• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63 #include "dedupe.h"
64 
65 struct btrfs_iget_args {
66 	struct btrfs_key *location;
67 	struct btrfs_root *root;
68 };
69 
70 struct btrfs_dio_data {
71 	u64 outstanding_extents;
72 	u64 reserve;
73 	u64 unsubmitted_oe_range_start;
74 	u64 unsubmitted_oe_range_end;
75 };
76 
77 static const struct inode_operations btrfs_dir_inode_operations;
78 static const struct inode_operations btrfs_symlink_inode_operations;
79 static const struct inode_operations btrfs_dir_ro_inode_operations;
80 static const struct inode_operations btrfs_special_inode_operations;
81 static const struct inode_operations btrfs_file_inode_operations;
82 static const struct address_space_operations btrfs_aops;
83 static const struct address_space_operations btrfs_symlink_aops;
84 static const struct file_operations btrfs_dir_file_operations;
85 static const struct extent_io_ops btrfs_extent_io_ops;
86 
87 static struct kmem_cache *btrfs_inode_cachep;
88 struct kmem_cache *btrfs_trans_handle_cachep;
89 struct kmem_cache *btrfs_transaction_cachep;
90 struct kmem_cache *btrfs_path_cachep;
91 struct kmem_cache *btrfs_free_space_cachep;
92 
93 #define S_SHIFT 12
94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
95 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
96 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
97 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
98 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
99 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
100 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
101 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
102 };
103 
104 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
105 static int btrfs_truncate(struct inode *inode);
106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
107 static noinline int cow_file_range(struct inode *inode,
108 				   struct page *locked_page,
109 				   u64 start, u64 end, u64 delalloc_end,
110 				   int *page_started, unsigned long *nr_written,
111 				   int unlock, struct btrfs_dedupe_hash *hash);
112 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
113 					   u64 len, u64 orig_start,
114 					   u64 block_start, u64 block_len,
115 					   u64 orig_block_len, u64 ram_bytes,
116 					   int type);
117 
118 static int btrfs_dirty_inode(struct inode *inode);
119 
120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_inode_set_ops(struct inode * inode)121 void btrfs_test_inode_set_ops(struct inode *inode)
122 {
123 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
124 }
125 #endif
126 
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)127 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
128 				     struct inode *inode,  struct inode *dir,
129 				     const struct qstr *qstr)
130 {
131 	int err;
132 
133 	err = btrfs_init_acl(trans, inode, dir);
134 	if (!err)
135 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
136 	return err;
137 }
138 
139 /*
140  * this does all the hard work for inserting an inline extent into
141  * the btree.  The caller should have done a btrfs_drop_extents so that
142  * no overlapping inline items exist in the btree
143  */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,int extent_inserted,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages)144 static int insert_inline_extent(struct btrfs_trans_handle *trans,
145 				struct btrfs_path *path, int extent_inserted,
146 				struct btrfs_root *root, struct inode *inode,
147 				u64 start, size_t size, size_t compressed_size,
148 				int compress_type,
149 				struct page **compressed_pages)
150 {
151 	struct extent_buffer *leaf;
152 	struct page *page = NULL;
153 	char *kaddr;
154 	unsigned long ptr;
155 	struct btrfs_file_extent_item *ei;
156 	int err = 0;
157 	int ret;
158 	size_t cur_size = size;
159 	unsigned long offset;
160 
161 	if (compressed_size && compressed_pages)
162 		cur_size = compressed_size;
163 
164 	inode_add_bytes(inode, size);
165 
166 	if (!extent_inserted) {
167 		struct btrfs_key key;
168 		size_t datasize;
169 
170 		key.objectid = btrfs_ino(inode);
171 		key.offset = start;
172 		key.type = BTRFS_EXTENT_DATA_KEY;
173 
174 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
175 		path->leave_spinning = 1;
176 		ret = btrfs_insert_empty_item(trans, root, path, &key,
177 					      datasize);
178 		if (ret) {
179 			err = ret;
180 			goto fail;
181 		}
182 	}
183 	leaf = path->nodes[0];
184 	ei = btrfs_item_ptr(leaf, path->slots[0],
185 			    struct btrfs_file_extent_item);
186 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
187 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
188 	btrfs_set_file_extent_encryption(leaf, ei, 0);
189 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
190 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
191 	ptr = btrfs_file_extent_inline_start(ei);
192 
193 	if (compress_type != BTRFS_COMPRESS_NONE) {
194 		struct page *cpage;
195 		int i = 0;
196 		while (compressed_size > 0) {
197 			cpage = compressed_pages[i];
198 			cur_size = min_t(unsigned long, compressed_size,
199 				       PAGE_SIZE);
200 
201 			kaddr = kmap_atomic(cpage);
202 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
203 			kunmap_atomic(kaddr);
204 
205 			i++;
206 			ptr += cur_size;
207 			compressed_size -= cur_size;
208 		}
209 		btrfs_set_file_extent_compression(leaf, ei,
210 						  compress_type);
211 	} else {
212 		page = find_get_page(inode->i_mapping,
213 				     start >> PAGE_SHIFT);
214 		btrfs_set_file_extent_compression(leaf, ei, 0);
215 		kaddr = kmap_atomic(page);
216 		offset = start & (PAGE_SIZE - 1);
217 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
218 		kunmap_atomic(kaddr);
219 		put_page(page);
220 	}
221 	btrfs_mark_buffer_dirty(leaf);
222 	btrfs_release_path(path);
223 
224 	/*
225 	 * we're an inline extent, so nobody can
226 	 * extend the file past i_size without locking
227 	 * a page we already have locked.
228 	 *
229 	 * We must do any isize and inode updates
230 	 * before we unlock the pages.  Otherwise we
231 	 * could end up racing with unlink.
232 	 */
233 	BTRFS_I(inode)->disk_i_size = inode->i_size;
234 	ret = btrfs_update_inode(trans, root, inode);
235 
236 	return ret;
237 fail:
238 	return err;
239 }
240 
241 
242 /*
243  * conditionally insert an inline extent into the file.  This
244  * does the checks required to make sure the data is small enough
245  * to fit as an inline extent.
246  */
cow_file_range_inline(struct btrfs_root * root,struct inode * inode,u64 start,u64 end,size_t compressed_size,int compress_type,struct page ** compressed_pages)247 static noinline int cow_file_range_inline(struct btrfs_root *root,
248 					  struct inode *inode, u64 start,
249 					  u64 end, size_t compressed_size,
250 					  int compress_type,
251 					  struct page **compressed_pages)
252 {
253 	struct btrfs_trans_handle *trans;
254 	u64 isize = i_size_read(inode);
255 	u64 actual_end = min(end + 1, isize);
256 	u64 inline_len = actual_end - start;
257 	u64 aligned_end = ALIGN(end, root->sectorsize);
258 	u64 data_len = inline_len;
259 	int ret;
260 	struct btrfs_path *path;
261 	int extent_inserted = 0;
262 	u32 extent_item_size;
263 
264 	if (compressed_size)
265 		data_len = compressed_size;
266 
267 	if (start > 0 ||
268 	    actual_end > root->sectorsize ||
269 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
270 	    (!compressed_size &&
271 	    (actual_end & (root->sectorsize - 1)) == 0) ||
272 	    end + 1 < isize ||
273 	    data_len > root->fs_info->max_inline) {
274 		return 1;
275 	}
276 
277 	path = btrfs_alloc_path();
278 	if (!path)
279 		return -ENOMEM;
280 
281 	trans = btrfs_join_transaction(root);
282 	if (IS_ERR(trans)) {
283 		btrfs_free_path(path);
284 		return PTR_ERR(trans);
285 	}
286 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
287 
288 	if (compressed_size && compressed_pages)
289 		extent_item_size = btrfs_file_extent_calc_inline_size(
290 		   compressed_size);
291 	else
292 		extent_item_size = btrfs_file_extent_calc_inline_size(
293 		    inline_len);
294 
295 	ret = __btrfs_drop_extents(trans, root, inode, path,
296 				   start, aligned_end, NULL,
297 				   1, 1, extent_item_size, &extent_inserted);
298 	if (ret) {
299 		btrfs_abort_transaction(trans, ret);
300 		goto out;
301 	}
302 
303 	if (isize > actual_end)
304 		inline_len = min_t(u64, isize, actual_end);
305 	ret = insert_inline_extent(trans, path, extent_inserted,
306 				   root, inode, start,
307 				   inline_len, compressed_size,
308 				   compress_type, compressed_pages);
309 	if (ret && ret != -ENOSPC) {
310 		btrfs_abort_transaction(trans, ret);
311 		goto out;
312 	} else if (ret == -ENOSPC) {
313 		ret = 1;
314 		goto out;
315 	}
316 
317 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
318 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
319 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
320 out:
321 	/*
322 	 * Don't forget to free the reserved space, as for inlined extent
323 	 * it won't count as data extent, free them directly here.
324 	 * And at reserve time, it's always aligned to page size, so
325 	 * just free one page here.
326 	 */
327 	btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
328 	btrfs_free_path(path);
329 	btrfs_end_transaction(trans, root);
330 	return ret;
331 }
332 
333 struct async_extent {
334 	u64 start;
335 	u64 ram_size;
336 	u64 compressed_size;
337 	struct page **pages;
338 	unsigned long nr_pages;
339 	int compress_type;
340 	struct list_head list;
341 };
342 
343 struct async_cow {
344 	struct inode *inode;
345 	struct btrfs_root *root;
346 	struct page *locked_page;
347 	u64 start;
348 	u64 end;
349 	struct list_head extents;
350 	struct btrfs_work work;
351 };
352 
add_async_extent(struct async_cow * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)353 static noinline int add_async_extent(struct async_cow *cow,
354 				     u64 start, u64 ram_size,
355 				     u64 compressed_size,
356 				     struct page **pages,
357 				     unsigned long nr_pages,
358 				     int compress_type)
359 {
360 	struct async_extent *async_extent;
361 
362 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
363 	BUG_ON(!async_extent); /* -ENOMEM */
364 	async_extent->start = start;
365 	async_extent->ram_size = ram_size;
366 	async_extent->compressed_size = compressed_size;
367 	async_extent->pages = pages;
368 	async_extent->nr_pages = nr_pages;
369 	async_extent->compress_type = compress_type;
370 	list_add_tail(&async_extent->list, &cow->extents);
371 	return 0;
372 }
373 
inode_need_compress(struct inode * inode)374 static inline int inode_need_compress(struct inode *inode)
375 {
376 	struct btrfs_root *root = BTRFS_I(inode)->root;
377 
378 	/* force compress */
379 	if (btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
380 		return 1;
381 	/* bad compression ratios */
382 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
383 		return 0;
384 	if (btrfs_test_opt(root->fs_info, COMPRESS) ||
385 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
386 	    BTRFS_I(inode)->force_compress)
387 		return 1;
388 	return 0;
389 }
390 
391 /*
392  * we create compressed extents in two phases.  The first
393  * phase compresses a range of pages that have already been
394  * locked (both pages and state bits are locked).
395  *
396  * This is done inside an ordered work queue, and the compression
397  * is spread across many cpus.  The actual IO submission is step
398  * two, and the ordered work queue takes care of making sure that
399  * happens in the same order things were put onto the queue by
400  * writepages and friends.
401  *
402  * If this code finds it can't get good compression, it puts an
403  * entry onto the work queue to write the uncompressed bytes.  This
404  * makes sure that both compressed inodes and uncompressed inodes
405  * are written in the same order that the flusher thread sent them
406  * down.
407  */
compress_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,struct async_cow * async_cow,int * num_added)408 static noinline void compress_file_range(struct inode *inode,
409 					struct page *locked_page,
410 					u64 start, u64 end,
411 					struct async_cow *async_cow,
412 					int *num_added)
413 {
414 	struct btrfs_root *root = BTRFS_I(inode)->root;
415 	u64 num_bytes;
416 	u64 blocksize = root->sectorsize;
417 	u64 actual_end;
418 	u64 isize = i_size_read(inode);
419 	int ret = 0;
420 	struct page **pages = NULL;
421 	unsigned long nr_pages;
422 	unsigned long nr_pages_ret = 0;
423 	unsigned long total_compressed = 0;
424 	unsigned long total_in = 0;
425 	unsigned long max_compressed = SZ_128K;
426 	unsigned long max_uncompressed = SZ_128K;
427 	int i;
428 	int will_compress;
429 	int compress_type = root->fs_info->compress_type;
430 	int redirty = 0;
431 
432 	/* if this is a small write inside eof, kick off a defrag */
433 	if ((end - start + 1) < SZ_16K &&
434 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
435 		btrfs_add_inode_defrag(NULL, inode);
436 
437 	actual_end = min_t(u64, isize, end + 1);
438 again:
439 	will_compress = 0;
440 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
441 	nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
442 
443 	/*
444 	 * we don't want to send crud past the end of i_size through
445 	 * compression, that's just a waste of CPU time.  So, if the
446 	 * end of the file is before the start of our current
447 	 * requested range of bytes, we bail out to the uncompressed
448 	 * cleanup code that can deal with all of this.
449 	 *
450 	 * It isn't really the fastest way to fix things, but this is a
451 	 * very uncommon corner.
452 	 */
453 	if (actual_end <= start)
454 		goto cleanup_and_bail_uncompressed;
455 
456 	total_compressed = actual_end - start;
457 
458 	/*
459 	 * skip compression for a small file range(<=blocksize) that
460 	 * isn't an inline extent, since it doesn't save disk space at all.
461 	 */
462 	if (total_compressed <= blocksize &&
463 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
464 		goto cleanup_and_bail_uncompressed;
465 
466 	/* we want to make sure that amount of ram required to uncompress
467 	 * an extent is reasonable, so we limit the total size in ram
468 	 * of a compressed extent to 128k.  This is a crucial number
469 	 * because it also controls how easily we can spread reads across
470 	 * cpus for decompression.
471 	 *
472 	 * We also want to make sure the amount of IO required to do
473 	 * a random read is reasonably small, so we limit the size of
474 	 * a compressed extent to 128k.
475 	 */
476 	total_compressed = min(total_compressed, max_uncompressed);
477 	num_bytes = ALIGN(end - start + 1, blocksize);
478 	num_bytes = max(blocksize,  num_bytes);
479 	total_in = 0;
480 	ret = 0;
481 
482 	/*
483 	 * we do compression for mount -o compress and when the
484 	 * inode has not been flagged as nocompress.  This flag can
485 	 * change at any time if we discover bad compression ratios.
486 	 */
487 	if (inode_need_compress(inode)) {
488 		WARN_ON(pages);
489 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
490 		if (!pages) {
491 			/* just bail out to the uncompressed code */
492 			goto cont;
493 		}
494 
495 		if (BTRFS_I(inode)->force_compress)
496 			compress_type = BTRFS_I(inode)->force_compress;
497 
498 		/*
499 		 * we need to call clear_page_dirty_for_io on each
500 		 * page in the range.  Otherwise applications with the file
501 		 * mmap'd can wander in and change the page contents while
502 		 * we are compressing them.
503 		 *
504 		 * If the compression fails for any reason, we set the pages
505 		 * dirty again later on.
506 		 */
507 		extent_range_clear_dirty_for_io(inode, start, end);
508 		redirty = 1;
509 		ret = btrfs_compress_pages(compress_type,
510 					   inode->i_mapping, start,
511 					   total_compressed, pages,
512 					   nr_pages, &nr_pages_ret,
513 					   &total_in,
514 					   &total_compressed,
515 					   max_compressed);
516 
517 		if (!ret) {
518 			unsigned long offset = total_compressed &
519 				(PAGE_SIZE - 1);
520 			struct page *page = pages[nr_pages_ret - 1];
521 			char *kaddr;
522 
523 			/* zero the tail end of the last page, we might be
524 			 * sending it down to disk
525 			 */
526 			if (offset) {
527 				kaddr = kmap_atomic(page);
528 				memset(kaddr + offset, 0,
529 				       PAGE_SIZE - offset);
530 				kunmap_atomic(kaddr);
531 			}
532 			will_compress = 1;
533 		}
534 	}
535 cont:
536 	if (start == 0) {
537 		/* lets try to make an inline extent */
538 		if (ret || total_in < (actual_end - start)) {
539 			/* we didn't compress the entire range, try
540 			 * to make an uncompressed inline extent.
541 			 */
542 			ret = cow_file_range_inline(root, inode, start, end,
543 						    0, 0, NULL);
544 		} else {
545 			/* try making a compressed inline extent */
546 			ret = cow_file_range_inline(root, inode, start, end,
547 						    total_compressed,
548 						    compress_type, pages);
549 		}
550 		if (ret <= 0) {
551 			unsigned long clear_flags = EXTENT_DELALLOC |
552 				EXTENT_DEFRAG;
553 			unsigned long page_error_op;
554 
555 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
556 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
557 
558 			/*
559 			 * inline extent creation worked or returned error,
560 			 * we don't need to create any more async work items.
561 			 * Unlock and free up our temp pages.
562 			 */
563 			extent_clear_unlock_delalloc(inode, start, end, end,
564 						     NULL, clear_flags,
565 						     PAGE_UNLOCK |
566 						     PAGE_CLEAR_DIRTY |
567 						     PAGE_SET_WRITEBACK |
568 						     page_error_op |
569 						     PAGE_END_WRITEBACK);
570 			if (ret == 0)
571 				btrfs_free_reserved_data_space_noquota(inode,
572 							       start,
573 							       end - start + 1);
574 			goto free_pages_out;
575 		}
576 	}
577 
578 	if (will_compress) {
579 		/*
580 		 * we aren't doing an inline extent round the compressed size
581 		 * up to a block size boundary so the allocator does sane
582 		 * things
583 		 */
584 		total_compressed = ALIGN(total_compressed, blocksize);
585 
586 		/*
587 		 * one last check to make sure the compression is really a
588 		 * win, compare the page count read with the blocks on disk
589 		 */
590 		total_in = ALIGN(total_in, PAGE_SIZE);
591 		if (total_compressed >= total_in) {
592 			will_compress = 0;
593 		} else {
594 			num_bytes = total_in;
595 			*num_added += 1;
596 
597 			/*
598 			 * The async work queues will take care of doing actual
599 			 * allocation on disk for these compressed pages, and
600 			 * will submit them to the elevator.
601 			 */
602 			add_async_extent(async_cow, start, num_bytes,
603 					total_compressed, pages, nr_pages_ret,
604 					compress_type);
605 
606 			if (start + num_bytes < end) {
607 				start += num_bytes;
608 				pages = NULL;
609 				cond_resched();
610 				goto again;
611 			}
612 			return;
613 		}
614 	}
615 	if (pages) {
616 		/*
617 		 * the compression code ran but failed to make things smaller,
618 		 * free any pages it allocated and our page pointer array
619 		 */
620 		for (i = 0; i < nr_pages_ret; i++) {
621 			WARN_ON(pages[i]->mapping);
622 			put_page(pages[i]);
623 		}
624 		kfree(pages);
625 		pages = NULL;
626 		total_compressed = 0;
627 		nr_pages_ret = 0;
628 
629 		/* flag the file so we don't compress in the future */
630 		if (!btrfs_test_opt(root->fs_info, FORCE_COMPRESS) &&
631 		    !(BTRFS_I(inode)->force_compress)) {
632 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
633 		}
634 	}
635 cleanup_and_bail_uncompressed:
636 	/*
637 	 * No compression, but we still need to write the pages in the file
638 	 * we've been given so far.  redirty the locked page if it corresponds
639 	 * to our extent and set things up for the async work queue to run
640 	 * cow_file_range to do the normal delalloc dance.
641 	 */
642 	if (page_offset(locked_page) >= start &&
643 	    page_offset(locked_page) <= end)
644 		__set_page_dirty_nobuffers(locked_page);
645 		/* unlocked later on in the async handlers */
646 
647 	if (redirty)
648 		extent_range_redirty_for_io(inode, start, end);
649 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
650 			 BTRFS_COMPRESS_NONE);
651 	*num_added += 1;
652 
653 	return;
654 
655 free_pages_out:
656 	for (i = 0; i < nr_pages_ret; i++) {
657 		WARN_ON(pages[i]->mapping);
658 		put_page(pages[i]);
659 	}
660 	kfree(pages);
661 }
662 
free_async_extent_pages(struct async_extent * async_extent)663 static void free_async_extent_pages(struct async_extent *async_extent)
664 {
665 	int i;
666 
667 	if (!async_extent->pages)
668 		return;
669 
670 	for (i = 0; i < async_extent->nr_pages; i++) {
671 		WARN_ON(async_extent->pages[i]->mapping);
672 		put_page(async_extent->pages[i]);
673 	}
674 	kfree(async_extent->pages);
675 	async_extent->nr_pages = 0;
676 	async_extent->pages = NULL;
677 }
678 
679 /*
680  * phase two of compressed writeback.  This is the ordered portion
681  * of the code, which only gets called in the order the work was
682  * queued.  We walk all the async extents created by compress_file_range
683  * and send them down to the disk.
684  */
submit_compressed_extents(struct inode * inode,struct async_cow * async_cow)685 static noinline void submit_compressed_extents(struct inode *inode,
686 					      struct async_cow *async_cow)
687 {
688 	struct async_extent *async_extent;
689 	u64 alloc_hint = 0;
690 	struct btrfs_key ins;
691 	struct extent_map *em;
692 	struct btrfs_root *root = BTRFS_I(inode)->root;
693 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
694 	struct extent_io_tree *io_tree;
695 	int ret = 0;
696 
697 again:
698 	while (!list_empty(&async_cow->extents)) {
699 		async_extent = list_entry(async_cow->extents.next,
700 					  struct async_extent, list);
701 		list_del(&async_extent->list);
702 
703 		io_tree = &BTRFS_I(inode)->io_tree;
704 
705 retry:
706 		/* did the compression code fall back to uncompressed IO? */
707 		if (!async_extent->pages) {
708 			int page_started = 0;
709 			unsigned long nr_written = 0;
710 
711 			lock_extent(io_tree, async_extent->start,
712 					 async_extent->start +
713 					 async_extent->ram_size - 1);
714 
715 			/* allocate blocks */
716 			ret = cow_file_range(inode, async_cow->locked_page,
717 					     async_extent->start,
718 					     async_extent->start +
719 					     async_extent->ram_size - 1,
720 					     async_extent->start +
721 					     async_extent->ram_size - 1,
722 					     &page_started, &nr_written, 0,
723 					     NULL);
724 
725 			/* JDM XXX */
726 
727 			/*
728 			 * if page_started, cow_file_range inserted an
729 			 * inline extent and took care of all the unlocking
730 			 * and IO for us.  Otherwise, we need to submit
731 			 * all those pages down to the drive.
732 			 */
733 			if (!page_started && !ret)
734 				extent_write_locked_range(io_tree,
735 						  inode, async_extent->start,
736 						  async_extent->start +
737 						  async_extent->ram_size - 1,
738 						  btrfs_get_extent,
739 						  WB_SYNC_ALL);
740 			else if (ret)
741 				unlock_page(async_cow->locked_page);
742 			kfree(async_extent);
743 			cond_resched();
744 			continue;
745 		}
746 
747 		lock_extent(io_tree, async_extent->start,
748 			    async_extent->start + async_extent->ram_size - 1);
749 
750 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
751 					   async_extent->compressed_size,
752 					   async_extent->compressed_size,
753 					   0, alloc_hint, &ins, 1, 1);
754 		if (ret) {
755 			free_async_extent_pages(async_extent);
756 
757 			if (ret == -ENOSPC) {
758 				unlock_extent(io_tree, async_extent->start,
759 					      async_extent->start +
760 					      async_extent->ram_size - 1);
761 
762 				/*
763 				 * we need to redirty the pages if we decide to
764 				 * fallback to uncompressed IO, otherwise we
765 				 * will not submit these pages down to lower
766 				 * layers.
767 				 */
768 				extent_range_redirty_for_io(inode,
769 						async_extent->start,
770 						async_extent->start +
771 						async_extent->ram_size - 1);
772 
773 				goto retry;
774 			}
775 			goto out_free;
776 		}
777 		/*
778 		 * here we're doing allocation and writeback of the
779 		 * compressed pages
780 		 */
781 		btrfs_drop_extent_cache(inode, async_extent->start,
782 					async_extent->start +
783 					async_extent->ram_size - 1, 0);
784 
785 		em = alloc_extent_map();
786 		if (!em) {
787 			ret = -ENOMEM;
788 			goto out_free_reserve;
789 		}
790 		em->start = async_extent->start;
791 		em->len = async_extent->ram_size;
792 		em->orig_start = em->start;
793 		em->mod_start = em->start;
794 		em->mod_len = em->len;
795 
796 		em->block_start = ins.objectid;
797 		em->block_len = ins.offset;
798 		em->orig_block_len = ins.offset;
799 		em->ram_bytes = async_extent->ram_size;
800 		em->bdev = root->fs_info->fs_devices->latest_bdev;
801 		em->compress_type = async_extent->compress_type;
802 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
803 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
804 		em->generation = -1;
805 
806 		while (1) {
807 			write_lock(&em_tree->lock);
808 			ret = add_extent_mapping(em_tree, em, 1);
809 			write_unlock(&em_tree->lock);
810 			if (ret != -EEXIST) {
811 				free_extent_map(em);
812 				break;
813 			}
814 			btrfs_drop_extent_cache(inode, async_extent->start,
815 						async_extent->start +
816 						async_extent->ram_size - 1, 0);
817 		}
818 
819 		if (ret)
820 			goto out_free_reserve;
821 
822 		ret = btrfs_add_ordered_extent_compress(inode,
823 						async_extent->start,
824 						ins.objectid,
825 						async_extent->ram_size,
826 						ins.offset,
827 						BTRFS_ORDERED_COMPRESSED,
828 						async_extent->compress_type);
829 		if (ret) {
830 			btrfs_drop_extent_cache(inode, async_extent->start,
831 						async_extent->start +
832 						async_extent->ram_size - 1, 0);
833 			goto out_free_reserve;
834 		}
835 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
836 
837 		/*
838 		 * clear dirty, set writeback and unlock the pages.
839 		 */
840 		extent_clear_unlock_delalloc(inode, async_extent->start,
841 				async_extent->start +
842 				async_extent->ram_size - 1,
843 				async_extent->start +
844 				async_extent->ram_size - 1,
845 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
846 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
847 				PAGE_SET_WRITEBACK);
848 		ret = btrfs_submit_compressed_write(inode,
849 				    async_extent->start,
850 				    async_extent->ram_size,
851 				    ins.objectid,
852 				    ins.offset, async_extent->pages,
853 				    async_extent->nr_pages);
854 		if (ret) {
855 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
856 			struct page *p = async_extent->pages[0];
857 			const u64 start = async_extent->start;
858 			const u64 end = start + async_extent->ram_size - 1;
859 
860 			p->mapping = inode->i_mapping;
861 			tree->ops->writepage_end_io_hook(p, start, end,
862 							 NULL, 0);
863 			p->mapping = NULL;
864 			extent_clear_unlock_delalloc(inode, start, end, end,
865 						     NULL, 0,
866 						     PAGE_END_WRITEBACK |
867 						     PAGE_SET_ERROR);
868 			free_async_extent_pages(async_extent);
869 		}
870 		alloc_hint = ins.objectid + ins.offset;
871 		kfree(async_extent);
872 		cond_resched();
873 	}
874 	return;
875 out_free_reserve:
876 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
877 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
878 out_free:
879 	extent_clear_unlock_delalloc(inode, async_extent->start,
880 				     async_extent->start +
881 				     async_extent->ram_size - 1,
882 				     async_extent->start +
883 				     async_extent->ram_size - 1,
884 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
885 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
886 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
887 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
888 				     PAGE_SET_ERROR);
889 	free_async_extent_pages(async_extent);
890 	kfree(async_extent);
891 	goto again;
892 }
893 
get_extent_allocation_hint(struct inode * inode,u64 start,u64 num_bytes)894 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
895 				      u64 num_bytes)
896 {
897 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
898 	struct extent_map *em;
899 	u64 alloc_hint = 0;
900 
901 	read_lock(&em_tree->lock);
902 	em = search_extent_mapping(em_tree, start, num_bytes);
903 	if (em) {
904 		/*
905 		 * if block start isn't an actual block number then find the
906 		 * first block in this inode and use that as a hint.  If that
907 		 * block is also bogus then just don't worry about it.
908 		 */
909 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
910 			free_extent_map(em);
911 			em = search_extent_mapping(em_tree, 0, 0);
912 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
913 				alloc_hint = em->block_start;
914 			if (em)
915 				free_extent_map(em);
916 		} else {
917 			alloc_hint = em->block_start;
918 			free_extent_map(em);
919 		}
920 	}
921 	read_unlock(&em_tree->lock);
922 
923 	return alloc_hint;
924 }
925 
926 /*
927  * when extent_io.c finds a delayed allocation range in the file,
928  * the call backs end up in this code.  The basic idea is to
929  * allocate extents on disk for the range, and create ordered data structs
930  * in ram to track those extents.
931  *
932  * locked_page is the page that writepage had locked already.  We use
933  * it to make sure we don't do extra locks or unlocks.
934  *
935  * *page_started is set to one if we unlock locked_page and do everything
936  * required to start IO on it.  It may be clean and already done with
937  * IO when we return.
938  */
cow_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,u64 delalloc_end,int * page_started,unsigned long * nr_written,int unlock,struct btrfs_dedupe_hash * hash)939 static noinline int cow_file_range(struct inode *inode,
940 				   struct page *locked_page,
941 				   u64 start, u64 end, u64 delalloc_end,
942 				   int *page_started, unsigned long *nr_written,
943 				   int unlock, struct btrfs_dedupe_hash *hash)
944 {
945 	struct btrfs_root *root = BTRFS_I(inode)->root;
946 	u64 alloc_hint = 0;
947 	u64 num_bytes;
948 	unsigned long ram_size;
949 	u64 disk_num_bytes;
950 	u64 cur_alloc_size;
951 	u64 blocksize = root->sectorsize;
952 	struct btrfs_key ins;
953 	struct extent_map *em;
954 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
955 	int ret = 0;
956 
957 	if (btrfs_is_free_space_inode(inode)) {
958 		WARN_ON_ONCE(1);
959 		ret = -EINVAL;
960 		goto out_unlock;
961 	}
962 
963 	num_bytes = ALIGN(end - start + 1, blocksize);
964 	num_bytes = max(blocksize,  num_bytes);
965 	disk_num_bytes = num_bytes;
966 
967 	/* if this is a small write inside eof, kick off defrag */
968 	if (num_bytes < SZ_64K &&
969 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
970 		btrfs_add_inode_defrag(NULL, inode);
971 
972 	if (start == 0) {
973 		/* lets try to make an inline extent */
974 		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
975 					    NULL);
976 		if (ret == 0) {
977 			extent_clear_unlock_delalloc(inode, start, end,
978 				     delalloc_end, NULL,
979 				     EXTENT_LOCKED | EXTENT_DELALLOC |
980 				     EXTENT_DEFRAG, PAGE_UNLOCK |
981 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
982 				     PAGE_END_WRITEBACK);
983 			btrfs_free_reserved_data_space_noquota(inode, start,
984 						end - start + 1);
985 			*nr_written = *nr_written +
986 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
987 			*page_started = 1;
988 			goto out;
989 		} else if (ret < 0) {
990 			goto out_unlock;
991 		}
992 	}
993 
994 	BUG_ON(disk_num_bytes >
995 	       btrfs_super_total_bytes(root->fs_info->super_copy));
996 
997 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
998 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
999 
1000 	while (disk_num_bytes > 0) {
1001 		unsigned long op;
1002 
1003 		cur_alloc_size = disk_num_bytes;
1004 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1005 					   root->sectorsize, 0, alloc_hint,
1006 					   &ins, 1, 1);
1007 		if (ret < 0)
1008 			goto out_unlock;
1009 
1010 		em = alloc_extent_map();
1011 		if (!em) {
1012 			ret = -ENOMEM;
1013 			goto out_reserve;
1014 		}
1015 		em->start = start;
1016 		em->orig_start = em->start;
1017 		ram_size = ins.offset;
1018 		em->len = ins.offset;
1019 		em->mod_start = em->start;
1020 		em->mod_len = em->len;
1021 
1022 		em->block_start = ins.objectid;
1023 		em->block_len = ins.offset;
1024 		em->orig_block_len = ins.offset;
1025 		em->ram_bytes = ram_size;
1026 		em->bdev = root->fs_info->fs_devices->latest_bdev;
1027 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
1028 		em->generation = -1;
1029 
1030 		while (1) {
1031 			write_lock(&em_tree->lock);
1032 			ret = add_extent_mapping(em_tree, em, 1);
1033 			write_unlock(&em_tree->lock);
1034 			if (ret != -EEXIST) {
1035 				free_extent_map(em);
1036 				break;
1037 			}
1038 			btrfs_drop_extent_cache(inode, start,
1039 						start + ram_size - 1, 0);
1040 		}
1041 		if (ret)
1042 			goto out_reserve;
1043 
1044 		cur_alloc_size = ins.offset;
1045 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1046 					       ram_size, cur_alloc_size, 0);
1047 		if (ret)
1048 			goto out_drop_extent_cache;
1049 
1050 		if (root->root_key.objectid ==
1051 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1052 			ret = btrfs_reloc_clone_csums(inode, start,
1053 						      cur_alloc_size);
1054 			if (ret)
1055 				goto out_drop_extent_cache;
1056 		}
1057 
1058 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1059 
1060 		if (disk_num_bytes < cur_alloc_size)
1061 			break;
1062 
1063 		/* we're not doing compressed IO, don't unlock the first
1064 		 * page (which the caller expects to stay locked), don't
1065 		 * clear any dirty bits and don't set any writeback bits
1066 		 *
1067 		 * Do set the Private2 bit so we know this page was properly
1068 		 * setup for writepage
1069 		 */
1070 		op = unlock ? PAGE_UNLOCK : 0;
1071 		op |= PAGE_SET_PRIVATE2;
1072 
1073 		extent_clear_unlock_delalloc(inode, start,
1074 					     start + ram_size - 1,
1075 					     delalloc_end, locked_page,
1076 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1077 					     op);
1078 		disk_num_bytes -= cur_alloc_size;
1079 		num_bytes -= cur_alloc_size;
1080 		alloc_hint = ins.objectid + ins.offset;
1081 		start += cur_alloc_size;
1082 	}
1083 out:
1084 	return ret;
1085 
1086 out_drop_extent_cache:
1087 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1088 out_reserve:
1089 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1090 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1091 out_unlock:
1092 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1093 				     locked_page,
1094 				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1095 				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1096 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1097 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1098 	goto out;
1099 }
1100 
1101 /*
1102  * work queue call back to started compression on a file and pages
1103  */
async_cow_start(struct btrfs_work * work)1104 static noinline void async_cow_start(struct btrfs_work *work)
1105 {
1106 	struct async_cow *async_cow;
1107 	int num_added = 0;
1108 	async_cow = container_of(work, struct async_cow, work);
1109 
1110 	compress_file_range(async_cow->inode, async_cow->locked_page,
1111 			    async_cow->start, async_cow->end, async_cow,
1112 			    &num_added);
1113 	if (num_added == 0) {
1114 		btrfs_add_delayed_iput(async_cow->inode);
1115 		async_cow->inode = NULL;
1116 	}
1117 }
1118 
1119 /*
1120  * work queue call back to submit previously compressed pages
1121  */
async_cow_submit(struct btrfs_work * work)1122 static noinline void async_cow_submit(struct btrfs_work *work)
1123 {
1124 	struct async_cow *async_cow;
1125 	struct btrfs_root *root;
1126 	unsigned long nr_pages;
1127 
1128 	async_cow = container_of(work, struct async_cow, work);
1129 
1130 	root = async_cow->root;
1131 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1132 		PAGE_SHIFT;
1133 
1134 	/*
1135 	 * atomic_sub_return implies a barrier for waitqueue_active
1136 	 */
1137 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1138 	    5 * SZ_1M &&
1139 	    waitqueue_active(&root->fs_info->async_submit_wait))
1140 		wake_up(&root->fs_info->async_submit_wait);
1141 
1142 	if (async_cow->inode)
1143 		submit_compressed_extents(async_cow->inode, async_cow);
1144 }
1145 
async_cow_free(struct btrfs_work * work)1146 static noinline void async_cow_free(struct btrfs_work *work)
1147 {
1148 	struct async_cow *async_cow;
1149 	async_cow = container_of(work, struct async_cow, work);
1150 	if (async_cow->inode)
1151 		btrfs_add_delayed_iput(async_cow->inode);
1152 	kfree(async_cow);
1153 }
1154 
cow_file_range_async(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1155 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1156 				u64 start, u64 end, int *page_started,
1157 				unsigned long *nr_written)
1158 {
1159 	struct async_cow *async_cow;
1160 	struct btrfs_root *root = BTRFS_I(inode)->root;
1161 	unsigned long nr_pages;
1162 	u64 cur_end;
1163 	int limit = 10 * SZ_1M;
1164 
1165 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1166 			 1, 0, NULL, GFP_NOFS);
1167 	while (start < end) {
1168 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1169 		BUG_ON(!async_cow); /* -ENOMEM */
1170 		async_cow->inode = igrab(inode);
1171 		async_cow->root = root;
1172 		async_cow->locked_page = locked_page;
1173 		async_cow->start = start;
1174 
1175 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1176 		    !btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
1177 			cur_end = end;
1178 		else
1179 			cur_end = min(end, start + SZ_512K - 1);
1180 
1181 		async_cow->end = cur_end;
1182 		INIT_LIST_HEAD(&async_cow->extents);
1183 
1184 		btrfs_init_work(&async_cow->work,
1185 				btrfs_delalloc_helper,
1186 				async_cow_start, async_cow_submit,
1187 				async_cow_free);
1188 
1189 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1190 			PAGE_SHIFT;
1191 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1192 
1193 		btrfs_queue_work(root->fs_info->delalloc_workers,
1194 				 &async_cow->work);
1195 
1196 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1197 			wait_event(root->fs_info->async_submit_wait,
1198 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1199 			    limit));
1200 		}
1201 
1202 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1203 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1204 			wait_event(root->fs_info->async_submit_wait,
1205 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1206 			   0));
1207 		}
1208 
1209 		*nr_written += nr_pages;
1210 		start = cur_end + 1;
1211 	}
1212 	*page_started = 1;
1213 	return 0;
1214 }
1215 
csum_exist_in_range(struct btrfs_root * root,u64 bytenr,u64 num_bytes)1216 static noinline int csum_exist_in_range(struct btrfs_root *root,
1217 					u64 bytenr, u64 num_bytes)
1218 {
1219 	int ret;
1220 	struct btrfs_ordered_sum *sums;
1221 	LIST_HEAD(list);
1222 
1223 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1224 				       bytenr + num_bytes - 1, &list, 0);
1225 	if (ret == 0 && list_empty(&list))
1226 		return 0;
1227 
1228 	while (!list_empty(&list)) {
1229 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1230 		list_del(&sums->list);
1231 		kfree(sums);
1232 	}
1233 	return 1;
1234 }
1235 
1236 /*
1237  * when nowcow writeback call back.  This checks for snapshots or COW copies
1238  * of the extents that exist in the file, and COWs the file as required.
1239  *
1240  * If no cow copies or snapshots exist, we write directly to the existing
1241  * blocks on disk
1242  */
run_delalloc_nocow(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,int force,unsigned long * nr_written)1243 static noinline int run_delalloc_nocow(struct inode *inode,
1244 				       struct page *locked_page,
1245 			      u64 start, u64 end, int *page_started, int force,
1246 			      unsigned long *nr_written)
1247 {
1248 	struct btrfs_root *root = BTRFS_I(inode)->root;
1249 	struct btrfs_trans_handle *trans;
1250 	struct extent_buffer *leaf;
1251 	struct btrfs_path *path;
1252 	struct btrfs_file_extent_item *fi;
1253 	struct btrfs_key found_key;
1254 	u64 cow_start;
1255 	u64 cur_offset;
1256 	u64 extent_end;
1257 	u64 extent_offset;
1258 	u64 disk_bytenr;
1259 	u64 num_bytes;
1260 	u64 disk_num_bytes;
1261 	u64 ram_bytes;
1262 	int extent_type;
1263 	int ret, err;
1264 	int type;
1265 	int nocow;
1266 	int check_prev = 1;
1267 	bool nolock;
1268 	u64 ino = btrfs_ino(inode);
1269 
1270 	path = btrfs_alloc_path();
1271 	if (!path) {
1272 		extent_clear_unlock_delalloc(inode, start, end, end,
1273 					     locked_page,
1274 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1275 					     EXTENT_DO_ACCOUNTING |
1276 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1277 					     PAGE_CLEAR_DIRTY |
1278 					     PAGE_SET_WRITEBACK |
1279 					     PAGE_END_WRITEBACK);
1280 		return -ENOMEM;
1281 	}
1282 
1283 	nolock = btrfs_is_free_space_inode(inode);
1284 
1285 	if (nolock)
1286 		trans = btrfs_join_transaction_nolock(root);
1287 	else
1288 		trans = btrfs_join_transaction(root);
1289 
1290 	if (IS_ERR(trans)) {
1291 		extent_clear_unlock_delalloc(inode, start, end, end,
1292 					     locked_page,
1293 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1294 					     EXTENT_DO_ACCOUNTING |
1295 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1296 					     PAGE_CLEAR_DIRTY |
1297 					     PAGE_SET_WRITEBACK |
1298 					     PAGE_END_WRITEBACK);
1299 		btrfs_free_path(path);
1300 		return PTR_ERR(trans);
1301 	}
1302 
1303 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1304 
1305 	cow_start = (u64)-1;
1306 	cur_offset = start;
1307 	while (1) {
1308 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1309 					       cur_offset, 0);
1310 		if (ret < 0)
1311 			goto error;
1312 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1313 			leaf = path->nodes[0];
1314 			btrfs_item_key_to_cpu(leaf, &found_key,
1315 					      path->slots[0] - 1);
1316 			if (found_key.objectid == ino &&
1317 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1318 				path->slots[0]--;
1319 		}
1320 		check_prev = 0;
1321 next_slot:
1322 		leaf = path->nodes[0];
1323 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1324 			ret = btrfs_next_leaf(root, path);
1325 			if (ret < 0) {
1326 				if (cow_start != (u64)-1)
1327 					cur_offset = cow_start;
1328 				goto error;
1329 			}
1330 			if (ret > 0)
1331 				break;
1332 			leaf = path->nodes[0];
1333 		}
1334 
1335 		nocow = 0;
1336 		disk_bytenr = 0;
1337 		num_bytes = 0;
1338 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1339 
1340 		if (found_key.objectid > ino)
1341 			break;
1342 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1343 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1344 			path->slots[0]++;
1345 			goto next_slot;
1346 		}
1347 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1348 		    found_key.offset > end)
1349 			break;
1350 
1351 		if (found_key.offset > cur_offset) {
1352 			extent_end = found_key.offset;
1353 			extent_type = 0;
1354 			goto out_check;
1355 		}
1356 
1357 		fi = btrfs_item_ptr(leaf, path->slots[0],
1358 				    struct btrfs_file_extent_item);
1359 		extent_type = btrfs_file_extent_type(leaf, fi);
1360 
1361 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1362 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1363 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1364 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1365 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1366 			extent_end = found_key.offset +
1367 				btrfs_file_extent_num_bytes(leaf, fi);
1368 			disk_num_bytes =
1369 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1370 			if (extent_end <= start) {
1371 				path->slots[0]++;
1372 				goto next_slot;
1373 			}
1374 			if (disk_bytenr == 0)
1375 				goto out_check;
1376 			if (btrfs_file_extent_compression(leaf, fi) ||
1377 			    btrfs_file_extent_encryption(leaf, fi) ||
1378 			    btrfs_file_extent_other_encoding(leaf, fi))
1379 				goto out_check;
1380 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1381 				goto out_check;
1382 			if (btrfs_extent_readonly(root, disk_bytenr))
1383 				goto out_check;
1384 			if (btrfs_cross_ref_exist(trans, root, ino,
1385 						  found_key.offset -
1386 						  extent_offset, disk_bytenr))
1387 				goto out_check;
1388 			disk_bytenr += extent_offset;
1389 			disk_bytenr += cur_offset - found_key.offset;
1390 			num_bytes = min(end + 1, extent_end) - cur_offset;
1391 			/*
1392 			 * if there are pending snapshots for this root,
1393 			 * we fall into common COW way.
