utility function to add 'inode' into 'parent_inode' with
6359 * a give name and a given sequence number.
6360 * if 'add_backref' is true, also insert a backref from the
6361 * inode to the parent directory.
6362 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct inode * parent_inode,struct inode * inode,const char * name,int name_len,int add_backref,u64 index)6363 int btrfs_add_link(struct btrfs_trans_handle *trans,
6364 struct inode *parent_inode, struct inode *inode,
6365 const char *name, int name_len, int add_backref, u64 index)
6366 {
6367 int ret = 0;
6368 struct btrfs_key key;
6369 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6370 u64 ino = btrfs_ino(inode);
6371 u64 parent_ino = btrfs_ino(parent_inode);
6372
6373 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6374 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6375 } else {
6376 key.objectid = ino;
6377 key.type = BTRFS_INODE_ITEM_KEY;
6378 key.offset = 0;
6379 }
6380
6381 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6382 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6383 key.objectid, root->root_key.objectid,
6384 parent_ino, index, name, name_len);
6385 } else if (add_backref) {
6386 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6387 parent_ino, index);
6388 }
6389
6390 /* Nothing to clean up yet */
6391 if (ret)
6392 return ret;
6393
6394 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6395 parent_inode, &key,
6396 btrfs_inode_type(inode), index);
6397 if (ret == -EEXIST || ret == -EOVERFLOW)
6398 goto fail_dir_item;
6399 else if (ret) {
6400 btrfs_abort_transaction(trans, ret);
6401 return ret;
6402 }
6403
6404 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6405 name_len * 2);
6406 inode_inc_iversion(parent_inode);
6407 parent_inode->i_mtime = parent_inode->i_ctime =
6408 current_time(parent_inode);
6409 ret = btrfs_update_inode(trans, root, parent_inode);
6410 if (ret)
6411 btrfs_abort_transaction(trans, ret);
6412 return ret;
6413
6414 fail_dir_item:
6415 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6416 u64 local_index;
6417 int err;
6418 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6419 key.objectid, root->root_key.objectid,
6420 parent_ino, &local_index, name, name_len);
6421
6422 } else if (add_backref) {
6423 u64 local_index;
6424 int err;
6425
6426 err = btrfs_del_inode_ref(trans, root, name, name_len,
6427 ino, parent_ino, &local_index);
6428 }
6429 return ret;
6430 }
6431
btrfs_add_nondir(struct btrfs_trans_handle * trans,struct inode * dir,struct dentry * dentry,struct inode * inode,int backref,u64 index)6432 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6433 struct inode *dir, struct dentry *dentry,
6434 struct inode *inode, int backref, u64 index)
6435 {
6436 int err = btrfs_add_link(trans, dir, inode,
6437 dentry->d_name.name, dentry->d_name.len,
6438 backref, index);
6439 if (err > 0)
6440 err = -EEXIST;
6441 return err;
6442 }
6443
btrfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6444 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6445 umode_t mode, dev_t rdev)
6446 {
6447 struct btrfs_trans_handle *trans;
6448 struct btrfs_root *root = BTRFS_I(dir)->root;
6449 struct inode *inode = NULL;
6450 int err;
6451 int drop_inode = 0;
6452 u64 objectid;
6453 u64 index = 0;
6454
6455 /*
6456 * 2 for inode item and ref
6457 * 2 for dir items
6458 * 1 for xattr if selinux is on
6459 */
6460 trans = btrfs_start_transaction(root, 5);
6461 if (IS_ERR(trans))
6462 return PTR_ERR(trans);
6463
6464 err = btrfs_find_free_ino(root, &objectid);
6465 if (err)
6466 goto out_unlock;
6467
6468 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6469 dentry->d_name.len, btrfs_ino(dir), objectid,
6470 mode, &index);
6471 if (IS_ERR(inode)) {
6472 err = PTR_ERR(inode);
6473 goto out_unlock;
6474 }
6475
6476 /*
6477 * If the active LSM wants to access the inode during
6478 * d_instantiate it needs these. Smack checks to see
6479 * if the filesystem supports xattrs by looking at the
6480 * ops vector.
6481 */
6482 inode->i_op = &btrfs_special_inode_operations;
6483 init_special_inode(inode, inode->i_mode, rdev);
6484
6485 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6486 if (err)
6487 goto out_unlock_inode;
6488
6489 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6490 if (err) {
6491 goto out_unlock_inode;
6492 } else {
6493 btrfs_update_inode(trans, root, inode);
6494 unlock_new_inode(inode);
6495 d_instantiate(dentry, inode);
6496 }
6497
6498 out_unlock:
6499 btrfs_end_transaction(trans, root);
6500 btrfs_balance_delayed_items(root);
6501 btrfs_btree_balance_dirty(root);
6502 if (drop_inode) {
6503 inode_dec_link_count(inode);
6504 iput(inode);
6505 }
6506 return err;
6507
6508 out_unlock_inode:
6509 drop_inode = 1;
6510 unlock_new_inode(inode);
6511 goto out_unlock;
6512
6513 }
6514
btrfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6515 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6516 umode_t mode, bool excl)
6517 {
6518 struct btrfs_trans_handle *trans;
6519 struct btrfs_root *root = BTRFS_I(dir)->root;
6520 struct inode *inode = NULL;
6521 int drop_inode_on_err = 0;
6522 int err;
6523 u64 objectid;
6524 u64 index = 0;
6525
6526 /*
6527 * 2 for inode item and ref
6528 * 2 for dir items
6529 * 1 for xattr if selinux is on
6530 */
6531 trans = btrfs_start_transaction(root, 5);
6532 if (IS_ERR(trans))
6533 return PTR_ERR(trans);
6534
6535 err = btrfs_find_free_ino(root, &objectid);
6536 if (err)
6537 goto out_unlock;
6538
6539 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6540 dentry->d_name.len, btrfs_ino(dir), objectid,
6541 mode, &index);
6542 if (IS_ERR(inode)) {
6543 err = PTR_ERR(inode);
6544 goto out_unlock;
6545 }
6546 drop_inode_on_err = 1;
6547 /*
6548 * If the active LSM wants to access the inode during
6549 * d_instantiate it needs these. Smack checks to see
6550 * if the filesystem supports xattrs by looking at the
6551 * ops vector.
6552 */
6553 inode->i_fop = &btrfs_file_operations;
6554 inode->i_op = &btrfs_file_inode_operations;
6555 inode->i_mapping->a_ops = &btrfs_aops;
6556
6557 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6558 if (err)
6559 goto out_unlock_inode;
6560
6561 err = btrfs_update_inode(trans, root, inode);
6562 if (err)
6563 goto out_unlock_inode;
6564
6565 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6566 if (err)
6567 goto out_unlock_inode;
6568
6569 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6570 unlock_new_inode(inode);
6571 d_instantiate(dentry, inode);
6572
6573 out_unlock:
6574 btrfs_end_transaction(trans, root);
6575 if (err && drop_inode_on_err) {
6576 inode_dec_link_count(inode);
6577 iput(inode);
6578 }
6579 btrfs_balance_delayed_items(root);
6580 btrfs_btree_balance_dirty(root);
6581 return err;
6582
6583 out_unlock_inode:
6584 unlock_new_inode(inode);
6585 goto out_unlock;
6586
6587 }
6588
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6589 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6590 struct dentry *dentry)
6591 {
6592 struct btrfs_trans_handle *trans = NULL;
6593 struct btrfs_root *root = BTRFS_I(dir)->root;
6594 struct inode *inode = d_inode(old_dentry);
6595 u64 index;
6596 int err;
6597 int drop_inode = 0;
6598
6599 /* do not allow sys_link's with other subvols of the same device */
6600 if (root->objectid != BTRFS_I(inode)->root->objectid)
6601 return -EXDEV;
6602
6603 if (inode->i_nlink >= BTRFS_LINK_MAX)
6604 return -EMLINK;
6605
6606 err = btrfs_set_inode_index(dir, &index);
6607 if (err)
6608 goto fail;
6609
6610 /*
6611 * 2 items for inode and inode ref
6612 * 2 items for dir items
6613 * 1 item for parent inode
6614 */
6615 trans = btrfs_start_transaction(root, 5);
6616 if (IS_ERR(trans)) {
6617 err = PTR_ERR(trans);
6618 trans = NULL;
6619 goto fail;
6620 }
6621
6622 /* There are several dir indexes for this inode, clear the cache. */
6623 BTRFS_I(inode)->dir_index = 0ULL;
6624 inc_nlink(inode);
6625 inode_inc_iversion(inode);
6626 inode->i_ctime = current_time(inode);
6627 ihold(inode);
6628 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6629
6630 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6631
6632 if (err) {
6633 drop_inode = 1;
6634 } else {
6635 struct dentry *parent = dentry->d_parent;
6636 err = btrfs_update_inode(trans, root, inode);
6637 if (err)
6638 goto fail;
6639 if (inode->i_nlink == 1) {
6640 /*
6641 * If new hard link count is 1, it's a file created
6642 * with open(2) O_TMPFILE flag.
6643 */
6644 err = btrfs_orphan_del(trans, inode);
6645 if (err)
6646 goto fail;
6647 }
6648 d_instantiate(dentry, inode);
6649 btrfs_log_new_name(trans, inode, NULL, parent);
6650 }
6651
6652 btrfs_balance_delayed_items(root);
6653 fail:
6654 if (trans)
6655 btrfs_end_transaction(trans, root);
6656 if (drop_inode) {
6657 inode_dec_link_count(inode);
6658 iput(inode);
6659 }
6660 btrfs_btree_balance_dirty(root);
6661 return err;
6662 }
6663
btrfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)6664 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6665 {
6666 struct inode *inode = NULL;
6667 struct btrfs_trans_handle *trans;
6668 struct btrfs_root *root = BTRFS_I(dir)->root;
6669 int err = 0;
6670 int drop_on_err = 0;
6671 u64 objectid = 0;
6672 u64 index = 0;
6673
6674 /*
6675 * 2 items for inode and ref
6676 * 2 items for dir items
6677 * 1 for xattr if selinux is on
6678 */
6679 trans = btrfs_start_transaction(root, 5);
6680 if (IS_ERR(trans))
6681 return PTR_ERR(trans);
6682
6683 err = btrfs_find_free_ino(root, &objectid);
6684 if (err)
6685 goto out_fail;
6686
6687 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6688 dentry->d_name.len, btrfs_ino(dir), objectid,
6689 S_IFDIR | mode, &index);
6690 if (IS_ERR(inode)) {
6691 err = PTR_ERR(inode);
6692 goto out_fail;
6693 }
6694
6695 drop_on_err = 1;
6696 /* these must be set before we unlock the inode */
6697 inode->i_op = &btrfs_dir_inode_operations;
6698 inode->i_fop = &btrfs_dir_file_operations;
6699
6700 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6701 if (err)
6702 goto out_fail_inode;
6703
6704 btrfs_i_size_write(inode, 0);
6705 err = btrfs_update_inode(trans, root, inode);
6706 if (err)
6707 goto out_fail_inode;
6708
6709 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6710 dentry->d_name.len, 0, index);
6711 if (err)
6712 goto out_fail_inode;
6713
6714 d_instantiate(dentry, inode);
6715 /*
6716 * mkdir is special. We're unlocking after we call d_instantiate
6717 * to avoid a race with nfsd calling d_instantiate.
6718 */
6719 unlock_new_inode(inode);
6720 drop_on_err = 0;
6721
6722 out_fail:
6723 btrfs_end_transaction(trans, root);
6724 if (drop_on_err) {
6725 inode_dec_link_count(inode);
6726 iput(inode);
6727 }
6728 btrfs_balance_delayed_items(root);
6729 btrfs_btree_balance_dirty(root);
6730 return err;
6731
6732 out_fail_inode:
6733 unlock_new_inode(inode);
6734 goto out_fail;
6735 }
6736
6737 /* Find next extent map of a given extent map, caller needs to ensure locks */
next_extent_map(struct extent_map * em)6738 static struct extent_map *next_extent_map(struct extent_map *em)
6739 {
6740 struct rb_node *next;
6741
6742 next = rb_next(&em->rb_node);
6743 if (!next)
6744 return NULL;
6745 return container_of(next, struct extent_map, rb_node);
6746 }
6747
prev_extent_map(struct extent_map * em)6748 static struct extent_map *prev_extent_map(struct extent_map *em)
6749 {
6750 struct rb_node *prev;
6751
6752 prev = rb_prev(&em->rb_node);
6753 if (!prev)
6754 return NULL;
6755 return container_of(prev, struct extent_map, rb_node);
6756 }
6757
6758 /* helper for btfs_get_extent. Given an existing extent in the tree,
6759 * the existing extent is the nearest extent to map_start,
6760 * and an extent that you want to insert, deal with overlap and insert
6761 * the best fitted new extent into the tree.
6762 */
merge_extent_mapping(struct extent_map_tree * em_tree,struct extent_map * existing,struct extent_map * em,u64 map_start)6763 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6764 struct extent_map *existing,
6765 struct extent_map *em,
6766 u64 map_start)
6767 {
6768 struct extent_map *prev;
6769 struct extent_map *next;
6770 u64 start;
6771 u64 end;
6772 u64 start_diff;
6773
6774 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6775
6776 if (existing->start > map_start) {
6777 next = existing;
6778 prev = prev_extent_map(next);
6779 } else {
6780 prev = existing;
6781 next = next_extent_map(prev);
6782 }
6783
6784 start = prev ? extent_map_end(prev) : em->start;
6785 start = max_t(u64, start, em->start);
6786 end = next ? next->start : extent_map_end(em);
6787 end = min_t(u64, end, extent_map_end(em));
6788 start_diff = start - em->start;
6789 em->start = start;
6790 em->len = end - start;
6791 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6792 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6793 em->block_start += start_diff;
6794 em->block_len -= start_diff;
6795 }
6796 return add_extent_mapping(em_tree, em, 0);
6797 }
6798
uncompress_inline(struct btrfs_path * path,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)6799 static noinline int uncompress_inline(struct btrfs_path *path,
6800 struct page *page,
6801 size_t pg_offset, u64 extent_offset,
6802 struct btrfs_file_extent_item *item)
6803 {
6804 int ret;
6805 struct extent_buffer *leaf = path->nodes[0];
6806 char *tmp;
6807 size_t max_size;
6808 unsigned long inline_size;
6809 unsigned long ptr;
6810 int compress_type;
6811
6812 WARN_ON(pg_offset != 0);
6813 compress_type = btrfs_file_extent_compression(leaf, item);
6814 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6815 inline_size = btrfs_file_extent_inline_item_len(leaf,
6816 btrfs_item_nr(path->slots[0]));
6817 tmp = kmalloc(inline_size, GFP_NOFS);
6818 if (!tmp)
6819 return -ENOMEM;
6820 ptr = btrfs_file_extent_inline_start(item);
6821
6822 read_extent_buffer(leaf, tmp, ptr, inline_size);
6823
6824 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6825 ret = btrfs_decompress(compress_type, tmp, page,
6826 extent_offset, inline_size, max_size);
6827
6828 /*
6829 * decompression code contains a memset to fill in any space between the end
6830 * of the uncompressed data and the end of max_size in case the decompressed
6831 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6832 * the end of an inline extent and the beginning of the next block, so we
6833 * cover that region here.
6834 */
6835
6836 if (max_size + pg_offset < PAGE_SIZE) {
6837 char *map = kmap(page);
6838 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6839 kunmap(page);
6840 }
6841 kfree(tmp);
6842 return ret;
6843 }
6844
6845 /*
6846 * a bit scary, this does extent mapping from logical file offset to the disk.
6847 * the ugly parts come from merging extents from the disk with the in-ram
6848 * representation. This gets more complex because of the data=ordered code,
6849 * where the in-ram extents might be locked pending data=ordered completion.
6850 *
6851 * This also copies inline extents directly into the page.
6852 */
6853
btrfs_get_extent(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)6854 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6855 size_t pg_offset, u64 start, u64 len,
6856 int create)
6857 {
6858 int ret;
6859 int err = 0;
6860 u64 extent_start = 0;
6861 u64 extent_end = 0;
6862 u64 objectid = btrfs_ino(inode);
6863 u32 found_type;
6864 struct btrfs_path *path = NULL;
6865 struct btrfs_root *root = BTRFS_I(inode)->root;
6866 struct btrfs_file_extent_item *item;
6867 struct extent_buffer *leaf;
6868 struct btrfs_key found_key;
6869 struct extent_map *em = NULL;
6870 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6871 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6872 struct btrfs_trans_handle *trans = NULL;
6873 const bool new_inline = !page || create;
6874
6875 again:
6876 read_lock(&em_tree->lock);
6877 em = lookup_extent_mapping(em_tree, start, len);
6878 if (em)
6879 em->bdev = root->fs_info->fs_devices->latest_bdev;
6880 read_unlock(&em_tree->lock);
6881
6882 if (em) {
6883 if (em->start > start || em->start + em->len <= start)
6884 free_extent_map(em);
6885 else if (em->block_start == EXTENT_MAP_INLINE && page)
6886 free_extent_map(em);
6887 else
6888 goto out;
6889 }
6890 em = alloc_extent_map();
6891 if (!em) {
6892 err = -ENOMEM;
6893 goto out;
6894 }
6895 em->bdev = root->fs_info->fs_devices->latest_bdev;
6896 em->start = EXTENT_MAP_HOLE;
6897 em->orig_start = EXTENT_MAP_HOLE;
6898 em->len = (u64)-1;
6899 em->block_len = (u64)-1;
6900
6901 if (!path) {
6902 path = btrfs_alloc_path();
6903 if (!path) {
6904 err = -ENOMEM;
6905 goto out;
6906 }
6907 /*
6908 * Chances are we'll be called again, so go ahead and do
6909 * readahead
6910 */
6911 path->reada = READA_FORWARD;
6912 }
6913
6914 ret = btrfs_lookup_file_extent(trans, root, path,
6915 objectid, start, trans != NULL);
6916 if (ret < 0) {
6917 err = ret;
6918 goto out;
6919 }
6920
6921 if (ret != 0) {
6922 if (path->slots[0] == 0)
6923 goto not_found;
6924 path->slots[0]--;
6925 }
6926
6927 leaf = path->nodes[0];
6928 item = btrfs_item_ptr(leaf, path->slots[0],
6929 struct btrfs_file_extent_item);
6930 /* are we inside the extent that was found? */
6931 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6932 found_type = found_key.type;
6933 if (found_key.objectid != objectid ||
6934 found_type != BTRFS_EXTENT_DATA_KEY) {
6935 /*
6936 * If we backup past the first extent we want to move forward
6937 * and see if there is an extent in front of us, otherwise we'll
6938 * say there is a hole for our whole search range which can
6939 * cause problems.
