1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include <linux/btrfs.h> 43 #include <linux/blkdev.h> 44 #include <linux/posix_acl_xattr.h> 45 #include <linux/uio.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 #include "qgroup.h" 63 #include "dedupe.h" 64 65 struct btrfs_iget_args { 66 struct btrfs_key *location; 67 struct btrfs_root *root; 68 }; 69 70 struct btrfs_dio_data { 71 u64 outstanding_extents; 72 u64 reserve; 73 u64 unsubmitted_oe_range_start; 74 u64 unsubmitted_oe_range_end; 75 }; 76 77 static const struct inode_operations btrfs_dir_inode_operations; 78 static const struct inode_operations btrfs_symlink_inode_operations; 79 static const struct inode_operations btrfs_dir_ro_inode_operations; 80 static const struct inode_operations btrfs_special_inode_operations; 81 static const struct inode_operations btrfs_file_inode_operations; 82 static const struct address_space_operations btrfs_aops; 83 static const struct address_space_operations btrfs_symlink_aops; 84 static const struct file_operations btrfs_dir_file_operations; 85 static const struct extent_io_ops btrfs_extent_io_ops; 86 87 static struct kmem_cache *btrfs_inode_cachep; 88 struct kmem_cache *btrfs_trans_handle_cachep; 89 struct kmem_cache *btrfs_transaction_cachep; 90 struct kmem_cache *btrfs_path_cachep; 91 struct kmem_cache *btrfs_free_space_cachep; 92 93 #define S_SHIFT 12 94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 102 }; 103 104 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 105 static int btrfs_truncate(struct inode *inode); 106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 107 static noinline int cow_file_range(struct inode *inode, 108 struct page *locked_page, 109 u64 start, u64 end, u64 delalloc_end, 110 int *page_started, unsigned long *nr_written, 111 int unlock, struct btrfs_dedupe_hash *hash); 112 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 113 u64 len, u64 orig_start, 114 u64 block_start, u64 block_len, 115 u64 orig_block_len, u64 ram_bytes, 116 int type); 117 118 static int btrfs_dirty_inode(struct inode *inode); 119 120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS btrfs_test_inode_set_ops(struct inode * inode)121 void btrfs_test_inode_set_ops(struct inode *inode) 122 { 123 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 124 } 125 #endif 126 btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)127 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 128 struct inode *inode, struct inode *dir, 129 const struct qstr *qstr) 130 { 131 int err; 132 133 err = btrfs_init_acl(trans, inode, dir); 134 if (!err) 135 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 136 return err; 137 } 138 139 /* 140 * this does all the hard work for inserting an inline extent into 141 * the btree. The caller should have done a btrfs_drop_extents so that 142 * no overlapping inline items exist in the btree 143 */ insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,int extent_inserted,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages)144 static int insert_inline_extent(struct btrfs_trans_handle *trans, 145 struct btrfs_path *path, int extent_inserted, 146 struct btrfs_root *root, struct inode *inode, 147 u64 start, size_t size, size_t compressed_size, 148 int compress_type, 149 struct page **compressed_pages) 150 { 151 struct extent_buffer *leaf; 152 struct page *page = NULL; 153 char *kaddr; 154 unsigned long ptr; 155 struct btrfs_file_extent_item *ei; 156 int err = 0; 157 int ret; 158 size_t cur_size = size; 159 unsigned long offset; 160 161 if (compressed_size && compressed_pages) 162 cur_size = compressed_size; 163 164 inode_add_bytes(inode, size); 165 166 if (!extent_inserted) { 167 struct btrfs_key key; 168 size_t datasize; 169 170 key.objectid = btrfs_ino(inode); 171 key.offset = start; 172 key.type = BTRFS_EXTENT_DATA_KEY; 173 174 datasize = btrfs_file_extent_calc_inline_size(cur_size); 175 path->leave_spinning = 1; 176 ret = btrfs_insert_empty_item(trans, root, path, &key, 177 datasize); 178 if (ret) { 179 err = ret; 180 goto fail; 181 } 182 } 183 leaf = path->nodes[0]; 184 ei = btrfs_item_ptr(leaf, path->slots[0], 185 struct btrfs_file_extent_item); 186 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 187 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 188 btrfs_set_file_extent_encryption(leaf, ei, 0); 189 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 190 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 191 ptr = btrfs_file_extent_inline_start(ei); 192 193 if (compress_type != BTRFS_COMPRESS_NONE) { 194 struct page *cpage; 195 int i = 0; 196 while (compressed_size > 0) { 197 cpage = compressed_pages[i]; 198 cur_size = min_t(unsigned long, compressed_size, 199 PAGE_SIZE); 200 201 kaddr = kmap_atomic(cpage); 202 write_extent_buffer(leaf, kaddr, ptr, cur_size); 203 kunmap_atomic(kaddr); 204 205 i++; 206 ptr += cur_size; 207 compressed_size -= cur_size; 208 } 209 btrfs_set_file_extent_compression(leaf, ei, 210 compress_type); 211 } else { 212 page = find_get_page(inode->i_mapping, 213 start >> PAGE_SHIFT); 214 btrfs_set_file_extent_compression(leaf, ei, 0); 215 kaddr = kmap_atomic(page); 216 offset = start & (PAGE_SIZE - 1); 217 write_extent_buffer(leaf, kaddr + offset, ptr, size); 218 kunmap_atomic(kaddr); 219 put_page(page); 220 } 221 btrfs_mark_buffer_dirty(leaf); 222 btrfs_release_path(path); 223 224 /* 225 * we're an inline extent, so nobody can 226 * extend the file past i_size without locking 227 * a page we already have locked. 228 * 229 * We must do any isize and inode updates 230 * before we unlock the pages. Otherwise we 231 * could end up racing with unlink. 232 */ 233 BTRFS_I(inode)->disk_i_size = inode->i_size; 234 ret = btrfs_update_inode(trans, root, inode); 235 236 return ret; 237 fail: 238 return err; 239 } 240 241 242 /* 243 * conditionally insert an inline extent into the file. This 244 * does the checks required to make sure the data is small enough 245 * to fit as an inline extent. 246 */ cow_file_range_inline(struct btrfs_root * root,struct inode * inode,u64 start,u64 end,size_t compressed_size,int compress_type,struct page ** compressed_pages)247 static noinline int cow_file_range_inline(struct btrfs_root *root, 248 struct inode *inode, u64 start, 249 u64 end, size_t compressed_size, 250 int compress_type, 251 struct page **compressed_pages) 252 { 253 struct btrfs_trans_handle *trans; 254 u64 isize = i_size_read(inode); 255 u64 actual_end = min(end + 1, isize); 256 u64 inline_len = actual_end - start; 257 u64 aligned_end = ALIGN(end, root->sectorsize); 258 u64 data_len = inline_len; 259 int ret; 260 struct btrfs_path *path; 261 int extent_inserted = 0; 262 u32 extent_item_size; 263 264 if (compressed_size) 265 data_len = compressed_size; 266 267 if (start > 0 || 268 actual_end > root->sectorsize || 269 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) || 270 (!compressed_size && 271 (actual_end & (root->sectorsize - 1)) == 0) || 272 end + 1 < isize || 273 data_len > root->fs_info->max_inline) { 274 return 1; 275 } 276 277 path = btrfs_alloc_path(); 278 if (!path) 279 return -ENOMEM; 280 281 trans = btrfs_join_transaction(root); 282 if (IS_ERR(trans)) { 283 btrfs_free_path(path); 284 return PTR_ERR(trans); 285 } 286 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 287 288 if (compressed_size && compressed_pages) 289 extent_item_size = btrfs_file_extent_calc_inline_size( 290 compressed_size); 291 else 292 extent_item_size = btrfs_file_extent_calc_inline_size( 293 inline_len); 294 295 ret = __btrfs_drop_extents(trans, root, inode, path, 296 start, aligned_end, NULL, 297 1, 1, extent_item_size, &extent_inserted); 298 if (ret) { 299 btrfs_abort_transaction(trans, ret); 300 goto out; 301 } 302 303 if (isize > actual_end) 304 inline_len = min_t(u64, isize, actual_end); 305 ret = insert_inline_extent(trans, path, extent_inserted, 306 root, inode, start, 307 inline_len, compressed_size, 308 compress_type, compressed_pages); 309 if (ret && ret != -ENOSPC) { 310 btrfs_abort_transaction(trans, ret); 311 goto out; 312 } else if (ret == -ENOSPC) { 313 ret = 1; 314 goto out; 315 } 316 317 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 318 btrfs_delalloc_release_metadata(inode, end + 1 - start); 319 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 320 out: 321 /* 322 * Don't forget to free the reserved space, as for inlined extent 323 * it won't count as data extent, free them directly here. 324 * And at reserve time, it's always aligned to page size, so 325 * just free one page here. 326 */ 327 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE); 328 btrfs_free_path(path); 329 btrfs_end_transaction(trans, root); 330 return ret; 331 } 332 333 struct async_extent { 334 u64 start; 335 u64 ram_size; 336 u64 compressed_size; 337 struct page **pages; 338 unsigned long nr_pages; 339 int compress_type; 340 struct list_head list; 341 }; 342 343 struct async_cow { 344 struct inode *inode; 345 struct btrfs_root *root; 346 struct page *locked_page; 347 u64 start; 348 u64 end; 349 struct list_head extents; 350 struct btrfs_work work; 351 }; 352 add_async_extent(struct async_cow * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)353 static noinline int add_async_extent(struct async_cow *cow, 354 u64 start, u64 ram_size, 355 u64 compressed_size, 356 struct page **pages, 357 unsigned long nr_pages, 358 int compress_type) 359 { 360 struct async_extent *async_extent; 361 362 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 363 BUG_ON(!async_extent); /* -ENOMEM */ 364 async_extent->start = start; 365 async_extent->ram_size = ram_size; 366 async_extent->compressed_size = compressed_size; 367 async_extent->pages = pages; 368 async_extent->nr_pages = nr_pages; 369 async_extent->compress_type = compress_type; 370 list_add_tail(&async_extent->list, &cow->extents); 371 return 0; 372 } 373 inode_need_compress(struct inode * inode)374 static inline int inode_need_compress(struct inode *inode) 375 { 376 struct btrfs_root *root = BTRFS_I(inode)->root; 377 378 /* force compress */ 379 if (btrfs_test_opt(root->fs_info, FORCE_COMPRESS)) 380 return 1; 381 /* bad compression ratios */ 382 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 383 return 0; 384 if (btrfs_test_opt(root->fs_info, COMPRESS) || 385 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 386 BTRFS_I(inode)->force_compress) 387 return 1; 388 return 0; 389 } 390 391 /* 392 * we create compressed extents in two phases. The first 393 * phase compresses a range of pages that have already been 394 * locked (both pages and state bits are locked). 395 * 396 * This is done inside an ordered work queue, and the compression 397 * is spread across many cpus. The actual IO submission is step 398 * two, and the ordered work queue takes care of making sure that 399 * happens in the same order things were put onto the queue by 400 * writepages and friends. 401 * 402 * If this code finds it can't get good compression, it puts an 403 * entry onto the work queue to write the uncompressed bytes. This 404 * makes sure that both compressed inodes and uncompressed inodes 405 * are written in the same order that the flusher thread sent them 406 * down. 407 */ compress_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,struct async_cow * async_cow,int * num_added)408 static noinline void compress_file_range(struct inode *inode, 409 struct page *locked_page, 410 u64 start, u64 end, 411 struct async_cow *async_cow, 412 int *num_added) 413 { 414 struct btrfs_root *root = BTRFS_I(inode)->root; 415 u64 num_bytes; 416 u64 blocksize = root->sectorsize; 417 u64 actual_end; 418 u64 isize = i_size_read(inode); 419 int ret = 0; 420 struct page **pages = NULL; 421 unsigned long nr_pages; 422 unsigned long nr_pages_ret = 0; 423 unsigned long total_compressed = 0; 424 unsigned long total_in = 0; 425 unsigned long max_compressed = SZ_128K; 426 unsigned long max_uncompressed = SZ_128K; 427 int i; 428 int will_compress; 429 int compress_type = root->fs_info->compress_type; 430 int redirty = 0; 431 432 /* if this is a small write inside eof, kick off a defrag */ 433 if ((end - start + 1) < SZ_16K && 434 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 435 btrfs_add_inode_defrag(NULL, inode); 436 437 actual_end = min_t(u64, isize, end + 1); 438 again: 439 will_compress = 0; 440 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 441 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE); 442 443 /* 444 * we don't want to send crud past the end of i_size through 445 * compression, that's just a waste of CPU time. So, if the 446 * end of the file is before the start of our current 447 * requested range of bytes, we bail out to the uncompressed 448 * cleanup code that can deal with all of this. 449 * 450 * It isn't really the fastest way to fix things, but this is a 451 * very uncommon corner. 452 */ 453 if (actual_end <= start) 454 goto cleanup_and_bail_uncompressed; 455 456 total_compressed = actual_end - start; 457 458 /* 459 * skip compression for a small file range(<=blocksize) that 460 * isn't an inline extent, since it doesn't save disk space at all. 461 */ 462 if (total_compressed <= blocksize && 463 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 464 goto cleanup_and_bail_uncompressed; 465 466 /* we want to make sure that amount of ram required to uncompress 467 * an extent is reasonable, so we limit the total size in ram 468 * of a compressed extent to 128k. This is a crucial number 469 * because it also controls how easily we can spread reads across 470 * cpus for decompression. 471 * 472 * We also want to make sure the amount of IO required to do 473 * a random read is reasonably small, so we limit the size of 474 * a compressed extent to 128k. 475 */ 476 total_compressed = min(total_compressed, max_uncompressed); 477 num_bytes = ALIGN(end - start + 1, blocksize); 478 num_bytes = max(blocksize, num_bytes); 479 total_in = 0; 480 ret = 0; 481 482 /* 483 * we do compression for mount -o compress and when the 484 * inode has not been flagged as nocompress. This flag can 485 * change at any time if we discover bad compression ratios. 486 */ 487 if (inode_need_compress(inode)) { 488 WARN_ON(pages); 489 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 490 if (!pages) { 491 /* just bail out to the uncompressed code */ 492 goto cont; 493 } 494 495 if (BTRFS_I(inode)->force_compress) 496 compress_type = BTRFS_I(inode)->force_compress; 497 498 /* 499 * we need to call clear_page_dirty_for_io on each 500 * page in the range. Otherwise applications with the file 501 * mmap'd can wander in and change the page contents while 502 * we are compressing them. 503 * 504 * If the compression fails for any reason, we set the pages 505 * dirty again later on. 506 */ 507 extent_range_clear_dirty_for_io(inode, start, end); 508 redirty = 1; 509 ret = btrfs_compress_pages(compress_type, 510 inode->i_mapping, start, 511 total_compressed, pages, 512 nr_pages, &nr_pages_ret, 513 &total_in, 514 &total_compressed, 515 max_compressed); 516 517 if (!ret) { 518 unsigned long offset = total_compressed & 519 (PAGE_SIZE - 1); 520 struct page *page = pages[nr_pages_ret - 1]; 521 char *kaddr; 522 523 /* zero the tail end of the last page, we might be 524 * sending it down to disk 525 */ 526 if (offset) { 527 kaddr = kmap_atomic(page); 528 memset(kaddr + offset, 0, 529 PAGE_SIZE - offset); 530 kunmap_atomic(kaddr); 531 } 532 will_compress = 1; 533 } 534 } 535 cont: 536 if (start == 0) { 537 /* lets try to make an inline extent */ 538 if (ret || total_in < (actual_end - start)) { 539 /* we didn't compress the entire range, try 540 * to make an uncompressed inline extent. 541 */ 542 ret = cow_file_range_inline(root, inode, start, end, 543 0, 0, NULL); 544 } else { 545 /* try making a compressed inline extent */ 546 ret = cow_file_range_inline(root, inode, start, end, 547 total_compressed, 548 compress_type, pages); 549 } 550 if (ret <= 0) { 551 unsigned long clear_flags = EXTENT_DELALLOC | 552 EXTENT_DEFRAG; 553 unsigned long page_error_op; 554 555 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 556 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 557 558 /* 559 * inline extent creation worked or returned error, 560 * we don't need to create any more async work items. 561 * Unlock and free up our temp pages. 562 */ 563 extent_clear_unlock_delalloc(inode, start, end, end, 564 NULL, clear_flags, 565 PAGE_UNLOCK | 566 PAGE_CLEAR_DIRTY | 567 PAGE_SET_WRITEBACK | 568 page_error_op | 569 PAGE_END_WRITEBACK); 570 if (ret == 0) 571 btrfs_free_reserved_data_space_noquota(inode, 572 start, 573 end - start + 1); 574 goto free_pages_out; 575 } 576 } 577 578 if (will_compress) { 579 /* 580 * we aren't doing an inline extent round the compressed size 581 * up to a block size boundary so the allocator does sane 582 * things 583 */ 584 total_compressed = ALIGN(total_compressed, blocksize); 585 586 /* 587 * one last check to make sure the compression is really a 588 * win, compare the page count read with the blocks on disk 589 */ 590 total_in = ALIGN(total_in, PAGE_SIZE); 591 if (total_compressed >= total_in) { 592 will_compress = 0; 593 } else { 594 num_bytes = total_in; 595 *num_added += 1; 596 597 /* 598 * The async work queues will take care of doing actual 599 * allocation on disk for these compressed pages, and 600 * will submit them to the elevator. 601 */ 602 add_async_extent(async_cow, start, num_bytes, 603 total_compressed, pages, nr_pages_ret, 604 compress_type); 605 606 if (start + num_bytes < end) { 607 start += num_bytes; 608 pages = NULL; 609 cond_resched(); 610 goto again; 611 } 612 return; 613 } 614 } 615 if (pages) { 616 /* 617 * the compression code ran but failed to make things smaller, 618 * free any pages it allocated and our page pointer array 619 */ 620 for (i = 0; i < nr_pages_ret; i++) { 621 WARN_ON(pages[i]->mapping); 622 put_page(pages[i]); 623 } 624 kfree(pages); 625 pages = NULL; 626 total_compressed = 0; 627 nr_pages_ret = 0; 628 629 /* flag the file so we don't compress in the future */ 630 if (!btrfs_test_opt(root->fs_info, FORCE_COMPRESS) && 631 !(BTRFS_I(inode)->force_compress)) { 632 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 633 } 634 } 635 cleanup_and_bail_uncompressed: 636 /* 637 * No compression, but we still need to write the pages in the file 638 * we've been given so far. redirty the locked page if it corresponds 639 * to our extent and set things up for the async work queue to run 640 * cow_file_range to do the normal delalloc dance. 641 */ 642 if (page_offset(locked_page) >= start && 643 page_offset(locked_page) <= end) 644 __set_page_dirty_nobuffers(locked_page); 645 /* unlocked later on in the async handlers */ 646 647 if (redirty) 648 extent_range_redirty_for_io(inode, start, end); 649 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 650 BTRFS_COMPRESS_NONE); 651 *num_added += 1; 652 653 return; 654 655 free_pages_out: 656 for (i = 0; i < nr_pages_ret; i++) { 657 WARN_ON(pages[i]->mapping); 658 put_page(pages[i]); 659 } 660 kfree(pages); 661 } 662 free_async_extent_pages(struct async_extent * async_extent)663 static void free_async_extent_pages(struct async_extent *async_extent) 664 { 665 int i; 666 667 if (!async_extent->pages) 668 return; 669 670 for (i = 0; i < async_extent->nr_pages; i++) { 671 WARN_ON(async_extent->pages[i]->mapping); 672 put_page(async_extent->pages[i]); 673 } 674 kfree(async_extent->pages); 675 async_extent->nr_pages = 0; 676 async_extent->pages = NULL; 677 } 678 679 /* 680 * phase two of compressed writeback. This is the ordered portion 681 * of the code, which only gets called in the order the work was 682 * queued. We walk all the async extents created by compress_file_range 683 * and send them down to the disk. 684 */ submit_compressed_extents(struct inode * inode,struct async_cow * async_cow)685 static noinline void submit_compressed_extents(struct inode *inode, 686 struct async_cow *async_cow) 687 { 688 struct async_extent *async_extent; 689 u64 alloc_hint = 0; 690 struct btrfs_key ins; 691 struct extent_map *em; 692 struct btrfs_root *root = BTRFS_I(inode)->root; 693 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 694 struct extent_io_tree *io_tree; 695 int ret = 0; 696 697 again: 698 while (!list_empty(&async_cow->extents)) { 699 async_extent = list_entry(async_cow->extents.next, 700 struct async_extent, list); 701 list_del(&async_extent->list); 702 703 io_tree = &BTRFS_I(inode)->io_tree; 704 705 retry: 706 /* did the compression code fall back to uncompressed IO? */ 707 if (!async_extent->pages) { 708 int page_started = 0; 709 unsigned long nr_written = 0; 710 711 lock_extent(io_tree, async_extent->start, 712 async_extent->start + 713 async_extent->ram_size - 1); 714 715 /* allocate blocks */ 716 ret = cow_file_range(inode, async_cow->locked_page, 717 async_extent->start, 718 async_extent->start + 719 async_extent->ram_size - 1, 720 async_extent->start + 721 async_extent->ram_size - 1, 722 &page_started, &nr_written, 0, 723 NULL); 724 725 /* JDM XXX */ 726 727 /* 728 * if page_started, cow_file_range inserted an 729 * inline extent and took care of all the unlocking 730 * and IO for us. Otherwise, we need to submit 731 * all those pages down to the drive. 732 */ 733 if (!page_started && !ret) 734 extent_write_locked_range(io_tree, 735 inode, async_extent->start, 736 async_extent->start + 737 async_extent->ram_size - 1, 738 btrfs_get_extent, 739 WB_SYNC_ALL); 740 else if (ret) 741 unlock_page(async_cow->locked_page); 742 kfree(async_extent); 743 cond_resched(); 744 continue; 745 } 746 747 lock_extent(io_tree, async_extent->start, 748 async_extent->start + async_extent->ram_size - 1); 749 750 ret = btrfs_reserve_extent(root, async_extent->ram_size, 751 async_extent->compressed_size, 752 async_extent->compressed_size, 753 0, alloc_hint, &ins, 1, 1); 754 if (ret) { 755 free_async_extent_pages(async_extent); 756 757 if (ret == -ENOSPC) { 758 unlock_extent(io_tree, async_extent->start, 759 async_extent->start + 760 async_extent->ram_size - 1); 761 762 /* 763 * we need to redirty the pages if we decide to 764 * fallback to uncompressed IO, otherwise we 765 * will not submit these pages down to lower 766 * layers. 767 */ 768 extent_range_redirty_for_io(inode, 769 async_extent->start, 770 async_extent->start + 771 async_extent->ram_size - 1); 772 773 goto retry; 774 } 775 goto out_free; 776 } 777 /* 778 * here we're doing allocation and writeback of the 779 * compressed pages 780 */ 781 btrfs_drop_extent_cache(inode, async_extent->start, 782 async_extent->start + 783 async_extent->ram_size - 1, 0); 784 785 em = alloc_extent_map(); 786 if (!em) { 787 ret = -ENOMEM; 788 goto out_free_reserve; 789 } 790 em->start = async_extent->start; 791 em->len = async_extent->ram_size; 792 em->orig_start = em->start; 793 em->mod_start = em->start; 794 em->mod_len = em->len; 795 796 em->block_start = ins.objectid; 797 em->block_len = ins.offset; 798 em->orig_block_len = ins.offset; 799 em->ram_bytes = async_extent->ram_size; 800 em->bdev = root->fs_info->fs_devices->latest_bdev; 801 em->compress_type = async_extent->compress_type; 802 set_bit(EXTENT_FLAG_PINNED, &em->flags); 803 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 804 em->generation = -1; 805 806 while (1) { 807 write_lock(&em_tree->lock); 808 ret = add_extent_mapping(em_tree, em, 1); 809 write_unlock(&em_tree->lock); 810 if (ret != -EEXIST) { 811 free_extent_map(em); 812 break; 813 } 814 btrfs_drop_extent_cache(inode, async_extent->start, 815 async_extent->start + 816 async_extent->ram_size - 1, 0); 817 } 818 819 if (ret) 820 goto out_free_reserve; 821 822 ret = btrfs_add_ordered_extent_compress(inode, 823 async_extent->start, 824 ins.objectid, 825 async_extent->ram_size, 826 ins.offset, 827 BTRFS_ORDERED_COMPRESSED, 828 async_extent->compress_type); 829 if (ret) { 830 btrfs_drop_extent_cache(inode, async_extent->start, 831 async_extent->start + 832 async_extent->ram_size - 1, 0); 833 goto out_free_reserve; 834 } 835 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 836 837 /* 838 * clear dirty, set writeback and unlock the pages. 839 */ 840 extent_clear_unlock_delalloc(inode, async_extent->start, 841 async_extent->start + 842 async_extent->ram_size - 1, 843 async_extent->start + 844 async_extent->ram_size - 1, 845 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 846 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 847 PAGE_SET_WRITEBACK); 848 ret = btrfs_submit_compressed_write(inode, 849 async_extent->start, 850 async_extent->ram_size, 851 ins.objectid, 852 ins.offset, async_extent->pages, 853 async_extent->nr_pages); 854 if (ret) { 855 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 856 struct page *p = async_extent->pages[0]; 857 const u64 start = async_extent->start; 858 const u64 end = start + async_extent->ram_size - 1; 859 860 p->mapping = inode->i_mapping; 861 tree->ops->writepage_end_io_hook(p, start, end, 862 NULL, 0); 863 p->mapping = NULL; 864 extent_clear_unlock_delalloc(inode, start, end, end, 865 NULL, 0, 866 PAGE_END_WRITEBACK | 867 PAGE_SET_ERROR); 868 free_async_extent_pages(async_extent); 869 } 870 alloc_hint = ins.objectid + ins.offset; 871 kfree(async_extent); 872 cond_resched(); 873 } 874 return; 875 out_free_reserve: 876 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 877 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 878 out_free: 879 extent_clear_unlock_delalloc(inode, async_extent->start, 880 async_extent->start + 881 async_extent->ram_size - 1, 882 async_extent->start + 883 async_extent->ram_size - 1, 884 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 885 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 886 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 887 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 888 PAGE_SET_ERROR); 889 free_async_extent_pages(async_extent); 890 kfree(async_extent); 891 goto again; 892 } 893 get_extent_allocation_hint(struct inode * inode,u64 start,u64 num_bytes)894 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 895 u64 num_bytes) 896 { 897 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 898 struct extent_map *em; 899 u64 alloc_hint = 0; 900 901 read_lock(&em_tree->lock); 902 em = search_extent_mapping(em_tree, start, num_bytes); 903 if (em) { 904 /* 905 * if block start isn't an actual block number then find the 906 * first block in this inode and use that as a hint. If that 907 * block is also bogus then just don't worry about it. 908 */ 909 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 910 free_extent_map(em); 911 em = search_extent_mapping(em_tree, 0, 0); 912 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 913 alloc_hint = em->block_start; 914 if (em) 915 free_extent_map(em); 916 } else { 917 alloc_hint = em->block_start; 918 free_extent_map(em); 919 } 920 } 921 read_unlock(&em_tree->lock); 922 923 return alloc_hint; 924 } 925 926 /* 927 * when extent_io.c finds a delayed allocation range in the file, 928 * the call backs end up in this code. The basic idea is to 929 * allocate extents on disk for the range, and create ordered data structs 930 * in ram to track those extents. 931 * 932 * locked_page is the page that writepage had locked already. We use 933 * it to make sure we don't do extra locks or unlocks. 934 * 935 * *page_started is set to one if we unlock locked_page and do everything 936 * required to start IO on it. It may be clean and already done with 937 * IO when we return. 938 */ cow_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,u64 delalloc_end,int * page_started,unsigned long * nr_written,int unlock,struct btrfs_dedupe_hash * hash)939 static noinline int cow_file_range(struct inode *inode, 940 struct page *locked_page, 941 u64 start, u64 end, u64 delalloc_end, 942 int *page_started, unsigned long *nr_written, 943 int unlock, struct btrfs_dedupe_hash *hash) 944 { 945 struct btrfs_root *root = BTRFS_I(inode)->root; 946 u64 alloc_hint = 0; 947 u64 num_bytes; 948 unsigned long ram_size; 949 u64 disk_num_bytes; 950 u64 cur_alloc_size; 951 u64 blocksize = root->sectorsize; 952 struct btrfs_key ins; 953 struct extent_map *em; 954 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 955 int ret = 0; 956 957 if (btrfs_is_free_space_inode(inode)) { 958 WARN_ON_ONCE(1); 959 ret = -EINVAL; 960 goto out_unlock; 961 } 962 963 num_bytes = ALIGN(end - start + 1, blocksize); 964 num_bytes = max(blocksize, num_bytes); 965 disk_num_bytes = num_bytes; 966 967 /* if this is a small write inside eof, kick off defrag */ 968 if (num_bytes < SZ_64K && 969 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 970 btrfs_add_inode_defrag(NULL, inode); 971 972 if (start == 0) { 973 /* lets try to make an inline extent */ 974 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 975 NULL); 976 if (ret == 0) { 977 extent_clear_unlock_delalloc(inode, start, end, 978 delalloc_end, NULL, 979 EXTENT_LOCKED | EXTENT_DELALLOC | 980 EXTENT_DEFRAG, PAGE_UNLOCK | 981 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 982 PAGE_END_WRITEBACK); 983 btrfs_free_reserved_data_space_noquota(inode, start, 984 end - start + 1); 985 *nr_written = *nr_written + 986 (end - start + PAGE_SIZE) / PAGE_SIZE; 987 *page_started = 1; 988 goto out; 989 } else if (ret < 0) { 990 goto out_unlock; 991 } 992 } 993 994 BUG_ON(disk_num_bytes > 995 btrfs_super_total_bytes(root->fs_info->super_copy)); 996 997 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 998 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 999 1000 while (disk_num_bytes > 0) { 1001 unsigned long op; 1002 1003 cur_alloc_size = disk_num_bytes; 1004 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1005 root->sectorsize, 0, alloc_hint, 1006 &ins, 1, 1); 1007 if (ret < 0) 1008 goto out_unlock; 1009 1010 em = alloc_extent_map(); 1011 if (!em) { 1012 ret = -ENOMEM; 1013 goto out_reserve; 1014 } 1015 em->start = start; 1016 em->orig_start = em->start; 1017 ram_size = ins.offset; 1018 em->len = ins.offset; 1019 em->mod_start = em->start; 1020 em->mod_len = em->len; 1021 1022 em->block_start = ins.objectid; 1023 em->block_len = ins.offset; 1024 em->orig_block_len = ins.offset; 1025 em->ram_bytes = ram_size; 1026 em->bdev = root->fs_info->fs_devices->latest_bdev; 1027 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1028 em->generation = -1; 1029 1030 while (1) { 1031 write_lock(&em_tree->lock); 1032 ret = add_extent_mapping(em_tree, em, 1); 1033 write_unlock(&em_tree->lock); 1034 if (ret != -EEXIST) { 1035 free_extent_map(em); 1036 break; 1037 } 1038 btrfs_drop_extent_cache(inode, start, 1039 start + ram_size - 1, 0); 1040 } 1041 if (ret) 1042 goto out_reserve; 1043 1044 cur_alloc_size = ins.offset; 1045 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1046 ram_size, cur_alloc_size, 0); 1047 if (ret) 1048 goto out_drop_extent_cache; 1049 1050 if (root->root_key.objectid == 1051 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1052 ret = btrfs_reloc_clone_csums(inode, start, 1053 cur_alloc_size); 1054 if (ret) 1055 goto out_drop_extent_cache; 1056 } 1057 1058 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 1059 1060 if (disk_num_bytes < cur_alloc_size) 1061 break; 1062 1063 /* we're not doing compressed IO, don't unlock the first 1064 * page (which the caller expects to stay locked), don't 1065 * clear any dirty bits and don't set any writeback bits 1066 * 1067 * Do set the Private2 bit so we know this page was properly 1068 * setup for writepage 1069 */ 1070 op = unlock ? PAGE_UNLOCK : 0; 1071 op |= PAGE_SET_PRIVATE2; 1072 1073 extent_clear_unlock_delalloc(inode, start, 1074 start + ram_size - 1, 1075 delalloc_end, locked_page, 1076 EXTENT_LOCKED | EXTENT_DELALLOC, 1077 op); 1078 disk_num_bytes -= cur_alloc_size; 1079 num_bytes -= cur_alloc_size; 1080 alloc_hint = ins.objectid + ins.offset; 1081 start += cur_alloc_size; 1082 } 1083 out: 1084 return ret; 1085 1086 out_drop_extent_cache: 1087 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1088 out_reserve: 1089 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 1090 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 1091 out_unlock: 1092 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1093 locked_page, 1094 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 1095 EXTENT_DELALLOC | EXTENT_DEFRAG, 1096 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1097 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 1098 goto out; 1099 } 1100 1101 /* 1102 * work queue call back to started compression on a file and pages 1103 */ async_cow_start(struct btrfs_work * work)1104 static noinline void async_cow_start(struct btrfs_work *work) 1105 { 1106 struct async_cow *async_cow; 1107 int num_added = 0; 1108 async_cow = container_of(work, struct async_cow, work); 1109 1110 compress_file_range(async_cow->inode, async_cow->locked_page, 1111 async_cow->start, async_cow->end, async_cow, 1112 &num_added); 1113 if (num_added == 0) { 1114 btrfs_add_delayed_iput(async_cow->inode); 1115 async_cow->inode = NULL; 1116 } 1117 } 1118 1119 /* 1120 * work queue call back to submit previously compressed pages 1121 */ async_cow_submit(struct btrfs_work * work)1122 static noinline void async_cow_submit(struct btrfs_work *work) 1123 { 1124 struct async_cow *async_cow; 1125 struct btrfs_root *root; 1126 unsigned long nr_pages; 1127 1128 async_cow = container_of(work, struct async_cow, work); 1129 1130 root = async_cow->root; 1131 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1132 PAGE_SHIFT; 1133 1134 /* 1135 * atomic_sub_return implies a barrier for waitqueue_active 1136 */ 1137 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1138 5 * SZ_1M && 1139 waitqueue_active(&root->fs_info->async_submit_wait)) 1140 wake_up(&root->fs_info->async_submit_wait); 1141 1142 if (async_cow->inode) 1143 submit_compressed_extents(async_cow->inode, async_cow); 1144 } 1145 async_cow_free(struct btrfs_work * work)1146 static noinline void async_cow_free(struct btrfs_work *work) 1147 { 1148 struct async_cow *async_cow; 1149 async_cow = container_of(work, struct async_cow, work); 1150 if (async_cow->inode) 1151 btrfs_add_delayed_iput(async_cow->inode); 1152 kfree(async_cow); 1153 } 1154 cow_file_range_async(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1155 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1156 u64 start, u64 end, int *page_started, 1157 unsigned long *nr_written) 1158 { 1159 struct async_cow *async_cow; 1160 struct btrfs_root *root = BTRFS_I(inode)->root; 1161 unsigned long nr_pages; 1162 u64 cur_end; 1163 int limit = 10 * SZ_1M; 1164 1165 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1166 1, 0, NULL, GFP_NOFS); 1167 while (start < end) { 1168 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1169 BUG_ON(!async_cow); /* -ENOMEM */ 1170 async_cow->inode = igrab(inode); 1171 async_cow->root = root; 1172 async_cow->locked_page = locked_page; 1173 async_cow->start = start; 1174 1175 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1176 !btrfs_test_opt(root->fs_info, FORCE_COMPRESS)) 1177 cur_end = end; 1178 else 1179 cur_end = min(end, start + SZ_512K - 1); 1180 1181 async_cow->end = cur_end; 1182 INIT_LIST_HEAD(&async_cow->extents); 1183 1184 btrfs_init_work(&async_cow->work, 1185 btrfs_delalloc_helper, 1186 async_cow_start, async_cow_submit, 1187 async_cow_free); 1188 1189 nr_pages = (cur_end - start + PAGE_SIZE) >> 1190 PAGE_SHIFT; 1191 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1192 1193 btrfs_queue_work(root->fs_info->delalloc_workers, 1194 &async_cow->work); 1195 1196 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1197 wait_event(root->fs_info->async_submit_wait, 1198 (atomic_read(&root->fs_info->async_delalloc_pages) < 1199 limit)); 1200 } 1201 1202 while (atomic_read(&root->fs_info->async_submit_draining) && 1203 atomic_read(&root->fs_info->async_delalloc_pages)) { 1204 wait_event(root->fs_info->async_submit_wait, 1205 (atomic_read(&root->fs_info->async_delalloc_pages) == 1206 0)); 1207 } 1208 1209 *nr_written += nr_pages; 1210 start = cur_end + 1; 1211 } 1212 *page_started = 1; 1213 return 0; 1214 } 1215 csum_exist_in_range(struct btrfs_root * root,u64 bytenr,u64 num_bytes)1216 static noinline int csum_exist_in_range(struct btrfs_root *root, 1217 u64 bytenr, u64 num_bytes) 1218 { 1219 int ret; 1220 struct btrfs_ordered_sum *sums; 1221 LIST_HEAD(list); 1222 1223 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1224 bytenr + num_bytes - 1, &list, 0); 1225 if (ret == 0 && list_empty(&list)) 1226 return 0; 1227 1228 while (!list_empty(&list)) { 1229 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1230 list_del(&sums->list); 1231 kfree(sums); 1232 } 1233 return 1; 1234 } 1235 1236 /* 1237 * when nowcow writeback call back. This checks for snapshots or COW copies 1238 * of the extents that exist in the file, and COWs the file as required. 