1394 			 */
1395 			if (!nolock) {
1396 				err = btrfs_start_write_no_snapshoting(root);
1397 				if (!err)
1398 					goto out_check;
1399 			}
1400 			/*
1401 			 * force cow if csum exists in the range.
1402 			 * this ensure that csum for a given extent are
1403 			 * either valid or do not exist.
1404 			 */
1405 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1406 				goto out_check;
1407 			if (!btrfs_inc_nocow_writers(root->fs_info,
1408 						     disk_bytenr))
1409 				goto out_check;
1410 			nocow = 1;
1411 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1412 			extent_end = found_key.offset +
1413 				btrfs_file_extent_inline_len(leaf,
1414 						     path->slots[0], fi);
1415 			extent_end = ALIGN(extent_end, root->sectorsize);
1416 		} else {
1417 			BUG_ON(1);
1418 		}
1419 out_check:
1420 		if (extent_end <= start) {
1421 			path->slots[0]++;
1422 			if (!nolock && nocow)
1423 				btrfs_end_write_no_snapshoting(root);
1424 			if (nocow)
1425 				btrfs_dec_nocow_writers(root->fs_info,
1426 							disk_bytenr);
1427 			goto next_slot;
1428 		}
1429 		if (!nocow) {
1430 			if (cow_start == (u64)-1)
1431 				cow_start = cur_offset;
1432 			cur_offset = extent_end;
1433 			if (cur_offset > end)
1434 				break;
1435 			path->slots[0]++;
1436 			goto next_slot;
1437 		}
1438 
1439 		btrfs_release_path(path);
1440 		if (cow_start != (u64)-1) {
1441 			ret = cow_file_range(inode, locked_page,
1442 					     cow_start, found_key.offset - 1,
1443 					     end, page_started, nr_written, 1,
1444 					     NULL);
1445 			if (ret) {
1446 				if (!nolock && nocow)
1447 					btrfs_end_write_no_snapshoting(root);
1448 				if (nocow)
1449 					btrfs_dec_nocow_writers(root->fs_info,
1450 								disk_bytenr);
1451 				goto error;
1452 			}
1453 			cow_start = (u64)-1;
1454 		}
1455 
1456 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1457 			struct extent_map *em;
1458 			struct extent_map_tree *em_tree;
1459 			em_tree = &BTRFS_I(inode)->extent_tree;
1460 			em = alloc_extent_map();
1461 			BUG_ON(!em); /* -ENOMEM */
1462 			em->start = cur_offset;
1463 			em->orig_start = found_key.offset - extent_offset;
1464 			em->len = num_bytes;
1465 			em->block_len = num_bytes;
1466 			em->block_start = disk_bytenr;
1467 			em->orig_block_len = disk_num_bytes;
1468 			em->ram_bytes = ram_bytes;
1469 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1470 			em->mod_start = em->start;
1471 			em->mod_len = em->len;
1472 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1473 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1474 			em->generation = -1;
1475 			while (1) {
1476 				write_lock(&em_tree->lock);
1477 				ret = add_extent_mapping(em_tree, em, 1);
1478 				write_unlock(&em_tree->lock);
1479 				if (ret != -EEXIST) {
1480 					free_extent_map(em);
1481 					break;
1482 				}
1483 				btrfs_drop_extent_cache(inode, em->start,
1484 						em->start + em->len - 1, 0);
1485 			}
1486 			type = BTRFS_ORDERED_PREALLOC;
1487 		} else {
1488 			type = BTRFS_ORDERED_NOCOW;
1489 		}
1490 
1491 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1492 					       num_bytes, num_bytes, type);
1493 		if (nocow)
1494 			btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
1495 		BUG_ON(ret); /* -ENOMEM */
1496 
1497 		if (root->root_key.objectid ==
1498 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1499 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1500 						      num_bytes);
1501 			if (ret) {
1502 				if (!nolock && nocow)
1503 					btrfs_end_write_no_snapshoting(root);
1504 				goto error;
1505 			}
1506 		}
1507 
1508 		extent_clear_unlock_delalloc(inode, cur_offset,
1509 					     cur_offset + num_bytes - 1, end,
1510 					     locked_page, EXTENT_LOCKED |
1511 					     EXTENT_DELALLOC |
1512 					     EXTENT_CLEAR_DATA_RESV,
1513 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1514 
1515 		if (!nolock && nocow)
1516 			btrfs_end_write_no_snapshoting(root);
1517 		cur_offset = extent_end;
1518 		if (cur_offset > end)
1519 			break;
1520 	}
1521 	btrfs_release_path(path);
1522 
1523 	if (cur_offset <= end && cow_start == (u64)-1) {
1524 		cow_start = cur_offset;
1525 		cur_offset = end;
1526 	}
1527 
1528 	if (cow_start != (u64)-1) {
1529 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1530 				     page_started, nr_written, 1, NULL);
1531 		if (ret)
1532 			goto error;
1533 	}
1534 
1535 error:
1536 	err = btrfs_end_transaction(trans, root);
1537 	if (!ret)
1538 		ret = err;
1539 
1540 	if (ret && cur_offset < end)
1541 		extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1542 					     locked_page, EXTENT_LOCKED |
1543 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1544 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1545 					     PAGE_CLEAR_DIRTY |
1546 					     PAGE_SET_WRITEBACK |
1547 					     PAGE_END_WRITEBACK);
1548 	btrfs_free_path(path);
1549 	return ret;
1550 }
1551 
need_force_cow(struct inode * inode,u64 start,u64 end)1552 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1553 {
1554 
1555 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1556 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1557 		return 0;
1558 
1559 	/*
1560 	 * @defrag_bytes is a hint value, no spinlock held here,
1561 	 * if is not zero, it means the file is defragging.
1562 	 * Force cow if given extent needs to be defragged.
1563 	 */
1564 	if (BTRFS_I(inode)->defrag_bytes &&
1565 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1566 			   EXTENT_DEFRAG, 0, NULL))
1567 		return 1;
1568 
1569 	return 0;
1570 }
1571 
1572 /*
1573  * extent_io.c call back to do delayed allocation processing
1574  */
run_delalloc_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1575 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1576 			      u64 start, u64 end, int *page_started,
1577 			      unsigned long *nr_written)
1578 {
1579 	int ret;
1580 	int force_cow = need_force_cow(inode, start, end);
1581 
1582 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1583 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1584 					 page_started, 1, nr_written);
1585 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1586 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1587 					 page_started, 0, nr_written);
1588 	} else if (!inode_need_compress(inode)) {
1589 		ret = cow_file_range(inode, locked_page, start, end, end,
1590 				      page_started, nr_written, 1, NULL);
1591 	} else {
1592 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1593 			&BTRFS_I(inode)->runtime_flags);
1594 		ret = cow_file_range_async(inode, locked_page, start, end,
1595 					   page_started, nr_written);
1596 	}
1597 	return ret;
1598 }
1599 
btrfs_split_extent_hook(struct inode * inode,struct extent_state * orig,u64 split)1600 static void btrfs_split_extent_hook(struct inode *inode,
1601 				    struct extent_state *orig, u64 split)
1602 {
1603 	u64 size;
1604 
1605 	/* not delalloc, ignore it */
1606 	if (!(orig->state & EXTENT_DELALLOC))
1607 		return;
1608 
1609 	size = orig->end - orig->start + 1;
1610 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1611 		u64 num_extents;
1612 		u64 new_size;
1613 
1614 		/*
1615 		 * See the explanation in btrfs_merge_extent_hook, the same
1616 		 * applies here, just in reverse.
1617 		 */
1618 		new_size = orig->end - split + 1;
1619 		num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1620 					BTRFS_MAX_EXTENT_SIZE);
1621 		new_size = split - orig->start;
1622 		num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1623 					BTRFS_MAX_EXTENT_SIZE);
1624 		if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1625 			      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1626 			return;
1627 	}
1628 
1629 	spin_lock(&BTRFS_I(inode)->lock);
1630 	BTRFS_I(inode)->outstanding_extents++;
1631 	spin_unlock(&BTRFS_I(inode)->lock);
1632 }
1633 
1634 /*
1635  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1636  * extents so we can keep track of new extents that are just merged onto old
1637  * extents, such as when we are doing sequential writes, so we can properly
1638  * account for the metadata space we'll need.
1639  */
btrfs_merge_extent_hook(struct inode * inode,struct extent_state * new,struct extent_state * other)1640 static void btrfs_merge_extent_hook(struct inode *inode,
1641 				    struct extent_state *new,
1642 				    struct extent_state *other)
1643 {
1644 	u64 new_size, old_size;
1645 	u64 num_extents;
1646 
1647 	/* not delalloc, ignore it */
1648 	if (!(other->state & EXTENT_DELALLOC))
1649 		return;
1650 
1651 	if (new->start > other->start)
1652 		new_size = new->end - other->start + 1;
1653 	else
1654 		new_size = other->end - new->start + 1;
1655 
1656 	/* we're not bigger than the max, unreserve the space and go */
1657 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1658 		spin_lock(&BTRFS_I(inode)->lock);
1659 		BTRFS_I(inode)->outstanding_extents--;
1660 		spin_unlock(&BTRFS_I(inode)->lock);
1661 		return;
1662 	}
1663 
1664 	/*
1665 	 * We have to add up either side to figure out how many extents were
1666 	 * accounted for before we merged into one big extent.  If the number of
1667 	 * extents we accounted for is <= the amount we need for the new range
1668 	 * then we can return, otherwise drop.  Think of it like this
1669 	 *
1670 	 * [ 4k][MAX_SIZE]
1671 	 *
1672 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1673 	 * need 2 outstanding extents, on one side we have 1 and the other side
1674 	 * we have 1 so they are == and we can return.  But in this case
1675 	 *
1676 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1677 	 *
1678 	 * Each range on their own accounts for 2 extents, but merged together
1679 	 * they are only 3 extents worth of accounting, so we need to drop in
1680 	 * this case.
1681 	 */
1682 	old_size = other->end - other->start + 1;
1683 	num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1684 				BTRFS_MAX_EXTENT_SIZE);
1685 	old_size = new->end - new->start + 1;
1686 	num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1687 				 BTRFS_MAX_EXTENT_SIZE);
1688 
1689 	if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1690 		      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1691 		return;
1692 
1693 	spin_lock(&BTRFS_I(inode)->lock);
1694 	BTRFS_I(inode)->outstanding_extents--;
1695 	spin_unlock(&BTRFS_I(inode)->lock);
1696 }
1697 
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)1698 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1699 				      struct inode *inode)
1700 {
1701 	spin_lock(&root->delalloc_lock);
1702 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1703 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1704 			      &root->delalloc_inodes);
1705 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1706 			&BTRFS_I(inode)->runtime_flags);
1707 		root->nr_delalloc_inodes++;
1708 		if (root->nr_delalloc_inodes == 1) {
1709 			spin_lock(&root->fs_info->delalloc_root_lock);
1710 			BUG_ON(!list_empty(&root->delalloc_root));
1711 			list_add_tail(&root->delalloc_root,
1712 				      &root->fs_info->delalloc_roots);
1713 			spin_unlock(&root->fs_info->delalloc_root_lock);
1714 		}
1715 	}
1716 	spin_unlock(&root->delalloc_lock);
1717 }
1718 
btrfs_del_delalloc_inode(struct btrfs_root * root,struct inode * inode)1719 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1720 				     struct inode *inode)
1721 {
1722 	spin_lock(&root->delalloc_lock);
1723 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1724 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1725 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1726 			  &BTRFS_I(inode)->runtime_flags);
1727 		root->nr_delalloc_inodes--;
1728 		if (!root->nr_delalloc_inodes) {
1729 			spin_lock(&root->fs_info->delalloc_root_lock);
1730 			BUG_ON(list_empty(&root->delalloc_root));
1731 			list_del_init(&root->delalloc_root);
1732 			spin_unlock(&root->fs_info->delalloc_root_lock);
1733 		}
1734 	}
1735 	spin_unlock(&root->delalloc_lock);
1736 }
1737 
1738 /*
1739  * extent_io.c set_bit_hook, used to track delayed allocation
1740  * bytes in this file, and to maintain the list of inodes that
1741  * have pending delalloc work to be done.
1742  */
btrfs_set_bit_hook(struct inode * inode,struct extent_state * state,unsigned * bits)1743 static void btrfs_set_bit_hook(struct inode *inode,
1744 			       struct extent_state *state, unsigned *bits)
1745 {
1746 
1747 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1748 		WARN_ON(1);
1749 	/*
1750 	 * set_bit and clear bit hooks normally require _irqsave/restore
1751 	 * but in this case, we are only testing for the DELALLOC
1752 	 * bit, which is only set or cleared with irqs on
1753 	 */
1754 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1755 		struct btrfs_root *root = BTRFS_I(inode)->root;
1756 		u64 len = state->end + 1 - state->start;
1757 		bool do_list = !btrfs_is_free_space_inode(inode);
1758 
1759 		if (*bits & EXTENT_FIRST_DELALLOC) {
1760 			*bits &= ~EXTENT_FIRST_DELALLOC;
1761 		} else {
1762 			spin_lock(&BTRFS_I(inode)->lock);
1763 			BTRFS_I(inode)->outstanding_extents++;
1764 			spin_unlock(&BTRFS_I(inode)->lock);
1765 		}
1766 
1767 		/* For sanity tests */
1768 		if (btrfs_is_testing(root->fs_info))
1769 			return;
1770 
1771 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1772 				     root->fs_info->delalloc_batch);
1773 		spin_lock(&BTRFS_I(inode)->lock);
1774 		BTRFS_I(inode)->delalloc_bytes += len;
1775 		if (*bits & EXTENT_DEFRAG)
1776 			BTRFS_I(inode)->defrag_bytes += len;
1777 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1778 					 &BTRFS_I(inode)->runtime_flags))
1779 			btrfs_add_delalloc_inodes(root, inode);
1780 		spin_unlock(&BTRFS_I(inode)->lock);
1781 	}
1782 }
1783 
1784 /*
1785  * extent_io.c clear_bit_hook, see set_bit_hook for why
1786  */
btrfs_clear_bit_hook(struct inode * inode,struct extent_state * state,unsigned * bits)1787 static void btrfs_clear_bit_hook(struct inode *inode,
1788 				 struct extent_state *state,
1789 				 unsigned *bits)
1790 {
1791 	u64 len = state->end + 1 - state->start;
1792 	u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1793 				    BTRFS_MAX_EXTENT_SIZE);
1794 
1795 	spin_lock(&BTRFS_I(inode)->lock);
1796 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1797 		BTRFS_I(inode)->defrag_bytes -= len;
1798 	spin_unlock(&BTRFS_I(inode)->lock);
1799 
1800 	/*
1801 	 * set_bit and clear bit hooks normally require _irqsave/restore
1802 	 * but in this case, we are only testing for the DELALLOC
1803 	 * bit, which is only set or cleared with irqs on
1804 	 */
1805 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1806 		struct btrfs_root *root = BTRFS_I(inode)->root;
1807 		bool do_list = !btrfs_is_free_space_inode(inode);
1808 
1809 		if (*bits & EXTENT_FIRST_DELALLOC) {
1810 			*bits &= ~EXTENT_FIRST_DELALLOC;
1811 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1812 			spin_lock(&BTRFS_I(inode)->lock);
1813 			BTRFS_I(inode)->outstanding_extents -= num_extents;
1814 			spin_unlock(&BTRFS_I(inode)->lock);
1815 		}
1816 
1817 		/*
1818 		 * We don't reserve metadata space for space cache inodes so we
1819 		 * don't need to call dellalloc_release_metadata if there is an
1820 		 * error.
1821 		 */
1822 		if (*bits & EXTENT_DO_ACCOUNTING &&
1823 		    root != root->fs_info->tree_root)
1824 			btrfs_delalloc_release_metadata(inode, len);
1825 
1826 		/* For sanity tests. */
1827 		if (btrfs_is_testing(root->fs_info))
1828 			return;
1829 
1830 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1831 		    && do_list && !(state->state & EXTENT_NORESERVE)
1832 		    && (*bits & (EXTENT_DO_ACCOUNTING |
1833 		    EXTENT_CLEAR_DATA_RESV)))
1834 			btrfs_free_reserved_data_space_noquota(inode,
1835 					state->start, len);
1836 
1837 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1838 				     root->fs_info->delalloc_batch);
1839 		spin_lock(&BTRFS_I(inode)->lock);
1840 		BTRFS_I(inode)->delalloc_bytes -= len;
1841 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1842 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1843 			     &BTRFS_I(inode)->runtime_flags))
1844 			btrfs_del_delalloc_inode(root, inode);
1845 		spin_unlock(&BTRFS_I(inode)->lock);
1846 	}
1847 }
1848 
1849 /*
1850  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1851  * we don't create bios that span stripes or chunks
1852  *
1853  * return 1 if page cannot be merged to bio
1854  * return 0 if page can be merged to bio
1855  * return error otherwise
1856  */
btrfs_merge_bio_hook(struct page * page,unsigned long offset,size_t size,struct bio * bio,unsigned long bio_flags)1857 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1858 			 size_t size, struct bio *bio,
1859 			 unsigned long bio_flags)
1860 {
1861 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1862 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1863 	u64 length = 0;
1864 	u64 map_length;
1865 	int ret;
1866 
1867 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1868 		return 0;
1869 
1870 	length = bio->bi_iter.bi_size;
1871 	map_length = length;
1872 	ret = btrfs_map_block(root->fs_info, bio_op(bio), logical,
1873 			      &map_length, NULL, 0);
1874 	if (ret < 0)
1875 		return ret;
1876 	if (map_length < length + size)
1877 		return 1;
1878 	return 0;
1879 }
1880 
1881 /*
1882  * in order to insert checksums into the metadata in large chunks,
1883  * we wait until bio submission time.   All the pages in the bio are
1884  * checksummed and sums are attached onto the ordered extent record.
1885  *
1886  * At IO completion time the cums attached on the ordered extent record
1887  * are inserted into the btree
1888  */
__btrfs_submit_bio_start(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)1889 static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1890 				    int mirror_num, unsigned long bio_flags,
1891 				    u64 bio_offset)
1892 {
1893 	struct btrfs_root *root = BTRFS_I(inode)->root;
1894 	int ret = 0;
1895 
1896 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1897 	BUG_ON(ret); /* -ENOMEM */
1898 	return 0;
1899 }
1900 
1901 /*
1902  * in order to insert checksums into the metadata in large chunks,
1903  * we wait until bio submission time.   All the pages in the bio are
1904  * checksummed and sums are attached onto the ordered extent record.
1905  *
1906  * At IO completion time the cums attached on the ordered extent record
1907  * are inserted into the btree
1908  */
__btrfs_submit_bio_done(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)1909 static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
1910 			  int mirror_num, unsigned long bio_flags,
1911 			  u64 bio_offset)
1912 {
1913 	struct btrfs_root *root = BTRFS_I(inode)->root;
1914 	int ret;
1915 
1916 	ret = btrfs_map_bio(root, bio, mirror_num, 1);
1917 	if (ret) {
1918 		bio->bi_error = ret;
1919 		bio_endio(bio);
1920 	}
1921 	return ret;
1922 }
1923 
1924 /*
1925  * extent_io.c submission hook. This does the right thing for csum calculation
1926  * on write, or reading the csums from the tree before a read
1927  */
btrfs_submit_bio_hook(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)1928 static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
1929 			  int mirror_num, unsigned long bio_flags,
1930 			  u64 bio_offset)
1931 {
1932 	struct btrfs_root *root = BTRFS_I(inode)->root;
1933 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1934 	int ret = 0;
1935 	int skip_sum;
1936 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1937 
1938 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1939 
1940 	if (btrfs_is_free_space_inode(inode))
1941 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1942 
1943 	if (bio_op(bio) != REQ_OP_WRITE) {
1944 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1945 		if (ret)
1946 			goto out;
1947 
1948 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1949 			ret = btrfs_submit_compressed_read(inode, bio,
1950 							   mirror_num,
1951 							   bio_flags);
1952 			goto out;
1953 		} else if (!skip_sum) {
1954 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1955 			if (ret)
1956 				goto out;
1957 		}
1958 		goto mapit;
1959 	} else if (async && !skip_sum) {
1960 		/* csum items have already been cloned */
1961 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1962 			goto mapit;
1963 		/* we're doing a write, do the async checksumming */
1964 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1965 				   inode, bio, mirror_num,
1966 				   bio_flags, bio_offset,
1967 				   __btrfs_submit_bio_start,
1968 				   __btrfs_submit_bio_done);
1969 		goto out;
1970 	} else if (!skip_sum) {
1971 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1972 		if (ret)
1973 			goto out;
1974 	}
1975 
1976 mapit:
1977 	ret = btrfs_map_bio(root, bio, mirror_num, 0);
1978 
1979 out:
1980 	if (ret < 0) {
1981 		bio->bi_error = ret;
1982 		bio_endio(bio);
1983 	}
1984 	return ret;
1985 }
1986 
1987 /*
1988  * given a list of ordered sums record them in the inode.  This happens
1989  * at IO completion time based on sums calculated at bio submission time.
1990  */
add_pending_csums(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_offset,struct list_head * list)1991 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1992 			     struct inode *inode, u64 file_offset,
1993 			     struct list_head *list)
1994 {
1995 	struct btrfs_ordered_sum *sum;
1996 
1997 	list_for_each_entry(sum, list, list) {
1998 		trans->adding_csums = 1;
1999 		btrfs_csum_file_blocks(trans,
2000 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2001 		trans->adding_csums = 0;
2002 	}
2003 	return 0;
2004 }
2005 
btrfs_set_extent_delalloc(struct inode * inode,u64 start,u64 end,struct extent_state ** cached_state,int dedupe)2006 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2007 			      struct extent_state **cached_state, int dedupe)
2008 {
2009 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2010 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2011 				   cached_state);
2012 }
2013 
2014 /* see btrfs_writepage_start_hook for details on why this is required */
2015 struct btrfs_writepage_fixup {
2016 	struct page *page;
2017 	struct btrfs_work work;
2018 };
2019 
btrfs_writepage_fixup_worker(struct btrfs_work * work)2020 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2021 {
2022 	struct btrfs_writepage_fixup *fixup;
2023 	struct btrfs_ordered_extent *ordered;
2024 	struct extent_state *cached_state = NULL;
2025 	struct page *page;
2026 	struct inode *inode;
2027 	u64 page_start;
2028 	u64 page_end;
2029 	int ret;
2030 
2031 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2032 	page = fixup->page;
2033 again:
2034 	lock_page(page);
2035 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2036 		ClearPageChecked(page);
2037 		goto out_page;
2038 	}
2039 
2040 	inode = page->mapping->host;
2041 	page_start = page_offset(page);
2042 	page_end = page_offset(page) + PAGE_SIZE - 1;
2043 
2044 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2045 			 &cached_state);
2046 
2047 	/* already ordered? We're done */
2048 	if (PagePrivate2(page))
2049 		goto out;
2050 
2051 	ordered = btrfs_lookup_ordered_range(inode, page_start,
2052 					PAGE_SIZE);
2053 	if (ordered) {
2054 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2055 				     page_end, &cached_state, GFP_NOFS);
2056 		unlock_page(page);
2057 		btrfs_start_ordered_extent(inode, ordered, 1);
2058 		btrfs_put_ordered_extent(ordered);
2059 		goto again;
2060 	}
2061 
2062 	ret = btrfs_delalloc_reserve_space(inode, page_start,
2063 					   PAGE_SIZE);
2064 	if (ret) {
2065 		mapping_set_error(page->mapping, ret);
2066 		end_extent_writepage(page, ret, page_start, page_end);
2067 		ClearPageChecked(page);
2068 		goto out;
2069 	 }
2070 
2071 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
2072 					&cached_state, 0);
2073 	if (ret) {
2074 		mapping_set_error(page->mapping, ret);
2075 		end_extent_writepage(page, ret, page_start, page_end);
2076 		ClearPageChecked(page);
2077 		goto out;
2078 	}
2079 
2080 	ClearPageChecked(page);
2081 	set_page_dirty(page);
2082 out:
2083 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2084 			     &cached_state, GFP_NOFS);
2085 out_page:
2086 	unlock_page(page);
2087 	put_page(page);
2088 	kfree(fixup);
2089 }
2090 
2091 /*
2092  * There are a few paths in the higher layers of the kernel that directly
2093  * set the page dirty bit without asking the filesystem if it is a
2094  * good idea.  This causes problems because we want to make sure COW
2095  * properly happens and the data=ordered rules are followed.
2096  *
2097  * In our case any range that doesn't have the ORDERED bit set
2098  * hasn't been properly setup for IO.  We kick off an async process
2099  * to fix it up.  The async helper will wait for ordered extents, set
2100  * the delalloc bit and make it safe to write the page.
2101  */
btrfs_writepage_start_hook(struct page * page,u64 start,u64 end)2102 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2103 {
2104 	struct inode *inode = page->mapping->host;
2105 	struct btrfs_writepage_fixup *fixup;
2106 	struct btrfs_root *root = BTRFS_I(inode)->root;
2107 
2108 	/* this page is properly in the ordered list */
2109 	if (TestClearPagePrivate2(page))
2110 		return 0;
2111 
2112 	if (PageChecked(page))
2113 		return -EAGAIN;
2114 
2115 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2116 	if (!fixup)
2117 		return -EAGAIN;
2118 
2119 	SetPageChecked(page);
2120 	get_page(page);
2121 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2122 			btrfs_writepage_fixup_worker, NULL, NULL);
2123 	fixup->page = page;
2124 	btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2125 	return -EBUSY;
2126 }
2127 
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_pos,u64 disk_bytenr,u64 disk_num_bytes,u64 num_bytes,u64 ram_bytes,u8 compression,u8 encryption,u16 other_encoding,int extent_type)2128 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2129 				       struct inode *inode, u64 file_pos,
2130 				       u64 disk_bytenr, u64 disk_num_bytes,
2131 				       u64 num_bytes, u64 ram_bytes,
2132 				       u8 compression, u8 encryption,
2133 				       u16 other_encoding, int extent_type)
2134 {
2135 	struct btrfs_root *root = BTRFS_I(inode)->root;
2136 	struct btrfs_file_extent_item *fi;
2137 	struct btrfs_path *path;
2138 	struct extent_buffer *leaf;
2139 	struct btrfs_key ins;
2140 	int extent_inserted = 0;
2141 	int ret;
2142 
2143 	path = btrfs_alloc_path();
2144 	if (!path)
2145 		return -ENOMEM;
2146 
2147 	/*
2148 	 * we may be replacing one extent in the tree with another.
2149 	 * The new extent is pinned in the extent map, and we don't want
2150 	 * to drop it from the cache until it is completely in the btree.
2151 	 *
2152 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2153 	 * the caller is expected to unpin it and allow it to be merged
2154 	 * with the others.
2155 	 */
2156 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2157 				   file_pos + num_bytes, NULL, 0,
2158 				   1, sizeof(*fi), &extent_inserted);
2159 	if (ret)
2160 		goto out;
2161 
2162 	if (!extent_inserted) {
2163 		ins.objectid = btrfs_ino(inode);
2164 		ins.offset = file_pos;
2165 		ins.type = BTRFS_EXTENT_DATA_KEY;
2166 
2167 		path->leave_spinning = 1;
2168 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2169 					      sizeof(*fi));
2170 		if (ret)
2171 			goto out;
2172 	}
2173 	leaf = path->nodes[0];
2174 	fi = btrfs_item_ptr(leaf, path->slots[0],
2175 			    struct btrfs_file_extent_item);
2176 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2177 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2178 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2179 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2180 	btrfs_set_file_extent_offset(leaf, fi, 0);
2181 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2182 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2183 	btrfs_set_file_extent_compression(leaf, fi, compression);
2184 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2185 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2186 
2187 	btrfs_mark_buffer_dirty(leaf);
2188 	btrfs_release_path(path);
2189 
2190 	inode_add_bytes(inode, num_bytes);
2191 
2192 	ins.objectid = disk_bytenr;
2193 	ins.offset = disk_num_bytes;
2194 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2195 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2196 					root->root_key.objectid,
2197 					btrfs_ino(inode), file_pos,
2198 					ram_bytes, &ins);
2199 	/*
2200 	 * Release the reserved range from inode dirty range map, as it is
2201 	 * already moved into delayed_ref_head
2202 	 */
2203 	btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2204 out:
2205 	btrfs_free_path(path);
2206 
2207 	return ret;
2208 }
2209 
2210 /* snapshot-aware defrag */
2211 struct sa_defrag_extent_backref {
2212 	struct rb_node node;
2213 	struct old_sa_defrag_extent *old;
2214 	u64 root_id;
2215 	u64 inum;
2216 	u64 file_pos;
2217 	u64 extent_offset;
2218 	u64 num_bytes;
2219 	u64 generation;
2220 };
2221 
2222 struct old_sa_defrag_extent {
2223 	struct list_head list;
2224 	struct new_sa_defrag_extent *new;
2225 
2226 	u64 extent_offset;
2227 	u64 bytenr;
2228 	u64 offset;
2229 	u64 len;
2230 	int count;
2231 };
2232 
2233 struct new_sa_defrag_extent {
2234 	struct rb_root root;
2235 	struct list_head head;
2236 	struct btrfs_path *path;
2237 	struct inode *inode;
2238 	u64 file_pos;
2239 	u64 len;
2240 	u64 bytenr;
2241 	u64 disk_len;
2242 	u8 compress_type;
2243 };
2244 
backref_comp(struct sa_defrag_extent_backref * b1,struct sa_defrag_extent_backref * b2)2245 static int backref_comp(struct sa_defrag_extent_backref *b1,
2246 			struct sa_defrag_extent_backref *b2)
2247 {
2248 	if (b1->root_id < b2->root_id)
2249 		return -1;
2250 	else if (b1->root_id > b2->root_id)
2251 		return 1;
2252 
2253 	if (b1->inum < b2->inum)
2254 		return -1;
2255 	else if (b1->inum > b2->inum)
2256 		return 1;
2257 
2258 	if (b1->file_pos < b2->file_pos)
2259 		return -1;
2260 	else if (b1->file_pos > b2->file_pos)
2261 		return 1;
2262 
2263 	/*
2264 	 * [------------------------------] ===> (a range of space)
2265 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2266 	 * |<---------------------------->| ===> (fs/file tree B)
2267 	 *
2268 	 * A range of space can refer to two file extents in one tree while
2269 	 * refer to only one file extent in another tree.
2270 	 *
2271 	 * So we may process a disk offset more than one time(two extents in A)
2272 	 * and locate at the same extent(one extent in B), then insert two same
2273 	 * backrefs(both refer to the extent in B).
2274 	 */
2275 	return 0;
2276 }
2277 
backref_insert(struct rb_root * root,struct sa_defrag_extent_backref * backref)2278 static void backref_insert(struct rb_root *root,
2279 			   struct sa_defrag_extent_backref *backref)
2280 {
2281 	struct rb_node **p = &root->rb_node;
2282 	struct rb_node *parent = NULL;
2283 	struct sa_defrag_extent_backref *entry;
2284 	int ret;
2285 
2286 	while (*p) {
2287 		parent = *p;
2288 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2289 
2290 		ret = backref_comp(backref, entry);
2291 		if (ret < 0)
2292 			p = &(*p)->rb_left;
2293 		else
2294 			p = &(*p)->rb_right;
2295 	}
2296 
2297 	rb_link_node(&backref->node, parent, p);
2298 	rb_insert_color(&backref->node, root);
2299 }
2300 
2301 /*
2302  * Note the backref might has changed, and in this case we just return 0.
2303  */
record_one_backref(u64 inum,u64 offset,u64 root_id,void * ctx)2304 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2305 				       void *ctx)
2306 {
2307 	struct btrfs_file_extent_item *extent;
2308 	struct btrfs_fs_info *fs_info;
2309 	struct old_sa_defrag_extent *old = ctx;
2310 	struct new_sa_defrag_extent *new = old->new;
2311 	struct btrfs_path *path = new->path;
2312 	struct btrfs_key key;
2313 	struct btrfs_root *root;
2314 	struct sa_defrag_extent_backref *backref;
2315 	struct extent_buffer *leaf;
2316 	struct inode *inode = new->inode;
2317 	int slot;
2318 	int ret;
2319 	u64 extent_offset;
2320 	u64 num_bytes;
2321 
2322 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2323 	    inum == btrfs_ino(inode))
2324 		return 0;
2325 
2326 	key.objectid = root_id;
2327 	key.type = BTRFS_ROOT_ITEM_KEY;
2328 	key.offset = (u64)-1;
2329 
2330 	fs_info = BTRFS_I(inode)->root->fs_info;
2331 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2332 	if (IS_ERR(root)) {
2333 		if (PTR_ERR(root) == -ENOENT)
2334 			return 0;
2335 		WARN_ON(1);
2336 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2337 			 inum, offset, root_id);
2338 		return PTR_ERR(root);
2339 	}
2340 
2341 	key.objectid = inum;
2342 	key.type = BTRFS_EXTENT_DATA_KEY;
2343 	if (offset > (u64)-1 << 32)
2344 		key.offset = 0;
2345 	else
2346 		key.offset = offset;
2347 
2348 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2349 	if (WARN_ON(ret < 0))
2350 		return ret;
2351 	ret = 0;
2352 
2353 	while (1) {
2354 		cond_resched();
2355 
2356 		leaf = path->nodes[0];
2357 		slot = path->slots[0];
2358 
2359 		if (slot >= btrfs_header_nritems(leaf)) {
2360 			ret = btrfs_next_leaf(root, path);
2361 			if (ret < 0) {
2362 				goto out;
2363 			} else if (ret > 0) {
2364 				ret = 0;
2365 				goto out;
2366 			}
2367 			continue;
2368 		}
2369 
2370 		path->slots[0]++;
2371 
2372 		btrfs_item_key_to_cpu(leaf, &key, slot);
2373 
2374 		if (key.objectid > inum)
2375 			goto out;
2376 
2377 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2378 			continue;
2379 
2380 		extent = btrfs_item_ptr(leaf, slot,
2381 					struct btrfs_file_extent_item);
2382 
2383 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2384 			continue;
2385 
2386 		/*
2387 		 * 'offset' refers to the exact key.offset,
2388 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2389 		 * (key.offset - extent_offset).
2390 		 */
2391 		if (key.offset != offset)
2392 			continue;
2393 
2394 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2395 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2396 
2397 		if (extent_offset >= old->extent_offset + old->offset +
2398 		    old->len || extent_offset + num_bytes <=
2399 		    old->extent_offset + old->offset)
2400 			continue;
2401 		break;
2402 	}
2403 
2404 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2405 	if (!backref) {
2406 		ret = -ENOENT;
2407 		goto out;
2408 	}
2409 
2410 	backref->root_id = root_id;
2411 	backref->inum = inum;
2412 	backref->file_pos = offset;
2413 	backref->num_bytes = num_bytes;
2414 	backref->extent_offset = extent_offset;
2415 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2416 	backref->old = old;
2417 	backref_insert(&new->root, backref);
2418 	old->count++;
2419 out:
2420 	btrfs_release_path(path);
2421 	WARN_ON(ret);
2422 	return ret;
2423 }
2424 
record_extent_backrefs(struct btrfs_path * path,struct new_sa_defrag_extent * new)2425 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2426 				   struct new_sa_defrag_extent *new)
2427 {
2428 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2429 	struct old_sa_defrag_extent *old, *tmp;
2430 	int ret;
2431 
2432 	new->path = path;
2433 
2434 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2435 		ret = iterate_inodes_from_logical(old->bytenr +
2436 						  old->extent_offset, fs_info,
2437 						  path, record_one_backref,
2438 						  old);
2439 		if (ret < 0 && ret != -ENOENT)
2440 			return false;
2441 
2442 		/* no backref to be processed for this extent */
2443 		if (!old->count) {
2444 			list_del(&old->list);
2445 			kfree(old);
2446 		}
2447 	}
2448 
2449 	if (list_empty(&new->head))
2450 		return false;
2451 
2452 	return true;
2453 }
2454 
relink_is_mergable(struct extent_buffer * leaf,struct btrfs_file_extent_item * fi,struct new_sa_defrag_extent * new)2455 static int relink_is_mergable(struct extent_buffer *leaf,
2456 			      struct btrfs_file_extent_item *fi,
2457 			      struct new_sa_defrag_extent *new)
2458 {
2459 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2460 		return 0;
2461 
2462 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2463 		return 0;
2464 
2465 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2466 		return 0;
2467 
2468 	if (btrfs_file_extent_encryption(leaf, fi) ||
2469 	    btrfs_file_extent_other_encoding(leaf, fi))
2470 		return 0;
2471 
2472 	return 1;
2473 }
2474 
2475 /*
2476  * Note the backref might has changed, and in this case we just return 0.
2477  */
relink_extent_backref(struct btrfs_path * path,struct sa_defrag_extent_backref * prev,struct sa_defrag_extent_backref * backref)2478 static noinline int relink_extent_backref(struct btrfs_path *path,
2479 				 struct sa_defrag_extent_backref *prev,
2480 				 struct sa_defrag_extent_backref *backref)
2481 {
2482 	struct btrfs_file_extent_item *extent;
2483 	struct btrfs_file_extent_item *item;
2484 	struct btrfs_ordered_extent *ordered;
2485 	struct btrfs_trans_handle *trans;
2486 	struct btrfs_fs_info *fs_info;
2487 	struct btrfs_root *root;
2488 	struct btrfs_key key;
2489 	struct extent_buffer *leaf;
2490 	struct old_sa_defrag_extent *old = backref->old;
2491 	struct new_sa_defrag_extent *new = old->new;
2492 	struct inode *src_inode = new->inode;
2493 	struct inode *inode;
2494 	struct extent_state *cached = NULL;
2495 	int ret = 0;
2496 	u64 start;
2497 	u64 len;
2498 	u64 lock_start;
2499 	u64 lock_end;
2500 	bool merge = false;
2501 	int index;
2502 
2503 	if (prev && prev->root_id == backref->root_id &&
2504 	    prev->inum == backref->inum &&
2505 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2506 		merge = true;
2507 
2508 	/* step 1: get root */
2509 	key.objectid = backref->root_id;
2510 	key.type = BTRFS_ROOT_ITEM_KEY;
2511 	key.offset = (u64)-1;
2512 
2513 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2514 	index = srcu_read_lock(&fs_info->subvol_srcu);
2515 
2516 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2517 	if (IS_ERR(root)) {
2518 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2519 		if (PTR_ERR(root) == -ENOENT)
2520 			return 0;
2521 		return PTR_ERR(root);
2522 	}
2523 
2524 	if (btrfs_root_readonly(root)) {
2525 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2526 		return 0;
2527 	}
2528 
2529 	/* step 2: get inode */
2530 	key.objectid = backref->inum;
2531 	key.type = BTRFS_INODE_ITEM_KEY;
2532 	key.offset = 0;
2533 
2534 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2535 	if (IS_ERR(inode)) {
2536 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2537 		return 0;
2538 	}
2539 
2540 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2541 
2542 	/* step 3: relink backref */
2543 	lock_start = backref->file_pos;
2544 	lock_end = backref->file_pos + backref->num_bytes - 1;
2545 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2546 			 &cached);
2547 
2548 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2549 	if (ordered) {
2550 		btrfs_put_ordered_extent(ordered);
2551 		goto out_unlock;
2552 	}
2553 
2554 	trans = btrfs_join_transaction(root);
2555 	if (IS_ERR(trans)) {
2556 		ret = PTR_ERR(trans);
2557 		goto out_unlock;
2558 	}
2559 
2560 	key.objectid = backref->inum;
2561 	key.type = BTRFS_EXTENT_DATA_KEY;
2562 	key.offset = backref->file_pos;
2563 
2564 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2565 	if (ret < 0) {
2566 		goto out_free_path;
2567 	} else if (ret > 0) {
2568 		ret = 0;
2569 		goto out_free_path;
2570 	}
2571 
2572 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2573 				struct btrfs_file_extent_item);
2574 
2575 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2576 	    backref->generation)
2577 		goto out_free_path;
2578 
2579 	btrfs_release_path(path);
2580 
2581 	start = backref->file_pos;
2582 	if (backref->extent_offset < old->extent_offset + old->offset)
2583 		start += old->extent_offset + old->offset -
2584 			 backref->extent_offset;
2585 
2586 	len = min(backref->extent_offset + backref->num_bytes,
2587 		  old->extent_offset + old->offset + old->len);
2588 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2589 
2590 	ret = btrfs_drop_extents(trans, root, inode, start,
2591 				 start + len, 1);
2592 	if (ret)
2593 		goto out_free_path;
2594 again:
2595 	key.objectid = btrfs_ino(inode);
2596 	key.type = BTRFS_EXTENT_DATA_KEY;
2597 	key.offset = start;
2598 
2599 	path->leave_spinning = 1;
2600 	if (merge) {
2601 		struct btrfs_file_extent_item *fi;
2602 		u64 extent_len;
2603 		struct btrfs_key found_key;
2604 
2605 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2606 		if (ret < 0)
2607 			goto out_free_path;
2608 
2609 		path->slots[0]--;
2610 		leaf = path->nodes[0];
2611 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2612 
2613 		fi = btrfs_item_ptr(leaf, path->slots[0],
2614 				    struct btrfs_file_extent_item);
2615 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2616 
2617 		if (extent_len + found_key.offset == start &&
2618 		    relink_is_mergable(leaf, fi, new)) {
2619 			btrfs_set_file_extent_num_bytes(leaf, fi,
2620 							extent_len + len);
2621 			btrfs_mark_buffer_dirty(leaf);
2622 			inode_add_bytes(inode, len);
2623 
2624 			ret = 1;
2625 			goto out_free_path;
2626 		} else {
2627 			merge = false;
2628 			btrfs_release_path(path);
2629 			goto again;
2630 		}
2631 	}
2632 
2633 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2634 					sizeof(*extent));
2635 	if (ret) {
2636 		btrfs_abort_transaction(trans, ret);
2637 		goto out_free_path;
2638 	}
2639 
2640 	leaf = path->nodes[0];
2641 	item = btrfs_item_ptr(leaf, path->slots[0],
2642 				struct btrfs_file_extent_item);
2643 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2644 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2645 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2646 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2647 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2648 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2649 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2650 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2651 	btrfs_set_file_extent_encryption(leaf, item, 0);
2652 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2653 
2654 	btrfs_mark_buffer_dirty(leaf);
2655 	inode_add_bytes(inode, len);
2656 	btrfs_release_path(path);
2657 
2658 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2659 			new->disk_len, 0,
2660 			backref->root_id, backref->inum,
2661 			new->file_pos);	/* start - extent_offset */
2662 	if (ret) {
2663 		btrfs_abort_transaction(trans, ret);
2664 		goto out_free_path;
2665 	}
2666 
2667 	ret = 1;
2668 out_free_path:
2669 	btrfs_release_path(path);
2670 	path->leave_spinning = 0;
2671 	btrfs_end_transaction(trans, root);
2672 out_unlock:
2673 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2674 			     &cached, GFP_NOFS);
2675 	iput(inode);
2676 	return ret;
2677 }
2678 
free_sa_defrag_extent(struct new_sa_defrag_extent * new)2679 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2680 {
2681 	struct old_sa_defrag_extent *old, *tmp;
2682 
2683 	if (!new)
2684 		return;
2685 
2686 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2687 		kfree(old);
2688 	}
2689 	kfree(new);
2690 }
2691 
relink_file_extents(struct new_sa_defrag_extent * new)2692 static void relink_file_extents(struct new_sa_defrag_extent *new)
2693 {
2694 	struct btrfs_path *path;
2695 	struct sa_defrag_extent_backref *backref;
2696 	struct sa_defrag_extent_backref *prev = NULL;
2697 	struct inode *inode;
2698 	struct btrfs_root *root;
2699 	struct rb_node *node;
2700 	int ret;
2701 
2702 	inode = new->inode;
2703 	root = BTRFS_I(inode)->root;
2704 
2705 	path = btrfs_alloc_path();
2706 	if (!path)
2707 		return;
2708 
2709 	if (!record_extent_backrefs(path, new)) {
2710 		btrfs_free_path(path);
2711 		goto out;
2712 	}
2713 	btrfs_release_path(path);
2714 
2715 	while (1) {
2716 		node = rb_first(&new->root);
2717 		if (!node)
2718 			break;
2719 		rb_erase(node, &new->root);
2720 
2721 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2722 
2723 		ret = relink_extent_backref(path, prev, backref);
2724 		WARN_ON(ret < 0);
2725 
2726 		kfree(prev);
2727 
2728 		if (ret == 1)
2729 			prev = backref;
2730 		else
2731 			prev = NULL;
2732 		cond_resched();
2733 	}
2734 	kfree(prev);
2735 
2736 	btrfs_free_path(path);
2737 out:
2738 	free_sa_defrag_extent(new);
2739 
2740 	atomic_dec(&root->fs_info->defrag_running);
2741 	wake_up(&root->fs_info->transaction_wait);
2742 }
2743 
2744 static struct new_sa_defrag_extent *
record_old_file_extents(struct inode * inode,struct btrfs_ordered_extent * ordered)2745 record_old_file_extents(struct inode *inode,
2746 			struct btrfs_ordered_extent *ordered)
2747 {
2748 	struct btrfs_root *root = BTRFS_I(inode)->root;
2749 	struct btrfs_path *path;
2750 	struct btrfs_key key;
2751 	struct old_sa_defrag_extent *old;
2752 	struct new_sa_defrag_extent *new;
2753 	int ret;
2754 
2755 	new = kmalloc(sizeof(*new), GFP_NOFS);
2756 	if (!new)
2757 		return NULL;
2758 
2759 	new->inode = inode;
2760 	new->file_pos = ordered->file_offset;
2761 	new->len = ordered->len;
2762 	new->bytenr = ordered->start;
2763 	new->disk_len = ordered->disk_len;
2764 	new->compress_type = ordered->compress_type;
2765 	new->root = RB_ROOT;
2766 	INIT_LIST_HEAD(&new->head);
2767 
2768 	path = btrfs_alloc_path();
2769 	if (!path)
2770 		goto out_kfree;
2771 
2772 	key.objectid = btrfs_ino(inode);
2773 	key.type = BTRFS_EXTENT_DATA_KEY;
2774 	key.offset = new->file_pos;
2775 
2776 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2777 	if (ret < 0)
2778 		goto out_free_path;
2779 	if (ret > 0 && path->slots[0] > 0)
2780 		path->slots[0]--;
2781 
2782 	/* find out all the old extents for the file range */
2783 	while (1) {
2784 		struct btrfs_file_extent_item *extent;
2785 		struct extent_buffer *l;
2786 		int slot;
2787 		u64 num_bytes;
2788 		u64 offset;
2789 		u64 end;
2790 		u64 disk_bytenr;
2791 		u64 extent_offset;
2792 
2793 		l = path->nodes[0];
2794 		slot = path->slots[0];
2795 
2796 		if (slot >= btrfs_header_nritems(l)) {
2797 			ret = btrfs_next_leaf(root, path);
2798 			if (ret < 0)
2799 				goto out_free_path;
2800 			else if (ret > 0)
2801 				break;
2802 			continue;
2803 		}
2804 
2805 		btrfs_item_key_to_cpu(l, &key, slot);
2806 
2807 		if (key.objectid != btrfs_ino(inode))
2808 			break;
2809 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2810 			break;
2811 		if (key.offset >= new->file_pos + new->len)
2812 			break;
2813 
2814 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2815 
2816 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2817 		if (key.offset + num_bytes < new->file_pos)
2818 			goto next;
2819 
2820 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2821 		if (!disk_bytenr)
2822 			goto next;
2823 
2824 		extent_offset = btrfs_file_extent_offset(l, extent);
2825 
2826 		old = kmalloc(sizeof(*old), GFP_NOFS);
2827 		if (!old)
2828 			goto out_free_path;
2829 
2830 		offset = max(new->file_pos, key.offset);
2831 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2832 
2833 		old->bytenr = disk_bytenr;
2834 		old->extent_offset = extent_offset;
2835 		old->offset = offset - key.offset;
2836 		old->len = end - offset;
2837 		old->new = new;
2838 		old->count = 0;
2839 		list_add_tail(&old->list, &new->head);
2840 next:
2841 		path->slots[0]++;
2842 		cond_resched();
2843 	}
2844 
2845 	btrfs_free_path(path);
2846 	atomic_inc(&root->fs_info->defrag_running);
2847 
2848 	return new;
2849 
2850 out_free_path:
2851 	btrfs_free_path(path);
2852 out_kfree:
2853 	free_sa_defrag_extent(new);
2854 	return NULL;
2855 }
2856 
btrfs_release_delalloc_bytes(struct btrfs_root * root,u64 start,u64 len)2857 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2858 					 u64 start, u64 len)
2859 {
2860 	struct btrfs_block_group_cache *cache;
2861 
2862 	cache = btrfs_lookup_block_group(root->fs_info, start);
2863 	ASSERT(cache);
2864 
2865 	spin_lock(&cache->lock);
2866 	cache->delalloc_bytes -= len;
2867 	spin_unlock(&cache->lock);
2868 
2869 	btrfs_put_block_group(cache);
2870 }
2871 
2872 /* as ordered data IO finishes, this gets called so we can finish
2873  * an ordered extent if the range of bytes in the file it covers are
2874  * fully written.