6940 */
6941 extent_end = start;
6942 goto next;
6943 }
6944
6945 found_type = btrfs_file_extent_type(leaf, item);
6946 extent_start = found_key.offset;
6947 if (found_type == BTRFS_FILE_EXTENT_REG ||
6948 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6949 extent_end = extent_start +
6950 btrfs_file_extent_num_bytes(leaf, item);
6951 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6952 size_t size;
6953 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6954 extent_end = ALIGN(extent_start + size, root->sectorsize);
6955 }
6956 next:
6957 if (start >= extent_end) {
6958 path->slots[0]++;
6959 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6960 ret = btrfs_next_leaf(root, path);
6961 if (ret < 0) {
6962 err = ret;
6963 goto out;
6964 }
6965 if (ret > 0)
6966 goto not_found;
6967 leaf = path->nodes[0];
6968 }
6969 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6970 if (found_key.objectid != objectid ||
6971 found_key.type != BTRFS_EXTENT_DATA_KEY)
6972 goto not_found;
6973 if (start + len <= found_key.offset)
6974 goto not_found;
6975 if (start > found_key.offset)
6976 goto next;
6977 em->start = start;
6978 em->orig_start = start;
6979 em->len = found_key.offset - start;
6980 goto not_found_em;
6981 }
6982
6983 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6984
6985 if (found_type == BTRFS_FILE_EXTENT_REG ||
6986 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6987 goto insert;
6988 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6989 unsigned long ptr;
6990 char *map;
6991 size_t size;
6992 size_t extent_offset;
6993 size_t copy_size;
6994
6995 if (new_inline)
6996 goto out;
6997
6998 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6999 extent_offset = page_offset(page) + pg_offset - extent_start;
7000 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7001 size - extent_offset);
7002 em->start = extent_start + extent_offset;
7003 em->len = ALIGN(copy_size, root->sectorsize);
7004 em->orig_block_len = em->len;
7005 em->orig_start = em->start;
7006 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7007 if (create == 0 && !PageUptodate(page)) {
7008 if (btrfs_file_extent_compression(leaf, item) !=
7009 BTRFS_COMPRESS_NONE) {
7010 ret = uncompress_inline(path, page, pg_offset,
7011 extent_offset, item);
7012 if (ret) {
7013 err = ret;
7014 goto out;
7015 }
7016 } else {
7017 map = kmap(page);
7018 read_extent_buffer(leaf, map + pg_offset, ptr,
7019 copy_size);
7020 if (pg_offset + copy_size < PAGE_SIZE) {
7021 memset(map + pg_offset + copy_size, 0,
7022 PAGE_SIZE - pg_offset -
7023 copy_size);
7024 }
7025 kunmap(page);
7026 }
7027 flush_dcache_page(page);
7028 } else if (create && PageUptodate(page)) {
7029 BUG();
7030 if (!trans) {
7031 kunmap(page);
7032 free_extent_map(em);
7033 em = NULL;
7034
7035 btrfs_release_path(path);
7036 trans = btrfs_join_transaction(root);
7037
7038 if (IS_ERR(trans))
7039 return ERR_CAST(trans);
7040 goto again;
7041 }
7042 map = kmap(page);
7043 write_extent_buffer(leaf, map + pg_offset, ptr,
7044 copy_size);
7045 kunmap(page);
7046 btrfs_mark_buffer_dirty(leaf);
7047 }
7048 set_extent_uptodate(io_tree, em->start,
7049 extent_map_end(em) - 1, NULL, GFP_NOFS);
7050 goto insert;
7051 }
7052 not_found:
7053 em->start = start;
7054 em->orig_start = start;
7055 em->len = len;
7056 not_found_em:
7057 em->block_start = EXTENT_MAP_HOLE;
7058 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
7059 insert:
7060 btrfs_release_path(path);
7061 if (em->start > start || extent_map_end(em) <= start) {
7062 btrfs_err(root->fs_info,
7063 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7064 em->start, em->len, start, len);
7065 err = -EIO;
7066 goto out;
7067 }
7068
7069 err = 0;
7070 write_lock(&em_tree->lock);
7071 ret = add_extent_mapping(em_tree, em, 0);
7072 /* it is possible that someone inserted the extent into the tree
7073 * while we had the lock dropped. It is also possible that
7074 * an overlapping map exists in the tree
7075 */
7076 if (ret == -EEXIST) {
7077 struct extent_map *existing;
7078
7079 ret = 0;
7080
7081 existing = search_extent_mapping(em_tree, start, len);
7082 /*
7083 * existing will always be non-NULL, since there must be
7084 * extent causing the -EEXIST.
7085 */
7086 if (existing->start == em->start &&
7087 extent_map_end(existing) == extent_map_end(em) &&
7088 em->block_start == existing->block_start) {
7089 /*
7090 * these two extents are the same, it happens
7091 * with inlines especially
7092 */
7093 free_extent_map(em);
7094 em = existing;
7095 err = 0;
7096
7097 } else if (start >= extent_map_end(existing) ||
7098 start <= existing->start) {
7099 /*
7100 * The existing extent map is the one nearest to
7101 * the [start, start + len) range which overlaps
7102 */
7103 err = merge_extent_mapping(em_tree, existing,
7104 em, start);
7105 free_extent_map(existing);
7106 if (err) {
7107 free_extent_map(em);
7108 em = NULL;
7109 }
7110 } else {
7111 free_extent_map(em);
7112 em = existing;
7113 err = 0;
7114 }
7115 }
7116 write_unlock(&em_tree->lock);
7117 out:
7118
7119 trace_btrfs_get_extent(root, em);
7120
7121 btrfs_free_path(path);
7122 if (trans) {
7123 ret = btrfs_end_transaction(trans, root);
7124 if (!err)
7125 err = ret;
7126 }
7127 if (err) {
7128 free_extent_map(em);
7129 return ERR_PTR(err);
7130 }
7131 BUG_ON(!em); /* Error is always set */
7132 return em;
7133 }
7134
btrfs_get_extent_fiemap(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)7135 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7136 size_t pg_offset, u64 start, u64 len,
7137 int create)
7138 {
7139 struct extent_map *em;
7140 struct extent_map *hole_em = NULL;
7141 u64 range_start = start;
7142 u64 end;
7143 u64 found;
7144 u64 found_end;
7145 int err = 0;
7146
7147 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7148 if (IS_ERR(em))
7149 return em;
7150 if (em) {
7151 /*
7152 * if our em maps to
7153 * - a hole or
7154 * - a pre-alloc extent,
7155 * there might actually be delalloc bytes behind it.
7156 */
7157 if (em->block_start != EXTENT_MAP_HOLE &&
7158 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7159 return em;
7160 else
7161 hole_em = em;
7162 }
7163
7164 /* check to see if we've wrapped (len == -1 or similar) */
7165 end = start + len;
7166 if (end < start)
7167 end = (u64)-1;
7168 else
7169 end -= 1;
7170
7171 em = NULL;
7172
7173 /* ok, we didn't find anything, lets look for delalloc */
7174 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7175 end, len, EXTENT_DELALLOC, 1);
7176 found_end = range_start + found;
7177 if (found_end < range_start)
7178 found_end = (u64)-1;
7179
7180 /*
7181 * we didn't find anything useful, return
7182 * the original results from get_extent()
7183 */
7184 if (range_start > end || found_end <= start) {
7185 em = hole_em;
7186 hole_em = NULL;
7187 goto out;
7188 }
7189
7190 /* adjust the range_start to make sure it doesn't
7191 * go backwards from the start they passed in
7192 */
7193 range_start = max(start, range_start);
7194 found = found_end - range_start;
7195
7196 if (found > 0) {
7197 u64 hole_start = start;
7198 u64 hole_len = len;
7199
7200 em = alloc_extent_map();
7201 if (!em) {
7202 err = -ENOMEM;
7203 goto out;
7204 }
7205 /*
7206 * when btrfs_get_extent can't find anything it
7207 * returns one huge hole
7208 *
7209 * make sure what it found really fits our range, and
7210 * adjust to make sure it is based on the start from
7211 * the caller
7212 */
7213 if (hole_em) {
7214 u64 calc_end = extent_map_end(hole_em);
7215
7216 if (calc_end <= start || (hole_em->start > end)) {
7217 free_extent_map(hole_em);
7218 hole_em = NULL;
7219 } else {
7220 hole_start = max(hole_em->start, start);
7221 hole_len = calc_end - hole_start;
7222 }
7223 }
7224 em->bdev = NULL;
7225 if (hole_em && range_start > hole_start) {
7226 /* our hole starts before our delalloc, so we
7227 * have to return just the parts of the hole
7228 * that go until the delalloc starts
7229 */
7230 em->len = min(hole_len,
7231 range_start - hole_start);
7232 em->start = hole_start;
7233 em->orig_start = hole_start;
7234 /*
7235 * don't adjust block start at all,
7236 * it is fixed at EXTENT_MAP_HOLE
7237 */
7238 em->block_start = hole_em->block_start;
7239 em->block_len = hole_len;
7240 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7241 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7242 } else {
7243 em->start = range_start;
7244 em->len = found;
7245 em->orig_start = range_start;
7246 em->block_start = EXTENT_MAP_DELALLOC;
7247 em->block_len = found;
7248 }
7249 } else if (hole_em) {
7250 return hole_em;
7251 }
7252 out:
7253
7254 free_extent_map(hole_em);
7255 if (err) {
7256 free_extent_map(em);
7257 return ERR_PTR(err);
7258 }
7259 return em;
7260 }
7261
btrfs_create_dio_extent(struct inode * inode,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)7262 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7263 const u64 start,
7264 const u64 len,
7265 const u64 orig_start,
7266 const u64 block_start,
7267 const u64 block_len,
7268 const u64 orig_block_len,
7269 const u64 ram_bytes,
7270 const int type)
7271 {
7272 struct extent_map *em = NULL;
7273 int ret;
7274
7275 if (type != BTRFS_ORDERED_NOCOW) {
7276 em = create_pinned_em(inode, start, len, orig_start,
7277 block_start, block_len, orig_block_len,
7278 ram_bytes, type);
7279 if (IS_ERR(em))
7280 goto out;
7281 }
7282 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7283 len, block_len, type);
7284 if (ret) {
7285 if (em) {
7286 free_extent_map(em);
7287 btrfs_drop_extent_cache(inode, start,
7288 start + len - 1, 0);
7289 }
7290 em = ERR_PTR(ret);
7291 }
7292 out:
7293
7294 return em;
7295 }
7296
btrfs_new_extent_direct(struct inode * inode,u64 start,u64 len)7297 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7298 u64 start, u64 len)
7299 {
7300 struct btrfs_root *root = BTRFS_I(inode)->root;
7301 struct extent_map *em;
7302 struct btrfs_key ins;
7303 u64 alloc_hint;
7304 int ret;
7305
7306 alloc_hint = get_extent_allocation_hint(inode, start, len);
7307 ret = btrfs_reserve_extent(root, len, len, root->sectorsize, 0,
7308 alloc_hint, &ins, 1, 1);
7309 if (ret)
7310 return ERR_PTR(ret);
7311
7312 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7313 ins.objectid, ins.offset, ins.offset,
7314 ins.offset, 0);
7315 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
7316 if (IS_ERR(em))
7317 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7318
7319 return em;
7320 }
7321
7322 /*
7323 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7324 * block must be cow'd
7325 */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes)7326 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7327 u64 *orig_start, u64 *orig_block_len,
7328 u64 *ram_bytes)
7329 {
7330 struct btrfs_trans_handle *trans;
7331 struct btrfs_path *path;
7332 int ret;
7333 struct extent_buffer *leaf;
7334 struct btrfs_root *root = BTRFS_I(inode)->root;
7335 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7336 struct btrfs_file_extent_item *fi;
7337 struct btrfs_key key;
7338 u64 disk_bytenr;
7339 u64 backref_offset;
7340 u64 extent_end;
7341 u64 num_bytes;
7342 int slot;
7343 int found_type;
7344 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7345
7346 path = btrfs_alloc_path();
7347 if (!path)
7348 return -ENOMEM;
7349
7350 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7351 offset, 0);
7352 if (ret < 0)
7353 goto out;
7354
7355 slot = path->slots[0];
7356 if (ret == 1) {
7357 if (slot == 0) {
7358 /* can't find the item, must cow */
7359 ret = 0;
7360 goto out;
7361 }
7362 slot--;
7363 }
7364 ret = 0;
7365 leaf = path->nodes[0];
7366 btrfs_item_key_to_cpu(leaf, &key, slot);
7367 if (key.objectid != btrfs_ino(inode) ||
7368 key.type != BTRFS_EXTENT_DATA_KEY) {
7369 /* not our file or wrong item type, must cow */
7370 goto out;
7371 }
7372
7373 if (key.offset > offset) {
7374 /* Wrong offset, must cow */
7375 goto out;
7376 }
7377
7378 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7379 found_type = btrfs_file_extent_type(leaf, fi);
7380 if (found_type != BTRFS_FILE_EXTENT_REG &&
7381 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7382 /* not a regular extent, must cow */
7383 goto out;
7384 }
7385
7386 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7387 goto out;
7388
7389 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7390 if (extent_end <= offset)
7391 goto out;
7392
7393 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7394 if (disk_bytenr == 0)
7395 goto out;
7396
7397 if (btrfs_file_extent_compression(leaf, fi) ||
7398 btrfs_file_extent_encryption(leaf, fi) ||
7399 btrfs_file_extent_other_encoding(leaf, fi))
7400 goto out;
7401
7402 backref_offset = btrfs_file_extent_offset(leaf, fi);
7403
7404 if (orig_start) {
7405 *orig_start = key.offset - backref_offset;
7406 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7407 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7408 }
7409
7410 if (btrfs_extent_readonly(root, disk_bytenr))
7411 goto out;
7412
7413 num_bytes = min(offset + *len, extent_end) - offset;
7414 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7415 u64 range_end;
7416
7417 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7418 ret = test_range_bit(io_tree, offset, range_end,
7419 EXTENT_DELALLOC, 0, NULL);
7420 if (ret) {
7421 ret = -EAGAIN;
7422 goto out;
7423 }
7424 }
7425
7426 btrfs_release_path(path);
7427
7428 /*
7429 * look for other files referencing this extent, if we
7430 * find any we must cow
7431 */
7432 trans = btrfs_join_transaction(root);
7433 if (IS_ERR(trans)) {
7434 ret = 0;
7435 goto out;
7436 }
7437
7438 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7439 key.offset - backref_offset, disk_bytenr);
7440 btrfs_end_transaction(trans, root);
7441 if (ret) {
7442 ret = 0;
7443 goto out;
7444 }
7445
7446 /*
7447 * adjust disk_bytenr and num_bytes to cover just the bytes
7448 * in this extent we are about to write. If there
7449 * are any csums in that range we have to cow in order
7450 * to keep the csums correct
7451 */
7452 disk_bytenr += backref_offset;
7453 disk_bytenr += offset - key.offset;
7454 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7455 goto out;
7456 /*
7457 * all of the above have passed, it is safe to overwrite this extent
7458 * without cow
7459 */
7460 *len = num_bytes;
7461 ret = 1;
7462 out:
7463 btrfs_free_path(path);
7464 return ret;
7465 }
7466
btrfs_page_exists_in_range(struct inode * inode,loff_t start,loff_t end)7467 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7468 {
7469 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7470 int found = false;
7471 void **pagep = NULL;
7472 struct page *page = NULL;
7473 unsigned long start_idx;
7474 unsigned long end_idx;
7475
7476 start_idx = start >> PAGE_SHIFT;
7477
7478 /*
7479 * end is the last byte in the last page. end == start is legal
7480 */
7481 end_idx = end >> PAGE_SHIFT;
7482
7483 rcu_read_lock();
7484
7485 /* Most of the code in this while loop is lifted from
7486 * find_get_page. It's been modified to begin searching from a
7487 * page and return just the first page found in that range. If the
7488 * found idx is less than or equal to the end idx then we know that
7489 * a page exists. If no pages are found or if those pages are
7490 * outside of the range then we're fine (yay!) */
7491 while (page == NULL &&
7492 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7493 page = radix_tree_deref_slot(pagep);
7494 if (unlikely(!page))
7495 break;
7496
7497 if (radix_tree_exception(page)) {
7498 if (radix_tree_deref_retry(page)) {
7499 page = NULL;
7500 continue;
7501 }
7502 /*
7503 * Otherwise, shmem/tmpfs must be storing a swap entry
7504 * here as an exceptional entry: so return it without
7505 * attempting to raise page count.
7506 */
7507 page = NULL;
7508 break; /* TODO: Is this relevant for this use case? */
7509 }
7510
7511 if (!page_cache_get_speculative(page)) {
7512 page = NULL;
7513 continue;
7514 }
7515
7516 /*
7517 * Has the page moved?