1239 * 1240 * If no cow copies or snapshots exist, we write directly to the existing 1241 * blocks on disk 1242 */ run_delalloc_nocow(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,int force,unsigned long * nr_written)1243 static noinline int run_delalloc_nocow(struct inode *inode, 1244 struct page *locked_page, 1245 u64 start, u64 end, int *page_started, int force, 1246 unsigned long *nr_written) 1247 { 1248 struct btrfs_root *root = BTRFS_I(inode)->root; 1249 struct btrfs_trans_handle *trans; 1250 struct extent_buffer *leaf; 1251 struct btrfs_path *path; 1252 struct btrfs_file_extent_item *fi; 1253 struct btrfs_key found_key; 1254 u64 cow_start; 1255 u64 cur_offset; 1256 u64 extent_end; 1257 u64 extent_offset; 1258 u64 disk_bytenr; 1259 u64 num_bytes; 1260 u64 disk_num_bytes; 1261 u64 ram_bytes; 1262 int extent_type; 1263 int ret, err; 1264 int type; 1265 int nocow; 1266 int check_prev = 1; 1267 bool nolock; 1268 u64 ino = btrfs_ino(inode); 1269 1270 path = btrfs_alloc_path(); 1271 if (!path) { 1272 extent_clear_unlock_delalloc(inode, start, end, end, 1273 locked_page, 1274 EXTENT_LOCKED | EXTENT_DELALLOC | 1275 EXTENT_DO_ACCOUNTING | 1276 EXTENT_DEFRAG, PAGE_UNLOCK | 1277 PAGE_CLEAR_DIRTY | 1278 PAGE_SET_WRITEBACK | 1279 PAGE_END_WRITEBACK); 1280 return -ENOMEM; 1281 } 1282 1283 nolock = btrfs_is_free_space_inode(inode); 1284 1285 if (nolock) 1286 trans = btrfs_join_transaction_nolock(root); 1287 else 1288 trans = btrfs_join_transaction(root); 1289 1290 if (IS_ERR(trans)) { 1291 extent_clear_unlock_delalloc(inode, start, end, end, 1292 locked_page, 1293 EXTENT_LOCKED | EXTENT_DELALLOC | 1294 EXTENT_DO_ACCOUNTING | 1295 EXTENT_DEFRAG, PAGE_UNLOCK | 1296 PAGE_CLEAR_DIRTY | 1297 PAGE_SET_WRITEBACK | 1298 PAGE_END_WRITEBACK); 1299 btrfs_free_path(path); 1300 return PTR_ERR(trans); 1301 } 1302 1303 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1304 1305 cow_start = (u64)-1; 1306 cur_offset = start; 1307 while (1) { 1308 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1309 cur_offset, 0); 1310 if (ret < 0) 1311 goto error; 1312 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1313 leaf = path->nodes[0]; 1314 btrfs_item_key_to_cpu(leaf, &found_key, 1315 path->slots[0] - 1); 1316 if (found_key.objectid == ino && 1317 found_key.type == BTRFS_EXTENT_DATA_KEY) 1318 path->slots[0]--; 1319 } 1320 check_prev = 0; 1321 next_slot: 1322 leaf = path->nodes[0]; 1323 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1324 ret = btrfs_next_leaf(root, path); 1325 if (ret < 0) { 1326 if (cow_start != (u64)-1) 1327 cur_offset = cow_start; 1328 goto error; 1329 } 1330 if (ret > 0) 1331 break; 1332 leaf = path->nodes[0]; 1333 } 1334 1335 nocow = 0; 1336 disk_bytenr = 0; 1337 num_bytes = 0; 1338 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1339 1340 if (found_key.objectid > ino) 1341 break; 1342 if (WARN_ON_ONCE(found_key.objectid < ino) || 1343 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1344 path->slots[0]++; 1345 goto next_slot; 1346 } 1347 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1348 found_key.offset > end) 1349 break; 1350 1351 if (found_key.offset > cur_offset) { 1352 extent_end = found_key.offset; 1353 extent_type = 0; 1354 goto out_check; 1355 } 1356 1357 fi = btrfs_item_ptr(leaf, path->slots[0], 1358 struct btrfs_file_extent_item); 1359 extent_type = btrfs_file_extent_type(leaf, fi); 1360 1361 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1362 if (extent_type == BTRFS_FILE_EXTENT_REG || 1363 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1364 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1365 extent_offset = btrfs_file_extent_offset(leaf, fi); 1366 extent_end = found_key.offset + 1367 btrfs_file_extent_num_bytes(leaf, fi); 1368 disk_num_bytes = 1369 btrfs_file_extent_disk_num_bytes(leaf, fi); 1370 if (extent_end <= start) { 1371 path->slots[0]++; 1372 goto next_slot; 1373 } 1374 if (disk_bytenr == 0) 1375 goto out_check; 1376 if (btrfs_file_extent_compression(leaf, fi) || 1377 btrfs_file_extent_encryption(leaf, fi) || 1378 btrfs_file_extent_other_encoding(leaf, fi)) 1379 goto out_check; 1380 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1381 goto out_check; 1382 if (btrfs_extent_readonly(root, disk_bytenr)) 1383 goto out_check; 1384 if (btrfs_cross_ref_exist(trans, root, ino, 1385 found_key.offset - 1386 extent_offset, disk_bytenr)) 1387 goto out_check; 1388 disk_bytenr += extent_offset; 1389 disk_bytenr += cur_offset - found_key.offset; 1390 num_bytes = min(end + 1, extent_end) - cur_offset; 1391 /* 1392 * if there are pending snapshots for this root, 1393 * we fall into common COW way. 1394 */ 1395 if (!nolock) { 1396 err = btrfs_start_write_no_snapshoting(root); 1397 if (!err) 1398 goto out_check; 1399 } 1400 /* 1401 * force cow if csum exists in the range. 1402 * this ensure that csum for a given extent are 1403 * either valid or do not exist. 1404 */ 1405 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1406 goto out_check; 1407 if (!btrfs_inc_nocow_writers(root->fs_info, 1408 disk_bytenr)) 1409 goto out_check; 1410 nocow = 1; 1411 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1412 extent_end = found_key.offset + 1413 btrfs_file_extent_inline_len(leaf, 1414 path->slots[0], fi); 1415 extent_end = ALIGN(extent_end, root->sectorsize); 1416 } else { 1417 BUG_ON(1); 1418 } 1419 out_check: 1420 if (extent_end <= start) { 1421 path->slots[0]++; 1422 if (!nolock && nocow) 1423 btrfs_end_write_no_snapshoting(root); 1424 if (nocow) 1425 btrfs_dec_nocow_writers(root->fs_info, 1426 disk_bytenr); 1427 goto next_slot; 1428 } 1429 if (!nocow) { 1430 if (cow_start == (u64)-1) 1431 cow_start = cur_offset; 1432 cur_offset = extent_end; 1433 if (cur_offset > end) 1434 break; 1435 path->slots[0]++; 1436 goto next_slot; 1437 } 1438 1439 btrfs_release_path(path); 1440 if (cow_start != (u64)-1) { 1441 ret = cow_file_range(inode, locked_page, 1442 cow_start, found_key.offset - 1, 1443 end, page_started, nr_written, 1, 1444 NULL); 1445 if (ret) { 1446 if (!nolock && nocow) 1447 btrfs_end_write_no_snapshoting(root); 1448 if (nocow) 1449 btrfs_dec_nocow_writers(root->fs_info, 1450 disk_bytenr); 1451 goto error; 1452 } 1453 cow_start = (u64)-1; 1454 } 1455 1456 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1457 struct extent_map *em; 1458 struct extent_map_tree *em_tree; 1459 em_tree = &BTRFS_I(inode)->extent_tree; 1460 em = alloc_extent_map(); 1461 BUG_ON(!em); /* -ENOMEM */ 1462 em->start = cur_offset; 1463 em->orig_start = found_key.offset - extent_offset; 1464 em->len = num_bytes; 1465 em->block_len = num_bytes; 1466 em->block_start = disk_bytenr; 1467 em->orig_block_len = disk_num_bytes; 1468 em->ram_bytes = ram_bytes; 1469 em->bdev = root->fs_info->fs_devices->latest_bdev; 1470 em->mod_start = em->start; 1471 em->mod_len = em->len; 1472 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1473 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1474 em->generation = -1; 1475 while (1) { 1476 write_lock(&em_tree->lock); 1477 ret = add_extent_mapping(em_tree, em, 1); 1478 write_unlock(&em_tree->lock); 1479 if (ret != -EEXIST) { 1480 free_extent_map(em); 1481 break; 1482 } 1483 btrfs_drop_extent_cache(inode, em->start, 1484 em->start + em->len - 1, 0); 1485 } 1486 type = BTRFS_ORDERED_PREALLOC; 1487 } else { 1488 type = BTRFS_ORDERED_NOCOW; 1489 } 1490 1491 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1492 num_bytes, num_bytes, type); 1493 if (nocow) 1494 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr); 1495 BUG_ON(ret); /* -ENOMEM */ 1496 1497 if (root->root_key.objectid == 1498 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1499 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1500 num_bytes); 1501 if (ret) { 1502 if (!nolock && nocow) 1503 btrfs_end_write_no_snapshoting(root); 1504 goto error; 1505 } 1506 } 1507 1508 extent_clear_unlock_delalloc(inode, cur_offset, 1509 cur_offset + num_bytes - 1, end, 1510 locked_page, EXTENT_LOCKED | 1511 EXTENT_DELALLOC | 1512 EXTENT_CLEAR_DATA_RESV, 1513 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1514 1515 if (!nolock && nocow) 1516 btrfs_end_write_no_snapshoting(root); 1517 cur_offset = extent_end; 1518 if (cur_offset > end) 1519 break; 1520 } 1521 btrfs_release_path(path); 1522 1523 if (cur_offset <= end && cow_start == (u64)-1) { 1524 cow_start = cur_offset; 1525 cur_offset = end; 1526 } 1527 1528 if (cow_start != (u64)-1) { 1529 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1530 page_started, nr_written, 1, NULL); 1531 if (ret) 1532 goto error; 1533 } 1534 1535 error: 1536 err = btrfs_end_transaction(trans, root); 1537 if (!ret) 1538 ret = err; 1539 1540 if (ret && cur_offset < end) 1541 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1542 locked_page, EXTENT_LOCKED | 1543 EXTENT_DELALLOC | EXTENT_DEFRAG | 1544 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1545 PAGE_CLEAR_DIRTY | 1546 PAGE_SET_WRITEBACK | 1547 PAGE_END_WRITEBACK); 1548 btrfs_free_path(path); 1549 return ret; 1550 } 1551 need_force_cow(struct inode * inode,u64 start,u64 end)1552 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1553 { 1554 1555 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1556 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1557 return 0; 1558 1559 /* 1560 * @defrag_bytes is a hint value, no spinlock held here, 1561 * if is not zero, it means the file is defragging. 1562 * Force cow if given extent needs to be defragged. 1563 */ 1564 if (BTRFS_I(inode)->defrag_bytes && 1565 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1566 EXTENT_DEFRAG, 0, NULL)) 1567 return 1; 1568 1569 return 0; 1570 } 1571 1572 /* 1573 * extent_io.c call back to do delayed allocation processing 1574 */ run_delalloc_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1575 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1576 u64 start, u64 end, int *page_started, 1577 unsigned long *nr_written) 1578 { 1579 int ret; 1580 int force_cow = need_force_cow(inode, start, end); 1581 1582 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1583 ret = run_delalloc_nocow(inode, locked_page, start, end, 1584 page_started, 1, nr_written); 1585 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1586 ret = run_delalloc_nocow(inode, locked_page, start, end, 1587 page_started, 0, nr_written); 1588 } else if (!inode_need_compress(inode)) { 1589 ret = cow_file_range(inode, locked_page, start, end, end, 1590 page_started, nr_written, 1, NULL); 1591 } else { 1592 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1593 &BTRFS_I(inode)->runtime_flags); 1594 ret = cow_file_range_async(inode, locked_page, start, end, 1595 page_started, nr_written); 1596 } 1597 return ret; 1598 } 1599 btrfs_split_extent_hook(struct inode * inode,struct extent_state * orig,u64 split)1600 static void btrfs_split_extent_hook(struct inode *inode, 1601 struct extent_state *orig, u64 split) 1602 { 1603 u64 size; 1604 1605 /* not delalloc, ignore it */ 1606 if (!(orig->state & EXTENT_DELALLOC)) 1607 return; 1608 1609 size = orig->end - orig->start + 1; 1610 if (size > BTRFS_MAX_EXTENT_SIZE) { 1611 u64 num_extents; 1612 u64 new_size; 1613 1614 /* 1615 * See the explanation in btrfs_merge_extent_hook, the same 1616 * applies here, just in reverse. 1617 */ 1618 new_size = orig->end - split + 1; 1619 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1620 BTRFS_MAX_EXTENT_SIZE); 1621 new_size = split - orig->start; 1622 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1623 BTRFS_MAX_EXTENT_SIZE); 1624 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, 1625 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1626 return; 1627 } 1628 1629 spin_lock(&BTRFS_I(inode)->lock); 1630 BTRFS_I(inode)->outstanding_extents++; 1631 spin_unlock(&BTRFS_I(inode)->lock); 1632 } 1633 1634 /* 1635 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1636 * extents so we can keep track of new extents that are just merged onto old 1637 * extents, such as when we are doing sequential writes, so we can properly 1638 * account for the metadata space we'll need. 1639 */ btrfs_merge_extent_hook(struct inode * inode,struct extent_state * new,struct extent_state * other)1640 static void btrfs_merge_extent_hook(struct inode *inode, 1641 struct extent_state *new, 1642 struct extent_state *other) 1643 { 1644 u64 new_size, old_size; 1645 u64 num_extents; 1646 1647 /* not delalloc, ignore it */ 1648 if (!(other->state & EXTENT_DELALLOC)) 1649 return; 1650 1651 if (new->start > other->start) 1652 new_size = new->end - other->start + 1; 1653 else 1654 new_size = other->end - new->start + 1; 1655 1656 /* we're not bigger than the max, unreserve the space and go */ 1657 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1658 spin_lock(&BTRFS_I(inode)->lock); 1659 BTRFS_I(inode)->outstanding_extents--; 1660 spin_unlock(&BTRFS_I(inode)->lock); 1661 return; 1662 } 1663 1664 /* 1665 * We have to add up either side to figure out how many extents were 1666 * accounted for before we merged into one big extent. If the number of 1667 * extents we accounted for is <= the amount we need for the new range 1668 * then we can return, otherwise drop. Think of it like this 1669 * 1670 * [ 4k][MAX_SIZE] 1671 * 1672 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1673 * need 2 outstanding extents, on one side we have 1 and the other side 1674 * we have 1 so they are == and we can return. But in this case 1675 * 1676 * [MAX_SIZE+4k][MAX_SIZE+4k] 1677 * 1678 * Each range on their own accounts for 2 extents, but merged together 1679 * they are only 3 extents worth of accounting, so we need to drop in 1680 * this case. 1681 */ 1682 old_size = other->end - other->start + 1; 1683 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1684 BTRFS_MAX_EXTENT_SIZE); 1685 old_size = new->end - new->start + 1; 1686 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1687 BTRFS_MAX_EXTENT_SIZE); 1688 1689 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1690 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1691 return; 1692 1693 spin_lock(&BTRFS_I(inode)->lock); 1694 BTRFS_I(inode)->outstanding_extents--; 1695 spin_unlock(&BTRFS_I(inode)->lock); 1696 } 1697 btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)1698 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1699 struct inode *inode) 1700 { 1701 spin_lock(&root->delalloc_lock); 1702 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1703 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1704 &root->delalloc_inodes); 1705 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1706 &BTRFS_I(inode)->runtime_flags); 1707 root->nr_delalloc_inodes++; 1708 if (root->nr_delalloc_inodes == 1) { 1709 spin_lock(&root->fs_info->delalloc_root_lock); 1710 BUG_ON(!list_empty(&root->delalloc_root)); 1711 list_add_tail(&root->delalloc_root, 1712 &root->fs_info->delalloc_roots); 1713 spin_unlock(&root->fs_info->delalloc_root_lock); 1714 } 1715 } 1716 spin_unlock(&root->delalloc_lock); 1717 } 1718 btrfs_del_delalloc_inode(struct btrfs_root * root,struct inode * inode)1719 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1720 struct inode *inode) 1721 { 1722 spin_lock(&root->delalloc_lock); 1723 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1724 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1725 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1726 &BTRFS_I(inode)->runtime_flags); 1727 root->nr_delalloc_inodes--; 1728 if (!root->nr_delalloc_inodes) { 1729 spin_lock(&root->fs_info->delalloc_root_lock); 1730 BUG_ON(list_empty(&root->delalloc_root)); 1731 list_del_init(&root->delalloc_root); 1732 spin_unlock(&root->fs_info->delalloc_root_lock); 1733 } 1734 } 1735 spin_unlock(&root->delalloc_lock); 1736 } 1737 1738 /* 1739 * extent_io.c set_bit_hook, used to track delayed allocation 1740 * bytes in this file, and to maintain the list of inodes that 1741 * have pending delalloc work to be done. 1742 */ btrfs_set_bit_hook(struct inode * inode,struct extent_state * state,unsigned * bits)1743 static void btrfs_set_bit_hook(struct inode *inode, 1744 struct extent_state *state, unsigned *bits) 1745 { 1746 1747 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1748 WARN_ON(1); 1749 /* 1750 * set_bit and clear bit hooks normally require _irqsave/restore 1751 * but in this case, we are only testing for the DELALLOC 1752 * bit, which is only set or cleared with irqs on 1753 */ 1754 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1755 struct btrfs_root *root = BTRFS_I(inode)->root; 1756 u64 len = state->end + 1 - state->start; 1757 bool do_list = !btrfs_is_free_space_inode(inode); 1758 1759 if (*bits & EXTENT_FIRST_DELALLOC) { 1760 *bits &= ~EXTENT_FIRST_DELALLOC; 1761 } else { 1762 spin_lock(&BTRFS_I(inode)->lock); 1763 BTRFS_I(inode)->outstanding_extents++; 1764 spin_unlock(&BTRFS_I(inode)->lock); 1765 } 1766 1767 /* For sanity tests */ 1768 if (btrfs_is_testing(root->fs_info)) 1769 return; 1770 1771 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1772 root->fs_info->delalloc_batch); 1773 spin_lock(&BTRFS_I(inode)->lock); 1774 BTRFS_I(inode)->delalloc_bytes += len; 1775 if (*bits & EXTENT_DEFRAG) 1776 BTRFS_I(inode)->defrag_bytes += len; 1777 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1778 &BTRFS_I(inode)->runtime_flags)) 1779 btrfs_add_delalloc_inodes(root, inode); 1780 spin_unlock(&BTRFS_I(inode)->lock); 1781 } 1782 } 1783 1784 /* 1785 * extent_io.c clear_bit_hook, see set_bit_hook for why 1786 */ btrfs_clear_bit_hook(struct inode * inode,struct extent_state * state,unsigned * bits)1787 static void btrfs_clear_bit_hook(struct inode *inode, 1788 struct extent_state *state, 1789 unsigned *bits) 1790 { 1791 u64 len = state->end + 1 - state->start; 1792 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1, 1793 BTRFS_MAX_EXTENT_SIZE); 1794 1795 spin_lock(&BTRFS_I(inode)->lock); 1796 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) 1797 BTRFS_I(inode)->defrag_bytes -= len; 1798 spin_unlock(&BTRFS_I(inode)->lock); 1799 1800 /* 1801 * set_bit and clear bit hooks normally require _irqsave/restore 1802 * but in this case, we are only testing for the DELALLOC 1803 * bit, which is only set or cleared with irqs on 1804 */ 1805 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1806 struct btrfs_root *root = BTRFS_I(inode)->root; 1807 bool do_list = !btrfs_is_free_space_inode(inode); 1808 1809 if (*bits & EXTENT_FIRST_DELALLOC) { 1810 *bits &= ~EXTENT_FIRST_DELALLOC; 1811 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1812 spin_lock(&BTRFS_I(inode)->lock); 1813 BTRFS_I(inode)->outstanding_extents -= num_extents; 1814 spin_unlock(&BTRFS_I(inode)->lock); 1815 } 1816 1817 /* 1818 * We don't reserve metadata space for space cache inodes so we 1819 * don't need to call dellalloc_release_metadata if there is an 1820 * error. 1821 */ 1822 if (*bits & EXTENT_DO_ACCOUNTING && 1823 root != root->fs_info->tree_root) 1824 btrfs_delalloc_release_metadata(inode, len); 1825 1826 /* For sanity tests. */ 1827 if (btrfs_is_testing(root->fs_info)) 1828 return; 1829 1830 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1831 && do_list && !(state->state & EXTENT_NORESERVE) 1832 && (*bits & (EXTENT_DO_ACCOUNTING | 1833 EXTENT_CLEAR_DATA_RESV))) 1834 btrfs_free_reserved_data_space_noquota(inode, 1835 state->start, len); 1836 1837 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1838 root->fs_info->delalloc_batch); 1839 spin_lock(&BTRFS_I(inode)->lock); 1840 BTRFS_I(inode)->delalloc_bytes -= len; 1841 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1842 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1843 &BTRFS_I(inode)->runtime_flags)) 1844 btrfs_del_delalloc_inode(root, inode); 1845 spin_unlock(&BTRFS_I(inode)->lock); 1846 } 1847 } 1848 1849 /* 1850 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1851 * we don't create bios that span stripes or chunks 1852 * 1853 * return 1 if page cannot be merged to bio 1854 * return 0 if page can be merged to bio 1855 * return error otherwise 1856 */ btrfs_merge_bio_hook(struct page * page,unsigned long offset,size_t size,struct bio * bio,unsigned long bio_flags)1857 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1858 size_t size, struct bio *bio, 1859 unsigned long bio_flags) 1860 { 1861 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1862 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1863 u64 length = 0; 1864 u64 map_length; 1865 int ret; 1866 1867 if (bio_flags & EXTENT_BIO_COMPRESSED) 1868 return 0; 1869 1870 length = bio->bi_iter.bi_size; 1871 map_length = length; 1872 ret = btrfs_map_block(root->fs_info, bio_op(bio), logical, 1873 &map_length, NULL, 0); 1874 if (ret < 0) 1875 return ret; 1876 if (map_length < length + size) 1877 return 1; 1878 return 0; 1879 } 1880 1881 /* 1882 * in order to insert checksums into the metadata in large chunks, 1883 * we wait until bio submission time. All the pages in the bio are 1884 * checksummed and sums are attached onto the ordered extent record. 1885 * 1886 * At IO completion time the cums attached on the ordered extent record 1887 * are inserted into the btree 1888 */ __btrfs_submit_bio_start(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)1889 static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 1890 int mirror_num, unsigned long bio_flags, 1891 u64 bio_offset) 1892 { 1893 struct btrfs_root *root = BTRFS_I(inode)->root; 1894 int ret = 0; 1895 1896 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1897 BUG_ON(ret); /* -ENOMEM */ 1898 return 0; 1899 } 1900 1901 /* 1902 * in order to insert checksums into the metadata in large chunks, 1903 * we wait until bio submission time. All the pages in the bio are 1904 * checksummed and sums are attached onto the ordered extent record. 1905 * 1906 * At IO completion time the cums attached on the ordered extent record 1907 * are inserted into the btree 1908 */ __btrfs_submit_bio_done(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)1909 static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio, 1910 int mirror_num, unsigned long bio_flags, 1911 u64 bio_offset) 1912 { 1913 struct btrfs_root *root = BTRFS_I(inode)->root; 1914 int ret; 1915 1916 ret = btrfs_map_bio(root, bio, mirror_num, 1); 1917 if (ret) { 1918 bio->bi_error = ret; 1919 bio_endio(bio); 1920 } 1921 return ret; 1922 } 1923 1924 /* 1925 * extent_io.c submission hook. This does the right thing for csum calculation 1926 * on write, or reading the csums from the tree before a read 1927 */ btrfs_submit_bio_hook(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)1928 static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 1929 int mirror_num, unsigned long bio_flags, 1930 u64 bio_offset) 1931 { 1932 struct btrfs_root *root = BTRFS_I(inode)->root; 1933 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1934 int ret = 0; 1935 int skip_sum; 1936 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1937 1938 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1939 1940 if (btrfs_is_free_space_inode(inode)) 1941 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1942 1943 if (bio_op(bio) != REQ_OP_WRITE) { 1944 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1945 if (ret) 1946 goto out; 1947 1948 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1949 ret = btrfs_submit_compressed_read(inode, bio, 1950 mirror_num, 1951 bio_flags); 1952 goto out; 1953 } else if (!skip_sum) { 1954 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1955 if (ret) 1956 goto out; 1957 } 1958 goto mapit; 1959 } else if (async && !skip_sum) { 1960 /* csum items have already been cloned */ 1961 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1962 goto mapit; 1963 /* we're doing a write, do the async checksumming */ 1964 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1965 inode, bio, mirror_num, 1966 bio_flags, bio_offset, 1967 __btrfs_submit_bio_start, 1968 __btrfs_submit_bio_done); 1969 goto out; 1970 } else if (!skip_sum) { 1971 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1972 if (ret) 1973 goto out; 1974 } 1975 1976 mapit: 1977 ret = btrfs_map_bio(root, bio, mirror_num, 0); 1978 1979 out: 1980 if (ret < 0) { 1981 bio->bi_error = ret; 1982 bio_endio(bio); 1983 } 1984 return ret; 1985 } 1986 1987 /* 1988 * given a list of ordered sums record them in the inode. This happens 1989 * at IO completion time based on sums calculated at bio submission time. 1990 */ add_pending_csums(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_offset,struct list_head * list)1991 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1992 struct inode *inode, u64 file_offset, 1993 struct list_head *list) 1994 { 1995 struct btrfs_ordered_sum *sum; 1996 1997 list_for_each_entry(sum, list, list) { 1998 trans->adding_csums = 1; 1999 btrfs_csum_file_blocks(trans, 2000 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2001 trans->adding_csums = 0; 2002 } 2003 return 0; 2004 } 2005 btrfs_set_extent_delalloc(struct inode * inode,u64 start,u64 end,struct extent_state ** cached_state,int dedupe)2006 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2007 struct extent_state **cached_state, int dedupe) 2008 { 2009 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 2010 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2011 cached_state); 2012 } 2013 2014 /* see btrfs_writepage_start_hook for details on why this is required */ 2015 struct btrfs_writepage_fixup { 2016 struct page *page; 2017 struct btrfs_work work; 2018 }; 2019 btrfs_writepage_fixup_worker(struct btrfs_work * work)2020 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2021 { 2022 struct btrfs_writepage_fixup *fixup; 2023 struct btrfs_ordered_extent *ordered; 2024 struct extent_state *cached_state = NULL; 2025 struct page *page; 2026 struct inode *inode; 2027 u64 page_start; 2028 u64 page_end; 2029 int ret; 2030 2031 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2032 page = fixup->page; 2033 again: 2034 lock_page(page); 2035 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2036 ClearPageChecked(page); 2037 goto out_page; 2038 } 2039 2040 inode = page->mapping->host; 2041 page_start = page_offset(page); 2042 page_end = page_offset(page) + PAGE_SIZE - 1; 2043 2044 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2045 &cached_state); 2046 2047 /* already ordered? We're done */ 2048 if (PagePrivate2(page)) 2049 goto out; 2050 2051 ordered = btrfs_lookup_ordered_range(inode, page_start, 2052 PAGE_SIZE); 2053 if (ordered) { 2054 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2055 page_end, &cached_state, GFP_NOFS); 2056 unlock_page(page); 2057 btrfs_start_ordered_extent(inode, ordered, 1); 2058 btrfs_put_ordered_extent(ordered); 2059 goto again; 2060 } 2061 2062 ret = btrfs_delalloc_reserve_space(inode, page_start, 2063 PAGE_SIZE); 2064 if (ret) { 2065 mapping_set_error(page->mapping, ret); 2066 end_extent_writepage(page, ret, page_start, page_end); 2067 ClearPageChecked(page); 2068 goto out; 2069 } 2070 2071 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 2072 &cached_state, 0); 2073 if (ret) { 2074 mapping_set_error(page->mapping, ret); 2075 end_extent_writepage(page, ret, page_start, page_end); 2076 ClearPageChecked(page); 2077 goto out; 2078 } 2079 2080 ClearPageChecked(page); 2081 set_page_dirty(page); 2082 out: 2083 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2084 &cached_state, GFP_NOFS); 2085 out_page: 2086 unlock_page(page); 2087 put_page(page); 2088 kfree(fixup); 2089 } 2090 2091 /* 2092 * There are a few paths in the higher layers of the kernel that directly 2093 * set the page dirty bit without asking the filesystem if it is a 2094 * good idea. This causes problems because we want to make sure COW 2095 * properly happens and the data=ordered rules are followed. 2096 * 2097 * In our case any range that doesn't have the ORDERED bit set 2098 * hasn't been properly setup for IO. We kick off an async process 2099 * to fix it up. The async helper will wait for ordered extents, set 2100 * the delalloc bit and make it safe to write the page. 2101 */ btrfs_writepage_start_hook(struct page * page,u64 start,u64 end)2102 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2103 { 2104 struct inode *inode = page->mapping->host; 2105 struct btrfs_writepage_fixup *fixup; 2106 struct btrfs_root *root = BTRFS_I(inode)->root; 2107 2108 /* this page is properly in the ordered list */ 2109 if (TestClearPagePrivate2(page)) 2110 return 0; 2111 2112 if (PageChecked(page)) 2113 return -EAGAIN; 2114 2115 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2116 if (!fixup) 2117 return -EAGAIN; 2118 2119 SetPageChecked(page); 2120 get_page(page); 2121 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2122 btrfs_writepage_fixup_worker, NULL, NULL); 2123 fixup->page = page; 2124 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work); 2125 return -EBUSY; 2126 } 2127 insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_pos,u64 disk_bytenr,u64 disk_num_bytes,u64 num_bytes,u64 ram_bytes,u8 compression,u8 encryption,u16 other_encoding,int extent_type)2128 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2129 struct inode *inode, u64 file_pos, 2130 u64 disk_bytenr, u64 disk_num_bytes, 2131 u64 num_bytes, u64 ram_bytes, 2132 u8 compression, u8 encryption, 2133 u16 other_encoding, int extent_type) 2134 { 2135 struct btrfs_root *root = BTRFS_I(inode)->root; 2136 struct btrfs_file_extent_item *fi; 2137 struct btrfs_path *path; 2138 struct extent_buffer *leaf; 2139 struct btrfs_key ins; 2140 int extent_inserted = 0; 2141 int ret; 2142 2143 path = btrfs_alloc_path(); 2144 if (!path) 2145 return -ENOMEM; 2146 2147 /* 2148 * we may be replacing one extent in the tree with another. 2149 * The new extent is pinned in the extent map, and we don't want 2150 * to drop it from the cache until it is completely in the btree. 2151 * 2152 * So, tell btrfs_drop_extents to leave this extent in the cache. 2153 * the caller is expected to unpin it and allow it to be merged 2154 * with the others. 2155 */ 2156 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2157 file_pos + num_bytes, NULL, 0, 2158 1, sizeof(*fi), &extent_inserted); 2159 if (ret) 2160 goto out; 2161 2162 if (!extent_inserted) { 2163 ins.objectid = btrfs_ino(inode); 2164 ins.offset = file_pos; 2165 ins.type = BTRFS_EXTENT_DATA_KEY; 2166 2167 path->leave_spinning = 1; 2168 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2169 sizeof(*fi)); 2170 if (ret) 2171 goto out; 2172 } 2173 leaf = path->nodes[0]; 2174 fi = btrfs_item_ptr(leaf, path->slots[0], 2175 struct btrfs_file_extent_item); 2176 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2177 btrfs_set_file_extent_type(leaf, fi, extent_type); 2178 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2179 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2180 btrfs_set_file_extent_offset(leaf, fi, 0); 2181 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2182 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2183 btrfs_set_file_extent_compression(leaf, fi, compression); 2184 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2185 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2186 2187 btrfs_mark_buffer_dirty(leaf); 2188 btrfs_release_path(path); 2189 2190 inode_add_bytes(inode, num_bytes); 2191 2192 ins.objectid = disk_bytenr; 2193 ins.offset = disk_num_bytes; 2194 ins.type = BTRFS_EXTENT_ITEM_KEY; 2195 ret = btrfs_alloc_reserved_file_extent(trans, root, 2196 root->root_key.objectid, 2197 btrfs_ino(inode), file_pos, 2198 ram_bytes, &ins); 2199 /* 2200 * Release the reserved range from inode dirty range map, as it is 2201 * already moved into delayed_ref_head 2202 */ 2203 btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2204 out: 2205 btrfs_free_path(path); 2206 2207 return ret; 2208 } 2209 2210 /* snapshot-aware defrag */ 2211 struct sa_defrag_extent_backref { 2212 struct rb_node node; 2213 struct old_sa_defrag_extent *old; 2214 u64 root_id; 2215 u64 inum; 2216 u64 file_pos; 2217 u64 extent_offset; 2218 u64 num_bytes; 2219 u64 generation; 2220 }; 2221 2222 struct old_sa_defrag_extent { 2223 struct list_head list; 2224 struct new_sa_defrag_extent *new; 2225 2226 u64 extent_offset; 2227 u64 bytenr; 2228 u64 offset; 2229 u64 len; 2230 int count; 2231 }; 2232 2233 struct new_sa_defrag_extent { 2234 struct rb_root root; 2235 struct list_head head; 2236 struct btrfs_path *path; 2237 struct inode *inode; 2238 u64 file_pos; 2239 u64 len; 2240 u64 bytenr; 2241 u64 disk_len; 2242 u8 compress_type; 2243 }; 2244 backref_comp(struct sa_defrag_extent_backref * b1,struct sa_defrag_extent_backref * b2)2245 static int backref_comp(struct sa_defrag_extent_backref *b1, 2246 struct sa_defrag_extent_backref *b2) 2247 { 2248 if (b1->root_id < b2->root_id) 2249 return -1; 2250 else if (b1->root_id > b2->root_id) 2251 return 1; 2252 2253 if (b1->inum < b2->inum) 2254 return -1; 2255 else if (b1->inum > b2->inum) 2256 return 1; 2257 2258 if (b1->file_pos < b2->file_pos) 2259 return -1; 2260 else if (b1->file_pos > b2->file_pos) 2261 return 1; 2262 2263 /* 2264 * [------------------------------] ===> (a range of space) 2265 * |<--->| |<---->| =============> (fs/file tree A) 2266 * |<---------------------------->| ===> (fs/file tree B) 2267 * 2268 * A range of space can refer to two file extents in one tree while 2269 * refer to only one file extent in another tree. 2270 * 2271 * So we may process a disk offset more than one time(two extents in A) 2272 * and locate at the same extent(one extent in B), then insert two same 2273 * backrefs(both refer to the extent in B). 2274 */ 2275 return 0; 2276 } 2277 backref_insert(struct rb_root * root,struct sa_defrag_extent_backref * backref)2278 static void backref_insert(struct rb_root *root, 2279 struct sa_defrag_extent_backref *backref) 2280 { 2281 struct rb_node **p = &root->rb_node; 2282 struct rb_node *parent = NULL; 2283 struct sa_defrag_extent_backref *entry; 2284 int ret; 2285 2286 while (*p) { 2287 parent = *p; 2288 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2289 2290 ret = backref_comp(backref, entry); 2291 if (ret < 0) 2292 p = &(*p)->rb_left; 2293 else 2294 p = &(*p)->rb_right; 2295 } 2296 2297 rb_link_node(&backref->node, parent, p); 2298 rb_insert_color(&backref->node, root); 2299 } 2300 2301 /* 2302 * Note the backref might has changed, and in this case we just return 0. 2303 */ record_one_backref(u64 inum,u64 offset,u64 root_id,void * ctx)2304 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2305 void *ctx) 2306 { 2307 struct btrfs_file_extent_item *extent; 2308 struct btrfs_fs_info *fs_info; 2309 struct old_sa_defrag_extent *old = ctx; 2310 struct new_sa_defrag_extent *new = old->new; 2311 struct btrfs_path *path = new->path; 2312 struct btrfs_key key; 2313 struct btrfs_root *root; 2314 struct sa_defrag_extent_backref *backref; 2315 struct extent_buffer *leaf; 2316 struct inode *inode = new->inode; 2317 int slot; 2318 int ret; 2319 u64 extent_offset; 2320 u64 num_bytes; 2321 2322 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2323 inum == btrfs_ino(inode)) 2324 return 0; 2325 2326 key.objectid = root_id; 2327 key.type = BTRFS_ROOT_ITEM_KEY; 2328 key.offset = (u64)-1; 2329 2330 fs_info = BTRFS_I(inode)->root->fs_info; 2331 root = btrfs_read_fs_root_no_name(fs_info, &key); 2332 if (IS_ERR(root)) { 2333 if (PTR_ERR(root) == -ENOENT) 2334 return 0; 2335 WARN_ON(1); 2336 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2337 inum, offset, root_id); 2338 return PTR_ERR(root); 2339 } 2340 2341 key.objectid = inum; 2342 key.type = BTRFS_EXTENT_DATA_KEY; 2343 if (offset > (u64)-1 << 32) 2344 key.offset = 0; 2345 else 2346 key.offset = offset; 2347 2348 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2349 if (WARN_ON(ret < 0)) 2350 return ret; 2351 ret = 0; 2352 2353 while (1) { 2354 cond_resched(); 2355 2356 leaf = path->nodes[0]; 2357 slot = path->slots[0]; 2358 2359 if (slot >= btrfs_header_nritems(leaf)) { 2360 ret = btrfs_next_leaf(root, path); 2361 if (ret < 0) { 2362 goto out; 2363 } else if (ret > 0) { 2364 ret = 0; 2365 goto out; 2366 } 2367 continue; 2368 } 2369 2370 path->slots[0]++; 2371 2372 btrfs_item_key_to_cpu(leaf, &key, slot); 2373 2374 if (key.objectid > inum) 2375 goto out; 2376 2377 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2378 continue; 2379 2380 extent = btrfs_item_ptr(leaf, slot, 2381 struct btrfs_file_extent_item); 2382 2383 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2384 continue; 2385 2386 /* 2387 * 'offset' refers to the exact key.offset, 2388 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2389 * (key.offset - extent_offset). 2390 */ 2391 if (key.offset != offset) 2392 continue; 2393 2394 extent_offset = btrfs_file_extent_offset(leaf, extent); 2395 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2396 2397 if (extent_offset >= old->extent_offset + old->offset + 2398 old->len || extent_offset + num_bytes <= 2399 old->extent_offset + old->offset) 2400 continue; 2401 break; 2402 } 2403 2404 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2405 if (!backref) { 2406 ret = -ENOENT; 2407 goto out; 2408 } 2409 2410 backref->root_id = root_id; 2411 backref->inum = inum; 2412 backref->file_pos = offset; 2413 backref->num_bytes = num_bytes; 2414 backref->extent_offset = extent_offset; 2415 backref->generation = btrfs_file_extent_generation(leaf, extent); 2416 backref->old = old; 2417 backref_insert(&new->root, backref); 2418 old->count++; 2419 out: 2420 btrfs_release_path(path); 2421 WARN_ON(ret); 2422 return ret; 2423 } 2424 record_extent_backrefs(struct btrfs_path * path,struct new_sa_defrag_extent * new)2425 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2426 struct new_sa_defrag_extent *new) 2427 { 2428 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2429 struct old_sa_defrag_extent *old, *tmp; 2430 int ret; 2431 2432 new->path = path; 2433 2434 list_for_each_entry_safe(old, tmp, &new->head, list) { 2435 ret = iterate_inodes_from_logical(old->bytenr + 2436 old->extent_offset, fs_info, 2437 path, record_one_backref, 2438 old); 2439 if (ret < 0 && ret != -ENOENT) 2440 return false; 2441 2442 /* no backref to be processed for this extent */ 2443 if (!old->count) { 2444 list_del(&old->list); 2445 kfree(old); 2446 } 2447 } 2448 2449 if (list_empty(&new->head)) 2450 return false; 2451 2452 return true; 2453 } 2454 relink_is_mergable(struct extent_buffer * leaf,struct btrfs_file_extent_item * fi,struct new_sa_defrag_extent * new)2455 static int relink_is_mergable(struct extent_buffer *leaf, 2456 struct btrfs_file_extent_item *fi, 2457 struct new_sa_defrag_extent *new) 2458 { 2459 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2460 return 0; 2461 2462 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2463 return 0; 2464 2465 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2466 return 0; 2467 2468 if (btrfs_file_extent_encryption(leaf, fi) || 2469 btrfs_file_extent_other_encoding(leaf, fi)) 2470 return 0; 2471 2472 return 1; 2473 } 2474 2475 /* 2476 * Note the backref might has changed, and in this case we just return 0. 