2875  */
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)2876 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2877 {
2878 	struct inode *inode = ordered_extent->inode;
2879 	struct btrfs_root *root = BTRFS_I(inode)->root;
2880 	struct btrfs_trans_handle *trans = NULL;
2881 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2882 	struct extent_state *cached_state = NULL;
2883 	struct new_sa_defrag_extent *new = NULL;
2884 	int compress_type = 0;
2885 	int ret = 0;
2886 	u64 logical_len = ordered_extent->len;
2887 	bool nolock;
2888 	bool truncated = false;
2889 
2890 	nolock = btrfs_is_free_space_inode(inode);
2891 
2892 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2893 		ret = -EIO;
2894 		goto out;
2895 	}
2896 
2897 	btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2898 				     ordered_extent->file_offset +
2899 				     ordered_extent->len - 1);
2900 
2901 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2902 		truncated = true;
2903 		logical_len = ordered_extent->truncated_len;
2904 		/* Truncated the entire extent, don't bother adding */
2905 		if (!logical_len)
2906 			goto out;
2907 	}
2908 
2909 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2910 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2911 
2912 		/*
2913 		 * For mwrite(mmap + memset to write) case, we still reserve
2914 		 * space for NOCOW range.
2915 		 * As NOCOW won't cause a new delayed ref, just free the space
2916 		 */
2917 		btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2918 				       ordered_extent->len);
2919 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2920 		if (nolock)
2921 			trans = btrfs_join_transaction_nolock(root);
2922 		else
2923 			trans = btrfs_join_transaction(root);
2924 		if (IS_ERR(trans)) {
2925 			ret = PTR_ERR(trans);
2926 			trans = NULL;
2927 			goto out;
2928 		}
2929 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2930 		ret = btrfs_update_inode_fallback(trans, root, inode);
2931 		if (ret) /* -ENOMEM or corruption */
2932 			btrfs_abort_transaction(trans, ret);
2933 		goto out;
2934 	}
2935 
2936 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2937 			 ordered_extent->file_offset + ordered_extent->len - 1,
2938 			 &cached_state);
2939 
2940 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2941 			ordered_extent->file_offset + ordered_extent->len - 1,
2942 			EXTENT_DEFRAG, 1, cached_state);
2943 	if (ret) {
2944 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2945 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2946 			/* the inode is shared */
2947 			new = record_old_file_extents(inode, ordered_extent);
2948 
2949 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2950 			ordered_extent->file_offset + ordered_extent->len - 1,
2951 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2952 	}
2953 
2954 	if (nolock)
2955 		trans = btrfs_join_transaction_nolock(root);
2956 	else
2957 		trans = btrfs_join_transaction(root);
2958 	if (IS_ERR(trans)) {
2959 		ret = PTR_ERR(trans);
2960 		trans = NULL;
2961 		goto out_unlock;
2962 	}
2963 
2964 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2965 
2966 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2967 		compress_type = ordered_extent->compress_type;
2968 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2969 		BUG_ON(compress_type);
2970 		ret = btrfs_mark_extent_written(trans, inode,
2971 						ordered_extent->file_offset,
2972 						ordered_extent->file_offset +
2973 						logical_len);
2974 	} else {
2975 		BUG_ON(root == root->fs_info->tree_root);
2976 		ret = insert_reserved_file_extent(trans, inode,
2977 						ordered_extent->file_offset,
2978 						ordered_extent->start,
2979 						ordered_extent->disk_len,
2980 						logical_len, logical_len,
2981 						compress_type, 0, 0,
2982 						BTRFS_FILE_EXTENT_REG);
2983 		if (!ret)
2984 			btrfs_release_delalloc_bytes(root,
2985 						     ordered_extent->start,
2986 						     ordered_extent->disk_len);
2987 	}
2988 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2989 			   ordered_extent->file_offset, ordered_extent->len,
2990 			   trans->transid);
2991 	if (ret < 0) {
2992 		btrfs_abort_transaction(trans, ret);
2993 		goto out_unlock;
2994 	}
2995 
2996 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2997 			  &ordered_extent->list);
2998 
2999 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3000 	ret = btrfs_update_inode_fallback(trans, root, inode);
3001 	if (ret) { /* -ENOMEM or corruption */
3002 		btrfs_abort_transaction(trans, ret);
3003 		goto out_unlock;
3004 	}
3005 	ret = 0;
3006 out_unlock:
3007 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
3008 			     ordered_extent->file_offset +
3009 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
3010 out:
3011 	if (root != root->fs_info->tree_root)
3012 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
3013 	if (trans)
3014 		btrfs_end_transaction(trans, root);
3015 
3016 	if (ret || truncated) {
3017 		u64 start, end;
3018 
3019 		if (truncated)
3020 			start = ordered_extent->file_offset + logical_len;
3021 		else
3022 			start = ordered_extent->file_offset;
3023 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3024 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3025 
3026 		/* Drop the cache for the part of the extent we didn't write. */
3027 		btrfs_drop_extent_cache(inode, start, end, 0);
3028 
3029 		/*
3030 		 * If the ordered extent had an IOERR or something else went
3031 		 * wrong we need to return the space for this ordered extent
3032 		 * back to the allocator.  We only free the extent in the
3033 		 * truncated case if we didn't write out the extent at all.
3034 		 */
3035 		if ((ret || !logical_len) &&
3036 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3037 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3038 			btrfs_free_reserved_extent(root, ordered_extent->start,
3039 						   ordered_extent->disk_len, 1);
3040 	}
3041 
3042 
3043 	/*
3044 	 * This needs to be done to make sure anybody waiting knows we are done
3045 	 * updating everything for this ordered extent.
3046 	 */
3047 	btrfs_remove_ordered_extent(inode, ordered_extent);
3048 
3049 	/* for snapshot-aware defrag */
3050 	if (new) {
3051 		if (ret) {
3052 			free_sa_defrag_extent(new);
3053 			atomic_dec(&root->fs_info->defrag_running);
3054 		} else {
3055 			relink_file_extents(new);
3056 		}
3057 	}
3058 
3059 	/* once for us */
3060 	btrfs_put_ordered_extent(ordered_extent);
3061 	/* once for the tree */
3062 	btrfs_put_ordered_extent(ordered_extent);
3063 
3064 	return ret;
3065 }
3066 
finish_ordered_fn(struct btrfs_work * work)3067 static void finish_ordered_fn(struct btrfs_work *work)
3068 {
3069 	struct btrfs_ordered_extent *ordered_extent;
3070 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3071 	btrfs_finish_ordered_io(ordered_extent);
3072 }
3073 
btrfs_writepage_end_io_hook(struct page * page,u64 start,u64 end,struct extent_state * state,int uptodate)3074 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3075 				struct extent_state *state, int uptodate)
3076 {
3077 	struct inode *inode = page->mapping->host;
3078 	struct btrfs_root *root = BTRFS_I(inode)->root;
3079 	struct btrfs_ordered_extent *ordered_extent = NULL;
3080 	struct btrfs_workqueue *wq;
3081 	btrfs_work_func_t func;
3082 
3083 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3084 
3085 	ClearPagePrivate2(page);
3086 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3087 					    end - start + 1, uptodate))
3088 		return 0;
3089 
3090 	if (btrfs_is_free_space_inode(inode)) {
3091 		wq = root->fs_info->endio_freespace_worker;
3092 		func = btrfs_freespace_write_helper;
3093 	} else {
3094 		wq = root->fs_info->endio_write_workers;
3095 		func = btrfs_endio_write_helper;
3096 	}
3097 
3098 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3099 			NULL);
3100 	btrfs_queue_work(wq, &ordered_extent->work);
3101 
3102 	return 0;
3103 }
3104 
__readpage_endio_check(struct inode * inode,struct btrfs_io_bio * io_bio,int icsum,struct page * page,int pgoff,u64 start,size_t len)3105 static int __readpage_endio_check(struct inode *inode,
3106 				  struct btrfs_io_bio *io_bio,
3107 				  int icsum, struct page *page,
3108 				  int pgoff, u64 start, size_t len)
3109 {
3110 	char *kaddr;
3111 	u32 csum_expected;
3112 	u32 csum = ~(u32)0;
3113 
3114 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3115 
3116 	kaddr = kmap_atomic(page);
3117 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3118 	btrfs_csum_final(csum, (char *)&csum);
3119 	if (csum != csum_expected)
3120 		goto zeroit;
3121 
3122 	kunmap_atomic(kaddr);
3123 	return 0;
3124 zeroit:
3125 	btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3126 		"csum failed ino %llu off %llu csum %u expected csum %u",
3127 			   btrfs_ino(inode), start, csum, csum_expected);
3128 	memset(kaddr + pgoff, 1, len);
3129 	flush_dcache_page(page);
3130 	kunmap_atomic(kaddr);
3131 	if (csum_expected == 0)
3132 		return 0;
3133 	return -EIO;
3134 }
3135 
3136 /*
3137  * when reads are done, we need to check csums to verify the data is correct
3138  * if there's a match, we allow the bio to finish.  If not, the code in
3139  * extent_io.c will try to find good copies for us.
3140  */
btrfs_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)3141 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3142 				      u64 phy_offset, struct page *page,
3143 				      u64 start, u64 end, int mirror)
3144 {
3145 	size_t offset = start - page_offset(page);
3146 	struct inode *inode = page->mapping->host;
3147 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3148 	struct btrfs_root *root = BTRFS_I(inode)->root;
3149 
3150 	if (PageChecked(page)) {
3151 		ClearPageChecked(page);
3152 		return 0;
3153 	}
3154 
3155 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3156 		return 0;
3157 
3158 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3159 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3160 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3161 		return 0;
3162 	}
3163 
3164 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3165 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3166 				      start, (size_t)(end - start + 1));
3167 }
3168 
btrfs_add_delayed_iput(struct inode * inode)3169 void btrfs_add_delayed_iput(struct inode *inode)
3170 {
3171 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3172 	struct btrfs_inode *binode = BTRFS_I(inode);
3173 
3174 	if (atomic_add_unless(&inode->i_count, -1, 1))
3175 		return;
3176 
3177 	spin_lock(&fs_info->delayed_iput_lock);
3178 	if (binode->delayed_iput_count == 0) {
3179 		ASSERT(list_empty(&binode->delayed_iput));
3180 		list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3181 	} else {
3182 		binode->delayed_iput_count++;
3183 	}
3184 	spin_unlock(&fs_info->delayed_iput_lock);
3185 }
3186 
btrfs_run_delayed_iputs(struct btrfs_root * root)3187 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3188 {
3189 	struct btrfs_fs_info *fs_info = root->fs_info;
3190 
3191 	spin_lock(&fs_info->delayed_iput_lock);
3192 	while (!list_empty(&fs_info->delayed_iputs)) {
3193 		struct btrfs_inode *inode;
3194 
3195 		inode = list_first_entry(&fs_info->delayed_iputs,
3196 				struct btrfs_inode, delayed_iput);
3197 		if (inode->delayed_iput_count) {
3198 			inode->delayed_iput_count--;
3199 			list_move_tail(&inode->delayed_iput,
3200 					&fs_info->delayed_iputs);
3201 		} else {
3202 			list_del_init(&inode->delayed_iput);
3203 		}
3204 		spin_unlock(&fs_info->delayed_iput_lock);
3205 		iput(&inode->vfs_inode);
3206 		spin_lock(&fs_info->delayed_iput_lock);
3207 	}
3208 	spin_unlock(&fs_info->delayed_iput_lock);
3209 }
3210 
3211 /*
3212  * This is called in transaction commit time. If there are no orphan
3213  * files in the subvolume, it removes orphan item and frees block_rsv
3214  * structure.
3215  */
btrfs_orphan_commit_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)3216 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3217 			      struct btrfs_root *root)
3218 {
3219 	struct btrfs_block_rsv *block_rsv;
3220 	int ret;
3221 
3222 	if (atomic_read(&root->orphan_inodes) ||
3223 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3224 		return;
3225 
3226 	spin_lock(&root->orphan_lock);
3227 	if (atomic_read(&root->orphan_inodes)) {
3228 		spin_unlock(&root->orphan_lock);
3229 		return;
3230 	}
3231 
3232 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3233 		spin_unlock(&root->orphan_lock);
3234 		return;
3235 	}
3236 
3237 	block_rsv = root->orphan_block_rsv;
3238 	root->orphan_block_rsv = NULL;
3239 	spin_unlock(&root->orphan_lock);
3240 
3241 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3242 	    btrfs_root_refs(&root->root_item) > 0) {
3243 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3244 					    root->root_key.objectid);
3245 		if (ret)
3246 			btrfs_abort_transaction(trans, ret);
3247 		else
3248 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3249 				  &root->state);
3250 	}
3251 
3252 	if (block_rsv) {
3253 		WARN_ON(block_rsv->size > 0);
3254 		btrfs_free_block_rsv(root, block_rsv);
3255 	}
3256 }
3257 
3258 /*
3259  * This creates an orphan entry for the given inode in case something goes
3260  * wrong in the middle of an unlink/truncate.
3261  *
3262  * NOTE: caller of this function should reserve 5 units of metadata for
3263  *	 this function.
3264  */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct inode * inode)3265 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3266 {
3267 	struct btrfs_root *root = BTRFS_I(inode)->root;
3268 	struct btrfs_block_rsv *block_rsv = NULL;
3269 	int reserve = 0;
3270 	int insert = 0;
3271 	int ret;
3272 
3273 	if (!root->orphan_block_rsv) {
3274 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3275 		if (!block_rsv)
3276 			return -ENOMEM;
3277 	}
3278 
3279 	spin_lock(&root->orphan_lock);
3280 	if (!root->orphan_block_rsv) {
3281 		root->orphan_block_rsv = block_rsv;
3282 	} else if (block_rsv) {
3283 		btrfs_free_block_rsv(root, block_rsv);
3284 		block_rsv = NULL;
3285 	}
3286 
3287 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3288 			      &BTRFS_I(inode)->runtime_flags)) {
3289 #if 0
3290 		/*
3291 		 * For proper ENOSPC handling, we should do orphan
3292 		 * cleanup when mounting. But this introduces backward
3293 		 * compatibility issue.
3294 		 */
3295 		if (!xchg(&root->orphan_item_inserted, 1))
3296 			insert = 2;
3297 		else
3298 			insert = 1;
3299 #endif
3300 		insert = 1;
3301 		atomic_inc(&root->orphan_inodes);
3302 	}
3303 
3304 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3305 			      &BTRFS_I(inode)->runtime_flags))
3306 		reserve = 1;
3307 	spin_unlock(&root->orphan_lock);
3308 
3309 	/* grab metadata reservation from transaction handle */
3310 	if (reserve) {
3311 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3312 		ASSERT(!ret);
3313 		if (ret) {
3314 			atomic_dec(&root->orphan_inodes);
3315 			clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3316 				  &BTRFS_I(inode)->runtime_flags);
3317 			if (insert)
3318 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3319 					  &BTRFS_I(inode)->runtime_flags);
3320 			return ret;
3321 		}
3322 	}
3323 
3324 	/* insert an orphan item to track this unlinked/truncated file */
3325 	if (insert >= 1) {
3326 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3327 		if (ret) {
3328 			atomic_dec(&root->orphan_inodes);
3329 			if (reserve) {
3330 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3331 					  &BTRFS_I(inode)->runtime_flags);
3332 				btrfs_orphan_release_metadata(inode);
3333 			}
3334 			if (ret != -EEXIST) {
3335 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3336 					  &BTRFS_I(inode)->runtime_flags);
3337 				btrfs_abort_transaction(trans, ret);
3338 				return ret;
3339 			}
3340 		}
3341 		ret = 0;
3342 	}
3343 
3344 	/* insert an orphan item to track subvolume contains orphan files */
3345 	if (insert >= 2) {
3346 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3347 					       root->root_key.objectid);
3348 		if (ret && ret != -EEXIST) {
3349 			btrfs_abort_transaction(trans, ret);
3350 			return ret;
3351 		}
3352 	}
3353 	return 0;
3354 }
3355 
3356 /*
3357  * We have done the truncate/delete so we can go ahead and remove the orphan
3358  * item for this particular inode.
3359  */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct inode * inode)3360 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3361 			    struct inode *inode)
3362 {
3363 	struct btrfs_root *root = BTRFS_I(inode)->root;
3364 	int delete_item = 0;
3365 	int release_rsv = 0;
3366 	int ret = 0;
3367 
3368 	spin_lock(&root->orphan_lock);
3369 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3370 			       &BTRFS_I(inode)->runtime_flags))
3371 		delete_item = 1;
3372 
3373 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3374 			       &BTRFS_I(inode)->runtime_flags))
3375 		release_rsv = 1;
3376 	spin_unlock(&root->orphan_lock);
3377 
3378 	if (delete_item) {
3379 		atomic_dec(&root->orphan_inodes);
3380 		if (trans)
3381 			ret = btrfs_del_orphan_item(trans, root,
3382 						    btrfs_ino(inode));
3383 	}
3384 
3385 	if (release_rsv)
3386 		btrfs_orphan_release_metadata(inode);
3387 
3388 	return ret;
3389 }
3390 
3391 /*
3392  * this cleans up any orphans that may be left on the list from the last use
3393  * of this root.
3394  */
btrfs_orphan_cleanup(struct btrfs_root * root)3395 int btrfs_orphan_cleanup(struct btrfs_root *root)
3396 {
3397 	struct btrfs_path *path;
3398 	struct extent_buffer *leaf;
3399 	struct btrfs_key key, found_key;
3400 	struct btrfs_trans_handle *trans;
3401 	struct inode *inode;
3402 	u64 last_objectid = 0;
3403 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3404 
3405 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3406 		return 0;
3407 
3408 	path = btrfs_alloc_path();
3409 	if (!path) {
3410 		ret = -ENOMEM;
3411 		goto out;
3412 	}
3413 	path->reada = READA_BACK;
3414 
3415 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3416 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3417 	key.offset = (u64)-1;
3418 
3419 	while (1) {
3420 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3421 		if (ret < 0)
3422 			goto out;
3423 
3424 		/*
3425 		 * if ret == 0 means we found what we were searching for, which
3426 		 * is weird, but possible, so only screw with path if we didn't
3427 		 * find the key and see if we have stuff that matches
3428 		 */
3429 		if (ret > 0) {
3430 			ret = 0;
3431 			if (path->slots[0] == 0)
3432 				break;
3433 			path->slots[0]--;
3434 		}
3435 
3436 		/* pull out the item */
3437 		leaf = path->nodes[0];
3438 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3439 
3440 		/* make sure the item matches what we want */
3441 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3442 			break;
3443 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3444 			break;
3445 
3446 		/* release the path since we're done with it */
3447 		btrfs_release_path(path);
3448 
3449 		/*
3450 		 * this is where we are basically btrfs_lookup, without the
3451 		 * crossing root thing.  we store the inode number in the
3452 		 * offset of the orphan item.
3453 		 */
3454 
3455 		if (found_key.offset == last_objectid) {
3456 			btrfs_err(root->fs_info,
3457 				"Error removing orphan entry, stopping orphan cleanup");
3458 			ret = -EINVAL;
3459 			goto out;
3460 		}
3461 
3462 		last_objectid = found_key.offset;
3463 
3464 		found_key.objectid = found_key.offset;
3465 		found_key.type = BTRFS_INODE_ITEM_KEY;
3466 		found_key.offset = 0;
3467 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3468 		ret = PTR_ERR_OR_ZERO(inode);
3469 		if (ret && ret != -ENOENT)
3470 			goto out;
3471 
3472 		if (ret == -ENOENT && root == root->fs_info->tree_root) {
3473 			struct btrfs_root *dead_root;
3474 			struct btrfs_fs_info *fs_info = root->fs_info;
3475 			int is_dead_root = 0;
3476 
3477 			/*
3478 			 * this is an orphan in the tree root. Currently these
3479 			 * could come from 2 sources:
3480 			 *  a) a snapshot deletion in progress
3481 			 *  b) a free space cache inode
3482 			 * We need to distinguish those two, as the snapshot
3483 			 * orphan must not get deleted.
3484 			 * find_dead_roots already ran before us, so if this
3485 			 * is a snapshot deletion, we should find the root
3486 			 * in the dead_roots list
3487 			 */
3488 			spin_lock(&fs_info->trans_lock);
3489 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3490 					    root_list) {
3491 				if (dead_root->root_key.objectid ==
3492 				    found_key.objectid) {
3493 					is_dead_root = 1;
3494 					break;
3495 				}
3496 			}
3497 			spin_unlock(&fs_info->trans_lock);
3498 			if (is_dead_root) {
3499 				/* prevent this orphan from being found again */
3500 				key.offset = found_key.objectid - 1;
3501 				continue;
3502 			}
3503 		}
3504 		/*
3505 		 * Inode is already gone but the orphan item is still there,
3506 		 * kill the orphan item.
3507 		 */
3508 		if (ret == -ENOENT) {
3509 			trans = btrfs_start_transaction(root, 1);
3510 			if (IS_ERR(trans)) {
3511 				ret = PTR_ERR(trans);
3512 				goto out;
3513 			}
3514 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3515 				found_key.objectid);
3516 			ret = btrfs_del_orphan_item(trans, root,
3517 						    found_key.objectid);
3518 			btrfs_end_transaction(trans, root);
3519 			if (ret)
3520 				goto out;
3521 			continue;
3522 		}
3523 
3524 		/*
3525 		 * add this inode to the orphan list so btrfs_orphan_del does
3526 		 * the proper thing when we hit it
3527 		 */
3528 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3529 			&BTRFS_I(inode)->runtime_flags);
3530 		atomic_inc(&root->orphan_inodes);
3531 
3532 		/* if we have links, this was a truncate, lets do that */
3533 		if (inode->i_nlink) {
3534 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3535 				iput(inode);
3536 				continue;
3537 			}
3538 			nr_truncate++;
3539 
3540 			/* 1 for the orphan item deletion. */
3541 			trans = btrfs_start_transaction(root, 1);
3542 			if (IS_ERR(trans)) {
3543 				iput(inode);
3544 				ret = PTR_ERR(trans);
3545 				goto out;
3546 			}
3547 			ret = btrfs_orphan_add(trans, inode);
3548 			btrfs_end_transaction(trans, root);
3549 			if (ret) {
3550 				iput(inode);
3551 				goto out;
3552 			}
3553 
3554 			ret = btrfs_truncate(inode);
3555 			if (ret)
3556 				btrfs_orphan_del(NULL, inode);
3557 		} else {
3558 			nr_unlink++;
3559 		}
3560 
3561 		/* this will do delete_inode and everything for us */
3562 		iput(inode);
3563 		if (ret)
3564 			goto out;
3565 	}
3566 	/* release the path since we're done with it */
3567 	btrfs_release_path(path);
3568 
3569 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3570 
3571 	if (root->orphan_block_rsv)
3572 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3573 					(u64)-1);
3574 
3575 	if (root->orphan_block_rsv ||
3576 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3577 		trans = btrfs_join_transaction(root);
3578 		if (!IS_ERR(trans))
3579 			btrfs_end_transaction(trans, root);
3580 	}
3581 
3582 	if (nr_unlink)
3583 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3584 	if (nr_truncate)
3585 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3586 
3587 out:
3588 	if (ret)
3589 		btrfs_err(root->fs_info,
3590 			"could not do orphan cleanup %d", ret);
3591 	btrfs_free_path(path);
3592 	return ret;
3593 }
3594 
3595 /*
3596  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3597  * don't find any xattrs, we know there can't be any acls.
3598  *
3599  * slot is the slot the inode is in, objectid is the objectid of the inode
3600  */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3601 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3602 					  int slot, u64 objectid,
3603 					  int *first_xattr_slot)
3604 {
3605 	u32 nritems = btrfs_header_nritems(leaf);
3606 	struct btrfs_key found_key;
3607 	static u64 xattr_access = 0;
3608 	static u64 xattr_default = 0;
3609 	int scanned = 0;
3610 
3611 	if (!xattr_access) {
3612 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3613 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3614 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3615 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3616 	}
3617 
3618 	slot++;
3619 	*first_xattr_slot = -1;
3620 	while (slot < nritems) {
3621 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3622 
3623 		/* we found a different objectid, there must not be acls */
3624 		if (found_key.objectid != objectid)
3625 			return 0;
3626 
3627 		/* we found an xattr, assume we've got an acl */
3628 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3629 			if (*first_xattr_slot == -1)
3630 				*first_xattr_slot = slot;
3631 			if (found_key.offset == xattr_access ||
3632 			    found_key.offset == xattr_default)
3633 				return 1;
3634 		}
3635 
3636 		/*
3637 		 * we found a key greater than an xattr key, there can't
3638 		 * be any acls later on
3639 		 */
3640 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3641 			return 0;
3642 
3643 		slot++;
3644 		scanned++;
3645 
3646 		/*
3647 		 * it goes inode, inode backrefs, xattrs, extents,
3648 		 * so if there are a ton of hard links to an inode there can
3649 		 * be a lot of backrefs.  Don't waste time searching too hard,
3650 		 * this is just an optimization
3651 		 */
3652 		if (scanned >= 8)
3653 			break;
3654 	}
3655 	/* we hit the end of the leaf before we found an xattr or
3656 	 * something larger than an xattr.  We have to assume the inode
3657 	 * has acls
3658 	 */
3659 	if (*first_xattr_slot == -1)
3660 		*first_xattr_slot = slot;
3661 	return 1;
3662 }
3663 
3664 /*
3665  * read an inode from the btree into the in-memory inode
3666  */
btrfs_read_locked_inode(struct inode * inode)3667 static int btrfs_read_locked_inode(struct inode *inode)
3668 {
3669 	struct btrfs_path *path;
3670 	struct extent_buffer *leaf;
3671 	struct btrfs_inode_item *inode_item;
3672 	struct btrfs_root *root = BTRFS_I(inode)->root;
3673 	struct btrfs_key location;
3674 	unsigned long ptr;
3675 	int maybe_acls;
3676 	u32 rdev;
3677 	int ret;
3678 	bool filled = false;
3679 	int first_xattr_slot;
3680 
3681 	ret = btrfs_fill_inode(inode, &rdev);
3682 	if (!ret)
3683 		filled = true;
3684 
3685 	path = btrfs_alloc_path();
3686 	if (!path) {
3687 		ret = -ENOMEM;
3688 		goto make_bad;
3689 	}
3690 
3691 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3692 
3693 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3694 	if (ret) {
3695 		if (ret > 0)
3696 			ret = -ENOENT;
3697 		goto make_bad;
3698 	}
3699 
3700 	leaf = path->nodes[0];
3701 
3702 	if (filled)
3703 		goto cache_index;
3704 
3705 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3706 				    struct btrfs_inode_item);
3707 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3708 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3709 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3710 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3711 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3712 
3713 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3714 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3715 
3716 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3717 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3718 
3719 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3720 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3721 
3722 	BTRFS_I(inode)->i_otime.tv_sec =
3723 		btrfs_timespec_sec(leaf, &inode_item->otime);
3724 	BTRFS_I(inode)->i_otime.tv_nsec =
3725 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3726 
3727 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3728 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3729 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3730 
3731 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3732 	inode->i_generation = BTRFS_I(inode)->generation;
3733 	inode->i_rdev = 0;
3734 	rdev = btrfs_inode_rdev(leaf, inode_item);
3735 
3736 	BTRFS_I(inode)->index_cnt = (u64)-1;
3737 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3738 
3739 cache_index:
3740 	/*
3741 	 * If we were modified in the current generation and evicted from memory
3742 	 * and then re-read we need to do a full sync since we don't have any
3743 	 * idea about which extents were modified before we were evicted from
3744 	 * cache.
3745 	 *
3746 	 * This is required for both inode re-read from disk and delayed inode
3747 	 * in delayed_nodes_tree.
3748 	 */
3749 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3750 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3751 			&BTRFS_I(inode)->runtime_flags);
3752 
3753 	/*
3754 	 * We don't persist the id of the transaction where an unlink operation
3755 	 * against the inode was last made. So here we assume the inode might
3756 	 * have been evicted, and therefore the exact value of last_unlink_trans
3757 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3758 	 * between the inode and its parent if the inode is fsync'ed and the log
3759 	 * replayed. For example, in the scenario:
3760 	 *
3761 	 * touch mydir/foo
3762 	 * ln mydir/foo mydir/bar
3763 	 * sync
3764 	 * unlink mydir/bar
3765 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3766 	 * xfs_io -c fsync mydir/foo
3767 	 * <power failure>
3768 	 * mount fs, triggers fsync log replay
3769 	 *
3770 	 * We must make sure that when we fsync our inode foo we also log its
3771 	 * parent inode, otherwise after log replay the parent still has the
3772 	 * dentry with the "bar" name but our inode foo has a link count of 1
3773 	 * and doesn't have an inode ref with the name "bar" anymore.
3774 	 *
3775 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3776 	 * but it guarantees correctness at the expense of occasional full
3777 	 * transaction commits on fsync if our inode is a directory, or if our
3778 	 * inode is not a directory, logging its parent unnecessarily.
3779 	 */
3780 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3781 
3782 	path->slots[0]++;
3783 	if (inode->i_nlink != 1 ||
3784 	    path->slots[0] >= btrfs_header_nritems(leaf))
3785 		goto cache_acl;
3786 
3787 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3788 	if (location.objectid != btrfs_ino(inode))
3789 		goto cache_acl;
3790 
3791 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3792 	if (location.type == BTRFS_INODE_REF_KEY) {
3793 		struct btrfs_inode_ref *ref;
3794 
3795 		ref = (struct btrfs_inode_ref *)ptr;
3796 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3797 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3798 		struct btrfs_inode_extref *extref;
3799 
3800 		extref = (struct btrfs_inode_extref *)ptr;
3801 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3802 								     extref);
3803 	}
3804 cache_acl:
3805 	/*
3806 	 * try to precache a NULL acl entry for files that don't have
3807 	 * any xattrs or acls
3808 	 */
3809 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3810 					   btrfs_ino(inode), &first_xattr_slot);
3811 	if (first_xattr_slot != -1) {
3812 		path->slots[0] = first_xattr_slot;
3813 		ret = btrfs_load_inode_props(inode, path);
3814 		if (ret)
3815 			btrfs_err(root->fs_info,
3816 				  "error loading props for ino %llu (root %llu): %d",
3817 				  btrfs_ino(inode),
3818 				  root->root_key.objectid, ret);
3819 	}
3820 	btrfs_free_path(path);
3821 
3822 	if (!maybe_acls)
3823 		cache_no_acl(inode);
3824 
3825 	switch (inode->i_mode & S_IFMT) {
3826 	case S_IFREG:
3827 		inode->i_mapping->a_ops = &btrfs_aops;
3828 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3829 		inode->i_fop = &btrfs_file_operations;
3830 		inode->i_op = &btrfs_file_inode_operations;
3831 		break;
3832 	case S_IFDIR:
3833 		inode->i_fop = &btrfs_dir_file_operations;
3834 		inode->i_op = &btrfs_dir_inode_operations;
3835 		break;
3836 	case S_IFLNK:
3837 		inode->i_op = &btrfs_symlink_inode_operations;
3838 		inode_nohighmem(inode);
3839 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3840 		break;
3841 	default:
3842 		inode->i_op = &btrfs_special_inode_operations;
3843 		init_special_inode(inode, inode->i_mode, rdev);
3844 		break;
3845 	}
3846 
3847 	btrfs_update_iflags(inode);
3848 	return 0;
3849 
3850 make_bad:
3851 	btrfs_free_path(path);
3852 	make_bad_inode(inode);
3853 	return ret;
3854 }
3855 
3856 /*
3857  * given a leaf and an inode, copy the inode fields into the leaf
3858  */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)3859 static void fill_inode_item(struct btrfs_trans_handle *trans,
3860 			    struct extent_buffer *leaf,
3861 			    struct btrfs_inode_item *item,
3862 			    struct inode *inode)
3863 {
3864 	struct btrfs_map_token token;
3865 
3866 	btrfs_init_map_token(&token);
3867 
3868 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3869 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3870 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3871 				   &token);
3872 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3873 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3874 
3875 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3876 				     inode->i_atime.tv_sec, &token);
3877 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3878 				      inode->i_atime.tv_nsec, &token);
3879 
3880 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3881 				     inode->i_mtime.tv_sec, &token);
3882 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3883 				      inode->i_mtime.tv_nsec, &token);
3884 
3885 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3886 				     inode->i_ctime.tv_sec, &token);
3887 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3888 				      inode->i_ctime.tv_nsec, &token);
3889 
3890 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3891 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3892 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3893 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3894 
3895 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3896 				     &token);
3897 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3898 					 &token);
3899 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3900 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3901 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3902 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3903 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3904 }
3905 
3906 /*
3907  * copy everything in the in-memory inode into the btree.
3908  */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3909 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3910 				struct btrfs_root *root, struct inode *inode)
3911 {
3912 	struct btrfs_inode_item *inode_item;
3913 	struct btrfs_path *path;
3914 	struct extent_buffer *leaf;
3915 	int ret;
3916 
3917 	path = btrfs_alloc_path();
3918 	if (!path)
3919 		return -ENOMEM;
3920 
3921 	path->leave_spinning = 1;
3922 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3923 				 1);
3924 	if (ret) {
3925 		if (ret > 0)
3926 			ret = -ENOENT;
3927 		goto failed;
3928 	}
3929 
3930 	leaf = path->nodes[0];
3931 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3932 				    struct btrfs_inode_item);
3933 
3934 	fill_inode_item(trans, leaf, inode_item, inode);
3935 	btrfs_mark_buffer_dirty(leaf);
3936 	btrfs_set_inode_last_trans(trans, inode);
3937 	ret = 0;
3938 failed:
3939 	btrfs_free_path(path);
3940 	return ret;
3941 }
3942 
3943 /*
3944  * copy everything in the in-memory inode into the btree.
3945  */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3946 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3947 				struct btrfs_root *root, struct inode *inode)
3948 {
3949 	int ret;
3950 
3951 	/*
3952 	 * If the inode is a free space inode, we can deadlock during commit
3953 	 * if we put it into the delayed code.
3954 	 *
3955 	 * The data relocation inode should also be directly updated
3956 	 * without delay
3957 	 */
3958 	if (!btrfs_is_free_space_inode(inode)
3959 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3960 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
3961 		btrfs_update_root_times(trans, root);
3962 
3963 		ret = btrfs_delayed_update_inode(trans, root, inode);
3964 		if (!ret)
3965 			btrfs_set_inode_last_trans(trans, inode);
3966 		return ret;
3967 	}
3968 
3969 	return btrfs_update_inode_item(trans, root, inode);
3970 }
3971 
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3972 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3973 					 struct btrfs_root *root,
3974 					 struct inode *inode)
3975 {
3976 	int ret;
3977 
3978 	ret = btrfs_update_inode(trans, root, inode);
3979 	if (ret == -ENOSPC)
3980 		return btrfs_update_inode_item(trans, root, inode);
3981 	return ret;
3982 }
3983 
3984 /*
3985  * unlink helper that gets used here in inode.c and in the tree logging
3986  * recovery code.  It remove a link in a directory with a given name, and
3987  * also drops the back refs in the inode to the directory
3988  */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct inode * inode,const char * name,int name_len)3989 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3990 				struct btrfs_root *root,
3991 				struct inode *dir, struct inode *inode,
3992 				const char *name, int name_len)
3993 {
3994 	struct btrfs_path *path;
3995 	int ret = 0;
3996 	struct extent_buffer *leaf;
3997 	struct btrfs_dir_item *di;
3998 	struct btrfs_key key;
3999 	u64 index;
4000 	u64 ino = btrfs_ino(inode);
4001 	u64 dir_ino = btrfs_ino(dir);
4002 
4003 	path = btrfs_alloc_path();
4004 	if (!path) {
4005 		ret = -ENOMEM;
4006 		goto out;
4007 	}
4008 
4009 	path->leave_spinning = 1;
4010 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4011 				    name, name_len, -1);
4012 	if (IS_ERR(di)) {
4013 		ret = PTR_ERR(di);
4014 		goto err;
4015 	}
4016 	if (!di) {
4017 		ret = -ENOENT;
4018 		goto err;
4019 	}
4020 	leaf = path->nodes[0];
4021 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4022 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4023 	if (ret)
4024 		goto err;
4025 	btrfs_release_path(path);
4026 
4027 	/*
4028 	 * If we don't have dir index, we have to get it by looking up
4029 	 * the inode ref, since we get the inode ref, remove it directly,
4030 	 * it is unnecessary to do delayed deletion.
4031 	 *
4032 	 * But if we have dir index, needn't search inode ref to get it.
4033 	 * Since the inode ref is close to the inode item, it is better
4034 	 * that we delay to delete it, and just do this deletion when
4035 	 * we update the inode item.
4036 	 */
4037 	if (BTRFS_I(inode)->dir_index) {
4038 		ret = btrfs_delayed_delete_inode_ref(inode);
4039 		if (!ret) {
4040 			index = BTRFS_I(inode)->dir_index;
4041 			goto skip_backref;
4042 		}
4043 	}
4044 
4045 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4046 				  dir_ino, &index);
4047 	if (ret) {
4048 		btrfs_info(root->fs_info,
4049 			"failed to delete reference to %.*s, inode %llu parent %llu",
4050 			name_len, name, ino, dir_ino);
4051 		btrfs_abort_transaction(trans, ret);
4052 		goto err;
4053 	}
4054 skip_backref:
4055 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4056 	if (ret) {
4057 		btrfs_abort_transaction(trans, ret);
4058 		goto err;
4059 	}
4060 
4061 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
4062 					 inode, dir_ino);
4063 	if (ret != 0 && ret != -ENOENT) {
4064 		btrfs_abort_transaction(trans, ret);
4065 		goto err;
4066 	}
4067 
4068 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4069 					   dir, index);
4070 	if (ret == -ENOENT)
4071 		ret = 0;
4072 	else if (ret)
4073 		btrfs_abort_transaction(trans, ret);
4074 err:
4075 	btrfs_free_path(path);
4076 	if (ret)
4077 		goto out;
4078 
4079 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4080 	inode_inc_iversion(inode);
4081 	inode_inc_iversion(dir);
4082 	inode->i_ctime = dir->i_mtime =
4083 		dir->i_ctime = current_time(inode);
4084 	ret = btrfs_update_inode(trans, root, dir);
4085 out:
4086 	return ret;
4087 }
4088 
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct inode * inode,const char * name,int name_len)4089 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4090 		       struct btrfs_root *root,
4091 		       struct inode *dir, struct inode *inode,
4092 		       const char *name, int name_len)
4093 {
4094 	int ret;
4095 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4096 	if (!ret) {
4097 		drop_nlink(inode);
4098 		ret = btrfs_update_inode(trans, root, inode);
4099 	}
4100 	return ret;
4101 }
4102 
4103 /*
4104  * helper to start transaction for unlink and rmdir.
4105  *
4106  * unlink and rmdir are special in btrfs, they do not always free space, so
4107  * if we cannot make our reservations the normal way try and see if there is
4108  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4109  * allow the unlink to occur.