7518 * This is part of the lockless pagecache protocol. See
7519 * include/linux/pagemap.h for details.
7520 */
7521 if (unlikely(page != *pagep)) {
7522 put_page(page);
7523 page = NULL;
7524 }
7525 }
7526
7527 if (page) {
7528 if (page->index <= end_idx)
7529 found = true;
7530 put_page(page);
7531 }
7532
7533 rcu_read_unlock();
7534 return found;
7535 }
7536
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,int writing)7537 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7538 struct extent_state **cached_state, int writing)
7539 {
7540 struct btrfs_ordered_extent *ordered;
7541 int ret = 0;
7542
7543 while (1) {
7544 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7545 cached_state);
7546 /*
7547 * We're concerned with the entire range that we're going to be
7548 * doing DIO to, so we need to make sure there's no ordered
7549 * extents in this range.
7550 */
7551 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7552 lockend - lockstart + 1);
7553
7554 /*
7555 * We need to make sure there are no buffered pages in this
7556 * range either, we could have raced between the invalidate in
7557 * generic_file_direct_write and locking the extent. The
7558 * invalidate needs to happen so that reads after a write do not
7559 * get stale data.
7560 */
7561 if (!ordered &&
7562 (!writing ||
7563 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7564 break;
7565
7566 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7567 cached_state, GFP_NOFS);
7568
7569 if (ordered) {
7570 /*
7571 * If we are doing a DIO read and the ordered extent we
7572 * found is for a buffered write, we can not wait for it
7573 * to complete and retry, because if we do so we can
7574 * deadlock with concurrent buffered writes on page
7575 * locks. This happens only if our DIO read covers more
7576 * than one extent map, if at this point has already
7577 * created an ordered extent for a previous extent map
7578 * and locked its range in the inode's io tree, and a
7579 * concurrent write against that previous extent map's
7580 * range and this range started (we unlock the ranges
7581 * in the io tree only when the bios complete and
7582 * buffered writes always lock pages before attempting
7583 * to lock range in the io tree).
7584 */
7585 if (writing ||
7586 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7587 btrfs_start_ordered_extent(inode, ordered, 1);
7588 else
7589 ret = -ENOTBLK;
7590 btrfs_put_ordered_extent(ordered);
7591 } else {
7592 /*
7593 * We could trigger writeback for this range (and wait
7594 * for it to complete) and then invalidate the pages for
7595 * this range (through invalidate_inode_pages2_range()),
7596 * but that can lead us to a deadlock with a concurrent
7597 * call to readpages() (a buffered read or a defrag call
7598 * triggered a readahead) on a page lock due to an
7599 * ordered dio extent we created before but did not have
7600 * yet a corresponding bio submitted (whence it can not
7601 * complete), which makes readpages() wait for that
7602 * ordered extent to complete while holding a lock on
7603 * that page.
7604 */
7605 ret = -ENOTBLK;
7606 }
7607
7608 if (ret)
7609 break;
7610
7611 cond_resched();
7612 }
7613
7614 return ret;
7615 }
7616
create_pinned_em(struct inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int type)7617 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7618 u64 len, u64 orig_start,
7619 u64 block_start, u64 block_len,
7620 u64 orig_block_len, u64 ram_bytes,
7621 int type)
7622 {
7623 struct extent_map_tree *em_tree;
7624 struct extent_map *em;
7625 struct btrfs_root *root = BTRFS_I(inode)->root;
7626 int ret;
7627
7628 em_tree = &BTRFS_I(inode)->extent_tree;
7629 em = alloc_extent_map();
7630 if (!em)
7631 return ERR_PTR(-ENOMEM);
7632
7633 em->start = start;
7634 em->orig_start = orig_start;
7635 em->mod_start = start;
7636 em->mod_len = len;
7637 em->len = len;
7638 em->block_len = block_len;
7639 em->block_start = block_start;
7640 em->bdev = root->fs_info->fs_devices->latest_bdev;
7641 em->orig_block_len = orig_block_len;
7642 em->ram_bytes = ram_bytes;
7643 em->generation = -1;
7644 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7645 if (type == BTRFS_ORDERED_PREALLOC)
7646 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7647
7648 do {
7649 btrfs_drop_extent_cache(inode, em->start,
7650 em->start + em->len - 1, 0);
7651 write_lock(&em_tree->lock);
7652 ret = add_extent_mapping(em_tree, em, 1);
7653 write_unlock(&em_tree->lock);
7654 } while (ret == -EEXIST);
7655
7656 if (ret) {
7657 free_extent_map(em);
7658 return ERR_PTR(ret);
7659 }
7660
7661 return em;
7662 }
7663
adjust_dio_outstanding_extents(struct inode * inode,struct btrfs_dio_data * dio_data,const u64 len)7664 static void adjust_dio_outstanding_extents(struct inode *inode,
7665 struct btrfs_dio_data *dio_data,
7666 const u64 len)
7667 {
7668 unsigned num_extents;
7669
7670 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7671 BTRFS_MAX_EXTENT_SIZE);
7672 /*
7673 * If we have an outstanding_extents count still set then we're
7674 * within our reservation, otherwise we need to adjust our inode
7675 * counter appropriately.
7676 */
7677 if (dio_data->outstanding_extents >= num_extents) {
7678 dio_data->outstanding_extents -= num_extents;
7679 } else {
7680 /*
7681 * If dio write length has been split due to no large enough
7682 * contiguous space, we need to compensate our inode counter
7683 * appropriately.
7684 */
7685 u64 num_needed = num_extents - dio_data->outstanding_extents;
7686
7687 spin_lock(&BTRFS_I(inode)->lock);
7688 BTRFS_I(inode)->outstanding_extents += num_needed;
7689 spin_unlock(&BTRFS_I(inode)->lock);
7690 }
7691 }
7692
btrfs_get_blocks_direct(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)7693 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7694 struct buffer_head *bh_result, int create)
7695 {
7696 struct extent_map *em;
7697 struct btrfs_root *root = BTRFS_I(inode)->root;
7698 struct extent_state *cached_state = NULL;
7699 struct btrfs_dio_data *dio_data = NULL;
7700 u64 start = iblock << inode->i_blkbits;
7701 u64 lockstart, lockend;
7702 u64 len = bh_result->b_size;
7703 int unlock_bits = EXTENT_LOCKED;
7704 int ret = 0;
7705
7706 if (create)
7707 unlock_bits |= EXTENT_DIRTY;
7708 else
7709 len = min_t(u64, len, root->sectorsize);
7710
7711 lockstart = start;
7712 lockend = start + len - 1;
7713
7714 if (current->journal_info) {
7715 /*
7716 * Need to pull our outstanding extents and set journal_info to NULL so
7717 * that anything that needs to check if there's a transaction doesn't get
7718 * confused.
7719 */
7720 dio_data = current->journal_info;
7721 current->journal_info = NULL;
7722 }
7723
7724 /*
7725 * If this errors out it's because we couldn't invalidate pagecache for
7726 * this range and we need to fallback to buffered.
7727 */
7728 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7729 create)) {
7730 ret = -ENOTBLK;
7731 goto err;
7732 }
7733
7734 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7735 if (IS_ERR(em)) {
7736 ret = PTR_ERR(em);
7737 goto unlock_err;
7738 }
7739
7740 /*
7741 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7742 * io. INLINE is special, and we could probably kludge it in here, but
7743 * it's still buffered so for safety lets just fall back to the generic
7744 * buffered path.
7745 *
7746 * For COMPRESSED we _have_ to read the entire extent in so we can
7747 * decompress it, so there will be buffering required no matter what we
7748 * do, so go ahead and fallback to buffered.
7749 *
7750 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7751 * to buffered IO. Don't blame me, this is the price we pay for using
7752 * the generic code.
7753 */
7754 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7755 em->block_start == EXTENT_MAP_INLINE) {
7756 free_extent_map(em);
7757 ret = -ENOTBLK;
7758 goto unlock_err;
7759 }
7760
7761 /* Just a good old fashioned hole, return */
7762 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7763 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7764 free_extent_map(em);
7765 goto unlock_err;
7766 }
7767
7768 /*
7769 * We don't allocate a new extent in the following cases
7770 *
7771 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7772 * existing extent.
7773 * 2) The extent is marked as PREALLOC. We're good to go here and can
7774 * just use the extent.
7775 *
7776 */
7777 if (!create) {
7778 len = min(len, em->len - (start - em->start));
7779 lockstart = start + len;
7780 goto unlock;
7781 }
7782
7783 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7784 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7785 em->block_start != EXTENT_MAP_HOLE)) {
7786 int type;
7787 u64 block_start, orig_start, orig_block_len, ram_bytes;
7788
7789 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7790 type = BTRFS_ORDERED_PREALLOC;
7791 else
7792 type = BTRFS_ORDERED_NOCOW;
7793 len = min(len, em->len - (start - em->start));
7794 block_start = em->block_start + (start - em->start);
7795
7796 if (can_nocow_extent(inode, start, &len, &orig_start,
7797 &orig_block_len, &ram_bytes) == 1 &&
7798 btrfs_inc_nocow_writers(root->fs_info, block_start)) {
7799 struct extent_map *em2;
7800
7801 em2 = btrfs_create_dio_extent(inode, start, len,
7802 orig_start, block_start,
7803 len, orig_block_len,
7804 ram_bytes, type);
7805 btrfs_dec_nocow_writers(root->fs_info, block_start);
7806 if (type == BTRFS_ORDERED_PREALLOC) {
7807 free_extent_map(em);
7808 em = em2;
7809 }
7810 if (em2 && IS_ERR(em2)) {
7811 ret = PTR_ERR(em2);
7812 goto unlock_err;
7813 }
7814 /*
7815 * For inode marked NODATACOW or extent marked PREALLOC,
7816 * use the existing or preallocated extent, so does not
7817 * need to adjust btrfs_space_info's bytes_may_use.
7818 */
7819 btrfs_free_reserved_data_space_noquota(inode,
7820 start, len);
7821 goto unlock;
7822 }
7823 }
7824
7825 /*
7826 * this will cow the extent, reset the len in case we changed
7827 * it above
7828 */
7829 len = bh_result->b_size;
7830 free_extent_map(em);
7831 em = btrfs_new_extent_direct(inode, start, len);
7832 if (IS_ERR(em)) {
7833 ret = PTR_ERR(em);
7834 goto unlock_err;
7835 }
7836 len = min(len, em->len - (start - em->start));
7837 unlock:
7838 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7839 inode->i_blkbits;
7840 bh_result->b_size = len;
7841 bh_result->b_bdev = em->bdev;
7842 set_buffer_mapped(bh_result);
7843 if (create) {
7844 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7845 set_buffer_new(bh_result);
7846
7847 /*
7848 * Need to update the i_size under the extent lock so buffered
7849 * readers will get the updated i_size when we unlock.
7850 */
7851 if (start + len > i_size_read(inode))
7852 i_size_write(inode, start + len);
7853
7854 adjust_dio_outstanding_extents(inode, dio_data, len);
7855 WARN_ON(dio_data->reserve < len);
7856 dio_data->reserve -= len;
7857 dio_data->unsubmitted_oe_range_end = start + len;
7858 current->journal_info = dio_data;
7859 }
7860
7861 /*
7862 * In the case of write we need to clear and unlock the entire range,
7863 * in the case of read we need to unlock only the end area that we
7864 * aren't using if there is any left over space.
7865 */
7866 if (lockstart < lockend) {
7867 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7868 lockend, unlock_bits, 1, 0,
7869 &cached_state, GFP_NOFS);
7870 } else {
7871 free_extent_state(cached_state);
7872 }
7873
7874 free_extent_map(em);
7875
7876 return 0;
7877
7878 unlock_err:
7879 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7880 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7881 err:
7882 if (dio_data)
7883 current->journal_info = dio_data;
7884 /*
7885 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7886 * write less data then expected, so that we don't underflow our inode's
7887 * outstanding extents counter.
7888 */
7889 if (create && dio_data)
7890 adjust_dio_outstanding_extents(inode, dio_data, len);
7891
7892 return ret;
7893 }
7894
submit_dio_repair_bio(struct inode * inode,struct bio * bio,int mirror_num)7895 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7896 int mirror_num)
7897 {
7898 struct btrfs_root *root = BTRFS_I(inode)->root;
7899 int ret;
7900
7901 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7902
7903 bio_get(bio);
7904
7905 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7906 BTRFS_WQ_ENDIO_DIO_REPAIR);
7907 if (ret)
7908 goto err;
7909
7910 ret = btrfs_map_bio(root, bio, mirror_num, 0);
7911 err:
7912 bio_put(bio);
7913 return ret;
7914 }
7915
btrfs_check_dio_repairable(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,int failed_mirror)7916 static int btrfs_check_dio_repairable(struct inode *inode,
7917 struct bio *failed_bio,
7918 struct io_failure_record *failrec,
7919 int failed_mirror)
7920 {
7921 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7922 int num_copies;
7923
7924 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7925 if (num_copies == 1) {
7926 /*
7927 * we only have a single copy of the data, so don't bother with
7928 * all the retry and error correction code that follows. no
7929 * matter what the error is, it is very likely to persist.