2477 */ relink_extent_backref(struct btrfs_path * path,struct sa_defrag_extent_backref * prev,struct sa_defrag_extent_backref * backref)2478 static noinline int relink_extent_backref(struct btrfs_path *path, 2479 struct sa_defrag_extent_backref *prev, 2480 struct sa_defrag_extent_backref *backref) 2481 { 2482 struct btrfs_file_extent_item *extent; 2483 struct btrfs_file_extent_item *item; 2484 struct btrfs_ordered_extent *ordered; 2485 struct btrfs_trans_handle *trans; 2486 struct btrfs_fs_info *fs_info; 2487 struct btrfs_root *root; 2488 struct btrfs_key key; 2489 struct extent_buffer *leaf; 2490 struct old_sa_defrag_extent *old = backref->old; 2491 struct new_sa_defrag_extent *new = old->new; 2492 struct inode *src_inode = new->inode; 2493 struct inode *inode; 2494 struct extent_state *cached = NULL; 2495 int ret = 0; 2496 u64 start; 2497 u64 len; 2498 u64 lock_start; 2499 u64 lock_end; 2500 bool merge = false; 2501 int index; 2502 2503 if (prev && prev->root_id == backref->root_id && 2504 prev->inum == backref->inum && 2505 prev->file_pos + prev->num_bytes == backref->file_pos) 2506 merge = true; 2507 2508 /* step 1: get root */ 2509 key.objectid = backref->root_id; 2510 key.type = BTRFS_ROOT_ITEM_KEY; 2511 key.offset = (u64)-1; 2512 2513 fs_info = BTRFS_I(src_inode)->root->fs_info; 2514 index = srcu_read_lock(&fs_info->subvol_srcu); 2515 2516 root = btrfs_read_fs_root_no_name(fs_info, &key); 2517 if (IS_ERR(root)) { 2518 srcu_read_unlock(&fs_info->subvol_srcu, index); 2519 if (PTR_ERR(root) == -ENOENT) 2520 return 0; 2521 return PTR_ERR(root); 2522 } 2523 2524 if (btrfs_root_readonly(root)) { 2525 srcu_read_unlock(&fs_info->subvol_srcu, index); 2526 return 0; 2527 } 2528 2529 /* step 2: get inode */ 2530 key.objectid = backref->inum; 2531 key.type = BTRFS_INODE_ITEM_KEY; 2532 key.offset = 0; 2533 2534 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2535 if (IS_ERR(inode)) { 2536 srcu_read_unlock(&fs_info->subvol_srcu, index); 2537 return 0; 2538 } 2539 2540 srcu_read_unlock(&fs_info->subvol_srcu, index); 2541 2542 /* step 3: relink backref */ 2543 lock_start = backref->file_pos; 2544 lock_end = backref->file_pos + backref->num_bytes - 1; 2545 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2546 &cached); 2547 2548 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2549 if (ordered) { 2550 btrfs_put_ordered_extent(ordered); 2551 goto out_unlock; 2552 } 2553 2554 trans = btrfs_join_transaction(root); 2555 if (IS_ERR(trans)) { 2556 ret = PTR_ERR(trans); 2557 goto out_unlock; 2558 } 2559 2560 key.objectid = backref->inum; 2561 key.type = BTRFS_EXTENT_DATA_KEY; 2562 key.offset = backref->file_pos; 2563 2564 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2565 if (ret < 0) { 2566 goto out_free_path; 2567 } else if (ret > 0) { 2568 ret = 0; 2569 goto out_free_path; 2570 } 2571 2572 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2573 struct btrfs_file_extent_item); 2574 2575 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2576 backref->generation) 2577 goto out_free_path; 2578 2579 btrfs_release_path(path); 2580 2581 start = backref->file_pos; 2582 if (backref->extent_offset < old->extent_offset + old->offset) 2583 start += old->extent_offset + old->offset - 2584 backref->extent_offset; 2585 2586 len = min(backref->extent_offset + backref->num_bytes, 2587 old->extent_offset + old->offset + old->len); 2588 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2589 2590 ret = btrfs_drop_extents(trans, root, inode, start, 2591 start + len, 1); 2592 if (ret) 2593 goto out_free_path; 2594 again: 2595 key.objectid = btrfs_ino(inode); 2596 key.type = BTRFS_EXTENT_DATA_KEY; 2597 key.offset = start; 2598 2599 path->leave_spinning = 1; 2600 if (merge) { 2601 struct btrfs_file_extent_item *fi; 2602 u64 extent_len; 2603 struct btrfs_key found_key; 2604 2605 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2606 if (ret < 0) 2607 goto out_free_path; 2608 2609 path->slots[0]--; 2610 leaf = path->nodes[0]; 2611 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2612 2613 fi = btrfs_item_ptr(leaf, path->slots[0], 2614 struct btrfs_file_extent_item); 2615 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2616 2617 if (extent_len + found_key.offset == start && 2618 relink_is_mergable(leaf, fi, new)) { 2619 btrfs_set_file_extent_num_bytes(leaf, fi, 2620 extent_len + len); 2621 btrfs_mark_buffer_dirty(leaf); 2622 inode_add_bytes(inode, len); 2623 2624 ret = 1; 2625 goto out_free_path; 2626 } else { 2627 merge = false; 2628 btrfs_release_path(path); 2629 goto again; 2630 } 2631 } 2632 2633 ret = btrfs_insert_empty_item(trans, root, path, &key, 2634 sizeof(*extent)); 2635 if (ret) { 2636 btrfs_abort_transaction(trans, ret); 2637 goto out_free_path; 2638 } 2639 2640 leaf = path->nodes[0]; 2641 item = btrfs_item_ptr(leaf, path->slots[0], 2642 struct btrfs_file_extent_item); 2643 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2644 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2645 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2646 btrfs_set_file_extent_num_bytes(leaf, item, len); 2647 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2648 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2649 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2650 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2651 btrfs_set_file_extent_encryption(leaf, item, 0); 2652 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2653 2654 btrfs_mark_buffer_dirty(leaf); 2655 inode_add_bytes(inode, len); 2656 btrfs_release_path(path); 2657 2658 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2659 new->disk_len, 0, 2660 backref->root_id, backref->inum, 2661 new->file_pos); /* start - extent_offset */ 2662 if (ret) { 2663 btrfs_abort_transaction(trans, ret); 2664 goto out_free_path; 2665 } 2666 2667 ret = 1; 2668 out_free_path: 2669 btrfs_release_path(path); 2670 path->leave_spinning = 0; 2671 btrfs_end_transaction(trans, root); 2672 out_unlock: 2673 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2674 &cached, GFP_NOFS); 2675 iput(inode); 2676 return ret; 2677 } 2678 free_sa_defrag_extent(struct new_sa_defrag_extent * new)2679 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2680 { 2681 struct old_sa_defrag_extent *old, *tmp; 2682 2683 if (!new) 2684 return; 2685 2686 list_for_each_entry_safe(old, tmp, &new->head, list) { 2687 kfree(old); 2688 } 2689 kfree(new); 2690 } 2691 relink_file_extents(struct new_sa_defrag_extent * new)2692 static void relink_file_extents(struct new_sa_defrag_extent *new) 2693 { 2694 struct btrfs_path *path; 2695 struct sa_defrag_extent_backref *backref; 2696 struct sa_defrag_extent_backref *prev = NULL; 2697 struct inode *inode; 2698 struct btrfs_root *root; 2699 struct rb_node *node; 2700 int ret; 2701 2702 inode = new->inode; 2703 root = BTRFS_I(inode)->root; 2704 2705 path = btrfs_alloc_path(); 2706 if (!path) 2707 return; 2708 2709 if (!record_extent_backrefs(path, new)) { 2710 btrfs_free_path(path); 2711 goto out; 2712 } 2713 btrfs_release_path(path); 2714 2715 while (1) { 2716 node = rb_first(&new->root); 2717 if (!node) 2718 break; 2719 rb_erase(node, &new->root); 2720 2721 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2722 2723 ret = relink_extent_backref(path, prev, backref); 2724 WARN_ON(ret < 0); 2725 2726 kfree(prev); 2727 2728 if (ret == 1) 2729 prev = backref; 2730 else 2731 prev = NULL; 2732 cond_resched(); 2733 } 2734 kfree(prev); 2735 2736 btrfs_free_path(path); 2737 out: 2738 free_sa_defrag_extent(new); 2739 2740 atomic_dec(&root->fs_info->defrag_running); 2741 wake_up(&root->fs_info->transaction_wait); 2742 } 2743 2744 static struct new_sa_defrag_extent * record_old_file_extents(struct inode * inode,struct btrfs_ordered_extent * ordered)2745 record_old_file_extents(struct inode *inode, 2746 struct btrfs_ordered_extent *ordered) 2747 { 2748 struct btrfs_root *root = BTRFS_I(inode)->root; 2749 struct btrfs_path *path; 2750 struct btrfs_key key; 2751 struct old_sa_defrag_extent *old; 2752 struct new_sa_defrag_extent *new; 2753 int ret; 2754 2755 new = kmalloc(sizeof(*new), GFP_NOFS); 2756 if (!new) 2757 return NULL; 2758 2759 new->inode = inode; 2760 new->file_pos = ordered->file_offset; 2761 new->len = ordered->len; 2762 new->bytenr = ordered->start; 2763 new->disk_len = ordered->disk_len; 2764 new->compress_type = ordered->compress_type; 2765 new->root = RB_ROOT; 2766 INIT_LIST_HEAD(&new->head); 2767 2768 path = btrfs_alloc_path(); 2769 if (!path) 2770 goto out_kfree; 2771 2772 key.objectid = btrfs_ino(inode); 2773 key.type = BTRFS_EXTENT_DATA_KEY; 2774 key.offset = new->file_pos; 2775 2776 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2777 if (ret < 0) 2778 goto out_free_path; 2779 if (ret > 0 && path->slots[0] > 0) 2780 path->slots[0]--; 2781 2782 /* find out all the old extents for the file range */ 2783 while (1) { 2784 struct btrfs_file_extent_item *extent; 2785 struct extent_buffer *l; 2786 int slot; 2787 u64 num_bytes; 2788 u64 offset; 2789 u64 end; 2790 u64 disk_bytenr; 2791 u64 extent_offset; 2792 2793 l = path->nodes[0]; 2794 slot = path->slots[0]; 2795 2796 if (slot >= btrfs_header_nritems(l)) { 2797 ret = btrfs_next_leaf(root, path); 2798 if (ret < 0) 2799 goto out_free_path; 2800 else if (ret > 0) 2801 break; 2802 continue; 2803 } 2804 2805 btrfs_item_key_to_cpu(l, &key, slot); 2806 2807 if (key.objectid != btrfs_ino(inode)) 2808 break; 2809 if (key.type != BTRFS_EXTENT_DATA_KEY) 2810 break; 2811 if (key.offset >= new->file_pos + new->len) 2812 break; 2813 2814 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2815 2816 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2817 if (key.offset + num_bytes < new->file_pos) 2818 goto next; 2819 2820 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2821 if (!disk_bytenr) 2822 goto next; 2823 2824 extent_offset = btrfs_file_extent_offset(l, extent); 2825 2826 old = kmalloc(sizeof(*old), GFP_NOFS); 2827 if (!old) 2828 goto out_free_path; 2829 2830 offset = max(new->file_pos, key.offset); 2831 end = min(new->file_pos + new->len, key.offset + num_bytes); 2832 2833 old->bytenr = disk_bytenr; 2834 old->extent_offset = extent_offset; 2835 old->offset = offset - key.offset; 2836 old->len = end - offset; 2837 old->new = new; 2838 old->count = 0; 2839 list_add_tail(&old->list, &new->head); 2840 next: 2841 path->slots[0]++; 2842 cond_resched(); 2843 } 2844 2845 btrfs_free_path(path); 2846 atomic_inc(&root->fs_info->defrag_running); 2847 2848 return new; 2849 2850 out_free_path: 2851 btrfs_free_path(path); 2852 out_kfree: 2853 free_sa_defrag_extent(new); 2854 return NULL; 2855 } 2856 btrfs_release_delalloc_bytes(struct btrfs_root * root,u64 start,u64 len)2857 static void btrfs_release_delalloc_bytes(struct btrfs_root *root, 2858 u64 start, u64 len) 2859 { 2860 struct btrfs_block_group_cache *cache; 2861 2862 cache = btrfs_lookup_block_group(root->fs_info, start); 2863 ASSERT(cache); 2864 2865 spin_lock(&cache->lock); 2866 cache->delalloc_bytes -= len; 2867 spin_unlock(&cache->lock); 2868 2869 btrfs_put_block_group(cache); 2870 } 2871 2872 /* as ordered data IO finishes, this gets called so we can finish 2873 * an ordered extent if the range of bytes in the file it covers are 2874 * fully written. 2875 */ btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)2876 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2877 { 2878 struct inode *inode = ordered_extent->inode; 2879 struct btrfs_root *root = BTRFS_I(inode)->root; 2880 struct btrfs_trans_handle *trans = NULL; 2881 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2882 struct extent_state *cached_state = NULL; 2883 struct new_sa_defrag_extent *new = NULL; 2884 int compress_type = 0; 2885 int ret = 0; 2886 u64 logical_len = ordered_extent->len; 2887 bool nolock; 2888 bool truncated = false; 2889 2890 nolock = btrfs_is_free_space_inode(inode); 2891 2892 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2893 ret = -EIO; 2894 goto out; 2895 } 2896 2897 btrfs_free_io_failure_record(inode, ordered_extent->file_offset, 2898 ordered_extent->file_offset + 2899 ordered_extent->len - 1); 2900 2901 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2902 truncated = true; 2903 logical_len = ordered_extent->truncated_len; 2904 /* Truncated the entire extent, don't bother adding */ 2905 if (!logical_len) 2906 goto out; 2907 } 2908 2909 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2910 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2911 2912 /* 2913 * For mwrite(mmap + memset to write) case, we still reserve 2914 * space for NOCOW range. 2915 * As NOCOW won't cause a new delayed ref, just free the space 2916 */ 2917 btrfs_qgroup_free_data(inode, ordered_extent->file_offset, 2918 ordered_extent->len); 2919 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2920 if (nolock) 2921 trans = btrfs_join_transaction_nolock(root); 2922 else 2923 trans = btrfs_join_transaction(root); 2924 if (IS_ERR(trans)) { 2925 ret = PTR_ERR(trans); 2926 trans = NULL; 2927 goto out; 2928 } 2929 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2930 ret = btrfs_update_inode_fallback(trans, root, inode); 2931 if (ret) /* -ENOMEM or corruption */ 2932 btrfs_abort_transaction(trans, ret); 2933 goto out; 2934 } 2935 2936 lock_extent_bits(io_tree, ordered_extent->file_offset, 2937 ordered_extent->file_offset + ordered_extent->len - 1, 2938 &cached_state); 2939 2940 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2941 ordered_extent->file_offset + ordered_extent->len - 1, 2942 EXTENT_DEFRAG, 1, cached_state); 2943 if (ret) { 2944 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2945 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2946 /* the inode is shared */ 2947 new = record_old_file_extents(inode, ordered_extent); 2948 2949 clear_extent_bit(io_tree, ordered_extent->file_offset, 2950 ordered_extent->file_offset + ordered_extent->len - 1, 2951 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2952 } 2953 2954 if (nolock) 2955 trans = btrfs_join_transaction_nolock(root); 2956 else 2957 trans = btrfs_join_transaction(root); 2958 if (IS_ERR(trans)) { 2959 ret = PTR_ERR(trans); 2960 trans = NULL; 2961 goto out_unlock; 2962 } 2963 2964 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2965 2966 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2967 compress_type = ordered_extent->compress_type; 2968 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2969 BUG_ON(compress_type); 2970 ret = btrfs_mark_extent_written(trans, inode, 2971 ordered_extent->file_offset, 2972 ordered_extent->file_offset + 2973 logical_len); 2974 } else { 2975 BUG_ON(root == root->fs_info->tree_root); 2976 ret = insert_reserved_file_extent(trans, inode, 2977 ordered_extent->file_offset, 2978 ordered_extent->start, 2979 ordered_extent->disk_len, 2980 logical_len, logical_len, 2981 compress_type, 0, 0, 2982 BTRFS_FILE_EXTENT_REG); 2983 if (!ret) 2984 btrfs_release_delalloc_bytes(root, 2985 ordered_extent->start, 2986 ordered_extent->disk_len); 2987 } 2988 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2989 ordered_extent->file_offset, ordered_extent->len, 2990 trans->transid); 2991 if (ret < 0) { 2992 btrfs_abort_transaction(trans, ret); 2993 goto out_unlock; 2994 } 2995 2996 add_pending_csums(trans, inode, ordered_extent->file_offset, 2997 &ordered_extent->list); 2998 2999 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3000 ret = btrfs_update_inode_fallback(trans, root, inode); 3001 if (ret) { /* -ENOMEM or corruption */ 3002 btrfs_abort_transaction(trans, ret); 3003 goto out_unlock; 3004 } 3005 ret = 0; 3006 out_unlock: 3007 unlock_extent_cached(io_tree, ordered_extent->file_offset, 3008 ordered_extent->file_offset + 3009 ordered_extent->len - 1, &cached_state, GFP_NOFS); 3010 out: 3011 if (root != root->fs_info->tree_root) 3012 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 3013 if (trans) 3014 btrfs_end_transaction(trans, root); 3015 3016 if (ret || truncated) { 3017 u64 start, end; 3018 3019 if (truncated) 3020 start = ordered_extent->file_offset + logical_len; 3021 else 3022 start = ordered_extent->file_offset; 3023 end = ordered_extent->file_offset + ordered_extent->len - 1; 3024 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 3025 3026 /* Drop the cache for the part of the extent we didn't write. */ 3027 btrfs_drop_extent_cache(inode, start, end, 0); 3028 3029 /* 3030 * If the ordered extent had an IOERR or something else went 3031 * wrong we need to return the space for this ordered extent 3032 * back to the allocator. We only free the extent in the 3033 * truncated case if we didn't write out the extent at all. 3034 */ 3035 if ((ret || !logical_len) && 3036 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3037 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3038 btrfs_free_reserved_extent(root, ordered_extent->start, 3039 ordered_extent->disk_len, 1); 3040 } 3041 3042 3043 /* 3044 * This needs to be done to make sure anybody waiting knows we are done 3045 * updating everything for this ordered extent. 3046 */ 3047 btrfs_remove_ordered_extent(inode, ordered_extent); 3048 3049 /* for snapshot-aware defrag */ 3050 if (new) { 3051 if (ret) { 3052 free_sa_defrag_extent(new); 3053 atomic_dec(&root->fs_info->defrag_running); 3054 } else { 3055 relink_file_extents(new); 3056 } 3057 } 3058 3059 /* once for us */ 3060 btrfs_put_ordered_extent(ordered_extent); 3061 /* once for the tree */ 3062 btrfs_put_ordered_extent(ordered_extent); 3063 3064 return ret; 3065 } 3066 finish_ordered_fn(struct btrfs_work * work)3067 static void finish_ordered_fn(struct btrfs_work *work) 3068 { 3069 struct btrfs_ordered_extent *ordered_extent; 3070 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3071 btrfs_finish_ordered_io(ordered_extent); 3072 } 3073 btrfs_writepage_end_io_hook(struct page * page,u64 start,u64 end,struct extent_state * state,int uptodate)3074 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3075 struct extent_state *state, int uptodate) 3076 { 3077 struct inode *inode = page->mapping->host; 3078 struct btrfs_root *root = BTRFS_I(inode)->root; 3079 struct btrfs_ordered_extent *ordered_extent = NULL; 3080 struct btrfs_workqueue *wq; 3081 btrfs_work_func_t func; 3082 3083 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3084 3085 ClearPagePrivate2(page); 3086 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3087 end - start + 1, uptodate)) 3088 return 0; 3089 3090 if (btrfs_is_free_space_inode(inode)) { 3091 wq = root->fs_info->endio_freespace_worker; 3092 func = btrfs_freespace_write_helper; 3093 } else { 3094 wq = root->fs_info->endio_write_workers; 3095 func = btrfs_endio_write_helper; 3096 } 3097 3098 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3099 NULL); 3100 btrfs_queue_work(wq, &ordered_extent->work); 3101 3102 return 0; 3103 } 3104 __readpage_endio_check(struct inode * inode,struct btrfs_io_bio * io_bio,int icsum,struct page * page,int pgoff,u64 start,size_t len)3105 static int __readpage_endio_check(struct inode *inode, 3106 struct btrfs_io_bio *io_bio, 3107 int icsum, struct page *page, 3108 int pgoff, u64 start, size_t len) 3109 { 3110 char *kaddr; 3111 u32 csum_expected; 3112 u32 csum = ~(u32)0; 3113 3114 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3115 3116 kaddr = kmap_atomic(page); 3117 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3118 btrfs_csum_final(csum, (char *)&csum); 3119 if (csum != csum_expected) 3120 goto zeroit; 3121 3122 kunmap_atomic(kaddr); 3123 return 0; 3124 zeroit: 3125 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info, 3126 "csum failed ino %llu off %llu csum %u expected csum %u", 3127 btrfs_ino(inode), start, csum, csum_expected); 3128 memset(kaddr + pgoff, 1, len); 3129 flush_dcache_page(page); 3130 kunmap_atomic(kaddr); 3131 if (csum_expected == 0) 3132 return 0; 3133 return -EIO; 3134 } 3135 3136 /* 3137 * when reads are done, we need to check csums to verify the data is correct 3138 * if there's a match, we allow the bio to finish. If not, the code in 3139 * extent_io.c will try to find good copies for us. 3140 */ btrfs_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)3141 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3142 u64 phy_offset, struct page *page, 3143 u64 start, u64 end, int mirror) 3144 { 3145 size_t offset = start - page_offset(page); 3146 struct inode *inode = page->mapping->host; 3147 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3148 struct btrfs_root *root = BTRFS_I(inode)->root; 3149 3150 if (PageChecked(page)) { 3151 ClearPageChecked(page); 3152 return 0; 3153 } 3154 3155 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3156 return 0; 3157 3158 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3159 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3160 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3161 return 0; 3162 } 3163 3164 phy_offset >>= inode->i_sb->s_blocksize_bits; 3165 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3166 start, (size_t)(end - start + 1)); 3167 } 3168 btrfs_add_delayed_iput(struct inode * inode)3169 void btrfs_add_delayed_iput(struct inode *inode) 3170 { 3171 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3172 struct btrfs_inode *binode = BTRFS_I(inode); 3173 3174 if (atomic_add_unless(&inode->i_count, -1, 1)) 3175 return; 3176 3177 spin_lock(&fs_info->delayed_iput_lock); 3178 if (binode->delayed_iput_count == 0) { 3179 ASSERT(list_empty(&binode->delayed_iput)); 3180 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3181 } else { 3182 binode->delayed_iput_count++; 3183 } 3184 spin_unlock(&fs_info->delayed_iput_lock); 3185 } 3186 btrfs_run_delayed_iputs(struct btrfs_root * root)3187 void btrfs_run_delayed_iputs(struct btrfs_root *root) 3188 { 3189 struct btrfs_fs_info *fs_info = root->fs_info; 3190 3191 spin_lock(&fs_info->delayed_iput_lock); 3192 while (!list_empty(&fs_info->delayed_iputs)) { 3193 struct btrfs_inode *inode; 3194 3195 inode = list_first_entry(&fs_info->delayed_iputs, 3196 struct btrfs_inode, delayed_iput); 3197 if (inode->delayed_iput_count) { 3198 inode->delayed_iput_count--; 3199 list_move_tail(&inode->delayed_iput, 3200 &fs_info->delayed_iputs); 3201 } else { 3202 list_del_init(&inode->delayed_iput); 3203 } 3204 spin_unlock(&fs_info->delayed_iput_lock); 3205 iput(&inode->vfs_inode); 3206 spin_lock(&fs_info->delayed_iput_lock); 3207 } 3208 spin_unlock(&fs_info->delayed_iput_lock); 3209 } 3210 3211 /* 3212 * This is called in transaction commit time. If there are no orphan 3213 * files in the subvolume, it removes orphan item and frees block_rsv 3214 * structure. 3215 */ btrfs_orphan_commit_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)3216 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3217 struct btrfs_root *root) 3218 { 3219 struct btrfs_block_rsv *block_rsv; 3220 int ret; 3221 3222 if (atomic_read(&root->orphan_inodes) || 3223 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3224 return; 3225 3226 spin_lock(&root->orphan_lock); 3227 if (atomic_read(&root->orphan_inodes)) { 3228 spin_unlock(&root->orphan_lock); 3229 return; 3230 } 3231 3232 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3233 spin_unlock(&root->orphan_lock); 3234 return; 3235 } 3236 3237 block_rsv = root->orphan_block_rsv; 3238 root->orphan_block_rsv = NULL; 3239 spin_unlock(&root->orphan_lock); 3240 3241 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3242 btrfs_root_refs(&root->root_item) > 0) { 3243 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 3244 root->root_key.objectid); 3245 if (ret) 3246 btrfs_abort_transaction(trans, ret); 3247 else 3248 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3249 &root->state); 3250 } 3251 3252 if (block_rsv) { 3253 WARN_ON(block_rsv->size > 0); 3254 btrfs_free_block_rsv(root, block_rsv); 3255 } 3256 } 3257 3258 /* 3259 * This creates an orphan entry for the given inode in case something goes 3260 * wrong in the middle of an unlink/truncate. 3261 * 3262 * NOTE: caller of this function should reserve 5 units of metadata for 3263 * this function. 3264 */ btrfs_orphan_add(struct btrfs_trans_handle * trans,struct inode * inode)3265 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 3266 { 3267 struct btrfs_root *root = BTRFS_I(inode)->root; 3268 struct btrfs_block_rsv *block_rsv = NULL; 3269 int reserve = 0; 3270 int insert = 0; 3271 int ret; 3272 3273 if (!root->orphan_block_rsv) { 3274 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3275 if (!block_rsv) 3276 return -ENOMEM; 3277 } 3278 3279 spin_lock(&root->orphan_lock); 3280 if (!root->orphan_block_rsv) { 3281 root->orphan_block_rsv = block_rsv; 3282 } else if (block_rsv) { 3283 btrfs_free_block_rsv(root, block_rsv); 3284 block_rsv = NULL; 3285 } 3286 3287 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3288 &BTRFS_I(inode)->runtime_flags)) { 3289 #if 0 3290 /* 3291 * For proper ENOSPC handling, we should do orphan 3292 * cleanup when mounting. But this introduces backward 3293 * compatibility issue. 3294 */ 3295 if (!xchg(&root->orphan_item_inserted, 1)) 3296 insert = 2; 3297 else 3298 insert = 1; 3299 #endif 3300 insert = 1; 3301 atomic_inc(&root->orphan_inodes); 3302 } 3303 3304 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3305 &BTRFS_I(inode)->runtime_flags)) 3306 reserve = 1; 3307 spin_unlock(&root->orphan_lock); 3308 3309 /* grab metadata reservation from transaction handle */ 3310 if (reserve) { 3311 ret = btrfs_orphan_reserve_metadata(trans, inode); 3312 ASSERT(!ret); 3313 if (ret) { 3314 atomic_dec(&root->orphan_inodes); 3315 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3316 &BTRFS_I(inode)->runtime_flags); 3317 if (insert) 3318 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3319 &BTRFS_I(inode)->runtime_flags); 3320 return ret; 3321 } 3322 } 3323 3324 /* insert an orphan item to track this unlinked/truncated file */ 3325 if (insert >= 1) { 3326 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3327 if (ret) { 3328 atomic_dec(&root->orphan_inodes); 3329 if (reserve) { 3330 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3331 &BTRFS_I(inode)->runtime_flags); 3332 btrfs_orphan_release_metadata(inode); 3333 } 3334 if (ret != -EEXIST) { 3335 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3336 &BTRFS_I(inode)->runtime_flags); 3337 btrfs_abort_transaction(trans, ret); 3338 return ret; 3339 } 3340 } 3341 ret = 0; 3342 } 3343 3344 /* insert an orphan item to track subvolume contains orphan files */ 3345 if (insert >= 2) { 3346 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3347 root->root_key.objectid); 3348 if (ret && ret != -EEXIST) { 3349 btrfs_abort_transaction(trans, ret); 3350 return ret; 3351 } 3352 } 3353 return 0; 3354 } 3355 3356 /* 3357 * We have done the truncate/delete so we can go ahead and remove the orphan 3358 * item for this particular inode. 3359 */ btrfs_orphan_del(struct btrfs_trans_handle * trans,struct inode * inode)3360 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3361 struct inode *inode) 3362 { 3363 struct btrfs_root *root = BTRFS_I(inode)->root; 3364 int delete_item = 0; 3365 int release_rsv = 0; 3366 int ret = 0; 3367 3368 spin_lock(&root->orphan_lock); 3369 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3370 &BTRFS_I(inode)->runtime_flags)) 3371 delete_item = 1; 3372 3373 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3374 &BTRFS_I(inode)->runtime_flags)) 3375 release_rsv = 1; 3376 spin_unlock(&root->orphan_lock); 3377 3378 if (delete_item) { 3379 atomic_dec(&root->orphan_inodes); 3380 if (trans) 3381 ret = btrfs_del_orphan_item(trans, root, 3382 btrfs_ino(inode)); 3383 } 3384 3385 if (release_rsv) 3386 btrfs_orphan_release_metadata(inode); 3387 3388 return ret; 3389 } 3390 3391 /* 3392 * this cleans up any orphans that may be left on the list from the last use 3393 * of this root. 3394 */ btrfs_orphan_cleanup(struct btrfs_root * root)3395 int btrfs_orphan_cleanup(struct btrfs_root *root) 3396 { 3397 struct btrfs_path *path; 3398 struct extent_buffer *leaf; 3399 struct btrfs_key key, found_key; 3400 struct btrfs_trans_handle *trans; 3401 struct inode *inode; 3402 u64 last_objectid = 0; 3403 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3404 3405 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3406 return 0; 3407 3408 path = btrfs_alloc_path(); 3409 if (!path) { 3410 ret = -ENOMEM; 3411 goto out; 3412 } 3413 path->reada = READA_BACK; 3414 3415 key.objectid = BTRFS_ORPHAN_OBJECTID; 3416 key.type = BTRFS_ORPHAN_ITEM_KEY; 3417 key.offset = (u64)-1; 3418 3419 while (1) { 3420 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3421 if (ret < 0) 3422 goto out; 3423 3424 /* 3425 * if ret == 0 means we found what we were searching for, which 3426 * is weird, but possible, so only screw with path if we didn't 3427 * find the key and see if we have stuff that matches 3428 */ 3429 if (ret > 0) { 3430 ret = 0; 3431 if (path->slots[0] == 0) 3432 break; 3433 path->slots[0]--; 3434 } 3435 3436 /* pull out the item */ 3437 leaf = path->nodes[0]; 3438 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3439 3440 /* make sure the item matches what we want */ 3441 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3442 break; 3443 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3444 break; 3445 3446 /* release the path since we're done with it */ 3447 btrfs_release_path(path); 3448 3449 /* 3450 * this is where we are basically btrfs_lookup, without the 3451 * crossing root thing. we store the inode number in the 3452 * offset of the orphan item. 3453 */ 3454 3455 if (found_key.offset == last_objectid) { 3456 btrfs_err(root->fs_info, 3457 "Error removing orphan entry, stopping orphan cleanup"); 3458 ret = -EINVAL; 3459 goto out; 3460 } 3461 3462 last_objectid = found_key.offset; 3463 3464 found_key.objectid = found_key.offset; 3465 found_key.type = BTRFS_INODE_ITEM_KEY; 3466 found_key.offset = 0; 3467 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3468 ret = PTR_ERR_OR_ZERO(inode); 3469 if (ret && ret != -ENOENT) 3470 goto out; 3471 3472 if (ret == -ENOENT && root == root->fs_info->tree_root) { 3473 struct btrfs_root *dead_root; 3474 struct btrfs_fs_info *fs_info = root->fs_info; 3475 int is_dead_root = 0; 3476 3477 /* 3478 * this is an orphan in the tree root. Currently these 3479 * could come from 2 sources: 3480 * a) a snapshot deletion in progress 3481 * b) a free space cache inode 3482 * We need to distinguish those two, as the snapshot 3483 * orphan must not get deleted. 3484 * find_dead_roots already ran before us, so if this 3485 * is a snapshot deletion, we should find the root 3486 * in the dead_roots list 3487 */ 3488 spin_lock(&fs_info->trans_lock); 3489 list_for_each_entry(dead_root, &fs_info->dead_roots, 3490 root_list) { 3491 if (dead_root->root_key.objectid == 3492 found_key.objectid) { 3493 is_dead_root = 1; 3494 break; 3495 } 3496 } 3497 spin_unlock(&fs_info->trans_lock); 3498 if (is_dead_root) { 3499 /* prevent this orphan from being found again */ 3500 key.offset = found_key.objectid - 1; 3501 continue; 3502 } 3503 } 3504 /* 3505 * Inode is already gone but the orphan item is still there, 3506 * kill the orphan item. 3507 */ 3508 if (ret == -ENOENT) { 3509 trans = btrfs_start_transaction(root, 1); 3510 if (IS_ERR(trans)) { 3511 ret = PTR_ERR(trans); 3512 goto out; 3513 } 3514 btrfs_debug(root->fs_info, "auto deleting %Lu", 3515 found_key.objectid); 3516 ret = btrfs_del_orphan_item(trans, root, 3517 found_key.objectid); 3518 btrfs_end_transaction(trans, root); 3519 if (ret) 3520 goto out; 3521 continue; 3522 } 3523 3524 /* 3525 * add this inode to the orphan list so btrfs_orphan_del does 3526 * the proper thing when we hit it 3527 */ 3528 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3529 &BTRFS_I(inode)->runtime_flags); 3530 atomic_inc(&root->orphan_inodes); 3531 3532 /* if we have links, this was a truncate, lets do that */ 3533 if (inode->i_nlink) { 3534 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3535 iput(inode); 3536 continue; 3537 } 3538 nr_truncate++; 3539 3540 /* 1 for the orphan item deletion. */ 3541 trans = btrfs_start_transaction(root, 1); 3542 if (IS_ERR(trans)) { 3543 iput(inode); 3544 ret = PTR_ERR(trans); 3545 goto out; 3546 } 3547 ret = btrfs_orphan_add(trans, inode); 3548 btrfs_end_transaction(trans, root); 3549 if (ret) { 3550 iput(inode); 3551 goto out; 3552 } 3553 3554 ret = btrfs_truncate(inode); 3555 if (ret) 3556 btrfs_orphan_del(NULL, inode); 3557 } else { 3558 nr_unlink++; 3559 } 3560 3561 /* this will do delete_inode and everything for us */ 3562 iput(inode); 3563 if (ret) 3564 goto out; 3565 } 3566 /* release the path since we're done with it */ 3567 btrfs_release_path(path); 3568 3569 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3570 3571 if (root->orphan_block_rsv) 3572 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3573 (u64)-1); 3574 3575 if (root->orphan_block_rsv || 3576 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3577 trans = btrfs_join_transaction(root); 3578 if (!IS_ERR(trans)) 3579 btrfs_end_transaction(trans, root); 3580 } 3581 3582 if (nr_unlink) 3583 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3584 if (nr_truncate) 3585 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3586 3587 out: 3588 if (ret) 3589 btrfs_err(root->fs_info, 3590 "could not do orphan cleanup %d", ret); 3591 btrfs_free_path(path); 3592 return ret; 3593 } 3594 3595 /* 3596 * very simple check to peek ahead in the leaf looking for xattrs. If we 3597 * don't find any xattrs, we know there can't be any acls. 3598 * 3599 * slot is the slot the inode is in, objectid is the objectid of the inode 3600 */ acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3601 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3602 int slot, u64 objectid, 3603 int *first_xattr_slot) 3604 { 3605 u32 nritems = btrfs_header_nritems(leaf); 3606 struct btrfs_key found_key; 3607 static u64 xattr_access = 0; 3608 static u64 xattr_default = 0; 3609 int scanned = 0; 3610 3611 if (!xattr_access) { 3612 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3613 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3614 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3615 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3616 } 3617 3618 slot++; 3619 *first_xattr_slot = -1; 3620 while (slot < nritems) { 3621 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3622 3623 /* we found a different objectid, there must not be acls */ 3624 if (found_key.objectid != objectid) 3625 return 0; 3626 3627 /* we found an xattr, assume we've got an acl */ 3628 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3629 if (*first_xattr_slot == -1) 3630 *first_xattr_slot = slot; 3631 if (found_key.offset == xattr_access || 3632 found_key.offset == xattr_default) 3633 return 1; 3634 } 3635 3636 /* 3637 * we found a key greater than an xattr key, there can't 3638 * be any acls later on 3639 */ 3640 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3641 return 0; 3642 3643 slot++; 3644 scanned++; 3645 3646 /* 3647 * it goes inode, inode backrefs, xattrs, extents, 3648 * so if there are a ton of hard links to an inode there can 3649 * be a lot of backrefs. Don't waste time searching too hard, 3650 * this is just an optimization 3651 */ 3652 if (scanned >= 8) 3653 break; 3654 } 3655 /* we hit the end of the leaf before we found an xattr or 3656 * something larger than an xattr. We have to assume the inode 3657 * has acls 3658 */ 3659 if (*first_xattr_slot == -1) 3660 *first_xattr_slot = slot; 3661 return 1; 3662 } 3663 3664 /* 3665 * read an inode from the btree into the in-memory inode 3666 */ btrfs_read_locked_inode(struct inode * inode)3667 static int btrfs_read_locked_inode(struct inode *inode) 3668 { 3669 struct btrfs_path *path; 3670 struct extent_buffer *leaf; 3671 struct btrfs_inode_item *inode_item; 3672 struct btrfs_root *root = BTRFS_I(inode)->root; 3673 struct btrfs_key location; 3674 unsigned long ptr; 3675 int maybe_acls; 3676 u32 rdev; 3677 int ret; 3678 bool filled = false; 3679 int first_xattr_slot; 3680 3681 ret = btrfs_fill_inode(inode, &rdev); 3682 if (!ret) 3683 filled = true; 3684 3685 path = btrfs_alloc_path(); 3686 if (!path) { 3687 ret = -ENOMEM; 3688 goto make_bad; 3689 } 3690 3691 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3692 3693 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3694 if (ret) { 3695 if (ret > 0) 3696 ret = -ENOENT; 3697 goto make_bad; 3698 } 3699 3700 leaf = path->nodes[0]; 3701 3702 if (filled) 3703 goto cache_index; 3704 3705 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3706 struct btrfs_inode_item); 3707 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3708 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3709 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3710 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3711 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3712 3713 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3714 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3715 3716 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3717 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3718 3719 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3720 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3721 3722 BTRFS_I(inode)->i_otime.tv_sec = 3723 btrfs_timespec_sec(leaf, &inode_item->otime); 3724 BTRFS_I(inode)->i_otime.tv_nsec = 3725 btrfs_timespec_nsec(leaf, &inode_item->otime); 3726 3727 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3728 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3729 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3730 3731 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3732 inode->i_generation = BTRFS_I(inode)->generation; 3733 inode->i_rdev = 0; 3734 rdev = btrfs_inode_rdev(leaf, inode_item); 3735 3736 BTRFS_I(inode)->index_cnt = (u64)-1; 3737 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3738 3739 cache_index: 3740 /* 3741 * If we were modified in the current generation and evicted from memory 3742 * and then re-read we need to do a full sync since we don't have any 3743 * idea about which extents were modified before we were evicted from 3744 * cache. 