4110  */
__unlink_start_trans(struct inode * dir)4111 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4112 {
4113 	struct btrfs_root *root = BTRFS_I(dir)->root;
4114 
4115 	/*
4116 	 * 1 for the possible orphan item
4117 	 * 1 for the dir item
4118 	 * 1 for the dir index
4119 	 * 1 for the inode ref
4120 	 * 1 for the inode
4121 	 */
4122 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4123 }
4124 
btrfs_unlink(struct inode * dir,struct dentry * dentry)4125 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4126 {
4127 	struct btrfs_root *root = BTRFS_I(dir)->root;
4128 	struct btrfs_trans_handle *trans;
4129 	struct inode *inode = d_inode(dentry);
4130 	int ret;
4131 
4132 	trans = __unlink_start_trans(dir);
4133 	if (IS_ERR(trans))
4134 		return PTR_ERR(trans);
4135 
4136 	btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4137 
4138 	ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4139 				 dentry->d_name.name, dentry->d_name.len);
4140 	if (ret)
4141 		goto out;
4142 
4143 	if (inode->i_nlink == 0) {
4144 		ret = btrfs_orphan_add(trans, inode);
4145 		if (ret)
4146 			goto out;
4147 	}
4148 
4149 out:
4150 	btrfs_end_transaction(trans, root);
4151 	btrfs_btree_balance_dirty(root);
4152 	return ret;
4153 }
4154 
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,u64 objectid,const char * name,int name_len)4155 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4156 			struct btrfs_root *root,
4157 			struct inode *dir, u64 objectid,
4158 			const char *name, int name_len)
4159 {
4160 	struct btrfs_path *path;
4161 	struct extent_buffer *leaf;
4162 	struct btrfs_dir_item *di;
4163 	struct btrfs_key key;
4164 	u64 index;
4165 	int ret;
4166 	u64 dir_ino = btrfs_ino(dir);
4167 
4168 	path = btrfs_alloc_path();
4169 	if (!path)
4170 		return -ENOMEM;
4171 
4172 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4173 				   name, name_len, -1);
4174 	if (IS_ERR_OR_NULL(di)) {
4175 		if (!di)
4176 			ret = -ENOENT;
4177 		else
4178 			ret = PTR_ERR(di);
4179 		goto out;
4180 	}
4181 
4182 	leaf = path->nodes[0];
4183 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4184 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4185 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4186 	if (ret) {
4187 		btrfs_abort_transaction(trans, ret);
4188 		goto out;
4189 	}
4190 	btrfs_release_path(path);
4191 
4192 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4193 				 objectid, root->root_key.objectid,
4194 				 dir_ino, &index, name, name_len);
4195 	if (ret < 0) {
4196 		if (ret != -ENOENT) {
4197 			btrfs_abort_transaction(trans, ret);
4198 			goto out;
4199 		}
4200 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4201 						 name, name_len);
4202 		if (IS_ERR_OR_NULL(di)) {
4203 			if (!di)
4204 				ret = -ENOENT;
4205 			else
4206 				ret = PTR_ERR(di);
4207 			btrfs_abort_transaction(trans, ret);
4208 			goto out;
4209 		}
4210 
4211 		leaf = path->nodes[0];
4212 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4213 		btrfs_release_path(path);
4214 		index = key.offset;
4215 	}
4216 	btrfs_release_path(path);
4217 
4218 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4219 	if (ret) {
4220 		btrfs_abort_transaction(trans, ret);
4221 		goto out;
4222 	}
4223 
4224 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4225 	inode_inc_iversion(dir);
4226 	dir->i_mtime = dir->i_ctime = current_time(dir);
4227 	ret = btrfs_update_inode_fallback(trans, root, dir);
4228 	if (ret)
4229 		btrfs_abort_transaction(trans, ret);
4230 out:
4231 	btrfs_free_path(path);
4232 	return ret;
4233 }
4234 
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4235 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4236 {
4237 	struct inode *inode = d_inode(dentry);
4238 	int err = 0;
4239 	struct btrfs_root *root = BTRFS_I(dir)->root;
4240 	struct btrfs_trans_handle *trans;
4241 	u64 last_unlink_trans;
4242 
4243 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4244 		return -ENOTEMPTY;
4245 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4246 		return -EPERM;
4247 
4248 	trans = __unlink_start_trans(dir);
4249 	if (IS_ERR(trans))
4250 		return PTR_ERR(trans);
4251 
4252 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4253 		err = btrfs_unlink_subvol(trans, root, dir,
4254 					  BTRFS_I(inode)->location.objectid,
4255 					  dentry->d_name.name,
4256 					  dentry->d_name.len);
4257 		goto out;
4258 	}
4259 
4260 	err = btrfs_orphan_add(trans, inode);
4261 	if (err)
4262 		goto out;
4263 
4264 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4265 
4266 	/* now the directory is empty */
4267 	err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4268 				 dentry->d_name.name, dentry->d_name.len);
4269 	if (!err) {
4270 		btrfs_i_size_write(inode, 0);
4271 		/*
4272 		 * Propagate the last_unlink_trans value of the deleted dir to
4273 		 * its parent directory. This is to prevent an unrecoverable
4274 		 * log tree in the case we do something like this:
4275 		 * 1) create dir foo
4276 		 * 2) create snapshot under dir foo
4277 		 * 3) delete the snapshot
4278 		 * 4) rmdir foo
4279 		 * 5) mkdir foo
4280 		 * 6) fsync foo or some file inside foo
4281 		 */
4282 		if (last_unlink_trans >= trans->transid)
4283 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4284 	}
4285 out:
4286 	btrfs_end_transaction(trans, root);
4287 	btrfs_btree_balance_dirty(root);
4288 
4289 	return err;
4290 }
4291 
truncate_space_check(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytes_deleted)4292 static int truncate_space_check(struct btrfs_trans_handle *trans,
4293 				struct btrfs_root *root,
4294 				u64 bytes_deleted)
4295 {
4296 	int ret;
4297 
4298 	/*
4299 	 * This is only used to apply pressure to the enospc system, we don't
4300 	 * intend to use this reservation at all.
4301 	 */
4302 	bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4303 	bytes_deleted *= root->nodesize;
4304 	ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4305 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4306 	if (!ret) {
4307 		trace_btrfs_space_reservation(root->fs_info, "transaction",
4308 					      trans->transid,
4309 					      bytes_deleted, 1);
4310 		trans->bytes_reserved += bytes_deleted;
4311 	}
4312 	return ret;
4313 
4314 }
4315 
truncate_inline_extent(struct inode * inode,struct btrfs_path * path,struct btrfs_key * found_key,const u64 item_end,const u64 new_size)4316 static int truncate_inline_extent(struct inode *inode,
4317 				  struct btrfs_path *path,
4318 				  struct btrfs_key *found_key,
4319 				  const u64 item_end,
4320 				  const u64 new_size)
4321 {
4322 	struct extent_buffer *leaf = path->nodes[0];
4323 	int slot = path->slots[0];
4324 	struct btrfs_file_extent_item *fi;
4325 	u32 size = (u32)(new_size - found_key->offset);
4326 	struct btrfs_root *root = BTRFS_I(inode)->root;
4327 
4328 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4329 
4330 	if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4331 		loff_t offset = new_size;
4332 		loff_t page_end = ALIGN(offset, PAGE_SIZE);
4333 
4334 		/*
4335 		 * Zero out the remaining of the last page of our inline extent,
4336 		 * instead of directly truncating our inline extent here - that
4337 		 * would be much more complex (decompressing all the data, then
4338 		 * compressing the truncated data, which might be bigger than
4339 		 * the size of the inline extent, resize the extent, etc).
4340 		 * We release the path because to get the page we might need to
4341 		 * read the extent item from disk (data not in the page cache).
4342 		 */
4343 		btrfs_release_path(path);
4344 		return btrfs_truncate_block(inode, offset, page_end - offset,
4345 					0);
4346 	}
4347 
4348 	btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4349 	size = btrfs_file_extent_calc_inline_size(size);
4350 	btrfs_truncate_item(root, path, size, 1);
4351 
4352 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4353 		inode_sub_bytes(inode, item_end + 1 - new_size);
4354 
4355 	return 0;
4356 }
4357 
4358 /*
4359  * this can truncate away extent items, csum items and directory items.
4360  * It starts at a high offset and removes keys until it can't find
4361  * any higher than new_size
4362  *
4363  * csum items that cross the new i_size are truncated to the new size
4364  * as well.
4365  *
4366  * min_type is the minimum key type to truncate down to.  If set to 0, this
4367  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4368  */
btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 new_size,u32 min_type)4369 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4370 			       struct btrfs_root *root,
4371 			       struct inode *inode,
4372 			       u64 new_size, u32 min_type)
4373 {
4374 	struct btrfs_path *path;
4375 	struct extent_buffer *leaf;
4376 	struct btrfs_file_extent_item *fi;
4377 	struct btrfs_key key;
4378 	struct btrfs_key found_key;
4379 	u64 extent_start = 0;
4380 	u64 extent_num_bytes = 0;
4381 	u64 extent_offset = 0;
4382 	u64 item_end = 0;
4383 	u64 last_size = new_size;
4384 	u32 found_type = (u8)-1;
4385 	int found_extent;
4386 	int del_item;
4387 	int pending_del_nr = 0;
4388 	int pending_del_slot = 0;
4389 	int extent_type = -1;
4390 	int ret;
4391 	int err = 0;
4392 	u64 ino = btrfs_ino(inode);
4393 	u64 bytes_deleted = 0;
4394 	bool be_nice = 0;
4395 	bool should_throttle = 0;
4396 	bool should_end = 0;
4397 
4398 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4399 
4400 	/*
4401 	 * for non-free space inodes and ref cows, we want to back off from
4402 	 * time to time
4403 	 */
4404 	if (!btrfs_is_free_space_inode(inode) &&
4405 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4406 		be_nice = 1;
4407 
4408 	path = btrfs_alloc_path();
4409 	if (!path)
4410 		return -ENOMEM;
4411 	path->reada = READA_BACK;
4412 
4413 	/*
4414 	 * We want to drop from the next block forward in case this new size is
4415 	 * not block aligned since we will be keeping the last block of the
4416 	 * extent just the way it is.
4417 	 */
4418 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4419 	    root == root->fs_info->tree_root)
4420 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4421 					root->sectorsize), (u64)-1, 0);
4422 
4423 	/*
4424 	 * This function is also used to drop the items in the log tree before
4425 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4426 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4427 	 * items.
4428 	 */
4429 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4430 		btrfs_kill_delayed_inode_items(inode);
4431 
4432 	key.objectid = ino;
4433 	key.offset = (u64)-1;
4434 	key.type = (u8)-1;
4435 
4436 search_again:
4437 	/*
4438 	 * with a 16K leaf size and 128MB extents, you can actually queue
4439 	 * up a huge file in a single leaf.  Most of the time that
4440 	 * bytes_deleted is > 0, it will be huge by the time we get here
4441 	 */
4442 	if (be_nice && bytes_deleted > SZ_32M) {
4443 		if (btrfs_should_end_transaction(trans, root)) {
4444 			err = -EAGAIN;
4445 			goto error;
4446 		}
4447 	}
4448 
4449 
4450 	path->leave_spinning = 1;
4451 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4452 	if (ret < 0) {
4453 		err = ret;
4454 		goto out;
4455 	}
4456 
4457 	if (ret > 0) {
4458 		/* there are no items in the tree for us to truncate, we're
4459 		 * done
4460 		 */
4461 		if (path->slots[0] == 0)
4462 			goto out;
4463 		path->slots[0]--;
4464 	}
4465 
4466 	while (1) {
4467 		fi = NULL;
4468 		leaf = path->nodes[0];
4469 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4470 		found_type = found_key.type;
4471 
4472 		if (found_key.objectid != ino)
4473 			break;
4474 
4475 		if (found_type < min_type)
4476 			break;
4477 
4478 		item_end = found_key.offset;
4479 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4480 			fi = btrfs_item_ptr(leaf, path->slots[0],
4481 					    struct btrfs_file_extent_item);
4482 			extent_type = btrfs_file_extent_type(leaf, fi);
4483 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4484 				item_end +=
4485 				    btrfs_file_extent_num_bytes(leaf, fi);
4486 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4487 				item_end += btrfs_file_extent_inline_len(leaf,
4488 							 path->slots[0], fi);
4489 			}
4490 			item_end--;
4491 		}
4492 		if (found_type > min_type) {
4493 			del_item = 1;
4494 		} else {
4495 			if (item_end < new_size) {
4496 				/*
4497 				 * With NO_HOLES mode, for the following mapping
4498 				 *
4499 				 * [0-4k][hole][8k-12k]
4500 				 *
4501 				 * if truncating isize down to 6k, it ends up
4502 				 * isize being 8k.
4503 				 */
4504 				if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
4505 					last_size = new_size;
4506 				break;
4507 			}
4508 			if (found_key.offset >= new_size)
4509 				del_item = 1;
4510 			else
4511 				del_item = 0;
4512 		}
4513 		found_extent = 0;
4514 		/* FIXME, shrink the extent if the ref count is only 1 */
4515 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4516 			goto delete;
4517 
4518 		if (del_item)
4519 			last_size = found_key.offset;
4520 		else
4521 			last_size = new_size;
4522 
4523 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4524 			u64 num_dec;
4525 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4526 			if (!del_item) {
4527 				u64 orig_num_bytes =
4528 					btrfs_file_extent_num_bytes(leaf, fi);
4529 				extent_num_bytes = ALIGN(new_size -
4530 						found_key.offset,
4531 						root->sectorsize);
4532 				btrfs_set_file_extent_num_bytes(leaf, fi,
4533 							 extent_num_bytes);
4534 				num_dec = (orig_num_bytes -
4535 					   extent_num_bytes);
4536 				if (test_bit(BTRFS_ROOT_REF_COWS,
4537 					     &root->state) &&
4538 				    extent_start != 0)
4539 					inode_sub_bytes(inode, num_dec);
4540 				btrfs_mark_buffer_dirty(leaf);
4541 			} else {
4542 				extent_num_bytes =
4543 					btrfs_file_extent_disk_num_bytes(leaf,
4544 									 fi);
4545 				extent_offset = found_key.offset -
4546 					btrfs_file_extent_offset(leaf, fi);
4547 
4548 				/* FIXME blocksize != 4096 */
4549 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4550 				if (extent_start != 0) {
4551 					found_extent = 1;
4552 					if (test_bit(BTRFS_ROOT_REF_COWS,
4553 						     &root->state))
4554 						inode_sub_bytes(inode, num_dec);
4555 				}
4556 			}
4557 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4558 			/*
4559 			 * we can't truncate inline items that have had
4560 			 * special encodings
4561 			 */
4562 			if (!del_item &&
4563 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4564 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4565 
4566 				/*
4567 				 * Need to release path in order to truncate a
4568 				 * compressed extent. So delete any accumulated
4569 				 * extent items so far.
4570 				 */
4571 				if (btrfs_file_extent_compression(leaf, fi) !=
4572 				    BTRFS_COMPRESS_NONE && pending_del_nr) {
4573 					err = btrfs_del_items(trans, root, path,
4574 							      pending_del_slot,
4575 							      pending_del_nr);
4576 					if (err) {
4577 						btrfs_abort_transaction(trans,
4578 									err);
4579 						goto error;
4580 					}
4581 					pending_del_nr = 0;
4582 				}
4583 
4584 				err = truncate_inline_extent(inode, path,
4585 							     &found_key,
4586 							     item_end,
4587 							     new_size);
4588 				if (err) {
4589 					btrfs_abort_transaction(trans, err);
4590 					goto error;
4591 				}
4592 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4593 					    &root->state)) {
4594 				inode_sub_bytes(inode, item_end + 1 - new_size);
4595 			}
4596 		}
4597 delete:
4598 		if (del_item) {
4599 			if (!pending_del_nr) {
4600 				/* no pending yet, add ourselves */
4601 				pending_del_slot = path->slots[0];
4602 				pending_del_nr = 1;
4603 			} else if (pending_del_nr &&
4604 				   path->slots[0] + 1 == pending_del_slot) {
4605 				/* hop on the pending chunk */
4606 				pending_del_nr++;
4607 				pending_del_slot = path->slots[0];
4608 			} else {
4609 				BUG();
4610 			}
4611 		} else {
4612 			break;
4613 		}
4614 		should_throttle = 0;
4615 
4616 		if (found_extent &&
4617 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4618 		     root == root->fs_info->tree_root)) {
4619 			btrfs_set_path_blocking(path);
4620 			bytes_deleted += extent_num_bytes;
4621 			ret = btrfs_free_extent(trans, root, extent_start,
4622 						extent_num_bytes, 0,
4623 						btrfs_header_owner(leaf),
4624 						ino, extent_offset);
4625 			BUG_ON(ret);
4626 			if (btrfs_should_throttle_delayed_refs(trans, root))
4627 				btrfs_async_run_delayed_refs(root,
4628 					trans->delayed_ref_updates * 2,
4629 					trans->transid, 0);
4630 			if (be_nice) {
4631 				if (truncate_space_check(trans, root,
4632 							 extent_num_bytes)) {
4633 					should_end = 1;
4634 				}
4635 				if (btrfs_should_throttle_delayed_refs(trans,
4636 								       root)) {
4637 					should_throttle = 1;
4638 				}
4639 			}
4640 		}
4641 
4642 		if (found_type == BTRFS_INODE_ITEM_KEY)
4643 			break;
4644 
4645 		if (path->slots[0] == 0 ||
4646 		    path->slots[0] != pending_del_slot ||
4647 		    should_throttle || should_end) {
4648 			if (pending_del_nr) {
4649 				ret = btrfs_del_items(trans, root, path,
4650 						pending_del_slot,
4651 						pending_del_nr);
4652 				if (ret) {
4653 					btrfs_abort_transaction(trans, ret);
4654 					goto error;
4655 				}
4656 				pending_del_nr = 0;
4657 			}
4658 			btrfs_release_path(path);
4659 			if (should_throttle) {
4660 				unsigned long updates = trans->delayed_ref_updates;
4661 				if (updates) {
4662 					trans->delayed_ref_updates = 0;
4663 					ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4664 					if (ret && !err)
4665 						err = ret;
4666 				}
4667 			}
4668 			/*
4669 			 * if we failed to refill our space rsv, bail out
4670 			 * and let the transaction restart
4671 			 */
4672 			if (should_end) {
4673 				err = -EAGAIN;
4674 				goto error;
4675 			}
4676 			goto search_again;
4677 		} else {
4678 			path->slots[0]--;
4679 		}
4680 	}
4681 out:
4682 	if (pending_del_nr) {
4683 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4684 				      pending_del_nr);
4685 		if (ret)
4686 			btrfs_abort_transaction(trans, ret);
4687 	}
4688 error:
4689 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4690 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4691 
4692 	btrfs_free_path(path);
4693 
4694 	if (be_nice && bytes_deleted > SZ_32M) {
4695 		unsigned long updates = trans->delayed_ref_updates;
4696 		if (updates) {
4697 			trans->delayed_ref_updates = 0;
4698 			ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4699 			if (ret && !err)
4700 				err = ret;
4701 		}
4702 	}
4703 	return err;
4704 }
4705 
4706 /*
4707  * btrfs_truncate_block - read, zero a chunk and write a block
4708  * @inode - inode that we're zeroing
4709  * @from - the offset to start zeroing
4710  * @len - the length to zero, 0 to zero the entire range respective to the
4711  *	offset
4712  * @front - zero up to the offset instead of from the offset on
4713  *
4714  * This will find the block for the "from" offset and cow the block and zero the
4715  * part we want to zero.  This is used with truncate and hole punching.
4716  */
btrfs_truncate_block(struct inode * inode,loff_t from,loff_t len,int front)4717 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4718 			int front)
4719 {
4720 	struct address_space *mapping = inode->i_mapping;
4721 	struct btrfs_root *root = BTRFS_I(inode)->root;
4722 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4723 	struct btrfs_ordered_extent *ordered;
4724 	struct extent_state *cached_state = NULL;
4725 	char *kaddr;
4726 	u32 blocksize = root->sectorsize;
4727 	pgoff_t index = from >> PAGE_SHIFT;
4728 	unsigned offset = from & (blocksize - 1);
4729 	struct page *page;
4730 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4731 	int ret = 0;
4732 	u64 block_start;
4733 	u64 block_end;
4734 
4735 	if ((offset & (blocksize - 1)) == 0 &&
4736 	    (!len || ((len & (blocksize - 1)) == 0)))
4737 		goto out;
4738 
4739 	ret = btrfs_delalloc_reserve_space(inode,
4740 			round_down(from, blocksize), blocksize);
4741 	if (ret)
4742 		goto out;
4743 
4744 again:
4745 	page = find_or_create_page(mapping, index, mask);
4746 	if (!page) {
4747 		btrfs_delalloc_release_space(inode,
4748 				round_down(from, blocksize),
4749 				blocksize);
4750 		ret = -ENOMEM;
4751 		goto out;
4752 	}
4753 
4754 	block_start = round_down(from, blocksize);
4755 	block_end = block_start + blocksize - 1;
4756 
4757 	if (!PageUptodate(page)) {
4758 		ret = btrfs_readpage(NULL, page);
4759 		lock_page(page);
4760 		if (page->mapping != mapping) {
4761 			unlock_page(page);
4762 			put_page(page);
4763 			goto again;
4764 		}
4765 		if (!PageUptodate(page)) {
4766 			ret = -EIO;
4767 			goto out_unlock;
4768 		}
4769 	}
4770 	wait_on_page_writeback(page);
4771 
4772 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4773 	set_page_extent_mapped(page);
4774 
4775 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4776 	if (ordered) {
4777 		unlock_extent_cached(io_tree, block_start, block_end,
4778 				     &cached_state, GFP_NOFS);
4779 		unlock_page(page);
4780 		put_page(page);
4781 		btrfs_start_ordered_extent(inode, ordered, 1);
4782 		btrfs_put_ordered_extent(ordered);
4783 		goto again;
4784 	}
4785 
4786 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4787 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4788 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4789 			  0, 0, &cached_state, GFP_NOFS);
4790 
4791 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4792 					&cached_state, 0);
4793 	if (ret) {
4794 		unlock_extent_cached(io_tree, block_start, block_end,
4795 				     &cached_state, GFP_NOFS);
4796 		goto out_unlock;
4797 	}
4798 
4799 	if (offset != blocksize) {
4800 		if (!len)
4801 			len = blocksize - offset;
4802 		kaddr = kmap(page);
4803 		if (front)
4804 			memset(kaddr + (block_start - page_offset(page)),
4805 				0, offset);
4806 		else
4807 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4808 				0, len);
4809 		flush_dcache_page(page);
4810 		kunmap(page);
4811 	}
4812 	ClearPageChecked(page);
4813 	set_page_dirty(page);
4814 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4815 			     GFP_NOFS);
4816 
4817 out_unlock:
4818 	if (ret)
4819 		btrfs_delalloc_release_space(inode, block_start,
4820 					     blocksize);
4821 	unlock_page(page);
4822 	put_page(page);
4823 out:
4824 	return ret;
4825 }
4826 
maybe_insert_hole(struct btrfs_root * root,struct inode * inode,u64 offset,u64 len)4827 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4828 			     u64 offset, u64 len)
4829 {
4830 	struct btrfs_trans_handle *trans;
4831 	int ret;
4832 
4833 	/*
4834 	 * Still need to make sure the inode looks like it's been updated so
4835 	 * that any holes get logged if we fsync.
4836 	 */
4837 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4838 		BTRFS_I(inode)->last_trans = root->fs_info->generation;
4839 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4840 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4841 		return 0;
4842 	}
4843 
4844 	/*
4845 	 * 1 - for the one we're dropping
4846 	 * 1 - for the one we're adding
4847 	 * 1 - for updating the inode.
4848 	 */
4849 	trans = btrfs_start_transaction(root, 3);
4850 	if (IS_ERR(trans))
4851 		return PTR_ERR(trans);
4852 
4853 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4854 	if (ret) {
4855 		btrfs_abort_transaction(trans, ret);
4856 		btrfs_end_transaction(trans, root);
4857 		return ret;
4858 	}
4859 
4860 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4861 				       0, 0, len, 0, len, 0, 0, 0);
4862 	if (ret)
4863 		btrfs_abort_transaction(trans, ret);
4864 	else
4865 		btrfs_update_inode(trans, root, inode);
4866 	btrfs_end_transaction(trans, root);
4867 	return ret;
4868 }
4869 
4870 /*
4871  * This function puts in dummy file extents for the area we're creating a hole
4872  * for.  So if we are truncating this file to a larger size we need to insert
4873  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4874  * the range between oldsize and size
4875  */
btrfs_cont_expand(struct inode * inode,loff_t oldsize,loff_t size)4876 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4877 {
4878 	struct btrfs_root *root = BTRFS_I(inode)->root;
4879 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4880 	struct extent_map *em = NULL;
4881 	struct extent_state *cached_state = NULL;
4882 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4883 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4884 	u64 block_end = ALIGN(size, root->sectorsize);
4885 	u64 last_byte;
4886 	u64 cur_offset;
4887 	u64 hole_size;
4888 	int err = 0;
4889 
4890 	/*
4891 	 * If our size started in the middle of a block we need to zero out the
4892 	 * rest of the block before we expand the i_size, otherwise we could
4893 	 * expose stale data.
4894 	 */
4895 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4896 	if (err)
4897 		return err;
4898 
4899 	if (size <= hole_start)
4900 		return 0;
4901 
4902 	while (1) {
4903 		struct btrfs_ordered_extent *ordered;
4904 
4905 		lock_extent_bits(io_tree, hole_start, block_end - 1,
4906 				 &cached_state);
4907 		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4908 						     block_end - hole_start);
4909 		if (!ordered)
4910 			break;
4911 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4912 				     &cached_state, GFP_NOFS);
4913 		btrfs_start_ordered_extent(inode, ordered, 1);
4914 		btrfs_put_ordered_extent(ordered);
4915 	}
4916 
4917 	cur_offset = hole_start;
4918 	while (1) {
4919 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4920 				block_end - cur_offset, 0);
4921 		if (IS_ERR(em)) {
4922 			err = PTR_ERR(em);
4923 			em = NULL;
4924 			break;
4925 		}
4926 		last_byte = min(extent_map_end(em), block_end);
4927 		last_byte = ALIGN(last_byte , root->sectorsize);
4928 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4929 			struct extent_map *hole_em;
4930 			hole_size = last_byte - cur_offset;
4931 
4932 			err = maybe_insert_hole(root, inode, cur_offset,
4933 						hole_size);
4934 			if (err)
4935 				break;
4936 			btrfs_drop_extent_cache(inode, cur_offset,
4937 						cur_offset + hole_size - 1, 0);
4938 			hole_em = alloc_extent_map();
4939 			if (!hole_em) {
4940 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4941 					&BTRFS_I(inode)->runtime_flags);
4942 				goto next;
4943 			}
4944 			hole_em->start = cur_offset;
4945 			hole_em->len = hole_size;
4946 			hole_em->orig_start = cur_offset;
4947 
4948 			hole_em->block_start = EXTENT_MAP_HOLE;
4949 			hole_em->block_len = 0;
4950 			hole_em->orig_block_len = 0;
4951 			hole_em->ram_bytes = hole_size;
4952 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4953 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4954 			hole_em->generation = root->fs_info->generation;
4955 
4956 			while (1) {
4957 				write_lock(&em_tree->lock);
4958 				err = add_extent_mapping(em_tree, hole_em, 1);
4959 				write_unlock(&em_tree->lock);
4960 				if (err != -EEXIST)
4961 					break;
4962 				btrfs_drop_extent_cache(inode, cur_offset,
4963 							cur_offset +
4964 							hole_size - 1, 0);
4965 			}
4966 			free_extent_map(hole_em);
4967 		}
4968 next:
4969 		free_extent_map(em);
4970 		em = NULL;
4971 		cur_offset = last_byte;
4972 		if (cur_offset >= block_end)
4973 			break;
4974 	}
4975 	free_extent_map(em);
4976 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4977 			     GFP_NOFS);
4978 	return err;
4979 }
4980 
btrfs_setsize(struct inode * inode,struct iattr * attr)4981 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4982 {
4983 	struct btrfs_root *root = BTRFS_I(inode)->root;
4984 	struct btrfs_trans_handle *trans;
4985 	loff_t oldsize = i_size_read(inode);
4986 	loff_t newsize = attr->ia_size;
4987 	int mask = attr->ia_valid;
4988 	int ret;
4989 
4990 	/*
4991 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4992 	 * special case where we need to update the times despite not having
4993 	 * these flags set.  For all other operations the VFS set these flags
4994 	 * explicitly if it wants a timestamp update.
4995 	 */
4996 	if (newsize != oldsize) {
4997 		inode_inc_iversion(inode);
4998 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4999 			inode->i_ctime = inode->i_mtime =
5000 				current_time(inode);
5001 	}
5002 
5003 	if (newsize > oldsize) {
5004 		/*
5005 		 * Don't do an expanding truncate while snapshoting is ongoing.
5006 		 * This is to ensure the snapshot captures a fully consistent
5007 		 * state of this file - if the snapshot captures this expanding
5008 		 * truncation, it must capture all writes that happened before
5009 		 * this truncation.
5010 		 */
5011 		btrfs_wait_for_snapshot_creation(root);
5012 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5013 		if (ret) {
5014 			btrfs_end_write_no_snapshoting(root);
5015 			return ret;
5016 		}
5017 
5018 		trans = btrfs_start_transaction(root, 1);
5019 		if (IS_ERR(trans)) {
5020 			btrfs_end_write_no_snapshoting(root);
5021 			return PTR_ERR(trans);
5022 		}
5023 
5024 		i_size_write(inode, newsize);
5025 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5026 		pagecache_isize_extended(inode, oldsize, newsize);
5027 		ret = btrfs_update_inode(trans, root, inode);
5028 		btrfs_end_write_no_snapshoting(root);
5029 		btrfs_end_transaction(trans, root);
5030 	} else {
5031 
5032 		/*
5033 		 * We're truncating a file that used to have good data down to
5034 		 * zero. Make sure it gets into the ordered flush list so that
5035 		 * any new writes get down to disk quickly.
5036 		 */
5037 		if (newsize == 0)
5038 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5039 				&BTRFS_I(inode)->runtime_flags);
5040 
5041 		/*
5042 		 * 1 for the orphan item we're going to add
5043 		 * 1 for the orphan item deletion.
5044 		 */
5045 		trans = btrfs_start_transaction(root, 2);
5046 		if (IS_ERR(trans))
5047 			return PTR_ERR(trans);
5048 
5049 		/*
5050 		 * We need to do this in case we fail at _any_ point during the
5051 		 * actual truncate.  Once we do the truncate_setsize we could
5052 		 * invalidate pages which forces any outstanding ordered io to
5053 		 * be instantly completed which will give us extents that need
5054 		 * to be truncated.  If we fail to get an orphan inode down we
5055 		 * could have left over extents that were never meant to live,
5056 		 * so we need to guarantee from this point on that everything
5057 		 * will be consistent.
5058 		 */
5059 		ret = btrfs_orphan_add(trans, inode);
5060 		btrfs_end_transaction(trans, root);
5061 		if (ret)
5062 			return ret;
5063 
5064 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
5065 		truncate_setsize(inode, newsize);
5066 
5067 		/* Disable nonlocked read DIO to avoid the end less truncate */
5068 		btrfs_inode_block_unlocked_dio(inode);
5069 		inode_dio_wait(inode);
5070 		btrfs_inode_resume_unlocked_dio(inode);
5071 
5072 		ret = btrfs_truncate(inode);
5073 		if (ret && inode->i_nlink) {
5074 			int err;
5075 
5076 			/*
5077 			 * failed to truncate, disk_i_size is only adjusted down
5078 			 * as we remove extents, so it should represent the true
5079 			 * size of the inode, so reset the in memory size and
5080 			 * delete our orphan entry.
5081 			 */
5082 			trans = btrfs_join_transaction(root);
5083 			if (IS_ERR(trans)) {
5084 				btrfs_orphan_del(NULL, inode);
5085 				return ret;
5086 			}
5087 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5088 			err = btrfs_orphan_del(trans, inode);
5089 			if (err)
5090 				btrfs_abort_transaction(trans, err);
5091 			btrfs_end_transaction(trans, root);
5092 		}
5093 	}
5094 
5095 	return ret;
5096 }
5097 
btrfs_setattr(struct dentry * dentry,struct iattr * attr)5098 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5099 {
5100 	struct inode *inode = d_inode(dentry);
5101 	struct btrfs_root *root = BTRFS_I(inode)->root;
5102 	int err;
5103 
5104 	if (btrfs_root_readonly(root))
5105 		return -EROFS;
5106 
5107 	err = setattr_prepare(dentry, attr);
5108 	if (err)
5109 		return err;
5110 
5111 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5112 		err = btrfs_setsize(inode, attr);
5113 		if (err)
5114 			return err;
5115 	}
5116 
5117 	if (attr->ia_valid) {
5118 		setattr_copy(inode, attr);
5119 		inode_inc_iversion(inode);
5120 		err = btrfs_dirty_inode(inode);
5121 
5122 		if (!err && attr->ia_valid & ATTR_MODE)
5123 			err = posix_acl_chmod(inode, inode->i_mode);
5124 	}
5125 
5126 	return err;
5127 }
5128 
5129 /*
5130  * While truncating the inode pages during eviction, we get the VFS calling
5131  * btrfs_invalidatepage() against each page of the inode. This is slow because
5132  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5133  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5134  * extent_state structures over and over, wasting lots of time.
5135  *
5136  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5137  * those expensive operations on a per page basis and do only the ordered io
5138  * finishing, while we release here the extent_map and extent_state structures,
5139  * without the excessive merging and splitting.
5140  */
evict_inode_truncate_pages(struct inode * inode)5141 static void evict_inode_truncate_pages(struct inode *inode)
5142 {
5143 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5144 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5145 	struct rb_node *node;
5146 
5147 	ASSERT(inode->i_state & I_FREEING);
5148 	truncate_inode_pages_final(&inode->i_data);
5149 
5150 	write_lock(&map_tree->lock);
5151 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5152 		struct extent_map *em;
5153 
5154 		node = rb_first(&map_tree->map);
5155 		em = rb_entry(node, struct extent_map, rb_node);
5156 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5157 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5158 		remove_extent_mapping(map_tree, em);
5159 		free_extent_map(em);
5160 		if (need_resched()) {
5161 			write_unlock(&map_tree->lock);
5162 			cond_resched();
5163 			write_lock(&map_tree->lock);
5164 		}
5165 	}
5166 	write_unlock(&map_tree->lock);
5167 
5168 	/*
5169 	 * Keep looping until we have no more ranges in the io tree.
5170 	 * We can have ongoing bios started by readpages (called from readahead)
5171 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5172 	 * still in progress (unlocked the pages in the bio but did not yet
5173 	 * unlocked the ranges in the io tree). Therefore this means some
5174 	 * ranges can still be locked and eviction started because before
5175 	 * submitting those bios, which are executed by a separate task (work
5176 	 * queue kthread), inode references (inode->i_count) were not taken
5177 	 * (which would be dropped in the end io callback of each bio).
5178 	 * Therefore here we effectively end up waiting for those bios and
5179 	 * anyone else holding locked ranges without having bumped the inode's
5180 	 * reference count - if we don't do it, when they access the inode's
5181 	 * io_tree to unlock a range it may be too late, leading to an
5182 	 * use-after-free issue.
5183 	 */
5184 	spin_lock(&io_tree->lock);
5185 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5186 		struct extent_state *state;
5187 		struct extent_state *cached_state = NULL;
5188 		u64 start;
5189 		u64 end;
5190 
5191 		node = rb_first(&io_tree->state);
5192 		state = rb_entry(node, struct extent_state, rb_node);
5193 		start = state->start;
5194 		end = state->end;
5195 		spin_unlock(&io_tree->lock);
5196 
5197 		lock_extent_bits(io_tree, start, end, &cached_state);
5198 
5199 		/*
5200 		 * If still has DELALLOC flag, the extent didn't reach disk,
5201 		 * and its reserved space won't be freed by delayed_ref.
5202 		 * So we need to free its reserved space here.
5203 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5204 		 *
5205 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5206 		 */
5207 		if (state->state & EXTENT_DELALLOC)
5208 			btrfs_qgroup_free_data(inode, start, end - start + 1);
5209 
5210 		clear_extent_bit(io_tree, start, end,
5211 				 EXTENT_LOCKED | EXTENT_DIRTY |
5212 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5213 				 EXTENT_DEFRAG, 1, 1,
5214 				 &cached_state, GFP_NOFS);
5215 
5216 		cond_resched();
5217 		spin_lock(&io_tree->lock);
5218 	}
5219 	spin_unlock(&io_tree->lock);
5220 }
5221 
btrfs_evict_inode(struct inode * inode)5222 void btrfs_evict_inode(struct inode *inode)
5223 {
5224 	struct btrfs_trans_handle *trans;
5225 	struct btrfs_root *root = BTRFS_I(inode)->root;
5226 	struct btrfs_block_rsv *rsv, *global_rsv;
5227 	int steal_from_global = 0;
5228 	u64 min_size;
5229 	int ret;
5230 
5231 	trace_btrfs_inode_evict(inode);
5232 
5233 	if (!root) {
5234 		clear_inode(inode);
5235 		return;
5236 	}
5237 
5238 	min_size = btrfs_calc_trunc_metadata_size(root, 1);
5239 
5240 	evict_inode_truncate_pages(inode);
5241 
5242 	if (inode->i_nlink &&
5243 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5244 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5245 	     btrfs_is_free_space_inode(inode)))
5246 		goto no_delete;
5247 
5248 	if (is_bad_inode(inode)) {
5249 		btrfs_orphan_del(NULL, inode);
5250 		goto no_delete;
5251 	}
5252 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5253 	if (!special_file(inode->i_mode))
5254 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5255 
5256 	btrfs_free_io_failure_record(inode, 0, (u64)-1);
5257 
5258 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
5259 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5260 				 &BTRFS_I(inode)->runtime_flags));
5261 		goto no_delete;
5262 	}
5263 
5264 	if (inode->i_nlink > 0) {
5265 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5266 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5267 		goto no_delete;
5268 	}
5269 
5270 	ret = btrfs_commit_inode_delayed_inode(inode);
5271 	if (ret) {
5272 		btrfs_orphan_del(NULL, inode);
5273 		goto no_delete;
5274 	}
5275 
5276 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5277 	if (!rsv) {
5278 		btrfs_orphan_del(NULL, inode);
5279 		goto no_delete;
5280 	}
5281 	rsv->size = min_size;
5282 	rsv->failfast = 1;
5283 	global_rsv = &root->fs_info->global_block_rsv;
5284 
5285 	btrfs_i_size_write(inode, 0);
5286 
5287 	/*
5288 	 * This is a bit simpler than btrfs_truncate since we've already
5289 	 * reserved our space for our orphan item in the unlink, so we just
5290 	 * need to reserve some slack space in case we add bytes and update
5291 	 * inode item when doing the truncate.
5292 	 */
5293 	while (1) {
5294 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5295 					     BTRFS_RESERVE_FLUSH_LIMIT);
5296 
5297 		/*
5298 		 * Try and steal from the global reserve since we will
5299 		 * likely not use this space anyway, we want to try as
5300 		 * hard as possible to get this to work.
5301 		 */
5302 		if (ret)
5303 			steal_from_global++;
5304 		else
5305 			steal_from_global = 0;
5306 		ret = 0;
5307 
5308 		/*
5309 		 * steal_from_global == 0: we reserved stuff, hooray!
5310 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5311 		 * steal_from_global == 2: we've committed, still not a lot of
5312 		 * room but maybe we'll have room in the global reserve this
5313 		 * time.
5314 		 * steal_from_global == 3: abandon all hope!
5315 		 */
5316 		if (steal_from_global > 2) {
5317 			btrfs_warn(root->fs_info,
5318 				"Could not get space for a delete, will truncate on mount %d",
5319 				ret);
5320 			btrfs_orphan_del(NULL, inode);
5321 			btrfs_free_block_rsv(root, rsv);
5322 			goto no_delete;
5323 		}
5324 
5325 		trans = btrfs_join_transaction(root);
5326 		if (IS_ERR(trans)) {
5327 			btrfs_orphan_del(NULL, inode);
5328 			btrfs_free_block_rsv(root, rsv);
5329 			goto no_delete;
5330 		}
5331 
5332 		/*
5333 		 * We can't just steal from the global reserve, we need to make
5334 		 * sure there is room to do it, if not we need to commit and try
5335 		 * again.
5336 		 */
5337 		if (steal_from_global) {
5338 			if (!btrfs_check_space_for_delayed_refs(trans, root))
5339 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5340 							      min_size, 0);
5341 			else
5342 				ret = -ENOSPC;
5343 		}
5344 
5345 		/*
5346 		 * Couldn't steal from the global reserve, we have too much
5347 		 * pending stuff built up, commit the transaction and try it
5348 		 * again.
5349 		 */
5350 		if (ret) {
5351 			ret = btrfs_commit_transaction(trans, root);
5352 			if (ret) {
5353 				btrfs_orphan_del(NULL, inode);
5354 				btrfs_free_block_rsv(root, rsv);
5355 				goto no_delete;
5356 			}
5357 			continue;
5358 		} else {
5359 			steal_from_global = 0;
5360 		}
5361 
5362 		trans->block_rsv = rsv;
5363 
5364 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5365 		if (ret != -ENOSPC && ret != -EAGAIN)
5366 			break;
5367 
5368 		trans->block_rsv = &root->fs_info->trans_block_rsv;
5369 		btrfs_end_transaction(trans, root);
5370 		trans = NULL;
5371 		btrfs_btree_balance_dirty(root);
5372 	}
5373 
5374 	btrfs_free_block_rsv(root, rsv);
5375 
5376 	/*
5377 	 * Errors here aren't a big deal, it just means we leave orphan items
5378 	 * in the tree.  They will be cleaned up on the next mount.
5379 	 */
5380 	if (ret == 0) {
5381 		trans->block_rsv = root->orphan_block_rsv;
5382 		btrfs_orphan_del(trans, inode);
5383 	} else {
5384 		btrfs_orphan_del(NULL, inode);
5385 	}
5386 
5387 	trans->block_rsv = &root->fs_info->trans_block_rsv;
5388 	if (!(root == root->fs_info->tree_root ||
5389 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5390 		btrfs_return_ino(root, btrfs_ino(inode));
5391 
5392 	btrfs_end_transaction(trans, root);
5393 	btrfs_btree_balance_dirty(root);
5394 no_delete:
5395 	btrfs_remove_delayed_node(inode);
5396 	clear_inode(inode);
5397 }
5398 
5399 /*
5400  * this returns the key found in the dir entry in the location pointer.
5401  * If no dir entries were found, location->objectid is 0.
5402  */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location)5403 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5404 			       struct btrfs_key *location)
5405 {
5406 	const char *name = dentry->d_name.name;
5407 	int namelen = dentry->d_name.len;
5408 	struct btrfs_dir_item *di;
5409 	struct btrfs_path *path;
5410 	struct btrfs_root *root = BTRFS_I(dir)->root;
5411 	int ret = 0;
5412 
5413 	path = btrfs_alloc_path();
5414 	if (!path)
5415 		return -ENOMEM;
5416 
5417 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5418 				    namelen, 0);
5419 	if (IS_ERR(di))
5420 		ret = PTR_ERR(di);
5421 
5422 	if (IS_ERR_OR_NULL(di))
5423 		goto out_err;
5424 
5425 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5426 out:
5427 	btrfs_free_path(path);
5428 	return ret;
5429 out_err:
5430 	location->objectid = 0;
5431 	goto out;
5432 }
5433 
5434 /*
5435  * when we hit a tree root in a directory, the btrfs part of the inode
5436  * needs to be changed to reflect the root directory of the tree root.  This
5437  * is kind of like crossing a mount point.