7930 */
7931 btrfs_debug(fs_info,
7932 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7933 num_copies, failrec->this_mirror, failed_mirror);
7934 return 0;
7935 }
7936
7937 failrec->failed_mirror = failed_mirror;
7938 failrec->this_mirror++;
7939 if (failrec->this_mirror == failed_mirror)
7940 failrec->this_mirror++;
7941
7942 if (failrec->this_mirror > num_copies) {
7943 btrfs_debug(fs_info,
7944 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7945 num_copies, failrec->this_mirror, failed_mirror);
7946 return 0;
7947 }
7948
7949 return 1;
7950 }
7951
dio_read_error(struct inode * inode,struct bio * failed_bio,struct page * page,unsigned int pgoff,u64 start,u64 end,int failed_mirror,bio_end_io_t * repair_endio,void * repair_arg)7952 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7953 struct page *page, unsigned int pgoff,
7954 u64 start, u64 end, int failed_mirror,
7955 bio_end_io_t *repair_endio, void *repair_arg)
7956 {
7957 struct io_failure_record *failrec;
7958 struct bio *bio;
7959 int isector;
7960 int read_mode;
7961 int ret;
7962
7963 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7964
7965 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7966 if (ret)
7967 return ret;
7968
7969 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7970 failed_mirror);
7971 if (!ret) {
7972 free_io_failure(inode, failrec);
7973 return -EIO;
7974 }
7975
7976 if ((failed_bio->bi_vcnt > 1)
7977 || (failed_bio->bi_io_vec->bv_len
7978 > BTRFS_I(inode)->root->sectorsize))
7979 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7980 else
7981 read_mode = READ_SYNC;
7982
7983 isector = start - btrfs_io_bio(failed_bio)->logical;
7984 isector >>= inode->i_sb->s_blocksize_bits;
7985 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7986 pgoff, isector, repair_endio, repair_arg);
7987 if (!bio) {
7988 free_io_failure(inode, failrec);
7989 return -EIO;
7990 }
7991 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
7992
7993 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7994 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7995 read_mode, failrec->this_mirror, failrec->in_validation);
7996
7997 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7998 if (ret) {
7999 free_io_failure(inode, failrec);
8000 bio_put(bio);
8001 }
8002
8003 return ret;
8004 }
8005
8006 struct btrfs_retry_complete {
8007 struct completion done;
8008 struct inode *inode;
8009 u64 start;
8010 int uptodate;
8011 };
8012
btrfs_retry_endio_nocsum(struct bio * bio)8013 static void btrfs_retry_endio_nocsum(struct bio *bio)
8014 {
8015 struct btrfs_retry_complete *done = bio->bi_private;
8016 struct inode *inode;
8017 struct bio_vec *bvec;
8018 int i;
8019
8020 if (bio->bi_error)
8021 goto end;
8022
8023 ASSERT(bio->bi_vcnt == 1);
8024 inode = bio->bi_io_vec->bv_page->mapping->host;
8025 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8026
8027 done->uptodate = 1;
8028 bio_for_each_segment_all(bvec, bio, i)
8029 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
8030 end:
8031 complete(&done->done);
8032 bio_put(bio);
8033 }
8034
__btrfs_correct_data_nocsum(struct inode * inode,struct btrfs_io_bio * io_bio)8035 static int __btrfs_correct_data_nocsum(struct inode *inode,
8036 struct btrfs_io_bio *io_bio)
8037 {
8038 struct btrfs_fs_info *fs_info;
8039 struct bio_vec *bvec;
8040 struct btrfs_retry_complete done;
8041 u64 start;
8042 unsigned int pgoff;
8043 u32 sectorsize;
8044 int nr_sectors;
8045 int i;
8046 int ret;
8047
8048 fs_info = BTRFS_I(inode)->root->fs_info;
8049 sectorsize = BTRFS_I(inode)->root->sectorsize;
8050
8051 start = io_bio->logical;
8052 done.inode = inode;
8053
8054 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8055 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8056 pgoff = bvec->bv_offset;
8057
8058 next_block_or_try_again:
8059 done.uptodate = 0;
8060 done.start = start;
8061 init_completion(&done.done);
8062
8063 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8064 pgoff, start, start + sectorsize - 1,
8065 io_bio->mirror_num,
8066 btrfs_retry_endio_nocsum, &done);
8067 if (ret)
8068 return ret;
8069
8070 wait_for_completion(&done.done);
8071
8072 if (!done.uptodate) {
8073 /* We might have another mirror, so try again */
8074 goto next_block_or_try_again;
8075 }
8076
8077 start += sectorsize;
8078
8079 nr_sectors--;
8080 if (nr_sectors) {
8081 pgoff += sectorsize;
8082 ASSERT(pgoff < PAGE_SIZE);
8083 goto next_block_or_try_again;
8084 }
8085 }
8086
8087 return 0;
8088 }
8089
btrfs_retry_endio(struct bio * bio)8090 static void btrfs_retry_endio(struct bio *bio)
8091 {
8092 struct btrfs_retry_complete *done = bio->bi_private;
8093 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8094 struct inode *inode;
8095 struct bio_vec *bvec;
8096 u64 start;
8097 int uptodate;
8098 int ret;
8099 int i;
8100
8101 if (bio->bi_error)
8102 goto end;
8103
8104 uptodate = 1;
8105
8106 start = done->start;
8107
8108 ASSERT(bio->bi_vcnt == 1);
8109 inode = bio->bi_io_vec->bv_page->mapping->host;
8110 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8111
8112 bio_for_each_segment_all(bvec, bio, i) {
8113 ret = __readpage_endio_check(done->inode, io_bio, i,
8114 bvec->bv_page, bvec->bv_offset,
8115 done->start, bvec->bv_len);
8116 if (!ret)
8117 clean_io_failure(done->inode, done->start,
8118 bvec->bv_page, bvec->bv_offset);
8119 else
8120 uptodate = 0;
8121 }
8122
8123 done->uptodate = uptodate;
8124 end:
8125 complete(&done->done);
8126 bio_put(bio);
8127 }
8128
__btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,int err)8129 static int __btrfs_subio_endio_read(struct inode *inode,
8130 struct btrfs_io_bio *io_bio, int err)
8131 {
8132 struct btrfs_fs_info *fs_info;
8133 struct bio_vec *bvec;
8134 struct btrfs_retry_complete done;
8135 u64 start;
8136 u64 offset = 0;
8137 u32 sectorsize;
8138 int nr_sectors;
8139 unsigned int pgoff;
8140 int csum_pos;
8141 int i;
8142 int ret;
8143
8144 fs_info = BTRFS_I(inode)->root->fs_info;
8145 sectorsize = BTRFS_I(inode)->root->sectorsize;
8146
8147 err = 0;
8148 start = io_bio->logical;
8149 done.inode = inode;
8150
8151 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8152 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8153
8154 pgoff = bvec->bv_offset;
8155 next_block:
8156 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8157 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8158 bvec->bv_page, pgoff, start,
8159 sectorsize);
8160 if (likely(!ret))
8161 goto next;
8162 try_again:
8163 done.uptodate = 0;
8164 done.start = start;
8165 init_completion(&done.done);
8166
8167 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8168 pgoff, start, start + sectorsize - 1,
8169 io_bio->mirror_num,
8170 btrfs_retry_endio, &done);
8171 if (ret) {
8172 err = ret;
8173 goto next;
8174 }
8175
8176 wait_for_completion(&done.done);
8177
8178 if (!done.uptodate) {
8179 /* We might have another mirror, so try again */
8180 goto try_again;
8181 }
8182 next:
8183 offset += sectorsize;
8184 start += sectorsize;
8185
8186 ASSERT(nr_sectors);
8187
8188 nr_sectors--;
8189 if (nr_sectors) {
8190 pgoff += sectorsize;
8191 ASSERT(pgoff < PAGE_SIZE);
8192 goto next_block;
8193 }
8194 }
8195
8196 return err;
8197 }
8198
btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,int err)8199 static int btrfs_subio_endio_read(struct inode *inode,
8200 struct btrfs_io_bio *io_bio, int err)
8201 {
8202 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8203
8204 if (skip_csum) {
8205 if (unlikely(err))
8206 return __btrfs_correct_data_nocsum(inode, io_bio);
8207 else
8208 return 0;
8209 } else {
8210 return __btrfs_subio_endio_read(inode, io_bio, err);
8211 }
8212 }
8213
btrfs_endio_direct_read(struct bio * bio)8214 static void btrfs_endio_direct_read(struct bio *bio)
8215 {
8216 struct btrfs_dio_private *dip = bio->bi_private;
8217 struct inode *inode = dip->inode;
8218 struct bio *dio_bio;
8219 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8220 int err = bio->bi_error;
8221
8222 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8223 err = btrfs_subio_endio_read(inode, io_bio, err);
8224
8225 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8226 dip->logical_offset + dip->bytes - 1);
8227 dio_bio = dip->dio_bio;
8228
8229 kfree(dip);
8230
8231 dio_bio->bi_error = bio->bi_error;
8232 dio_end_io(dio_bio, bio->bi_error);
8233
8234 if (io_bio->end_io)
8235 io_bio->end_io(io_bio, err);
8236 bio_put(bio);
8237 }
8238
btrfs_endio_direct_write_update_ordered(struct inode * inode,const u64 offset,const u64 bytes,const int uptodate)8239 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8240 const u64 offset,
8241 const u64 bytes,
8242 const int uptodate)
8243 {
8244 struct btrfs_root *root = BTRFS_I(inode)->root;
8245 struct btrfs_ordered_extent *ordered = NULL;
8246 u64 ordered_offset = offset;
8247 u64 ordered_bytes = bytes;
8248 int ret;
8249
8250 again:
8251 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8252 &ordered_offset,
8253 ordered_bytes,
8254 uptodate);
8255 if (!ret)
8256 goto out_test;
8257
8258 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8259 finish_ordered_fn, NULL, NULL);
8260 btrfs_queue_work(root->fs_info->endio_write_workers,
8261 &ordered->work);
8262 out_test:
8263 /*
8264 * our bio might span multiple ordered extents. If we haven't
8265 * completed the accounting for the whole dio, go back and try again
8266 */
8267 if (ordered_offset < offset + bytes) {
8268 ordered_bytes = offset + bytes - ordered_offset;
8269 ordered = NULL;
8270 goto again;
8271 }
8272 }
8273
btrfs_endio_direct_write(struct bio * bio)8274 static void btrfs_endio_direct_write(struct bio *bio)
8275 {
8276 struct btrfs_dio_private *dip = bio->bi_private;
8277 struct bio *dio_bio = dip->dio_bio;
8278
8279 btrfs_endio_direct_write_update_ordered(dip->inode,
8280 dip->logical_offset,
8281 dip->bytes,
8282 !bio->bi_error);
8283
8284 kfree(dip);
8285
8286 dio_bio->bi_error = bio->bi_error;
8287 dio_end_io(dio_bio, bio->bi_error);
8288 bio_put(bio);
8289 }
8290
__btrfs_submit_bio_start_direct_io(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 offset)8291 static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
8292 struct bio *bio, int mirror_num,
8293 unsigned long bio_flags, u64 offset)
8294 {
8295 int ret;
8296 struct btrfs_root *root = BTRFS_I(inode)->root;
8297 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8298 BUG_ON(ret); /* -ENOMEM */
8299 return 0;
8300 }
8301
btrfs_end_dio_bio(struct bio * bio)8302 static void btrfs_end_dio_bio(struct bio *bio)
8303 {
8304 struct btrfs_dio_private *dip = bio->bi_private;
8305 int err = bio->bi_error;
8306
8307 if (err)
8308 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8309 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8310 btrfs_ino(dip->inode), bio_op(bio), bio->bi_opf,
8311 (unsigned long long)bio->bi_iter.bi_sector,
8312 bio->bi_iter.bi_size, err);
8313
8314 if (dip->subio_endio)
8315 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8316
8317 if (err) {
8318 dip->errors = 1;
8319
8320 /*
8321 * before atomic variable goto zero, we must make sure
8322 * dip->errors is perceived to be set.
8323 */
8324 smp_mb__before_atomic();
8325 }
8326
8327 /* if there are more bios still pending for this dio, just exit */
8328 if (!atomic_dec_and_test(&dip->pending_bios))
8329 goto out;
8330
8331 if (dip->errors) {
8332 bio_io_error(dip->orig_bio);
8333 } else {
8334 dip->dio_bio->bi_error = 0;
8335 bio_endio(dip->orig_bio);
8336 }
8337 out:
8338 bio_put(bio);
8339 }
8340
btrfs_dio_bio_alloc(struct block_device * bdev,u64 first_sector,gfp_t gfp_flags)8341 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8342 u64 first_sector, gfp_t gfp_flags)
8343 {
8344 struct bio *bio;
8345 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8346 if (bio)
8347 bio_associate_current(bio);
8348 return bio;
8349 }
8350
btrfs_lookup_and_bind_dio_csum(struct btrfs_root * root,struct inode * inode,struct btrfs_dio_private * dip,struct bio * bio,u64 file_offset)8351 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8352 struct inode *inode,
8353 struct btrfs_dio_private *dip,
8354 struct bio *bio,
8355 u64 file_offset)
8356 {
8357 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8358 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8359 int ret;
8360
8361 /*
8362 * We load all the csum data we need when we submit
8363 * the first bio to reduce the csum tree search and
8364 * contention.
8365 */
8366 if (dip->logical_offset == file_offset) {
8367 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8368 file_offset);
8369 if (ret)
8370 return ret;
8371 }
8372
8373 if (bio == dip->orig_bio)
8374 return 0;
8375
8376 file_offset -= dip->logical_offset;
8377 file_offset >>= inode->i_sb->s_blocksize_bits;
8378 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8379
8380 return 0;
8381 }
8382
__btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,u64 file_offset,int skip_sum,int async_submit)8383 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8384 u64 file_offset, int skip_sum,
8385 int async_submit)
8386 {
8387 struct btrfs_dio_private *dip = bio->bi_private;
8388 bool write = bio_op(bio) == REQ_OP_WRITE;
8389 struct btrfs_root *root = BTRFS_I(inode)->root;
8390 int ret;
8391
8392 if (async_submit)
8393 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8394
8395 bio_get(bio);
8396
8397 if (!write) {
8398 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8399 BTRFS_WQ_ENDIO_DATA);
8400 if (ret)
8401 goto err;
8402 }
8403
8404 if (skip_sum)
8405 goto map;
8406
8407 if (write && async_submit) {
8408 ret = btrfs_wq_submit_bio(root->fs_info,
8409 inode, bio, 0, 0, file_offset,
8410 __btrfs_submit_bio_start_direct_io,
8411 __btrfs_submit_bio_done);
8412 goto err;
8413 } else if (write) {
8414 /*
8415 * If we aren't doing async submit, calculate the csum of the
8416 * bio now.
8417 */
8418 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8419 if (ret)
8420 goto err;
8421 } else {
8422 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8423 file_offset);
8424 if (ret)
8425 goto err;
8426 }
8427 map:
8428 ret = btrfs_map_bio(root, bio, 0, async_submit);
8429 err:
8430 bio_put(bio);
8431 return ret;
8432 }
8433
btrfs_submit_direct_hook(struct btrfs_dio_private * dip,int skip_sum)8434 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
8435 int skip_sum)
8436 {
8437 struct inode *inode = dip->inode;
8438 struct btrfs_root *root = BTRFS_I(inode)->root;
8439 struct bio *bio;
8440 struct bio *orig_bio = dip->orig_bio;
8441 struct bio_vec *bvec = orig_bio->bi_io_vec;
8442 u64 start_sector = orig_bio->bi_iter.bi_sector;
8443 u64 file_offset = dip->logical_offset;
8444 u64 submit_len = 0;
8445 u64 map_length;
8446 u32 blocksize = root->sectorsize;
8447 int async_submit = 0;
8448 int nr_sectors;
8449 int ret;
8450 int i;
8451
8452 map_length = orig_bio->bi_iter.bi_size;
8453 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8454 start_sector << 9, &map_length, NULL, 0);
8455 if (ret)
8456 return -EIO;
8457
8458 if (map_length >= orig_bio->bi_iter.bi_size) {
8459 bio = orig_bio;
8460 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8461 goto submit;
8462 }
8463
8464 /* async crcs make it difficult to collect full stripe writes. */
8465 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8466 async_submit = 0;
8467 else
8468 async_submit = 1;
8469
8470 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8471 if (!bio)
8472 return -ENOMEM;
8473
8474 bio_set_op_attrs(bio, bio_op(orig_bio), bio_flags(orig_bio));
8475 bio->bi_private = dip;
8476 bio->bi_end_io = btrfs_end_dio_bio;
8477 btrfs_io_bio(bio)->logical = file_offset;
8478 atomic_inc(&dip->pending_bios);
8479
8480 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8481 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8482 i = 0;
8483 next_block:
8484 if (unlikely(map_length < submit_len + blocksize ||
8485 bio_add_page(bio, bvec->bv_page, blocksize,
8486 bvec->bv_offset + (i * blocksize)) < blocksize)) {
8487 /*
8488 * inc the count before we submit the bio so
8489 * we know the end IO handler won't happen before
8490 * we inc the count. Otherwise, the dip might get freed
8491 * before we're done setting it up
8492 */
8493 atomic_inc(&dip->pending_bios);
8494 ret = __btrfs_submit_dio_bio(bio, inode,
8495 file_offset, skip_sum,
8496 async_submit);
8497 if (ret) {
8498 bio_put(bio);
8499 atomic_dec(&dip->pending_bios);
8500 goto out_err;
8501 }
8502
8503 start_sector += submit_len >> 9;
8504 file_offset += submit_len;
8505
8506 submit_len = 0;
8507
8508 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8509 start_sector, GFP_NOFS);
8510 if (!bio)
8511 goto out_err;
8512 bio_set_op_attrs(bio, bio_op(orig_bio),
8513 bio_flags(orig_bio));
8514 bio->bi_private = dip;
8515 bio->bi_end_io = btrfs_end_dio_bio;
8516 btrfs_io_bio(bio)->logical = file_offset;
8517
8518 map_length = orig_bio->bi_iter.bi_size;
8519 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8520 start_sector << 9,
8521 &map_length, NULL, 0);
8522 if (ret) {
8523 bio_put(bio);
8524 goto out_err;
8525 }
8526
8527 goto next_block;
8528 } else {
8529 submit_len += blocksize;
8530 if (--nr_sectors) {
8531 i++;
8532 goto next_block;
8533 }
8534 bvec++;
8535 }
8536 }
8537
8538 submit:
8539 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8540 async_submit);
8541 if (!ret)
8542 return 0;
8543
8544 bio_put(bio);
8545 out_err:
8546 dip->errors = 1;
8547 /*
8548 * before atomic variable goto zero, we must
8549 * make sure dip->errors is perceived to be set.
8550 */
8551 smp_mb__before_atomic();
8552 if (atomic_dec_and_test(&dip->pending_bios))
8553 bio_io_error(dip->orig_bio);
8554
8555 /* bio_end_io() will handle error, so we needn't return it */
8556 return 0;
8557 }
8558
btrfs_submit_direct(struct bio * dio_bio,struct inode * inode,loff_t file_offset)8559 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8560 loff_t file_offset)
8561 {
8562 struct btrfs_dio_private *dip = NULL;
8563 struct bio *io_bio = NULL;
8564 struct btrfs_io_bio *btrfs_bio;
8565 int skip_sum;
8566 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8567 int ret = 0;
8568
8569 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8570
8571 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8572 if (!io_bio) {
8573 ret = -ENOMEM;
8574 goto free_ordered;
8575 }
8576
8577 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8578 if (!dip) {
8579 ret = -ENOMEM;
8580 goto free_ordered;
8581 }
8582
8583 dip->private = dio_bio->bi_private;
8584 dip->inode = inode;
8585 dip->logical_offset = file_offset;
8586 dip->bytes = dio_bio->bi_iter.bi_size;
8587 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8588 io_bio->bi_private = dip;
8589 dip->orig_bio = io_bio;
8590 dip->dio_bio = dio_bio;
8591 atomic_set(&dip->pending_bios, 0);
8592 btrfs_bio = btrfs_io_bio(io_bio);
8593 btrfs_bio->logical = file_offset;
8594
8595 if (write) {
8596 io_bio->bi_end_io = btrfs_endio_direct_write;
8597 } else {
8598 io_bio->bi_end_io = btrfs_endio_direct_read;
8599 dip->subio_endio = btrfs_subio_endio_read;
8600 }
8601
8602 /*
8603 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8604 * even if we fail to submit a bio, because in such case we do the
8605 * corresponding error handling below and it must not be done a second
8606 * time by btrfs_direct_IO().
8607 */
8608 if (write) {
8609 struct btrfs_dio_data *dio_data = current->journal_info;
8610
8611 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8612 dip->bytes;
8613 dio_data->unsubmitted_oe_range_start =
8614 dio_data->unsubmitted_oe_range_end;
8615 }
8616
8617 ret = btrfs_submit_direct_hook(dip, skip_sum);
8618 if (!ret)
8619 return;
8620
8621 if (btrfs_bio->end_io)
8622 btrfs_bio->end_io(btrfs_bio, ret);
8623
8624 free_ordered:
8625 /*
8626 * If we arrived here it means either we failed to submit the dip
8627 * or we either failed to clone the dio_bio or failed to allocate the
8628 * dip. If we cloned the dio_bio and allocated the dip, we can just
8629 * call bio_endio against our io_bio so that we get proper resource
8630 * cleanup if we fail to submit the dip, otherwise, we must do the
8631 * same as btrfs_endio_direct_[write|read] because we can't call these
8632 * callbacks - they require an allocated dip and a clone of dio_bio.
8633 */
8634 if (io_bio && dip) {
8635 io_bio->bi_error = -EIO;
8636 bio_endio(io_bio);
8637 /*
8638 * The end io callbacks free our dip, do the final put on io_bio
8639 * and all the cleanup and final put for dio_bio (through
8640 * dio_end_io()).