3745 * 3746 * This is required for both inode re-read from disk and delayed inode 3747 * in delayed_nodes_tree. 3748 */ 3749 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3750 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3751 &BTRFS_I(inode)->runtime_flags); 3752 3753 /* 3754 * We don't persist the id of the transaction where an unlink operation 3755 * against the inode was last made. So here we assume the inode might 3756 * have been evicted, and therefore the exact value of last_unlink_trans 3757 * lost, and set it to last_trans to avoid metadata inconsistencies 3758 * between the inode and its parent if the inode is fsync'ed and the log 3759 * replayed. For example, in the scenario: 3760 * 3761 * touch mydir/foo 3762 * ln mydir/foo mydir/bar 3763 * sync 3764 * unlink mydir/bar 3765 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3766 * xfs_io -c fsync mydir/foo 3767 * <power failure> 3768 * mount fs, triggers fsync log replay 3769 * 3770 * We must make sure that when we fsync our inode foo we also log its 3771 * parent inode, otherwise after log replay the parent still has the 3772 * dentry with the "bar" name but our inode foo has a link count of 1 3773 * and doesn't have an inode ref with the name "bar" anymore. 3774 * 3775 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3776 * but it guarantees correctness at the expense of occasional full 3777 * transaction commits on fsync if our inode is a directory, or if our 3778 * inode is not a directory, logging its parent unnecessarily. 3779 */ 3780 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3781 3782 path->slots[0]++; 3783 if (inode->i_nlink != 1 || 3784 path->slots[0] >= btrfs_header_nritems(leaf)) 3785 goto cache_acl; 3786 3787 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3788 if (location.objectid != btrfs_ino(inode)) 3789 goto cache_acl; 3790 3791 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3792 if (location.type == BTRFS_INODE_REF_KEY) { 3793 struct btrfs_inode_ref *ref; 3794 3795 ref = (struct btrfs_inode_ref *)ptr; 3796 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3797 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3798 struct btrfs_inode_extref *extref; 3799 3800 extref = (struct btrfs_inode_extref *)ptr; 3801 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3802 extref); 3803 } 3804 cache_acl: 3805 /* 3806 * try to precache a NULL acl entry for files that don't have 3807 * any xattrs or acls 3808 */ 3809 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3810 btrfs_ino(inode), &first_xattr_slot); 3811 if (first_xattr_slot != -1) { 3812 path->slots[0] = first_xattr_slot; 3813 ret = btrfs_load_inode_props(inode, path); 3814 if (ret) 3815 btrfs_err(root->fs_info, 3816 "error loading props for ino %llu (root %llu): %d", 3817 btrfs_ino(inode), 3818 root->root_key.objectid, ret); 3819 } 3820 btrfs_free_path(path); 3821 3822 if (!maybe_acls) 3823 cache_no_acl(inode); 3824 3825 switch (inode->i_mode & S_IFMT) { 3826 case S_IFREG: 3827 inode->i_mapping->a_ops = &btrfs_aops; 3828 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3829 inode->i_fop = &btrfs_file_operations; 3830 inode->i_op = &btrfs_file_inode_operations; 3831 break; 3832 case S_IFDIR: 3833 inode->i_fop = &btrfs_dir_file_operations; 3834 inode->i_op = &btrfs_dir_inode_operations; 3835 break; 3836 case S_IFLNK: 3837 inode->i_op = &btrfs_symlink_inode_operations; 3838 inode_nohighmem(inode); 3839 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3840 break; 3841 default: 3842 inode->i_op = &btrfs_special_inode_operations; 3843 init_special_inode(inode, inode->i_mode, rdev); 3844 break; 3845 } 3846 3847 btrfs_update_iflags(inode); 3848 return 0; 3849 3850 make_bad: 3851 btrfs_free_path(path); 3852 make_bad_inode(inode); 3853 return ret; 3854 } 3855 3856 /* 3857 * given a leaf and an inode, copy the inode fields into the leaf 3858 */ fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)3859 static void fill_inode_item(struct btrfs_trans_handle *trans, 3860 struct extent_buffer *leaf, 3861 struct btrfs_inode_item *item, 3862 struct inode *inode) 3863 { 3864 struct btrfs_map_token token; 3865 3866 btrfs_init_map_token(&token); 3867 3868 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3869 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3870 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3871 &token); 3872 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3873 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3874 3875 btrfs_set_token_timespec_sec(leaf, &item->atime, 3876 inode->i_atime.tv_sec, &token); 3877 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3878 inode->i_atime.tv_nsec, &token); 3879 3880 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3881 inode->i_mtime.tv_sec, &token); 3882 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3883 inode->i_mtime.tv_nsec, &token); 3884 3885 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3886 inode->i_ctime.tv_sec, &token); 3887 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3888 inode->i_ctime.tv_nsec, &token); 3889 3890 btrfs_set_token_timespec_sec(leaf, &item->otime, 3891 BTRFS_I(inode)->i_otime.tv_sec, &token); 3892 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3893 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3894 3895 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3896 &token); 3897 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3898 &token); 3899 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3900 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3901 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3902 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3903 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3904 } 3905 3906 /* 3907 * copy everything in the in-memory inode into the btree. 3908 */ btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3909 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3910 struct btrfs_root *root, struct inode *inode) 3911 { 3912 struct btrfs_inode_item *inode_item; 3913 struct btrfs_path *path; 3914 struct extent_buffer *leaf; 3915 int ret; 3916 3917 path = btrfs_alloc_path(); 3918 if (!path) 3919 return -ENOMEM; 3920 3921 path->leave_spinning = 1; 3922 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3923 1); 3924 if (ret) { 3925 if (ret > 0) 3926 ret = -ENOENT; 3927 goto failed; 3928 } 3929 3930 leaf = path->nodes[0]; 3931 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3932 struct btrfs_inode_item); 3933 3934 fill_inode_item(trans, leaf, inode_item, inode); 3935 btrfs_mark_buffer_dirty(leaf); 3936 btrfs_set_inode_last_trans(trans, inode); 3937 ret = 0; 3938 failed: 3939 btrfs_free_path(path); 3940 return ret; 3941 } 3942 3943 /* 3944 * copy everything in the in-memory inode into the btree. 3945 */ btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3946 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3947 struct btrfs_root *root, struct inode *inode) 3948 { 3949 int ret; 3950 3951 /* 3952 * If the inode is a free space inode, we can deadlock during commit 3953 * if we put it into the delayed code. 3954 * 3955 * The data relocation inode should also be directly updated 3956 * without delay 3957 */ 3958 if (!btrfs_is_free_space_inode(inode) 3959 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3960 && !test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 3961 btrfs_update_root_times(trans, root); 3962 3963 ret = btrfs_delayed_update_inode(trans, root, inode); 3964 if (!ret) 3965 btrfs_set_inode_last_trans(trans, inode); 3966 return ret; 3967 } 3968 3969 return btrfs_update_inode_item(trans, root, inode); 3970 } 3971 btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3972 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3973 struct btrfs_root *root, 3974 struct inode *inode) 3975 { 3976 int ret; 3977 3978 ret = btrfs_update_inode(trans, root, inode); 3979 if (ret == -ENOSPC) 3980 return btrfs_update_inode_item(trans, root, inode); 3981 return ret; 3982 } 3983 3984 /* 3985 * unlink helper that gets used here in inode.c and in the tree logging 3986 * recovery code. It remove a link in a directory with a given name, and 3987 * also drops the back refs in the inode to the directory 3988 */ __btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct inode * inode,const char * name,int name_len)3989 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3990 struct btrfs_root *root, 3991 struct inode *dir, struct inode *inode, 3992 const char *name, int name_len) 3993 { 3994 struct btrfs_path *path; 3995 int ret = 0; 3996 struct extent_buffer *leaf; 3997 struct btrfs_dir_item *di; 3998 struct btrfs_key key; 3999 u64 index; 4000 u64 ino = btrfs_ino(inode); 4001 u64 dir_ino = btrfs_ino(dir); 4002 4003 path = btrfs_alloc_path(); 4004 if (!path) { 4005 ret = -ENOMEM; 4006 goto out; 4007 } 4008 4009 path->leave_spinning = 1; 4010 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4011 name, name_len, -1); 4012 if (IS_ERR(di)) { 4013 ret = PTR_ERR(di); 4014 goto err; 4015 } 4016 if (!di) { 4017 ret = -ENOENT; 4018 goto err; 4019 } 4020 leaf = path->nodes[0]; 4021 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4022 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4023 if (ret) 4024 goto err; 4025 btrfs_release_path(path); 4026 4027 /* 4028 * If we don't have dir index, we have to get it by looking up 4029 * the inode ref, since we get the inode ref, remove it directly, 4030 * it is unnecessary to do delayed deletion. 4031 * 4032 * But if we have dir index, needn't search inode ref to get it. 4033 * Since the inode ref is close to the inode item, it is better 4034 * that we delay to delete it, and just do this deletion when 4035 * we update the inode item. 4036 */ 4037 if (BTRFS_I(inode)->dir_index) { 4038 ret = btrfs_delayed_delete_inode_ref(inode); 4039 if (!ret) { 4040 index = BTRFS_I(inode)->dir_index; 4041 goto skip_backref; 4042 } 4043 } 4044 4045 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4046 dir_ino, &index); 4047 if (ret) { 4048 btrfs_info(root->fs_info, 4049 "failed to delete reference to %.*s, inode %llu parent %llu", 4050 name_len, name, ino, dir_ino); 4051 btrfs_abort_transaction(trans, ret); 4052 goto err; 4053 } 4054 skip_backref: 4055 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4056 if (ret) { 4057 btrfs_abort_transaction(trans, ret); 4058 goto err; 4059 } 4060 4061 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 4062 inode, dir_ino); 4063 if (ret != 0 && ret != -ENOENT) { 4064 btrfs_abort_transaction(trans, ret); 4065 goto err; 4066 } 4067 4068 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 4069 dir, index); 4070 if (ret == -ENOENT) 4071 ret = 0; 4072 else if (ret) 4073 btrfs_abort_transaction(trans, ret); 4074 err: 4075 btrfs_free_path(path); 4076 if (ret) 4077 goto out; 4078 4079 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4080 inode_inc_iversion(inode); 4081 inode_inc_iversion(dir); 4082 inode->i_ctime = dir->i_mtime = 4083 dir->i_ctime = current_time(inode); 4084 ret = btrfs_update_inode(trans, root, dir); 4085 out: 4086 return ret; 4087 } 4088 btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct inode * inode,const char * name,int name_len)4089 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4090 struct btrfs_root *root, 4091 struct inode *dir, struct inode *inode, 4092 const char *name, int name_len) 4093 { 4094 int ret; 4095 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4096 if (!ret) { 4097 drop_nlink(inode); 4098 ret = btrfs_update_inode(trans, root, inode); 4099 } 4100 return ret; 4101 } 4102 4103 /* 4104 * helper to start transaction for unlink and rmdir. 4105 * 4106 * unlink and rmdir are special in btrfs, they do not always free space, so 4107 * if we cannot make our reservations the normal way try and see if there is 4108 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4109 * allow the unlink to occur. 4110 */ __unlink_start_trans(struct inode * dir)4111 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4112 { 4113 struct btrfs_root *root = BTRFS_I(dir)->root; 4114 4115 /* 4116 * 1 for the possible orphan item 4117 * 1 for the dir item 4118 * 1 for the dir index 4119 * 1 for the inode ref 4120 * 1 for the inode 4121 */ 4122 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4123 } 4124 btrfs_unlink(struct inode * dir,struct dentry * dentry)4125 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4126 { 4127 struct btrfs_root *root = BTRFS_I(dir)->root; 4128 struct btrfs_trans_handle *trans; 4129 struct inode *inode = d_inode(dentry); 4130 int ret; 4131 4132 trans = __unlink_start_trans(dir); 4133 if (IS_ERR(trans)) 4134 return PTR_ERR(trans); 4135 4136 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0); 4137 4138 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4139 dentry->d_name.name, dentry->d_name.len); 4140 if (ret) 4141 goto out; 4142 4143 if (inode->i_nlink == 0) { 4144 ret = btrfs_orphan_add(trans, inode); 4145 if (ret) 4146 goto out; 4147 } 4148 4149 out: 4150 btrfs_end_transaction(trans, root); 4151 btrfs_btree_balance_dirty(root); 4152 return ret; 4153 } 4154 btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,u64 objectid,const char * name,int name_len)4155 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4156 struct btrfs_root *root, 4157 struct inode *dir, u64 objectid, 4158 const char *name, int name_len) 4159 { 4160 struct btrfs_path *path; 4161 struct extent_buffer *leaf; 4162 struct btrfs_dir_item *di; 4163 struct btrfs_key key; 4164 u64 index; 4165 int ret; 4166 u64 dir_ino = btrfs_ino(dir); 4167 4168 path = btrfs_alloc_path(); 4169 if (!path) 4170 return -ENOMEM; 4171 4172 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4173 name, name_len, -1); 4174 if (IS_ERR_OR_NULL(di)) { 4175 if (!di) 4176 ret = -ENOENT; 4177 else 4178 ret = PTR_ERR(di); 4179 goto out; 4180 } 4181 4182 leaf = path->nodes[0]; 4183 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4184 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4185 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4186 if (ret) { 4187 btrfs_abort_transaction(trans, ret); 4188 goto out; 4189 } 4190 btrfs_release_path(path); 4191 4192 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 4193 objectid, root->root_key.objectid, 4194 dir_ino, &index, name, name_len); 4195 if (ret < 0) { 4196 if (ret != -ENOENT) { 4197 btrfs_abort_transaction(trans, ret); 4198 goto out; 4199 } 4200 di = btrfs_search_dir_index_item(root, path, dir_ino, 4201 name, name_len); 4202 if (IS_ERR_OR_NULL(di)) { 4203 if (!di) 4204 ret = -ENOENT; 4205 else 4206 ret = PTR_ERR(di); 4207 btrfs_abort_transaction(trans, ret); 4208 goto out; 4209 } 4210 4211 leaf = path->nodes[0]; 4212 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4213 btrfs_release_path(path); 4214 index = key.offset; 4215 } 4216 btrfs_release_path(path); 4217 4218 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4219 if (ret) { 4220 btrfs_abort_transaction(trans, ret); 4221 goto out; 4222 } 4223 4224 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4225 inode_inc_iversion(dir); 4226 dir->i_mtime = dir->i_ctime = current_time(dir); 4227 ret = btrfs_update_inode_fallback(trans, root, dir); 4228 if (ret) 4229 btrfs_abort_transaction(trans, ret); 4230 out: 4231 btrfs_free_path(path); 4232 return ret; 4233 } 4234 btrfs_rmdir(struct inode * dir,struct dentry * dentry)4235 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4236 { 4237 struct inode *inode = d_inode(dentry); 4238 int err = 0; 4239 struct btrfs_root *root = BTRFS_I(dir)->root; 4240 struct btrfs_trans_handle *trans; 4241 u64 last_unlink_trans; 4242 4243 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4244 return -ENOTEMPTY; 4245 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 4246 return -EPERM; 4247 4248 trans = __unlink_start_trans(dir); 4249 if (IS_ERR(trans)) 4250 return PTR_ERR(trans); 4251 4252 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4253 err = btrfs_unlink_subvol(trans, root, dir, 4254 BTRFS_I(inode)->location.objectid, 4255 dentry->d_name.name, 4256 dentry->d_name.len); 4257 goto out; 4258 } 4259 4260 err = btrfs_orphan_add(trans, inode); 4261 if (err) 4262 goto out; 4263 4264 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4265 4266 /* now the directory is empty */ 4267 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4268 dentry->d_name.name, dentry->d_name.len); 4269 if (!err) { 4270 btrfs_i_size_write(inode, 0); 4271 /* 4272 * Propagate the last_unlink_trans value of the deleted dir to 4273 * its parent directory. This is to prevent an unrecoverable 4274 * log tree in the case we do something like this: 4275 * 1) create dir foo 4276 * 2) create snapshot under dir foo 4277 * 3) delete the snapshot 4278 * 4) rmdir foo 4279 * 5) mkdir foo 4280 * 6) fsync foo or some file inside foo 4281 */ 4282 if (last_unlink_trans >= trans->transid) 4283 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4284 } 4285 out: 4286 btrfs_end_transaction(trans, root); 4287 btrfs_btree_balance_dirty(root); 4288 4289 return err; 4290 } 4291 truncate_space_check(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytes_deleted)4292 static int truncate_space_check(struct btrfs_trans_handle *trans, 4293 struct btrfs_root *root, 4294 u64 bytes_deleted) 4295 { 4296 int ret; 4297 4298 /* 4299 * This is only used to apply pressure to the enospc system, we don't 4300 * intend to use this reservation at all. 4301 */ 4302 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted); 4303 bytes_deleted *= root->nodesize; 4304 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv, 4305 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4306 if (!ret) { 4307 trace_btrfs_space_reservation(root->fs_info, "transaction", 4308 trans->transid, 4309 bytes_deleted, 1); 4310 trans->bytes_reserved += bytes_deleted; 4311 } 4312 return ret; 4313 4314 } 4315 truncate_inline_extent(struct inode * inode,struct btrfs_path * path,struct btrfs_key * found_key,const u64 item_end,const u64 new_size)4316 static int truncate_inline_extent(struct inode *inode, 4317 struct btrfs_path *path, 4318 struct btrfs_key *found_key, 4319 const u64 item_end, 4320 const u64 new_size) 4321 { 4322 struct extent_buffer *leaf = path->nodes[0]; 4323 int slot = path->slots[0]; 4324 struct btrfs_file_extent_item *fi; 4325 u32 size = (u32)(new_size - found_key->offset); 4326 struct btrfs_root *root = BTRFS_I(inode)->root; 4327 4328 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4329 4330 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) { 4331 loff_t offset = new_size; 4332 loff_t page_end = ALIGN(offset, PAGE_SIZE); 4333 4334 /* 4335 * Zero out the remaining of the last page of our inline extent, 4336 * instead of directly truncating our inline extent here - that 4337 * would be much more complex (decompressing all the data, then 4338 * compressing the truncated data, which might be bigger than 4339 * the size of the inline extent, resize the extent, etc). 4340 * We release the path because to get the page we might need to 4341 * read the extent item from disk (data not in the page cache). 4342 */ 4343 btrfs_release_path(path); 4344 return btrfs_truncate_block(inode, offset, page_end - offset, 4345 0); 4346 } 4347 4348 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4349 size = btrfs_file_extent_calc_inline_size(size); 4350 btrfs_truncate_item(root, path, size, 1); 4351 4352 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4353 inode_sub_bytes(inode, item_end + 1 - new_size); 4354 4355 return 0; 4356 } 4357 4358 /* 4359 * this can truncate away extent items, csum items and directory items. 4360 * It starts at a high offset and removes keys until it can't find 4361 * any higher than new_size 4362 * 4363 * csum items that cross the new i_size are truncated to the new size 4364 * as well. 4365 * 4366 * min_type is the minimum key type to truncate down to. If set to 0, this 4367 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4368 */ btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 new_size,u32 min_type)4369 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4370 struct btrfs_root *root, 4371 struct inode *inode, 4372 u64 new_size, u32 min_type) 4373 { 4374 struct btrfs_path *path; 4375 struct extent_buffer *leaf; 4376 struct btrfs_file_extent_item *fi; 4377 struct btrfs_key key; 4378 struct btrfs_key found_key; 4379 u64 extent_start = 0; 4380 u64 extent_num_bytes = 0; 4381 u64 extent_offset = 0; 4382 u64 item_end = 0; 4383 u64 last_size = new_size; 4384 u32 found_type = (u8)-1; 4385 int found_extent; 4386 int del_item; 4387 int pending_del_nr = 0; 4388 int pending_del_slot = 0; 4389 int extent_type = -1; 4390 int ret; 4391 int err = 0; 4392 u64 ino = btrfs_ino(inode); 4393 u64 bytes_deleted = 0; 4394 bool be_nice = 0; 4395 bool should_throttle = 0; 4396 bool should_end = 0; 4397 4398 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4399 4400 /* 4401 * for non-free space inodes and ref cows, we want to back off from 4402 * time to time 4403 */ 4404 if (!btrfs_is_free_space_inode(inode) && 4405 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4406 be_nice = 1; 4407 4408 path = btrfs_alloc_path(); 4409 if (!path) 4410 return -ENOMEM; 4411 path->reada = READA_BACK; 4412 4413 /* 4414 * We want to drop from the next block forward in case this new size is 4415 * not block aligned since we will be keeping the last block of the 4416 * extent just the way it is. 4417 */ 4418 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4419 root == root->fs_info->tree_root) 4420 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4421 root->sectorsize), (u64)-1, 0); 4422 4423 /* 4424 * This function is also used to drop the items in the log tree before 4425 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4426 * it is used to drop the loged items. So we shouldn't kill the delayed 4427 * items. 4428 */ 4429 if (min_type == 0 && root == BTRFS_I(inode)->root) 4430 btrfs_kill_delayed_inode_items(inode); 4431 4432 key.objectid = ino; 4433 key.offset = (u64)-1; 4434 key.type = (u8)-1; 4435 4436 search_again: 4437 /* 4438 * with a 16K leaf size and 128MB extents, you can actually queue 4439 * up a huge file in a single leaf. Most of the time that 4440 * bytes_deleted is > 0, it will be huge by the time we get here 4441 */ 4442 if (be_nice && bytes_deleted > SZ_32M) { 4443 if (btrfs_should_end_transaction(trans, root)) { 4444 err = -EAGAIN; 4445 goto error; 4446 } 4447 } 4448 4449 4450 path->leave_spinning = 1; 4451 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4452 if (ret < 0) { 4453 err = ret; 4454 goto out; 4455 } 4456 4457 if (ret > 0) { 4458 /* there are no items in the tree for us to truncate, we're 4459 * done 4460 */ 4461 if (path->slots[0] == 0) 4462 goto out; 4463 path->slots[0]--; 4464 } 4465 4466 while (1) { 4467 fi = NULL; 4468 leaf = path->nodes[0]; 4469 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4470 found_type = found_key.type; 4471 4472 if (found_key.objectid != ino) 4473 break; 4474 4475 if (found_type < min_type) 4476 break; 4477 4478 item_end = found_key.offset; 4479 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4480 fi = btrfs_item_ptr(leaf, path->slots[0], 4481 struct btrfs_file_extent_item); 4482 extent_type = btrfs_file_extent_type(leaf, fi); 4483 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4484 item_end += 4485 btrfs_file_extent_num_bytes(leaf, fi); 4486 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4487 item_end += btrfs_file_extent_inline_len(leaf, 4488 path->slots[0], fi); 4489 } 4490 item_end--; 4491 } 4492 if (found_type > min_type) { 4493 del_item = 1; 4494 } else { 4495 if (item_end < new_size) { 4496 /* 4497 * With NO_HOLES mode, for the following mapping 4498 * 4499 * [0-4k][hole][8k-12k] 4500 * 4501 * if truncating isize down to 6k, it ends up 4502 * isize being 8k. 4503 */ 4504 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) 4505 last_size = new_size; 4506 break; 4507 } 4508 if (found_key.offset >= new_size) 4509 del_item = 1; 4510 else 4511 del_item = 0; 4512 } 4513 found_extent = 0; 4514 /* FIXME, shrink the extent if the ref count is only 1 */ 4515 if (found_type != BTRFS_EXTENT_DATA_KEY) 4516 goto delete; 4517 4518 if (del_item) 4519 last_size = found_key.offset; 4520 else 4521 last_size = new_size; 4522 4523 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4524 u64 num_dec; 4525 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4526 if (!del_item) { 4527 u64 orig_num_bytes = 4528 btrfs_file_extent_num_bytes(leaf, fi); 4529 extent_num_bytes = ALIGN(new_size - 4530 found_key.offset, 4531 root->sectorsize); 4532 btrfs_set_file_extent_num_bytes(leaf, fi, 4533 extent_num_bytes); 4534 num_dec = (orig_num_bytes - 4535 extent_num_bytes); 4536 if (test_bit(BTRFS_ROOT_REF_COWS, 4537 &root->state) && 4538 extent_start != 0) 4539 inode_sub_bytes(inode, num_dec); 4540 btrfs_mark_buffer_dirty(leaf); 4541 } else { 4542 extent_num_bytes = 4543 btrfs_file_extent_disk_num_bytes(leaf, 4544 fi); 4545 extent_offset = found_key.offset - 4546 btrfs_file_extent_offset(leaf, fi); 4547 4548 /* FIXME blocksize != 4096 */ 4549 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4550 if (extent_start != 0) { 4551 found_extent = 1; 4552 if (test_bit(BTRFS_ROOT_REF_COWS, 4553 &root->state)) 4554 inode_sub_bytes(inode, num_dec); 4555 } 4556 } 4557 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4558 /* 4559 * we can't truncate inline items that have had 4560 * special encodings 4561 */ 4562 if (!del_item && 4563 btrfs_file_extent_encryption(leaf, fi) == 0 && 4564 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4565 4566 /* 4567 * Need to release path in order to truncate a 4568 * compressed extent. So delete any accumulated 4569 * extent items so far. 4570 */ 4571 if (btrfs_file_extent_compression(leaf, fi) != 4572 BTRFS_COMPRESS_NONE && pending_del_nr) { 4573 err = btrfs_del_items(trans, root, path, 4574 pending_del_slot, 4575 pending_del_nr); 4576 if (err) { 4577 btrfs_abort_transaction(trans, 4578 err); 4579 goto error; 4580 } 4581 pending_del_nr = 0; 4582 } 4583 4584 err = truncate_inline_extent(inode, path, 4585 &found_key, 4586 item_end, 4587 new_size); 4588 if (err) { 4589 btrfs_abort_transaction(trans, err); 4590 goto error; 4591 } 4592 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4593 &root->state)) { 4594 inode_sub_bytes(inode, item_end + 1 - new_size); 4595 } 4596 } 4597 delete: 4598 if (del_item) { 4599 if (!pending_del_nr) { 4600 /* no pending yet, add ourselves */ 4601 pending_del_slot = path->slots[0]; 4602 pending_del_nr = 1; 4603 } else if (pending_del_nr && 4604 path->slots[0] + 1 == pending_del_slot) { 4605 /* hop on the pending chunk */ 4606 pending_del_nr++; 4607 pending_del_slot = path->slots[0]; 4608 } else { 4609 BUG(); 4610 } 4611 } else { 4612 break; 4613 } 4614 should_throttle = 0; 4615 4616 if (found_extent && 4617 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4618 root == root->fs_info->tree_root)) { 4619 btrfs_set_path_blocking(path); 4620 bytes_deleted += extent_num_bytes; 4621 ret = btrfs_free_extent(trans, root, extent_start, 4622 extent_num_bytes, 0, 4623 btrfs_header_owner(leaf), 4624 ino, extent_offset); 4625 BUG_ON(ret); 4626 if (btrfs_should_throttle_delayed_refs(trans, root)) 4627 btrfs_async_run_delayed_refs(root, 4628 trans->delayed_ref_updates * 2, 4629 trans->transid, 0); 4630 if (be_nice) { 4631 if (truncate_space_check(trans, root, 4632 extent_num_bytes)) { 4633 should_end = 1; 4634 } 4635 if (btrfs_should_throttle_delayed_refs(trans, 4636 root)) { 4637 should_throttle = 1; 4638 } 4639 } 4640 } 4641 4642 if (found_type == BTRFS_INODE_ITEM_KEY) 4643 break; 4644 4645 if (path->slots[0] == 0 || 4646 path->slots[0] != pending_del_slot || 4647 should_throttle || should_end) { 4648 if (pending_del_nr) { 4649 ret = btrfs_del_items(trans, root, path, 4650 pending_del_slot, 4651 pending_del_nr); 4652 if (ret) { 4653 btrfs_abort_transaction(trans, ret); 4654 goto error; 4655 } 4656 pending_del_nr = 0; 4657 } 4658 btrfs_release_path(path); 4659 if (should_throttle) { 4660 unsigned long updates = trans->delayed_ref_updates; 4661 if (updates) { 4662 trans->delayed_ref_updates = 0; 4663 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4664 if (ret && !err) 4665 err = ret; 4666 } 4667 } 4668 /* 4669 * if we failed to refill our space rsv, bail out 4670 * and let the transaction restart 4671 */ 4672 if (should_end) { 4673 err = -EAGAIN; 4674 goto error; 4675 } 4676 goto search_again; 4677 } else { 4678 path->slots[0]--; 4679 } 4680 } 4681 out: 4682 if (pending_del_nr) { 4683 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4684 pending_del_nr); 4685 if (ret) 4686 btrfs_abort_transaction(trans, ret); 4687 } 4688 error: 4689 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4690 btrfs_ordered_update_i_size(inode, last_size, NULL); 4691 4692 btrfs_free_path(path); 4693 4694 if (be_nice && bytes_deleted > SZ_32M) { 4695 unsigned long updates = trans->delayed_ref_updates; 4696 if (updates) { 4697 trans->delayed_ref_updates = 0; 4698 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4699 if (ret && !err) 4700 err = ret; 4701 } 4702 } 4703 return err; 4704 } 4705 4706 /* 4707 * btrfs_truncate_block - read, zero a chunk and write a block 4708 * @inode - inode that we're zeroing 4709 * @from - the offset to start zeroing 4710 * @len - the length to zero, 0 to zero the entire range respective to the 4711 * offset 4712 * @front - zero up to the offset instead of from the offset on 4713 * 4714 * This will find the block for the "from" offset and cow the block and zero the 4715 * part we want to zero. This is used with truncate and hole punching. 4716 */ btrfs_truncate_block(struct inode * inode,loff_t from,loff_t len,int front)4717 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4718 int front) 4719 { 4720 struct address_space *mapping = inode->i_mapping; 4721 struct btrfs_root *root = BTRFS_I(inode)->root; 4722 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4723 struct btrfs_ordered_extent *ordered; 4724 struct extent_state *cached_state = NULL; 4725 char *kaddr; 4726 u32 blocksize = root->sectorsize; 4727 pgoff_t index = from >> PAGE_SHIFT; 4728 unsigned offset = from & (blocksize - 1); 4729 struct page *page; 4730 gfp_t mask = btrfs_alloc_write_mask(mapping); 4731 int ret = 0; 4732 u64 block_start; 4733 u64 block_end; 4734 4735 if ((offset & (blocksize - 1)) == 0 && 4736 (!len || ((len & (blocksize - 1)) == 0))) 4737 goto out; 4738 4739 ret = btrfs_delalloc_reserve_space(inode, 4740 round_down(from, blocksize), blocksize); 4741 if (ret) 4742 goto out; 4743 4744 again: 4745 page = find_or_create_page(mapping, index, mask); 4746 if (!page) { 4747 btrfs_delalloc_release_space(inode, 4748 round_down(from, blocksize), 4749 blocksize); 4750 ret = -ENOMEM; 4751 goto out; 4752 } 4753 4754 block_start = round_down(from, blocksize); 4755 block_end = block_start + blocksize - 1; 4756 4757 if (!PageUptodate(page)) { 4758 ret = btrfs_readpage(NULL, page); 4759 lock_page(page); 4760 if (page->mapping != mapping) { 4761 unlock_page(page); 4762 put_page(page); 4763 goto again; 4764 } 4765 if (!PageUptodate(page)) { 4766 ret = -EIO; 4767 goto out_unlock; 4768 } 4769 } 4770 wait_on_page_writeback(page); 4771 4772 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4773 set_page_extent_mapped(page); 4774 4775 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4776 if (ordered) { 4777 unlock_extent_cached(io_tree, block_start, block_end, 4778 &cached_state, GFP_NOFS); 4779 unlock_page(page); 4780 put_page(page); 4781 btrfs_start_ordered_extent(inode, ordered, 1); 4782 btrfs_put_ordered_extent(ordered); 4783 goto again; 4784 } 4785 4786 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4787 EXTENT_DIRTY | EXTENT_DELALLOC | 4788 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4789 0, 0, &cached_state, GFP_NOFS); 4790 4791 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 4792 &cached_state, 0); 4793 if (ret) { 4794 unlock_extent_cached(io_tree, block_start, block_end, 4795 &cached_state, GFP_NOFS); 4796 goto out_unlock; 4797 } 4798 4799 if (offset != blocksize) { 4800 if (!len) 4801 len = blocksize - offset; 4802 kaddr = kmap(page); 4803 if (front) 4804 memset(kaddr + (block_start - page_offset(page)), 4805 0, offset); 4806 else 4807 memset(kaddr + (block_start - page_offset(page)) + offset, 4808 0, len); 4809 flush_dcache_page(page); 4810 kunmap(page); 4811 } 4812 ClearPageChecked(page); 4813 set_page_dirty(page); 4814 unlock_extent_cached(io_tree, block_start, block_end, &cached_state, 4815 GFP_NOFS); 4816 4817 out_unlock: 4818 if (ret) 4819 btrfs_delalloc_release_space(inode, block_start, 4820 blocksize); 4821 unlock_page(page); 4822 put_page(page); 4823 out: 4824 return ret; 4825 } 4826 maybe_insert_hole(struct btrfs_root * root,struct inode * inode,u64 offset,u64 len)4827 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4828 u64 offset, u64 len) 4829 { 4830 struct btrfs_trans_handle *trans; 4831 int ret; 4832 4833 /* 4834 * Still need to make sure the inode looks like it's been updated so 4835 * that any holes get logged if we fsync. 4836 */ 4837 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) { 4838 BTRFS_I(inode)->last_trans = root->fs_info->generation; 4839 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4840 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4841 return 0; 4842 } 4843 4844 /* 4845 * 1 - for the one we're dropping 4846 * 1 - for the one we're adding 4847 * 1 - for updating the inode. 4848 */ 4849 trans = btrfs_start_transaction(root, 3); 4850 if (IS_ERR(trans)) 4851 return PTR_ERR(trans); 4852 4853 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4854 if (ret) { 4855 btrfs_abort_transaction(trans, ret); 4856 btrfs_end_transaction(trans, root); 4857 return ret; 4858 } 4859 4860 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 4861 0, 0, len, 0, len, 0, 0, 0); 4862 if (ret) 4863 btrfs_abort_transaction(trans, ret); 4864 else 4865 btrfs_update_inode(trans, root, inode); 4866 btrfs_end_transaction(trans, root); 4867 return ret; 4868 } 4869 4870 /* 4871 * This function puts in dummy file extents for the area we're creating a hole 4872 * for. So if we are truncating this file to a larger size we need to insert 4873 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4874 * the range between oldsize and size 4875 */ btrfs_cont_expand(struct inode * inode,loff_t oldsize,loff_t size)4876 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4877 { 4878 struct btrfs_root *root = BTRFS_I(inode)->root; 4879 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4880 struct extent_map *em = NULL; 4881 struct extent_state *cached_state = NULL; 4882 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4883 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4884 u64 block_end = ALIGN(size, root->sectorsize); 4885 u64 last_byte; 4886 u64 cur_offset; 4887 u64 hole_size; 4888 int err = 0; 4889 4890 /* 4891 * If our size started in the middle of a block we need to zero out the 4892 * rest of the block before we expand the i_size, otherwise we could 4893 * expose stale data. 4894 */ 4895 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4896 if (err) 4897 return err; 4898 4899 if (size <= hole_start) 4900 return 0; 4901 4902 while (1) { 4903 struct btrfs_ordered_extent *ordered; 4904 4905 lock_extent_bits(io_tree, hole_start, block_end - 1, 4906 &cached_state); 4907 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4908 block_end - hole_start); 4909 if (!ordered) 4910 break; 4911 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4912 &cached_state, GFP_NOFS); 4913 btrfs_start_ordered_extent(inode, ordered, 1); 4914 btrfs_put_ordered_extent(ordered); 4915 } 4916 4917 cur_offset = hole_start; 4918 while (1) { 4919 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4920 block_end - cur_offset, 0); 4921 if (IS_ERR(em)) { 4922 err = PTR_ERR(em); 4923 em = NULL; 4924 break; 4925 } 4926 last_byte = min(extent_map_end(em), block_end); 4927 last_byte = ALIGN(last_byte , root->sectorsize); 4928 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4929 struct extent_map *hole_em; 4930 hole_size = last_byte - cur_offset; 4931 4932 err = maybe_insert_hole(root, inode, cur_offset, 4933 hole_size); 4934 if (err) 4935 break; 4936 btrfs_drop_extent_cache(inode, cur_offset, 4937 cur_offset + hole_size - 1, 0); 4938 hole_em = alloc_extent_map(); 4939 if (!hole_em) { 4940 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4941 &BTRFS_I(inode)->runtime_flags); 4942 goto next; 4943 } 4944 hole_em->start = cur_offset; 4945 hole_em->len = hole_size; 4946 hole_em->orig_start = cur_offset; 4947 4948 hole_em->block_start = EXTENT_MAP_HOLE; 4949 hole_em->block_len = 0; 4950 hole_em->orig_block_len = 0; 4951 hole_em->ram_bytes = hole_size; 4952 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4953 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4954 hole_em->generation = root->fs_info->generation; 4955 4956 while (1) { 4957 write_lock(&em_tree->lock); 4958 err = add_extent_mapping(em_tree, hole_em, 1); 4959 write_unlock(&em_tree->lock); 4960 if (err != -EEXIST) 4961 break; 4962 btrfs_drop_extent_cache(inode, cur_offset, 4963 cur_offset + 4964 hole_size - 1, 0); 4965 } 4966 free_extent_map(hole_em); 4967 } 4968 next: 4969 free_extent_map(em); 4970 em = NULL; 4971 cur_offset = last_byte; 4972 if (cur_offset >= block_end) 4973 break; 4974 } 4975 free_extent_map(em); 4976 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4977 GFP_NOFS); 4978 return err; 4979 } 4980 btrfs_setsize(struct inode * inode,struct iattr * attr)4981 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4982 { 4983 struct btrfs_root *root = BTRFS_I(inode)->root; 4984 struct btrfs_trans_handle *trans; 4985 loff_t oldsize = i_size_read(inode); 4986 loff_t newsize = attr->ia_size; 4987 int mask = attr->ia_valid; 4988 int ret; 4989 4990 /* 4991 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4992 * special case where we need to update the times despite not having 4993 * these flags set. For all other operations the VFS set these flags 4994 * explicitly if it wants a timestamp update. 