5438  */
fixup_tree_root_location(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5439 static int fixup_tree_root_location(struct btrfs_root *root,
5440 				    struct inode *dir,
5441 				    struct dentry *dentry,
5442 				    struct btrfs_key *location,
5443 				    struct btrfs_root **sub_root)
5444 {
5445 	struct btrfs_path *path;
5446 	struct btrfs_root *new_root;
5447 	struct btrfs_root_ref *ref;
5448 	struct extent_buffer *leaf;
5449 	struct btrfs_key key;
5450 	int ret;
5451 	int err = 0;
5452 
5453 	path = btrfs_alloc_path();
5454 	if (!path) {
5455 		err = -ENOMEM;
5456 		goto out;
5457 	}
5458 
5459 	err = -ENOENT;
5460 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5461 	key.type = BTRFS_ROOT_REF_KEY;
5462 	key.offset = location->objectid;
5463 
5464 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5465 				0, 0);
5466 	if (ret) {
5467 		if (ret < 0)
5468 			err = ret;
5469 		goto out;
5470 	}
5471 
5472 	leaf = path->nodes[0];
5473 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5474 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5475 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5476 		goto out;
5477 
5478 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5479 				   (unsigned long)(ref + 1),
5480 				   dentry->d_name.len);
5481 	if (ret)
5482 		goto out;
5483 
5484 	btrfs_release_path(path);
5485 
5486 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5487 	if (IS_ERR(new_root)) {
5488 		err = PTR_ERR(new_root);
5489 		goto out;
5490 	}
5491 
5492 	*sub_root = new_root;
5493 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5494 	location->type = BTRFS_INODE_ITEM_KEY;
5495 	location->offset = 0;
5496 	err = 0;
5497 out:
5498 	btrfs_free_path(path);
5499 	return err;
5500 }
5501 
inode_tree_add(struct inode * inode)5502 static void inode_tree_add(struct inode *inode)
5503 {
5504 	struct btrfs_root *root = BTRFS_I(inode)->root;
5505 	struct btrfs_inode *entry;
5506 	struct rb_node **p;
5507 	struct rb_node *parent;
5508 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5509 	u64 ino = btrfs_ino(inode);
5510 
5511 	if (inode_unhashed(inode))
5512 		return;
5513 	parent = NULL;
5514 	spin_lock(&root->inode_lock);
5515 	p = &root->inode_tree.rb_node;
5516 	while (*p) {
5517 		parent = *p;
5518 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5519 
5520 		if (ino < btrfs_ino(&entry->vfs_inode))
5521 			p = &parent->rb_left;
5522 		else if (ino > btrfs_ino(&entry->vfs_inode))
5523 			p = &parent->rb_right;
5524 		else {
5525 			WARN_ON(!(entry->vfs_inode.i_state &
5526 				  (I_WILL_FREE | I_FREEING)));
5527 			rb_replace_node(parent, new, &root->inode_tree);
5528 			RB_CLEAR_NODE(parent);
5529 			spin_unlock(&root->inode_lock);
5530 			return;
5531 		}
5532 	}
5533 	rb_link_node(new, parent, p);
5534 	rb_insert_color(new, &root->inode_tree);
5535 	spin_unlock(&root->inode_lock);
5536 }
5537 
inode_tree_del(struct inode * inode)5538 static void inode_tree_del(struct inode *inode)
5539 {
5540 	struct btrfs_root *root = BTRFS_I(inode)->root;
5541 	int empty = 0;
5542 
5543 	spin_lock(&root->inode_lock);
5544 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5545 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5546 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5547 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5548 	}
5549 	spin_unlock(&root->inode_lock);
5550 
5551 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5552 		synchronize_srcu(&root->fs_info->subvol_srcu);
5553 		spin_lock(&root->inode_lock);
5554 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5555 		spin_unlock(&root->inode_lock);
5556 		if (empty)
5557 			btrfs_add_dead_root(root);
5558 	}
5559 }
5560 
btrfs_invalidate_inodes(struct btrfs_root * root)5561 void btrfs_invalidate_inodes(struct btrfs_root *root)
5562 {
5563 	struct rb_node *node;
5564 	struct rb_node *prev;
5565 	struct btrfs_inode *entry;
5566 	struct inode *inode;
5567 	u64 objectid = 0;
5568 
5569 	if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5570 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5571 
5572 	spin_lock(&root->inode_lock);
5573 again:
5574 	node = root->inode_tree.rb_node;
5575 	prev = NULL;
5576 	while (node) {
5577 		prev = node;
5578 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5579 
5580 		if (objectid < btrfs_ino(&entry->vfs_inode))
5581 			node = node->rb_left;
5582 		else if (objectid > btrfs_ino(&entry->vfs_inode))
5583 			node = node->rb_right;
5584 		else
5585 			break;
5586 	}
5587 	if (!node) {
5588 		while (prev) {
5589 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5590 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5591 				node = prev;
5592 				break;
5593 			}
5594 			prev = rb_next(prev);
5595 		}
5596 	}
5597 	while (node) {
5598 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5599 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
5600 		inode = igrab(&entry->vfs_inode);
5601 		if (inode) {
5602 			spin_unlock(&root->inode_lock);
5603 			if (atomic_read(&inode->i_count) > 1)
5604 				d_prune_aliases(inode);
5605 			/*
5606 			 * btrfs_drop_inode will have it removed from
5607 			 * the inode cache when its usage count
5608 			 * hits zero.
5609 			 */
5610 			iput(inode);
5611 			cond_resched();
5612 			spin_lock(&root->inode_lock);
5613 			goto again;
5614 		}
5615 
5616 		if (cond_resched_lock(&root->inode_lock))
5617 			goto again;
5618 
5619 		node = rb_next(node);
5620 	}
5621 	spin_unlock(&root->inode_lock);
5622 }
5623 
btrfs_init_locked_inode(struct inode * inode,void * p)5624 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5625 {
5626 	struct btrfs_iget_args *args = p;
5627 	inode->i_ino = args->location->objectid;
5628 	memcpy(&BTRFS_I(inode)->location, args->location,
5629 	       sizeof(*args->location));
5630 	BTRFS_I(inode)->root = args->root;
5631 	return 0;
5632 }
5633 
btrfs_find_actor(struct inode * inode,void * opaque)5634 static int btrfs_find_actor(struct inode *inode, void *opaque)
5635 {
5636 	struct btrfs_iget_args *args = opaque;
5637 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5638 		args->root == BTRFS_I(inode)->root;
5639 }
5640 
btrfs_iget_locked(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root)5641 static struct inode *btrfs_iget_locked(struct super_block *s,
5642 				       struct btrfs_key *location,
5643 				       struct btrfs_root *root)
5644 {
5645 	struct inode *inode;
5646 	struct btrfs_iget_args args;
5647 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5648 
5649 	args.location = location;
5650 	args.root = root;
5651 
5652 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5653 			     btrfs_init_locked_inode,
5654 			     (void *)&args);
5655 	return inode;
5656 }
5657 
5658 /* Get an inode object given its location and corresponding root.
5659  * Returns in *is_new if the inode was read from disk
5660  */
btrfs_iget(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * new)5661 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5662 			 struct btrfs_root *root, int *new)
5663 {
5664 	struct inode *inode;
5665 
5666 	inode = btrfs_iget_locked(s, location, root);
5667 	if (!inode)
5668 		return ERR_PTR(-ENOMEM);
5669 
5670 	if (inode->i_state & I_NEW) {
5671 		int ret;
5672 
5673 		ret = btrfs_read_locked_inode(inode);
5674 		if (!is_bad_inode(inode)) {
5675 			inode_tree_add(inode);
5676 			unlock_new_inode(inode);
5677 			if (new)
5678 				*new = 1;
5679 		} else {
5680 			unlock_new_inode(inode);
5681 			iput(inode);
5682 			ASSERT(ret < 0);
5683 			inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5684 		}
5685 	}
5686 
5687 	return inode;
5688 }
5689 
new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)5690 static struct inode *new_simple_dir(struct super_block *s,
5691 				    struct btrfs_key *key,
5692 				    struct btrfs_root *root)
5693 {
5694 	struct inode *inode = new_inode(s);
5695 
5696 	if (!inode)
5697 		return ERR_PTR(-ENOMEM);
5698 
5699 	BTRFS_I(inode)->root = root;
5700 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5701 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5702 
5703 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5704 	inode->i_op = &btrfs_dir_ro_inode_operations;
5705 	inode->i_opflags &= ~IOP_XATTR;
5706 	inode->i_fop = &simple_dir_operations;
5707 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5708 	inode->i_mtime = current_time(inode);
5709 	inode->i_atime = inode->i_mtime;
5710 	inode->i_ctime = inode->i_mtime;
5711 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5712 
5713 	return inode;
5714 }
5715 
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5716 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5717 {
5718 	struct inode *inode;
5719 	struct btrfs_root *root = BTRFS_I(dir)->root;
5720 	struct btrfs_root *sub_root = root;
5721 	struct btrfs_key location;
5722 	int index;
5723 	int ret = 0;
5724 
5725 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5726 		return ERR_PTR(-ENAMETOOLONG);
5727 
5728 	ret = btrfs_inode_by_name(dir, dentry, &location);
5729 	if (ret < 0)
5730 		return ERR_PTR(ret);
5731 
5732 	if (location.objectid == 0)
5733 		return ERR_PTR(-ENOENT);
5734 
5735 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5736 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5737 		return inode;
5738 	}
5739 
5740 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5741 
5742 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5743 	ret = fixup_tree_root_location(root, dir, dentry,
5744 				       &location, &sub_root);
5745 	if (ret < 0) {
5746 		if (ret != -ENOENT)
5747 			inode = ERR_PTR(ret);
5748 		else
5749 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5750 	} else {
5751 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5752 	}
5753 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5754 
5755 	if (!IS_ERR(inode) && root != sub_root) {
5756 		down_read(&root->fs_info->cleanup_work_sem);
5757 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5758 			ret = btrfs_orphan_cleanup(sub_root);
5759 		up_read(&root->fs_info->cleanup_work_sem);
5760 		if (ret) {
5761 			iput(inode);
5762 			inode = ERR_PTR(ret);
5763 		}
5764 	}
5765 
5766 	return inode;
5767 }
5768 
btrfs_dentry_delete(const struct dentry * dentry)5769 static int btrfs_dentry_delete(const struct dentry *dentry)
5770 {
5771 	struct btrfs_root *root;
5772 	struct inode *inode = d_inode(dentry);
5773 
5774 	if (!inode && !IS_ROOT(dentry))
5775 		inode = d_inode(dentry->d_parent);
5776 
5777 	if (inode) {
5778 		root = BTRFS_I(inode)->root;
5779 		if (btrfs_root_refs(&root->root_item) == 0)
5780 			return 1;
5781 
5782 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5783 			return 1;
5784 	}
5785 	return 0;
5786 }
5787 
btrfs_dentry_release(struct dentry * dentry)5788 static void btrfs_dentry_release(struct dentry *dentry)
5789 {
5790 	kfree(dentry->d_fsdata);
5791 }
5792 
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5793 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5794 				   unsigned int flags)
5795 {
5796 	struct inode *inode;
5797 
5798 	inode = btrfs_lookup_dentry(dir, dentry);
5799 	if (IS_ERR(inode)) {
5800 		if (PTR_ERR(inode) == -ENOENT)
5801 			inode = NULL;
5802 		else
5803 			return ERR_CAST(inode);
5804 	}
5805 
5806 	return d_splice_alias(inode, dentry);
5807 }
5808 
5809 unsigned char btrfs_filetype_table[] = {
5810 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5811 };
5812 
btrfs_real_readdir(struct file * file,struct dir_context * ctx)5813 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5814 {
5815 	struct inode *inode = file_inode(file);
5816 	struct btrfs_root *root = BTRFS_I(inode)->root;
5817 	struct btrfs_item *item;
5818 	struct btrfs_dir_item *di;
5819 	struct btrfs_key key;
5820 	struct btrfs_key found_key;
5821 	struct btrfs_path *path;
5822 	struct list_head ins_list;
5823 	struct list_head del_list;
5824 	int ret;
5825 	struct extent_buffer *leaf;
5826 	int slot;
5827 	unsigned char d_type;
5828 	int over = 0;
5829 	u32 di_cur;
5830 	u32 di_total;
5831 	u32 di_len;
5832 	int key_type = BTRFS_DIR_INDEX_KEY;
5833 	char tmp_name[32];
5834 	char *name_ptr;
5835 	int name_len;
5836 	int is_curr = 0;	/* ctx->pos points to the current index? */
5837 	bool emitted;
5838 	bool put = false;
5839 
5840 	/* FIXME, use a real flag for deciding about the key type */
5841 	if (root->fs_info->tree_root == root)
5842 		key_type = BTRFS_DIR_ITEM_KEY;
5843 
5844 	if (!dir_emit_dots(file, ctx))
5845 		return 0;
5846 
5847 	path = btrfs_alloc_path();
5848 	if (!path)
5849 		return -ENOMEM;
5850 
5851 	path->reada = READA_FORWARD;
5852 
5853 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5854 		INIT_LIST_HEAD(&ins_list);
5855 		INIT_LIST_HEAD(&del_list);
5856 		put = btrfs_readdir_get_delayed_items(inode, &ins_list,
5857 						      &del_list);
5858 	}
5859 
5860 	key.type = key_type;
5861 	key.offset = ctx->pos;
5862 	key.objectid = btrfs_ino(inode);
5863 
5864 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5865 	if (ret < 0)
5866 		goto err;
5867 
5868 	emitted = false;
5869 	while (1) {
5870 		leaf = path->nodes[0];
5871 		slot = path->slots[0];
5872 		if (slot >= btrfs_header_nritems(leaf)) {
5873 			ret = btrfs_next_leaf(root, path);
5874 			if (ret < 0)
5875 				goto err;
5876 			else if (ret > 0)
5877 				break;
5878 			continue;
5879 		}
5880 
5881 		item = btrfs_item_nr(slot);
5882 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5883 
5884 		if (found_key.objectid != key.objectid)
5885 			break;
5886 		if (found_key.type != key_type)
5887 			break;
5888 		if (found_key.offset < ctx->pos)
5889 			goto next;
5890 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5891 		    btrfs_should_delete_dir_index(&del_list,
5892 						  found_key.offset))
5893 			goto next;
5894 
5895 		ctx->pos = found_key.offset;
5896 		is_curr = 1;
5897 
5898 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5899 		di_cur = 0;
5900 		di_total = btrfs_item_size(leaf, item);
5901 
5902 		while (di_cur < di_total) {
5903 			struct btrfs_key location;
5904 
5905 			if (verify_dir_item(root, leaf, di))
5906 				break;
5907 
5908 			name_len = btrfs_dir_name_len(leaf, di);
5909 			if (name_len <= sizeof(tmp_name)) {
5910 				name_ptr = tmp_name;
5911 			} else {
5912 				name_ptr = kmalloc(name_len, GFP_KERNEL);
5913 				if (!name_ptr) {
5914 					ret = -ENOMEM;
5915 					goto err;
5916 				}
5917 			}
5918 			read_extent_buffer(leaf, name_ptr,
5919 					   (unsigned long)(di + 1), name_len);
5920 
5921 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5922 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5923 
5924 
5925 			/* is this a reference to our own snapshot? If so
5926 			 * skip it.
5927 			 *
5928 			 * In contrast to old kernels, we insert the snapshot's
5929 			 * dir item and dir index after it has been created, so
5930 			 * we won't find a reference to our own snapshot. We
5931 			 * still keep the following code for backward
5932 			 * compatibility.
5933 			 */
5934 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5935 			    location.objectid == root->root_key.objectid) {
5936 				over = 0;
5937 				goto skip;
5938 			}
5939 			over = !dir_emit(ctx, name_ptr, name_len,
5940 				       location.objectid, d_type);
5941 
5942 skip:
5943 			if (name_ptr != tmp_name)
5944 				kfree(name_ptr);
5945 
5946 			if (over)
5947 				goto nopos;
5948 			emitted = true;
5949 			di_len = btrfs_dir_name_len(leaf, di) +
5950 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5951 			di_cur += di_len;
5952 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5953 		}
5954 next:
5955 		path->slots[0]++;
5956 	}
5957 
5958 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5959 		if (is_curr)
5960 			ctx->pos++;
5961 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
5962 		if (ret)
5963 			goto nopos;
5964 	}
5965 
5966 	/*
5967 	 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5968 	 * it was was set to the termination value in previous call. We assume
5969 	 * that "." and ".." were emitted if we reach this point and set the
5970 	 * termination value as well for an empty directory.
5971 	 */
5972 	if (ctx->pos > 2 && !emitted)
5973 		goto nopos;
5974 
5975 	/* Reached end of directory/root. Bump pos past the last item. */
5976 	ctx->pos++;
5977 
5978 	/*
5979 	 * Stop new entries from being returned after we return the last
5980 	 * entry.
5981 	 *
5982 	 * New directory entries are assigned a strictly increasing
5983 	 * offset.  This means that new entries created during readdir
5984 	 * are *guaranteed* to be seen in the future by that readdir.
5985 	 * This has broken buggy programs which operate on names as
5986 	 * they're returned by readdir.  Until we re-use freed offsets
5987 	 * we have this hack to stop new entries from being returned
5988 	 * under the assumption that they'll never reach this huge
5989 	 * offset.
5990 	 *
5991 	 * This is being careful not to overflow 32bit loff_t unless the
5992 	 * last entry requires it because doing so has broken 32bit apps
5993 	 * in the past.
5994 	 */
5995 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5996 		if (ctx->pos >= INT_MAX)
5997 			ctx->pos = LLONG_MAX;
5998 		else
5999 			ctx->pos = INT_MAX;
6000 	}
6001 nopos:
6002 	ret = 0;
6003 err:
6004 	if (put)
6005 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6006 	btrfs_free_path(path);
6007 	return ret;
6008 }
6009 
btrfs_write_inode(struct inode * inode,struct writeback_control * wbc)6010 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
6011 {
6012 	struct btrfs_root *root = BTRFS_I(inode)->root;
6013 	struct btrfs_trans_handle *trans;
6014 	int ret = 0;
6015 	bool nolock = false;
6016 
6017 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6018 		return 0;
6019 
6020 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
6021 		nolock = true;
6022 
6023 	if (wbc->sync_mode == WB_SYNC_ALL) {
6024 		if (nolock)
6025 			trans = btrfs_join_transaction_nolock(root);
6026 		else
6027 			trans = btrfs_join_transaction(root);
6028 		if (IS_ERR(trans))
6029 			return PTR_ERR(trans);
6030 		ret = btrfs_commit_transaction(trans, root);
6031 	}
6032 	return ret;
6033 }
6034 
6035 /*
6036  * This is somewhat expensive, updating the tree every time the
6037  * inode changes.  But, it is most likely to find the inode in cache.
6038  * FIXME, needs more benchmarking...there are no reasons other than performance
6039  * to keep or drop this code.
6040  */
btrfs_dirty_inode(struct inode * inode)6041 static int btrfs_dirty_inode(struct inode *inode)
6042 {
6043 	struct btrfs_root *root = BTRFS_I(inode)->root;
6044 	struct btrfs_trans_handle *trans;
6045 	int ret;
6046 
6047 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6048 		return 0;
6049 
6050 	trans = btrfs_join_transaction(root);
6051 	if (IS_ERR(trans))
6052 		return PTR_ERR(trans);
6053 
6054 	ret = btrfs_update_inode(trans, root, inode);
6055 	if (ret && ret == -ENOSPC) {
6056 		/* whoops, lets try again with the full transaction */
6057 		btrfs_end_transaction(trans, root);
6058 		trans = btrfs_start_transaction(root, 1);
6059 		if (IS_ERR(trans))
6060 			return PTR_ERR(trans);
6061 
6062 		ret = btrfs_update_inode(trans, root, inode);
6063 	}
6064 	btrfs_end_transaction(trans, root);
6065 	if (BTRFS_I(inode)->delayed_node)
6066 		btrfs_balance_delayed_items(root);
6067 
6068 	return ret;
6069 }
6070 
6071 /*
6072  * This is a copy of file_update_time.  We need this so we can return error on
6073  * ENOSPC for updating the inode in the case of file write and mmap writes.
6074  */
btrfs_update_time(struct inode * inode,struct timespec * now,int flags)6075 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6076 			     int flags)
6077 {
6078 	struct btrfs_root *root = BTRFS_I(inode)->root;
6079 
6080 	if (btrfs_root_readonly(root))
6081 		return -EROFS;
6082 
6083 	if (flags & S_VERSION)
6084 		inode_inc_iversion(inode);
6085 	if (flags & S_CTIME)
6086 		inode->i_ctime = *now;
6087 	if (flags & S_MTIME)
6088 		inode->i_mtime = *now;
6089 	if (flags & S_ATIME)
6090 		inode->i_atime = *now;
6091 	return btrfs_dirty_inode(inode);
6092 }
6093 
6094 /*
6095  * find the highest existing sequence number in a directory
6096  * and then set the in-memory index_cnt variable to reflect
6097  * free sequence numbers
6098  */
btrfs_set_inode_index_count(struct inode * inode)6099 static int btrfs_set_inode_index_count(struct inode *inode)
6100 {
6101 	struct btrfs_root *root = BTRFS_I(inode)->root;
6102 	struct btrfs_key key, found_key;
6103 	struct btrfs_path *path;
6104 	struct extent_buffer *leaf;
6105 	int ret;
6106 
6107 	key.objectid = btrfs_ino(inode);
6108 	key.type = BTRFS_DIR_INDEX_KEY;
6109 	key.offset = (u64)-1;
6110 
6111 	path = btrfs_alloc_path();
6112 	if (!path)
6113 		return -ENOMEM;
6114 
6115 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6116 	if (ret < 0)
6117 		goto out;
6118 	/* FIXME: we should be able to handle this */
6119 	if (ret == 0)
6120 		goto out;
6121 	ret = 0;
6122 
6123 	/*
6124 	 * MAGIC NUMBER EXPLANATION:
6125 	 * since we search a directory based on f_pos we have to start at 2
6126 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6127 	 * else has to start at 2
6128 	 */
6129 	if (path->slots[0] == 0) {
6130 		BTRFS_I(inode)->index_cnt = 2;
6131 		goto out;
6132 	}
6133 
6134 	path->slots[0]--;
6135 
6136 	leaf = path->nodes[0];
6137 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6138 
6139 	if (found_key.objectid != btrfs_ino(inode) ||
6140 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6141 		BTRFS_I(inode)->index_cnt = 2;
6142 		goto out;
6143 	}
6144 
6145 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6146 out:
6147 	btrfs_free_path(path);
6148 	return ret;
6149 }
6150 
6151 /*
6152  * helper to find a free sequence number in a given directory.  This current
6153  * code is very simple, later versions will do smarter things in the btree
6154  */
btrfs_set_inode_index(struct inode * dir,u64 * index)6155 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6156 {
6157 	int ret = 0;
6158 
6159 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6160 		ret = btrfs_inode_delayed_dir_index_count(dir);
6161 		if (ret) {
6162 			ret = btrfs_set_inode_index_count(dir);
6163 			if (ret)
6164 				return ret;
6165 		}
6166 	}
6167 
6168 	*index = BTRFS_I(dir)->index_cnt;
6169 	BTRFS_I(dir)->index_cnt++;
6170 
6171 	return ret;
6172 }
6173 
btrfs_insert_inode_locked(struct inode * inode)6174 static int btrfs_insert_inode_locked(struct inode *inode)
6175 {
6176 	struct btrfs_iget_args args;
6177 	args.location = &BTRFS_I(inode)->location;
6178 	args.root = BTRFS_I(inode)->root;
6179 
6180 	return insert_inode_locked4(inode,
6181 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6182 		   btrfs_find_actor, &args);
6183 }
6184 
btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,umode_t mode,u64 * index)6185 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6186 				     struct btrfs_root *root,
6187 				     struct inode *dir,
6188 				     const char *name, int name_len,
6189 				     u64 ref_objectid, u64 objectid,
6190 				     umode_t mode, u64 *index)
6191 {
6192 	struct inode *inode;
6193 	struct btrfs_inode_item *inode_item;
6194 	struct btrfs_key *location;
6195 	struct btrfs_path *path;
6196 	struct btrfs_inode_ref *ref;
6197 	struct btrfs_key key[2];
6198 	u32 sizes[2];
6199 	int nitems = name ? 2 : 1;
6200 	unsigned long ptr;
6201 	int ret;
6202 
6203 	path = btrfs_alloc_path();
6204 	if (!path)
6205 		return ERR_PTR(-ENOMEM);
6206 
6207 	inode = new_inode(root->fs_info->sb);
6208 	if (!inode) {
6209 		btrfs_free_path(path);
6210 		return ERR_PTR(-ENOMEM);
6211 	}
6212 
6213 	/*
6214 	 * O_TMPFILE, set link count to 0, so that after this point,
6215 	 * we fill in an inode item with the correct link count.
6216 	 */
6217 	if (!name)
6218 		set_nlink(inode, 0);
6219 
6220 	/*
6221 	 * we have to initialize this early, so we can reclaim the inode
6222 	 * number if we fail afterwards in this function.
6223 	 */
6224 	inode->i_ino = objectid;
6225 
6226 	if (dir && name) {
6227 		trace_btrfs_inode_request(dir);
6228 
6229 		ret = btrfs_set_inode_index(dir, index);
6230 		if (ret) {
6231 			btrfs_free_path(path);
6232 			iput(inode);
6233 			return ERR_PTR(ret);
6234 		}
6235 	} else if (dir) {
6236 		*index = 0;
6237 	}
6238 	/*
6239 	 * index_cnt is ignored for everything but a dir,
6240 	 * btrfs_get_inode_index_count has an explanation for the magic
6241 	 * number
6242 	 */
6243 	BTRFS_I(inode)->index_cnt = 2;
6244 	BTRFS_I(inode)->dir_index = *index;
6245 	BTRFS_I(inode)->root = root;
6246 	BTRFS_I(inode)->generation = trans->transid;
6247 	inode->i_generation = BTRFS_I(inode)->generation;
6248 
6249 	/*
6250 	 * We could have gotten an inode number from somebody who was fsynced
6251 	 * and then removed in this same transaction, so let's just set full
6252 	 * sync since it will be a full sync anyway and this will blow away the
6253 	 * old info in the log.
6254 	 */
6255 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6256 
6257 	key[0].objectid = objectid;
6258 	key[0].type = BTRFS_INODE_ITEM_KEY;
6259 	key[0].offset = 0;
6260 
6261 	sizes[0] = sizeof(struct btrfs_inode_item);
6262 
6263 	if (name) {
6264 		/*
6265 		 * Start new inodes with an inode_ref. This is slightly more
6266 		 * efficient for small numbers of hard links since they will
6267 		 * be packed into one item. Extended refs will kick in if we
6268 		 * add more hard links than can fit in the ref item.
6269 		 */
6270 		key[1].objectid = objectid;
6271 		key[1].type = BTRFS_INODE_REF_KEY;
6272 		key[1].offset = ref_objectid;
6273 
6274 		sizes[1] = name_len + sizeof(*ref);
6275 	}
6276 
6277 	location = &BTRFS_I(inode)->location;
6278 	location->objectid = objectid;
6279 	location->offset = 0;
6280 	location->type = BTRFS_INODE_ITEM_KEY;
6281 
6282 	ret = btrfs_insert_inode_locked(inode);
6283 	if (ret < 0)
6284 		goto fail;
6285 
6286 	path->leave_spinning = 1;
6287 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6288 	if (ret != 0)
6289 		goto fail_unlock;
6290 
6291 	inode_init_owner(inode, dir, mode);
6292 	inode_set_bytes(inode, 0);
6293 
6294 	inode->i_mtime = current_time(inode);
6295 	inode->i_atime = inode->i_mtime;
6296 	inode->i_ctime = inode->i_mtime;
6297 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6298 
6299 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6300 				  struct btrfs_inode_item);
6301 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6302 			     sizeof(*inode_item));
6303 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6304 
6305 	if (name) {
6306 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6307 				     struct btrfs_inode_ref);
6308 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6309 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6310 		ptr = (unsigned long)(ref + 1);
6311 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6312 	}
6313 
6314 	btrfs_mark_buffer_dirty(path->nodes[0]);
6315 	btrfs_free_path(path);
6316 
6317 	btrfs_inherit_iflags(inode, dir);
6318 
6319 	if (S_ISREG(mode)) {
6320 		if (btrfs_test_opt(root->fs_info, NODATASUM))
6321 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6322 		if (btrfs_test_opt(root->fs_info, NODATACOW))
6323 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6324 				BTRFS_INODE_NODATASUM;
6325 	}
6326 
6327 	inode_tree_add(inode);
6328 
6329 	trace_btrfs_inode_new(inode);
6330 	btrfs_set_inode_last_trans(trans, inode);
6331 
6332 	btrfs_update_root_times(trans, root);
6333 
6334 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6335 	if (ret)
6336 		btrfs_err(root->fs_info,
6337 			  "error inheriting props for ino %llu (root %llu): %d",
6338 			  btrfs_ino(inode), root->root_key.objectid, ret);
6339 
6340 	return inode;
6341 
6342 fail_unlock:
6343 	unlock_new_inode(inode);
6344 fail:
6345 	if (dir && name)
6346 		BTRFS_I(dir)->index_cnt--;
6347 	btrfs_free_path(path);
6348 	iput(inode);
6349 	return ERR_PTR(ret);
6350 }
6351 
btrfs_inode_type(struct inode * inode)6352 static inline u8 btrfs_inode_type(struct inode *inode)
6353 {
6354 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6355 }
6356 
6357 /*
6358  * utility function to add 'inode' into 'parent_inode' with
6359  * a give name and a given sequence number.
6360  * if 'add_backref' is true, also insert a backref from the
6361  * inode to the parent directory.
6362  */
btrfs_add_link(struct btrfs_trans_handle * trans,struct inode * parent_inode,struct inode * inode,const char * name,int name_len,int add_backref,u64 index)6363 int btrfs_add_link(struct btrfs_trans_handle *trans,
6364 		   struct inode *parent_inode, struct inode *inode,
6365 		   const char *name, int name_len, int add_backref, u64 index)
6366 {
6367 	int ret = 0;
6368 	struct btrfs_key key;
6369 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6370 	u64 ino = btrfs_ino(inode);
6371 	u64 parent_ino = btrfs_ino(parent_inode);
6372 
6373 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6374 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6375 	} else {
6376 		key.objectid = ino;
6377 		key.type = BTRFS_INODE_ITEM_KEY;
6378 		key.offset = 0;
6379 	}
6380 
6381 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6382 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6383 					 key.objectid, root->root_key.objectid,
6384 					 parent_ino, index, name, name_len);
6385 	} else if (add_backref) {
6386 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6387 					     parent_ino, index);
6388 	}
6389 
6390 	/* Nothing to clean up yet */
6391 	if (ret)
6392 		return ret;
6393 
6394 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6395 				    parent_inode, &key,
6396 				    btrfs_inode_type(inode), index);
6397 	if (ret == -EEXIST || ret == -EOVERFLOW)
6398 		goto fail_dir_item;
6399 	else if (ret) {
6400 		btrfs_abort_transaction(trans, ret);
6401 		return ret;
6402 	}
6403 
6404 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
6405 			   name_len * 2);
6406 	inode_inc_iversion(parent_inode);
6407 	parent_inode->i_mtime = parent_inode->i_ctime =
6408 		current_time(parent_inode);
6409 	ret = btrfs_update_inode(trans, root, parent_inode);
6410 	if (ret)
6411 		btrfs_abort_transaction(trans, ret);
6412 	return ret;
6413 
6414 fail_dir_item:
6415 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6416 		u64 local_index;
6417 		int err;
6418 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6419 				 key.objectid, root->root_key.objectid,
6420 				 parent_ino, &local_index, name, name_len);
6421 
6422 	} else if (add_backref) {
6423 		u64 local_index;
6424 		int err;
6425 
6426 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6427 					  ino, parent_ino, &local_index);
6428 	}
6429 	return ret;
6430 }
6431 
btrfs_add_nondir(struct btrfs_trans_handle * trans,struct inode * dir,struct dentry * dentry,struct inode * inode,int backref,u64 index)6432 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6433 			    struct inode *dir, struct dentry *dentry,
6434 			    struct inode *inode, int backref, u64 index)
6435 {
6436 	int err = btrfs_add_link(trans, dir, inode,
6437 				 dentry->d_name.name, dentry->d_name.len,
6438 				 backref, index);
6439 	if (err > 0)
6440 		err = -EEXIST;
6441 	return err;
6442 }
6443 
btrfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6444 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6445 			umode_t mode, dev_t rdev)
6446 {
6447 	struct btrfs_trans_handle *trans;
6448 	struct btrfs_root *root = BTRFS_I(dir)->root;
6449 	struct inode *inode = NULL;
6450 	int err;
6451 	int drop_inode = 0;
6452 	u64 objectid;
6453 	u64 index = 0;
6454 
6455 	/*
6456 	 * 2 for inode item and ref
6457 	 * 2 for dir items
6458 	 * 1 for xattr if selinux is on
6459 	 */
6460 	trans = btrfs_start_transaction(root, 5);
6461 	if (IS_ERR(trans))
6462 		return PTR_ERR(trans);
6463 
6464 	err = btrfs_find_free_ino(root, &objectid);
6465 	if (err)
6466 		goto out_unlock;
6467 
6468 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6469 				dentry->d_name.len, btrfs_ino(dir), objectid,
6470 				mode, &index);
6471 	if (IS_ERR(inode)) {
6472 		err = PTR_ERR(inode);
6473 		goto out_unlock;
6474 	}
6475 
6476 	/*
6477 	* If the active LSM wants to access the inode during
6478 	* d_instantiate it needs these. Smack checks to see
6479 	* if the filesystem supports xattrs by looking at the
6480 	* ops vector.
6481 	*/
6482 	inode->i_op = &btrfs_special_inode_operations;
6483 	init_special_inode(inode, inode->i_mode, rdev);
6484 
6485 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6486 	if (err)
6487 		goto out_unlock_inode;
6488 
6489 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6490 	if (err) {
6491 		goto out_unlock_inode;
6492 	} else {
6493 		btrfs_update_inode(trans, root, inode);
6494 		unlock_new_inode(inode);
6495 		d_instantiate(dentry, inode);
6496 	}
6497 
6498 out_unlock:
6499 	btrfs_end_transaction(trans, root);
6500 	btrfs_balance_delayed_items(root);
6501 	btrfs_btree_balance_dirty(root);
6502 	if (drop_inode) {
6503 		inode_dec_link_count(inode);
6504 		iput(inode);
6505 	}
6506 	return err;
6507 
6508 out_unlock_inode:
6509 	drop_inode = 1;
6510 	unlock_new_inode(inode);
6511 	goto out_unlock;
6512 
6513 }
6514 
btrfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6515 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6516 			umode_t mode, bool excl)
6517 {
6518 	struct btrfs_trans_handle *trans;
6519 	struct btrfs_root *root = BTRFS_I(dir)->root;
6520 	struct inode *inode = NULL;
6521 	int drop_inode_on_err = 0;
6522 	int err;
6523 	u64 objectid;
6524 	u64 index = 0;
6525 
6526 	/*
6527 	 * 2 for inode item and ref
6528 	 * 2 for dir items
6529 	 * 1 for xattr if selinux is on
6530 	 */
6531 	trans = btrfs_start_transaction(root, 5);
6532 	if (IS_ERR(trans))
6533 		return PTR_ERR(trans);
6534 
6535 	err = btrfs_find_free_ino(root, &objectid);
6536 	if (err)
6537 		goto out_unlock;
6538 
6539 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6540 				dentry->d_name.len, btrfs_ino(dir), objectid,
6541 				mode, &index);
6542 	if (IS_ERR(inode)) {
6543 		err = PTR_ERR(inode);
6544 		goto out_unlock;
6545 	}
6546 	drop_inode_on_err = 1;
6547 	/*
6548 	* If the active LSM wants to access the inode during
6549 	* d_instantiate it needs these. Smack checks to see
6550 	* if the filesystem supports xattrs by looking at the
6551 	* ops vector.
6552 	*/
6553 	inode->i_fop = &btrfs_file_operations;
6554 	inode->i_op = &btrfs_file_inode_operations;
6555 	inode->i_mapping->a_ops = &btrfs_aops;
6556 
6557 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6558 	if (err)
6559 		goto out_unlock_inode;
6560 
6561 	err = btrfs_update_inode(trans, root, inode);
6562 	if (err)
6563 		goto out_unlock_inode;
6564 
6565 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6566 	if (err)
6567 		goto out_unlock_inode;
6568 
6569 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6570 	unlock_new_inode(inode);
6571 	d_instantiate(dentry, inode);
6572 
6573 out_unlock:
6574 	btrfs_end_transaction(trans, root);
6575 	if (err && drop_inode_on_err) {
6576 		inode_dec_link_count(inode);
6577 		iput(inode);
6578 	}
6579 	btrfs_balance_delayed_items(root);
6580 	btrfs_btree_balance_dirty(root);
6581 	return err;
6582 
6583 out_unlock_inode:
6584 	unlock_new_inode(inode);
6585 	goto out_unlock;
6586 
6587 }
6588 
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6589 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6590 		      struct dentry *dentry)
6591 {
6592 	struct btrfs_trans_handle *trans = NULL;
6593 	struct btrfs_root *root = BTRFS_I(dir)->root;
6594 	struct inode *inode = d_inode(old_dentry);
6595 	u64 index;
6596 	int err;
6597 	int drop_inode = 0;
6598 
6599 	/* do not allow sys_link's with other subvols of the same device */
6600 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6601 		return -EXDEV;
6602 
6603 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6604 		return -EMLINK;
6605 
6606 	err = btrfs_set_inode_index(dir, &index);
6607 	if (err)
6608 		goto fail;
6609 
6610 	/*
6611 	 * 2 items for inode and inode ref
6612 	 * 2 items for dir items
6613 	 * 1 item for parent inode
6614 	 */
6615 	trans = btrfs_start_transaction(root, 5);
6616 	if (IS_ERR(trans)) {
6617 		err = PTR_ERR(trans);
6618 		trans = NULL;
6619 		goto fail;
6620 	}
6621 
6622 	/* There are several dir indexes for this inode, clear the cache. */
6623 	BTRFS_I(inode)->dir_index = 0ULL;
6624 	inc_nlink(inode);
6625 	inode_inc_iversion(inode);
6626 	inode->i_ctime = current_time(inode);
6627 	ihold(inode);
6628 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6629 
6630 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6631 
6632 	if (err) {
6633 		drop_inode = 1;
6634 	} else {
6635 		struct dentry *parent = dentry->d_parent;
6636 		err = btrfs_update_inode(trans, root, inode);
6637 		if (err)
6638 			goto fail;
6639 		if (inode->i_nlink == 1) {
6640 			/*
6641 			 * If new hard link count is 1, it's a file created
6642 			 * with open(2) O_TMPFILE flag.
6643 			 */
6644 			err = btrfs_orphan_del(trans, inode);
6645 			if (err)
6646 				goto fail;
6647 		}
6648 		d_instantiate(dentry, inode);
6649 		btrfs_log_new_name(trans, inode, NULL, parent);
6650 	}
6651 
6652 	btrfs_balance_delayed_items(root);
6653 fail:
6654 	if (trans)
6655 		btrfs_end_transaction(trans, root);
6656 	if (drop_inode) {
6657 		inode_dec_link_count(inode);
6658 		iput(inode);
6659 	}
6660 	btrfs_btree_balance_dirty(root);
6661 	return err;
6662 }
6663 
btrfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)6664 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6665 {
6666 	struct inode *inode = NULL;
6667 	struct btrfs_trans_handle *trans;
6668 	struct btrfs_root *root = BTRFS_I(dir)->root;
6669 	int err = 0;
6670 	int drop_on_err = 0;
6671 	u64 objectid = 0;
6672 	u64 index = 0;
6673 
6674 	/*
6675 	 * 2 items for inode and ref
6676 	 * 2 items for dir items
6677 	 * 1 for xattr if selinux is on
6678 	 */
6679 	trans = btrfs_start_transaction(root, 5);
6680 	if (IS_ERR(trans))
6681 		return PTR_ERR(trans);
6682 
6683 	err = btrfs_find_free_ino(root, &objectid);
6684 	if (err)
6685 		goto out_fail;
6686 
6687 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6688 				dentry->d_name.len, btrfs_ino(dir), objectid,
6689 				S_IFDIR | mode, &index);
6690 	if (IS_ERR(inode)) {
6691 		err = PTR_ERR(inode);
6692 		goto out_fail;
6693 	}
6694 
6695 	drop_on_err = 1;
6696 	/* these must be set before we unlock the inode */
6697 	inode->i_op = &btrfs_dir_inode_operations;
6698 	inode->i_fop = &btrfs_dir_file_operations;
6699 
6700 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6701 	if (err)
6702 		goto out_fail_inode;
6703 
6704 	btrfs_i_size_write(inode, 0);
6705 	err = btrfs_update_inode(trans, root, inode);
6706 	if (err)
6707 		goto out_fail_inode;
6708 
6709 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6710 			     dentry->d_name.len, 0, index);
6711 	if (err)
6712 		goto out_fail_inode;
6713 
6714 	d_instantiate(dentry, inode);
6715 	/*
6716 	 * mkdir is special.  We're unlocking after we call d_instantiate
6717 	 * to avoid a race with nfsd calling d_instantiate.
6718 	 */
6719 	unlock_new_inode(inode);
6720 	drop_on_err = 0;
6721 
6722 out_fail:
6723 	btrfs_end_transaction(trans, root);
6724 	if (drop_on_err) {
6725 		inode_dec_link_count(inode);
6726 		iput(inode);
6727 	}
6728 	btrfs_balance_delayed_items(root);
6729 	btrfs_btree_balance_dirty(root);
6730 	return err;
6731 
6732 out_fail_inode:
6733 	unlock_new_inode(inode);
6734 	goto out_fail;
6735 }
6736 
6737 /* Find next extent map of a given extent map, caller needs to ensure locks */
next_extent_map(struct extent_map * em)6738 static struct extent_map *next_extent_map(struct extent_map *em)
6739 {
6740 	struct rb_node *next;
6741 
6742 	next = rb_next(&em->rb_node);
6743 	if (!next)
6744 		return NULL;
6745 	return container_of(next, struct extent_map, rb_node);
6746 }
6747 
prev_extent_map(struct extent_map * em)6748 static struct extent_map *prev_extent_map(struct extent_map *em)
6749 {
6750 	struct rb_node *prev;
6751 
6752 	prev = rb_prev(&em->rb_node);
6753 	if (!prev)
6754 		return NULL;
6755 	return container_of(prev, struct extent_map, rb_node);
6756 }
6757 
6758 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6759  * the existing extent is the nearest extent to map_start,
6760  * and an extent that you want to insert, deal with overlap and insert
6761  * the best fitted new extent into the tree.
6762  */
merge_extent_mapping(struct extent_map_tree * em_tree,struct extent_map * existing,struct extent_map * em,u64 map_start)6763 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6764 				struct extent_map *existing,
6765 				struct extent_map *em,
6766 				u64 map_start)
6767 {
6768 	struct extent_map *prev;
6769 	struct extent_map *next;
6770 	u64 start;
6771 	u64 end;
6772 	u64 start_diff;
6773 
6774 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6775 
6776 	if (existing->start > map_start) {
6777 		next = existing;
6778 		prev = prev_extent_map(next);
6779 	} else {
6780 		prev = existing;
6781 		next = next_extent_map(prev);
6782 	}
6783 
6784 	start = prev ? extent_map_end(prev) : em->start;
6785 	start = max_t(u64, start, em->start);
6786 	end = next ? next->start : extent_map_end(em);
6787 	end = min_t(u64, end, extent_map_end(em));
6788 	start_diff = start - em->start;
6789 	em->start = start;
6790 	em->len = end - start;
6791 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6792 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6793 		em->block_start += start_diff;
6794 		em->block_len -= start_diff;
6795 	}
6796 	return add_extent_mapping(em_tree, em, 0);
6797 }
6798 
uncompress_inline(struct btrfs_path * path,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)6799 static noinline int uncompress_inline(struct btrfs_path *path,
6800 				      struct page *page,
6801 				      size_t pg_offset, u64 extent_offset,
6802 				      struct btrfs_file_extent_item *item)
6803 {
6804 	int ret;
6805 	struct extent_buffer *leaf = path->nodes[0];
6806 	char *tmp;
6807 	size_t max_size;
6808 	unsigned long inline_size;
6809 	unsigned long ptr;
6810 	int compress_type;
6811 
6812 	WARN_ON(pg_offset != 0);
6813 	compress_type = btrfs_file_extent_compression(leaf, item);
6814 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6815 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6816 					btrfs_item_nr(path->slots[0]));
6817 	tmp = kmalloc(inline_size, GFP_NOFS);
6818 	if (!tmp)
6819 		return -ENOMEM;
6820 	ptr = btrfs_file_extent_inline_start(item);
6821 
6822 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6823 
6824 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6825 	ret = btrfs_decompress(compress_type, tmp, page,
6826 			       extent_offset, inline_size, max_size);
6827 
6828 	/*
6829 	 * decompression code contains a memset to fill in any space between the end
6830 	 * of the uncompressed data and the end of max_size in case the decompressed
6831 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6832 	 * the end of an inline extent and the beginning of the next block, so we
6833 	 * cover that region here.