8641 */
8642 dip = NULL;
8643 io_bio = NULL;
8644 } else {
8645 if (write)
8646 btrfs_endio_direct_write_update_ordered(inode,
8647 file_offset,
8648 dio_bio->bi_iter.bi_size,
8649 0);
8650 else
8651 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8652 file_offset + dio_bio->bi_iter.bi_size - 1);
8653
8654 dio_bio->bi_error = -EIO;
8655 /*
8656 * Releases and cleans up our dio_bio, no need to bio_put()
8657 * nor bio_endio()/bio_io_error() against dio_bio.
8658 */
8659 dio_end_io(dio_bio, ret);
8660 }
8661 if (io_bio)
8662 bio_put(io_bio);
8663 kfree(dip);
8664 }
8665
check_direct_IO(struct btrfs_root * root,struct kiocb * iocb,const struct iov_iter * iter,loff_t offset)8666 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8667 const struct iov_iter *iter, loff_t offset)
8668 {
8669 int seg;
8670 int i;
8671 unsigned blocksize_mask = root->sectorsize - 1;
8672 ssize_t retval = -EINVAL;
8673
8674 if (offset & blocksize_mask)
8675 goto out;
8676
8677 if (iov_iter_alignment(iter) & blocksize_mask)
8678 goto out;
8679
8680 /* If this is a write we don't need to check anymore */
8681 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8682 return 0;
8683 /*
8684 * Check to make sure we don't have duplicate iov_base's in this
8685 * iovec, if so return EINVAL, otherwise we'll get csum errors
8686 * when reading back.
8687 */
8688 for (seg = 0; seg < iter->nr_segs; seg++) {
8689 for (i = seg + 1; i < iter->nr_segs; i++) {
8690 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8691 goto out;
8692 }
8693 }
8694 retval = 0;
8695 out:
8696 return retval;
8697 }
8698
btrfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)8699 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8700 {
8701 struct file *file = iocb->ki_filp;
8702 struct inode *inode = file->f_mapping->host;
8703 struct btrfs_root *root = BTRFS_I(inode)->root;
8704 struct btrfs_dio_data dio_data = { 0 };
8705 loff_t offset = iocb->ki_pos;
8706 size_t count = 0;
8707 int flags = 0;
8708 bool wakeup = true;
8709 bool relock = false;
8710 ssize_t ret;
8711
8712 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8713 return 0;
8714
8715 inode_dio_begin(inode);
8716 smp_mb__after_atomic();
8717
8718 /*
8719 * The generic stuff only does filemap_write_and_wait_range, which
8720 * isn't enough if we've written compressed pages to this area, so
8721 * we need to flush the dirty pages again to make absolutely sure
8722 * that any outstanding dirty pages are on disk.
8723 */
8724 count = iov_iter_count(iter);
8725 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8726 &BTRFS_I(inode)->runtime_flags))
8727 filemap_fdatawrite_range(inode->i_mapping, offset,
8728 offset + count - 1);
8729
8730 if (iov_iter_rw(iter) == WRITE) {
8731 /*
8732 * If the write DIO is beyond the EOF, we need update
8733 * the isize, but it is protected by i_mutex. So we can
8734 * not unlock the i_mutex at this case.
8735 */
8736 if (offset + count <= inode->i_size) {
8737 inode_unlock(inode);
8738 relock = true;
8739 }
8740 ret = btrfs_delalloc_reserve_space(inode, offset, count);
8741 if (ret)
8742 goto out;
8743 dio_data.outstanding_extents = div64_u64(count +
8744 BTRFS_MAX_EXTENT_SIZE - 1,
8745 BTRFS_MAX_EXTENT_SIZE);
8746
8747 /*
8748 * We need to know how many extents we reserved so that we can
8749 * do the accounting properly if we go over the number we
8750 * originally calculated. Abuse current->journal_info for this.
8751 */
8752 dio_data.reserve = round_up(count, root->sectorsize);
8753 dio_data.unsubmitted_oe_range_start = (u64)offset;
8754 dio_data.unsubmitted_oe_range_end = (u64)offset;
8755 current->journal_info = &dio_data;
8756 down_read(&BTRFS_I(inode)->dio_sem);
8757 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8758 &BTRFS_I(inode)->runtime_flags)) {
8759 inode_dio_end(inode);
8760 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8761 wakeup = false;
8762 }
8763
8764 ret = __blockdev_direct_IO(iocb, inode,
8765 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8766 iter, btrfs_get_blocks_direct, NULL,
8767 btrfs_submit_direct, flags);
8768 if (iov_iter_rw(iter) == WRITE) {
8769 up_read(&BTRFS_I(inode)->dio_sem);
8770 current->journal_info = NULL;
8771 if (ret < 0 && ret != -EIOCBQUEUED) {
8772 if (dio_data.reserve)
8773 btrfs_delalloc_release_space(inode, offset,
8774 dio_data.reserve);
8775 /*
8776 * On error we might have left some ordered extents
8777 * without submitting corresponding bios for them, so
8778 * cleanup them up to avoid other tasks getting them
8779 * and waiting for them to complete forever.
8780 */
8781 if (dio_data.unsubmitted_oe_range_start <
8782 dio_data.unsubmitted_oe_range_end)
8783 btrfs_endio_direct_write_update_ordered(inode,
8784 dio_data.unsubmitted_oe_range_start,
8785 dio_data.unsubmitted_oe_range_end -
8786 dio_data.unsubmitted_oe_range_start,
8787 0);
8788 } else if (ret >= 0 && (size_t)ret < count)
8789 btrfs_delalloc_release_space(inode, offset,
8790 count - (size_t)ret);
8791 }
8792 out:
8793 if (wakeup)
8794 inode_dio_end(inode);
8795 if (relock)
8796 inode_lock(inode);
8797
8798 return ret;
8799 }
8800
8801 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8802
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)8803 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8804 __u64 start, __u64 len)
8805 {
8806 int ret;
8807
8808 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8809 if (ret)
8810 return ret;
8811
8812 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8813 }
8814
btrfs_readpage(struct file * file,struct page * page)8815 int btrfs_readpage(struct file *file, struct page *page)
8816 {
8817 struct extent_io_tree *tree;
8818 tree = &BTRFS_I(page->mapping->host)->io_tree;
8819 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8820 }
8821
btrfs_writepage(struct page * page,struct writeback_control * wbc)8822 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8823 {
8824 struct extent_io_tree *tree;
8825 struct inode *inode = page->mapping->host;
8826 int ret;
8827
8828 if (current->flags & PF_MEMALLOC) {
8829 redirty_page_for_writepage(wbc, page);
8830 unlock_page(page);
8831 return 0;
8832 }
8833
8834 /*
8835 * If we are under memory pressure we will call this directly from the
8836 * VM, we need to make sure we have the inode referenced for the ordered
8837 * extent. If not just return like we didn't do anything.
8838 */
8839 if (!igrab(inode)) {
8840 redirty_page_for_writepage(wbc, page);
8841 return AOP_WRITEPAGE_ACTIVATE;
8842 }
8843 tree = &BTRFS_I(page->mapping->host)->io_tree;
8844 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8845 btrfs_add_delayed_iput(inode);
8846 return ret;
8847 }
8848
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)8849 static int btrfs_writepages(struct address_space *mapping,
8850 struct writeback_control *wbc)
8851 {
8852 struct extent_io_tree *tree;
8853
8854 tree = &BTRFS_I(mapping->host)->io_tree;
8855 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8856 }
8857
8858 static int
btrfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)8859 btrfs_readpages(struct file *file, struct address_space *mapping,
8860 struct list_head *pages, unsigned nr_pages)
8861 {
8862 struct extent_io_tree *tree;
8863 tree = &BTRFS_I(mapping->host)->io_tree;
8864 return extent_readpages(tree, mapping, pages, nr_pages,
8865 btrfs_get_extent);
8866 }
__btrfs_releasepage(struct page * page,gfp_t gfp_flags)8867 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8868 {
8869 struct extent_io_tree *tree;
8870 struct extent_map_tree *map;
8871 int ret;
8872
8873 tree = &BTRFS_I(page->mapping->host)->io_tree;
8874 map = &BTRFS_I(page->mapping->host)->extent_tree;
8875 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8876 if (ret == 1) {
8877 ClearPagePrivate(page);
8878 set_page_private(page, 0);
8879 put_page(page);
8880 }
8881 return ret;
8882 }
8883
btrfs_releasepage(struct page * page,gfp_t gfp_flags)8884 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8885 {
8886 if (PageWriteback(page) || PageDirty(page))
8887 return 0;
8888 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8889 }
8890
btrfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)8891 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8892 unsigned int length)
8893 {
8894 struct inode *inode = page->mapping->host;
8895 struct extent_io_tree *tree;
8896 struct btrfs_ordered_extent *ordered;
8897 struct extent_state *cached_state = NULL;
8898 u64 page_start = page_offset(page);
8899 u64 page_end = page_start + PAGE_SIZE - 1;
8900 u64 start;
8901 u64 end;
8902 int inode_evicting = inode->i_state & I_FREEING;
8903
8904 /*
8905 * we have the page locked, so new writeback can't start,
8906 * and the dirty bit won't be cleared while we are here.
8907 *
8908 * Wait for IO on this page so that we can safely clear
8909 * the PagePrivate2 bit and do ordered accounting
8910 */
8911 wait_on_page_writeback(page);
8912
8913 tree = &BTRFS_I(inode)->io_tree;
8914 if (offset) {
8915 btrfs_releasepage(page, GFP_NOFS);
8916 return;
8917 }
8918
8919 if (!inode_evicting)
8920 lock_extent_bits(tree, page_start, page_end, &cached_state);
8921 again:
8922 start = page_start;
8923 ordered = btrfs_lookup_ordered_range(inode, start,
8924 page_end - start + 1);
8925 if (ordered) {
8926 end = min(page_end, ordered->file_offset + ordered->len - 1);
8927 /*
8928 * IO on this page will never be started, so we need
8929 * to account for any ordered extents now
8930 */
8931 if (!inode_evicting)
8932 clear_extent_bit(tree, start, end,
8933 EXTENT_DIRTY | EXTENT_DELALLOC |
8934 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8935 EXTENT_DEFRAG, 1, 0, &cached_state,
8936 GFP_NOFS);
8937 /*
8938 * whoever cleared the private bit is responsible
8939 * for the finish_ordered_io
8940 */
8941 if (TestClearPagePrivate2(page)) {
8942 struct btrfs_ordered_inode_tree *tree;
8943 u64 new_len;
8944
8945 tree = &BTRFS_I(inode)->ordered_tree;
8946
8947 spin_lock_irq(&tree->lock);
8948 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8949 new_len = start - ordered->file_offset;
8950 if (new_len < ordered->truncated_len)
8951 ordered->truncated_len = new_len;
8952 spin_unlock_irq(&tree->lock);
8953
8954 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8955 start,
8956 end - start + 1, 1))
8957 btrfs_finish_ordered_io(ordered);
8958 }
8959 btrfs_put_ordered_extent(ordered);
8960 if (!inode_evicting) {
8961 cached_state = NULL;
8962 lock_extent_bits(tree, start, end,
8963 &cached_state);
8964 }
8965
8966 start = end + 1;
8967 if (start < page_end)
8968 goto again;
8969 }
8970
8971 /*
8972 * Qgroup reserved space handler
8973 * Page here will be either
8974 * 1) Already written to disk
8975 * In this case, its reserved space is released from data rsv map
8976 * and will be freed by delayed_ref handler finally.
8977 * So even we call qgroup_free_data(), it won't decrease reserved
8978 * space.
8979 * 2) Not written to disk
8980 * This means the reserved space should be freed here. However,
8981 * if a truncate invalidates the page (by clearing PageDirty)
8982 * and the page is accounted for while allocating extent
8983 * in btrfs_check_data_free_space() we let delayed_ref to
8984 * free the entire extent.
8985 */
8986 if (PageDirty(page))
8987 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
8988 if (!inode_evicting) {
8989 clear_extent_bit(tree, page_start, page_end,
8990 EXTENT_LOCKED | EXTENT_DIRTY |
8991 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8992 EXTENT_DEFRAG, 1, 1,
8993 &cached_state, GFP_NOFS);
8994
8995 __btrfs_releasepage(page, GFP_NOFS);
8996 }
8997
8998 ClearPageChecked(page);
8999 if (PagePrivate(page)) {
9000 ClearPagePrivate(page);
9001 set_page_private(page, 0);
9002 put_page(page);
9003 }
9004 }
9005
9006 /*
9007 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9008 * called from a page fault handler when a page is first dirtied. Hence we must
9009 * be careful to check for EOF conditions here. We set the page up correctly
9010 * for a written page which means we get ENOSPC checking when writing into
9011 * holes and correct delalloc and unwritten extent mapping on filesystems that
9012 * support these features.
9013 *
9014 * We are not allowed to take the i_mutex here so we have to play games to
9015 * protect against truncate races as the page could now be beyond EOF. Because
9016 * vmtruncate() writes the inode size before removing pages, once we have the
9017 * page lock we can determine safely if the page is beyond EOF. If it is not
9018 * beyond EOF, then the page is guaranteed safe against truncation until we
9019 * unlock the page.
9020 */
btrfs_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)9021 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9022 {
9023 struct page *page = vmf->page;
9024 struct inode *inode = file_inode(vma->vm_file);
9025 struct btrfs_root *root = BTRFS_I(inode)->root;
9026 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9027 struct btrfs_ordered_extent *ordered;
9028 struct extent_state *cached_state = NULL;
9029 char *kaddr;
9030 unsigned long zero_start;
9031 loff_t size;
9032 int ret;
9033 int reserved = 0;
9034 u64 reserved_space;
9035 u64 page_start;
9036 u64 page_end;
9037 u64 end;
9038
9039 reserved_space = PAGE_SIZE;
9040
9041 sb_start_pagefault(inode->i_sb);
9042 page_start = page_offset(page);
9043 page_end = page_start + PAGE_SIZE - 1;
9044 end = page_end;
9045
9046 /*
9047 * Reserving delalloc space after obtaining the page lock can lead to
9048 * deadlock. For example, if a dirty page is locked by this function
9049 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9050 * dirty page write out, then the btrfs_writepage() function could
9051 * end up waiting indefinitely to get a lock on the page currently
9052 * being processed by btrfs_page_mkwrite() function.
9053 */
9054 ret = btrfs_delalloc_reserve_space(inode, page_start,
9055 reserved_space);
9056 if (!ret) {
9057 ret = file_update_time(vma->vm_file);
9058 reserved = 1;
9059 }
9060 if (ret) {
9061 if (ret == -ENOMEM)
9062 ret = VM_FAULT_OOM;
9063 else /* -ENOSPC, -EIO, etc */
9064 ret = VM_FAULT_SIGBUS;
9065 if (reserved)
9066 goto out;
9067 goto out_noreserve;
9068 }
9069
9070 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9071 again:
9072 lock_page(page);
9073 size = i_size_read(inode);
9074
9075 if ((page->mapping != inode->i_mapping) ||
9076 (page_start >= size)) {
9077 /* page got truncated out from underneath us */
9078 goto out_unlock;
9079 }
9080 wait_on_page_writeback(page);
9081
9082 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9083 set_page_extent_mapped(page);
9084
9085 /*
9086 * we can't set the delalloc bits if there are pending ordered
9087 * extents. Drop our locks and wait for them to finish
9088 */
9089 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
9090 if (ordered) {
9091 unlock_extent_cached(io_tree, page_start, page_end,
9092 &cached_state, GFP_NOFS);
9093 unlock_page(page);
9094 btrfs_start_ordered_extent(inode, ordered, 1);
9095 btrfs_put_ordered_extent(ordered);
9096 goto again;
9097 }
9098
9099 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9100 reserved_space = round_up(size - page_start, root->sectorsize);
9101 if (reserved_space < PAGE_SIZE) {
9102 end = page_start + reserved_space - 1;
9103 spin_lock(&BTRFS_I(inode)->lock);
9104 BTRFS_I(inode)->outstanding_extents++;
9105 spin_unlock(&BTRFS_I(inode)->lock);
9106 btrfs_delalloc_release_space(inode, page_start,
9107 PAGE_SIZE - reserved_space);
9108 }
9109 }
9110
9111 /*
9112 * XXX - page_mkwrite gets called every time the page is dirtied, even
9113 * if it was already dirty, so for space accounting reasons we need to
9114 * clear any delalloc bits for the range we are fixing to save. There
9115 * is probably a better way to do this, but for now keep consistent with
9116 * prepare_pages in the normal write path.
9117 */
9118 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9119 EXTENT_DIRTY | EXTENT_DELALLOC |
9120 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9121 0, 0, &cached_state, GFP_NOFS);
9122
9123 ret = btrfs_set_extent_delalloc(inode, page_start, end,
9124 &cached_state, 0);
9125 if (ret) {
9126 unlock_extent_cached(io_tree, page_start, page_end,
9127 &cached_state, GFP_NOFS);
9128 ret = VM_FAULT_SIGBUS;
9129 goto out_unlock;
9130 }
9131 ret = 0;
9132
9133 /* page is wholly or partially inside EOF */
9134 if (page_start + PAGE_SIZE > size)
9135 zero_start = size & ~PAGE_MASK;
9136 else
9137 zero_start = PAGE_SIZE;
9138
9139 if (zero_start != PAGE_SIZE) {
9140 kaddr = kmap(page);
9141 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9142 flush_dcache_page(page);
9143 kunmap(page);
9144 }
9145 ClearPageChecked(page);
9146 set_page_dirty(page);
9147 SetPageUptodate(page);
9148
9149 BTRFS_I(inode)->last_trans = root->fs_info->generation;
9150 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9151 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9152
9153 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9154
9155 out_unlock:
9156 if (!ret) {
9157 sb_end_pagefault(inode->i_sb);
9158 return VM_FAULT_LOCKED;
9159 }
9160 unlock_page(page);
9161 out:
9162 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9163 out_noreserve:
9164 sb_end_pagefault(inode->i_sb);
9165 return ret;
9166 }
9167
btrfs_truncate(struct inode * inode)9168 static int btrfs_truncate(struct inode *inode)
9169 {
9170 struct btrfs_root *root = BTRFS_I(inode)->root;
9171 struct btrfs_block_rsv *rsv;
9172 int ret = 0;
9173 int err = 0;
9174 struct btrfs_trans_handle *trans;
9175 u64 mask = root->sectorsize - 1;
9176 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
9177
9178 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9179 (u64)-1);
9180 if (ret)
9181 return ret;
9182
9183 /*
9184 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
9185 * 3 things going on here
9186 *
9187 * 1) We need to reserve space for our orphan item and the space to
9188 * delete our orphan item. Lord knows we don't want to have a dangling
9189 * orphan item because we didn't reserve space to remove it.