4995 */ 4996 if (newsize != oldsize) { 4997 inode_inc_iversion(inode); 4998 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4999 inode->i_ctime = inode->i_mtime = 5000 current_time(inode); 5001 } 5002 5003 if (newsize > oldsize) { 5004 /* 5005 * Don't do an expanding truncate while snapshoting is ongoing. 5006 * This is to ensure the snapshot captures a fully consistent 5007 * state of this file - if the snapshot captures this expanding 5008 * truncation, it must capture all writes that happened before 5009 * this truncation. 5010 */ 5011 btrfs_wait_for_snapshot_creation(root); 5012 ret = btrfs_cont_expand(inode, oldsize, newsize); 5013 if (ret) { 5014 btrfs_end_write_no_snapshoting(root); 5015 return ret; 5016 } 5017 5018 trans = btrfs_start_transaction(root, 1); 5019 if (IS_ERR(trans)) { 5020 btrfs_end_write_no_snapshoting(root); 5021 return PTR_ERR(trans); 5022 } 5023 5024 i_size_write(inode, newsize); 5025 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5026 pagecache_isize_extended(inode, oldsize, newsize); 5027 ret = btrfs_update_inode(trans, root, inode); 5028 btrfs_end_write_no_snapshoting(root); 5029 btrfs_end_transaction(trans, root); 5030 } else { 5031 5032 /* 5033 * We're truncating a file that used to have good data down to 5034 * zero. Make sure it gets into the ordered flush list so that 5035 * any new writes get down to disk quickly. 5036 */ 5037 if (newsize == 0) 5038 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5039 &BTRFS_I(inode)->runtime_flags); 5040 5041 /* 5042 * 1 for the orphan item we're going to add 5043 * 1 for the orphan item deletion. 5044 */ 5045 trans = btrfs_start_transaction(root, 2); 5046 if (IS_ERR(trans)) 5047 return PTR_ERR(trans); 5048 5049 /* 5050 * We need to do this in case we fail at _any_ point during the 5051 * actual truncate. Once we do the truncate_setsize we could 5052 * invalidate pages which forces any outstanding ordered io to 5053 * be instantly completed which will give us extents that need 5054 * to be truncated. If we fail to get an orphan inode down we 5055 * could have left over extents that were never meant to live, 5056 * so we need to guarantee from this point on that everything 5057 * will be consistent. 5058 */ 5059 ret = btrfs_orphan_add(trans, inode); 5060 btrfs_end_transaction(trans, root); 5061 if (ret) 5062 return ret; 5063 5064 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 5065 truncate_setsize(inode, newsize); 5066 5067 /* Disable nonlocked read DIO to avoid the end less truncate */ 5068 btrfs_inode_block_unlocked_dio(inode); 5069 inode_dio_wait(inode); 5070 btrfs_inode_resume_unlocked_dio(inode); 5071 5072 ret = btrfs_truncate(inode); 5073 if (ret && inode->i_nlink) { 5074 int err; 5075 5076 /* 5077 * failed to truncate, disk_i_size is only adjusted down 5078 * as we remove extents, so it should represent the true 5079 * size of the inode, so reset the in memory size and 5080 * delete our orphan entry. 5081 */ 5082 trans = btrfs_join_transaction(root); 5083 if (IS_ERR(trans)) { 5084 btrfs_orphan_del(NULL, inode); 5085 return ret; 5086 } 5087 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5088 err = btrfs_orphan_del(trans, inode); 5089 if (err) 5090 btrfs_abort_transaction(trans, err); 5091 btrfs_end_transaction(trans, root); 5092 } 5093 } 5094 5095 return ret; 5096 } 5097 btrfs_setattr(struct dentry * dentry,struct iattr * attr)5098 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5099 { 5100 struct inode *inode = d_inode(dentry); 5101 struct btrfs_root *root = BTRFS_I(inode)->root; 5102 int err; 5103 5104 if (btrfs_root_readonly(root)) 5105 return -EROFS; 5106 5107 err = setattr_prepare(dentry, attr); 5108 if (err) 5109 return err; 5110 5111 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5112 err = btrfs_setsize(inode, attr); 5113 if (err) 5114 return err; 5115 } 5116 5117 if (attr->ia_valid) { 5118 setattr_copy(inode, attr); 5119 inode_inc_iversion(inode); 5120 err = btrfs_dirty_inode(inode); 5121 5122 if (!err && attr->ia_valid & ATTR_MODE) 5123 err = posix_acl_chmod(inode, inode->i_mode); 5124 } 5125 5126 return err; 5127 } 5128 5129 /* 5130 * While truncating the inode pages during eviction, we get the VFS calling 5131 * btrfs_invalidatepage() against each page of the inode. This is slow because 5132 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5133 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5134 * extent_state structures over and over, wasting lots of time. 5135 * 5136 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5137 * those expensive operations on a per page basis and do only the ordered io 5138 * finishing, while we release here the extent_map and extent_state structures, 5139 * without the excessive merging and splitting. 5140 */ evict_inode_truncate_pages(struct inode * inode)5141 static void evict_inode_truncate_pages(struct inode *inode) 5142 { 5143 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5144 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5145 struct rb_node *node; 5146 5147 ASSERT(inode->i_state & I_FREEING); 5148 truncate_inode_pages_final(&inode->i_data); 5149 5150 write_lock(&map_tree->lock); 5151 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5152 struct extent_map *em; 5153 5154 node = rb_first(&map_tree->map); 5155 em = rb_entry(node, struct extent_map, rb_node); 5156 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5157 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5158 remove_extent_mapping(map_tree, em); 5159 free_extent_map(em); 5160 if (need_resched()) { 5161 write_unlock(&map_tree->lock); 5162 cond_resched(); 5163 write_lock(&map_tree->lock); 5164 } 5165 } 5166 write_unlock(&map_tree->lock); 5167 5168 /* 5169 * Keep looping until we have no more ranges in the io tree. 5170 * We can have ongoing bios started by readpages (called from readahead) 5171 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5172 * still in progress (unlocked the pages in the bio but did not yet 5173 * unlocked the ranges in the io tree). Therefore this means some 5174 * ranges can still be locked and eviction started because before 5175 * submitting those bios, which are executed by a separate task (work 5176 * queue kthread), inode references (inode->i_count) were not taken 5177 * (which would be dropped in the end io callback of each bio). 5178 * Therefore here we effectively end up waiting for those bios and 5179 * anyone else holding locked ranges without having bumped the inode's 5180 * reference count - if we don't do it, when they access the inode's 5181 * io_tree to unlock a range it may be too late, leading to an 5182 * use-after-free issue. 5183 */ 5184 spin_lock(&io_tree->lock); 5185 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5186 struct extent_state *state; 5187 struct extent_state *cached_state = NULL; 5188 u64 start; 5189 u64 end; 5190 5191 node = rb_first(&io_tree->state); 5192 state = rb_entry(node, struct extent_state, rb_node); 5193 start = state->start; 5194 end = state->end; 5195 spin_unlock(&io_tree->lock); 5196 5197 lock_extent_bits(io_tree, start, end, &cached_state); 5198 5199 /* 5200 * If still has DELALLOC flag, the extent didn't reach disk, 5201 * and its reserved space won't be freed by delayed_ref. 5202 * So we need to free its reserved space here. 5203 * (Refer to comment in btrfs_invalidatepage, case 2) 5204 * 5205 * Note, end is the bytenr of last byte, so we need + 1 here. 5206 */ 5207 if (state->state & EXTENT_DELALLOC) 5208 btrfs_qgroup_free_data(inode, start, end - start + 1); 5209 5210 clear_extent_bit(io_tree, start, end, 5211 EXTENT_LOCKED | EXTENT_DIRTY | 5212 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5213 EXTENT_DEFRAG, 1, 1, 5214 &cached_state, GFP_NOFS); 5215 5216 cond_resched(); 5217 spin_lock(&io_tree->lock); 5218 } 5219 spin_unlock(&io_tree->lock); 5220 } 5221 btrfs_evict_inode(struct inode * inode)5222 void btrfs_evict_inode(struct inode *inode) 5223 { 5224 struct btrfs_trans_handle *trans; 5225 struct btrfs_root *root = BTRFS_I(inode)->root; 5226 struct btrfs_block_rsv *rsv, *global_rsv; 5227 int steal_from_global = 0; 5228 u64 min_size; 5229 int ret; 5230 5231 trace_btrfs_inode_evict(inode); 5232 5233 if (!root) { 5234 clear_inode(inode); 5235 return; 5236 } 5237 5238 min_size = btrfs_calc_trunc_metadata_size(root, 1); 5239 5240 evict_inode_truncate_pages(inode); 5241 5242 if (inode->i_nlink && 5243 ((btrfs_root_refs(&root->root_item) != 0 && 5244 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5245 btrfs_is_free_space_inode(inode))) 5246 goto no_delete; 5247 5248 if (is_bad_inode(inode)) { 5249 btrfs_orphan_del(NULL, inode); 5250 goto no_delete; 5251 } 5252 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5253 if (!special_file(inode->i_mode)) 5254 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5255 5256 btrfs_free_io_failure_record(inode, 0, (u64)-1); 5257 5258 if (test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 5259 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5260 &BTRFS_I(inode)->runtime_flags)); 5261 goto no_delete; 5262 } 5263 5264 if (inode->i_nlink > 0) { 5265 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5266 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5267 goto no_delete; 5268 } 5269 5270 ret = btrfs_commit_inode_delayed_inode(inode); 5271 if (ret) { 5272 btrfs_orphan_del(NULL, inode); 5273 goto no_delete; 5274 } 5275 5276 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 5277 if (!rsv) { 5278 btrfs_orphan_del(NULL, inode); 5279 goto no_delete; 5280 } 5281 rsv->size = min_size; 5282 rsv->failfast = 1; 5283 global_rsv = &root->fs_info->global_block_rsv; 5284 5285 btrfs_i_size_write(inode, 0); 5286 5287 /* 5288 * This is a bit simpler than btrfs_truncate since we've already 5289 * reserved our space for our orphan item in the unlink, so we just 5290 * need to reserve some slack space in case we add bytes and update 5291 * inode item when doing the truncate. 5292 */ 5293 while (1) { 5294 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5295 BTRFS_RESERVE_FLUSH_LIMIT); 5296 5297 /* 5298 * Try and steal from the global reserve since we will 5299 * likely not use this space anyway, we want to try as 5300 * hard as possible to get this to work. 5301 */ 5302 if (ret) 5303 steal_from_global++; 5304 else 5305 steal_from_global = 0; 5306 ret = 0; 5307 5308 /* 5309 * steal_from_global == 0: we reserved stuff, hooray! 5310 * steal_from_global == 1: we didn't reserve stuff, boo! 5311 * steal_from_global == 2: we've committed, still not a lot of 5312 * room but maybe we'll have room in the global reserve this 5313 * time. 5314 * steal_from_global == 3: abandon all hope! 5315 */ 5316 if (steal_from_global > 2) { 5317 btrfs_warn(root->fs_info, 5318 "Could not get space for a delete, will truncate on mount %d", 5319 ret); 5320 btrfs_orphan_del(NULL, inode); 5321 btrfs_free_block_rsv(root, rsv); 5322 goto no_delete; 5323 } 5324 5325 trans = btrfs_join_transaction(root); 5326 if (IS_ERR(trans)) { 5327 btrfs_orphan_del(NULL, inode); 5328 btrfs_free_block_rsv(root, rsv); 5329 goto no_delete; 5330 } 5331 5332 /* 5333 * We can't just steal from the global reserve, we need to make 5334 * sure there is room to do it, if not we need to commit and try 5335 * again. 5336 */ 5337 if (steal_from_global) { 5338 if (!btrfs_check_space_for_delayed_refs(trans, root)) 5339 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5340 min_size, 0); 5341 else 5342 ret = -ENOSPC; 5343 } 5344 5345 /* 5346 * Couldn't steal from the global reserve, we have too much 5347 * pending stuff built up, commit the transaction and try it 5348 * again. 5349 */ 5350 if (ret) { 5351 ret = btrfs_commit_transaction(trans, root); 5352 if (ret) { 5353 btrfs_orphan_del(NULL, inode); 5354 btrfs_free_block_rsv(root, rsv); 5355 goto no_delete; 5356 } 5357 continue; 5358 } else { 5359 steal_from_global = 0; 5360 } 5361 5362 trans->block_rsv = rsv; 5363 5364 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5365 if (ret != -ENOSPC && ret != -EAGAIN) 5366 break; 5367 5368 trans->block_rsv = &root->fs_info->trans_block_rsv; 5369 btrfs_end_transaction(trans, root); 5370 trans = NULL; 5371 btrfs_btree_balance_dirty(root); 5372 } 5373 5374 btrfs_free_block_rsv(root, rsv); 5375 5376 /* 5377 * Errors here aren't a big deal, it just means we leave orphan items 5378 * in the tree. They will be cleaned up on the next mount. 5379 */ 5380 if (ret == 0) { 5381 trans->block_rsv = root->orphan_block_rsv; 5382 btrfs_orphan_del(trans, inode); 5383 } else { 5384 btrfs_orphan_del(NULL, inode); 5385 } 5386 5387 trans->block_rsv = &root->fs_info->trans_block_rsv; 5388 if (!(root == root->fs_info->tree_root || 5389 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5390 btrfs_return_ino(root, btrfs_ino(inode)); 5391 5392 btrfs_end_transaction(trans, root); 5393 btrfs_btree_balance_dirty(root); 5394 no_delete: 5395 btrfs_remove_delayed_node(inode); 5396 clear_inode(inode); 5397 } 5398 5399 /* 5400 * this returns the key found in the dir entry in the location pointer. 5401 * If no dir entries were found, location->objectid is 0. 5402 */ btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location)5403 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5404 struct btrfs_key *location) 5405 { 5406 const char *name = dentry->d_name.name; 5407 int namelen = dentry->d_name.len; 5408 struct btrfs_dir_item *di; 5409 struct btrfs_path *path; 5410 struct btrfs_root *root = BTRFS_I(dir)->root; 5411 int ret = 0; 5412 5413 path = btrfs_alloc_path(); 5414 if (!path) 5415 return -ENOMEM; 5416 5417 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 5418 namelen, 0); 5419 if (IS_ERR(di)) 5420 ret = PTR_ERR(di); 5421 5422 if (IS_ERR_OR_NULL(di)) 5423 goto out_err; 5424 5425 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5426 out: 5427 btrfs_free_path(path); 5428 return ret; 5429 out_err: 5430 location->objectid = 0; 5431 goto out; 5432 } 5433 5434 /* 5435 * when we hit a tree root in a directory, the btrfs part of the inode 5436 * needs to be changed to reflect the root directory of the tree root. This 5437 * is kind of like crossing a mount point. 5438 */ fixup_tree_root_location(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5439 static int fixup_tree_root_location(struct btrfs_root *root, 5440 struct inode *dir, 5441 struct dentry *dentry, 5442 struct btrfs_key *location, 5443 struct btrfs_root **sub_root) 5444 { 5445 struct btrfs_path *path; 5446 struct btrfs_root *new_root; 5447 struct btrfs_root_ref *ref; 5448 struct extent_buffer *leaf; 5449 struct btrfs_key key; 5450 int ret; 5451 int err = 0; 5452 5453 path = btrfs_alloc_path(); 5454 if (!path) { 5455 err = -ENOMEM; 5456 goto out; 5457 } 5458 5459 err = -ENOENT; 5460 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5461 key.type = BTRFS_ROOT_REF_KEY; 5462 key.offset = location->objectid; 5463 5464 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path, 5465 0, 0); 5466 if (ret) { 5467 if (ret < 0) 5468 err = ret; 5469 goto out; 5470 } 5471 5472 leaf = path->nodes[0]; 5473 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5474 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5475 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5476 goto out; 5477 5478 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5479 (unsigned long)(ref + 1), 5480 dentry->d_name.len); 5481 if (ret) 5482 goto out; 5483 5484 btrfs_release_path(path); 5485 5486 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 5487 if (IS_ERR(new_root)) { 5488 err = PTR_ERR(new_root); 5489 goto out; 5490 } 5491 5492 *sub_root = new_root; 5493 location->objectid = btrfs_root_dirid(&new_root->root_item); 5494 location->type = BTRFS_INODE_ITEM_KEY; 5495 location->offset = 0; 5496 err = 0; 5497 out: 5498 btrfs_free_path(path); 5499 return err; 5500 } 5501 inode_tree_add(struct inode * inode)5502 static void inode_tree_add(struct inode *inode) 5503 { 5504 struct btrfs_root *root = BTRFS_I(inode)->root; 5505 struct btrfs_inode *entry; 5506 struct rb_node **p; 5507 struct rb_node *parent; 5508 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5509 u64 ino = btrfs_ino(inode); 5510 5511 if (inode_unhashed(inode)) 5512 return; 5513 parent = NULL; 5514 spin_lock(&root->inode_lock); 5515 p = &root->inode_tree.rb_node; 5516 while (*p) { 5517 parent = *p; 5518 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5519 5520 if (ino < btrfs_ino(&entry->vfs_inode)) 5521 p = &parent->rb_left; 5522 else if (ino > btrfs_ino(&entry->vfs_inode)) 5523 p = &parent->rb_right; 5524 else { 5525 WARN_ON(!(entry->vfs_inode.i_state & 5526 (I_WILL_FREE | I_FREEING))); 5527 rb_replace_node(parent, new, &root->inode_tree); 5528 RB_CLEAR_NODE(parent); 5529 spin_unlock(&root->inode_lock); 5530 return; 5531 } 5532 } 5533 rb_link_node(new, parent, p); 5534 rb_insert_color(new, &root->inode_tree); 5535 spin_unlock(&root->inode_lock); 5536 } 5537 inode_tree_del(struct inode * inode)5538 static void inode_tree_del(struct inode *inode) 5539 { 5540 struct btrfs_root *root = BTRFS_I(inode)->root; 5541 int empty = 0; 5542 5543 spin_lock(&root->inode_lock); 5544 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5545 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5546 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5547 empty = RB_EMPTY_ROOT(&root->inode_tree); 5548 } 5549 spin_unlock(&root->inode_lock); 5550 5551 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5552 synchronize_srcu(&root->fs_info->subvol_srcu); 5553 spin_lock(&root->inode_lock); 5554 empty = RB_EMPTY_ROOT(&root->inode_tree); 5555 spin_unlock(&root->inode_lock); 5556 if (empty) 5557 btrfs_add_dead_root(root); 5558 } 5559 } 5560 btrfs_invalidate_inodes(struct btrfs_root * root)5561 void btrfs_invalidate_inodes(struct btrfs_root *root) 5562 { 5563 struct rb_node *node; 5564 struct rb_node *prev; 5565 struct btrfs_inode *entry; 5566 struct inode *inode; 5567 u64 objectid = 0; 5568 5569 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 5570 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5571 5572 spin_lock(&root->inode_lock); 5573 again: 5574 node = root->inode_tree.rb_node; 5575 prev = NULL; 5576 while (node) { 5577 prev = node; 5578 entry = rb_entry(node, struct btrfs_inode, rb_node); 5579 5580 if (objectid < btrfs_ino(&entry->vfs_inode)) 5581 node = node->rb_left; 5582 else if (objectid > btrfs_ino(&entry->vfs_inode)) 5583 node = node->rb_right; 5584 else 5585 break; 5586 } 5587 if (!node) { 5588 while (prev) { 5589 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5590 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 5591 node = prev; 5592 break; 5593 } 5594 prev = rb_next(prev); 5595 } 5596 } 5597 while (node) { 5598 entry = rb_entry(node, struct btrfs_inode, rb_node); 5599 objectid = btrfs_ino(&entry->vfs_inode) + 1; 5600 inode = igrab(&entry->vfs_inode); 5601 if (inode) { 5602 spin_unlock(&root->inode_lock); 5603 if (atomic_read(&inode->i_count) > 1) 5604 d_prune_aliases(inode); 5605 /* 5606 * btrfs_drop_inode will have it removed from 5607 * the inode cache when its usage count 5608 * hits zero. 5609 */ 5610 iput(inode); 5611 cond_resched(); 5612 spin_lock(&root->inode_lock); 5613 goto again; 5614 } 5615 5616 if (cond_resched_lock(&root->inode_lock)) 5617 goto again; 5618 5619 node = rb_next(node); 5620 } 5621 spin_unlock(&root->inode_lock); 5622 } 5623 btrfs_init_locked_inode(struct inode * inode,void * p)5624 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5625 { 5626 struct btrfs_iget_args *args = p; 5627 inode->i_ino = args->location->objectid; 5628 memcpy(&BTRFS_I(inode)->location, args->location, 5629 sizeof(*args->location)); 5630 BTRFS_I(inode)->root = args->root; 5631 return 0; 5632 } 5633 btrfs_find_actor(struct inode * inode,void * opaque)5634 static int btrfs_find_actor(struct inode *inode, void *opaque) 5635 { 5636 struct btrfs_iget_args *args = opaque; 5637 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5638 args->root == BTRFS_I(inode)->root; 5639 } 5640 btrfs_iget_locked(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root)5641 static struct inode *btrfs_iget_locked(struct super_block *s, 5642 struct btrfs_key *location, 5643 struct btrfs_root *root) 5644 { 5645 struct inode *inode; 5646 struct btrfs_iget_args args; 5647 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5648 5649 args.location = location; 5650 args.root = root; 5651 5652 inode = iget5_locked(s, hashval, btrfs_find_actor, 5653 btrfs_init_locked_inode, 5654 (void *)&args); 5655 return inode; 5656 } 5657 5658 /* Get an inode object given its location and corresponding root. 5659 * Returns in *is_new if the inode was read from disk 5660 */ btrfs_iget(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * new)5661 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5662 struct btrfs_root *root, int *new) 5663 { 5664 struct inode *inode; 5665 5666 inode = btrfs_iget_locked(s, location, root); 5667 if (!inode) 5668 return ERR_PTR(-ENOMEM); 5669 5670 if (inode->i_state & I_NEW) { 5671 int ret; 5672 5673 ret = btrfs_read_locked_inode(inode); 5674 if (!is_bad_inode(inode)) { 5675 inode_tree_add(inode); 5676 unlock_new_inode(inode); 5677 if (new) 5678 *new = 1; 5679 } else { 5680 unlock_new_inode(inode); 5681 iput(inode); 5682 ASSERT(ret < 0); 5683 inode = ERR_PTR(ret < 0 ? ret : -ESTALE); 5684 } 5685 } 5686 5687 return inode; 5688 } 5689 new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)5690 static struct inode *new_simple_dir(struct super_block *s, 5691 struct btrfs_key *key, 5692 struct btrfs_root *root) 5693 { 5694 struct inode *inode = new_inode(s); 5695 5696 if (!inode) 5697 return ERR_PTR(-ENOMEM); 5698 5699 BTRFS_I(inode)->root = root; 5700 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5701 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5702 5703 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5704 inode->i_op = &btrfs_dir_ro_inode_operations; 5705 inode->i_opflags &= ~IOP_XATTR; 5706 inode->i_fop = &simple_dir_operations; 5707 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5708 inode->i_mtime = current_time(inode); 5709 inode->i_atime = inode->i_mtime; 5710 inode->i_ctime = inode->i_mtime; 5711 BTRFS_I(inode)->i_otime = inode->i_mtime; 5712 5713 return inode; 5714 } 5715 btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5716 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5717 { 5718 struct inode *inode; 5719 struct btrfs_root *root = BTRFS_I(dir)->root; 5720 struct btrfs_root *sub_root = root; 5721 struct btrfs_key location; 5722 int index; 5723 int ret = 0; 5724 5725 if (dentry->d_name.len > BTRFS_NAME_LEN) 5726 return ERR_PTR(-ENAMETOOLONG); 5727 5728 ret = btrfs_inode_by_name(dir, dentry, &location); 5729 if (ret < 0) 5730 return ERR_PTR(ret); 5731 5732 if (location.objectid == 0) 5733 return ERR_PTR(-ENOENT); 5734 5735 if (location.type == BTRFS_INODE_ITEM_KEY) { 5736 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5737 return inode; 5738 } 5739 5740 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5741 5742 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5743 ret = fixup_tree_root_location(root, dir, dentry, 5744 &location, &sub_root); 5745 if (ret < 0) { 5746 if (ret != -ENOENT) 5747 inode = ERR_PTR(ret); 5748 else 5749 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5750 } else { 5751 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5752 } 5753 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5754 5755 if (!IS_ERR(inode) && root != sub_root) { 5756 down_read(&root->fs_info->cleanup_work_sem); 5757 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5758 ret = btrfs_orphan_cleanup(sub_root); 5759 up_read(&root->fs_info->cleanup_work_sem); 5760 if (ret) { 5761 iput(inode); 5762 inode = ERR_PTR(ret); 5763 } 5764 } 5765 5766 return inode; 5767 } 5768 btrfs_dentry_delete(const struct dentry * dentry)5769 static int btrfs_dentry_delete(const struct dentry *dentry) 5770 { 5771 struct btrfs_root *root; 5772 struct inode *inode = d_inode(dentry); 5773 5774 if (!inode && !IS_ROOT(dentry)) 5775 inode = d_inode(dentry->d_parent); 5776 5777 if (inode) { 5778 root = BTRFS_I(inode)->root; 5779 if (btrfs_root_refs(&root->root_item) == 0) 5780 return 1; 5781 5782 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5783 return 1; 5784 } 5785 return 0; 5786 } 5787 btrfs_dentry_release(struct dentry * dentry)5788 static void btrfs_dentry_release(struct dentry *dentry) 5789 { 5790 kfree(dentry->d_fsdata); 5791 } 5792 btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5793 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5794 unsigned int flags) 5795 { 5796 struct inode *inode; 5797 5798 inode = btrfs_lookup_dentry(dir, dentry); 5799 if (IS_ERR(inode)) { 5800 if (PTR_ERR(inode) == -ENOENT) 5801 inode = NULL; 5802 else 5803 return ERR_CAST(inode); 5804 } 5805 5806 return d_splice_alias(inode, dentry); 5807 } 5808 5809 unsigned char btrfs_filetype_table[] = { 5810 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5811 }; 5812 btrfs_real_readdir(struct file * file,struct dir_context * ctx)5813 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5814 { 5815 struct inode *inode = file_inode(file); 5816 struct btrfs_root *root = BTRFS_I(inode)->root; 5817 struct btrfs_item *item; 5818 struct btrfs_dir_item *di; 5819 struct btrfs_key key; 5820 struct btrfs_key found_key; 5821 struct btrfs_path *path; 5822 struct list_head ins_list; 5823 struct list_head del_list; 5824 int ret; 5825 struct extent_buffer *leaf; 5826 int slot; 5827 unsigned char d_type; 5828 int over = 0; 5829 u32 di_cur; 5830 u32 di_total; 5831 u32 di_len; 5832 int key_type = BTRFS_DIR_INDEX_KEY; 5833 char tmp_name[32]; 5834 char *name_ptr; 5835 int name_len; 5836 int is_curr = 0; /* ctx->pos points to the current index? */ 5837 bool emitted; 5838 bool put = false; 5839 5840 /* FIXME, use a real flag for deciding about the key type */ 5841 if (root->fs_info->tree_root == root) 5842 key_type = BTRFS_DIR_ITEM_KEY; 5843 5844 if (!dir_emit_dots(file, ctx)) 5845 return 0; 5846 5847 path = btrfs_alloc_path(); 5848 if (!path) 5849 return -ENOMEM; 5850 5851 path->reada = READA_FORWARD; 5852 5853 if (key_type == BTRFS_DIR_INDEX_KEY) { 5854 INIT_LIST_HEAD(&ins_list); 5855 INIT_LIST_HEAD(&del_list); 5856 put = btrfs_readdir_get_delayed_items(inode, &ins_list, 5857 &del_list); 5858 } 5859 5860 key.type = key_type; 5861 key.offset = ctx->pos; 5862 key.objectid = btrfs_ino(inode); 5863 5864 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5865 if (ret < 0) 5866 goto err; 5867 5868 emitted = false; 5869 while (1) { 5870 leaf = path->nodes[0]; 5871 slot = path->slots[0]; 5872 if (slot >= btrfs_header_nritems(leaf)) { 5873 ret = btrfs_next_leaf(root, path); 5874 if (ret < 0) 5875 goto err; 5876 else if (ret > 0) 5877 break; 5878 continue; 5879 } 5880 5881 item = btrfs_item_nr(slot); 5882 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5883 5884 if (found_key.objectid != key.objectid) 5885 break; 5886 if (found_key.type != key_type) 5887 break; 5888 if (found_key.offset < ctx->pos) 5889 goto next; 5890 if (key_type == BTRFS_DIR_INDEX_KEY && 5891 btrfs_should_delete_dir_index(&del_list, 5892 found_key.offset)) 5893 goto next; 5894 5895 ctx->pos = found_key.offset; 5896 is_curr = 1; 5897 5898 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5899 di_cur = 0; 5900 di_total = btrfs_item_size(leaf, item); 5901 5902 while (di_cur < di_total) { 5903 struct btrfs_key location; 5904 5905 if (verify_dir_item(root, leaf, di)) 5906 break; 5907 5908 name_len = btrfs_dir_name_len(leaf, di); 5909 if (name_len <= sizeof(tmp_name)) { 5910 name_ptr = tmp_name; 5911 } else { 5912 name_ptr = kmalloc(name_len, GFP_KERNEL); 5913 if (!name_ptr) { 5914 ret = -ENOMEM; 5915 goto err; 5916 } 5917 } 5918 read_extent_buffer(leaf, name_ptr, 5919 (unsigned long)(di + 1), name_len); 5920 5921 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5922 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5923 5924 5925 /* is this a reference to our own snapshot? If so 5926 * skip it. 5927 * 5928 * In contrast to old kernels, we insert the snapshot's 5929 * dir item and dir index after it has been created, so 5930 * we won't find a reference to our own snapshot. We 5931 * still keep the following code for backward 5932 * compatibility. 5933 */ 5934 if (location.type == BTRFS_ROOT_ITEM_KEY && 5935 location.objectid == root->root_key.objectid) { 5936 over = 0; 5937 goto skip; 5938 } 5939 over = !dir_emit(ctx, name_ptr, name_len, 5940 location.objectid, d_type); 5941 5942 skip: 5943 if (name_ptr != tmp_name) 5944 kfree(name_ptr); 5945 5946 if (over) 5947 goto nopos; 5948 emitted = true; 5949 di_len = btrfs_dir_name_len(leaf, di) + 5950 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5951 di_cur += di_len; 5952 di = (struct btrfs_dir_item *)((char *)di + di_len); 5953 } 5954 next: 5955 path->slots[0]++; 5956 } 5957 5958 if (key_type == BTRFS_DIR_INDEX_KEY) { 5959 if (is_curr) 5960 ctx->pos++; 5961 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted); 5962 if (ret) 5963 goto nopos; 5964 } 5965 5966 /* 5967 * If we haven't emitted any dir entry, we must not touch ctx->pos as 5968 * it was was set to the termination value in previous call. We assume 5969 * that "." and ".." were emitted if we reach this point and set the 5970 * termination value as well for an empty directory. 5971 */ 5972 if (ctx->pos > 2 && !emitted) 5973 goto nopos; 5974 5975 /* Reached end of directory/root. Bump pos past the last item. */ 5976 ctx->pos++; 5977 5978 /* 5979 * Stop new entries from being returned after we return the last 5980 * entry. 5981 * 5982 * New directory entries are assigned a strictly increasing 5983 * offset. This means that new entries created during readdir 5984 * are *guaranteed* to be seen in the future by that readdir. 5985 * This has broken buggy programs which operate on names as 5986 * they're returned by readdir. Until we re-use freed offsets 5987 * we have this hack to stop new entries from being returned 5988 * under the assumption that they'll never reach this huge 5989 * offset. 5990 * 5991 * This is being careful not to overflow 32bit loff_t unless the 5992 * last entry requires it because doing so has broken 32bit apps 5993 * in the past. 5994 */ 5995 if (key_type == BTRFS_DIR_INDEX_KEY) { 5996 if (ctx->pos >= INT_MAX) 5997 ctx->pos = LLONG_MAX; 5998 else 5999 ctx->pos = INT_MAX; 6000 } 6001 nopos: 6002 ret = 0; 6003 err: 6004 if (put) 6005 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6006 btrfs_free_path(path); 6007 return ret; 6008 } 6009 btrfs_write_inode(struct inode * inode,struct writeback_control * wbc)6010 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 6011 { 6012 struct btrfs_root *root = BTRFS_I(inode)->root; 6013 struct btrfs_trans_handle *trans; 6014 int ret = 0; 6015 bool nolock = false; 6016 6017 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6018 return 0; 6019 6020 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 6021 nolock = true; 6022 6023 if (wbc->sync_mode == WB_SYNC_ALL) { 6024 if (nolock) 6025 trans = btrfs_join_transaction_nolock(root); 6026 else 6027 trans = btrfs_join_transaction(root); 6028 if (IS_ERR(trans)) 6029 return PTR_ERR(trans); 6030 ret = btrfs_commit_transaction(trans, root); 6031 } 6032 return ret; 6033 } 6034 6035 /* 6036 * This is somewhat expensive, updating the tree every time the 6037 * inode changes. But, it is most likely to find the inode in cache. 6038 * FIXME, needs more benchmarking...there are no reasons other than performance 6039 * to keep or drop this code. 6040 */ btrfs_dirty_inode(struct inode * inode)6041 static int btrfs_dirty_inode(struct inode *inode) 6042 { 6043 struct btrfs_root *root = BTRFS_I(inode)->root; 6044 struct btrfs_trans_handle *trans; 6045 int ret; 6046 6047 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6048 return 0; 6049 6050 trans = btrfs_join_transaction(root); 6051 if (IS_ERR(trans)) 6052 return PTR_ERR(trans); 6053 6054 ret = btrfs_update_inode(trans, root, inode); 6055 if (ret && ret == -ENOSPC) { 6056 /* whoops, lets try again with the full transaction */ 6057 btrfs_end_transaction(trans, root); 6058 trans = btrfs_start_transaction(root, 1); 6059 if (IS_ERR(trans)) 6060 return PTR_ERR(trans); 6061 6062 ret = btrfs_update_inode(trans, root, inode); 6063 } 6064 btrfs_end_transaction(trans, root); 6065 if (BTRFS_I(inode)->delayed_node) 6066 btrfs_balance_delayed_items(root); 6067 6068 return ret; 6069 } 6070 6071 /* 6072 * This is a copy of file_update_time. We need this so we can return error on 6073 * ENOSPC for updating the inode in the case of file write and mmap writes. 6074 */ btrfs_update_time(struct inode * inode,struct timespec * now,int flags)6075 static int btrfs_update_time(struct inode *inode, struct timespec *now, 6076 int flags) 6077 { 6078 struct btrfs_root *root = BTRFS_I(inode)->root; 6079 6080 if (btrfs_root_readonly(root)) 6081 return -EROFS; 6082 6083 if (flags & S_VERSION) 6084 inode_inc_iversion(inode); 6085 if (flags & S_CTIME) 6086 inode->i_ctime = *now; 6087 if (flags & S_MTIME) 6088 inode->i_mtime = *now; 6089 if (flags & S_ATIME) 6090 inode->i_atime = *now; 6091 return btrfs_dirty_inode(inode); 6092 } 6093 6094 /* 6095 * find the highest existing sequence number in a directory 6096 * and then set the in-memory index_cnt variable to reflect 6097 * free sequence numbers 6098 */ btrfs_set_inode_index_count(struct inode * inode)6099 static int btrfs_set_inode_index_count(struct inode *inode) 6100 { 6101 struct btrfs_root *root = BTRFS_I(inode)->root; 6102 struct btrfs_key key, found_key; 6103 struct btrfs_path *path; 6104 struct extent_buffer *leaf; 6105 int ret; 6106 6107 key.objectid = btrfs_ino(inode); 6108 key.type = BTRFS_DIR_INDEX_KEY; 6109 key.offset = (u64)-1; 6110 6111 path = btrfs_alloc_path(); 6112 if (!path) 6113 return -ENOMEM; 6114 6115 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6116 if (ret < 0) 6117 goto out; 6118 /* FIXME: we should be able to handle this */ 6119 if (ret == 0) 6120 goto out; 6121 ret = 0; 6122 6123 /* 6124 * MAGIC NUMBER EXPLANATION: 6125 * since we search a directory based on f_pos we have to start at 2 6126 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6127 * else has to start at 2 6128 */ 6129 if (path->slots[0] == 0) { 6130 BTRFS_I(inode)->index_cnt = 2; 6131 goto out; 6132 } 6133 6134 path->slots[0]--; 6135 6136 leaf = path->nodes[0]; 6137 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6138 6139 if (found_key.objectid != btrfs_ino(inode) || 6140 found_key.type != BTRFS_DIR_INDEX_KEY) { 6141 BTRFS_I(inode)->index_cnt = 2; 6142 goto out; 6143 } 6144 6145 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 6146 out: 6147 btrfs_free_path(path); 6148 return ret; 6149 } 6150 6151 /* 6152 * helper to find a free sequence number in a given directory. This current 6153 * code is very simple, later versions will do smarter things in the btree 6154 */ btrfs_set_inode_index(struct inode * dir,u64 * index)6155 int btrfs_set_inode_index(struct inode *dir, u64 *index) 6156 { 6157 int ret = 0; 6158 6159 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 6160 ret = btrfs_inode_delayed_dir_index_count(dir); 6161 if (ret) { 6162 ret = btrfs_set_inode_index_count(dir); 6163 if (ret) 6164 return ret; 6165 } 6166 } 6167 6168 *index = BTRFS_I(dir)->index_cnt; 6169 BTRFS_I(dir)->index_cnt++; 6170 6171 return ret; 6172 } 6173 btrfs_insert_inode_locked(struct inode * inode)6174 static int btrfs_insert_inode_locked(struct inode *inode) 6175 { 6176 struct btrfs_iget_args args; 6177 args.location = &BTRFS_I(inode)->location; 6178 args.root = BTRFS_I(inode)->root; 6179 6180 return insert_inode_locked4(inode, 6181 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6182 btrfs_find_actor, &args); 6183 } 6184 btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,umode_t mode,u64 * index)6185 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6186 struct btrfs_root *root, 6187 struct inode *dir, 6188 const char *name, int name_len, 6189 u64 ref_objectid, u64 objectid, 6190 umode_t mode, u64 *index) 6191 { 6192 struct inode *inode; 6193 struct btrfs_inode_item *inode_item; 6194 struct btrfs_key *location; 6195 struct btrfs_path *path; 6196 struct btrfs_inode_ref *ref; 6197 struct btrfs_key key[2]; 6198 u32 sizes[2]; 6199 int nitems = name ? 2 : 1; 6200 unsigned long ptr; 6201 int ret; 6202 6203 path = btrfs_alloc_path(); 6204 if (!path) 6205 return ERR_PTR(-ENOMEM); 6206 6207 inode = new_inode(root->fs_info->sb); 6208 if (!inode) { 6209 btrfs_free_path(path); 6210 return ERR_PTR(-ENOMEM); 6211 } 6212 6213 /* 6214 * O_TMPFILE, set link count to 0, so that after this point, 6215 * we fill in an inode item with the correct link count. 6216 */ 6217 if (!name) 6218 set_nlink(inode, 0); 6219 6220 /* 6221 * we have to initialize this early, so we can reclaim the inode 6222 * number if we fail afterwards in this function. 