6834 	 */
6835 
6836 	if (max_size + pg_offset < PAGE_SIZE) {
6837 		char *map = kmap(page);
6838 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6839 		kunmap(page);
6840 	}
6841 	kfree(tmp);
6842 	return ret;
6843 }
6844 
6845 /*
6846  * a bit scary, this does extent mapping from logical file offset to the disk.
6847  * the ugly parts come from merging extents from the disk with the in-ram
6848  * representation.  This gets more complex because of the data=ordered code,
6849  * where the in-ram extents might be locked pending data=ordered completion.
6850  *
6851  * This also copies inline extents directly into the page.
6852  */
6853 
btrfs_get_extent(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)6854 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6855 				    size_t pg_offset, u64 start, u64 len,
6856 				    int create)
6857 {
6858 	int ret;
6859 	int err = 0;
6860 	u64 extent_start = 0;
6861 	u64 extent_end = 0;
6862 	u64 objectid = btrfs_ino(inode);
6863 	u32 found_type;
6864 	struct btrfs_path *path = NULL;
6865 	struct btrfs_root *root = BTRFS_I(inode)->root;
6866 	struct btrfs_file_extent_item *item;
6867 	struct extent_buffer *leaf;
6868 	struct btrfs_key found_key;
6869 	struct extent_map *em = NULL;
6870 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6871 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6872 	struct btrfs_trans_handle *trans = NULL;
6873 	const bool new_inline = !page || create;
6874 
6875 again:
6876 	read_lock(&em_tree->lock);
6877 	em = lookup_extent_mapping(em_tree, start, len);
6878 	if (em)
6879 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6880 	read_unlock(&em_tree->lock);
6881 
6882 	if (em) {
6883 		if (em->start > start || em->start + em->len <= start)
6884 			free_extent_map(em);
6885 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6886 			free_extent_map(em);
6887 		else
6888 			goto out;
6889 	}
6890 	em = alloc_extent_map();
6891 	if (!em) {
6892 		err = -ENOMEM;
6893 		goto out;
6894 	}
6895 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6896 	em->start = EXTENT_MAP_HOLE;
6897 	em->orig_start = EXTENT_MAP_HOLE;
6898 	em->len = (u64)-1;
6899 	em->block_len = (u64)-1;
6900 
6901 	if (!path) {
6902 		path = btrfs_alloc_path();
6903 		if (!path) {
6904 			err = -ENOMEM;
6905 			goto out;
6906 		}
6907 		/*
6908 		 * Chances are we'll be called again, so go ahead and do
6909 		 * readahead
6910 		 */
6911 		path->reada = READA_FORWARD;
6912 	}
6913 
6914 	ret = btrfs_lookup_file_extent(trans, root, path,
6915 				       objectid, start, trans != NULL);
6916 	if (ret < 0) {
6917 		err = ret;
6918 		goto out;
6919 	}
6920 
6921 	if (ret != 0) {
6922 		if (path->slots[0] == 0)
6923 			goto not_found;
6924 		path->slots[0]--;
6925 	}
6926 
6927 	leaf = path->nodes[0];
6928 	item = btrfs_item_ptr(leaf, path->slots[0],
6929 			      struct btrfs_file_extent_item);
6930 	/* are we inside the extent that was found? */
6931 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6932 	found_type = found_key.type;
6933 	if (found_key.objectid != objectid ||
6934 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6935 		/*
6936 		 * If we backup past the first extent we want to move forward
6937 		 * and see if there is an extent in front of us, otherwise we'll
6938 		 * say there is a hole for our whole search range which can
6939 		 * cause problems.
6940 		 */
6941 		extent_end = start;
6942 		goto next;
6943 	}
6944 
6945 	found_type = btrfs_file_extent_type(leaf, item);
6946 	extent_start = found_key.offset;
6947 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6948 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6949 		extent_end = extent_start +
6950 		       btrfs_file_extent_num_bytes(leaf, item);
6951 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6952 		size_t size;
6953 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6954 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6955 	}
6956 next:
6957 	if (start >= extent_end) {
6958 		path->slots[0]++;
6959 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6960 			ret = btrfs_next_leaf(root, path);
6961 			if (ret < 0) {
6962 				err = ret;
6963 				goto out;
6964 			}
6965 			if (ret > 0)
6966 				goto not_found;
6967 			leaf = path->nodes[0];
6968 		}
6969 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6970 		if (found_key.objectid != objectid ||
6971 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6972 			goto not_found;
6973 		if (start + len <= found_key.offset)
6974 			goto not_found;
6975 		if (start > found_key.offset)
6976 			goto next;
6977 		em->start = start;
6978 		em->orig_start = start;
6979 		em->len = found_key.offset - start;
6980 		goto not_found_em;
6981 	}
6982 
6983 	btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6984 
6985 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6986 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6987 		goto insert;
6988 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6989 		unsigned long ptr;
6990 		char *map;
6991 		size_t size;
6992 		size_t extent_offset;
6993 		size_t copy_size;
6994 
6995 		if (new_inline)
6996 			goto out;
6997 
6998 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6999 		extent_offset = page_offset(page) + pg_offset - extent_start;
7000 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7001 				  size - extent_offset);
7002 		em->start = extent_start + extent_offset;
7003 		em->len = ALIGN(copy_size, root->sectorsize);
7004 		em->orig_block_len = em->len;
7005 		em->orig_start = em->start;
7006 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7007 		if (create == 0 && !PageUptodate(page)) {
7008 			if (btrfs_file_extent_compression(leaf, item) !=
7009 			    BTRFS_COMPRESS_NONE) {
7010 				ret = uncompress_inline(path, page, pg_offset,
7011 							extent_offset, item);
7012 				if (ret) {
7013 					err = ret;
7014 					goto out;
7015 				}
7016 			} else {
7017 				map = kmap(page);
7018 				read_extent_buffer(leaf, map + pg_offset, ptr,
7019 						   copy_size);
7020 				if (pg_offset + copy_size < PAGE_SIZE) {
7021 					memset(map + pg_offset + copy_size, 0,
7022 					       PAGE_SIZE - pg_offset -
7023 					       copy_size);
7024 				}
7025 				kunmap(page);
7026 			}
7027 			flush_dcache_page(page);
7028 		} else if (create && PageUptodate(page)) {
7029 			BUG();
7030 			if (!trans) {
7031 				kunmap(page);
7032 				free_extent_map(em);
7033 				em = NULL;
7034 
7035 				btrfs_release_path(path);
7036 				trans = btrfs_join_transaction(root);
7037 
7038 				if (IS_ERR(trans))
7039 					return ERR_CAST(trans);
7040 				goto again;
7041 			}
7042 			map = kmap(page);
7043 			write_extent_buffer(leaf, map + pg_offset, ptr,
7044 					    copy_size);
7045 			kunmap(page);
7046 			btrfs_mark_buffer_dirty(leaf);
7047 		}
7048 		set_extent_uptodate(io_tree, em->start,
7049 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7050 		goto insert;
7051 	}
7052 not_found:
7053 	em->start = start;
7054 	em->orig_start = start;
7055 	em->len = len;
7056 not_found_em:
7057 	em->block_start = EXTENT_MAP_HOLE;
7058 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
7059 insert:
7060 	btrfs_release_path(path);
7061 	if (em->start > start || extent_map_end(em) <= start) {
7062 		btrfs_err(root->fs_info,
7063 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7064 			  em->start, em->len, start, len);
7065 		err = -EIO;
7066 		goto out;
7067 	}
7068 
7069 	err = 0;
7070 	write_lock(&em_tree->lock);
7071 	ret = add_extent_mapping(em_tree, em, 0);
7072 	/* it is possible that someone inserted the extent into the tree
7073 	 * while we had the lock dropped.  It is also possible that
7074 	 * an overlapping map exists in the tree
7075 	 */
7076 	if (ret == -EEXIST) {
7077 		struct extent_map *existing;
7078 
7079 		ret = 0;
7080 
7081 		existing = search_extent_mapping(em_tree, start, len);
7082 		/*
7083 		 * existing will always be non-NULL, since there must be
7084 		 * extent causing the -EEXIST.
7085 		 */
7086 		if (existing->start == em->start &&
7087 		    extent_map_end(existing) == extent_map_end(em) &&
7088 		    em->block_start == existing->block_start) {
7089 			/*
7090 			 * these two extents are the same, it happens
7091 			 * with inlines especially
7092 			 */
7093 			free_extent_map(em);
7094 			em = existing;
7095 			err = 0;
7096 
7097 		} else if (start >= extent_map_end(existing) ||
7098 		    start <= existing->start) {
7099 			/*
7100 			 * The existing extent map is the one nearest to
7101 			 * the [start, start + len) range which overlaps
7102 			 */
7103 			err = merge_extent_mapping(em_tree, existing,
7104 						   em, start);
7105 			free_extent_map(existing);
7106 			if (err) {
7107 				free_extent_map(em);
7108 				em = NULL;
7109 			}
7110 		} else {
7111 			free_extent_map(em);
7112 			em = existing;
7113 			err = 0;
7114 		}
7115 	}
7116 	write_unlock(&em_tree->lock);
7117 out:
7118 
7119 	trace_btrfs_get_extent(root, em);
7120 
7121 	btrfs_free_path(path);
7122 	if (trans) {
7123 		ret = btrfs_end_transaction(trans, root);
7124 		if (!err)
7125 			err = ret;
7126 	}
7127 	if (err) {
7128 		free_extent_map(em);
7129 		return ERR_PTR(err);
7130 	}
7131 	BUG_ON(!em); /* Error is always set */
7132 	return em;
7133 }
7134 
btrfs_get_extent_fiemap(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)7135 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7136 					   size_t pg_offset, u64 start, u64 len,
7137 					   int create)
7138 {
7139 	struct extent_map *em;
7140 	struct extent_map *hole_em = NULL;
7141 	u64 range_start = start;
7142 	u64 end;
7143 	u64 found;
7144 	u64 found_end;
7145 	int err = 0;
7146 
7147 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7148 	if (IS_ERR(em))
7149 		return em;
7150 	if (em) {
7151 		/*
7152 		 * if our em maps to
7153 		 * -  a hole or
7154 		 * -  a pre-alloc extent,
7155 		 * there might actually be delalloc bytes behind it.
7156 		 */
7157 		if (em->block_start != EXTENT_MAP_HOLE &&
7158 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7159 			return em;
7160 		else
7161 			hole_em = em;
7162 	}
7163 
7164 	/* check to see if we've wrapped (len == -1 or similar) */
7165 	end = start + len;
7166 	if (end < start)
7167 		end = (u64)-1;
7168 	else
7169 		end -= 1;
7170 
7171 	em = NULL;
7172 
7173 	/* ok, we didn't find anything, lets look for delalloc */
7174 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7175 				 end, len, EXTENT_DELALLOC, 1);
7176 	found_end = range_start + found;
7177 	if (found_end < range_start)
7178 		found_end = (u64)-1;
7179 
7180 	/*
7181 	 * we didn't find anything useful, return
7182 	 * the original results from get_extent()
7183 	 */
7184 	if (range_start > end || found_end <= start) {
7185 		em = hole_em;
7186 		hole_em = NULL;
7187 		goto out;
7188 	}
7189 
7190 	/* adjust the range_start to make sure it doesn't
7191 	 * go backwards from the start they passed in
7192 	 */
7193 	range_start = max(start, range_start);
7194 	found = found_end - range_start;
7195 
7196 	if (found > 0) {
7197 		u64 hole_start = start;
7198 		u64 hole_len = len;
7199 
7200 		em = alloc_extent_map();
7201 		if (!em) {
7202 			err = -ENOMEM;
7203 			goto out;
7204 		}
7205 		/*
7206 		 * when btrfs_get_extent can't find anything it
7207 		 * returns one huge hole
7208 		 *
7209 		 * make sure what it found really fits our range, and
7210 		 * adjust to make sure it is based on the start from
7211 		 * the caller
7212 		 */
7213 		if (hole_em) {
7214 			u64 calc_end = extent_map_end(hole_em);
7215 
7216 			if (calc_end <= start || (hole_em->start > end)) {
7217 				free_extent_map(hole_em);
7218 				hole_em = NULL;
7219 			} else {
7220 				hole_start = max(hole_em->start, start);
7221 				hole_len = calc_end - hole_start;
7222 			}
7223 		}
7224 		em->bdev = NULL;
7225 		if (hole_em && range_start > hole_start) {
7226 			/* our hole starts before our delalloc, so we
7227 			 * have to return just the parts of the hole
7228 			 * that go until  the delalloc starts
7229 			 */
7230 			em->len = min(hole_len,
7231 				      range_start - hole_start);
7232 			em->start = hole_start;
7233 			em->orig_start = hole_start;
7234 			/*
7235 			 * don't adjust block start at all,
7236 			 * it is fixed at EXTENT_MAP_HOLE
7237 			 */
7238 			em->block_start = hole_em->block_start;
7239 			em->block_len = hole_len;
7240 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7241 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7242 		} else {
7243 			em->start = range_start;
7244 			em->len = found;
7245 			em->orig_start = range_start;
7246 			em->block_start = EXTENT_MAP_DELALLOC;
7247 			em->block_len = found;
7248 		}
7249 	} else if (hole_em) {
7250 		return hole_em;
7251 	}
7252 out:
7253 
7254 	free_extent_map(hole_em);
7255 	if (err) {
7256 		free_extent_map(em);
7257 		return ERR_PTR(err);
7258 	}
7259 	return em;
7260 }
7261 
btrfs_create_dio_extent(struct inode * inode,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)7262 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7263 						  const u64 start,
7264 						  const u64 len,
7265 						  const u64 orig_start,
7266 						  const u64 block_start,
7267 						  const u64 block_len,
7268 						  const u64 orig_block_len,
7269 						  const u64 ram_bytes,
7270 						  const int type)
7271 {
7272 	struct extent_map *em = NULL;
7273 	int ret;
7274 
7275 	if (type != BTRFS_ORDERED_NOCOW) {
7276 		em = create_pinned_em(inode, start, len, orig_start,
7277 				      block_start, block_len, orig_block_len,
7278 				      ram_bytes, type);
7279 		if (IS_ERR(em))
7280 			goto out;
7281 	}
7282 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7283 					   len, block_len, type);
7284 	if (ret) {
7285 		if (em) {
7286 			free_extent_map(em);
7287 			btrfs_drop_extent_cache(inode, start,
7288 						start + len - 1, 0);
7289 		}
7290 		em = ERR_PTR(ret);
7291 	}
7292  out:
7293 
7294 	return em;
7295 }
7296 
btrfs_new_extent_direct(struct inode * inode,u64 start,u64 len)7297 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7298 						  u64 start, u64 len)
7299 {
7300 	struct btrfs_root *root = BTRFS_I(inode)->root;
7301 	struct extent_map *em;
7302 	struct btrfs_key ins;
7303 	u64 alloc_hint;
7304 	int ret;
7305 
7306 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7307 	ret = btrfs_reserve_extent(root, len, len, root->sectorsize, 0,
7308 				   alloc_hint, &ins, 1, 1);
7309 	if (ret)
7310 		return ERR_PTR(ret);
7311 
7312 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7313 				     ins.objectid, ins.offset, ins.offset,
7314 				     ins.offset, 0);
7315 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
7316 	if (IS_ERR(em))
7317 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7318 
7319 	return em;
7320 }
7321 
7322 /*
7323  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7324  * block must be cow'd
7325  */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes)7326 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7327 			      u64 *orig_start, u64 *orig_block_len,
7328 			      u64 *ram_bytes)
7329 {
7330 	struct btrfs_trans_handle *trans;
7331 	struct btrfs_path *path;
7332 	int ret;
7333 	struct extent_buffer *leaf;
7334 	struct btrfs_root *root = BTRFS_I(inode)->root;
7335 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7336 	struct btrfs_file_extent_item *fi;
7337 	struct btrfs_key key;
7338 	u64 disk_bytenr;
7339 	u64 backref_offset;
7340 	u64 extent_end;
7341 	u64 num_bytes;
7342 	int slot;
7343 	int found_type;
7344 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7345 
7346 	path = btrfs_alloc_path();
7347 	if (!path)
7348 		return -ENOMEM;
7349 
7350 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7351 				       offset, 0);
7352 	if (ret < 0)
7353 		goto out;
7354 
7355 	slot = path->slots[0];
7356 	if (ret == 1) {
7357 		if (slot == 0) {
7358 			/* can't find the item, must cow */
7359 			ret = 0;
7360 			goto out;
7361 		}
7362 		slot--;
7363 	}
7364 	ret = 0;
7365 	leaf = path->nodes[0];
7366 	btrfs_item_key_to_cpu(leaf, &key, slot);
7367 	if (key.objectid != btrfs_ino(inode) ||
7368 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7369 		/* not our file or wrong item type, must cow */
7370 		goto out;
7371 	}
7372 
7373 	if (key.offset > offset) {
7374 		/* Wrong offset, must cow */
7375 		goto out;
7376 	}
7377 
7378 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7379 	found_type = btrfs_file_extent_type(leaf, fi);
7380 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7381 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7382 		/* not a regular extent, must cow */
7383 		goto out;
7384 	}
7385 
7386 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7387 		goto out;
7388 
7389 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7390 	if (extent_end <= offset)
7391 		goto out;
7392 
7393 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7394 	if (disk_bytenr == 0)
7395 		goto out;
7396 
7397 	if (btrfs_file_extent_compression(leaf, fi) ||
7398 	    btrfs_file_extent_encryption(leaf, fi) ||
7399 	    btrfs_file_extent_other_encoding(leaf, fi))
7400 		goto out;
7401 
7402 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7403 
7404 	if (orig_start) {
7405 		*orig_start = key.offset - backref_offset;
7406 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7407 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7408 	}
7409 
7410 	if (btrfs_extent_readonly(root, disk_bytenr))
7411 		goto out;
7412 
7413 	num_bytes = min(offset + *len, extent_end) - offset;
7414 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7415 		u64 range_end;
7416 
7417 		range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7418 		ret = test_range_bit(io_tree, offset, range_end,
7419 				     EXTENT_DELALLOC, 0, NULL);
7420 		if (ret) {
7421 			ret = -EAGAIN;
7422 			goto out;
7423 		}
7424 	}
7425 
7426 	btrfs_release_path(path);
7427 
7428 	/*
7429 	 * look for other files referencing this extent, if we
7430 	 * find any we must cow
7431 	 */
7432 	trans = btrfs_join_transaction(root);
7433 	if (IS_ERR(trans)) {
7434 		ret = 0;
7435 		goto out;
7436 	}
7437 
7438 	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7439 				    key.offset - backref_offset, disk_bytenr);
7440 	btrfs_end_transaction(trans, root);
7441 	if (ret) {
7442 		ret = 0;
7443 		goto out;
7444 	}
7445 
7446 	/*
7447 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7448 	 * in this extent we are about to write.  If there
7449 	 * are any csums in that range we have to cow in order
7450 	 * to keep the csums correct
7451 	 */
7452 	disk_bytenr += backref_offset;
7453 	disk_bytenr += offset - key.offset;
7454 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7455 				goto out;
7456 	/*
7457 	 * all of the above have passed, it is safe to overwrite this extent
7458 	 * without cow
7459 	 */
7460 	*len = num_bytes;
7461 	ret = 1;
7462 out:
7463 	btrfs_free_path(path);
7464 	return ret;
7465 }
7466 
btrfs_page_exists_in_range(struct inode * inode,loff_t start,loff_t end)7467 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7468 {
7469 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7470 	int found = false;
7471 	void **pagep = NULL;
7472 	struct page *page = NULL;
7473 	unsigned long start_idx;
7474 	unsigned long end_idx;
7475 
7476 	start_idx = start >> PAGE_SHIFT;
7477 
7478 	/*
7479 	 * end is the last byte in the last page.  end == start is legal
7480 	 */
7481 	end_idx = end >> PAGE_SHIFT;
7482 
7483 	rcu_read_lock();
7484 
7485 	/* Most of the code in this while loop is lifted from
7486 	 * find_get_page.  It's been modified to begin searching from a
7487 	 * page and return just the first page found in that range.  If the
7488 	 * found idx is less than or equal to the end idx then we know that
7489 	 * a page exists.  If no pages are found or if those pages are
7490 	 * outside of the range then we're fine (yay!) */
7491 	while (page == NULL &&
7492 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7493 		page = radix_tree_deref_slot(pagep);
7494 		if (unlikely(!page))
7495 			break;
7496 
7497 		if (radix_tree_exception(page)) {
7498 			if (radix_tree_deref_retry(page)) {
7499 				page = NULL;
7500 				continue;
7501 			}
7502 			/*
7503 			 * Otherwise, shmem/tmpfs must be storing a swap entry
7504 			 * here as an exceptional entry: so return it without
7505 			 * attempting to raise page count.
7506 			 */
7507 			page = NULL;
7508 			break; /* TODO: Is this relevant for this use case? */
7509 		}
7510 
7511 		if (!page_cache_get_speculative(page)) {
7512 			page = NULL;
7513 			continue;
7514 		}
7515 
7516 		/*
7517 		 * Has the page moved?
7518 		 * This is part of the lockless pagecache protocol. See
7519 		 * include/linux/pagemap.h for details.
7520 		 */
7521 		if (unlikely(page != *pagep)) {
7522 			put_page(page);
7523 			page = NULL;
7524 		}
7525 	}
7526 
7527 	if (page) {
7528 		if (page->index <= end_idx)
7529 			found = true;
7530 		put_page(page);
7531 	}
7532 
7533 	rcu_read_unlock();
7534 	return found;
7535 }
7536 
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,int writing)7537 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7538 			      struct extent_state **cached_state, int writing)
7539 {
7540 	struct btrfs_ordered_extent *ordered;
7541 	int ret = 0;
7542 
7543 	while (1) {
7544 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7545 				 cached_state);
7546 		/*
7547 		 * We're concerned with the entire range that we're going to be
7548 		 * doing DIO to, so we need to make sure there's no ordered
7549 		 * extents in this range.
7550 		 */
7551 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
7552 						     lockend - lockstart + 1);
7553 
7554 		/*
7555 		 * We need to make sure there are no buffered pages in this
7556 		 * range either, we could have raced between the invalidate in
7557 		 * generic_file_direct_write and locking the extent.  The
7558 		 * invalidate needs to happen so that reads after a write do not
7559 		 * get stale data.
7560 		 */
7561 		if (!ordered &&
7562 		    (!writing ||
7563 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7564 			break;
7565 
7566 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7567 				     cached_state, GFP_NOFS);
7568 
7569 		if (ordered) {
7570 			/*
7571 			 * If we are doing a DIO read and the ordered extent we
7572 			 * found is for a buffered write, we can not wait for it
7573 			 * to complete and retry, because if we do so we can
7574 			 * deadlock with concurrent buffered writes on page
7575 			 * locks. This happens only if our DIO read covers more
7576 			 * than one extent map, if at this point has already
7577 			 * created an ordered extent for a previous extent map
7578 			 * and locked its range in the inode's io tree, and a
7579 			 * concurrent write against that previous extent map's
7580 			 * range and this range started (we unlock the ranges
7581 			 * in the io tree only when the bios complete and
7582 			 * buffered writes always lock pages before attempting
7583 			 * to lock range in the io tree).
7584 			 */
7585 			if (writing ||
7586 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7587 				btrfs_start_ordered_extent(inode, ordered, 1);
7588 			else
7589 				ret = -ENOTBLK;
7590 			btrfs_put_ordered_extent(ordered);
7591 		} else {
7592 			/*
7593 			 * We could trigger writeback for this range (and wait
7594 			 * for it to complete) and then invalidate the pages for
7595 			 * this range (through invalidate_inode_pages2_range()),
7596 			 * but that can lead us to a deadlock with a concurrent
7597 			 * call to readpages() (a buffered read or a defrag call
7598 			 * triggered a readahead) on a page lock due to an
7599 			 * ordered dio extent we created before but did not have
7600 			 * yet a corresponding bio submitted (whence it can not
7601 			 * complete), which makes readpages() wait for that
7602 			 * ordered extent to complete while holding a lock on
7603 			 * that page.
7604 			 */
7605 			ret = -ENOTBLK;
7606 		}
7607 
7608 		if (ret)
7609 			break;
7610 
7611 		cond_resched();
7612 	}
7613 
7614 	return ret;
7615 }
7616 
create_pinned_em(struct inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int type)7617 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7618 					   u64 len, u64 orig_start,
7619 					   u64 block_start, u64 block_len,
7620 					   u64 orig_block_len, u64 ram_bytes,
7621 					   int type)
7622 {
7623 	struct extent_map_tree *em_tree;
7624 	struct extent_map *em;
7625 	struct btrfs_root *root = BTRFS_I(inode)->root;
7626 	int ret;
7627 
7628 	em_tree = &BTRFS_I(inode)->extent_tree;
7629 	em = alloc_extent_map();
7630 	if (!em)
7631 		return ERR_PTR(-ENOMEM);
7632 
7633 	em->start = start;
7634 	em->orig_start = orig_start;
7635 	em->mod_start = start;
7636 	em->mod_len = len;
7637 	em->len = len;
7638 	em->block_len = block_len;
7639 	em->block_start = block_start;
7640 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7641 	em->orig_block_len = orig_block_len;
7642 	em->ram_bytes = ram_bytes;
7643 	em->generation = -1;
7644 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7645 	if (type == BTRFS_ORDERED_PREALLOC)
7646 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7647 
7648 	do {
7649 		btrfs_drop_extent_cache(inode, em->start,
7650 				em->start + em->len - 1, 0);
7651 		write_lock(&em_tree->lock);
7652 		ret = add_extent_mapping(em_tree, em, 1);
7653 		write_unlock(&em_tree->lock);
7654 	} while (ret == -EEXIST);
7655 
7656 	if (ret) {
7657 		free_extent_map(em);
7658 		return ERR_PTR(ret);
7659 	}
7660 
7661 	return em;
7662 }
7663 
adjust_dio_outstanding_extents(struct inode * inode,struct btrfs_dio_data * dio_data,const u64 len)7664 static void adjust_dio_outstanding_extents(struct inode *inode,
7665 					   struct btrfs_dio_data *dio_data,
7666 					   const u64 len)
7667 {
7668 	unsigned num_extents;
7669 
7670 	num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7671 					   BTRFS_MAX_EXTENT_SIZE);
7672 	/*
7673 	 * If we have an outstanding_extents count still set then we're
7674 	 * within our reservation, otherwise we need to adjust our inode
7675 	 * counter appropriately.
7676 	 */
7677 	if (dio_data->outstanding_extents >= num_extents) {
7678 		dio_data->outstanding_extents -= num_extents;
7679 	} else {
7680 		/*
7681 		 * If dio write length has been split due to no large enough
7682 		 * contiguous space, we need to compensate our inode counter
7683 		 * appropriately.
7684 		 */
7685 		u64 num_needed = num_extents - dio_data->outstanding_extents;
7686 
7687 		spin_lock(&BTRFS_I(inode)->lock);
7688 		BTRFS_I(inode)->outstanding_extents += num_needed;
7689 		spin_unlock(&BTRFS_I(inode)->lock);
7690 	}
7691 }
7692 
btrfs_get_blocks_direct(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)7693 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7694 				   struct buffer_head *bh_result, int create)
7695 {
7696 	struct extent_map *em;
7697 	struct btrfs_root *root = BTRFS_I(inode)->root;
7698 	struct extent_state *cached_state = NULL;
7699 	struct btrfs_dio_data *dio_data = NULL;
7700 	u64 start = iblock << inode->i_blkbits;
7701 	u64 lockstart, lockend;
7702 	u64 len = bh_result->b_size;
7703 	int unlock_bits = EXTENT_LOCKED;
7704 	int ret = 0;
7705 
7706 	if (create)
7707 		unlock_bits |= EXTENT_DIRTY;
7708 	else
7709 		len = min_t(u64, len, root->sectorsize);
7710 
7711 	lockstart = start;
7712 	lockend = start + len - 1;
7713 
7714 	if (current->journal_info) {
7715 		/*
7716 		 * Need to pull our outstanding extents and set journal_info to NULL so
7717 		 * that anything that needs to check if there's a transaction doesn't get
7718 		 * confused.
7719 		 */
7720 		dio_data = current->journal_info;
7721 		current->journal_info = NULL;
7722 	}
7723 
7724 	/*
7725 	 * If this errors out it's because we couldn't invalidate pagecache for
7726 	 * this range and we need to fallback to buffered.
7727 	 */
7728 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7729 			       create)) {
7730 		ret = -ENOTBLK;
7731 		goto err;
7732 	}
7733 
7734 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7735 	if (IS_ERR(em)) {
7736 		ret = PTR_ERR(em);
7737 		goto unlock_err;
7738 	}
7739 
7740 	/*
7741 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7742 	 * io.  INLINE is special, and we could probably kludge it in here, but
7743 	 * it's still buffered so for safety lets just fall back to the generic
7744 	 * buffered path.
7745 	 *
7746 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7747 	 * decompress it, so there will be buffering required no matter what we
7748 	 * do, so go ahead and fallback to buffered.
7749 	 *
7750 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7751 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7752 	 * the generic code.
7753 	 */
7754 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7755 	    em->block_start == EXTENT_MAP_INLINE) {
7756 		free_extent_map(em);
7757 		ret = -ENOTBLK;
7758 		goto unlock_err;
7759 	}
7760 
7761 	/* Just a good old fashioned hole, return */
7762 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7763 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7764 		free_extent_map(em);
7765 		goto unlock_err;
7766 	}
7767 
7768 	/*
7769 	 * We don't allocate a new extent in the following cases
7770 	 *
7771 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7772 	 * existing extent.
7773 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7774 	 * just use the extent.
7775 	 *
7776 	 */
7777 	if (!create) {
7778 		len = min(len, em->len - (start - em->start));
7779 		lockstart = start + len;
7780 		goto unlock;
7781 	}
7782 
7783 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7784 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7785 	     em->block_start != EXTENT_MAP_HOLE)) {
7786 		int type;
7787 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7788 
7789 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7790 			type = BTRFS_ORDERED_PREALLOC;
7791 		else
7792 			type = BTRFS_ORDERED_NOCOW;
7793 		len = min(len, em->len - (start - em->start));
7794 		block_start = em->block_start + (start - em->start);
7795 
7796 		if (can_nocow_extent(inode, start, &len, &orig_start,
7797 				     &orig_block_len, &ram_bytes) == 1 &&
7798 		    btrfs_inc_nocow_writers(root->fs_info, block_start)) {
7799 			struct extent_map *em2;
7800 
7801 			em2 = btrfs_create_dio_extent(inode, start, len,
7802 						      orig_start, block_start,
7803 						      len, orig_block_len,
7804 						      ram_bytes, type);
7805 			btrfs_dec_nocow_writers(root->fs_info, block_start);
7806 			if (type == BTRFS_ORDERED_PREALLOC) {
7807 				free_extent_map(em);
7808 				em = em2;
7809 			}
7810 			if (em2 && IS_ERR(em2)) {
7811 				ret = PTR_ERR(em2);
7812 				goto unlock_err;
7813 			}
7814 			/*
7815 			 * For inode marked NODATACOW or extent marked PREALLOC,
7816 			 * use the existing or preallocated extent, so does not
7817 			 * need to adjust btrfs_space_info's bytes_may_use.
7818 			 */
7819 			btrfs_free_reserved_data_space_noquota(inode,
7820 					start, len);
7821 			goto unlock;
7822 		}
7823 	}
7824 
7825 	/*
7826 	 * this will cow the extent, reset the len in case we changed
7827 	 * it above
7828 	 */
7829 	len = bh_result->b_size;
7830 	free_extent_map(em);
7831 	em = btrfs_new_extent_direct(inode, start, len);
7832 	if (IS_ERR(em)) {
7833 		ret = PTR_ERR(em);
7834 		goto unlock_err;
7835 	}
7836 	len = min(len, em->len - (start - em->start));
7837 unlock:
7838 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7839 		inode->i_blkbits;
7840 	bh_result->b_size = len;
7841 	bh_result->b_bdev = em->bdev;
7842 	set_buffer_mapped(bh_result);
7843 	if (create) {
7844 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7845 			set_buffer_new(bh_result);
7846 
7847 		/*
7848 		 * Need to update the i_size under the extent lock so buffered
7849 		 * readers will get the updated i_size when we unlock.
7850 		 */
7851 		if (start + len > i_size_read(inode))
7852 			i_size_write(inode, start + len);
7853 
7854 		adjust_dio_outstanding_extents(inode, dio_data, len);
7855 		WARN_ON(dio_data->reserve < len);
7856 		dio_data->reserve -= len;
7857 		dio_data->unsubmitted_oe_range_end = start + len;
7858 		current->journal_info = dio_data;
7859 	}
7860 
7861 	/*
7862 	 * In the case of write we need to clear and unlock the entire range,
7863 	 * in the case of read we need to unlock only the end area that we
7864 	 * aren't using if there is any left over space.
7865 	 */
7866 	if (lockstart < lockend) {
7867 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7868 				 lockend, unlock_bits, 1, 0,
7869 				 &cached_state, GFP_NOFS);
7870 	} else {
7871 		free_extent_state(cached_state);
7872 	}
7873 
7874 	free_extent_map(em);
7875 
7876 	return 0;
7877 
7878 unlock_err:
7879 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7880 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7881 err:
7882 	if (dio_data)
7883 		current->journal_info = dio_data;
7884 	/*
7885 	 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7886 	 * write less data then expected, so that we don't underflow our inode's
7887 	 * outstanding extents counter.
7888 	 */
7889 	if (create && dio_data)
7890 		adjust_dio_outstanding_extents(inode, dio_data, len);
7891 
7892 	return ret;
7893 }
7894 
submit_dio_repair_bio(struct inode * inode,struct bio * bio,int mirror_num)7895 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7896 					int mirror_num)
7897 {
7898 	struct btrfs_root *root = BTRFS_I(inode)->root;
7899 	int ret;
7900 
7901 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7902 
7903 	bio_get(bio);
7904 
7905 	ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7906 				  BTRFS_WQ_ENDIO_DIO_REPAIR);
7907 	if (ret)
7908 		goto err;
7909 
7910 	ret = btrfs_map_bio(root, bio, mirror_num, 0);
7911 err:
7912 	bio_put(bio);
7913 	return ret;
7914 }
7915 
btrfs_check_dio_repairable(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,int failed_mirror)7916 static int btrfs_check_dio_repairable(struct inode *inode,
7917 				      struct bio *failed_bio,
7918 				      struct io_failure_record *failrec,
7919 				      int failed_mirror)
7920 {
7921 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7922 	int num_copies;
7923 
7924 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7925 	if (num_copies == 1) {
7926 		/*
7927 		 * we only have a single copy of the data, so don't bother with
7928 		 * all the retry and error correction code that follows. no
7929 		 * matter what the error is, it is very likely to persist.
7930 		 */
7931 		btrfs_debug(fs_info,
7932 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7933 			num_copies, failrec->this_mirror, failed_mirror);
7934 		return 0;
7935 	}
7936 
7937 	failrec->failed_mirror = failed_mirror;
7938 	failrec->this_mirror++;
7939 	if (failrec->this_mirror == failed_mirror)
7940 		failrec->this_mirror++;
7941 
7942 	if (failrec->this_mirror > num_copies) {
7943 		btrfs_debug(fs_info,
7944 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7945 			num_copies, failrec->this_mirror, failed_mirror);
7946 		return 0;
7947 	}
7948 
7949 	return 1;
7950 }
7951 
dio_read_error(struct inode * inode,struct bio * failed_bio,struct page * page,unsigned int pgoff,u64 start,u64 end,int failed_mirror,bio_end_io_t * repair_endio,void * repair_arg)7952 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7953 			struct page *page, unsigned int pgoff,
7954 			u64 start, u64 end, int failed_mirror,
7955 			bio_end_io_t *repair_endio, void *repair_arg)
7956 {
7957 	struct io_failure_record *failrec;
7958 	struct bio *bio;
7959 	int isector;
7960 	int read_mode;
7961 	int ret;
7962 
7963 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7964 
7965 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7966 	if (ret)
7967 		return ret;
7968 
7969 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7970 					 failed_mirror);
7971 	if (!ret) {
7972 		free_io_failure(inode, failrec);
7973 		return -EIO;
7974 	}
7975 
7976 	if ((failed_bio->bi_vcnt > 1)
7977 		|| (failed_bio->bi_io_vec->bv_len
7978 			> BTRFS_I(inode)->root->sectorsize))
7979 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7980 	else
7981 		read_mode = READ_SYNC;
7982 
7983 	isector = start - btrfs_io_bio(failed_bio)->logical;
7984 	isector >>= inode->i_sb->s_blocksize_bits;
7985 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7986 				pgoff, isector, repair_endio, repair_arg);
7987 	if (!bio) {
7988 		free_io_failure(inode, failrec);
7989 		return -EIO;
7990 	}
7991 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
7992 
7993 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7994 		    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7995 		    read_mode, failrec->this_mirror, failrec->in_validation);
7996 
7997 	ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7998 	if (ret) {
7999 		free_io_failure(inode, failrec);
8000 		bio_put(bio);
8001 	}
8002 
8003 	return ret;
8004 }
8005 
8006 struct btrfs_retry_complete {
8007 	struct completion done;
8008 	struct inode *inode;
8009 	u64 start;
8010 	int uptodate;
8011 };
8012 
btrfs_retry_endio_nocsum(struct bio * bio)8013 static void btrfs_retry_endio_nocsum(struct bio *bio)
8014 {
8015 	struct btrfs_retry_complete *done = bio->bi_private;
8016 	struct inode *inode;
8017 	struct bio_vec *bvec;
8018 	int i;
8019 
8020 	if (bio->bi_error)
8021 		goto end;
8022 
8023 	ASSERT(bio->bi_vcnt == 1);
8024 	inode = bio->bi_io_vec->bv_page->mapping->host;
8025 	ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8026 
8027 	done->uptodate = 1;
8028 	bio_for_each_segment_all(bvec, bio, i)
8029 		clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
8030 end:
8031 	complete(&done->done);
8032 	bio_put(bio);
8033 }
8034 
__btrfs_correct_data_nocsum(struct inode * inode,struct btrfs_io_bio * io_bio)8035 static int __btrfs_correct_data_nocsum(struct inode *inode,
8036 				       struct btrfs_io_bio *io_bio)
8037 {
8038 	struct btrfs_fs_info *fs_info;
8039 	struct bio_vec *bvec;
8040 	struct btrfs_retry_complete done;
8041 	u64 start;
8042 	unsigned int pgoff;
8043 	u32 sectorsize;
8044 	int nr_sectors;
8045 	int i;
8046 	int ret;
8047 
8048 	fs_info = BTRFS_I(inode)->root->fs_info;
8049 	sectorsize = BTRFS_I(inode)->root->sectorsize;
8050 
8051 	start = io_bio->logical;
8052 	done.inode = inode;
8053 
8054 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8055 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8056 		pgoff = bvec->bv_offset;
8057 
8058 next_block_or_try_again:
8059 		done.uptodate = 0;
8060 		done.start = start;
8061 		init_completion(&done.done);
8062 
8063 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8064 				pgoff, start, start + sectorsize - 1,
8065 				io_bio->mirror_num,
8066 				btrfs_retry_endio_nocsum, &done);
8067 		if (ret)
8068 			return ret;
8069 
8070 		wait_for_completion(&done.done);
8071 
8072 		if (!done.uptodate) {
8073 			/* We might have another mirror, so try again */
8074 			goto next_block_or_try_again;
8075 		}
8076 
8077 		start += sectorsize;
8078 
8079 		nr_sectors--;
8080 		if (nr_sectors) {
8081 			pgoff += sectorsize;
8082 			ASSERT(pgoff < PAGE_SIZE);
8083 			goto next_block_or_try_again;
8084 		}
8085 	}
8086 
8087 	return 0;
8088 }
8089 
btrfs_retry_endio(struct bio * bio)8090 static void btrfs_retry_endio(struct bio *bio)
8091 {
8092 	struct btrfs_retry_complete *done = bio->bi_private;
8093 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8094 	struct inode *inode;
8095 	struct bio_vec *bvec;
8096 	u64 start;
8097 	int uptodate;
8098 	int ret;
8099 	int i;
8100 
8101 	if (bio->bi_error)
8102 		goto end;
8103 
8104 	uptodate = 1;
8105 
8106 	start = done->start;
8107 
8108 	ASSERT(bio->bi_vcnt == 1);
8109 	inode = bio->bi_io_vec->bv_page->mapping->host;
8110 	ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8111 
8112 	bio_for_each_segment_all(bvec, bio, i) {
8113 		ret = __readpage_endio_check(done->inode, io_bio, i,
8114 					bvec->bv_page, bvec->bv_offset,
8115 					done->start, bvec->bv_len);
8116 		if (!ret)
8117 			clean_io_failure(done->inode, done->start,
8118 					bvec->bv_page, bvec->bv_offset);
8119 		else
8120 			uptodate = 0;
8121 	}
8122 
8123 	done->uptodate = uptodate;
8124 end:
8125 	complete(&done->done);
8126 	bio_put(bio);
8127 }
8128 
__btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,int err)8129 static int __btrfs_subio_endio_read(struct inode *inode,
8130 				    struct btrfs_io_bio *io_bio, int err)
8131 {
8132 	struct btrfs_fs_info *fs_info;
8133 	struct bio_vec *bvec;
8134 	struct btrfs_retry_complete done;
8135 	u64 start;
8136 	u64 offset = 0;
8137 	u32 sectorsize;
8138 	int nr_sectors;
8139 	unsigned int pgoff;
8140 	int csum_pos;
8141 	int i;
8142 	int ret;
8143 
8144 	fs_info = BTRFS_I(inode)->root->fs_info;
8145 	sectorsize = BTRFS_I(inode)->root->sectorsize;
8146 
8147 	err = 0;
8148 	start = io_bio->logical;
8149 	done.inode = inode;
8150 
8151 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8152 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8153 
8154 		pgoff = bvec->bv_offset;
8155 next_block:
8156 		csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8157 		ret = __readpage_endio_check(inode, io_bio, csum_pos,
8158 					bvec->bv_page, pgoff, start,
8159 					sectorsize);
8160 		if (likely(!ret))
8161 			goto next;
8162 try_again:
8163 		done.uptodate = 0;
8164 		done.start = start;
8165 		init_completion(&done.done);
8166 
8167 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8168 				pgoff, start, start + sectorsize - 1,
8169 				io_bio->mirror_num,
8170 				btrfs_retry_endio, &done);
8171 		if (ret) {
8172 			err = ret;
8173 			goto next;
8174 		}
8175 
8176 		wait_for_completion(&done.done);
8177 
8178 		if (!done.uptodate) {
8179 			/* We might have another mirror, so try again */
8180 			goto try_again;
8181 		}
8182 next:
8183 		offset += sectorsize;
8184 		start += sectorsize;
8185 
8186 		ASSERT(nr_sectors);
8187 
8188 		nr_sectors--;
8189 		if (nr_sectors) {
8190 			pgoff += sectorsize;
8191 			ASSERT(pgoff < PAGE_SIZE);
8192 			goto next_block;
8193 		}
8194 	}
8195 
8196 	return err;
8197 }
8198 
btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,int err)8199 static int btrfs_subio_endio_read(struct inode *inode,
8200 				  struct btrfs_io_bio *io_bio, int err)
8201 {
8202 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8203 
8204 	if (skip_csum) {
8205 		if (unlikely(err))
8206 			return __btrfs_correct_data_nocsum(inode, io_bio);
8207 		else
8208 			return 0;
8209 	} else {
8210 		return __btrfs_subio_endio_read(inode, io_bio, err);
8211 	}
8212 }
8213 
btrfs_endio_direct_read(struct bio * bio)8214 static void btrfs_endio_direct_read(struct bio *bio)
8215 {
8216 	struct btrfs_dio_private *dip = bio->bi_private;
8217 	struct inode *inode = dip->inode;
8218 	struct bio *dio_bio;
8219 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8220 	int err = bio->bi_error;
8221 
8222 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8223 		err = btrfs_subio_endio_read(inode, io_bio, err);
8224 
8225 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8226 		      dip->logical_offset + dip->bytes - 1);
8227 	dio_bio = dip->dio_bio;
8228 
8229 	kfree(dip);
8230 
8231 	dio_bio->bi_error = bio->bi_error;
8232 	dio_end_io(dio_bio, bio->bi_error);
8233 
8234 	if (io_bio->end_io)
8235 		io_bio->end_io(io_bio, err);
8236 	bio_put(bio);
8237 }
8238 
btrfs_endio_direct_write_update_ordered(struct inode * inode,const u64 offset,const u64 bytes,const int uptodate)8239 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8240 						    const u64 offset,
8241 						    const u64 bytes,
8242 						    const int uptodate)
8243 {
8244 	struct btrfs_root *root = BTRFS_I(inode)->root;
8245 	struct btrfs_ordered_extent *ordered = NULL;
8246 	u64 ordered_offset = offset;
8247 	u64 ordered_bytes = bytes;
8248 	int ret;
8249 
8250 again:
8251 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8252 						   &ordered_offset,
8253 						   ordered_bytes,
8254 						   uptodate);
8255 	if (!ret)
8256 		goto out_test;
8257 
8258 	btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8259 			finish_ordered_fn, NULL, NULL);
8260 	btrfs_queue_work(root->fs_info->endio_write_workers,
8261 			 &ordered->work);
8262 out_test:
8263 	/*
8264 	 * our bio might span multiple ordered extents.  If we haven't
8265 	 * completed the accounting for the whole dio, go back and try again
8266 	 */
8267 	if (ordered_offset < offset + bytes) {
8268 		ordered_bytes = offset + bytes - ordered_offset;
8269 		ordered = NULL;
8270 		goto again;
8271 	}
8272 }
8273 
btrfs_endio_direct_write(struct bio * bio)8274 static void btrfs_endio_direct_write(struct bio *bio)
8275 {
8276 	struct btrfs_dio_private *dip = bio->bi_private;
8277 	struct bio *dio_bio = dip->dio_bio;
8278 
8279 	btrfs_endio_direct_write_update_ordered(dip->inode,
8280 						dip->logical_offset,
8281 						dip->bytes,
8282 						!bio->bi_error);
8283 
8284 	kfree(dip);
8285 
8286 	dio_bio->bi_error = bio->bi_error;
8287 	dio_end_io(dio_bio, bio->bi_error);
8288 	bio_put(bio);
8289 }
8290 
__btrfs_submit_bio_start_direct_io(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 offset)8291 static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
8292 				    struct bio *bio, int mirror_num,
8293 				    unsigned long bio_flags, u64 offset)
8294 {
8295 	int ret;
8296 	struct btrfs_root *root = BTRFS_I(inode)->root;
8297 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8298 	BUG_ON(ret); /* -ENOMEM */
8299 	return 0;
8300 }
8301 
btrfs_end_dio_bio(struct bio * bio)8302 static void btrfs_end_dio_bio(struct bio *bio)
8303 {
8304 	struct btrfs_dio_private *dip = bio->bi_private;
8305 	int err = bio->bi_error;
8306 
8307 	if (err)
8308 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8309 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8310 			   btrfs_ino(dip->inode), bio_op(bio), bio->bi_opf,
8311 			   (unsigned long long)bio->bi_iter.bi_sector,
8312 			   bio->bi_iter.bi_size, err);
8313 
8314 	if (dip->subio_endio)
8315 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8316 
8317 	if (err) {
8318 		dip->errors = 1;
8319 
8320 		/*
8321 		 * before atomic variable goto zero, we must make sure
8322 		 * dip->errors is perceived to be set.