9190 *
9191 * 2) We need to reserve space to update our inode.
9192 *
9193 * 3) We need to have something to cache all the space that is going to
9194 * be free'd up by the truncate operation, but also have some slack
9195 * space reserved in case it uses space during the truncate (thank you
9196 * very much snapshotting).
9197 *
9198 * And we need these to all be separate. The fact is we can use a lot of
9199 * space doing the truncate, and we have no earthly idea how much space
9200 * we will use, so we need the truncate reservation to be separate so it
9201 * doesn't end up using space reserved for updating the inode or
9202 * removing the orphan item. We also need to be able to stop the
9203 * transaction and start a new one, which means we need to be able to
9204 * update the inode several times, and we have no idea of knowing how
9205 * many times that will be, so we can't just reserve 1 item for the
9206 * entirety of the operation, so that has to be done separately as well.
9207 * Then there is the orphan item, which does indeed need to be held on
9208 * to for the whole operation, and we need nobody to touch this reserved
9209 * space except the orphan code.
9210 *
9211 * So that leaves us with
9212 *
9213 * 1) root->orphan_block_rsv - for the orphan deletion.
9214 * 2) rsv - for the truncate reservation, which we will steal from the
9215 * transaction reservation.
9216 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9217 * updating the inode.
9218 */
9219 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
9220 if (!rsv)
9221 return -ENOMEM;
9222 rsv->size = min_size;
9223 rsv->failfast = 1;
9224
9225 /*
9226 * 1 for the truncate slack space
9227 * 1 for updating the inode.
9228 */
9229 trans = btrfs_start_transaction(root, 2);
9230 if (IS_ERR(trans)) {
9231 err = PTR_ERR(trans);
9232 goto out;
9233 }
9234
9235 /* Migrate the slack space for the truncate to our reserve */
9236 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9237 min_size, 0);
9238 BUG_ON(ret);
9239
9240 /*
9241 * So if we truncate and then write and fsync we normally would just
9242 * write the extents that changed, which is a problem if we need to
9243 * first truncate that entire inode. So set this flag so we write out
9244 * all of the extents in the inode to the sync log so we're completely
9245 * safe.
9246 */
9247 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9248 trans->block_rsv = rsv;
9249
9250 while (1) {
9251 ret = btrfs_truncate_inode_items(trans, root, inode,
9252 inode->i_size,
9253 BTRFS_EXTENT_DATA_KEY);
9254 if (ret != -ENOSPC && ret != -EAGAIN) {
9255 err = ret;
9256 break;
9257 }
9258
9259 trans->block_rsv = &root->fs_info->trans_block_rsv;
9260 ret = btrfs_update_inode(trans, root, inode);
9261 if (ret) {
9262 err = ret;
9263 break;
9264 }
9265
9266 btrfs_end_transaction(trans, root);
9267 btrfs_btree_balance_dirty(root);
9268
9269 trans = btrfs_start_transaction(root, 2);
9270 if (IS_ERR(trans)) {
9271 ret = err = PTR_ERR(trans);
9272 trans = NULL;
9273 break;
9274 }
9275
9276 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9277 rsv, min_size, 0);
9278 BUG_ON(ret); /* shouldn't happen */
9279 trans->block_rsv = rsv;
9280 }
9281
9282 if (ret == 0 && inode->i_nlink > 0) {
9283 trans->block_rsv = root->orphan_block_rsv;
9284 ret = btrfs_orphan_del(trans, inode);
9285 if (ret)
9286 err = ret;
9287 }
9288
9289 if (trans) {
9290 trans->block_rsv = &root->fs_info->trans_block_rsv;
9291 ret = btrfs_update_inode(trans, root, inode);
9292 if (ret && !err)
9293 err = ret;
9294
9295 ret = btrfs_end_transaction(trans, root);
9296 btrfs_btree_balance_dirty(root);
9297 }
9298 out:
9299 btrfs_free_block_rsv(root, rsv);
9300
9301 if (ret && !err)
9302 err = ret;
9303
9304 return err;
9305 }
9306
9307 /*
9308 * create a new subvolume directory/inode (helper for the ioctl).
9309 */
btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct btrfs_root * parent_root,u64 new_dirid)9310 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9311 struct btrfs_root *new_root,
9312 struct btrfs_root *parent_root,
9313 u64 new_dirid)
9314 {
9315 struct inode *inode;
9316 int err;
9317 u64 index = 0;
9318
9319 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9320 new_dirid, new_dirid,
9321 S_IFDIR | (~current_umask() & S_IRWXUGO),
9322 &index);
9323 if (IS_ERR(inode))
9324 return PTR_ERR(inode);
9325 inode->i_op = &btrfs_dir_inode_operations;
9326 inode->i_fop = &btrfs_dir_file_operations;
9327
9328 set_nlink(inode, 1);
9329 btrfs_i_size_write(inode, 0);
9330 unlock_new_inode(inode);
9331
9332 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9333 if (err)
9334 btrfs_err(new_root->fs_info,
9335 "error inheriting subvolume %llu properties: %d",
9336 new_root->root_key.objectid, err);
9337
9338 err = btrfs_update_inode(trans, new_root, inode);
9339
9340 iput(inode);
9341 return err;
9342 }
9343
btrfs_alloc_inode(struct super_block * sb)9344 struct inode *btrfs_alloc_inode(struct super_block *sb)
9345 {
9346 struct btrfs_inode *ei;
9347 struct inode *inode;
9348
9349 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9350 if (!ei)
9351 return NULL;
9352
9353 ei->root = NULL;
9354 ei->generation = 0;
9355 ei->last_trans = 0;
9356 ei->last_sub_trans = 0;
9357 ei->logged_trans = 0;
9358 ei->delalloc_bytes = 0;
9359 ei->defrag_bytes = 0;
9360 ei->disk_i_size = 0;
9361 ei->flags = 0;
9362 ei->csum_bytes = 0;
9363 ei->index_cnt = (u64)-1;
9364 ei->dir_index = 0;
9365 ei->last_unlink_trans = 0;
9366 ei->last_log_commit = 0;
9367 ei->delayed_iput_count = 0;
9368
9369 spin_lock_init(&ei->lock);
9370 ei->outstanding_extents = 0;
9371 ei->reserved_extents = 0;
9372
9373 ei->runtime_flags = 0;
9374 ei->force_compress = BTRFS_COMPRESS_NONE;
9375
9376 ei->delayed_node = NULL;
9377
9378 ei->i_otime.tv_sec = 0;
9379 ei->i_otime.tv_nsec = 0;
9380
9381 inode = &ei->vfs_inode;
9382 extent_map_tree_init(&ei->extent_tree);
9383 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9384 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9385 ei->io_tree.track_uptodate = 1;
9386 ei->io_failure_tree.track_uptodate = 1;
9387 atomic_set(&ei->sync_writers, 0);
9388 mutex_init(&ei->log_mutex);
9389 mutex_init(&ei->delalloc_mutex);
9390 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9391 INIT_LIST_HEAD(&ei->delalloc_inodes);
9392 INIT_LIST_HEAD(&ei->delayed_iput);
9393 RB_CLEAR_NODE(&ei->rb_node);
9394 init_rwsem(&ei->dio_sem);
9395
9396 return inode;
9397 }
9398
9399 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)9400 void btrfs_test_destroy_inode(struct inode *inode)
9401 {
9402 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9403 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9404 }
9405 #endif
9406
btrfs_i_callback(struct rcu_head * head)9407 static void btrfs_i_callback(struct rcu_head *head)
9408 {
9409 struct inode *inode = container_of(head, struct inode, i_rcu);
9410 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9411 }
9412
btrfs_destroy_inode(struct inode * inode)9413 void btrfs_destroy_inode(struct inode *inode)
9414 {
9415 struct btrfs_ordered_extent *ordered;
9416 struct btrfs_root *root = BTRFS_I(inode)->root;
9417
9418 WARN_ON(!hlist_empty(&inode->i_dentry));
9419 WARN_ON(inode->i_data.nrpages);
9420 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9421 WARN_ON(BTRFS_I(inode)->reserved_extents);
9422 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9423 WARN_ON(BTRFS_I(inode)->csum_bytes);
9424 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9425
9426 /*
9427 * This can happen where we create an inode, but somebody else also
9428 * created the same inode and we need to destroy the one we already
9429 * created.
9430 */
9431 if (!root)
9432 goto free;
9433
9434 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9435 &BTRFS_I(inode)->runtime_flags)) {
9436 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9437 btrfs_ino(inode));
9438 atomic_dec(&root->orphan_inodes);
9439 }
9440
9441 while (1) {
9442 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9443 if (!ordered)
9444 break;
9445 else {
9446 btrfs_err(root->fs_info,
9447 "found ordered extent %llu %llu on inode cleanup",
9448 ordered->file_offset, ordered->len);
9449 btrfs_remove_ordered_extent(inode, ordered);
9450 btrfs_put_ordered_extent(ordered);
9451 btrfs_put_ordered_extent(ordered);
9452 }
9453 }
9454 btrfs_qgroup_check_reserved_leak(inode);
9455 inode_tree_del(inode);
9456 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9457 free:
9458 call_rcu(&inode->i_rcu, btrfs_i_callback);
9459 }
9460
btrfs_drop_inode(struct inode * inode)9461 int btrfs_drop_inode(struct inode *inode)
9462 {
9463 struct btrfs_root *root = BTRFS_I(inode)->root;
9464
9465 if (root == NULL)
9466 return 1;
9467
9468 /* the snap/subvol tree is on deleting */
9469 if (btrfs_root_refs(&root->root_item) == 0)
9470 return 1;
9471 else
9472 return generic_drop_inode(inode);
9473 }
9474
init_once(void * foo)9475 static void init_once(void *foo)
9476 {
9477 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9478
9479 inode_init_once(&ei->vfs_inode);
9480 }
9481
btrfs_destroy_cachep(void)9482 void btrfs_destroy_cachep(void)
9483 {
9484 /*
9485 * Make sure all delayed rcu free inodes are flushed before we
9486 * destroy cache.
9487 */
9488 rcu_barrier();
9489 kmem_cache_destroy(btrfs_inode_cachep);
9490 kmem_cache_destroy(btrfs_trans_handle_cachep);
9491 kmem_cache_destroy(btrfs_transaction_cachep);
9492 kmem_cache_destroy(btrfs_path_cachep);
9493 kmem_cache_destroy(btrfs_free_space_cachep);
9494 }
9495
btrfs_init_cachep(void)9496 int btrfs_init_cachep(void)
9497 {
9498 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9499 sizeof(struct btrfs_inode), 0,
9500 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9501 init_once);
9502 if (!btrfs_inode_cachep)
9503 goto fail;
9504
9505 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9506 sizeof(struct btrfs_trans_handle), 0,
9507 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9508 if (!btrfs_trans_handle_cachep)
9509 goto fail;
9510
9511 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9512 sizeof(struct btrfs_transaction), 0,
9513 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9514 if (!btrfs_transaction_cachep)
9515 goto fail;
9516
9517 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9518 sizeof(struct btrfs_path), 0,
9519 SLAB_MEM_SPREAD, NULL);
9520 if (!btrfs_path_cachep)
9521 goto fail;
9522
9523 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9524 sizeof(struct btrfs_free_space), 0,
9525 SLAB_MEM_SPREAD, NULL);
9526 if (!btrfs_free_space_cachep)
9527 goto fail;
9528
9529 return 0;
9530 fail:
9531 btrfs_destroy_cachep();
9532 return -ENOMEM;
9533 }
9534
btrfs_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)9535 static int btrfs_getattr(struct vfsmount *mnt,
9536 struct dentry *dentry, struct kstat *stat)
9537 {
9538 u64 delalloc_bytes;
9539 struct inode *inode = d_inode(dentry);
9540 u32 blocksize = inode->i_sb->s_blocksize;
9541
9542 generic_fillattr(inode, stat);
9543 stat->dev = BTRFS_I(inode)->root->anon_dev;
9544
9545 spin_lock(&BTRFS_I(inode)->lock);
9546 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9547 spin_unlock(&BTRFS_I(inode)->lock);
9548 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9549 ALIGN(delalloc_bytes, blocksize)) >> 9;
9550 return 0;
9551 }
9552
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)9553 static int btrfs_rename_exchange(struct inode *old_dir,
9554 struct dentry *old_dentry,
9555 struct inode *new_dir,
9556 struct dentry *new_dentry)
9557 {
9558 struct btrfs_trans_handle *trans;
9559 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9560 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9561 struct inode *new_inode = new_dentry->d_inode;
9562 struct inode *old_inode = old_dentry->d_inode;
9563 struct timespec ctime = current_time(old_inode);
9564 struct dentry *parent;
9565 u64 old_ino = btrfs_ino(old_inode);
9566 u64 new_ino = btrfs_ino(new_inode);
9567 u64 old_idx = 0;
9568 u64 new_idx = 0;
9569 u64 root_objectid;
9570 int ret;
9571 bool root_log_pinned = false;
9572 bool dest_log_pinned = false;
9573
9574 /* we only allow rename subvolume link between subvolumes */
9575 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9576 return -EXDEV;
9577
9578 /* close the race window with snapshot create/destroy ioctl */
9579 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9580 down_read(&root->fs_info->subvol_sem);
9581 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9582 down_read(&dest->fs_info->subvol_sem);
9583
9584 /*
9585 * We want to reserve the absolute worst case amount of items. So if
9586 * both inodes are subvols and we need to unlink them then that would
9587 * require 4 item modifications, but if they are both normal inodes it
9588 * would require 5 item modifications, so we'll assume their normal
9589 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9590 * should cover the worst case number of items we'll modify.
9591 */
9592 trans = btrfs_start_transaction(root, 12);
9593 if (IS_ERR(trans)) {
9594 ret = PTR_ERR(trans);
9595 goto out_notrans;
9596 }
9597
9598 /*
9599 * We need to find a free sequence number both in the source and
9600 * in the destination directory for the exchange.
9601 */
9602 ret = btrfs_set_inode_index(new_dir, &old_idx);
9603 if (ret)
9604 goto out_fail;
9605 ret = btrfs_set_inode_index(old_dir, &new_idx);
9606 if (ret)
9607 goto out_fail;
9608
9609 BTRFS_I(old_inode)->dir_index = 0ULL;
9610 BTRFS_I(new_inode)->dir_index = 0ULL;
9611
9612 /* Reference for the source. */
9613 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9614 /* force full log commit if subvolume involved. */
9615 btrfs_set_log_full_commit(root->fs_info, trans);
9616 } else {
9617 btrfs_pin_log_trans(root);
9618 root_log_pinned = true;
9619 ret = btrfs_insert_inode_ref(trans, dest,
9620 new_dentry->d_name.name,
9621 new_dentry->d_name.len,
9622 old_ino,
9623 btrfs_ino(new_dir), old_idx);
9624 if (ret)
9625 goto out_fail;
9626 }
9627
9628 /* And now for the dest. */
9629 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9630 /* force full log commit if subvolume involved. */
9631 btrfs_set_log_full_commit(dest->fs_info, trans);
9632 } else {
9633 btrfs_pin_log_trans(dest);
9634 dest_log_pinned = true;
9635 ret = btrfs_insert_inode_ref(trans, root,
9636 old_dentry->d_name.name,
9637 old_dentry->d_name.len,
9638 new_ino,
9639 btrfs_ino(old_dir), new_idx);
9640 if (ret)
9641 goto out_fail;
9642 }
9643
9644 /* Update inode version and ctime/mtime. */
9645 inode_inc_iversion(old_dir);
9646 inode_inc_iversion(new_dir);
9647 inode_inc_iversion(old_inode);
9648 inode_inc_iversion(new_inode);
9649 old_dir->i_ctime = old_dir->i_mtime = ctime;
9650 new_dir->i_ctime = new_dir->i_mtime = ctime;
9651 old_inode->i_ctime = ctime;
9652 new_inode->i_ctime = ctime;
9653
9654 if (old_dentry->d_parent != new_dentry->d_parent) {
9655 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9656 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9657 }
9658
9659 /* src is a subvolume */
9660 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9661 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9662 ret = btrfs_unlink_subvol(trans, root, old_dir,
9663 root_objectid,
9664 old_dentry->d_name.name,
9665 old_dentry->d_name.len);
9666 } else { /* src is an inode */
9667 ret = __btrfs_unlink_inode(trans, root, old_dir,
9668 old_dentry->d_inode,
9669 old_dentry->d_name.name,
9670 old_dentry->d_name.len);
9671 if (!ret)
9672 ret = btrfs_update_inode(trans, root, old_inode);
9673 }
9674 if (ret) {
9675 btrfs_abort_transaction(trans, ret);
9676 goto out_fail;
9677 }
9678
9679 /* dest is a subvolume */
9680 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9681 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9682 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9683 root_objectid,
9684 new_dentry->d_name.name,
9685 new_dentry->d_name.len);
9686 } else { /* dest is an inode */
9687 ret = __btrfs_unlink_inode(trans, dest, new_dir,
9688 new_dentry->d_inode,
9689 new_dentry->d_name.name,
9690 new_dentry->d_name.len);
9691 if (!ret)
9692 ret = btrfs_update_inode(trans, dest, new_inode);
9693 }
9694 if (ret) {
9695 btrfs_abort_transaction(trans, ret);
9696 goto out_fail;
9697 }
9698
9699 ret = btrfs_add_link(trans, new_dir, old_inode,
9700 new_dentry->d_name.name,
9701 new_dentry->d_name.len, 0, old_idx);
9702 if (ret) {
9703 btrfs_abort_transaction(trans, ret);
9704 goto out_fail;
9705 }
9706
9707 ret = btrfs_add_link(trans, old_dir, new_inode,
9708 old_dentry->d_name.name,
9709 old_dentry->d_name.len, 0, new_idx);
9710 if (ret) {
9711 btrfs_abort_transaction(trans, ret);
9712 goto out_fail;
9713 }
9714
9715 if (old_inode->i_nlink == 1)
9716 BTRFS_I(old_inode)->dir_index = old_idx;
9717 if (new_inode->i_nlink == 1)
9718 BTRFS_I(new_inode)->dir_index = new_idx;
9719
9720 if (root_log_pinned) {
9721 parent = new_dentry->d_parent;
9722 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9723 btrfs_end_log_trans(root);
9724 root_log_pinned = false;
9725 }
9726 if (dest_log_pinned) {
9727 parent = old_dentry->d_parent;
9728 btrfs_log_new_name(trans, new_inode, new_dir, parent);
9729 btrfs_end_log_trans(dest);
9730 dest_log_pinned = false;
9731 }
9732 out_fail:
9733 /*
9734 * If we have pinned a log and an error happened, we unpin tasks
9735 * trying to sync the log and force them to fallback to a transaction
9736 * commit if the log currently contains any of the inodes involved in
9737 * this rename operation (to ensure we do not persist a log with an
9738 * inconsistent state for any of these inodes or leading to any
9739 * inconsistencies when replayed). If the transaction was aborted, the
9740 * abortion reason is propagated to userspace when attempting to commit
9741 * the transaction. If the log does not contain any of these inodes, we
9742 * allow the tasks to sync it.