6223 */ 6224 inode->i_ino = objectid; 6225 6226 if (dir && name) { 6227 trace_btrfs_inode_request(dir); 6228 6229 ret = btrfs_set_inode_index(dir, index); 6230 if (ret) { 6231 btrfs_free_path(path); 6232 iput(inode); 6233 return ERR_PTR(ret); 6234 } 6235 } else if (dir) { 6236 *index = 0; 6237 } 6238 /* 6239 * index_cnt is ignored for everything but a dir, 6240 * btrfs_get_inode_index_count has an explanation for the magic 6241 * number 6242 */ 6243 BTRFS_I(inode)->index_cnt = 2; 6244 BTRFS_I(inode)->dir_index = *index; 6245 BTRFS_I(inode)->root = root; 6246 BTRFS_I(inode)->generation = trans->transid; 6247 inode->i_generation = BTRFS_I(inode)->generation; 6248 6249 /* 6250 * We could have gotten an inode number from somebody who was fsynced 6251 * and then removed in this same transaction, so let's just set full 6252 * sync since it will be a full sync anyway and this will blow away the 6253 * old info in the log. 6254 */ 6255 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6256 6257 key[0].objectid = objectid; 6258 key[0].type = BTRFS_INODE_ITEM_KEY; 6259 key[0].offset = 0; 6260 6261 sizes[0] = sizeof(struct btrfs_inode_item); 6262 6263 if (name) { 6264 /* 6265 * Start new inodes with an inode_ref. This is slightly more 6266 * efficient for small numbers of hard links since they will 6267 * be packed into one item. Extended refs will kick in if we 6268 * add more hard links than can fit in the ref item. 6269 */ 6270 key[1].objectid = objectid; 6271 key[1].type = BTRFS_INODE_REF_KEY; 6272 key[1].offset = ref_objectid; 6273 6274 sizes[1] = name_len + sizeof(*ref); 6275 } 6276 6277 location = &BTRFS_I(inode)->location; 6278 location->objectid = objectid; 6279 location->offset = 0; 6280 location->type = BTRFS_INODE_ITEM_KEY; 6281 6282 ret = btrfs_insert_inode_locked(inode); 6283 if (ret < 0) 6284 goto fail; 6285 6286 path->leave_spinning = 1; 6287 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6288 if (ret != 0) 6289 goto fail_unlock; 6290 6291 inode_init_owner(inode, dir, mode); 6292 inode_set_bytes(inode, 0); 6293 6294 inode->i_mtime = current_time(inode); 6295 inode->i_atime = inode->i_mtime; 6296 inode->i_ctime = inode->i_mtime; 6297 BTRFS_I(inode)->i_otime = inode->i_mtime; 6298 6299 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6300 struct btrfs_inode_item); 6301 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 6302 sizeof(*inode_item)); 6303 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6304 6305 if (name) { 6306 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6307 struct btrfs_inode_ref); 6308 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6309 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6310 ptr = (unsigned long)(ref + 1); 6311 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6312 } 6313 6314 btrfs_mark_buffer_dirty(path->nodes[0]); 6315 btrfs_free_path(path); 6316 6317 btrfs_inherit_iflags(inode, dir); 6318 6319 if (S_ISREG(mode)) { 6320 if (btrfs_test_opt(root->fs_info, NODATASUM)) 6321 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6322 if (btrfs_test_opt(root->fs_info, NODATACOW)) 6323 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6324 BTRFS_INODE_NODATASUM; 6325 } 6326 6327 inode_tree_add(inode); 6328 6329 trace_btrfs_inode_new(inode); 6330 btrfs_set_inode_last_trans(trans, inode); 6331 6332 btrfs_update_root_times(trans, root); 6333 6334 ret = btrfs_inode_inherit_props(trans, inode, dir); 6335 if (ret) 6336 btrfs_err(root->fs_info, 6337 "error inheriting props for ino %llu (root %llu): %d", 6338 btrfs_ino(inode), root->root_key.objectid, ret); 6339 6340 return inode; 6341 6342 fail_unlock: 6343 unlock_new_inode(inode); 6344 fail: 6345 if (dir && name) 6346 BTRFS_I(dir)->index_cnt--; 6347 btrfs_free_path(path); 6348 iput(inode); 6349 return ERR_PTR(ret); 6350 } 6351 btrfs_inode_type(struct inode * inode)6352 static inline u8 btrfs_inode_type(struct inode *inode) 6353 { 6354 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6355 } 6356 6357 /* 6358 * utility function to add 'inode' into 'parent_inode' with 6359 * a give name and a given sequence number. 6360 * if 'add_backref' is true, also insert a backref from the 6361 * inode to the parent directory. 6362 */ btrfs_add_link(struct btrfs_trans_handle * trans,struct inode * parent_inode,struct inode * inode,const char * name,int name_len,int add_backref,u64 index)6363 int btrfs_add_link(struct btrfs_trans_handle *trans, 6364 struct inode *parent_inode, struct inode *inode, 6365 const char *name, int name_len, int add_backref, u64 index) 6366 { 6367 int ret = 0; 6368 struct btrfs_key key; 6369 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 6370 u64 ino = btrfs_ino(inode); 6371 u64 parent_ino = btrfs_ino(parent_inode); 6372 6373 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6374 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 6375 } else { 6376 key.objectid = ino; 6377 key.type = BTRFS_INODE_ITEM_KEY; 6378 key.offset = 0; 6379 } 6380 6381 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6382 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 6383 key.objectid, root->root_key.objectid, 6384 parent_ino, index, name, name_len); 6385 } else if (add_backref) { 6386 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6387 parent_ino, index); 6388 } 6389 6390 /* Nothing to clean up yet */ 6391 if (ret) 6392 return ret; 6393 6394 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6395 parent_inode, &key, 6396 btrfs_inode_type(inode), index); 6397 if (ret == -EEXIST || ret == -EOVERFLOW) 6398 goto fail_dir_item; 6399 else if (ret) { 6400 btrfs_abort_transaction(trans, ret); 6401 return ret; 6402 } 6403 6404 btrfs_i_size_write(parent_inode, parent_inode->i_size + 6405 name_len * 2); 6406 inode_inc_iversion(parent_inode); 6407 parent_inode->i_mtime = parent_inode->i_ctime = 6408 current_time(parent_inode); 6409 ret = btrfs_update_inode(trans, root, parent_inode); 6410 if (ret) 6411 btrfs_abort_transaction(trans, ret); 6412 return ret; 6413 6414 fail_dir_item: 6415 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6416 u64 local_index; 6417 int err; 6418 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 6419 key.objectid, root->root_key.objectid, 6420 parent_ino, &local_index, name, name_len); 6421 6422 } else if (add_backref) { 6423 u64 local_index; 6424 int err; 6425 6426 err = btrfs_del_inode_ref(trans, root, name, name_len, 6427 ino, parent_ino, &local_index); 6428 } 6429 return ret; 6430 } 6431 btrfs_add_nondir(struct btrfs_trans_handle * trans,struct inode * dir,struct dentry * dentry,struct inode * inode,int backref,u64 index)6432 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6433 struct inode *dir, struct dentry *dentry, 6434 struct inode *inode, int backref, u64 index) 6435 { 6436 int err = btrfs_add_link(trans, dir, inode, 6437 dentry->d_name.name, dentry->d_name.len, 6438 backref, index); 6439 if (err > 0) 6440 err = -EEXIST; 6441 return err; 6442 } 6443 btrfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6444 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6445 umode_t mode, dev_t rdev) 6446 { 6447 struct btrfs_trans_handle *trans; 6448 struct btrfs_root *root = BTRFS_I(dir)->root; 6449 struct inode *inode = NULL; 6450 int err; 6451 int drop_inode = 0; 6452 u64 objectid; 6453 u64 index = 0; 6454 6455 /* 6456 * 2 for inode item and ref 6457 * 2 for dir items 6458 * 1 for xattr if selinux is on 6459 */ 6460 trans = btrfs_start_transaction(root, 5); 6461 if (IS_ERR(trans)) 6462 return PTR_ERR(trans); 6463 6464 err = btrfs_find_free_ino(root, &objectid); 6465 if (err) 6466 goto out_unlock; 6467 6468 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6469 dentry->d_name.len, btrfs_ino(dir), objectid, 6470 mode, &index); 6471 if (IS_ERR(inode)) { 6472 err = PTR_ERR(inode); 6473 goto out_unlock; 6474 } 6475 6476 /* 6477 * If the active LSM wants to access the inode during 6478 * d_instantiate it needs these. Smack checks to see 6479 * if the filesystem supports xattrs by looking at the 6480 * ops vector. 6481 */ 6482 inode->i_op = &btrfs_special_inode_operations; 6483 init_special_inode(inode, inode->i_mode, rdev); 6484 6485 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6486 if (err) 6487 goto out_unlock_inode; 6488 6489 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6490 if (err) { 6491 goto out_unlock_inode; 6492 } else { 6493 btrfs_update_inode(trans, root, inode); 6494 unlock_new_inode(inode); 6495 d_instantiate(dentry, inode); 6496 } 6497 6498 out_unlock: 6499 btrfs_end_transaction(trans, root); 6500 btrfs_balance_delayed_items(root); 6501 btrfs_btree_balance_dirty(root); 6502 if (drop_inode) { 6503 inode_dec_link_count(inode); 6504 iput(inode); 6505 } 6506 return err; 6507 6508 out_unlock_inode: 6509 drop_inode = 1; 6510 unlock_new_inode(inode); 6511 goto out_unlock; 6512 6513 } 6514 btrfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6515 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6516 umode_t mode, bool excl) 6517 { 6518 struct btrfs_trans_handle *trans; 6519 struct btrfs_root *root = BTRFS_I(dir)->root; 6520 struct inode *inode = NULL; 6521 int drop_inode_on_err = 0; 6522 int err; 6523 u64 objectid; 6524 u64 index = 0; 6525 6526 /* 6527 * 2 for inode item and ref 6528 * 2 for dir items 6529 * 1 for xattr if selinux is on 6530 */ 6531 trans = btrfs_start_transaction(root, 5); 6532 if (IS_ERR(trans)) 6533 return PTR_ERR(trans); 6534 6535 err = btrfs_find_free_ino(root, &objectid); 6536 if (err) 6537 goto out_unlock; 6538 6539 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6540 dentry->d_name.len, btrfs_ino(dir), objectid, 6541 mode, &index); 6542 if (IS_ERR(inode)) { 6543 err = PTR_ERR(inode); 6544 goto out_unlock; 6545 } 6546 drop_inode_on_err = 1; 6547 /* 6548 * If the active LSM wants to access the inode during 6549 * d_instantiate it needs these. Smack checks to see 6550 * if the filesystem supports xattrs by looking at the 6551 * ops vector. 6552 */ 6553 inode->i_fop = &btrfs_file_operations; 6554 inode->i_op = &btrfs_file_inode_operations; 6555 inode->i_mapping->a_ops = &btrfs_aops; 6556 6557 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6558 if (err) 6559 goto out_unlock_inode; 6560 6561 err = btrfs_update_inode(trans, root, inode); 6562 if (err) 6563 goto out_unlock_inode; 6564 6565 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6566 if (err) 6567 goto out_unlock_inode; 6568 6569 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6570 unlock_new_inode(inode); 6571 d_instantiate(dentry, inode); 6572 6573 out_unlock: 6574 btrfs_end_transaction(trans, root); 6575 if (err && drop_inode_on_err) { 6576 inode_dec_link_count(inode); 6577 iput(inode); 6578 } 6579 btrfs_balance_delayed_items(root); 6580 btrfs_btree_balance_dirty(root); 6581 return err; 6582 6583 out_unlock_inode: 6584 unlock_new_inode(inode); 6585 goto out_unlock; 6586 6587 } 6588 btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6589 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6590 struct dentry *dentry) 6591 { 6592 struct btrfs_trans_handle *trans = NULL; 6593 struct btrfs_root *root = BTRFS_I(dir)->root; 6594 struct inode *inode = d_inode(old_dentry); 6595 u64 index; 6596 int err; 6597 int drop_inode = 0; 6598 6599 /* do not allow sys_link's with other subvols of the same device */ 6600 if (root->objectid != BTRFS_I(inode)->root->objectid) 6601 return -EXDEV; 6602 6603 if (inode->i_nlink >= BTRFS_LINK_MAX) 6604 return -EMLINK; 6605 6606 err = btrfs_set_inode_index(dir, &index); 6607 if (err) 6608 goto fail; 6609 6610 /* 6611 * 2 items for inode and inode ref 6612 * 2 items for dir items 6613 * 1 item for parent inode 6614 */ 6615 trans = btrfs_start_transaction(root, 5); 6616 if (IS_ERR(trans)) { 6617 err = PTR_ERR(trans); 6618 trans = NULL; 6619 goto fail; 6620 } 6621 6622 /* There are several dir indexes for this inode, clear the cache. */ 6623 BTRFS_I(inode)->dir_index = 0ULL; 6624 inc_nlink(inode); 6625 inode_inc_iversion(inode); 6626 inode->i_ctime = current_time(inode); 6627 ihold(inode); 6628 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6629 6630 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 6631 6632 if (err) { 6633 drop_inode = 1; 6634 } else { 6635 struct dentry *parent = dentry->d_parent; 6636 err = btrfs_update_inode(trans, root, inode); 6637 if (err) 6638 goto fail; 6639 if (inode->i_nlink == 1) { 6640 /* 6641 * If new hard link count is 1, it's a file created 6642 * with open(2) O_TMPFILE flag. 6643 */ 6644 err = btrfs_orphan_del(trans, inode); 6645 if (err) 6646 goto fail; 6647 } 6648 d_instantiate(dentry, inode); 6649 btrfs_log_new_name(trans, inode, NULL, parent); 6650 } 6651 6652 btrfs_balance_delayed_items(root); 6653 fail: 6654 if (trans) 6655 btrfs_end_transaction(trans, root); 6656 if (drop_inode) { 6657 inode_dec_link_count(inode); 6658 iput(inode); 6659 } 6660 btrfs_btree_balance_dirty(root); 6661 return err; 6662 } 6663 btrfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)6664 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6665 { 6666 struct inode *inode = NULL; 6667 struct btrfs_trans_handle *trans; 6668 struct btrfs_root *root = BTRFS_I(dir)->root; 6669 int err = 0; 6670 int drop_on_err = 0; 6671 u64 objectid = 0; 6672 u64 index = 0; 6673 6674 /* 6675 * 2 items for inode and ref 6676 * 2 items for dir items 6677 * 1 for xattr if selinux is on 6678 */ 6679 trans = btrfs_start_transaction(root, 5); 6680 if (IS_ERR(trans)) 6681 return PTR_ERR(trans); 6682 6683 err = btrfs_find_free_ino(root, &objectid); 6684 if (err) 6685 goto out_fail; 6686 6687 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6688 dentry->d_name.len, btrfs_ino(dir), objectid, 6689 S_IFDIR | mode, &index); 6690 if (IS_ERR(inode)) { 6691 err = PTR_ERR(inode); 6692 goto out_fail; 6693 } 6694 6695 drop_on_err = 1; 6696 /* these must be set before we unlock the inode */ 6697 inode->i_op = &btrfs_dir_inode_operations; 6698 inode->i_fop = &btrfs_dir_file_operations; 6699 6700 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6701 if (err) 6702 goto out_fail_inode; 6703 6704 btrfs_i_size_write(inode, 0); 6705 err = btrfs_update_inode(trans, root, inode); 6706 if (err) 6707 goto out_fail_inode; 6708 6709 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 6710 dentry->d_name.len, 0, index); 6711 if (err) 6712 goto out_fail_inode; 6713 6714 d_instantiate(dentry, inode); 6715 /* 6716 * mkdir is special. We're unlocking after we call d_instantiate 6717 * to avoid a race with nfsd calling d_instantiate. 6718 */ 6719 unlock_new_inode(inode); 6720 drop_on_err = 0; 6721 6722 out_fail: 6723 btrfs_end_transaction(trans, root); 6724 if (drop_on_err) { 6725 inode_dec_link_count(inode); 6726 iput(inode); 6727 } 6728 btrfs_balance_delayed_items(root); 6729 btrfs_btree_balance_dirty(root); 6730 return err; 6731 6732 out_fail_inode: 6733 unlock_new_inode(inode); 6734 goto out_fail; 6735 } 6736 6737 /* Find next extent map of a given extent map, caller needs to ensure locks */ next_extent_map(struct extent_map * em)6738 static struct extent_map *next_extent_map(struct extent_map *em) 6739 { 6740 struct rb_node *next; 6741 6742 next = rb_next(&em->rb_node); 6743 if (!next) 6744 return NULL; 6745 return container_of(next, struct extent_map, rb_node); 6746 } 6747 prev_extent_map(struct extent_map * em)6748 static struct extent_map *prev_extent_map(struct extent_map *em) 6749 { 6750 struct rb_node *prev; 6751 6752 prev = rb_prev(&em->rb_node); 6753 if (!prev) 6754 return NULL; 6755 return container_of(prev, struct extent_map, rb_node); 6756 } 6757 6758 /* helper for btfs_get_extent. Given an existing extent in the tree, 6759 * the existing extent is the nearest extent to map_start, 6760 * and an extent that you want to insert, deal with overlap and insert 6761 * the best fitted new extent into the tree. 6762 */ merge_extent_mapping(struct extent_map_tree * em_tree,struct extent_map * existing,struct extent_map * em,u64 map_start)6763 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6764 struct extent_map *existing, 6765 struct extent_map *em, 6766 u64 map_start) 6767 { 6768 struct extent_map *prev; 6769 struct extent_map *next; 6770 u64 start; 6771 u64 end; 6772 u64 start_diff; 6773 6774 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6775 6776 if (existing->start > map_start) { 6777 next = existing; 6778 prev = prev_extent_map(next); 6779 } else { 6780 prev = existing; 6781 next = next_extent_map(prev); 6782 } 6783 6784 start = prev ? extent_map_end(prev) : em->start; 6785 start = max_t(u64, start, em->start); 6786 end = next ? next->start : extent_map_end(em); 6787 end = min_t(u64, end, extent_map_end(em)); 6788 start_diff = start - em->start; 6789 em->start = start; 6790 em->len = end - start; 6791 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6792 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6793 em->block_start += start_diff; 6794 em->block_len -= start_diff; 6795 } 6796 return add_extent_mapping(em_tree, em, 0); 6797 } 6798 uncompress_inline(struct btrfs_path * path,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)6799 static noinline int uncompress_inline(struct btrfs_path *path, 6800 struct page *page, 6801 size_t pg_offset, u64 extent_offset, 6802 struct btrfs_file_extent_item *item) 6803 { 6804 int ret; 6805 struct extent_buffer *leaf = path->nodes[0]; 6806 char *tmp; 6807 size_t max_size; 6808 unsigned long inline_size; 6809 unsigned long ptr; 6810 int compress_type; 6811 6812 WARN_ON(pg_offset != 0); 6813 compress_type = btrfs_file_extent_compression(leaf, item); 6814 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6815 inline_size = btrfs_file_extent_inline_item_len(leaf, 6816 btrfs_item_nr(path->slots[0])); 6817 tmp = kmalloc(inline_size, GFP_NOFS); 6818 if (!tmp) 6819 return -ENOMEM; 6820 ptr = btrfs_file_extent_inline_start(item); 6821 6822 read_extent_buffer(leaf, tmp, ptr, inline_size); 6823 6824 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6825 ret = btrfs_decompress(compress_type, tmp, page, 6826 extent_offset, inline_size, max_size); 6827 6828 /* 6829 * decompression code contains a memset to fill in any space between the end 6830 * of the uncompressed data and the end of max_size in case the decompressed 6831 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6832 * the end of an inline extent and the beginning of the next block, so we 6833 * cover that region here. 6834 */ 6835 6836 if (max_size + pg_offset < PAGE_SIZE) { 6837 char *map = kmap(page); 6838 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6839 kunmap(page); 6840 } 6841 kfree(tmp); 6842 return ret; 6843 } 6844 6845 /* 6846 * a bit scary, this does extent mapping from logical file offset to the disk. 6847 * the ugly parts come from merging extents from the disk with the in-ram 6848 * representation. This gets more complex because of the data=ordered code, 6849 * where the in-ram extents might be locked pending data=ordered completion. 6850 * 6851 * This also copies inline extents directly into the page. 6852 */ 6853 btrfs_get_extent(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)6854 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6855 size_t pg_offset, u64 start, u64 len, 6856 int create) 6857 { 6858 int ret; 6859 int err = 0; 6860 u64 extent_start = 0; 6861 u64 extent_end = 0; 6862 u64 objectid = btrfs_ino(inode); 6863 u32 found_type; 6864 struct btrfs_path *path = NULL; 6865 struct btrfs_root *root = BTRFS_I(inode)->root; 6866 struct btrfs_file_extent_item *item; 6867 struct extent_buffer *leaf; 6868 struct btrfs_key found_key; 6869 struct extent_map *em = NULL; 6870 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6871 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6872 struct btrfs_trans_handle *trans = NULL; 6873 const bool new_inline = !page || create; 6874 6875 again: 6876 read_lock(&em_tree->lock); 6877 em = lookup_extent_mapping(em_tree, start, len); 6878 if (em) 6879 em->bdev = root->fs_info->fs_devices->latest_bdev; 6880 read_unlock(&em_tree->lock); 6881 6882 if (em) { 6883 if (em->start > start || em->start + em->len <= start) 6884 free_extent_map(em); 6885 else if (em->block_start == EXTENT_MAP_INLINE && page) 6886 free_extent_map(em); 6887 else 6888 goto out; 6889 } 6890 em = alloc_extent_map(); 6891 if (!em) { 6892 err = -ENOMEM; 6893 goto out; 6894 } 6895 em->bdev = root->fs_info->fs_devices->latest_bdev; 6896 em->start = EXTENT_MAP_HOLE; 6897 em->orig_start = EXTENT_MAP_HOLE; 6898 em->len = (u64)-1; 6899 em->block_len = (u64)-1; 6900 6901 if (!path) { 6902 path = btrfs_alloc_path(); 6903 if (!path) { 6904 err = -ENOMEM; 6905 goto out; 6906 } 6907 /* 6908 * Chances are we'll be called again, so go ahead and do 6909 * readahead 6910 */ 6911 path->reada = READA_FORWARD; 6912 } 6913 6914 ret = btrfs_lookup_file_extent(trans, root, path, 6915 objectid, start, trans != NULL); 6916 if (ret < 0) { 6917 err = ret; 6918 goto out; 6919 } 6920 6921 if (ret != 0) { 6922 if (path->slots[0] == 0) 6923 goto not_found; 6924 path->slots[0]--; 6925 } 6926 6927 leaf = path->nodes[0]; 6928 item = btrfs_item_ptr(leaf, path->slots[0], 6929 struct btrfs_file_extent_item); 6930 /* are we inside the extent that was found? */ 6931 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6932 found_type = found_key.type; 6933 if (found_key.objectid != objectid || 6934 found_type != BTRFS_EXTENT_DATA_KEY) { 6935 /* 6936 * If we backup past the first extent we want to move forward 6937 * and see if there is an extent in front of us, otherwise we'll 6938 * say there is a hole for our whole search range which can 6939 * cause problems. 6940 */ 6941 extent_end = start; 6942 goto next; 6943 } 6944 6945 found_type = btrfs_file_extent_type(leaf, item); 6946 extent_start = found_key.offset; 6947 if (found_type == BTRFS_FILE_EXTENT_REG || 6948 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6949 extent_end = extent_start + 6950 btrfs_file_extent_num_bytes(leaf, item); 6951 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6952 size_t size; 6953 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6954 extent_end = ALIGN(extent_start + size, root->sectorsize); 6955 } 6956 next: 6957 if (start >= extent_end) { 6958 path->slots[0]++; 6959 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6960 ret = btrfs_next_leaf(root, path); 6961 if (ret < 0) { 6962 err = ret; 6963 goto out; 6964 } 6965 if (ret > 0) 6966 goto not_found; 6967 leaf = path->nodes[0]; 6968 } 6969 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6970 if (found_key.objectid != objectid || 6971 found_key.type != BTRFS_EXTENT_DATA_KEY) 6972 goto not_found; 6973 if (start + len <= found_key.offset) 6974 goto not_found; 6975 if (start > found_key.offset) 6976 goto next; 6977 em->start = start; 6978 em->orig_start = start; 6979 em->len = found_key.offset - start; 6980 goto not_found_em; 6981 } 6982 6983 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em); 6984 6985 if (found_type == BTRFS_FILE_EXTENT_REG || 6986 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6987 goto insert; 6988 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6989 unsigned long ptr; 6990 char *map; 6991 size_t size; 6992 size_t extent_offset; 6993 size_t copy_size; 6994 6995 if (new_inline) 6996 goto out; 6997 6998 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6999 extent_offset = page_offset(page) + pg_offset - extent_start; 7000 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7001 size - extent_offset); 7002 em->start = extent_start + extent_offset; 7003 em->len = ALIGN(copy_size, root->sectorsize); 7004 em->orig_block_len = em->len; 7005 em->orig_start = em->start; 7006 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7007 if (create == 0 && !PageUptodate(page)) { 7008 if (btrfs_file_extent_compression(leaf, item) != 7009 BTRFS_COMPRESS_NONE) { 7010 ret = uncompress_inline(path, page, pg_offset, 7011 extent_offset, item); 7012 if (ret) { 7013 err = ret; 7014 goto out; 7015 } 7016 } else { 7017 map = kmap(page); 7018 read_extent_buffer(leaf, map + pg_offset, ptr, 7019 copy_size); 7020 if (pg_offset + copy_size < PAGE_SIZE) { 7021 memset(map + pg_offset + copy_size, 0, 7022 PAGE_SIZE - pg_offset - 7023 copy_size); 7024 } 7025 kunmap(page); 7026 } 7027 flush_dcache_page(page); 7028 } else if (create && PageUptodate(page)) { 7029 BUG(); 7030 if (!trans) { 7031 kunmap(page); 7032 free_extent_map(em); 7033 em = NULL; 7034 7035 btrfs_release_path(path); 7036 trans = btrfs_join_transaction(root); 7037 7038 if (IS_ERR(trans)) 7039 return ERR_CAST(trans); 7040 goto again; 7041 } 7042 map = kmap(page); 7043 write_extent_buffer(leaf, map + pg_offset, ptr, 7044 copy_size); 7045 kunmap(page); 7046 btrfs_mark_buffer_dirty(leaf); 7047 } 7048 set_extent_uptodate(io_tree, em->start, 7049 extent_map_end(em) - 1, NULL, GFP_NOFS); 7050 goto insert; 7051 } 7052 not_found: 7053 em->start = start; 7054 em->orig_start = start; 7055 em->len = len; 7056 not_found_em: 7057 em->block_start = EXTENT_MAP_HOLE; 7058 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 7059 insert: 7060 btrfs_release_path(path); 7061 if (em->start > start || extent_map_end(em) <= start) { 7062 btrfs_err(root->fs_info, 7063 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7064 em->start, em->len, start, len); 7065 err = -EIO; 7066 goto out; 7067 } 7068 7069 err = 0; 7070 write_lock(&em_tree->lock); 7071 ret = add_extent_mapping(em_tree, em, 0); 7072 /* it is possible that someone inserted the extent into the tree 7073 * while we had the lock dropped. It is also possible that 7074 * an overlapping map exists in the tree 7075 */ 7076 if (ret == -EEXIST) { 7077 struct extent_map *existing; 7078 7079 ret = 0; 7080 7081 existing = search_extent_mapping(em_tree, start, len); 7082 /* 7083 * existing will always be non-NULL, since there must be 7084 * extent causing the -EEXIST. 7085 */ 7086 if (existing->start == em->start && 7087 extent_map_end(existing) == extent_map_end(em) && 7088 em->block_start == existing->block_start) { 7089 /* 7090 * these two extents are the same, it happens 7091 * with inlines especially 7092 */ 7093 free_extent_map(em); 7094 em = existing; 7095 err = 0; 7096 7097 } else if (start >= extent_map_end(existing) || 7098 start <= existing->start) { 7099 /* 7100 * The existing extent map is the one nearest to 7101 * the [start, start + len) range which overlaps 7102 */ 7103 err = merge_extent_mapping(em_tree, existing, 7104 em, start); 7105 free_extent_map(existing); 7106 if (err) { 7107 free_extent_map(em); 7108 em = NULL; 7109 } 7110 } else { 7111 free_extent_map(em); 7112 em = existing; 7113 err = 0; 7114 } 7115 } 7116 write_unlock(&em_tree->lock); 7117 out: 7118 7119 trace_btrfs_get_extent(root, em); 7120 7121 btrfs_free_path(path); 7122 if (trans) { 7123 ret = btrfs_end_transaction(trans, root); 7124 if (!err) 7125 err = ret; 7126 } 7127 if (err) { 7128 free_extent_map(em); 7129 return ERR_PTR(err); 7130 } 7131 BUG_ON(!em); /* Error is always set */ 7132 return em; 7133 } 7134 btrfs_get_extent_fiemap(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)7135 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 7136 size_t pg_offset, u64 start, u64 len, 7137 int create) 7138 { 7139 struct extent_map *em; 7140 struct extent_map *hole_em = NULL; 7141 u64 range_start = start; 7142 u64 end; 7143 u64 found; 7144 u64 found_end; 7145 int err = 0; 7146 7147 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7148 if (IS_ERR(em)) 7149 return em; 7150 if (em) { 7151 /* 7152 * if our em maps to 7153 * - a hole or 7154 * - a pre-alloc extent, 7155 * there might actually be delalloc bytes behind it. 7156 */ 7157 if (em->block_start != EXTENT_MAP_HOLE && 7158 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7159 return em; 7160 else 7161 hole_em = em; 7162 } 7163 7164 /* check to see if we've wrapped (len == -1 or similar) */ 7165 end = start + len; 7166 if (end < start) 7167 end = (u64)-1; 7168 else 7169 end -= 1; 7170 7171 em = NULL; 7172 7173 /* ok, we didn't find anything, lets look for delalloc */ 7174 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 7175 end, len, EXTENT_DELALLOC, 1); 7176 found_end = range_start + found; 7177 if (found_end < range_start) 7178 found_end = (u64)-1; 7179 7180 /* 7181 * we didn't find anything useful, return 7182 * the original results from get_extent() 7183 */ 7184 if (range_start > end || found_end <= start) { 7185 em = hole_em; 7186 hole_em = NULL; 7187 goto out; 7188 } 7189 7190 /* adjust the range_start to make sure it doesn't 7191 * go backwards from the start they passed in 7192 */ 7193 range_start = max(start, range_start); 7194 found = found_end - range_start; 7195 7196 if (found > 0) { 7197 u64 hole_start = start; 7198 u64 hole_len = len; 7199 7200 em = alloc_extent_map(); 7201 if (!em) { 7202 err = -ENOMEM; 7203 goto out; 7204 } 7205 /* 7206 * when btrfs_get_extent can't find anything it 7207 * returns one huge hole 7208 * 7209 * make sure what it found really fits our range, and 7210 * adjust to make sure it is based on the start from 7211 * the caller 7212 */ 7213 if (hole_em) { 7214 u64 calc_end = extent_map_end(hole_em); 7215 7216 if (calc_end <= start || (hole_em->start > end)) { 7217 free_extent_map(hole_em); 7218 hole_em = NULL; 7219 } else { 7220 hole_start = max(hole_em->start, start); 7221 hole_len = calc_end - hole_start; 7222 } 7223 } 7224 em->bdev = NULL; 7225 if (hole_em && range_start > hole_start) { 7226 /* our hole starts before our delalloc, so we 7227 * have to return just the parts of the hole 7228 * that go until the delalloc starts 7229 */ 7230 em->len = min(hole_len, 7231 range_start - hole_start); 7232 em->start = hole_start; 7233 em->orig_start = hole_start; 7234 /* 7235 * don't adjust block start at all, 7236 * it is fixed at EXTENT_MAP_HOLE 7237 */ 7238 em->block_start = hole_em->block_start; 7239 em->block_len = hole_len; 7240 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7241 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7242 } else { 7243 em->start = range_start; 7244 em->len = found; 7245 em->orig_start = range_start; 7246 em->block_start = EXTENT_MAP_DELALLOC; 7247 em->block_len = found; 7248 } 7249 } else if (hole_em) { 7250 return hole_em; 7251 } 7252 out: 7253 7254 free_extent_map(hole_em); 7255 if (err) { 7256 free_extent_map(em); 7257 return ERR_PTR(err); 7258 } 7259 return em; 7260 } 7261 btrfs_create_dio_extent(struct inode * inode,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)7262 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7263 const u64 start, 7264 const u64 len, 7265 const u64 orig_start, 7266 const u64 block_start, 7267 const u64 block_len, 7268 const u64 orig_block_len, 7269 const u64 ram_bytes, 7270 const int type) 7271 { 7272 struct extent_map *em = NULL; 7273 int ret; 7274 7275 if (type != BTRFS_ORDERED_NOCOW) { 7276 em = create_pinned_em(inode, start, len, orig_start, 7277 block_start, block_len, orig_block_len, 7278 ram_bytes, type); 7279 if (IS_ERR(em)) 7280 goto out; 7281 } 7282 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7283 len, block_len, type); 7284 if (ret) { 7285 if (em) { 7286 free_extent_map(em); 7287 btrfs_drop_extent_cache(inode, start, 7288 start + len - 1, 0); 7289 } 7290 em = ERR_PTR(ret); 7291 } 7292 out: 7293 7294 return em; 7295 } 7296 btrfs_new_extent_direct(struct inode * inode,u64 start,u64 len)7297 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7298 u64 start, u64 len) 7299 { 7300 struct btrfs_root *root = BTRFS_I(inode)->root; 7301 struct extent_map *em; 7302 struct btrfs_key ins; 7303 u64 alloc_hint; 7304 int ret; 7305 7306 alloc_hint = get_extent_allocation_hint(inode, start, len); 7307 ret = btrfs_reserve_extent(root, len, len, root->sectorsize, 0, 7308 alloc_hint, &ins, 1, 1); 7309 if (ret) 7310 return ERR_PTR(ret); 7311 7312 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7313 ins.objectid, ins.offset, ins.offset, 7314 ins.offset, 0); 7315 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 7316 if (IS_ERR(em)) 7317 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7318 7319 return em; 7320 } 7321 7322 /* 7323 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7324 * block must be cow'd 7325 */ can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes)7326 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7327 u64 *orig_start, u64 *orig_block_len, 7328 u64 *ram_bytes) 7329 { 7330 struct btrfs_trans_handle *trans; 7331 struct btrfs_path *path; 7332 int ret; 7333 struct extent_buffer *leaf; 7334 struct btrfs_root *root = BTRFS_I(inode)->root; 7335 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7336 struct btrfs_file_extent_item *fi; 7337 struct btrfs_key key; 7338 u64 disk_bytenr; 7339 u64 backref_offset; 7340 u64 extent_end; 7341 u64 num_bytes; 7342 int slot; 7343 int found_type; 7344 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7345 7346 path = btrfs_alloc_path(); 7347 if (!path) 7348 return -ENOMEM; 7349 7350 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7351 offset, 0); 7352 if (ret < 0) 7353 goto out; 7354 7355 slot = path->slots[0]; 7356 if (ret == 1) { 7357 if (slot == 0) { 7358 /* can't find the item, must cow */ 7359 ret = 0; 7360 goto out; 7361 } 7362 slot--; 7363 } 7364 ret = 0; 7365 leaf = path->nodes[0]; 7366 btrfs_item_key_to_cpu(leaf, &key, slot); 7367 if (key.objectid != btrfs_ino(inode) || 7368 key.type != BTRFS_EXTENT_DATA_KEY) { 7369 /* not our file or wrong item type, must cow */ 7370 goto out; 7371 } 7372 7373 if (key.offset > offset) { 7374 /* Wrong offset, must cow */ 7375 goto out; 7376 } 7377 7378 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7379 found_type = btrfs_file_extent_type(leaf, fi); 7380 if (found_type != BTRFS_FILE_EXTENT_REG && 7381 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7382 /* not a regular extent, must cow */ 7383 goto out; 7384 } 7385 7386 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7387 goto out; 7388 7389 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7390 if (extent_end <= offset) 7391 goto out; 7392 7393 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7394 if (disk_bytenr == 0) 7395 goto out; 7396 7397 if (btrfs_file_extent_compression(leaf, fi) || 7398 btrfs_file_extent_encryption(leaf, fi) || 7399 btrfs_file_extent_other_encoding(leaf, fi)) 7400 goto out; 7401 7402 backref_offset = btrfs_file_extent_offset(leaf, fi); 7403 7404 if (orig_start) { 7405 *orig_start = key.offset - backref_offset; 7406 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7407 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7408 } 7409 7410 if (btrfs_extent_readonly(root, disk_bytenr)) 7411 goto out; 7412 7413 num_bytes = min(offset + *len, extent_end) - offset; 7414 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7415 u64 range_end; 7416 7417 range_end = round_up(offset + num_bytes, root->sectorsize) - 1; 7418 ret = test_range_bit(io_tree, offset, range_end, 7419 EXTENT_DELALLOC, 0, NULL); 7420 if (ret) { 7421 ret = -EAGAIN; 7422 goto out; 7423 } 7424 } 7425 7426 btrfs_release_path(path); 7427 7428 /* 7429 * look for other files referencing this extent, if we 7430 * find any we must cow 7431 */ 7432 trans = btrfs_join_transaction(root); 7433 if (IS_ERR(trans)) { 7434 ret = 0; 7435 goto out; 7436 } 7437 7438 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 7439 key.offset - backref_offset, disk_bytenr); 7440 btrfs_end_transaction(trans, root); 7441 if (ret) { 7442 ret = 0; 7443 goto out; 7444 } 7445 7446 /* 7447 * adjust disk_bytenr and num_bytes to cover just the bytes 7448 * in this extent we are about to write. If there 7449 * are any csums in that range we have to cow in order 7450 * to keep the csums correct 7451 */ 7452 disk_bytenr += backref_offset; 7453 disk_bytenr += offset - key.offset; 7454 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 7455 goto out; 7456 /* 7457 * all of the above have passed, it is safe to overwrite this extent 7458 * without cow 7459 */ 7460 *len = num_bytes; 7461 ret = 1; 7462 out: 7463 btrfs_free_path(path); 7464 return ret; 7465 } 7466 btrfs_page_exists_in_range(struct inode * inode,loff_t start,loff_t end)7467 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7468 { 7469 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7470 int found = false; 7471 void **pagep = NULL; 7472 struct page *page = NULL; 7473 unsigned long start_idx; 7474 unsigned long end_idx; 7475 7476 start_idx = start >> PAGE_SHIFT; 7477 7478 /* 7479 * end is the last byte in the last page. end == start is legal 7480 */ 7481 end_idx = end >> PAGE_SHIFT; 7482 7483 rcu_read_lock(); 7484 7485 /* Most of the code in this while loop is lifted from 7486 * find_get_page. It's been modified to begin searching from a 7487 * page and return just the first page found in that range. If the 7488 * found idx is less than or equal to the end idx then we know that 7489 * a page exists. If no pages are found or if those pages are 7490 * outside of the range then we're fine (yay!) */ 7491 while (page == NULL && 7492 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7493 page = radix_tree_deref_slot(pagep); 7494 if (unlikely(!page)) 7495 break; 7496 7497 if (radix_tree_exception(page)) { 7498 if (radix_tree_deref_retry(page)) { 7499 page = NULL; 7500 continue; 7501 } 7502 /* 7503 * Otherwise, shmem/tmpfs must be storing a swap entry 7504 * here as an exceptional entry: so return it without 7505 * attempting to raise page count. 7506 */ 7507 page = NULL; 7508 break; /* TODO: Is this relevant for this use case? */ 7509 } 7510 7511 if (!page_cache_get_speculative(page)) { 7512 page = NULL; 7513 continue; 7514 } 7515 7516 /* 7517 * Has the page moved? 7518 * This is part of the lockless pagecache protocol. See 7519 * include/linux/pagemap.h for details. 7520 */ 7521 if (unlikely(page != *pagep)) { 7522 put_page(page); 7523 page = NULL; 7524 } 7525 } 7526 7527 if (page) { 7528 if (page->index <= end_idx) 7529 found = true; 7530 put_page(page); 7531 } 7532 7533 rcu_read_unlock(); 7534 return found; 7535 } 7536 lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,int writing)7537 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7538 struct extent_state **cached_state, int writing) 7539 { 7540 struct btrfs_ordered_extent *ordered; 7541 int ret = 0; 7542 7543 while (1) { 7544 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7545 cached_state); 7546 /* 7547 * We're concerned with the entire range that we're going to be 7548 * doing DIO to, so we need to make sure there's no ordered 7549 * extents in this range. 7550 */ 7551 ordered = btrfs_lookup_ordered_range(inode, lockstart, 7552 lockend - lockstart + 1); 7553 7554 /* 7555 * We need to make sure there are no buffered pages in this 7556 * range either, we could have raced between the invalidate in 7557 * generic_file_direct_write and locking the extent. The 7558 * invalidate needs to happen so that reads after a write do not 7559 * get stale data. 7560 */ 7561 if (!ordered && 7562 (!writing || 7563 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7564 break; 7565 7566 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7567 cached_state, GFP_NOFS); 7568 7569 if (ordered) { 7570 /* 7571 * If we are doing a DIO read and the ordered extent we 7572 * found is for a buffered write, we can not wait for it 7573 * to complete and retry, because if we do so we can 7574 * deadlock with concurrent buffered writes on page 7575 * locks. This happens only if our DIO read covers more 7576 * than one extent map, if at this point has already 7577 * created an ordered extent for a previous extent map 7578 * and locked its range in the inode's io tree, and a 7579 * concurrent write against that previous extent map's 7580 * range and this range started (we unlock the ranges 7581 * in the io tree only when the bios complete and 7582 * buffered writes always lock pages before attempting 7583 * to lock range in the io tree). 