8323 		 */
8324 		smp_mb__before_atomic();
8325 	}
8326 
8327 	/* if there are more bios still pending for this dio, just exit */
8328 	if (!atomic_dec_and_test(&dip->pending_bios))
8329 		goto out;
8330 
8331 	if (dip->errors) {
8332 		bio_io_error(dip->orig_bio);
8333 	} else {
8334 		dip->dio_bio->bi_error = 0;
8335 		bio_endio(dip->orig_bio);
8336 	}
8337 out:
8338 	bio_put(bio);
8339 }
8340 
btrfs_dio_bio_alloc(struct block_device * bdev,u64 first_sector,gfp_t gfp_flags)8341 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8342 				       u64 first_sector, gfp_t gfp_flags)
8343 {
8344 	struct bio *bio;
8345 	bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8346 	if (bio)
8347 		bio_associate_current(bio);
8348 	return bio;
8349 }
8350 
btrfs_lookup_and_bind_dio_csum(struct btrfs_root * root,struct inode * inode,struct btrfs_dio_private * dip,struct bio * bio,u64 file_offset)8351 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8352 						 struct inode *inode,
8353 						 struct btrfs_dio_private *dip,
8354 						 struct bio *bio,
8355 						 u64 file_offset)
8356 {
8357 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8358 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8359 	int ret;
8360 
8361 	/*
8362 	 * We load all the csum data we need when we submit
8363 	 * the first bio to reduce the csum tree search and
8364 	 * contention.
8365 	 */
8366 	if (dip->logical_offset == file_offset) {
8367 		ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8368 						file_offset);
8369 		if (ret)
8370 			return ret;
8371 	}
8372 
8373 	if (bio == dip->orig_bio)
8374 		return 0;
8375 
8376 	file_offset -= dip->logical_offset;
8377 	file_offset >>= inode->i_sb->s_blocksize_bits;
8378 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8379 
8380 	return 0;
8381 }
8382 
__btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,u64 file_offset,int skip_sum,int async_submit)8383 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8384 					 u64 file_offset, int skip_sum,
8385 					 int async_submit)
8386 {
8387 	struct btrfs_dio_private *dip = bio->bi_private;
8388 	bool write = bio_op(bio) == REQ_OP_WRITE;
8389 	struct btrfs_root *root = BTRFS_I(inode)->root;
8390 	int ret;
8391 
8392 	if (async_submit)
8393 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8394 
8395 	bio_get(bio);
8396 
8397 	if (!write) {
8398 		ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8399 				BTRFS_WQ_ENDIO_DATA);
8400 		if (ret)
8401 			goto err;
8402 	}
8403 
8404 	if (skip_sum)
8405 		goto map;
8406 
8407 	if (write && async_submit) {
8408 		ret = btrfs_wq_submit_bio(root->fs_info,
8409 				   inode, bio, 0, 0, file_offset,
8410 				   __btrfs_submit_bio_start_direct_io,
8411 				   __btrfs_submit_bio_done);
8412 		goto err;
8413 	} else if (write) {
8414 		/*
8415 		 * If we aren't doing async submit, calculate the csum of the
8416 		 * bio now.
8417 		 */
8418 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8419 		if (ret)
8420 			goto err;
8421 	} else {
8422 		ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8423 						     file_offset);
8424 		if (ret)
8425 			goto err;
8426 	}
8427 map:
8428 	ret = btrfs_map_bio(root, bio, 0, async_submit);
8429 err:
8430 	bio_put(bio);
8431 	return ret;
8432 }
8433 
btrfs_submit_direct_hook(struct btrfs_dio_private * dip,int skip_sum)8434 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
8435 				    int skip_sum)
8436 {
8437 	struct inode *inode = dip->inode;
8438 	struct btrfs_root *root = BTRFS_I(inode)->root;
8439 	struct bio *bio;
8440 	struct bio *orig_bio = dip->orig_bio;
8441 	struct bio_vec *bvec = orig_bio->bi_io_vec;
8442 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8443 	u64 file_offset = dip->logical_offset;
8444 	u64 submit_len = 0;
8445 	u64 map_length;
8446 	u32 blocksize = root->sectorsize;
8447 	int async_submit = 0;
8448 	int nr_sectors;
8449 	int ret;
8450 	int i;
8451 
8452 	map_length = orig_bio->bi_iter.bi_size;
8453 	ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8454 			      start_sector << 9, &map_length, NULL, 0);
8455 	if (ret)
8456 		return -EIO;
8457 
8458 	if (map_length >= orig_bio->bi_iter.bi_size) {
8459 		bio = orig_bio;
8460 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8461 		goto submit;
8462 	}
8463 
8464 	/* async crcs make it difficult to collect full stripe writes. */
8465 	if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8466 		async_submit = 0;
8467 	else
8468 		async_submit = 1;
8469 
8470 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8471 	if (!bio)
8472 		return -ENOMEM;
8473 
8474 	bio_set_op_attrs(bio, bio_op(orig_bio), bio_flags(orig_bio));
8475 	bio->bi_private = dip;
8476 	bio->bi_end_io = btrfs_end_dio_bio;
8477 	btrfs_io_bio(bio)->logical = file_offset;
8478 	atomic_inc(&dip->pending_bios);
8479 
8480 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8481 		nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8482 		i = 0;
8483 next_block:
8484 		if (unlikely(map_length < submit_len + blocksize ||
8485 		    bio_add_page(bio, bvec->bv_page, blocksize,
8486 			    bvec->bv_offset + (i * blocksize)) < blocksize)) {
8487 			/*
8488 			 * inc the count before we submit the bio so
8489 			 * we know the end IO handler won't happen before
8490 			 * we inc the count. Otherwise, the dip might get freed
8491 			 * before we're done setting it up
8492 			 */
8493 			atomic_inc(&dip->pending_bios);
8494 			ret = __btrfs_submit_dio_bio(bio, inode,
8495 						     file_offset, skip_sum,
8496 						     async_submit);
8497 			if (ret) {
8498 				bio_put(bio);
8499 				atomic_dec(&dip->pending_bios);
8500 				goto out_err;
8501 			}
8502 
8503 			start_sector += submit_len >> 9;
8504 			file_offset += submit_len;
8505 
8506 			submit_len = 0;
8507 
8508 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8509 						  start_sector, GFP_NOFS);
8510 			if (!bio)
8511 				goto out_err;
8512 			bio_set_op_attrs(bio, bio_op(orig_bio),
8513 					 bio_flags(orig_bio));
8514 			bio->bi_private = dip;
8515 			bio->bi_end_io = btrfs_end_dio_bio;
8516 			btrfs_io_bio(bio)->logical = file_offset;
8517 
8518 			map_length = orig_bio->bi_iter.bi_size;
8519 			ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8520 					      start_sector << 9,
8521 					      &map_length, NULL, 0);
8522 			if (ret) {
8523 				bio_put(bio);
8524 				goto out_err;
8525 			}
8526 
8527 			goto next_block;
8528 		} else {
8529 			submit_len += blocksize;
8530 			if (--nr_sectors) {
8531 				i++;
8532 				goto next_block;
8533 			}
8534 			bvec++;
8535 		}
8536 	}
8537 
8538 submit:
8539 	ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8540 				     async_submit);
8541 	if (!ret)
8542 		return 0;
8543 
8544 	bio_put(bio);
8545 out_err:
8546 	dip->errors = 1;
8547 	/*
8548 	 * before atomic variable goto zero, we must
8549 	 * make sure dip->errors is perceived to be set.
8550 	 */
8551 	smp_mb__before_atomic();
8552 	if (atomic_dec_and_test(&dip->pending_bios))
8553 		bio_io_error(dip->orig_bio);
8554 
8555 	/* bio_end_io() will handle error, so we needn't return it */
8556 	return 0;
8557 }
8558 
btrfs_submit_direct(struct bio * dio_bio,struct inode * inode,loff_t file_offset)8559 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8560 				loff_t file_offset)
8561 {
8562 	struct btrfs_dio_private *dip = NULL;
8563 	struct bio *io_bio = NULL;
8564 	struct btrfs_io_bio *btrfs_bio;
8565 	int skip_sum;
8566 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8567 	int ret = 0;
8568 
8569 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8570 
8571 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8572 	if (!io_bio) {
8573 		ret = -ENOMEM;
8574 		goto free_ordered;
8575 	}
8576 
8577 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8578 	if (!dip) {
8579 		ret = -ENOMEM;
8580 		goto free_ordered;
8581 	}
8582 
8583 	dip->private = dio_bio->bi_private;
8584 	dip->inode = inode;
8585 	dip->logical_offset = file_offset;
8586 	dip->bytes = dio_bio->bi_iter.bi_size;
8587 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8588 	io_bio->bi_private = dip;
8589 	dip->orig_bio = io_bio;
8590 	dip->dio_bio = dio_bio;
8591 	atomic_set(&dip->pending_bios, 0);
8592 	btrfs_bio = btrfs_io_bio(io_bio);
8593 	btrfs_bio->logical = file_offset;
8594 
8595 	if (write) {
8596 		io_bio->bi_end_io = btrfs_endio_direct_write;
8597 	} else {
8598 		io_bio->bi_end_io = btrfs_endio_direct_read;
8599 		dip->subio_endio = btrfs_subio_endio_read;
8600 	}
8601 
8602 	/*
8603 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8604 	 * even if we fail to submit a bio, because in such case we do the
8605 	 * corresponding error handling below and it must not be done a second
8606 	 * time by btrfs_direct_IO().
8607 	 */
8608 	if (write) {
8609 		struct btrfs_dio_data *dio_data = current->journal_info;
8610 
8611 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8612 			dip->bytes;
8613 		dio_data->unsubmitted_oe_range_start =
8614 			dio_data->unsubmitted_oe_range_end;
8615 	}
8616 
8617 	ret = btrfs_submit_direct_hook(dip, skip_sum);
8618 	if (!ret)
8619 		return;
8620 
8621 	if (btrfs_bio->end_io)
8622 		btrfs_bio->end_io(btrfs_bio, ret);
8623 
8624 free_ordered:
8625 	/*
8626 	 * If we arrived here it means either we failed to submit the dip
8627 	 * or we either failed to clone the dio_bio or failed to allocate the
8628 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8629 	 * call bio_endio against our io_bio so that we get proper resource
8630 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8631 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8632 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8633 	 */
8634 	if (io_bio && dip) {
8635 		io_bio->bi_error = -EIO;
8636 		bio_endio(io_bio);
8637 		/*
8638 		 * The end io callbacks free our dip, do the final put on io_bio
8639 		 * and all the cleanup and final put for dio_bio (through
8640 		 * dio_end_io()).
8641 		 */
8642 		dip = NULL;
8643 		io_bio = NULL;
8644 	} else {
8645 		if (write)
8646 			btrfs_endio_direct_write_update_ordered(inode,
8647 						file_offset,
8648 						dio_bio->bi_iter.bi_size,
8649 						0);
8650 		else
8651 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8652 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8653 
8654 		dio_bio->bi_error = -EIO;
8655 		/*
8656 		 * Releases and cleans up our dio_bio, no need to bio_put()
8657 		 * nor bio_endio()/bio_io_error() against dio_bio.
8658 		 */
8659 		dio_end_io(dio_bio, ret);
8660 	}
8661 	if (io_bio)
8662 		bio_put(io_bio);
8663 	kfree(dip);
8664 }
8665 
check_direct_IO(struct btrfs_root * root,struct kiocb * iocb,const struct iov_iter * iter,loff_t offset)8666 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8667 			const struct iov_iter *iter, loff_t offset)
8668 {
8669 	int seg;
8670 	int i;
8671 	unsigned blocksize_mask = root->sectorsize - 1;
8672 	ssize_t retval = -EINVAL;
8673 
8674 	if (offset & blocksize_mask)
8675 		goto out;
8676 
8677 	if (iov_iter_alignment(iter) & blocksize_mask)
8678 		goto out;
8679 
8680 	/* If this is a write we don't need to check anymore */
8681 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8682 		return 0;
8683 	/*
8684 	 * Check to make sure we don't have duplicate iov_base's in this
8685 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8686 	 * when reading back.
8687 	 */
8688 	for (seg = 0; seg < iter->nr_segs; seg++) {
8689 		for (i = seg + 1; i < iter->nr_segs; i++) {
8690 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8691 				goto out;
8692 		}
8693 	}
8694 	retval = 0;
8695 out:
8696 	return retval;
8697 }
8698 
btrfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)8699 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8700 {
8701 	struct file *file = iocb->ki_filp;
8702 	struct inode *inode = file->f_mapping->host;
8703 	struct btrfs_root *root = BTRFS_I(inode)->root;
8704 	struct btrfs_dio_data dio_data = { 0 };
8705 	loff_t offset = iocb->ki_pos;
8706 	size_t count = 0;
8707 	int flags = 0;
8708 	bool wakeup = true;
8709 	bool relock = false;
8710 	ssize_t ret;
8711 
8712 	if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8713 		return 0;
8714 
8715 	inode_dio_begin(inode);
8716 	smp_mb__after_atomic();
8717 
8718 	/*
8719 	 * The generic stuff only does filemap_write_and_wait_range, which
8720 	 * isn't enough if we've written compressed pages to this area, so
8721 	 * we need to flush the dirty pages again to make absolutely sure
8722 	 * that any outstanding dirty pages are on disk.
8723 	 */
8724 	count = iov_iter_count(iter);
8725 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8726 		     &BTRFS_I(inode)->runtime_flags))
8727 		filemap_fdatawrite_range(inode->i_mapping, offset,
8728 					 offset + count - 1);
8729 
8730 	if (iov_iter_rw(iter) == WRITE) {
8731 		/*
8732 		 * If the write DIO is beyond the EOF, we need update
8733 		 * the isize, but it is protected by i_mutex. So we can
8734 		 * not unlock the i_mutex at this case.
8735 		 */
8736 		if (offset + count <= inode->i_size) {
8737 			inode_unlock(inode);
8738 			relock = true;
8739 		}
8740 		ret = btrfs_delalloc_reserve_space(inode, offset, count);
8741 		if (ret)
8742 			goto out;
8743 		dio_data.outstanding_extents = div64_u64(count +
8744 						BTRFS_MAX_EXTENT_SIZE - 1,
8745 						BTRFS_MAX_EXTENT_SIZE);
8746 
8747 		/*
8748 		 * We need to know how many extents we reserved so that we can
8749 		 * do the accounting properly if we go over the number we
8750 		 * originally calculated.  Abuse current->journal_info for this.
8751 		 */
8752 		dio_data.reserve = round_up(count, root->sectorsize);
8753 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8754 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8755 		current->journal_info = &dio_data;
8756 		down_read(&BTRFS_I(inode)->dio_sem);
8757 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8758 				     &BTRFS_I(inode)->runtime_flags)) {
8759 		inode_dio_end(inode);
8760 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8761 		wakeup = false;
8762 	}
8763 
8764 	ret = __blockdev_direct_IO(iocb, inode,
8765 				   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8766 				   iter, btrfs_get_blocks_direct, NULL,
8767 				   btrfs_submit_direct, flags);
8768 	if (iov_iter_rw(iter) == WRITE) {
8769 		up_read(&BTRFS_I(inode)->dio_sem);
8770 		current->journal_info = NULL;
8771 		if (ret < 0 && ret != -EIOCBQUEUED) {
8772 			if (dio_data.reserve)
8773 				btrfs_delalloc_release_space(inode, offset,
8774 							     dio_data.reserve);
8775 			/*
8776 			 * On error we might have left some ordered extents
8777 			 * without submitting corresponding bios for them, so
8778 			 * cleanup them up to avoid other tasks getting them
8779 			 * and waiting for them to complete forever.
8780 			 */
8781 			if (dio_data.unsubmitted_oe_range_start <
8782 			    dio_data.unsubmitted_oe_range_end)
8783 				btrfs_endio_direct_write_update_ordered(inode,
8784 					dio_data.unsubmitted_oe_range_start,
8785 					dio_data.unsubmitted_oe_range_end -
8786 					dio_data.unsubmitted_oe_range_start,
8787 					0);
8788 		} else if (ret >= 0 && (size_t)ret < count)
8789 			btrfs_delalloc_release_space(inode, offset,
8790 						     count - (size_t)ret);
8791 	}
8792 out:
8793 	if (wakeup)
8794 		inode_dio_end(inode);
8795 	if (relock)
8796 		inode_lock(inode);
8797 
8798 	return ret;
8799 }
8800 
8801 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8802 
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)8803 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8804 		__u64 start, __u64 len)
8805 {
8806 	int	ret;
8807 
8808 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8809 	if (ret)
8810 		return ret;
8811 
8812 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8813 }
8814 
btrfs_readpage(struct file * file,struct page * page)8815 int btrfs_readpage(struct file *file, struct page *page)
8816 {
8817 	struct extent_io_tree *tree;
8818 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8819 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8820 }
8821 
btrfs_writepage(struct page * page,struct writeback_control * wbc)8822 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8823 {
8824 	struct extent_io_tree *tree;
8825 	struct inode *inode = page->mapping->host;
8826 	int ret;
8827 
8828 	if (current->flags & PF_MEMALLOC) {
8829 		redirty_page_for_writepage(wbc, page);
8830 		unlock_page(page);
8831 		return 0;
8832 	}
8833 
8834 	/*
8835 	 * If we are under memory pressure we will call this directly from the
8836 	 * VM, we need to make sure we have the inode referenced for the ordered
8837 	 * extent.  If not just return like we didn't do anything.
8838 	 */
8839 	if (!igrab(inode)) {
8840 		redirty_page_for_writepage(wbc, page);
8841 		return AOP_WRITEPAGE_ACTIVATE;
8842 	}
8843 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8844 	ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8845 	btrfs_add_delayed_iput(inode);
8846 	return ret;
8847 }
8848 
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)8849 static int btrfs_writepages(struct address_space *mapping,
8850 			    struct writeback_control *wbc)
8851 {
8852 	struct extent_io_tree *tree;
8853 
8854 	tree = &BTRFS_I(mapping->host)->io_tree;
8855 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8856 }
8857 
8858 static int
btrfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)8859 btrfs_readpages(struct file *file, struct address_space *mapping,
8860 		struct list_head *pages, unsigned nr_pages)
8861 {
8862 	struct extent_io_tree *tree;
8863 	tree = &BTRFS_I(mapping->host)->io_tree;
8864 	return extent_readpages(tree, mapping, pages, nr_pages,
8865 				btrfs_get_extent);
8866 }
__btrfs_releasepage(struct page * page,gfp_t gfp_flags)8867 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8868 {
8869 	struct extent_io_tree *tree;
8870 	struct extent_map_tree *map;
8871 	int ret;
8872 
8873 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8874 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8875 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8876 	if (ret == 1) {
8877 		ClearPagePrivate(page);
8878 		set_page_private(page, 0);
8879 		put_page(page);
8880 	}
8881 	return ret;
8882 }
8883 
btrfs_releasepage(struct page * page,gfp_t gfp_flags)8884 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8885 {
8886 	if (PageWriteback(page) || PageDirty(page))
8887 		return 0;
8888 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8889 }
8890 
btrfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)8891 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8892 				 unsigned int length)
8893 {
8894 	struct inode *inode = page->mapping->host;
8895 	struct extent_io_tree *tree;
8896 	struct btrfs_ordered_extent *ordered;
8897 	struct extent_state *cached_state = NULL;
8898 	u64 page_start = page_offset(page);
8899 	u64 page_end = page_start + PAGE_SIZE - 1;
8900 	u64 start;
8901 	u64 end;
8902 	int inode_evicting = inode->i_state & I_FREEING;
8903 
8904 	/*
8905 	 * we have the page locked, so new writeback can't start,
8906 	 * and the dirty bit won't be cleared while we are here.
8907 	 *
8908 	 * Wait for IO on this page so that we can safely clear
8909 	 * the PagePrivate2 bit and do ordered accounting
8910 	 */
8911 	wait_on_page_writeback(page);
8912 
8913 	tree = &BTRFS_I(inode)->io_tree;
8914 	if (offset) {
8915 		btrfs_releasepage(page, GFP_NOFS);
8916 		return;
8917 	}
8918 
8919 	if (!inode_evicting)
8920 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8921 again:
8922 	start = page_start;
8923 	ordered = btrfs_lookup_ordered_range(inode, start,
8924 					page_end - start + 1);
8925 	if (ordered) {
8926 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8927 		/*
8928 		 * IO on this page will never be started, so we need
8929 		 * to account for any ordered extents now
8930 		 */
8931 		if (!inode_evicting)
8932 			clear_extent_bit(tree, start, end,
8933 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8934 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8935 					 EXTENT_DEFRAG, 1, 0, &cached_state,
8936 					 GFP_NOFS);
8937 		/*
8938 		 * whoever cleared the private bit is responsible
8939 		 * for the finish_ordered_io
8940 		 */
8941 		if (TestClearPagePrivate2(page)) {
8942 			struct btrfs_ordered_inode_tree *tree;
8943 			u64 new_len;
8944 
8945 			tree = &BTRFS_I(inode)->ordered_tree;
8946 
8947 			spin_lock_irq(&tree->lock);
8948 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8949 			new_len = start - ordered->file_offset;
8950 			if (new_len < ordered->truncated_len)
8951 				ordered->truncated_len = new_len;
8952 			spin_unlock_irq(&tree->lock);
8953 
8954 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8955 							   start,
8956 							   end - start + 1, 1))
8957 				btrfs_finish_ordered_io(ordered);
8958 		}
8959 		btrfs_put_ordered_extent(ordered);
8960 		if (!inode_evicting) {
8961 			cached_state = NULL;
8962 			lock_extent_bits(tree, start, end,
8963 					 &cached_state);
8964 		}
8965 
8966 		start = end + 1;
8967 		if (start < page_end)
8968 			goto again;
8969 	}
8970 
8971 	/*
8972 	 * Qgroup reserved space handler
8973 	 * Page here will be either
8974 	 * 1) Already written to disk
8975 	 *    In this case, its reserved space is released from data rsv map
8976 	 *    and will be freed by delayed_ref handler finally.
8977 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8978 	 *    space.
8979 	 * 2) Not written to disk
8980 	 *    This means the reserved space should be freed here. However,
8981 	 *    if a truncate invalidates the page (by clearing PageDirty)
8982 	 *    and the page is accounted for while allocating extent
8983 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8984 	 *    free the entire extent.
8985 	 */
8986 	if (PageDirty(page))
8987 		btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
8988 	if (!inode_evicting) {
8989 		clear_extent_bit(tree, page_start, page_end,
8990 				 EXTENT_LOCKED | EXTENT_DIRTY |
8991 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8992 				 EXTENT_DEFRAG, 1, 1,
8993 				 &cached_state, GFP_NOFS);
8994 
8995 		__btrfs_releasepage(page, GFP_NOFS);
8996 	}
8997 
8998 	ClearPageChecked(page);
8999 	if (PagePrivate(page)) {
9000 		ClearPagePrivate(page);
9001 		set_page_private(page, 0);
9002 		put_page(page);
9003 	}
9004 }
9005 
9006 /*
9007  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9008  * called from a page fault handler when a page is first dirtied. Hence we must
9009  * be careful to check for EOF conditions here. We set the page up correctly
9010  * for a written page which means we get ENOSPC checking when writing into
9011  * holes and correct delalloc and unwritten extent mapping on filesystems that
9012  * support these features.
9013  *
9014  * We are not allowed to take the i_mutex here so we have to play games to
9015  * protect against truncate races as the page could now be beyond EOF.  Because
9016  * vmtruncate() writes the inode size before removing pages, once we have the
9017  * page lock we can determine safely if the page is beyond EOF. If it is not
9018  * beyond EOF, then the page is guaranteed safe against truncation until we
9019  * unlock the page.
9020  */
btrfs_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)9021 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9022 {
9023 	struct page *page = vmf->page;
9024 	struct inode *inode = file_inode(vma->vm_file);
9025 	struct btrfs_root *root = BTRFS_I(inode)->root;
9026 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9027 	struct btrfs_ordered_extent *ordered;
9028 	struct extent_state *cached_state = NULL;
9029 	char *kaddr;
9030 	unsigned long zero_start;
9031 	loff_t size;
9032 	int ret;
9033 	int reserved = 0;
9034 	u64 reserved_space;
9035 	u64 page_start;
9036 	u64 page_end;
9037 	u64 end;
9038 
9039 	reserved_space = PAGE_SIZE;
9040 
9041 	sb_start_pagefault(inode->i_sb);
9042 	page_start = page_offset(page);
9043 	page_end = page_start + PAGE_SIZE - 1;
9044 	end = page_end;
9045 
9046 	/*
9047 	 * Reserving delalloc space after obtaining the page lock can lead to
9048 	 * deadlock. For example, if a dirty page is locked by this function
9049 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9050 	 * dirty page write out, then the btrfs_writepage() function could
9051 	 * end up waiting indefinitely to get a lock on the page currently
9052 	 * being processed by btrfs_page_mkwrite() function.
9053 	 */
9054 	ret = btrfs_delalloc_reserve_space(inode, page_start,
9055 					   reserved_space);
9056 	if (!ret) {
9057 		ret = file_update_time(vma->vm_file);
9058 		reserved = 1;
9059 	}
9060 	if (ret) {
9061 		if (ret == -ENOMEM)
9062 			ret = VM_FAULT_OOM;
9063 		else /* -ENOSPC, -EIO, etc */
9064 			ret = VM_FAULT_SIGBUS;
9065 		if (reserved)
9066 			goto out;
9067 		goto out_noreserve;
9068 	}
9069 
9070 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9071 again:
9072 	lock_page(page);
9073 	size = i_size_read(inode);
9074 
9075 	if ((page->mapping != inode->i_mapping) ||
9076 	    (page_start >= size)) {
9077 		/* page got truncated out from underneath us */
9078 		goto out_unlock;
9079 	}
9080 	wait_on_page_writeback(page);
9081 
9082 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9083 	set_page_extent_mapped(page);
9084 
9085 	/*
9086 	 * we can't set the delalloc bits if there are pending ordered
9087 	 * extents.  Drop our locks and wait for them to finish
9088 	 */
9089 	ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
9090 	if (ordered) {
9091 		unlock_extent_cached(io_tree, page_start, page_end,
9092 				     &cached_state, GFP_NOFS);
9093 		unlock_page(page);
9094 		btrfs_start_ordered_extent(inode, ordered, 1);
9095 		btrfs_put_ordered_extent(ordered);
9096 		goto again;
9097 	}
9098 
9099 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9100 		reserved_space = round_up(size - page_start, root->sectorsize);
9101 		if (reserved_space < PAGE_SIZE) {
9102 			end = page_start + reserved_space - 1;
9103 			spin_lock(&BTRFS_I(inode)->lock);
9104 			BTRFS_I(inode)->outstanding_extents++;
9105 			spin_unlock(&BTRFS_I(inode)->lock);
9106 			btrfs_delalloc_release_space(inode, page_start,
9107 						PAGE_SIZE - reserved_space);
9108 		}
9109 	}
9110 
9111 	/*
9112 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
9113 	 * if it was already dirty, so for space accounting reasons we need to
9114 	 * clear any delalloc bits for the range we are fixing to save.  There
9115 	 * is probably a better way to do this, but for now keep consistent with
9116 	 * prepare_pages in the normal write path.
9117 	 */
9118 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9119 			  EXTENT_DIRTY | EXTENT_DELALLOC |
9120 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9121 			  0, 0, &cached_state, GFP_NOFS);
9122 
9123 	ret = btrfs_set_extent_delalloc(inode, page_start, end,
9124 					&cached_state, 0);
9125 	if (ret) {
9126 		unlock_extent_cached(io_tree, page_start, page_end,
9127 				     &cached_state, GFP_NOFS);
9128 		ret = VM_FAULT_SIGBUS;
9129 		goto out_unlock;
9130 	}
9131 	ret = 0;
9132 
9133 	/* page is wholly or partially inside EOF */
9134 	if (page_start + PAGE_SIZE > size)
9135 		zero_start = size & ~PAGE_MASK;
9136 	else
9137 		zero_start = PAGE_SIZE;
9138 
9139 	if (zero_start != PAGE_SIZE) {
9140 		kaddr = kmap(page);
9141 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9142 		flush_dcache_page(page);
9143 		kunmap(page);
9144 	}
9145 	ClearPageChecked(page);
9146 	set_page_dirty(page);
9147 	SetPageUptodate(page);
9148 
9149 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
9150 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9151 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9152 
9153 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9154 
9155 out_unlock:
9156 	if (!ret) {
9157 		sb_end_pagefault(inode->i_sb);
9158 		return VM_FAULT_LOCKED;
9159 	}
9160 	unlock_page(page);
9161 out:
9162 	btrfs_delalloc_release_space(inode, page_start, reserved_space);
9163 out_noreserve:
9164 	sb_end_pagefault(inode->i_sb);
9165 	return ret;
9166 }
9167 
btrfs_truncate(struct inode * inode)9168 static int btrfs_truncate(struct inode *inode)
9169 {
9170 	struct btrfs_root *root = BTRFS_I(inode)->root;
9171 	struct btrfs_block_rsv *rsv;
9172 	int ret = 0;
9173 	int err = 0;
9174 	struct btrfs_trans_handle *trans;
9175 	u64 mask = root->sectorsize - 1;
9176 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
9177 
9178 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9179 				       (u64)-1);
9180 	if (ret)
9181 		return ret;
9182 
9183 	/*
9184 	 * Yes ladies and gentlemen, this is indeed ugly.  The fact is we have
9185 	 * 3 things going on here
9186 	 *
9187 	 * 1) We need to reserve space for our orphan item and the space to
9188 	 * delete our orphan item.  Lord knows we don't want to have a dangling
9189 	 * orphan item because we didn't reserve space to remove it.
9190 	 *
9191 	 * 2) We need to reserve space to update our inode.
9192 	 *
9193 	 * 3) We need to have something to cache all the space that is going to
9194 	 * be free'd up by the truncate operation, but also have some slack
9195 	 * space reserved in case it uses space during the truncate (thank you
9196 	 * very much snapshotting).
9197 	 *
9198 	 * And we need these to all be separate.  The fact is we can use a lot of
9199 	 * space doing the truncate, and we have no earthly idea how much space
9200 	 * we will use, so we need the truncate reservation to be separate so it
9201 	 * doesn't end up using space reserved for updating the inode or
9202 	 * removing the orphan item.  We also need to be able to stop the
9203 	 * transaction and start a new one, which means we need to be able to
9204 	 * update the inode several times, and we have no idea of knowing how
9205 	 * many times that will be, so we can't just reserve 1 item for the
9206 	 * entirety of the operation, so that has to be done separately as well.
9207 	 * Then there is the orphan item, which does indeed need to be held on
9208 	 * to for the whole operation, and we need nobody to touch this reserved
9209 	 * space except the orphan code.
9210 	 *
9211 	 * So that leaves us with
9212 	 *
9213 	 * 1) root->orphan_block_rsv - for the orphan deletion.
9214 	 * 2) rsv - for the truncate reservation, which we will steal from the
9215 	 * transaction reservation.
9216 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9217 	 * updating the inode.
9218 	 */
9219 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
9220 	if (!rsv)
9221 		return -ENOMEM;
9222 	rsv->size = min_size;
9223 	rsv->failfast = 1;
9224 
9225 	/*
9226 	 * 1 for the truncate slack space
9227 	 * 1 for updating the inode.
9228 	 */
9229 	trans = btrfs_start_transaction(root, 2);
9230 	if (IS_ERR(trans)) {
9231 		err = PTR_ERR(trans);
9232 		goto out;
9233 	}
9234 
9235 	/* Migrate the slack space for the truncate to our reserve */
9236 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9237 				      min_size, 0);
9238 	BUG_ON(ret);
9239 
9240 	/*
9241 	 * So if we truncate and then write and fsync we normally would just
9242 	 * write the extents that changed, which is a problem if we need to
9243 	 * first truncate that entire inode.  So set this flag so we write out
9244 	 * all of the extents in the inode to the sync log so we're completely
9245 	 * safe.
9246 	 */
9247 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9248 	trans->block_rsv = rsv;
9249 
9250 	while (1) {
9251 		ret = btrfs_truncate_inode_items(trans, root, inode,
9252 						 inode->i_size,
9253 						 BTRFS_EXTENT_DATA_KEY);
9254 		if (ret != -ENOSPC && ret != -EAGAIN) {
9255 			err = ret;
9256 			break;
9257 		}
9258 
9259 		trans->block_rsv = &root->fs_info->trans_block_rsv;
9260 		ret = btrfs_update_inode(trans, root, inode);
9261 		if (ret) {
9262 			err = ret;
9263 			break;
9264 		}
9265 
9266 		btrfs_end_transaction(trans, root);
9267 		btrfs_btree_balance_dirty(root);
9268 
9269 		trans = btrfs_start_transaction(root, 2);
9270 		if (IS_ERR(trans)) {
9271 			ret = err = PTR_ERR(trans);
9272 			trans = NULL;
9273 			break;
9274 		}
9275 
9276 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9277 					      rsv, min_size, 0);
9278 		BUG_ON(ret);	/* shouldn't happen */
9279 		trans->block_rsv = rsv;
9280 	}
9281 
9282 	if (ret == 0 && inode->i_nlink > 0) {
9283 		trans->block_rsv = root->orphan_block_rsv;
9284 		ret = btrfs_orphan_del(trans, inode);
9285 		if (ret)
9286 			err = ret;
9287 	}
9288 
9289 	if (trans) {
9290 		trans->block_rsv = &root->fs_info->trans_block_rsv;
9291 		ret = btrfs_update_inode(trans, root, inode);
9292 		if (ret && !err)
9293 			err = ret;
9294 
9295 		ret = btrfs_end_transaction(trans, root);
9296 		btrfs_btree_balance_dirty(root);
9297 	}
9298 out:
9299 	btrfs_free_block_rsv(root, rsv);
9300 
9301 	if (ret && !err)
9302 		err = ret;
9303 
9304 	return err;
9305 }
9306 
9307 /*
9308  * create a new subvolume directory/inode (helper for the ioctl).
9309  */
btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct btrfs_root * parent_root,u64 new_dirid)9310 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9311 			     struct btrfs_root *new_root,
9312 			     struct btrfs_root *parent_root,
9313 			     u64 new_dirid)
9314 {
9315 	struct inode *inode;
9316 	int err;
9317 	u64 index = 0;
9318 
9319 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9320 				new_dirid, new_dirid,
9321 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9322 				&index);
9323 	if (IS_ERR(inode))
9324 		return PTR_ERR(inode);
9325 	inode->i_op = &btrfs_dir_inode_operations;
9326 	inode->i_fop = &btrfs_dir_file_operations;
9327 
9328 	set_nlink(inode, 1);
9329 	btrfs_i_size_write(inode, 0);
9330 	unlock_new_inode(inode);
9331 
9332 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9333 	if (err)
9334 		btrfs_err(new_root->fs_info,
9335 			  "error inheriting subvolume %llu properties: %d",
9336 			  new_root->root_key.objectid, err);
9337 
9338 	err = btrfs_update_inode(trans, new_root, inode);
9339 
9340 	iput(inode);
9341 	return err;
9342 }
9343 
btrfs_alloc_inode(struct super_block * sb)9344 struct inode *btrfs_alloc_inode(struct super_block *sb)
9345 {
9346 	struct btrfs_inode *ei;
9347 	struct inode *inode;
9348 
9349 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9350 	if (!ei)
9351 		return NULL;
9352 
9353 	ei->root = NULL;
9354 	ei->generation = 0;
9355 	ei->last_trans = 0;
9356 	ei->last_sub_trans = 0;
9357 	ei->logged_trans = 0;
9358 	ei->delalloc_bytes = 0;
9359 	ei->defrag_bytes = 0;
9360 	ei->disk_i_size = 0;
9361 	ei->flags = 0;
9362 	ei->csum_bytes = 0;
9363 	ei->index_cnt = (u64)-1;
9364 	ei->dir_index = 0;
9365 	ei->last_unlink_trans = 0;
9366 	ei->last_log_commit = 0;
9367 	ei->delayed_iput_count = 0;
9368 
9369 	spin_lock_init(&ei->lock);
9370 	ei->outstanding_extents = 0;
9371 	ei->reserved_extents = 0;
9372 
9373 	ei->runtime_flags = 0;
9374 	ei->force_compress = BTRFS_COMPRESS_NONE;
9375 
9376 	ei->delayed_node = NULL;
9377 
9378 	ei->i_otime.tv_sec = 0;
9379 	ei->i_otime.tv_nsec = 0;
9380 
9381 	inode = &ei->vfs_inode;
9382 	extent_map_tree_init(&ei->extent_tree);
9383 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
9384 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9385 	ei->io_tree.track_uptodate = 1;
9386 	ei->io_failure_tree.track_uptodate = 1;
9387 	atomic_set(&ei->sync_writers, 0);
9388 	mutex_init(&ei->log_mutex);
9389 	mutex_init(&ei->delalloc_mutex);
9390 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9391 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9392 	INIT_LIST_HEAD(&ei->delayed_iput);
9393 	RB_CLEAR_NODE(&ei->rb_node);
9394 	init_rwsem(&ei->dio_sem);
9395 
9396 	return inode;
9397 }
9398 
9399 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)9400 void btrfs_test_destroy_inode(struct inode *inode)
9401 {
9402 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9403 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9404 }
9405 #endif
9406 
btrfs_i_callback(struct rcu_head * head)9407 static void btrfs_i_callback(struct rcu_head *head)
9408 {
9409 	struct inode *inode = container_of(head, struct inode, i_rcu);
9410 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9411 }
9412 
btrfs_destroy_inode(struct inode * inode)9413 void btrfs_destroy_inode(struct inode *inode)
9414 {
9415 	struct btrfs_ordered_extent *ordered;
9416 	struct btrfs_root *root = BTRFS_I(inode)->root;
9417 
9418 	WARN_ON(!hlist_empty(&inode->i_dentry));
9419 	WARN_ON(inode->i_data.nrpages);
9420 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9421 	WARN_ON(BTRFS_I(inode)->reserved_extents);
9422 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9423 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9424 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9425 
9426 	/*
9427 	 * This can happen where we create an inode, but somebody else also
9428 	 * created the same inode and we need to destroy the one we already
9429 	 * created.
9430 	 */
9431 	if (!root)
9432 		goto free;
9433 
9434 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9435 		     &BTRFS_I(inode)->runtime_flags)) {
9436 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9437 			btrfs_ino(inode));
9438 		atomic_dec(&root->orphan_inodes);
9439 	}
9440 
9441 	while (1) {
9442 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9443 		if (!ordered)
9444 			break;
9445 		else {
9446 			btrfs_err(root->fs_info,
9447 				  "found ordered extent %llu %llu on inode cleanup",
9448 				  ordered->file_offset, ordered->len);
9449 			btrfs_remove_ordered_extent(inode, ordered);
9450 			btrfs_put_ordered_extent(ordered);
9451 			btrfs_put_ordered_extent(ordered);
9452 		}
9453 	}
9454 	btrfs_qgroup_check_reserved_leak(inode);
9455 	inode_tree_del(inode);
9456 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9457 free:
9458 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9459 }
9460 
btrfs_drop_inode(struct inode * inode)9461 int btrfs_drop_inode(struct inode *inode)
9462 {
9463 	struct btrfs_root *root = BTRFS_I(inode)->root;
9464 
9465 	if (root == NULL)
9466 		return 1;
9467 
9468 	/* the snap/subvol tree is on deleting */
9469 	if (btrfs_root_refs(&root->root_item) == 0)
9470 		return 1;
9471 	else
9472 		return generic_drop_inode(inode);
9473 }
9474 
init_once(void * foo)9475 static void init_once(void *foo)
9476 {
9477 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9478 
9479 	inode_init_once(&ei->vfs_inode);
9480 }
9481 
btrfs_destroy_cachep(void)9482 void btrfs_destroy_cachep(void)
9483 {
9484 	/*
9485 	 * Make sure all delayed rcu free inodes are flushed before we
9486 	 * destroy cache.