9743 */
9744 if (ret && (root_log_pinned || dest_log_pinned)) {
9745 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9746 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9747 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9748 (new_inode &&
9749 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9750 btrfs_set_log_full_commit(root->fs_info, trans);
9751
9752 if (root_log_pinned) {
9753 btrfs_end_log_trans(root);
9754 root_log_pinned = false;
9755 }
9756 if (dest_log_pinned) {
9757 btrfs_end_log_trans(dest);
9758 dest_log_pinned = false;
9759 }
9760 }
9761 ret = btrfs_end_transaction(trans, root);
9762 out_notrans:
9763 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9764 up_read(&dest->fs_info->subvol_sem);
9765 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9766 up_read(&root->fs_info->subvol_sem);
9767
9768 return ret;
9769 }
9770
btrfs_whiteout_for_rename(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct dentry * dentry)9771 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9772 struct btrfs_root *root,
9773 struct inode *dir,
9774 struct dentry *dentry)
9775 {
9776 int ret;
9777 struct inode *inode;
9778 u64 objectid;
9779 u64 index;
9780
9781 ret = btrfs_find_free_ino(root, &objectid);
9782 if (ret)
9783 return ret;
9784
9785 inode = btrfs_new_inode(trans, root, dir,
9786 dentry->d_name.name,
9787 dentry->d_name.len,
9788 btrfs_ino(dir),
9789 objectid,
9790 S_IFCHR | WHITEOUT_MODE,
9791 &index);
9792
9793 if (IS_ERR(inode)) {
9794 ret = PTR_ERR(inode);
9795 return ret;
9796 }
9797
9798 inode->i_op = &btrfs_special_inode_operations;
9799 init_special_inode(inode, inode->i_mode,
9800 WHITEOUT_DEV);
9801
9802 ret = btrfs_init_inode_security(trans, inode, dir,
9803 &dentry->d_name);
9804 if (ret)
9805 goto out;
9806
9807 ret = btrfs_add_nondir(trans, dir, dentry,
9808 inode, 0, index);
9809 if (ret)
9810 goto out;
9811
9812 ret = btrfs_update_inode(trans, root, inode);
9813 out:
9814 unlock_new_inode(inode);
9815 if (ret)
9816 inode_dec_link_count(inode);
9817 iput(inode);
9818
9819 return ret;
9820 }
9821
btrfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9822 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9823 struct inode *new_dir, struct dentry *new_dentry,
9824 unsigned int flags)
9825 {
9826 struct btrfs_trans_handle *trans;
9827 unsigned int trans_num_items;
9828 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9829 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9830 struct inode *new_inode = d_inode(new_dentry);
9831 struct inode *old_inode = d_inode(old_dentry);
9832 u64 index = 0;
9833 u64 root_objectid;
9834 int ret;
9835 u64 old_ino = btrfs_ino(old_inode);
9836 bool log_pinned = false;
9837
9838 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9839 return -EPERM;
9840
9841 /* we only allow rename subvolume link between subvolumes */
9842 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9843 return -EXDEV;
9844
9845 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9846 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9847 return -ENOTEMPTY;
9848
9849 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9850 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9851 return -ENOTEMPTY;
9852
9853
9854 /* check for collisions, even if the name isn't there */
9855 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9856 new_dentry->d_name.name,
9857 new_dentry->d_name.len);
9858
9859 if (ret) {
9860 if (ret == -EEXIST) {
9861 /* we shouldn't get
9862 * eexist without a new_inode */
9863 if (WARN_ON(!new_inode)) {
9864 return ret;
9865 }
9866 } else {
9867 /* maybe -EOVERFLOW */
9868 return ret;
9869 }
9870 }
9871 ret = 0;
9872
9873 /*
9874 * we're using rename to replace one file with another. Start IO on it
9875 * now so we don't add too much work to the end of the transaction
9876 */
9877 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9878 filemap_flush(old_inode->i_mapping);
9879
9880 /* close the racy window with snapshot create/destroy ioctl */
9881 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9882 down_read(&root->fs_info->subvol_sem);
9883 /*
9884 * We want to reserve the absolute worst case amount of items. So if
9885 * both inodes are subvols and we need to unlink them then that would
9886 * require 4 item modifications, but if they are both normal inodes it
9887 * would require 5 item modifications, so we'll assume they are normal
9888 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9889 * should cover the worst case number of items we'll modify.
9890 * If our rename has the whiteout flag, we need more 5 units for the
9891 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9892 * when selinux is enabled).
9893 */
9894 trans_num_items = 11;
9895 if (flags & RENAME_WHITEOUT)
9896 trans_num_items += 5;
9897 trans = btrfs_start_transaction(root, trans_num_items);
9898 if (IS_ERR(trans)) {
9899 ret = PTR_ERR(trans);
9900 goto out_notrans;
9901 }
9902
9903 if (dest != root)
9904 btrfs_record_root_in_trans(trans, dest);
9905
9906 ret = btrfs_set_inode_index(new_dir, &index);
9907 if (ret)
9908 goto out_fail;
9909
9910 BTRFS_I(old_inode)->dir_index = 0ULL;
9911 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9912 /* force full log commit if subvolume involved. */
9913 btrfs_set_log_full_commit(root->fs_info, trans);
9914 } else {
9915 btrfs_pin_log_trans(root);
9916 log_pinned = true;
9917 ret = btrfs_insert_inode_ref(trans, dest,
9918 new_dentry->d_name.name,
9919 new_dentry->d_name.len,
9920 old_ino,
9921 btrfs_ino(new_dir), index);
9922 if (ret)
9923 goto out_fail;
9924 }
9925
9926 inode_inc_iversion(old_dir);
9927 inode_inc_iversion(new_dir);
9928 inode_inc_iversion(old_inode);
9929 old_dir->i_ctime = old_dir->i_mtime =
9930 new_dir->i_ctime = new_dir->i_mtime =
9931 old_inode->i_ctime = current_time(old_dir);
9932
9933 if (old_dentry->d_parent != new_dentry->d_parent)
9934 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9935
9936 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9937 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9938 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9939 old_dentry->d_name.name,
9940 old_dentry->d_name.len);
9941 } else {
9942 ret = __btrfs_unlink_inode(trans, root, old_dir,
9943 d_inode(old_dentry),
9944 old_dentry->d_name.name,
9945 old_dentry->d_name.len);
9946 if (!ret)
9947 ret = btrfs_update_inode(trans, root, old_inode);
9948 }
9949 if (ret) {
9950 btrfs_abort_transaction(trans, ret);
9951 goto out_fail;
9952 }
9953
9954 if (new_inode) {
9955 inode_inc_iversion(new_inode);
9956 new_inode->i_ctime = current_time(new_inode);
9957 if (unlikely(btrfs_ino(new_inode) ==
9958 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9959 root_objectid = BTRFS_I(new_inode)->location.objectid;
9960 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9961 root_objectid,
9962 new_dentry->d_name.name,
9963 new_dentry->d_name.len);
9964 BUG_ON(new_inode->i_nlink == 0);
9965 } else {
9966 ret = btrfs_unlink_inode(trans, dest, new_dir,
9967 d_inode(new_dentry),
9968 new_dentry->d_name.name,
9969 new_dentry->d_name.len);
9970 }
9971 if (!ret && new_inode->i_nlink == 0)
9972 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9973 if (ret) {
9974 btrfs_abort_transaction(trans, ret);
9975 goto out_fail;
9976 }
9977 }
9978
9979 ret = btrfs_add_link(trans, new_dir, old_inode,
9980 new_dentry->d_name.name,
9981 new_dentry->d_name.len, 0, index);
9982 if (ret) {
9983 btrfs_abort_transaction(trans, ret);
9984 goto out_fail;
9985 }
9986
9987 if (old_inode->i_nlink == 1)
9988 BTRFS_I(old_inode)->dir_index = index;
9989
9990 if (log_pinned) {
9991 struct dentry *parent = new_dentry->d_parent;
9992
9993 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9994 btrfs_end_log_trans(root);
9995 log_pinned = false;
9996 }
9997
9998 if (flags & RENAME_WHITEOUT) {
9999 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10000 old_dentry);
10001
10002 if (ret) {
10003 btrfs_abort_transaction(trans, ret);
10004 goto out_fail;
10005 }
10006 }
10007 out_fail:
10008 /*
10009 * If we have pinned the log and an error happened, we unpin tasks
10010 * trying to sync the log and force them to fallback to a transaction
10011 * commit if the log currently contains any of the inodes involved in
10012 * this rename operation (to ensure we do not persist a log with an
10013 * inconsistent state for any of these inodes or leading to any
10014 * inconsistencies when replayed). If the transaction was aborted, the
10015 * abortion reason is propagated to userspace when attempting to commit
10016 * the transaction. If the log does not contain any of these inodes, we
10017 * allow the tasks to sync it.
10018 */
10019 if (ret && log_pinned) {
10020 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
10021 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
10022 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
10023 (new_inode &&
10024 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
10025 btrfs_set_log_full_commit(root->fs_info, trans);
10026
10027 btrfs_end_log_trans(root);
10028 log_pinned = false;
10029 }
10030 btrfs_end_transaction(trans, root);
10031 out_notrans:
10032 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10033 up_read(&root->fs_info->subvol_sem);
10034
10035 return ret;
10036 }
10037
btrfs_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)10038 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10039 struct inode *new_dir, struct dentry *new_dentry,
10040 unsigned int flags)
10041 {
10042 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10043 return -EINVAL;
10044
10045 if (flags & RENAME_EXCHANGE)
10046 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10047 new_dentry);
10048
10049 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10050 }
10051
btrfs_run_delalloc_work(struct btrfs_work * work)10052 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10053 {
10054 struct btrfs_delalloc_work *delalloc_work;
10055 struct inode *inode;
10056
10057 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10058 work);
10059 inode = delalloc_work->inode;
10060 filemap_flush(inode->i_mapping);
10061 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10062 &BTRFS_I(inode)->runtime_flags))
10063 filemap_flush(inode->i_mapping);
10064
10065 if (delalloc_work->delay_iput)
10066 btrfs_add_delayed_iput(inode);
10067 else
10068 iput(inode);
10069 complete(&delalloc_work->completion);
10070 }
10071
btrfs_alloc_delalloc_work(struct inode * inode,int delay_iput)10072 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
10073 int delay_iput)
10074 {
10075 struct btrfs_delalloc_work *work;
10076
10077 work = kmalloc(sizeof(*work), GFP_NOFS);
10078 if (!work)
10079 return NULL;
10080
10081 init_completion(&work->completion);
10082 INIT_LIST_HEAD(&work->list);
10083 work->inode = inode;
10084 work->delay_iput = delay_iput;
10085 WARN_ON_ONCE(!inode);
10086 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10087 btrfs_run_delalloc_work, NULL, NULL);
10088
10089 return work;
10090 }
10091
btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work * work)10092 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10093 {
10094 wait_for_completion(&work->completion);
10095 kfree(work);
10096 }
10097
10098 /*
10099 * some fairly slow code that needs optimization. This walks the list
10100 * of all the inodes with pending delalloc and forces them to disk.
10101 */
__start_delalloc_inodes(struct btrfs_root * root,int delay_iput,int nr)10102 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10103 int nr)
10104 {
10105 struct btrfs_inode *binode;
10106 struct inode *inode;
10107 struct btrfs_delalloc_work *work, *next;
10108 struct list_head works;
10109 struct list_head splice;
10110 int ret = 0;
10111
10112 INIT_LIST_HEAD(&works);
10113 INIT_LIST_HEAD(&splice);
10114
10115 mutex_lock(&root->delalloc_mutex);
10116 spin_lock(&root->delalloc_lock);
10117 list_splice_init(&root->delalloc_inodes, &splice);
10118 while (!list_empty(&splice)) {
10119 binode = list_entry(splice.next, struct btrfs_inode,
10120 delalloc_inodes);
10121
10122 list_move_tail(&binode->delalloc_inodes,
10123 &root->delalloc_inodes);
10124 inode = igrab(&binode->vfs_inode);
10125 if (!inode) {
10126 cond_resched_lock(&root->delalloc_lock);
10127 continue;
10128 }
10129 spin_unlock(&root->delalloc_lock);
10130
10131 work = btrfs_alloc_delalloc_work(inode, delay_iput);
10132 if (!work) {
10133 if (delay_iput)
10134 btrfs_add_delayed_iput(inode);
10135 else
10136 iput(inode);
10137 ret = -ENOMEM;
10138 goto out;
10139 }
10140 list_add_tail(&work->list, &works);
10141 btrfs_queue_work(root->fs_info->flush_workers,
10142 &work->work);
10143 ret++;
10144 if (nr != -1 && ret >= nr)
10145 goto out;
10146 cond_resched();
10147 spin_lock(&root->delalloc_lock);
10148 }
10149 spin_unlock(&root->delalloc_lock);
10150
10151 out:
10152 list_for_each_entry_safe(work, next, &works, list) {
10153 list_del_init(&work->list);
10154 btrfs_wait_and_free_delalloc_work(work);
10155 }
10156
10157 if (!list_empty_careful(&splice)) {
10158 spin_lock(&root->delalloc_lock);
10159 list_splice_tail(&splice, &root->delalloc_inodes);
10160 spin_unlock(&root->delalloc_lock);
10161 }
10162 mutex_unlock(&root->delalloc_mutex);
10163 return ret;
10164 }
10165
btrfs_start_delalloc_inodes(struct btrfs_root * root,int delay_iput)10166 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10167 {
10168 int ret;
10169
10170 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
10171 return -EROFS;
10172
10173 ret = __start_delalloc_inodes(root, delay_iput, -1);
10174 if (ret > 0)
10175 ret = 0;
10176 /*
10177 * the filemap_flush will queue IO into the worker threads, but
10178 * we have to make sure the IO is actually started and that
10179 * ordered extents get created before we return
10180 */
10181 atomic_inc(&root->fs_info->async_submit_draining);
10182 while (atomic_read(&root->fs_info->nr_async_submits) ||
10183 atomic_read(&root->fs_info->async_delalloc_pages)) {
10184 wait_event(root->fs_info->async_submit_wait,
10185 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10186 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
10187 }
10188 atomic_dec(&root->fs_info->async_submit_draining);
10189 return ret;
10190 }
10191
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,int delay_iput,int nr)10192 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10193 int nr)
10194 {
10195 struct btrfs_root *root;
10196 struct list_head splice;
10197 int ret;
10198
10199 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10200 return -EROFS;
10201
10202 INIT_LIST_HEAD(&splice);
10203
10204 mutex_lock(&fs_info->delalloc_root_mutex);
10205 spin_lock(&fs_info->delalloc_root_lock);
10206 list_splice_init(&fs_info->delalloc_roots, &splice);
10207 while (!list_empty(&splice) && nr) {
10208 root = list_first_entry(&splice, struct btrfs_root,
10209 delalloc_root);
10210 root = btrfs_grab_fs_root(root);
10211 BUG_ON(!root);
10212 list_move_tail(&root->delalloc_root,
10213 &fs_info->delalloc_roots);
10214 spin_unlock(&fs_info->delalloc_root_lock);
10215
10216 ret = __start_delalloc_inodes(root, delay_iput, nr);
10217 btrfs_put_fs_root(root);
10218 if (ret < 0)
10219 goto out;
10220
10221 if (nr != -1) {
10222 nr -= ret;
10223 WARN_ON(nr < 0);
10224 }
10225 spin_lock(&fs_info->delalloc_root_lock);
10226 }
10227 spin_unlock(&fs_info->delalloc_root_lock);
10228
10229 ret = 0;
10230 atomic_inc(&fs_info->async_submit_draining);
10231 while (atomic_read(&fs_info->nr_async_submits) ||
10232 atomic_read(&fs_info->async_delalloc_pages)) {
10233 wait_event(fs_info->async_submit_wait,
10234 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10235 atomic_read(&fs_info->async_delalloc_pages) == 0));
10236 }
10237 atomic_dec(&fs_info->async_submit_draining);
10238 out:
10239 if (!list_empty_careful(&splice)) {
10240 spin_lock(&fs_info->delalloc_root_lock);
10241 list_splice_tail(&splice, &fs_info->delalloc_roots);
10242 spin_unlock(&fs_info->delalloc_root_lock);
10243 }
10244 mutex_unlock(&fs_info->delalloc_root_mutex);
10245 return ret;
10246 }
10247
btrfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)10248 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10249 const char *symname)
10250 {
10251 struct btrfs_trans_handle *trans;
10252 struct btrfs_root *root = BTRFS_I(dir)->root;
10253 struct btrfs_path *path;
10254 struct btrfs_key key;
10255 struct inode *inode = NULL;
10256 int err;
10257 int drop_inode = 0;
10258 u64 objectid;
10259 u64 index = 0;
10260 int name_len;
10261 int datasize;
10262 unsigned long ptr;
10263 struct btrfs_file_extent_item *ei;
10264 struct extent_buffer *leaf;
10265
10266 name_len = strlen(symname);
10267 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10268 return -ENAMETOOLONG;
10269
10270 /*
10271 * 2 items for inode item and ref
10272 * 2 items for dir items
10273 * 1 item for updating parent inode item
10274 * 1 item for the inline extent item
10275 * 1 item for xattr if selinux is on
10276 */
10277 trans = btrfs_start_transaction(root, 7);
10278 if (IS_ERR(trans))
10279 return PTR_ERR(trans);
10280
10281 err = btrfs_find_free_ino(root, &objectid);
10282 if (err)
10283 goto out_unlock;
10284
10285 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10286 dentry->d_name.len, btrfs_ino(dir), objectid,
10287 S_IFLNK|S_IRWXUGO, &index);
10288 if (IS_ERR(inode)) {
10289 err = PTR_ERR(inode);
10290 goto out_unlock;
10291 }
10292
10293 /*
10294 * If the active LSM wants to access the inode during
10295 * d_instantiate it needs these. Smack checks to see
10296 * if the filesystem supports xattrs by looking at the
10297 * ops vector.