7584 */ 7585 if (writing || 7586 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7587 btrfs_start_ordered_extent(inode, ordered, 1); 7588 else 7589 ret = -ENOTBLK; 7590 btrfs_put_ordered_extent(ordered); 7591 } else { 7592 /* 7593 * We could trigger writeback for this range (and wait 7594 * for it to complete) and then invalidate the pages for 7595 * this range (through invalidate_inode_pages2_range()), 7596 * but that can lead us to a deadlock with a concurrent 7597 * call to readpages() (a buffered read or a defrag call 7598 * triggered a readahead) on a page lock due to an 7599 * ordered dio extent we created before but did not have 7600 * yet a corresponding bio submitted (whence it can not 7601 * complete), which makes readpages() wait for that 7602 * ordered extent to complete while holding a lock on 7603 * that page. 7604 */ 7605 ret = -ENOTBLK; 7606 } 7607 7608 if (ret) 7609 break; 7610 7611 cond_resched(); 7612 } 7613 7614 return ret; 7615 } 7616 create_pinned_em(struct inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int type)7617 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 7618 u64 len, u64 orig_start, 7619 u64 block_start, u64 block_len, 7620 u64 orig_block_len, u64 ram_bytes, 7621 int type) 7622 { 7623 struct extent_map_tree *em_tree; 7624 struct extent_map *em; 7625 struct btrfs_root *root = BTRFS_I(inode)->root; 7626 int ret; 7627 7628 em_tree = &BTRFS_I(inode)->extent_tree; 7629 em = alloc_extent_map(); 7630 if (!em) 7631 return ERR_PTR(-ENOMEM); 7632 7633 em->start = start; 7634 em->orig_start = orig_start; 7635 em->mod_start = start; 7636 em->mod_len = len; 7637 em->len = len; 7638 em->block_len = block_len; 7639 em->block_start = block_start; 7640 em->bdev = root->fs_info->fs_devices->latest_bdev; 7641 em->orig_block_len = orig_block_len; 7642 em->ram_bytes = ram_bytes; 7643 em->generation = -1; 7644 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7645 if (type == BTRFS_ORDERED_PREALLOC) 7646 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7647 7648 do { 7649 btrfs_drop_extent_cache(inode, em->start, 7650 em->start + em->len - 1, 0); 7651 write_lock(&em_tree->lock); 7652 ret = add_extent_mapping(em_tree, em, 1); 7653 write_unlock(&em_tree->lock); 7654 } while (ret == -EEXIST); 7655 7656 if (ret) { 7657 free_extent_map(em); 7658 return ERR_PTR(ret); 7659 } 7660 7661 return em; 7662 } 7663 adjust_dio_outstanding_extents(struct inode * inode,struct btrfs_dio_data * dio_data,const u64 len)7664 static void adjust_dio_outstanding_extents(struct inode *inode, 7665 struct btrfs_dio_data *dio_data, 7666 const u64 len) 7667 { 7668 unsigned num_extents; 7669 7670 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1, 7671 BTRFS_MAX_EXTENT_SIZE); 7672 /* 7673 * If we have an outstanding_extents count still set then we're 7674 * within our reservation, otherwise we need to adjust our inode 7675 * counter appropriately. 7676 */ 7677 if (dio_data->outstanding_extents >= num_extents) { 7678 dio_data->outstanding_extents -= num_extents; 7679 } else { 7680 /* 7681 * If dio write length has been split due to no large enough 7682 * contiguous space, we need to compensate our inode counter 7683 * appropriately. 7684 */ 7685 u64 num_needed = num_extents - dio_data->outstanding_extents; 7686 7687 spin_lock(&BTRFS_I(inode)->lock); 7688 BTRFS_I(inode)->outstanding_extents += num_needed; 7689 spin_unlock(&BTRFS_I(inode)->lock); 7690 } 7691 } 7692 btrfs_get_blocks_direct(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)7693 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7694 struct buffer_head *bh_result, int create) 7695 { 7696 struct extent_map *em; 7697 struct btrfs_root *root = BTRFS_I(inode)->root; 7698 struct extent_state *cached_state = NULL; 7699 struct btrfs_dio_data *dio_data = NULL; 7700 u64 start = iblock << inode->i_blkbits; 7701 u64 lockstart, lockend; 7702 u64 len = bh_result->b_size; 7703 int unlock_bits = EXTENT_LOCKED; 7704 int ret = 0; 7705 7706 if (create) 7707 unlock_bits |= EXTENT_DIRTY; 7708 else 7709 len = min_t(u64, len, root->sectorsize); 7710 7711 lockstart = start; 7712 lockend = start + len - 1; 7713 7714 if (current->journal_info) { 7715 /* 7716 * Need to pull our outstanding extents and set journal_info to NULL so 7717 * that anything that needs to check if there's a transaction doesn't get 7718 * confused. 7719 */ 7720 dio_data = current->journal_info; 7721 current->journal_info = NULL; 7722 } 7723 7724 /* 7725 * If this errors out it's because we couldn't invalidate pagecache for 7726 * this range and we need to fallback to buffered. 7727 */ 7728 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7729 create)) { 7730 ret = -ENOTBLK; 7731 goto err; 7732 } 7733 7734 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7735 if (IS_ERR(em)) { 7736 ret = PTR_ERR(em); 7737 goto unlock_err; 7738 } 7739 7740 /* 7741 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7742 * io. INLINE is special, and we could probably kludge it in here, but 7743 * it's still buffered so for safety lets just fall back to the generic 7744 * buffered path. 7745 * 7746 * For COMPRESSED we _have_ to read the entire extent in so we can 7747 * decompress it, so there will be buffering required no matter what we 7748 * do, so go ahead and fallback to buffered. 7749 * 7750 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7751 * to buffered IO. Don't blame me, this is the price we pay for using 7752 * the generic code. 7753 */ 7754 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7755 em->block_start == EXTENT_MAP_INLINE) { 7756 free_extent_map(em); 7757 ret = -ENOTBLK; 7758 goto unlock_err; 7759 } 7760 7761 /* Just a good old fashioned hole, return */ 7762 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7763 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7764 free_extent_map(em); 7765 goto unlock_err; 7766 } 7767 7768 /* 7769 * We don't allocate a new extent in the following cases 7770 * 7771 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7772 * existing extent. 7773 * 2) The extent is marked as PREALLOC. We're good to go here and can 7774 * just use the extent. 7775 * 7776 */ 7777 if (!create) { 7778 len = min(len, em->len - (start - em->start)); 7779 lockstart = start + len; 7780 goto unlock; 7781 } 7782 7783 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7784 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7785 em->block_start != EXTENT_MAP_HOLE)) { 7786 int type; 7787 u64 block_start, orig_start, orig_block_len, ram_bytes; 7788 7789 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7790 type = BTRFS_ORDERED_PREALLOC; 7791 else 7792 type = BTRFS_ORDERED_NOCOW; 7793 len = min(len, em->len - (start - em->start)); 7794 block_start = em->block_start + (start - em->start); 7795 7796 if (can_nocow_extent(inode, start, &len, &orig_start, 7797 &orig_block_len, &ram_bytes) == 1 && 7798 btrfs_inc_nocow_writers(root->fs_info, block_start)) { 7799 struct extent_map *em2; 7800 7801 em2 = btrfs_create_dio_extent(inode, start, len, 7802 orig_start, block_start, 7803 len, orig_block_len, 7804 ram_bytes, type); 7805 btrfs_dec_nocow_writers(root->fs_info, block_start); 7806 if (type == BTRFS_ORDERED_PREALLOC) { 7807 free_extent_map(em); 7808 em = em2; 7809 } 7810 if (em2 && IS_ERR(em2)) { 7811 ret = PTR_ERR(em2); 7812 goto unlock_err; 7813 } 7814 /* 7815 * For inode marked NODATACOW or extent marked PREALLOC, 7816 * use the existing or preallocated extent, so does not 7817 * need to adjust btrfs_space_info's bytes_may_use. 7818 */ 7819 btrfs_free_reserved_data_space_noquota(inode, 7820 start, len); 7821 goto unlock; 7822 } 7823 } 7824 7825 /* 7826 * this will cow the extent, reset the len in case we changed 7827 * it above 7828 */ 7829 len = bh_result->b_size; 7830 free_extent_map(em); 7831 em = btrfs_new_extent_direct(inode, start, len); 7832 if (IS_ERR(em)) { 7833 ret = PTR_ERR(em); 7834 goto unlock_err; 7835 } 7836 len = min(len, em->len - (start - em->start)); 7837 unlock: 7838 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7839 inode->i_blkbits; 7840 bh_result->b_size = len; 7841 bh_result->b_bdev = em->bdev; 7842 set_buffer_mapped(bh_result); 7843 if (create) { 7844 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7845 set_buffer_new(bh_result); 7846 7847 /* 7848 * Need to update the i_size under the extent lock so buffered 7849 * readers will get the updated i_size when we unlock. 7850 */ 7851 if (start + len > i_size_read(inode)) 7852 i_size_write(inode, start + len); 7853 7854 adjust_dio_outstanding_extents(inode, dio_data, len); 7855 WARN_ON(dio_data->reserve < len); 7856 dio_data->reserve -= len; 7857 dio_data->unsubmitted_oe_range_end = start + len; 7858 current->journal_info = dio_data; 7859 } 7860 7861 /* 7862 * In the case of write we need to clear and unlock the entire range, 7863 * in the case of read we need to unlock only the end area that we 7864 * aren't using if there is any left over space. 7865 */ 7866 if (lockstart < lockend) { 7867 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7868 lockend, unlock_bits, 1, 0, 7869 &cached_state, GFP_NOFS); 7870 } else { 7871 free_extent_state(cached_state); 7872 } 7873 7874 free_extent_map(em); 7875 7876 return 0; 7877 7878 unlock_err: 7879 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7880 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7881 err: 7882 if (dio_data) 7883 current->journal_info = dio_data; 7884 /* 7885 * Compensate the delalloc release we do in btrfs_direct_IO() when we 7886 * write less data then expected, so that we don't underflow our inode's 7887 * outstanding extents counter. 7888 */ 7889 if (create && dio_data) 7890 adjust_dio_outstanding_extents(inode, dio_data, len); 7891 7892 return ret; 7893 } 7894 submit_dio_repair_bio(struct inode * inode,struct bio * bio,int mirror_num)7895 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7896 int mirror_num) 7897 { 7898 struct btrfs_root *root = BTRFS_I(inode)->root; 7899 int ret; 7900 7901 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7902 7903 bio_get(bio); 7904 7905 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 7906 BTRFS_WQ_ENDIO_DIO_REPAIR); 7907 if (ret) 7908 goto err; 7909 7910 ret = btrfs_map_bio(root, bio, mirror_num, 0); 7911 err: 7912 bio_put(bio); 7913 return ret; 7914 } 7915 btrfs_check_dio_repairable(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,int failed_mirror)7916 static int btrfs_check_dio_repairable(struct inode *inode, 7917 struct bio *failed_bio, 7918 struct io_failure_record *failrec, 7919 int failed_mirror) 7920 { 7921 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7922 int num_copies; 7923 7924 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7925 if (num_copies == 1) { 7926 /* 7927 * we only have a single copy of the data, so don't bother with 7928 * all the retry and error correction code that follows. no 7929 * matter what the error is, it is very likely to persist. 7930 */ 7931 btrfs_debug(fs_info, 7932 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7933 num_copies, failrec->this_mirror, failed_mirror); 7934 return 0; 7935 } 7936 7937 failrec->failed_mirror = failed_mirror; 7938 failrec->this_mirror++; 7939 if (failrec->this_mirror == failed_mirror) 7940 failrec->this_mirror++; 7941 7942 if (failrec->this_mirror > num_copies) { 7943 btrfs_debug(fs_info, 7944 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7945 num_copies, failrec->this_mirror, failed_mirror); 7946 return 0; 7947 } 7948 7949 return 1; 7950 } 7951 dio_read_error(struct inode * inode,struct bio * failed_bio,struct page * page,unsigned int pgoff,u64 start,u64 end,int failed_mirror,bio_end_io_t * repair_endio,void * repair_arg)7952 static int dio_read_error(struct inode *inode, struct bio *failed_bio, 7953 struct page *page, unsigned int pgoff, 7954 u64 start, u64 end, int failed_mirror, 7955 bio_end_io_t *repair_endio, void *repair_arg) 7956 { 7957 struct io_failure_record *failrec; 7958 struct bio *bio; 7959 int isector; 7960 int read_mode; 7961 int ret; 7962 7963 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7964 7965 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7966 if (ret) 7967 return ret; 7968 7969 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7970 failed_mirror); 7971 if (!ret) { 7972 free_io_failure(inode, failrec); 7973 return -EIO; 7974 } 7975 7976 if ((failed_bio->bi_vcnt > 1) 7977 || (failed_bio->bi_io_vec->bv_len 7978 > BTRFS_I(inode)->root->sectorsize)) 7979 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 7980 else 7981 read_mode = READ_SYNC; 7982 7983 isector = start - btrfs_io_bio(failed_bio)->logical; 7984 isector >>= inode->i_sb->s_blocksize_bits; 7985 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7986 pgoff, isector, repair_endio, repair_arg); 7987 if (!bio) { 7988 free_io_failure(inode, failrec); 7989 return -EIO; 7990 } 7991 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 7992 7993 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7994 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n", 7995 read_mode, failrec->this_mirror, failrec->in_validation); 7996 7997 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7998 if (ret) { 7999 free_io_failure(inode, failrec); 8000 bio_put(bio); 8001 } 8002 8003 return ret; 8004 } 8005 8006 struct btrfs_retry_complete { 8007 struct completion done; 8008 struct inode *inode; 8009 u64 start; 8010 int uptodate; 8011 }; 8012 btrfs_retry_endio_nocsum(struct bio * bio)8013 static void btrfs_retry_endio_nocsum(struct bio *bio) 8014 { 8015 struct btrfs_retry_complete *done = bio->bi_private; 8016 struct inode *inode; 8017 struct bio_vec *bvec; 8018 int i; 8019 8020 if (bio->bi_error) 8021 goto end; 8022 8023 ASSERT(bio->bi_vcnt == 1); 8024 inode = bio->bi_io_vec->bv_page->mapping->host; 8025 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize); 8026 8027 done->uptodate = 1; 8028 bio_for_each_segment_all(bvec, bio, i) 8029 clean_io_failure(done->inode, done->start, bvec->bv_page, 0); 8030 end: 8031 complete(&done->done); 8032 bio_put(bio); 8033 } 8034 __btrfs_correct_data_nocsum(struct inode * inode,struct btrfs_io_bio * io_bio)8035 static int __btrfs_correct_data_nocsum(struct inode *inode, 8036 struct btrfs_io_bio *io_bio) 8037 { 8038 struct btrfs_fs_info *fs_info; 8039 struct bio_vec *bvec; 8040 struct btrfs_retry_complete done; 8041 u64 start; 8042 unsigned int pgoff; 8043 u32 sectorsize; 8044 int nr_sectors; 8045 int i; 8046 int ret; 8047 8048 fs_info = BTRFS_I(inode)->root->fs_info; 8049 sectorsize = BTRFS_I(inode)->root->sectorsize; 8050 8051 start = io_bio->logical; 8052 done.inode = inode; 8053 8054 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 8055 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 8056 pgoff = bvec->bv_offset; 8057 8058 next_block_or_try_again: 8059 done.uptodate = 0; 8060 done.start = start; 8061 init_completion(&done.done); 8062 8063 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 8064 pgoff, start, start + sectorsize - 1, 8065 io_bio->mirror_num, 8066 btrfs_retry_endio_nocsum, &done); 8067 if (ret) 8068 return ret; 8069 8070 wait_for_completion(&done.done); 8071 8072 if (!done.uptodate) { 8073 /* We might have another mirror, so try again */ 8074 goto next_block_or_try_again; 8075 } 8076 8077 start += sectorsize; 8078 8079 nr_sectors--; 8080 if (nr_sectors) { 8081 pgoff += sectorsize; 8082 ASSERT(pgoff < PAGE_SIZE); 8083 goto next_block_or_try_again; 8084 } 8085 } 8086 8087 return 0; 8088 } 8089 btrfs_retry_endio(struct bio * bio)8090 static void btrfs_retry_endio(struct bio *bio) 8091 { 8092 struct btrfs_retry_complete *done = bio->bi_private; 8093 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8094 struct inode *inode; 8095 struct bio_vec *bvec; 8096 u64 start; 8097 int uptodate; 8098 int ret; 8099 int i; 8100 8101 if (bio->bi_error) 8102 goto end; 8103 8104 uptodate = 1; 8105 8106 start = done->start; 8107 8108 ASSERT(bio->bi_vcnt == 1); 8109 inode = bio->bi_io_vec->bv_page->mapping->host; 8110 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize); 8111 8112 bio_for_each_segment_all(bvec, bio, i) { 8113 ret = __readpage_endio_check(done->inode, io_bio, i, 8114 bvec->bv_page, bvec->bv_offset, 8115 done->start, bvec->bv_len); 8116 if (!ret) 8117 clean_io_failure(done->inode, done->start, 8118 bvec->bv_page, bvec->bv_offset); 8119 else 8120 uptodate = 0; 8121 } 8122 8123 done->uptodate = uptodate; 8124 end: 8125 complete(&done->done); 8126 bio_put(bio); 8127 } 8128 __btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,int err)8129 static int __btrfs_subio_endio_read(struct inode *inode, 8130 struct btrfs_io_bio *io_bio, int err) 8131 { 8132 struct btrfs_fs_info *fs_info; 8133 struct bio_vec *bvec; 8134 struct btrfs_retry_complete done; 8135 u64 start; 8136 u64 offset = 0; 8137 u32 sectorsize; 8138 int nr_sectors; 8139 unsigned int pgoff; 8140 int csum_pos; 8141 int i; 8142 int ret; 8143 8144 fs_info = BTRFS_I(inode)->root->fs_info; 8145 sectorsize = BTRFS_I(inode)->root->sectorsize; 8146 8147 err = 0; 8148 start = io_bio->logical; 8149 done.inode = inode; 8150 8151 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 8152 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 8153 8154 pgoff = bvec->bv_offset; 8155 next_block: 8156 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8157 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8158 bvec->bv_page, pgoff, start, 8159 sectorsize); 8160 if (likely(!ret)) 8161 goto next; 8162 try_again: 8163 done.uptodate = 0; 8164 done.start = start; 8165 init_completion(&done.done); 8166 8167 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 8168 pgoff, start, start + sectorsize - 1, 8169 io_bio->mirror_num, 8170 btrfs_retry_endio, &done); 8171 if (ret) { 8172 err = ret; 8173 goto next; 8174 } 8175 8176 wait_for_completion(&done.done); 8177 8178 if (!done.uptodate) { 8179 /* We might have another mirror, so try again */ 8180 goto try_again; 8181 } 8182 next: 8183 offset += sectorsize; 8184 start += sectorsize; 8185 8186 ASSERT(nr_sectors); 8187 8188 nr_sectors--; 8189 if (nr_sectors) { 8190 pgoff += sectorsize; 8191 ASSERT(pgoff < PAGE_SIZE); 8192 goto next_block; 8193 } 8194 } 8195 8196 return err; 8197 } 8198 btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,int err)8199 static int btrfs_subio_endio_read(struct inode *inode, 8200 struct btrfs_io_bio *io_bio, int err) 8201 { 8202 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8203 8204 if (skip_csum) { 8205 if (unlikely(err)) 8206 return __btrfs_correct_data_nocsum(inode, io_bio); 8207 else 8208 return 0; 8209 } else { 8210 return __btrfs_subio_endio_read(inode, io_bio, err); 8211 } 8212 } 8213 btrfs_endio_direct_read(struct bio * bio)8214 static void btrfs_endio_direct_read(struct bio *bio) 8215 { 8216 struct btrfs_dio_private *dip = bio->bi_private; 8217 struct inode *inode = dip->inode; 8218 struct bio *dio_bio; 8219 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8220 int err = bio->bi_error; 8221 8222 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8223 err = btrfs_subio_endio_read(inode, io_bio, err); 8224 8225 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8226 dip->logical_offset + dip->bytes - 1); 8227 dio_bio = dip->dio_bio; 8228 8229 kfree(dip); 8230 8231 dio_bio->bi_error = bio->bi_error; 8232 dio_end_io(dio_bio, bio->bi_error); 8233 8234 if (io_bio->end_io) 8235 io_bio->end_io(io_bio, err); 8236 bio_put(bio); 8237 } 8238 btrfs_endio_direct_write_update_ordered(struct inode * inode,const u64 offset,const u64 bytes,const int uptodate)8239 static void btrfs_endio_direct_write_update_ordered(struct inode *inode, 8240 const u64 offset, 8241 const u64 bytes, 8242 const int uptodate) 8243 { 8244 struct btrfs_root *root = BTRFS_I(inode)->root; 8245 struct btrfs_ordered_extent *ordered = NULL; 8246 u64 ordered_offset = offset; 8247 u64 ordered_bytes = bytes; 8248 int ret; 8249 8250 again: 8251 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 8252 &ordered_offset, 8253 ordered_bytes, 8254 uptodate); 8255 if (!ret) 8256 goto out_test; 8257 8258 btrfs_init_work(&ordered->work, btrfs_endio_write_helper, 8259 finish_ordered_fn, NULL, NULL); 8260 btrfs_queue_work(root->fs_info->endio_write_workers, 8261 &ordered->work); 8262 out_test: 8263 /* 8264 * our bio might span multiple ordered extents. If we haven't 8265 * completed the accounting for the whole dio, go back and try again 8266 */ 8267 if (ordered_offset < offset + bytes) { 8268 ordered_bytes = offset + bytes - ordered_offset; 8269 ordered = NULL; 8270 goto again; 8271 } 8272 } 8273 btrfs_endio_direct_write(struct bio * bio)8274 static void btrfs_endio_direct_write(struct bio *bio) 8275 { 8276 struct btrfs_dio_private *dip = bio->bi_private; 8277 struct bio *dio_bio = dip->dio_bio; 8278 8279 btrfs_endio_direct_write_update_ordered(dip->inode, 8280 dip->logical_offset, 8281 dip->bytes, 8282 !bio->bi_error); 8283 8284 kfree(dip); 8285 8286 dio_bio->bi_error = bio->bi_error; 8287 dio_end_io(dio_bio, bio->bi_error); 8288 bio_put(bio); 8289 } 8290 __btrfs_submit_bio_start_direct_io(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 offset)8291 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, 8292 struct bio *bio, int mirror_num, 8293 unsigned long bio_flags, u64 offset) 8294 { 8295 int ret; 8296 struct btrfs_root *root = BTRFS_I(inode)->root; 8297 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 8298 BUG_ON(ret); /* -ENOMEM */ 8299 return 0; 8300 } 8301 btrfs_end_dio_bio(struct bio * bio)8302 static void btrfs_end_dio_bio(struct bio *bio) 8303 { 8304 struct btrfs_dio_private *dip = bio->bi_private; 8305 int err = bio->bi_error; 8306 8307 if (err) 8308 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8309 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8310 btrfs_ino(dip->inode), bio_op(bio), bio->bi_opf, 8311 (unsigned long long)bio->bi_iter.bi_sector, 8312 bio->bi_iter.bi_size, err); 8313 8314 if (dip->subio_endio) 8315 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8316 8317 if (err) { 8318 dip->errors = 1; 8319 8320 /* 8321 * before atomic variable goto zero, we must make sure 8322 * dip->errors is perceived to be set. 8323 */ 8324 smp_mb__before_atomic(); 8325 } 8326 8327 /* if there are more bios still pending for this dio, just exit */ 8328 if (!atomic_dec_and_test(&dip->pending_bios)) 8329 goto out; 8330 8331 if (dip->errors) { 8332 bio_io_error(dip->orig_bio); 8333 } else { 8334 dip->dio_bio->bi_error = 0; 8335 bio_endio(dip->orig_bio); 8336 } 8337 out: 8338 bio_put(bio); 8339 } 8340 btrfs_dio_bio_alloc(struct block_device * bdev,u64 first_sector,gfp_t gfp_flags)8341 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 8342 u64 first_sector, gfp_t gfp_flags) 8343 { 8344 struct bio *bio; 8345 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags); 8346 if (bio) 8347 bio_associate_current(bio); 8348 return bio; 8349 } 8350 btrfs_lookup_and_bind_dio_csum(struct btrfs_root * root,struct inode * inode,struct btrfs_dio_private * dip,struct bio * bio,u64 file_offset)8351 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root, 8352 struct inode *inode, 8353 struct btrfs_dio_private *dip, 8354 struct bio *bio, 8355 u64 file_offset) 8356 { 8357 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8358 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8359 int ret; 8360 8361 /* 8362 * We load all the csum data we need when we submit 8363 * the first bio to reduce the csum tree search and 8364 * contention. 8365 */ 8366 if (dip->logical_offset == file_offset) { 8367 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio, 8368 file_offset); 8369 if (ret) 8370 return ret; 8371 } 8372 8373 if (bio == dip->orig_bio) 8374 return 0; 8375 8376 file_offset -= dip->logical_offset; 8377 file_offset >>= inode->i_sb->s_blocksize_bits; 8378 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8379 8380 return 0; 8381 } 8382 __btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,u64 file_offset,int skip_sum,int async_submit)8383 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 8384 u64 file_offset, int skip_sum, 8385 int async_submit) 8386 { 8387 struct btrfs_dio_private *dip = bio->bi_private; 8388 bool write = bio_op(bio) == REQ_OP_WRITE; 8389 struct btrfs_root *root = BTRFS_I(inode)->root; 8390 int ret; 8391 8392 if (async_submit) 8393 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8394 8395 bio_get(bio); 8396 8397 if (!write) { 8398 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 8399 BTRFS_WQ_ENDIO_DATA); 8400 if (ret) 8401 goto err; 8402 } 8403 8404 if (skip_sum) 8405 goto map; 8406 8407 if (write && async_submit) { 8408 ret = btrfs_wq_submit_bio(root->fs_info, 8409 inode, bio, 0, 0, file_offset, 8410 __btrfs_submit_bio_start_direct_io, 8411 __btrfs_submit_bio_done); 8412 goto err; 8413 } else if (write) { 8414 /* 8415 * If we aren't doing async submit, calculate the csum of the 8416 * bio now. 8417 */ 8418 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 8419 if (ret) 8420 goto err; 8421 } else { 8422 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio, 8423 file_offset); 8424 if (ret) 8425 goto err; 8426 } 8427 map: 8428 ret = btrfs_map_bio(root, bio, 0, async_submit); 8429 err: 8430 bio_put(bio); 8431 return ret; 8432 } 8433 btrfs_submit_direct_hook(struct btrfs_dio_private * dip,int skip_sum)8434 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip, 8435 int skip_sum) 8436 { 8437 struct inode *inode = dip->inode; 8438 struct btrfs_root *root = BTRFS_I(inode)->root; 8439 struct bio *bio; 8440 struct bio *orig_bio = dip->orig_bio; 8441 struct bio_vec *bvec = orig_bio->bi_io_vec; 8442 u64 start_sector = orig_bio->bi_iter.bi_sector; 8443 u64 file_offset = dip->logical_offset; 8444 u64 submit_len = 0; 8445 u64 map_length; 8446 u32 blocksize = root->sectorsize; 8447 int async_submit = 0; 8448 int nr_sectors; 8449 int ret; 8450 int i; 8451 8452 map_length = orig_bio->bi_iter.bi_size; 8453 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio), 8454 start_sector << 9, &map_length, NULL, 0); 8455 if (ret) 8456 return -EIO; 8457 8458 if (map_length >= orig_bio->bi_iter.bi_size) { 8459 bio = orig_bio; 8460 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8461 goto submit; 8462 } 8463 8464 /* async crcs make it difficult to collect full stripe writes. */ 8465 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8466 async_submit = 0; 8467 else 8468 async_submit = 1; 8469 8470 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 8471 if (!bio) 8472 return -ENOMEM; 8473 8474 bio_set_op_attrs(bio, bio_op(orig_bio), bio_flags(orig_bio)); 8475 bio->bi_private = dip; 8476 bio->bi_end_io = btrfs_end_dio_bio; 8477 btrfs_io_bio(bio)->logical = file_offset; 8478 atomic_inc(&dip->pending_bios); 8479 8480 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 8481 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len); 8482 i = 0; 8483 next_block: 8484 if (unlikely(map_length < submit_len + blocksize || 8485 bio_add_page(bio, bvec->bv_page, blocksize, 8486 bvec->bv_offset + (i * blocksize)) < blocksize)) { 8487 /* 8488 * inc the count before we submit the bio so 8489 * we know the end IO handler won't happen before 8490 * we inc the count. Otherwise, the dip might get freed 8491 * before we're done setting it up 8492 */ 8493 atomic_inc(&dip->pending_bios); 8494 ret = __btrfs_submit_dio_bio(bio, inode, 8495 file_offset, skip_sum, 8496 async_submit); 8497 if (ret) { 8498 bio_put(bio); 8499 atomic_dec(&dip->pending_bios); 8500 goto out_err; 8501 } 8502 8503 start_sector += submit_len >> 9; 8504 file_offset += submit_len; 8505 8506 submit_len = 0; 8507 8508 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 8509 start_sector, GFP_NOFS); 8510 if (!bio) 8511 goto out_err; 8512 bio_set_op_attrs(bio, bio_op(orig_bio), 8513 bio_flags(orig_bio)); 8514 bio->bi_private = dip; 8515 bio->bi_end_io = btrfs_end_dio_bio; 8516 btrfs_io_bio(bio)->logical = file_offset; 8517 8518 map_length = orig_bio->bi_iter.bi_size; 8519 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio), 8520 start_sector << 9, 8521 &map_length, NULL, 0); 8522 if (ret) { 8523 bio_put(bio); 8524 goto out_err; 8525 } 8526 8527 goto next_block; 8528 } else { 8529 submit_len += blocksize; 8530 if (--nr_sectors) { 8531 i++; 8532 goto next_block; 8533 } 8534 bvec++; 8535 } 8536 } 8537 8538 submit: 8539 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum, 8540 async_submit); 8541 if (!ret) 8542 return 0; 8543 8544 bio_put(bio); 8545 out_err: 8546 dip->errors = 1; 8547 /* 8548 * before atomic variable goto zero, we must 8549 * make sure dip->errors is perceived to be set. 8550 */ 8551 smp_mb__before_atomic(); 8552 if (atomic_dec_and_test(&dip->pending_bios)) 8553 bio_io_error(dip->orig_bio); 8554 8555 /* bio_end_io() will handle error, so we needn't return it */ 8556 return 0; 8557 } 8558 btrfs_submit_direct(struct bio * dio_bio,struct inode * inode,loff_t file_offset)8559 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8560 loff_t file_offset) 8561 { 8562 struct btrfs_dio_private *dip = NULL; 8563 struct bio *io_bio = NULL; 8564 struct btrfs_io_bio *btrfs_bio; 8565 int skip_sum; 8566 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8567 int ret = 0; 8568 8569 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8570 8571 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 8572 if (!io_bio) { 8573 ret = -ENOMEM; 8574 goto free_ordered; 8575 } 8576 8577 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8578 if (!dip) { 8579 ret = -ENOMEM; 8580 goto free_ordered; 8581 } 8582 8583 dip->private = dio_bio->bi_private; 8584 dip->inode = inode; 8585 dip->logical_offset = file_offset; 8586 dip->bytes = dio_bio->bi_iter.bi_size; 8587 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8588 io_bio->bi_private = dip; 8589 dip->orig_bio = io_bio; 8590 dip->dio_bio = dio_bio; 8591 atomic_set(&dip->pending_bios, 0); 8592 btrfs_bio = btrfs_io_bio(io_bio); 8593 btrfs_bio->logical = file_offset; 8594 8595 if (write) { 8596 io_bio->bi_end_io = btrfs_endio_direct_write; 8597 } else { 8598 io_bio->bi_end_io = btrfs_endio_direct_read; 8599 dip->subio_endio = btrfs_subio_endio_read; 8600 } 8601 8602 /* 8603 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8604 * even if we fail to submit a bio, because in such case we do the 8605 * corresponding error handling below and it must not be done a second 8606 * time by btrfs_direct_IO(). 8607 */ 8608 if (write) { 8609 struct btrfs_dio_data *dio_data = current->journal_info; 8610 8611 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8612 dip->bytes; 8613 dio_data->unsubmitted_oe_range_start = 8614 dio_data->unsubmitted_oe_range_end; 8615 } 8616 8617 ret = btrfs_submit_direct_hook(dip, skip_sum); 8618 if (!ret) 8619 return; 8620 8621 if (btrfs_bio->end_io) 8622 btrfs_bio->end_io(btrfs_bio, ret); 8623 8624 free_ordered: 8625 /* 8626 * If we arrived here it means either we failed to submit the dip 8627 * or we either failed to clone the dio_bio or failed to allocate the 8628 * dip. If we cloned the dio_bio and allocated the dip, we can just 8629 * call bio_endio against our io_bio so that we get proper resource 8630 * cleanup if we fail to submit the dip, otherwise, we must do the 8631 * same as btrfs_endio_direct_[write|read] because we can't call these 8632 * callbacks - they require an allocated dip and a clone of dio_bio. 8633 */ 8634 if (io_bio && dip) { 8635 io_bio->bi_error = -EIO; 8636 bio_endio(io_bio); 8637 /* 8638 * The end io callbacks free our dip, do the final put on io_bio 8639 * and all the cleanup and final put for dio_bio (through 8640 * dio_end_io()). 8641 */ 8642 dip = NULL; 8643 io_bio = NULL; 8644 } else { 8645 if (write) 8646 btrfs_endio_direct_write_update_ordered(inode, 8647 file_offset, 8648 dio_bio->bi_iter.bi_size, 8649 0); 8650 else 8651 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8652 file_offset + dio_bio->bi_iter.bi_size - 1); 8653 8654 dio_bio->bi_error = -EIO; 8655 /* 8656 * Releases and cleans up our dio_bio, no need to bio_put() 8657 * nor bio_endio()/bio_io_error() against dio_bio. 8658 */ 8659 dio_end_io(dio_bio, ret); 8660 } 8661 if (io_bio) 8662 bio_put(io_bio); 8663 kfree(dip); 8664 } 8665 check_direct_IO(struct btrfs_root * root,struct kiocb * iocb,const struct iov_iter * iter,loff_t offset)8666 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb, 8667 const struct iov_iter *iter, loff_t offset) 8668 { 8669 int seg; 8670 int i; 8671 unsigned blocksize_mask = root->sectorsize - 1; 8672 ssize_t retval = -EINVAL; 8673 8674 if (offset & blocksize_mask) 8675 goto out; 8676 8677 if (iov_iter_alignment(iter) & blocksize_mask) 8678 goto out; 8679 8680 /* If this is a write we don't need to check anymore */ 8681 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8682 return 0; 8683 /* 8684 * Check to make sure we don't have duplicate iov_base's in this 8685 * iovec, if so return EINVAL, otherwise we'll get csum errors 8686 * when reading back. 8687 */ 8688 for (seg = 0; seg < iter->nr_segs; seg++) { 8689 for (i = seg + 1; i < iter->nr_segs; i++) { 8690 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8691 goto out; 8692 } 8693 } 8694 retval = 0; 8695 out: 8696 return retval; 8697 } 8698 btrfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)8699 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8700 { 8701 struct file *file = iocb->ki_filp; 8702 struct inode *inode = file->f_mapping->host; 8703 struct btrfs_root *root = BTRFS_I(inode)->root; 8704 struct btrfs_dio_data dio_data = { 0 }; 8705 loff_t offset = iocb->ki_pos; 8706 size_t count = 0; 8707 int flags = 0; 8708 bool wakeup = true; 8709 bool relock = false; 8710 ssize_t ret; 8711 8712 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset)) 8713 return 0; 8714 8715 inode_dio_begin(inode); 8716 smp_mb__after_atomic(); 8717 8718 /* 8719 * The generic stuff only does filemap_write_and_wait_range, which 8720 * isn't enough if we've written compressed pages to this area, so 8721 * we need to flush the dirty pages again to make absolutely sure 8722 * that any outstanding dirty pages are on disk. 8723 */ 8724 count = iov_iter_count(iter); 8725 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8726 &BTRFS_I(inode)->runtime_flags)) 8727 filemap_fdatawrite_range(inode->i_mapping, offset, 8728 offset + count - 1); 8729 8730 if (iov_iter_rw(iter) == WRITE) { 8731 /* 8732 * If the write DIO is beyond the EOF, we need update 8733 * the isize, but it is protected by i_mutex. So we can 8734 * not unlock the i_mutex at this case. 8735 */ 8736 if (offset + count <= inode->i_size) { 8737 inode_unlock(inode); 8738 relock = true; 8739 } 8740 ret = btrfs_delalloc_reserve_space(inode, offset, count); 8741 if (ret) 8742 goto out; 8743 dio_data.outstanding_extents = div64_u64(count + 8744 BTRFS_MAX_EXTENT_SIZE - 1, 8745 BTRFS_MAX_EXTENT_SIZE); 8746 8747 /* 8748 * We need to know how many extents we reserved so that we can 8749 * do the accounting properly if we go over the number we 8750 * originally calculated. Abuse current->journal_info for this. 8751 */ 8752 dio_data.reserve = round_up(count, root->sectorsize); 8753 dio_data.unsubmitted_oe_range_start = (u64)offset; 8754 dio_data.unsubmitted_oe_range_end = (u64)offset; 8755 current->journal_info = &dio_data; 8756 down_read(&BTRFS_I(inode)->dio_sem); 8757 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8758 &BTRFS_I(inode)->runtime_flags)) { 8759 inode_dio_end(inode); 8760 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8761 wakeup = false; 8762 } 8763 8764 ret = __blockdev_direct_IO(iocb, inode, 8765 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 8766 iter, btrfs_get_blocks_direct, NULL, 8767 btrfs_submit_direct, flags); 8768 if (iov_iter_rw(iter) == WRITE) { 8769 up_read(&BTRFS_I(inode)->dio_sem); 8770 current->journal_info = NULL; 8771 if (ret < 0 && ret != -EIOCBQUEUED) { 8772 if (dio_data.reserve) 8773 btrfs_delalloc_release_space(inode, offset, 8774 dio_data.reserve); 8775 /* 8776 * On error we might have left some ordered extents 8777 * without submitting corresponding bios for them, so 8778 * cleanup them up to avoid other tasks getting them 8779 * and waiting for them to complete forever. 8780 */ 8781 if (dio_data.unsubmitted_oe_range_start < 8782 dio_data.unsubmitted_oe_range_end) 8783 btrfs_endio_direct_write_update_ordered(inode, 8784 dio_data.unsubmitted_oe_range_start, 8785 dio_data.unsubmitted_oe_range_end - 8786 dio_data.unsubmitted_oe_range_start, 8787 0); 8788 } else if (ret >= 0 && (size_t)ret < count) 8789 btrfs_delalloc_release_space(inode, offset, 8790 count - (size_t)ret); 8791 } 8792 out: 8793 if (wakeup) 8794 inode_dio_end(inode); 8795 if (relock) 8796 inode_lock(inode); 8797 8798 return ret; 8799 } 8800 8801 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8802 btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)8803 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8804 __u64 start, __u64 len) 8805 { 8806 int ret; 8807 8808 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8809 if (ret) 8810 return ret; 8811 8812 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8813 } 8814 btrfs_readpage(struct file * file,struct page * page)8815 int btrfs_readpage(struct file *file, struct page *page) 8816 { 8817 struct extent_io_tree *tree; 8818 tree = &BTRFS_I(page->mapping->host)->io_tree; 8819 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8820 } 8821 btrfs_writepage(struct page * page,struct writeback_control * wbc)8822 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8823 { 8824 struct extent_io_tree *tree; 8825 struct inode *inode = page->mapping->host; 8826 int ret; 8827 8828 if (current->flags & PF_MEMALLOC) { 8829 redirty_page_for_writepage(wbc, page); 8830 unlock_page(page); 8831 return 0; 8832 } 8833 8834 /* 8835 * If we are under memory pressure we will call this directly from the 8836 * VM, we need to make sure we have the inode referenced for the ordered 8837 * extent. If not just return like we didn't do anything. 