9487 	 */
9488 	rcu_barrier();
9489 	kmem_cache_destroy(btrfs_inode_cachep);
9490 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9491 	kmem_cache_destroy(btrfs_transaction_cachep);
9492 	kmem_cache_destroy(btrfs_path_cachep);
9493 	kmem_cache_destroy(btrfs_free_space_cachep);
9494 }
9495 
btrfs_init_cachep(void)9496 int btrfs_init_cachep(void)
9497 {
9498 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9499 			sizeof(struct btrfs_inode), 0,
9500 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9501 			init_once);
9502 	if (!btrfs_inode_cachep)
9503 		goto fail;
9504 
9505 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9506 			sizeof(struct btrfs_trans_handle), 0,
9507 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9508 	if (!btrfs_trans_handle_cachep)
9509 		goto fail;
9510 
9511 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9512 			sizeof(struct btrfs_transaction), 0,
9513 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9514 	if (!btrfs_transaction_cachep)
9515 		goto fail;
9516 
9517 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9518 			sizeof(struct btrfs_path), 0,
9519 			SLAB_MEM_SPREAD, NULL);
9520 	if (!btrfs_path_cachep)
9521 		goto fail;
9522 
9523 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9524 			sizeof(struct btrfs_free_space), 0,
9525 			SLAB_MEM_SPREAD, NULL);
9526 	if (!btrfs_free_space_cachep)
9527 		goto fail;
9528 
9529 	return 0;
9530 fail:
9531 	btrfs_destroy_cachep();
9532 	return -ENOMEM;
9533 }
9534 
btrfs_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)9535 static int btrfs_getattr(struct vfsmount *mnt,
9536 			 struct dentry *dentry, struct kstat *stat)
9537 {
9538 	u64 delalloc_bytes;
9539 	struct inode *inode = d_inode(dentry);
9540 	u32 blocksize = inode->i_sb->s_blocksize;
9541 
9542 	generic_fillattr(inode, stat);
9543 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9544 
9545 	spin_lock(&BTRFS_I(inode)->lock);
9546 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9547 	spin_unlock(&BTRFS_I(inode)->lock);
9548 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9549 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9550 	return 0;
9551 }
9552 
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)9553 static int btrfs_rename_exchange(struct inode *old_dir,
9554 			      struct dentry *old_dentry,
9555 			      struct inode *new_dir,
9556 			      struct dentry *new_dentry)
9557 {
9558 	struct btrfs_trans_handle *trans;
9559 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9560 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9561 	struct inode *new_inode = new_dentry->d_inode;
9562 	struct inode *old_inode = old_dentry->d_inode;
9563 	struct timespec ctime = current_time(old_inode);
9564 	struct dentry *parent;
9565 	u64 old_ino = btrfs_ino(old_inode);
9566 	u64 new_ino = btrfs_ino(new_inode);
9567 	u64 old_idx = 0;
9568 	u64 new_idx = 0;
9569 	u64 root_objectid;
9570 	int ret;
9571 	bool root_log_pinned = false;
9572 	bool dest_log_pinned = false;
9573 
9574 	/* we only allow rename subvolume link between subvolumes */
9575 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9576 		return -EXDEV;
9577 
9578 	/* close the race window with snapshot create/destroy ioctl */
9579 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9580 		down_read(&root->fs_info->subvol_sem);
9581 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9582 		down_read(&dest->fs_info->subvol_sem);
9583 
9584 	/*
9585 	 * We want to reserve the absolute worst case amount of items.  So if
9586 	 * both inodes are subvols and we need to unlink them then that would
9587 	 * require 4 item modifications, but if they are both normal inodes it
9588 	 * would require 5 item modifications, so we'll assume their normal
9589 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9590 	 * should cover the worst case number of items we'll modify.
9591 	 */
9592 	trans = btrfs_start_transaction(root, 12);
9593 	if (IS_ERR(trans)) {
9594 		ret = PTR_ERR(trans);
9595 		goto out_notrans;
9596 	}
9597 
9598 	/*
9599 	 * We need to find a free sequence number both in the source and
9600 	 * in the destination directory for the exchange.
9601 	 */
9602 	ret = btrfs_set_inode_index(new_dir, &old_idx);
9603 	if (ret)
9604 		goto out_fail;
9605 	ret = btrfs_set_inode_index(old_dir, &new_idx);
9606 	if (ret)
9607 		goto out_fail;
9608 
9609 	BTRFS_I(old_inode)->dir_index = 0ULL;
9610 	BTRFS_I(new_inode)->dir_index = 0ULL;
9611 
9612 	/* Reference for the source. */
9613 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9614 		/* force full log commit if subvolume involved. */
9615 		btrfs_set_log_full_commit(root->fs_info, trans);
9616 	} else {
9617 		btrfs_pin_log_trans(root);
9618 		root_log_pinned = true;
9619 		ret = btrfs_insert_inode_ref(trans, dest,
9620 					     new_dentry->d_name.name,
9621 					     new_dentry->d_name.len,
9622 					     old_ino,
9623 					     btrfs_ino(new_dir), old_idx);
9624 		if (ret)
9625 			goto out_fail;
9626 	}
9627 
9628 	/* And now for the dest. */
9629 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9630 		/* force full log commit if subvolume involved. */
9631 		btrfs_set_log_full_commit(dest->fs_info, trans);
9632 	} else {
9633 		btrfs_pin_log_trans(dest);
9634 		dest_log_pinned = true;
9635 		ret = btrfs_insert_inode_ref(trans, root,
9636 					     old_dentry->d_name.name,
9637 					     old_dentry->d_name.len,
9638 					     new_ino,
9639 					     btrfs_ino(old_dir), new_idx);
9640 		if (ret)
9641 			goto out_fail;
9642 	}
9643 
9644 	/* Update inode version and ctime/mtime. */
9645 	inode_inc_iversion(old_dir);
9646 	inode_inc_iversion(new_dir);
9647 	inode_inc_iversion(old_inode);
9648 	inode_inc_iversion(new_inode);
9649 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9650 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9651 	old_inode->i_ctime = ctime;
9652 	new_inode->i_ctime = ctime;
9653 
9654 	if (old_dentry->d_parent != new_dentry->d_parent) {
9655 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9656 		btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9657 	}
9658 
9659 	/* src is a subvolume */
9660 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9661 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9662 		ret = btrfs_unlink_subvol(trans, root, old_dir,
9663 					  root_objectid,
9664 					  old_dentry->d_name.name,
9665 					  old_dentry->d_name.len);
9666 	} else { /* src is an inode */
9667 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9668 					   old_dentry->d_inode,
9669 					   old_dentry->d_name.name,
9670 					   old_dentry->d_name.len);
9671 		if (!ret)
9672 			ret = btrfs_update_inode(trans, root, old_inode);
9673 	}
9674 	if (ret) {
9675 		btrfs_abort_transaction(trans, ret);
9676 		goto out_fail;
9677 	}
9678 
9679 	/* dest is a subvolume */
9680 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9681 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9682 		ret = btrfs_unlink_subvol(trans, dest, new_dir,
9683 					  root_objectid,
9684 					  new_dentry->d_name.name,
9685 					  new_dentry->d_name.len);
9686 	} else { /* dest is an inode */
9687 		ret = __btrfs_unlink_inode(trans, dest, new_dir,
9688 					   new_dentry->d_inode,
9689 					   new_dentry->d_name.name,
9690 					   new_dentry->d_name.len);
9691 		if (!ret)
9692 			ret = btrfs_update_inode(trans, dest, new_inode);
9693 	}
9694 	if (ret) {
9695 		btrfs_abort_transaction(trans, ret);
9696 		goto out_fail;
9697 	}
9698 
9699 	ret = btrfs_add_link(trans, new_dir, old_inode,
9700 			     new_dentry->d_name.name,
9701 			     new_dentry->d_name.len, 0, old_idx);
9702 	if (ret) {
9703 		btrfs_abort_transaction(trans, ret);
9704 		goto out_fail;
9705 	}
9706 
9707 	ret = btrfs_add_link(trans, old_dir, new_inode,
9708 			     old_dentry->d_name.name,
9709 			     old_dentry->d_name.len, 0, new_idx);
9710 	if (ret) {
9711 		btrfs_abort_transaction(trans, ret);
9712 		goto out_fail;
9713 	}
9714 
9715 	if (old_inode->i_nlink == 1)
9716 		BTRFS_I(old_inode)->dir_index = old_idx;
9717 	if (new_inode->i_nlink == 1)
9718 		BTRFS_I(new_inode)->dir_index = new_idx;
9719 
9720 	if (root_log_pinned) {
9721 		parent = new_dentry->d_parent;
9722 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9723 		btrfs_end_log_trans(root);
9724 		root_log_pinned = false;
9725 	}
9726 	if (dest_log_pinned) {
9727 		parent = old_dentry->d_parent;
9728 		btrfs_log_new_name(trans, new_inode, new_dir, parent);
9729 		btrfs_end_log_trans(dest);
9730 		dest_log_pinned = false;
9731 	}
9732 out_fail:
9733 	/*
9734 	 * If we have pinned a log and an error happened, we unpin tasks
9735 	 * trying to sync the log and force them to fallback to a transaction
9736 	 * commit if the log currently contains any of the inodes involved in
9737 	 * this rename operation (to ensure we do not persist a log with an
9738 	 * inconsistent state for any of these inodes or leading to any
9739 	 * inconsistencies when replayed). If the transaction was aborted, the
9740 	 * abortion reason is propagated to userspace when attempting to commit
9741 	 * the transaction. If the log does not contain any of these inodes, we
9742 	 * allow the tasks to sync it.
9743 	 */
9744 	if (ret && (root_log_pinned || dest_log_pinned)) {
9745 		if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9746 		    btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9747 		    btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9748 		    (new_inode &&
9749 		     btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9750 		    btrfs_set_log_full_commit(root->fs_info, trans);
9751 
9752 		if (root_log_pinned) {
9753 			btrfs_end_log_trans(root);
9754 			root_log_pinned = false;
9755 		}
9756 		if (dest_log_pinned) {
9757 			btrfs_end_log_trans(dest);
9758 			dest_log_pinned = false;
9759 		}
9760 	}
9761 	ret = btrfs_end_transaction(trans, root);
9762 out_notrans:
9763 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9764 		up_read(&dest->fs_info->subvol_sem);
9765 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9766 		up_read(&root->fs_info->subvol_sem);
9767 
9768 	return ret;
9769 }
9770 
btrfs_whiteout_for_rename(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct dentry * dentry)9771 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9772 				     struct btrfs_root *root,
9773 				     struct inode *dir,
9774 				     struct dentry *dentry)
9775 {
9776 	int ret;
9777 	struct inode *inode;
9778 	u64 objectid;
9779 	u64 index;
9780 
9781 	ret = btrfs_find_free_ino(root, &objectid);
9782 	if (ret)
9783 		return ret;
9784 
9785 	inode = btrfs_new_inode(trans, root, dir,
9786 				dentry->d_name.name,
9787 				dentry->d_name.len,
9788 				btrfs_ino(dir),
9789 				objectid,
9790 				S_IFCHR | WHITEOUT_MODE,
9791 				&index);
9792 
9793 	if (IS_ERR(inode)) {
9794 		ret = PTR_ERR(inode);
9795 		return ret;
9796 	}
9797 
9798 	inode->i_op = &btrfs_special_inode_operations;
9799 	init_special_inode(inode, inode->i_mode,
9800 		WHITEOUT_DEV);
9801 
9802 	ret = btrfs_init_inode_security(trans, inode, dir,
9803 				&dentry->d_name);
9804 	if (ret)
9805 		goto out;
9806 
9807 	ret = btrfs_add_nondir(trans, dir, dentry,
9808 				inode, 0, index);
9809 	if (ret)
9810 		goto out;
9811 
9812 	ret = btrfs_update_inode(trans, root, inode);
9813 out:
9814 	unlock_new_inode(inode);
9815 	if (ret)
9816 		inode_dec_link_count(inode);
9817 	iput(inode);
9818 
9819 	return ret;
9820 }
9821 
btrfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9822 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9823 			   struct inode *new_dir, struct dentry *new_dentry,
9824 			   unsigned int flags)
9825 {
9826 	struct btrfs_trans_handle *trans;
9827 	unsigned int trans_num_items;
9828 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9829 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9830 	struct inode *new_inode = d_inode(new_dentry);
9831 	struct inode *old_inode = d_inode(old_dentry);
9832 	u64 index = 0;
9833 	u64 root_objectid;
9834 	int ret;
9835 	u64 old_ino = btrfs_ino(old_inode);
9836 	bool log_pinned = false;
9837 
9838 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9839 		return -EPERM;
9840 
9841 	/* we only allow rename subvolume link between subvolumes */
9842 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9843 		return -EXDEV;
9844 
9845 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9846 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9847 		return -ENOTEMPTY;
9848 
9849 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9850 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9851 		return -ENOTEMPTY;
9852 
9853 
9854 	/* check for collisions, even if the  name isn't there */
9855 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9856 			     new_dentry->d_name.name,
9857 			     new_dentry->d_name.len);
9858 
9859 	if (ret) {
9860 		if (ret == -EEXIST) {
9861 			/* we shouldn't get
9862 			 * eexist without a new_inode */
9863 			if (WARN_ON(!new_inode)) {
9864 				return ret;
9865 			}
9866 		} else {
9867 			/* maybe -EOVERFLOW */
9868 			return ret;
9869 		}
9870 	}
9871 	ret = 0;
9872 
9873 	/*
9874 	 * we're using rename to replace one file with another.  Start IO on it
9875 	 * now so  we don't add too much work to the end of the transaction
9876 	 */
9877 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9878 		filemap_flush(old_inode->i_mapping);
9879 
9880 	/* close the racy window with snapshot create/destroy ioctl */
9881 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9882 		down_read(&root->fs_info->subvol_sem);
9883 	/*
9884 	 * We want to reserve the absolute worst case amount of items.  So if
9885 	 * both inodes are subvols and we need to unlink them then that would
9886 	 * require 4 item modifications, but if they are both normal inodes it
9887 	 * would require 5 item modifications, so we'll assume they are normal
9888 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9889 	 * should cover the worst case number of items we'll modify.
9890 	 * If our rename has the whiteout flag, we need more 5 units for the
9891 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9892 	 * when selinux is enabled).
9893 	 */
9894 	trans_num_items = 11;
9895 	if (flags & RENAME_WHITEOUT)
9896 		trans_num_items += 5;
9897 	trans = btrfs_start_transaction(root, trans_num_items);
9898 	if (IS_ERR(trans)) {
9899 		ret = PTR_ERR(trans);
9900 		goto out_notrans;
9901 	}
9902 
9903 	if (dest != root)
9904 		btrfs_record_root_in_trans(trans, dest);
9905 
9906 	ret = btrfs_set_inode_index(new_dir, &index);
9907 	if (ret)
9908 		goto out_fail;
9909 
9910 	BTRFS_I(old_inode)->dir_index = 0ULL;
9911 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9912 		/* force full log commit if subvolume involved. */
9913 		btrfs_set_log_full_commit(root->fs_info, trans);
9914 	} else {
9915 		btrfs_pin_log_trans(root);
9916 		log_pinned = true;
9917 		ret = btrfs_insert_inode_ref(trans, dest,
9918 					     new_dentry->d_name.name,
9919 					     new_dentry->d_name.len,
9920 					     old_ino,
9921 					     btrfs_ino(new_dir), index);
9922 		if (ret)
9923 			goto out_fail;
9924 	}
9925 
9926 	inode_inc_iversion(old_dir);
9927 	inode_inc_iversion(new_dir);
9928 	inode_inc_iversion(old_inode);
9929 	old_dir->i_ctime = old_dir->i_mtime =
9930 	new_dir->i_ctime = new_dir->i_mtime =
9931 	old_inode->i_ctime = current_time(old_dir);
9932 
9933 	if (old_dentry->d_parent != new_dentry->d_parent)
9934 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9935 
9936 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9937 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9938 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9939 					old_dentry->d_name.name,
9940 					old_dentry->d_name.len);
9941 	} else {
9942 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9943 					d_inode(old_dentry),
9944 					old_dentry->d_name.name,
9945 					old_dentry->d_name.len);
9946 		if (!ret)
9947 			ret = btrfs_update_inode(trans, root, old_inode);
9948 	}
9949 	if (ret) {
9950 		btrfs_abort_transaction(trans, ret);
9951 		goto out_fail;
9952 	}
9953 
9954 	if (new_inode) {
9955 		inode_inc_iversion(new_inode);
9956 		new_inode->i_ctime = current_time(new_inode);
9957 		if (unlikely(btrfs_ino(new_inode) ==
9958 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9959 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9960 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9961 						root_objectid,
9962 						new_dentry->d_name.name,
9963 						new_dentry->d_name.len);
9964 			BUG_ON(new_inode->i_nlink == 0);
9965 		} else {
9966 			ret = btrfs_unlink_inode(trans, dest, new_dir,
9967 						 d_inode(new_dentry),
9968 						 new_dentry->d_name.name,
9969 						 new_dentry->d_name.len);
9970 		}
9971 		if (!ret && new_inode->i_nlink == 0)
9972 			ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9973 		if (ret) {
9974 			btrfs_abort_transaction(trans, ret);
9975 			goto out_fail;
9976 		}
9977 	}
9978 
9979 	ret = btrfs_add_link(trans, new_dir, old_inode,
9980 			     new_dentry->d_name.name,
9981 			     new_dentry->d_name.len, 0, index);
9982 	if (ret) {
9983 		btrfs_abort_transaction(trans, ret);
9984 		goto out_fail;
9985 	}
9986 
9987 	if (old_inode->i_nlink == 1)
9988 		BTRFS_I(old_inode)->dir_index = index;
9989 
9990 	if (log_pinned) {
9991 		struct dentry *parent = new_dentry->d_parent;
9992 
9993 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9994 		btrfs_end_log_trans(root);
9995 		log_pinned = false;
9996 	}
9997 
9998 	if (flags & RENAME_WHITEOUT) {
9999 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10000 						old_dentry);
10001 
10002 		if (ret) {
10003 			btrfs_abort_transaction(trans, ret);
10004 			goto out_fail;
10005 		}
10006 	}
10007 out_fail:
10008 	/*
10009 	 * If we have pinned the log and an error happened, we unpin tasks
10010 	 * trying to sync the log and force them to fallback to a transaction
10011 	 * commit if the log currently contains any of the inodes involved in
10012 	 * this rename operation (to ensure we do not persist a log with an
10013 	 * inconsistent state for any of these inodes or leading to any
10014 	 * inconsistencies when replayed). If the transaction was aborted, the
10015 	 * abortion reason is propagated to userspace when attempting to commit
10016 	 * the transaction. If the log does not contain any of these inodes, we
10017 	 * allow the tasks to sync it.
10018 	 */
10019 	if (ret && log_pinned) {
10020 		if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
10021 		    btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
10022 		    btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
10023 		    (new_inode &&
10024 		     btrfs_inode_in_log(new_inode, root->fs_info->generation)))
10025 		    btrfs_set_log_full_commit(root->fs_info, trans);
10026 
10027 		btrfs_end_log_trans(root);
10028 		log_pinned = false;
10029 	}
10030 	btrfs_end_transaction(trans, root);
10031 out_notrans:
10032 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10033 		up_read(&root->fs_info->subvol_sem);
10034 
10035 	return ret;
10036 }
10037 
btrfs_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)10038 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10039 			 struct inode *new_dir, struct dentry *new_dentry,
10040 			 unsigned int flags)
10041 {
10042 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10043 		return -EINVAL;
10044 
10045 	if (flags & RENAME_EXCHANGE)
10046 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10047 					  new_dentry);
10048 
10049 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10050 }
10051 
btrfs_run_delalloc_work(struct btrfs_work * work)10052 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10053 {
10054 	struct btrfs_delalloc_work *delalloc_work;
10055 	struct inode *inode;
10056 
10057 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
10058 				     work);
10059 	inode = delalloc_work->inode;
10060 	filemap_flush(inode->i_mapping);
10061 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10062 				&BTRFS_I(inode)->runtime_flags))
10063 		filemap_flush(inode->i_mapping);
10064 
10065 	if (delalloc_work->delay_iput)
10066 		btrfs_add_delayed_iput(inode);
10067 	else
10068 		iput(inode);
10069 	complete(&delalloc_work->completion);
10070 }
10071 
btrfs_alloc_delalloc_work(struct inode * inode,int delay_iput)10072 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
10073 						    int delay_iput)
10074 {
10075 	struct btrfs_delalloc_work *work;
10076 
10077 	work = kmalloc(sizeof(*work), GFP_NOFS);
10078 	if (!work)
10079 		return NULL;
10080 
10081 	init_completion(&work->completion);
10082 	INIT_LIST_HEAD(&work->list);
10083 	work->inode = inode;
10084 	work->delay_iput = delay_iput;
10085 	WARN_ON_ONCE(!inode);
10086 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10087 			btrfs_run_delalloc_work, NULL, NULL);
10088 
10089 	return work;
10090 }
10091 
btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work * work)10092 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10093 {
10094 	wait_for_completion(&work->completion);
10095 	kfree(work);
10096 }
10097 
10098 /*
10099  * some fairly slow code that needs optimization. This walks the list
10100  * of all the inodes with pending delalloc and forces them to disk.
10101  */
__start_delalloc_inodes(struct btrfs_root * root,int delay_iput,int nr)10102 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10103 				   int nr)
10104 {
10105 	struct btrfs_inode *binode;
10106 	struct inode *inode;
10107 	struct btrfs_delalloc_work *work, *next;
10108 	struct list_head works;
10109 	struct list_head splice;
10110 	int ret = 0;
10111 
10112 	INIT_LIST_HEAD(&works);
10113 	INIT_LIST_HEAD(&splice);
10114 
10115 	mutex_lock(&root->delalloc_mutex);
10116 	spin_lock(&root->delalloc_lock);
10117 	list_splice_init(&root->delalloc_inodes, &splice);
10118 	while (!list_empty(&splice)) {
10119 		binode = list_entry(splice.next, struct btrfs_inode,
10120 				    delalloc_inodes);
10121 
10122 		list_move_tail(&binode->delalloc_inodes,
10123 			       &root->delalloc_inodes);
10124 		inode = igrab(&binode->vfs_inode);
10125 		if (!inode) {
10126 			cond_resched_lock(&root->delalloc_lock);
10127 			continue;
10128 		}
10129 		spin_unlock(&root->delalloc_lock);
10130 
10131 		work = btrfs_alloc_delalloc_work(inode, delay_iput);
10132 		if (!work) {
10133 			if (delay_iput)
10134 				btrfs_add_delayed_iput(inode);
10135 			else
10136 				iput(inode);
10137 			ret = -ENOMEM;
10138 			goto out;
10139 		}
10140 		list_add_tail(&work->list, &works);
10141 		btrfs_queue_work(root->fs_info->flush_workers,
10142 				 &work->work);
10143 		ret++;
10144 		if (nr != -1 && ret >= nr)
10145 			goto out;
10146 		cond_resched();
10147 		spin_lock(&root->delalloc_lock);
10148 	}
10149 	spin_unlock(&root->delalloc_lock);
10150 
10151 out:
10152 	list_for_each_entry_safe(work, next, &works, list) {
10153 		list_del_init(&work->list);
10154 		btrfs_wait_and_free_delalloc_work(work);
10155 	}
10156 
10157 	if (!list_empty_careful(&splice)) {
10158 		spin_lock(&root->delalloc_lock);
10159 		list_splice_tail(&splice, &root->delalloc_inodes);
10160 		spin_unlock(&root->delalloc_lock);
10161 	}
10162 	mutex_unlock(&root->delalloc_mutex);
10163 	return ret;
10164 }
10165 
btrfs_start_delalloc_inodes(struct btrfs_root * root,int delay_iput)10166 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10167 {
10168 	int ret;
10169 
10170 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
10171 		return -EROFS;
10172 
10173 	ret = __start_delalloc_inodes(root, delay_iput, -1);
10174 	if (ret > 0)
10175 		ret = 0;
10176 	/*
10177 	 * the filemap_flush will queue IO into the worker threads, but
10178 	 * we have to make sure the IO is actually started and that
10179 	 * ordered extents get created before we return
10180 	 */
10181 	atomic_inc(&root->fs_info->async_submit_draining);
10182 	while (atomic_read(&root->fs_info->nr_async_submits) ||
10183 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
10184 		wait_event(root->fs_info->async_submit_wait,
10185 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10186 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
10187 	}
10188 	atomic_dec(&root->fs_info->async_submit_draining);
10189 	return ret;
10190 }
10191 
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,int delay_iput,int nr)10192 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10193 			       int nr)
10194 {
10195 	struct btrfs_root *root;
10196 	struct list_head splice;
10197 	int ret;
10198 
10199 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10200 		return -EROFS;
10201 
10202 	INIT_LIST_HEAD(&splice);
10203 
10204 	mutex_lock(&fs_info->delalloc_root_mutex);
10205 	spin_lock(&fs_info->delalloc_root_lock);
10206 	list_splice_init(&fs_info->delalloc_roots, &splice);
10207 	while (!list_empty(&splice) && nr) {
10208 		root = list_first_entry(&splice, struct btrfs_root,
10209 					delalloc_root);
10210 		root = btrfs_grab_fs_root(root);
10211 		BUG_ON(!root);
10212 		list_move_tail(&root->delalloc_root,
10213 			       &fs_info->delalloc_roots);
10214 		spin_unlock(&fs_info->delalloc_root_lock);
10215 
10216 		ret = __start_delalloc_inodes(root, delay_iput, nr);
10217 		btrfs_put_fs_root(root);
10218 		if (ret < 0)
10219 			goto out;
10220 
10221 		if (nr != -1) {
10222 			nr -= ret;
10223 			WARN_ON(nr < 0);
10224 		}
10225 		spin_lock(&fs_info->delalloc_root_lock);
10226 	}
10227 	spin_unlock(&fs_info->delalloc_root_lock);
10228 
10229 	ret = 0;
10230 	atomic_inc(&fs_info->async_submit_draining);
10231 	while (atomic_read(&fs_info->nr_async_submits) ||
10232 	      atomic_read(&fs_info->async_delalloc_pages)) {
10233 		wait_event(fs_info->async_submit_wait,
10234 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
10235 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
10236 	}
10237 	atomic_dec(&fs_info->async_submit_draining);
10238 out:
10239 	if (!list_empty_careful(&splice)) {
10240 		spin_lock(&fs_info->delalloc_root_lock);
10241 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10242 		spin_unlock(&fs_info->delalloc_root_lock);
10243 	}
10244 	mutex_unlock(&fs_info->delalloc_root_mutex);
10245 	return ret;
10246 }
10247 
btrfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)10248 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10249 			 const char *symname)
10250 {
10251 	struct btrfs_trans_handle *trans;
10252 	struct btrfs_root *root = BTRFS_I(dir)->root;
10253 	struct btrfs_path *path;
10254 	struct btrfs_key key;
10255 	struct inode *inode = NULL;
10256 	int err;
10257 	int drop_inode = 0;
10258 	u64 objectid;
10259 	u64 index = 0;
10260 	int name_len;
10261 	int datasize;
10262 	unsigned long ptr;
10263 	struct btrfs_file_extent_item *ei;
10264 	struct extent_buffer *leaf;
10265 
10266 	name_len = strlen(symname);
10267 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10268 		return -ENAMETOOLONG;
10269 
10270 	/*
10271 	 * 2 items for inode item and ref
10272 	 * 2 items for dir items
10273 	 * 1 item for updating parent inode item
10274 	 * 1 item for the inline extent item
10275 	 * 1 item for xattr if selinux is on
10276 	 */
10277 	trans = btrfs_start_transaction(root, 7);
10278 	if (IS_ERR(trans))
10279 		return PTR_ERR(trans);
10280 
10281 	err = btrfs_find_free_ino(root, &objectid);
10282 	if (err)
10283 		goto out_unlock;
10284 
10285 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10286 				dentry->d_name.len, btrfs_ino(dir), objectid,
10287 				S_IFLNK|S_IRWXUGO, &index);
10288 	if (IS_ERR(inode)) {
10289 		err = PTR_ERR(inode);
10290 		goto out_unlock;
10291 	}
10292 
10293 	/*
10294 	* If the active LSM wants to access the inode during
10295 	* d_instantiate it needs these. Smack checks to see
10296 	* if the filesystem supports xattrs by looking at the
10297 	* ops vector.
10298 	*/
10299 	inode->i_fop = &btrfs_file_operations;
10300 	inode->i_op = &btrfs_file_inode_operations;
10301 	inode->i_mapping->a_ops = &btrfs_aops;
10302 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10303 
10304 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10305 	if (err)
10306 		goto out_unlock_inode;
10307 
10308 	path = btrfs_alloc_path();
10309 	if (!path) {
10310 		err = -ENOMEM;
10311 		goto out_unlock_inode;
10312 	}
10313 	key.objectid = btrfs_ino(inode);
10314 	key.offset = 0;
10315 	key.type = BTRFS_EXTENT_DATA_KEY;
10316 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10317 	err = btrfs_insert_empty_item(trans, root, path, &key,
10318 				      datasize);
10319 	if (err) {
10320 		btrfs_free_path(path);
10321 		goto out_unlock_inode;
10322 	}
10323 	leaf = path->nodes[0];
10324 	ei = btrfs_item_ptr(leaf, path->slots[0],
10325 			    struct btrfs_file_extent_item);
10326 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10327 	btrfs_set_file_extent_type(leaf, ei,
10328 				   BTRFS_FILE_EXTENT_INLINE);
10329 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10330 	btrfs_set_file_extent_compression(leaf, ei, 0);
10331 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10332 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10333 
10334 	ptr = btrfs_file_extent_inline_start(ei);
10335 	write_extent_buffer(leaf, symname, ptr, name_len);
10336 	btrfs_mark_buffer_dirty(leaf);
10337 	btrfs_free_path(path);
10338 
10339 	inode->i_op = &btrfs_symlink_inode_operations;
10340 	inode_nohighmem(inode);
10341 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
10342 	inode_set_bytes(inode, name_len);
10343 	btrfs_i_size_write(inode, name_len);
10344 	err = btrfs_update_inode(trans, root, inode);
10345 	/*
10346 	 * Last step, add directory indexes for our symlink inode. This is the
10347 	 * last step to avoid extra cleanup of these indexes if an error happens
10348 	 * elsewhere above.
10349 	 */
10350 	if (!err)
10351 		err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
10352 	if (err) {
10353 		drop_inode = 1;
10354 		goto out_unlock_inode;
10355 	}
10356 
10357 	unlock_new_inode(inode);
10358 	d_instantiate(dentry, inode);
10359 
10360 out_unlock:
10361 	btrfs_end_transaction(trans, root);
10362 	if (drop_inode) {
10363 		inode_dec_link_count(inode);
10364 		iput(inode);
10365 	}
10366 	btrfs_btree_balance_dirty(root);
10367 	return err;
10368 
10369 out_unlock_inode:
10370 	drop_inode = 1;
10371 	unlock_new_inode(inode);
10372 	goto out_unlock;
10373 }
10374 
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)10375 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10376 				       u64 start, u64 num_bytes, u64 min_size,
10377 				       loff_t actual_len, u64 *alloc_hint,
10378 				       struct btrfs_trans_handle *trans)
10379 {
10380 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10381 	struct extent_map *em;
10382 	struct btrfs_root *root = BTRFS_I(inode)->root;
10383 	struct btrfs_key ins;
10384 	u64 cur_offset = start;
10385 	u64 i_size;
10386 	u64 cur_bytes;
10387 	u64 last_alloc = (u64)-1;
10388 	int ret = 0;
10389 	bool own_trans = true;
10390 	u64 end = start + num_bytes - 1;
10391 
10392 	if (trans)
10393 		own_trans = false;
10394 	while (num_bytes > 0) {
10395 		if (own_trans) {
10396 			trans = btrfs_start_transaction(root, 3);
10397 			if (IS_ERR(trans)) {
10398 				ret = PTR_ERR(trans);
10399 				break;
10400 			}
10401 		}
10402 
10403 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10404 		cur_bytes = max(cur_bytes, min_size);
10405 		/*
10406 		 * If we are severely fragmented we could end up with really
10407 		 * small allocations, so if the allocator is returning small
10408 		 * chunks lets make its job easier by only searching for those
10409 		 * sized chunks.
10410 		 */
10411 		cur_bytes = min(cur_bytes, last_alloc);
10412 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10413 				min_size, 0, *alloc_hint, &ins, 1, 0);
10414 		if (ret) {
10415 			if (own_trans)
10416 				btrfs_end_transaction(trans, root);
10417 			break;
10418 		}
10419 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
10420 
10421 		last_alloc = ins.offset;
10422 		ret = insert_reserved_file_extent(trans, inode,
10423 						  cur_offset, ins.objectid,
10424 						  ins.offset, ins.offset,
10425 						  ins.offset, 0, 0, 0,
10426 						  BTRFS_FILE_EXTENT_PREALLOC);
10427 		if (ret) {
10428 			btrfs_free_reserved_extent(root, ins.objectid,
10429 						   ins.offset, 0);
10430 			btrfs_abort_transaction(trans, ret);
10431 			if (own_trans)
10432 				btrfs_end_transaction(trans, root);
10433 			break;
10434 		}
10435 
10436 		btrfs_drop_extent_cache(inode, cur_offset,
10437 					cur_offset + ins.offset -1, 0);
10438 
10439 		em = alloc_extent_map();
10440 		if (!em) {
10441 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10442 				&BTRFS_I(inode)->runtime_flags);
10443 			goto next;
10444 		}
10445 
10446 		em->start = cur_offset;
10447 		em->orig_start = cur_offset;
10448 		em->len = ins.offset;
10449 		em->block_start = ins.objectid;
10450 		em->block_len = ins.offset;
10451 		em->orig_block_len = ins.offset;
10452 		em->ram_bytes = ins.offset;
10453 		em->bdev = root->fs_info->fs_devices->latest_bdev;
10454 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10455 		em->generation = trans->transid;
10456 
10457 		while (1) {
10458 			write_lock(&em_tree->lock);
10459 			ret = add_extent_mapping(em_tree, em, 1);
10460 			write_unlock(&em_tree->lock);
10461 			if (ret != -EEXIST)
10462 				break;
10463 			btrfs_drop_extent_cache(inode, cur_offset,
10464 						cur_offset + ins.offset - 1,
10465 						0);
10466 		}
10467 		free_extent_map(em);
10468 next:
10469 		num_bytes -= ins.offset;
10470 		cur_offset += ins.offset;
10471 		*alloc_hint = ins.objectid + ins.offset;
10472 
10473 		inode_inc_iversion(inode);
10474 		inode->i_ctime = current_time(inode);
10475 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10476 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10477 		    (actual_len > inode->i_size) &&
10478 		    (cur_offset > inode->i_size)) {
10479 			if (cur_offset > actual_len)
10480 				i_size = actual_len;
10481 			else
10482 				i_size = cur_offset;
10483 			i_size_write(inode, i_size);
10484 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10485 		}
10486 
10487 		ret = btrfs_update_inode(trans, root, inode);
10488 
10489 		if (ret) {
10490 			btrfs_abort_transaction(trans, ret);
10491 			if (own_trans)
10492 				btrfs_end_transaction(trans, root);
10493 			break;
10494 		}
10495 
10496 		if (own_trans)
10497 			btrfs_end_transaction(trans, root);
10498 	}
10499 	if (cur_offset < end)
10500 		btrfs_free_reserved_data_space(inode, cur_offset,
10501 			end - cur_offset + 1);
10502 	return ret;
10503 }
10504 
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10505 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10506 			      u64 start, u64 num_bytes, u64 min_size,
10507 			      loff_t actual_len, u64 *alloc_hint)
10508 {
10509 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10510 					   min_size, actual_len, alloc_hint,
10511 					   NULL);
10512 }
10513 
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10514 int btrfs_prealloc_file_range_trans(struct inode *inode,
10515 				    struct btrfs_trans_handle *trans, int mode,
10516 				    u64 start, u64 num_bytes, u64 min_size,
10517 				    loff_t actual_len, u64 *alloc_hint)
10518 {
10519 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10520 					   min_size, actual_len, alloc_hint, trans);
10521 }
10522 
btrfs_set_page_dirty(struct page * page)10523 static int btrfs_set_page_dirty(struct page *page)
10524 {
10525 	return __set_page_dirty_nobuffers(page);
10526 }
10527 
btrfs_permission(struct inode * inode,int mask)10528 static int btrfs_permission(struct inode *inode, int mask)
10529 {
10530 	struct btrfs_root *root = BTRFS_I(inode)->root;
10531 	umode_t mode = inode->i_mode;
10532 
10533 	if (mask & MAY_WRITE &&
10534 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10535 		if (btrfs_root_readonly(root))
10536 			return -EROFS;
10537 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10538 			return -EACCES;
10539 	}
10540 	return generic_permission(inode, mask);
10541 }
10542 
btrfs_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)10543 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10544 {
10545 	struct btrfs_trans_handle *trans;
10546 	struct btrfs_root *root = BTRFS_I(dir)->root;
10547 	struct inode *inode = NULL;
10548 	u64 objectid;
10549 	u64 index;
10550 	int ret = 0;
10551 
10552 	/*
10553 	 * 5 units required for adding orphan entry
10554 	 */
10555 	trans = btrfs_start_transaction(root, 5);
10556 	if (IS_ERR(trans))
10557 		return PTR_ERR(trans);
10558 
10559 	ret = btrfs_find_free_ino(root, &objectid);
10560 	if (ret)
10561 		goto out;
10562 
10563 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10564 				btrfs_ino(dir), objectid, mode, &index);
10565 	if (IS_ERR(inode)) {
10566 		ret = PTR_ERR(inode);
10567 		inode = NULL;
10568 		goto out;
10569 	}
10570 
10571 	inode->i_fop = &btrfs_file_operations;
10572 	inode->i_op = &btrfs_file_inode_operations;
10573 
10574 	inode->i_mapping->a_ops = &btrfs_aops;
10575 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10576 
10577 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10578 	if (ret)
10579 		goto out_inode;
10580 
10581 	ret = btrfs_update_inode(trans, root, inode);
10582 	if (ret)
10583 		goto out_inode;
10584 	ret = btrfs_orphan_add(trans, inode);
10585 	if (ret)
10586 		goto out_inode;
10587 
10588 	/*
10589 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10590 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10591 	 * through:
10592 	 *
10593 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10594 	 */
10595 	set_nlink(inode, 1);
10596 	unlock_new_inode(inode);
10597 	d_tmpfile(dentry, inode);
10598 	mark_inode_dirty(inode);
10599 
10600 out:
10601 	btrfs_end_transaction(trans, root);
10602 	if (ret)
10603 		iput(inode);
10604 	btrfs_balance_delayed_items(root);
10605 	btrfs_btree_balance_dirty(root);
10606 	return ret;
10607 
10608 out_inode:
10609 	unlock_new_inode(inode);
10610 	goto out;
10611 
10612 }
10613 
10614 static const struct inode_operations btrfs_dir_inode_operations = {
10615 	.getattr	= btrfs_getattr,
10616 	.lookup		= btrfs_lookup,
10617 	.create		= btrfs_create,
10618 	.unlink		= btrfs_unlink,
10619 	.link		= btrfs_link,
10620 	.mkdir		= btrfs_mkdir,
10621 	.rmdir		= btrfs_rmdir,
10622 	.rename		= btrfs_rename2,
10623 	.symlink	= btrfs_symlink,
10624 	.setattr	= btrfs_setattr,
10625 	.mknod		= btrfs_mknod,
10626 	.listxattr	= btrfs_listxattr,
10627 	.permission	= btrfs_permission,
10628 	.get_acl	= btrfs_get_acl,
10629 	.set_acl	= btrfs_set_acl,
10630 	.update_time	= btrfs_update_time,
10631 	.tmpfile        = btrfs_tmpfile,
10632 };
10633 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10634 	.lookup		= btrfs_lookup,
10635 	.permission	= btrfs_permission,
10636 	.update_time	= btrfs_update_time,
10637 };
10638 
10639 static const struct file_operations btrfs_dir_file_operations = {
10640 	.llseek		= generic_file_llseek,
10641 	.read		= generic_read_dir,
10642 	.iterate_shared	= btrfs_real_readdir,
10643 	.unlocked_ioctl	= btrfs_ioctl,
10644 #ifdef CONFIG_COMPAT
10645 	.compat_ioctl	= btrfs_compat_ioctl,
10646 #endif
10647 	.release        = btrfs_release_file,
10648 	.fsync		= btrfs_sync_file,
10649 };
10650 
10651 static const struct extent_io_ops btrfs_extent_io_ops = {
10652 	.fill_delalloc = run_delalloc_range,
10653 	.submit_bio_hook = btrfs_submit_bio_hook,
10654 	.merge_bio_hook = btrfs_merge_bio_hook,
10655 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10656 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10657 	.writepage_start_hook = btrfs_writepage_start_hook,
10658 	.set_bit_hook = btrfs_set_bit_hook,
10659 	.clear_bit_hook = btrfs_clear_bit_hook,
10660 	.merge_extent_hook = btrfs_merge_extent_hook,
10661 	.split_extent_hook = btrfs_split_extent_hook,
10662 };
10663 
10664 /*
10665  * btrfs doesn't support the bmap operation because swapfiles
10666  * use bmap to make a mapping of extents in the file.  They assume
10667  * these extents won't change over the life of the file and they
10668  * use the bmap result to do IO directly to the drive.
10669  *
10670  * the btrfs bmap call would return logical addresses that aren't
10671  * suitable for IO and they also will change frequently as COW
10672  * operations happen.  So, swapfile + btrfs == corruption.
10673  *
10674  * For now we're avoiding this by dropping bmap.
10675  */
10676 static const struct address_space_operations btrfs_aops = {
10677 	.readpage	= btrfs_readpage,
10678 	.writepage	= btrfs_writepage,
10679 	.writepages	= btrfs_writepages,
10680 	.readpages	= btrfs_readpages,
10681 	.direct_IO	= btrfs_direct_IO,
10682 	.invalidatepage = btrfs_invalidatepage,
10683 	.releasepage	= btrfs_releasepage,
10684 	.set_page_dirty	= btrfs_set_page_dirty,
10685 	.error_remove_page = generic_error_remove_page,
10686 };
10687 
10688 static const struct address_space_operations btrfs_symlink_aops = {
10689 	.readpage	= btrfs_readpage,
10690 	.writepage	= btrfs_writepage,
10691 	.invalidatepage = btrfs_invalidatepage,
10692 	.releasepage	= btrfs_releasepage,
10693 };
10694 
10695 static const struct inode_operations btrfs_file_inode_operations = {
10696 	.getattr	= btrfs_getattr,
10697 	.setattr	= btrfs_setattr,
10698 	.listxattr      = btrfs_listxattr,
10699 	.permission	= btrfs_permission,
10700 	.fiemap		= btrfs_fiemap,
10701 	.get_acl	= btrfs_get_acl,
10702 	.set_acl	= btrfs_set_acl,
10703 	.update_time	= btrfs_update_time,
10704 };
10705 static const struct inode_operations btrfs_special_inode_operations = {
10706 	.getattr	= btrfs_getattr,
10707 	.setattr	= btrfs_setattr,
10708 	.permission	= btrfs_permission,
10709 	.listxattr	= btrfs_listxattr,
10710 	.get_acl	= btrfs_get_acl,
10711 	.set_acl	= btrfs_set_acl,
10712 	.update_time	= btrfs_update_time,
10713 };
10714 static const struct inode_operations btrfs_symlink_inode_operations = {
10715 	.readlink	= generic_readlink,
10716 	.get_link	= page_get_link,
10717 	.getattr	= btrfs_getattr,
10718 	.setattr	= btrfs_setattr,
10719 	.permission	= btrfs_permission,
10720 	.listxattr	= btrfs_listxattr,
10721 	.update_time	= btrfs_update_time,
10722 };
10723 
10724 const struct dentry_operations btrfs_dentry_operations = {
10725 	.d_delete	= btrfs_dentry_delete,
10726 	.d_release	= btrfs_dentry_release,
10727 };
10728