10298 */
10299 inode->i_fop = &btrfs_file_operations;
10300 inode->i_op = &btrfs_file_inode_operations;
10301 inode->i_mapping->a_ops = &btrfs_aops;
10302 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10303
10304 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10305 if (err)
10306 goto out_unlock_inode;
10307
10308 path = btrfs_alloc_path();
10309 if (!path) {
10310 err = -ENOMEM;
10311 goto out_unlock_inode;
10312 }
10313 key.objectid = btrfs_ino(inode);
10314 key.offset = 0;
10315 key.type = BTRFS_EXTENT_DATA_KEY;
10316 datasize = btrfs_file_extent_calc_inline_size(name_len);
10317 err = btrfs_insert_empty_item(trans, root, path, &key,
10318 datasize);
10319 if (err) {
10320 btrfs_free_path(path);
10321 goto out_unlock_inode;
10322 }
10323 leaf = path->nodes[0];
10324 ei = btrfs_item_ptr(leaf, path->slots[0],
10325 struct btrfs_file_extent_item);
10326 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10327 btrfs_set_file_extent_type(leaf, ei,
10328 BTRFS_FILE_EXTENT_INLINE);
10329 btrfs_set_file_extent_encryption(leaf, ei, 0);
10330 btrfs_set_file_extent_compression(leaf, ei, 0);
10331 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10332 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10333
10334 ptr = btrfs_file_extent_inline_start(ei);
10335 write_extent_buffer(leaf, symname, ptr, name_len);
10336 btrfs_mark_buffer_dirty(leaf);
10337 btrfs_free_path(path);
10338
10339 inode->i_op = &btrfs_symlink_inode_operations;
10340 inode_nohighmem(inode);
10341 inode->i_mapping->a_ops = &btrfs_symlink_aops;
10342 inode_set_bytes(inode, name_len);
10343 btrfs_i_size_write(inode, name_len);
10344 err = btrfs_update_inode(trans, root, inode);
10345 /*
10346 * Last step, add directory indexes for our symlink inode. This is the
10347 * last step to avoid extra cleanup of these indexes if an error happens
10348 * elsewhere above.
10349 */
10350 if (!err)
10351 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
10352 if (err) {
10353 drop_inode = 1;
10354 goto out_unlock_inode;
10355 }
10356
10357 unlock_new_inode(inode);
10358 d_instantiate(dentry, inode);
10359
10360 out_unlock:
10361 btrfs_end_transaction(trans, root);
10362 if (drop_inode) {
10363 inode_dec_link_count(inode);
10364 iput(inode);
10365 }
10366 btrfs_btree_balance_dirty(root);
10367 return err;
10368
10369 out_unlock_inode:
10370 drop_inode = 1;
10371 unlock_new_inode(inode);
10372 goto out_unlock;
10373 }
10374
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)10375 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10376 u64 start, u64 num_bytes, u64 min_size,
10377 loff_t actual_len, u64 *alloc_hint,
10378 struct btrfs_trans_handle *trans)
10379 {
10380 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10381 struct extent_map *em;
10382 struct btrfs_root *root = BTRFS_I(inode)->root;
10383 struct btrfs_key ins;
10384 u64 cur_offset = start;
10385 u64 i_size;
10386 u64 cur_bytes;
10387 u64 last_alloc = (u64)-1;
10388 int ret = 0;
10389 bool own_trans = true;
10390 u64 end = start + num_bytes - 1;
10391
10392 if (trans)
10393 own_trans = false;
10394 while (num_bytes > 0) {
10395 if (own_trans) {
10396 trans = btrfs_start_transaction(root, 3);
10397 if (IS_ERR(trans)) {
10398 ret = PTR_ERR(trans);
10399 break;
10400 }
10401 }
10402
10403 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10404 cur_bytes = max(cur_bytes, min_size);
10405 /*
10406 * If we are severely fragmented we could end up with really
10407 * small allocations, so if the allocator is returning small
10408 * chunks lets make its job easier by only searching for those
10409 * sized chunks.
10410 */
10411 cur_bytes = min(cur_bytes, last_alloc);
10412 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10413 min_size, 0, *alloc_hint, &ins, 1, 0);
10414 if (ret) {
10415 if (own_trans)
10416 btrfs_end_transaction(trans, root);
10417 break;
10418 }
10419 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
10420
10421 last_alloc = ins.offset;
10422 ret = insert_reserved_file_extent(trans, inode,
10423 cur_offset, ins.objectid,
10424 ins.offset, ins.offset,
10425 ins.offset, 0, 0, 0,
10426 BTRFS_FILE_EXTENT_PREALLOC);
10427 if (ret) {
10428 btrfs_free_reserved_extent(root, ins.objectid,
10429 ins.offset, 0);
10430 btrfs_abort_transaction(trans, ret);
10431 if (own_trans)
10432 btrfs_end_transaction(trans, root);
10433 break;
10434 }
10435
10436 btrfs_drop_extent_cache(inode, cur_offset,
10437 cur_offset + ins.offset -1, 0);
10438
10439 em = alloc_extent_map();
10440 if (!em) {
10441 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10442 &BTRFS_I(inode)->runtime_flags);
10443 goto next;
10444 }
10445
10446 em->start = cur_offset;
10447 em->orig_start = cur_offset;
10448 em->len = ins.offset;
10449 em->block_start = ins.objectid;
10450 em->block_len = ins.offset;
10451 em->orig_block_len = ins.offset;
10452 em->ram_bytes = ins.offset;
10453 em->bdev = root->fs_info->fs_devices->latest_bdev;
10454 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10455 em->generation = trans->transid;
10456
10457 while (1) {
10458 write_lock(&em_tree->lock);
10459 ret = add_extent_mapping(em_tree, em, 1);
10460 write_unlock(&em_tree->lock);
10461 if (ret != -EEXIST)
10462 break;
10463 btrfs_drop_extent_cache(inode, cur_offset,
10464 cur_offset + ins.offset - 1,
10465 0);
10466 }
10467 free_extent_map(em);
10468 next:
10469 num_bytes -= ins.offset;
10470 cur_offset += ins.offset;
10471 *alloc_hint = ins.objectid + ins.offset;
10472
10473 inode_inc_iversion(inode);
10474 inode->i_ctime = current_time(inode);
10475 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10476 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10477 (actual_len > inode->i_size) &&
10478 (cur_offset > inode->i_size)) {
10479 if (cur_offset > actual_len)
10480 i_size = actual_len;
10481 else
10482 i_size = cur_offset;
10483 i_size_write(inode, i_size);
10484 btrfs_ordered_update_i_size(inode, i_size, NULL);
10485 }
10486
10487 ret = btrfs_update_inode(trans, root, inode);
10488
10489 if (ret) {
10490 btrfs_abort_transaction(trans, ret);
10491 if (own_trans)
10492 btrfs_end_transaction(trans, root);
10493 break;
10494 }
10495
10496 if (own_trans)
10497 btrfs_end_transaction(trans, root);
10498 }
10499 if (cur_offset < end)
10500 btrfs_free_reserved_data_space(inode, cur_offset,
10501 end - cur_offset + 1);
10502 return ret;
10503 }
10504
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10505 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10506 u64 start, u64 num_bytes, u64 min_size,
10507 loff_t actual_len, u64 *alloc_hint)
10508 {
10509 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10510 min_size, actual_len, alloc_hint,
10511 NULL);
10512 }
10513
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10514 int btrfs_prealloc_file_range_trans(struct inode *inode,
10515 struct btrfs_trans_handle *trans, int mode,
10516 u64 start, u64 num_bytes, u64 min_size,
10517 loff_t actual_len, u64 *alloc_hint)
10518 {
10519 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10520 min_size, actual_len, alloc_hint, trans);
10521 }
10522
btrfs_set_page_dirty(struct page * page)10523 static int btrfs_set_page_dirty(struct page *page)
10524 {
10525 return __set_page_dirty_nobuffers(page);
10526 }
10527
btrfs_permission(struct inode * inode,int mask)10528 static int btrfs_permission(struct inode *inode, int mask)
10529 {
10530 struct btrfs_root *root = BTRFS_I(inode)->root;
10531 umode_t mode = inode->i_mode;
10532
10533 if (mask & MAY_WRITE &&
10534 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10535 if (btrfs_root_readonly(root))
10536 return -EROFS;
10537 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10538 return -EACCES;
10539 }
10540 return generic_permission(inode, mask);
10541 }
10542
btrfs_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)10543 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10544 {
10545 struct btrfs_trans_handle *trans;
10546 struct btrfs_root *root = BTRFS_I(dir)->root;
10547 struct inode *inode = NULL;
10548 u64 objectid;
10549 u64 index;
10550 int ret = 0;
10551
10552 /*
10553 * 5 units required for adding orphan entry
10554 */
10555 trans = btrfs_start_transaction(root, 5);
10556 if (IS_ERR(trans))
10557 return PTR_ERR(trans);
10558
10559 ret = btrfs_find_free_ino(root, &objectid);
10560 if (ret)
10561 goto out;
10562
10563 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10564 btrfs_ino(dir), objectid, mode, &index);
10565 if (IS_ERR(inode)) {
10566 ret = PTR_ERR(inode);
10567 inode = NULL;
10568 goto out;
10569 }
10570
10571 inode->i_fop = &btrfs_file_operations;
10572 inode->i_op = &btrfs_file_inode_operations;
10573
10574 inode->i_mapping->a_ops = &btrfs_aops;
10575 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10576
10577 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10578 if (ret)
10579 goto out_inode;
10580
10581 ret = btrfs_update_inode(trans, root, inode);
10582 if (ret)
10583 goto out_inode;
10584 ret = btrfs_orphan_add(trans, inode);
10585 if (ret)
10586 goto out_inode;
10587
10588 /*
10589 * We set number of links to 0 in btrfs_new_inode(), and here we set
10590 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10591 * through:
10592 *
10593 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10594 */
10595 set_nlink(inode, 1);
10596 unlock_new_inode(inode);
10597 d_tmpfile(dentry, inode);
10598 mark_inode_dirty(inode);
10599
10600 out:
10601 btrfs_end_transaction(trans, root);
10602 if (ret)
10603 iput(inode);
10604 btrfs_balance_delayed_items(root);
10605 btrfs_btree_balance_dirty(root);
10606 return ret;
10607
10608 out_inode:
10609 unlock_new_inode(inode);
10610 goto out;
10611
10612 }
10613
10614 static const struct inode_operations btrfs_dir_inode_operations = {
10615 .getattr = btrfs_getattr,
10616 .lookup = btrfs_lookup,
10617 .create = btrfs_create,
10618 .unlink = btrfs_unlink,
10619 .link = btrfs_link,
10620 .mkdir = btrfs_mkdir,
10621 .rmdir = btrfs_rmdir,
10622 .rename = btrfs_rename2,
10623 .symlink = btrfs_symlink,
10624 .setattr = btrfs_setattr,
10625 .mknod = btrfs_mknod,
10626 .listxattr = btrfs_listxattr,
10627 .permission = btrfs_permission,
10628 .get_acl = btrfs_get_acl,
10629 .set_acl = btrfs_set_acl,
10630 .update_time = btrfs_update_time,
10631 .tmpfile = btrfs_tmpfile,
10632 };
10633 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10634 .lookup = btrfs_lookup,
10635 .permission = btrfs_permission,
10636 .update_time = btrfs_update_time,
10637 };
10638
10639 static const struct file_operations btrfs_dir_file_operations = {
10640 .llseek = generic_file_llseek,
10641 .read = generic_read_dir,
10642 .iterate_shared = btrfs_real_readdir,
10643 .unlocked_ioctl = btrfs_ioctl,
10644 #ifdef CONFIG_COMPAT
10645 .compat_ioctl = btrfs_compat_ioctl,
10646 #endif
10647 .release = btrfs_release_file,
10648 .fsync = btrfs_sync_file,
10649 };
10650
10651 static const struct extent_io_ops btrfs_extent_io_ops = {
10652 .fill_delalloc = run_delalloc_range,
10653 .submit_bio_hook = btrfs_submit_bio_hook,
10654 .merge_bio_hook = btrfs_merge_bio_hook,
10655 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10656 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10657 .writepage_start_hook = btrfs_writepage_start_hook,
10658 .set_bit_hook = btrfs_set_bit_hook,
10659 .clear_bit_hook = btrfs_clear_bit_hook,
10660 .merge_extent_hook = btrfs_merge_extent_hook,
10661 .split_extent_hook = btrfs_split_extent_hook,
10662 };
10663
10664 /*
10665 * btrfs doesn't support the bmap operation because swapfiles
10666 * use bmap to make a mapping of extents in the file. They assume
10667 * these extents won't change over the life of the file and they
10668 * use the bmap result to do IO directly to the drive.
10669 *
10670 * the btrfs bmap call would return logical addresses that aren't
10671 * suitable for IO and they also will change frequently as COW
10672 * operations happen. So, swapfile + btrfs == corruption.
10673 *
10674 * For now we're avoiding this by dropping bmap.
10675 */
10676 static const struct address_space_operations btrfs_aops = {
10677 .readpage = btrfs_readpage,
10678 .writepage = btrfs_writepage,
10679 .writepages = btrfs_writepages,
10680 .readpages = btrfs_readpages,
10681 .direct_IO = btrfs_direct_IO,
10682 .invalidatepage = btrfs_invalidatepage,
10683 .releasepage = btrfs_releasepage,
10684 .set_page_dirty = btrfs_set_page_dirty,
10685 .error_remove_page = generic_error_remove_page,
10686 };
10687
10688 static const struct address_space_operations btrfs_symlink_aops = {
10689 .readpage = btrfs_readpage,
10690 .writepage = btrfs_writepage,
10691 .invalidatepage = btrfs_invalidatepage,
10692 .releasepage = btrfs_releasepage,
10693 };
10694
10695 static const struct inode_operations btrfs_file_inode_operations = {
10696 .getattr = btrfs_getattr,
10697 .setattr = btrfs_setattr,
10698 .listxattr = btrfs_listxattr,
10699 .permission = btrfs_permission,
10700 .fiemap = btrfs_fiemap,
10701 .get_acl = btrfs_get_acl,
10702 .set_acl = btrfs_set_acl,
10703 .update_time = btrfs_update_time,
10704 };
10705 static const struct inode_operations btrfs_special_inode_operations = {
10706 .getattr = btrfs_getattr,
10707 .setattr = btrfs_setattr,
10708 .permission = btrfs_permission,
10709 .listxattr = btrfs_listxattr,
10710 .get_acl = btrfs_get_acl,
10711 .set_acl = btrfs_set_acl,
10712 .update_time = btrfs_update_time,
10713 };
10714 static const struct inode_operations btrfs_symlink_inode_operations = {
10715 .readlink = generic_readlink,
10716 .get_link = page_get_link,
10717 .getattr = btrfs_getattr,
10718 .setattr = btrfs_setattr,
10719 .permission = btrfs_permission,
10720 .listxattr = btrfs_listxattr,
10721 .update_time = btrfs_update_time,
10722 };
10723
10724 const struct dentry_operations btrfs_dentry_operations = {
10725 .d_delete = btrfs_dentry_delete,
10726 .d_release = btrfs_dentry_release,
10727 };
10728