8838 */ 8839 if (!igrab(inode)) { 8840 redirty_page_for_writepage(wbc, page); 8841 return AOP_WRITEPAGE_ACTIVATE; 8842 } 8843 tree = &BTRFS_I(page->mapping->host)->io_tree; 8844 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8845 btrfs_add_delayed_iput(inode); 8846 return ret; 8847 } 8848 btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)8849 static int btrfs_writepages(struct address_space *mapping, 8850 struct writeback_control *wbc) 8851 { 8852 struct extent_io_tree *tree; 8853 8854 tree = &BTRFS_I(mapping->host)->io_tree; 8855 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8856 } 8857 8858 static int btrfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)8859 btrfs_readpages(struct file *file, struct address_space *mapping, 8860 struct list_head *pages, unsigned nr_pages) 8861 { 8862 struct extent_io_tree *tree; 8863 tree = &BTRFS_I(mapping->host)->io_tree; 8864 return extent_readpages(tree, mapping, pages, nr_pages, 8865 btrfs_get_extent); 8866 } __btrfs_releasepage(struct page * page,gfp_t gfp_flags)8867 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8868 { 8869 struct extent_io_tree *tree; 8870 struct extent_map_tree *map; 8871 int ret; 8872 8873 tree = &BTRFS_I(page->mapping->host)->io_tree; 8874 map = &BTRFS_I(page->mapping->host)->extent_tree; 8875 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8876 if (ret == 1) { 8877 ClearPagePrivate(page); 8878 set_page_private(page, 0); 8879 put_page(page); 8880 } 8881 return ret; 8882 } 8883 btrfs_releasepage(struct page * page,gfp_t gfp_flags)8884 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8885 { 8886 if (PageWriteback(page) || PageDirty(page)) 8887 return 0; 8888 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 8889 } 8890 btrfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)8891 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8892 unsigned int length) 8893 { 8894 struct inode *inode = page->mapping->host; 8895 struct extent_io_tree *tree; 8896 struct btrfs_ordered_extent *ordered; 8897 struct extent_state *cached_state = NULL; 8898 u64 page_start = page_offset(page); 8899 u64 page_end = page_start + PAGE_SIZE - 1; 8900 u64 start; 8901 u64 end; 8902 int inode_evicting = inode->i_state & I_FREEING; 8903 8904 /* 8905 * we have the page locked, so new writeback can't start, 8906 * and the dirty bit won't be cleared while we are here. 8907 * 8908 * Wait for IO on this page so that we can safely clear 8909 * the PagePrivate2 bit and do ordered accounting 8910 */ 8911 wait_on_page_writeback(page); 8912 8913 tree = &BTRFS_I(inode)->io_tree; 8914 if (offset) { 8915 btrfs_releasepage(page, GFP_NOFS); 8916 return; 8917 } 8918 8919 if (!inode_evicting) 8920 lock_extent_bits(tree, page_start, page_end, &cached_state); 8921 again: 8922 start = page_start; 8923 ordered = btrfs_lookup_ordered_range(inode, start, 8924 page_end - start + 1); 8925 if (ordered) { 8926 end = min(page_end, ordered->file_offset + ordered->len - 1); 8927 /* 8928 * IO on this page will never be started, so we need 8929 * to account for any ordered extents now 8930 */ 8931 if (!inode_evicting) 8932 clear_extent_bit(tree, start, end, 8933 EXTENT_DIRTY | EXTENT_DELALLOC | 8934 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8935 EXTENT_DEFRAG, 1, 0, &cached_state, 8936 GFP_NOFS); 8937 /* 8938 * whoever cleared the private bit is responsible 8939 * for the finish_ordered_io 8940 */ 8941 if (TestClearPagePrivate2(page)) { 8942 struct btrfs_ordered_inode_tree *tree; 8943 u64 new_len; 8944 8945 tree = &BTRFS_I(inode)->ordered_tree; 8946 8947 spin_lock_irq(&tree->lock); 8948 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8949 new_len = start - ordered->file_offset; 8950 if (new_len < ordered->truncated_len) 8951 ordered->truncated_len = new_len; 8952 spin_unlock_irq(&tree->lock); 8953 8954 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8955 start, 8956 end - start + 1, 1)) 8957 btrfs_finish_ordered_io(ordered); 8958 } 8959 btrfs_put_ordered_extent(ordered); 8960 if (!inode_evicting) { 8961 cached_state = NULL; 8962 lock_extent_bits(tree, start, end, 8963 &cached_state); 8964 } 8965 8966 start = end + 1; 8967 if (start < page_end) 8968 goto again; 8969 } 8970 8971 /* 8972 * Qgroup reserved space handler 8973 * Page here will be either 8974 * 1) Already written to disk 8975 * In this case, its reserved space is released from data rsv map 8976 * and will be freed by delayed_ref handler finally. 8977 * So even we call qgroup_free_data(), it won't decrease reserved 8978 * space. 8979 * 2) Not written to disk 8980 * This means the reserved space should be freed here. However, 8981 * if a truncate invalidates the page (by clearing PageDirty) 8982 * and the page is accounted for while allocating extent 8983 * in btrfs_check_data_free_space() we let delayed_ref to 8984 * free the entire extent. 8985 */ 8986 if (PageDirty(page)) 8987 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE); 8988 if (!inode_evicting) { 8989 clear_extent_bit(tree, page_start, page_end, 8990 EXTENT_LOCKED | EXTENT_DIRTY | 8991 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8992 EXTENT_DEFRAG, 1, 1, 8993 &cached_state, GFP_NOFS); 8994 8995 __btrfs_releasepage(page, GFP_NOFS); 8996 } 8997 8998 ClearPageChecked(page); 8999 if (PagePrivate(page)) { 9000 ClearPagePrivate(page); 9001 set_page_private(page, 0); 9002 put_page(page); 9003 } 9004 } 9005 9006 /* 9007 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 9008 * called from a page fault handler when a page is first dirtied. Hence we must 9009 * be careful to check for EOF conditions here. We set the page up correctly 9010 * for a written page which means we get ENOSPC checking when writing into 9011 * holes and correct delalloc and unwritten extent mapping on filesystems that 9012 * support these features. 9013 * 9014 * We are not allowed to take the i_mutex here so we have to play games to 9015 * protect against truncate races as the page could now be beyond EOF. Because 9016 * vmtruncate() writes the inode size before removing pages, once we have the 9017 * page lock we can determine safely if the page is beyond EOF. If it is not 9018 * beyond EOF, then the page is guaranteed safe against truncation until we 9019 * unlock the page. 9020 */ btrfs_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)9021 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 9022 { 9023 struct page *page = vmf->page; 9024 struct inode *inode = file_inode(vma->vm_file); 9025 struct btrfs_root *root = BTRFS_I(inode)->root; 9026 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9027 struct btrfs_ordered_extent *ordered; 9028 struct extent_state *cached_state = NULL; 9029 char *kaddr; 9030 unsigned long zero_start; 9031 loff_t size; 9032 int ret; 9033 int reserved = 0; 9034 u64 reserved_space; 9035 u64 page_start; 9036 u64 page_end; 9037 u64 end; 9038 9039 reserved_space = PAGE_SIZE; 9040 9041 sb_start_pagefault(inode->i_sb); 9042 page_start = page_offset(page); 9043 page_end = page_start + PAGE_SIZE - 1; 9044 end = page_end; 9045 9046 /* 9047 * Reserving delalloc space after obtaining the page lock can lead to 9048 * deadlock. For example, if a dirty page is locked by this function 9049 * and the call to btrfs_delalloc_reserve_space() ends up triggering 9050 * dirty page write out, then the btrfs_writepage() function could 9051 * end up waiting indefinitely to get a lock on the page currently 9052 * being processed by btrfs_page_mkwrite() function. 9053 */ 9054 ret = btrfs_delalloc_reserve_space(inode, page_start, 9055 reserved_space); 9056 if (!ret) { 9057 ret = file_update_time(vma->vm_file); 9058 reserved = 1; 9059 } 9060 if (ret) { 9061 if (ret == -ENOMEM) 9062 ret = VM_FAULT_OOM; 9063 else /* -ENOSPC, -EIO, etc */ 9064 ret = VM_FAULT_SIGBUS; 9065 if (reserved) 9066 goto out; 9067 goto out_noreserve; 9068 } 9069 9070 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 9071 again: 9072 lock_page(page); 9073 size = i_size_read(inode); 9074 9075 if ((page->mapping != inode->i_mapping) || 9076 (page_start >= size)) { 9077 /* page got truncated out from underneath us */ 9078 goto out_unlock; 9079 } 9080 wait_on_page_writeback(page); 9081 9082 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 9083 set_page_extent_mapped(page); 9084 9085 /* 9086 * we can't set the delalloc bits if there are pending ordered 9087 * extents. Drop our locks and wait for them to finish 9088 */ 9089 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end); 9090 if (ordered) { 9091 unlock_extent_cached(io_tree, page_start, page_end, 9092 &cached_state, GFP_NOFS); 9093 unlock_page(page); 9094 btrfs_start_ordered_extent(inode, ordered, 1); 9095 btrfs_put_ordered_extent(ordered); 9096 goto again; 9097 } 9098 9099 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 9100 reserved_space = round_up(size - page_start, root->sectorsize); 9101 if (reserved_space < PAGE_SIZE) { 9102 end = page_start + reserved_space - 1; 9103 spin_lock(&BTRFS_I(inode)->lock); 9104 BTRFS_I(inode)->outstanding_extents++; 9105 spin_unlock(&BTRFS_I(inode)->lock); 9106 btrfs_delalloc_release_space(inode, page_start, 9107 PAGE_SIZE - reserved_space); 9108 } 9109 } 9110 9111 /* 9112 * XXX - page_mkwrite gets called every time the page is dirtied, even 9113 * if it was already dirty, so for space accounting reasons we need to 9114 * clear any delalloc bits for the range we are fixing to save. There 9115 * is probably a better way to do this, but for now keep consistent with 9116 * prepare_pages in the normal write path. 9117 */ 9118 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 9119 EXTENT_DIRTY | EXTENT_DELALLOC | 9120 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 9121 0, 0, &cached_state, GFP_NOFS); 9122 9123 ret = btrfs_set_extent_delalloc(inode, page_start, end, 9124 &cached_state, 0); 9125 if (ret) { 9126 unlock_extent_cached(io_tree, page_start, page_end, 9127 &cached_state, GFP_NOFS); 9128 ret = VM_FAULT_SIGBUS; 9129 goto out_unlock; 9130 } 9131 ret = 0; 9132 9133 /* page is wholly or partially inside EOF */ 9134 if (page_start + PAGE_SIZE > size) 9135 zero_start = size & ~PAGE_MASK; 9136 else 9137 zero_start = PAGE_SIZE; 9138 9139 if (zero_start != PAGE_SIZE) { 9140 kaddr = kmap(page); 9141 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9142 flush_dcache_page(page); 9143 kunmap(page); 9144 } 9145 ClearPageChecked(page); 9146 set_page_dirty(page); 9147 SetPageUptodate(page); 9148 9149 BTRFS_I(inode)->last_trans = root->fs_info->generation; 9150 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9151 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9152 9153 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 9154 9155 out_unlock: 9156 if (!ret) { 9157 sb_end_pagefault(inode->i_sb); 9158 return VM_FAULT_LOCKED; 9159 } 9160 unlock_page(page); 9161 out: 9162 btrfs_delalloc_release_space(inode, page_start, reserved_space); 9163 out_noreserve: 9164 sb_end_pagefault(inode->i_sb); 9165 return ret; 9166 } 9167 btrfs_truncate(struct inode * inode)9168 static int btrfs_truncate(struct inode *inode) 9169 { 9170 struct btrfs_root *root = BTRFS_I(inode)->root; 9171 struct btrfs_block_rsv *rsv; 9172 int ret = 0; 9173 int err = 0; 9174 struct btrfs_trans_handle *trans; 9175 u64 mask = root->sectorsize - 1; 9176 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 9177 9178 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9179 (u64)-1); 9180 if (ret) 9181 return ret; 9182 9183 /* 9184 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have 9185 * 3 things going on here 9186 * 9187 * 1) We need to reserve space for our orphan item and the space to 9188 * delete our orphan item. Lord knows we don't want to have a dangling 9189 * orphan item because we didn't reserve space to remove it. 9190 * 9191 * 2) We need to reserve space to update our inode. 9192 * 9193 * 3) We need to have something to cache all the space that is going to 9194 * be free'd up by the truncate operation, but also have some slack 9195 * space reserved in case it uses space during the truncate (thank you 9196 * very much snapshotting). 9197 * 9198 * And we need these to all be separate. The fact is we can use a lot of 9199 * space doing the truncate, and we have no earthly idea how much space 9200 * we will use, so we need the truncate reservation to be separate so it 9201 * doesn't end up using space reserved for updating the inode or 9202 * removing the orphan item. We also need to be able to stop the 9203 * transaction and start a new one, which means we need to be able to 9204 * update the inode several times, and we have no idea of knowing how 9205 * many times that will be, so we can't just reserve 1 item for the 9206 * entirety of the operation, so that has to be done separately as well. 9207 * Then there is the orphan item, which does indeed need to be held on 9208 * to for the whole operation, and we need nobody to touch this reserved 9209 * space except the orphan code. 9210 * 9211 * So that leaves us with 9212 * 9213 * 1) root->orphan_block_rsv - for the orphan deletion. 9214 * 2) rsv - for the truncate reservation, which we will steal from the 9215 * transaction reservation. 9216 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 9217 * updating the inode. 9218 */ 9219 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 9220 if (!rsv) 9221 return -ENOMEM; 9222 rsv->size = min_size; 9223 rsv->failfast = 1; 9224 9225 /* 9226 * 1 for the truncate slack space 9227 * 1 for updating the inode. 9228 */ 9229 trans = btrfs_start_transaction(root, 2); 9230 if (IS_ERR(trans)) { 9231 err = PTR_ERR(trans); 9232 goto out; 9233 } 9234 9235 /* Migrate the slack space for the truncate to our reserve */ 9236 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 9237 min_size, 0); 9238 BUG_ON(ret); 9239 9240 /* 9241 * So if we truncate and then write and fsync we normally would just 9242 * write the extents that changed, which is a problem if we need to 9243 * first truncate that entire inode. So set this flag so we write out 9244 * all of the extents in the inode to the sync log so we're completely 9245 * safe. 9246 */ 9247 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9248 trans->block_rsv = rsv; 9249 9250 while (1) { 9251 ret = btrfs_truncate_inode_items(trans, root, inode, 9252 inode->i_size, 9253 BTRFS_EXTENT_DATA_KEY); 9254 if (ret != -ENOSPC && ret != -EAGAIN) { 9255 err = ret; 9256 break; 9257 } 9258 9259 trans->block_rsv = &root->fs_info->trans_block_rsv; 9260 ret = btrfs_update_inode(trans, root, inode); 9261 if (ret) { 9262 err = ret; 9263 break; 9264 } 9265 9266 btrfs_end_transaction(trans, root); 9267 btrfs_btree_balance_dirty(root); 9268 9269 trans = btrfs_start_transaction(root, 2); 9270 if (IS_ERR(trans)) { 9271 ret = err = PTR_ERR(trans); 9272 trans = NULL; 9273 break; 9274 } 9275 9276 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 9277 rsv, min_size, 0); 9278 BUG_ON(ret); /* shouldn't happen */ 9279 trans->block_rsv = rsv; 9280 } 9281 9282 if (ret == 0 && inode->i_nlink > 0) { 9283 trans->block_rsv = root->orphan_block_rsv; 9284 ret = btrfs_orphan_del(trans, inode); 9285 if (ret) 9286 err = ret; 9287 } 9288 9289 if (trans) { 9290 trans->block_rsv = &root->fs_info->trans_block_rsv; 9291 ret = btrfs_update_inode(trans, root, inode); 9292 if (ret && !err) 9293 err = ret; 9294 9295 ret = btrfs_end_transaction(trans, root); 9296 btrfs_btree_balance_dirty(root); 9297 } 9298 out: 9299 btrfs_free_block_rsv(root, rsv); 9300 9301 if (ret && !err) 9302 err = ret; 9303 9304 return err; 9305 } 9306 9307 /* 9308 * create a new subvolume directory/inode (helper for the ioctl). 9309 */ btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct btrfs_root * parent_root,u64 new_dirid)9310 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9311 struct btrfs_root *new_root, 9312 struct btrfs_root *parent_root, 9313 u64 new_dirid) 9314 { 9315 struct inode *inode; 9316 int err; 9317 u64 index = 0; 9318 9319 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9320 new_dirid, new_dirid, 9321 S_IFDIR | (~current_umask() & S_IRWXUGO), 9322 &index); 9323 if (IS_ERR(inode)) 9324 return PTR_ERR(inode); 9325 inode->i_op = &btrfs_dir_inode_operations; 9326 inode->i_fop = &btrfs_dir_file_operations; 9327 9328 set_nlink(inode, 1); 9329 btrfs_i_size_write(inode, 0); 9330 unlock_new_inode(inode); 9331 9332 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9333 if (err) 9334 btrfs_err(new_root->fs_info, 9335 "error inheriting subvolume %llu properties: %d", 9336 new_root->root_key.objectid, err); 9337 9338 err = btrfs_update_inode(trans, new_root, inode); 9339 9340 iput(inode); 9341 return err; 9342 } 9343 btrfs_alloc_inode(struct super_block * sb)9344 struct inode *btrfs_alloc_inode(struct super_block *sb) 9345 { 9346 struct btrfs_inode *ei; 9347 struct inode *inode; 9348 9349 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 9350 if (!ei) 9351 return NULL; 9352 9353 ei->root = NULL; 9354 ei->generation = 0; 9355 ei->last_trans = 0; 9356 ei->last_sub_trans = 0; 9357 ei->logged_trans = 0; 9358 ei->delalloc_bytes = 0; 9359 ei->defrag_bytes = 0; 9360 ei->disk_i_size = 0; 9361 ei->flags = 0; 9362 ei->csum_bytes = 0; 9363 ei->index_cnt = (u64)-1; 9364 ei->dir_index = 0; 9365 ei->last_unlink_trans = 0; 9366 ei->last_log_commit = 0; 9367 ei->delayed_iput_count = 0; 9368 9369 spin_lock_init(&ei->lock); 9370 ei->outstanding_extents = 0; 9371 ei->reserved_extents = 0; 9372 9373 ei->runtime_flags = 0; 9374 ei->force_compress = BTRFS_COMPRESS_NONE; 9375 9376 ei->delayed_node = NULL; 9377 9378 ei->i_otime.tv_sec = 0; 9379 ei->i_otime.tv_nsec = 0; 9380 9381 inode = &ei->vfs_inode; 9382 extent_map_tree_init(&ei->extent_tree); 9383 extent_io_tree_init(&ei->io_tree, &inode->i_data); 9384 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 9385 ei->io_tree.track_uptodate = 1; 9386 ei->io_failure_tree.track_uptodate = 1; 9387 atomic_set(&ei->sync_writers, 0); 9388 mutex_init(&ei->log_mutex); 9389 mutex_init(&ei->delalloc_mutex); 9390 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9391 INIT_LIST_HEAD(&ei->delalloc_inodes); 9392 INIT_LIST_HEAD(&ei->delayed_iput); 9393 RB_CLEAR_NODE(&ei->rb_node); 9394 init_rwsem(&ei->dio_sem); 9395 9396 return inode; 9397 } 9398 9399 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS btrfs_test_destroy_inode(struct inode * inode)9400 void btrfs_test_destroy_inode(struct inode *inode) 9401 { 9402 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9403 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9404 } 9405 #endif 9406 btrfs_i_callback(struct rcu_head * head)9407 static void btrfs_i_callback(struct rcu_head *head) 9408 { 9409 struct inode *inode = container_of(head, struct inode, i_rcu); 9410 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9411 } 9412 btrfs_destroy_inode(struct inode * inode)9413 void btrfs_destroy_inode(struct inode *inode) 9414 { 9415 struct btrfs_ordered_extent *ordered; 9416 struct btrfs_root *root = BTRFS_I(inode)->root; 9417 9418 WARN_ON(!hlist_empty(&inode->i_dentry)); 9419 WARN_ON(inode->i_data.nrpages); 9420 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9421 WARN_ON(BTRFS_I(inode)->reserved_extents); 9422 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9423 WARN_ON(BTRFS_I(inode)->csum_bytes); 9424 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9425 9426 /* 9427 * This can happen where we create an inode, but somebody else also 9428 * created the same inode and we need to destroy the one we already 9429 * created. 9430 */ 9431 if (!root) 9432 goto free; 9433 9434 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 9435 &BTRFS_I(inode)->runtime_flags)) { 9436 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 9437 btrfs_ino(inode)); 9438 atomic_dec(&root->orphan_inodes); 9439 } 9440 9441 while (1) { 9442 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9443 if (!ordered) 9444 break; 9445 else { 9446 btrfs_err(root->fs_info, 9447 "found ordered extent %llu %llu on inode cleanup", 9448 ordered->file_offset, ordered->len); 9449 btrfs_remove_ordered_extent(inode, ordered); 9450 btrfs_put_ordered_extent(ordered); 9451 btrfs_put_ordered_extent(ordered); 9452 } 9453 } 9454 btrfs_qgroup_check_reserved_leak(inode); 9455 inode_tree_del(inode); 9456 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9457 free: 9458 call_rcu(&inode->i_rcu, btrfs_i_callback); 9459 } 9460 btrfs_drop_inode(struct inode * inode)9461 int btrfs_drop_inode(struct inode *inode) 9462 { 9463 struct btrfs_root *root = BTRFS_I(inode)->root; 9464 9465 if (root == NULL) 9466 return 1; 9467 9468 /* the snap/subvol tree is on deleting */ 9469 if (btrfs_root_refs(&root->root_item) == 0) 9470 return 1; 9471 else 9472 return generic_drop_inode(inode); 9473 } 9474 init_once(void * foo)9475 static void init_once(void *foo) 9476 { 9477 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9478 9479 inode_init_once(&ei->vfs_inode); 9480 } 9481 btrfs_destroy_cachep(void)9482 void btrfs_destroy_cachep(void) 9483 { 9484 /* 9485 * Make sure all delayed rcu free inodes are flushed before we 9486 * destroy cache. 9487 */ 9488 rcu_barrier(); 9489 kmem_cache_destroy(btrfs_inode_cachep); 9490 kmem_cache_destroy(btrfs_trans_handle_cachep); 9491 kmem_cache_destroy(btrfs_transaction_cachep); 9492 kmem_cache_destroy(btrfs_path_cachep); 9493 kmem_cache_destroy(btrfs_free_space_cachep); 9494 } 9495 btrfs_init_cachep(void)9496 int btrfs_init_cachep(void) 9497 { 9498 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9499 sizeof(struct btrfs_inode), 0, 9500 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9501 init_once); 9502 if (!btrfs_inode_cachep) 9503 goto fail; 9504 9505 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9506 sizeof(struct btrfs_trans_handle), 0, 9507 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9508 if (!btrfs_trans_handle_cachep) 9509 goto fail; 9510 9511 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 9512 sizeof(struct btrfs_transaction), 0, 9513 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9514 if (!btrfs_transaction_cachep) 9515 goto fail; 9516 9517 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9518 sizeof(struct btrfs_path), 0, 9519 SLAB_MEM_SPREAD, NULL); 9520 if (!btrfs_path_cachep) 9521 goto fail; 9522 9523 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9524 sizeof(struct btrfs_free_space), 0, 9525 SLAB_MEM_SPREAD, NULL); 9526 if (!btrfs_free_space_cachep) 9527 goto fail; 9528 9529 return 0; 9530 fail: 9531 btrfs_destroy_cachep(); 9532 return -ENOMEM; 9533 } 9534 btrfs_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)9535 static int btrfs_getattr(struct vfsmount *mnt, 9536 struct dentry *dentry, struct kstat *stat) 9537 { 9538 u64 delalloc_bytes; 9539 struct inode *inode = d_inode(dentry); 9540 u32 blocksize = inode->i_sb->s_blocksize; 9541 9542 generic_fillattr(inode, stat); 9543 stat->dev = BTRFS_I(inode)->root->anon_dev; 9544 9545 spin_lock(&BTRFS_I(inode)->lock); 9546 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 9547 spin_unlock(&BTRFS_I(inode)->lock); 9548 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9549 ALIGN(delalloc_bytes, blocksize)) >> 9; 9550 return 0; 9551 } 9552 btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)9553 static int btrfs_rename_exchange(struct inode *old_dir, 9554 struct dentry *old_dentry, 9555 struct inode *new_dir, 9556 struct dentry *new_dentry) 9557 { 9558 struct btrfs_trans_handle *trans; 9559 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9560 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9561 struct inode *new_inode = new_dentry->d_inode; 9562 struct inode *old_inode = old_dentry->d_inode; 9563 struct timespec ctime = current_time(old_inode); 9564 struct dentry *parent; 9565 u64 old_ino = btrfs_ino(old_inode); 9566 u64 new_ino = btrfs_ino(new_inode); 9567 u64 old_idx = 0; 9568 u64 new_idx = 0; 9569 u64 root_objectid; 9570 int ret; 9571 bool root_log_pinned = false; 9572 bool dest_log_pinned = false; 9573 9574 /* we only allow rename subvolume link between subvolumes */ 9575 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9576 return -EXDEV; 9577 9578 /* close the race window with snapshot create/destroy ioctl */ 9579 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9580 down_read(&root->fs_info->subvol_sem); 9581 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9582 down_read(&dest->fs_info->subvol_sem); 9583 9584 /* 9585 * We want to reserve the absolute worst case amount of items. So if 9586 * both inodes are subvols and we need to unlink them then that would 9587 * require 4 item modifications, but if they are both normal inodes it 9588 * would require 5 item modifications, so we'll assume their normal 9589 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9590 * should cover the worst case number of items we'll modify. 9591 */ 9592 trans = btrfs_start_transaction(root, 12); 9593 if (IS_ERR(trans)) { 9594 ret = PTR_ERR(trans); 9595 goto out_notrans; 9596 } 9597 9598 /* 9599 * We need to find a free sequence number both in the source and 9600 * in the destination directory for the exchange. 9601 */ 9602 ret = btrfs_set_inode_index(new_dir, &old_idx); 9603 if (ret) 9604 goto out_fail; 9605 ret = btrfs_set_inode_index(old_dir, &new_idx); 9606 if (ret) 9607 goto out_fail; 9608 9609 BTRFS_I(old_inode)->dir_index = 0ULL; 9610 BTRFS_I(new_inode)->dir_index = 0ULL; 9611 9612 /* Reference for the source. */ 9613 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9614 /* force full log commit if subvolume involved. */ 9615 btrfs_set_log_full_commit(root->fs_info, trans); 9616 } else { 9617 btrfs_pin_log_trans(root); 9618 root_log_pinned = true; 9619 ret = btrfs_insert_inode_ref(trans, dest, 9620 new_dentry->d_name.name, 9621 new_dentry->d_name.len, 9622 old_ino, 9623 btrfs_ino(new_dir), old_idx); 9624 if (ret) 9625 goto out_fail; 9626 } 9627 9628 /* And now for the dest. */ 9629 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9630 /* force full log commit if subvolume involved. */ 9631 btrfs_set_log_full_commit(dest->fs_info, trans); 9632 } else { 9633 btrfs_pin_log_trans(dest); 9634 dest_log_pinned = true; 9635 ret = btrfs_insert_inode_ref(trans, root, 9636 old_dentry->d_name.name, 9637 old_dentry->d_name.len, 9638 new_ino, 9639 btrfs_ino(old_dir), new_idx); 9640 if (ret) 9641 goto out_fail; 9642 } 9643 9644 /* Update inode version and ctime/mtime. */ 9645 inode_inc_iversion(old_dir); 9646 inode_inc_iversion(new_dir); 9647 inode_inc_iversion(old_inode); 9648 inode_inc_iversion(new_inode); 9649 old_dir->i_ctime = old_dir->i_mtime = ctime; 9650 new_dir->i_ctime = new_dir->i_mtime = ctime; 9651 old_inode->i_ctime = ctime; 9652 new_inode->i_ctime = ctime; 9653 9654 if (old_dentry->d_parent != new_dentry->d_parent) { 9655 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9656 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1); 9657 } 9658 9659 /* src is a subvolume */ 9660 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9661 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9662 ret = btrfs_unlink_subvol(trans, root, old_dir, 9663 root_objectid, 9664 old_dentry->d_name.name, 9665 old_dentry->d_name.len); 9666 } else { /* src is an inode */ 9667 ret = __btrfs_unlink_inode(trans, root, old_dir, 9668 old_dentry->d_inode, 9669 old_dentry->d_name.name, 9670 old_dentry->d_name.len); 9671 if (!ret) 9672 ret = btrfs_update_inode(trans, root, old_inode); 9673 } 9674 if (ret) { 9675 btrfs_abort_transaction(trans, ret); 9676 goto out_fail; 9677 } 9678 9679 /* dest is a subvolume */ 9680 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9681 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9682 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9683 root_objectid, 9684 new_dentry->d_name.name, 9685 new_dentry->d_name.len); 9686 } else { /* dest is an inode */ 9687 ret = __btrfs_unlink_inode(trans, dest, new_dir, 9688 new_dentry->d_inode, 9689 new_dentry->d_name.name, 9690 new_dentry->d_name.len); 9691 if (!ret) 9692 ret = btrfs_update_inode(trans, dest, new_inode); 9693 } 9694 if (ret) { 9695 btrfs_abort_transaction(trans, ret); 9696 goto out_fail; 9697 } 9698 9699 ret = btrfs_add_link(trans, new_dir, old_inode, 9700 new_dentry->d_name.name, 9701 new_dentry->d_name.len, 0, old_idx); 9702 if (ret) { 9703 btrfs_abort_transaction(trans, ret); 9704 goto out_fail; 9705 } 9706 9707 ret = btrfs_add_link(trans, old_dir, new_inode, 9708 old_dentry->d_name.name, 9709 old_dentry->d_name.len, 0, new_idx); 9710 if (ret) { 9711 btrfs_abort_transaction(trans, ret); 9712 goto out_fail; 9713 } 9714 9715 if (old_inode->i_nlink == 1) 9716 BTRFS_I(old_inode)->dir_index = old_idx; 9717 if (new_inode->i_nlink == 1) 9718 BTRFS_I(new_inode)->dir_index = new_idx; 9719 9720 if (root_log_pinned) { 9721 parent = new_dentry->d_parent; 9722 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9723 btrfs_end_log_trans(root); 9724 root_log_pinned = false; 9725 } 9726 if (dest_log_pinned) { 9727 parent = old_dentry->d_parent; 9728 btrfs_log_new_name(trans, new_inode, new_dir, parent); 9729 btrfs_end_log_trans(dest); 9730 dest_log_pinned = false; 9731 } 9732 out_fail: 9733 /* 9734 * If we have pinned a log and an error happened, we unpin tasks 9735 * trying to sync the log and force them to fallback to a transaction 9736 * commit if the log currently contains any of the inodes involved in 9737 * this rename operation (to ensure we do not persist a log with an 9738 * inconsistent state for any of these inodes or leading to any 9739 * inconsistencies when replayed). If the transaction was aborted, the 9740 * abortion reason is propagated to userspace when attempting to commit 9741 * the transaction. If the log does not contain any of these inodes, we 9742 * allow the tasks to sync it. 9743 */ 9744 if (ret && (root_log_pinned || dest_log_pinned)) { 9745 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) || 9746 btrfs_inode_in_log(new_dir, root->fs_info->generation) || 9747 btrfs_inode_in_log(old_inode, root->fs_info->generation) || 9748 (new_inode && 9749 btrfs_inode_in_log(new_inode, root->fs_info->generation))) 9750 btrfs_set_log_full_commit(root->fs_info, trans); 9751 9752 if (root_log_pinned) { 9753 btrfs_end_log_trans(root); 9754 root_log_pinned = false; 9755 } 9756 if (dest_log_pinned) { 9757 btrfs_end_log_trans(dest); 9758 dest_log_pinned = false; 9759 } 9760 } 9761 ret = btrfs_end_transaction(trans, root); 9762 out_notrans: 9763 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9764 up_read(&dest->fs_info->subvol_sem); 9765 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9766 up_read(&root->fs_info->subvol_sem); 9767 9768 return ret; 9769 } 9770 btrfs_whiteout_for_rename(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct dentry * dentry)9771 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9772 struct btrfs_root *root, 9773 struct inode *dir, 9774 struct dentry *dentry) 9775 { 9776 int ret; 9777 struct inode *inode; 9778 u64 objectid; 9779 u64 index; 9780 9781 ret = btrfs_find_free_ino(root, &objectid); 9782 if (ret) 9783 return ret; 9784 9785 inode = btrfs_new_inode(trans, root, dir, 9786 dentry->d_name.name, 9787 dentry->d_name.len, 9788 btrfs_ino(dir), 9789 objectid, 9790 S_IFCHR | WHITEOUT_MODE, 9791 &index); 9792 9793 if (IS_ERR(inode)) { 9794 ret = PTR_ERR(inode); 9795 return ret; 9796 } 9797 9798 inode->i_op = &btrfs_special_inode_operations; 9799 init_special_inode(inode, inode->i_mode, 9800 WHITEOUT_DEV); 9801 9802 ret = btrfs_init_inode_security(trans, inode, dir, 9803 &dentry->d_name); 9804 if (ret) 9805 goto out; 9806 9807 ret = btrfs_add_nondir(trans, dir, dentry, 9808 inode, 0, index); 9809 if (ret) 9810 goto out; 9811 9812 ret = btrfs_update_inode(trans, root, inode); 9813 out: 9814 unlock_new_inode(inode); 9815 if (ret) 9816 inode_dec_link_count(inode); 9817 iput(inode); 9818 9819 return ret; 9820 } 9821 btrfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9822 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9823 struct inode *new_dir, struct dentry *new_dentry, 9824 unsigned int flags) 9825 { 9826 struct btrfs_trans_handle *trans; 9827 unsigned int trans_num_items; 9828 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9829 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9830 struct inode *new_inode = d_inode(new_dentry); 9831 struct inode *old_inode = d_inode(old_dentry); 9832 u64 index = 0; 9833 u64 root_objectid; 9834 int ret; 9835 u64 old_ino = btrfs_ino(old_inode); 9836 bool log_pinned = false; 9837 9838 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9839 return -EPERM; 9840 9841 /* we only allow rename subvolume link between subvolumes */ 9842 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9843 return -EXDEV; 9844 9845 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9846 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 9847 return -ENOTEMPTY; 9848 9849 if (S_ISDIR(old_inode->i_mode) && new_inode && 9850 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9851 return -ENOTEMPTY; 9852 9853 9854 /* check for collisions, even if the name isn't there */ 9855 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9856 new_dentry->d_name.name, 9857 new_dentry->d_name.len); 9858 9859 if (ret) { 9860 if (ret == -EEXIST) { 9861 /* we shouldn't get 9862 * eexist without a new_inode */ 9863 if (WARN_ON(!new_inode)) { 9864 return ret; 9865 } 9866 } else { 9867 /* maybe -EOVERFLOW */ 9868 return ret; 9869 } 9870 } 9871 ret = 0; 9872 9873 /* 9874 * we're using rename to replace one file with another. Start IO on it 9875 * now so we don't add too much work to the end of the transaction 9876 */ 9877 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9878 filemap_flush(old_inode->i_mapping); 9879 9880 /* close the racy window with snapshot create/destroy ioctl */ 9881 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9882 down_read(&root->fs_info->subvol_sem); 9883 /* 9884 * We want to reserve the absolute worst case amount of items. So if 9885 * both inodes are subvols and we need to unlink them then that would 9886 * require 4 item modifications, but if they are both normal inodes it 9887 * would require 5 item modifications, so we'll assume they are normal 9888 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9889 * should cover the worst case number of items we'll modify. 9890 * If our rename has the whiteout flag, we need more 5 units for the 9891 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9892 * when selinux is enabled). 9893 */ 9894 trans_num_items = 11; 9895 if (flags & RENAME_WHITEOUT) 9896 trans_num_items += 5; 9897 trans = btrfs_start_transaction(root, trans_num_items); 9898 if (IS_ERR(trans)) { 9899 ret = PTR_ERR(trans); 9900 goto out_notrans; 9901 } 9902 9903 if (dest != root) 9904 btrfs_record_root_in_trans(trans, dest); 9905 9906 ret = btrfs_set_inode_index(new_dir, &index); 9907 if (ret) 9908 goto out_fail; 9909 9910 BTRFS_I(old_inode)->dir_index = 0ULL; 9911 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9912 /* force full log commit if subvolume involved. */ 9913 btrfs_set_log_full_commit(root->fs_info, trans); 9914 } else { 9915 btrfs_pin_log_trans(root); 9916 log_pinned = true; 9917 ret = btrfs_insert_inode_ref(trans, dest, 9918 new_dentry->d_name.name, 9919 new_dentry->d_name.len, 9920 old_ino, 9921 btrfs_ino(new_dir), index); 9922 if (ret) 9923 goto out_fail; 9924 } 9925 9926 inode_inc_iversion(old_dir); 9927 inode_inc_iversion(new_dir); 9928 inode_inc_iversion(old_inode); 9929 old_dir->i_ctime = old_dir->i_mtime = 9930 new_dir->i_ctime = new_dir->i_mtime = 9931 old_inode->i_ctime = current_time(old_dir); 9932 9933 if (old_dentry->d_parent != new_dentry->d_parent) 9934 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9935 9936 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9937 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9938 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9939 old_dentry->d_name.name, 9940 old_dentry->d_name.len); 9941 } else { 9942 ret = __btrfs_unlink_inode(trans, root, old_dir, 9943 d_inode(old_dentry), 9944 old_dentry->d_name.name, 9945 old_dentry->d_name.len); 9946 if (!ret) 9947 ret = btrfs_update_inode(trans, root, old_inode); 9948 } 9949 if (ret) { 9950 btrfs_abort_transaction(trans, ret); 9951 goto out_fail; 9952 } 9953 9954 if (new_inode) { 9955 inode_inc_iversion(new_inode); 9956 new_inode->i_ctime = current_time(new_inode); 9957 if (unlikely(btrfs_ino(new_inode) == 9958 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9959 root_objectid = BTRFS_I(new_inode)->location.objectid; 9960 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9961 root_objectid, 9962 new_dentry->d_name.name, 9963 new_dentry->d_name.len); 9964 BUG_ON(new_inode->i_nlink == 0); 9965 } else { 9966 ret = btrfs_unlink_inode(trans, dest, new_dir, 9967 d_inode(new_dentry), 9968 new_dentry->d_name.name, 9969 new_dentry->d_name.len); 9970 } 9971 if (!ret && new_inode->i_nlink == 0) 9972 ret = btrfs_orphan_add(trans, d_inode(new_dentry)); 9973 if (ret) { 9974 btrfs_abort_transaction(trans, ret); 9975 goto out_fail; 9976 } 9977 } 9978 9979 ret = btrfs_add_link(trans, new_dir, old_inode, 9980 new_dentry->d_name.name, 9981 new_dentry->d_name.len, 0, index); 9982 if (ret) { 9983 btrfs_abort_transaction(trans, ret); 9984 goto out_fail; 9985 } 9986 9987 if (old_inode->i_nlink == 1) 9988 BTRFS_I(old_inode)->dir_index = index; 9989 9990 if (log_pinned) { 9991 struct dentry *parent = new_dentry->d_parent; 9992 9993 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9994 btrfs_end_log_trans(root); 9995 log_pinned = false; 9996 } 9997 9998 if (flags & RENAME_WHITEOUT) { 9999 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 10000 old_dentry); 10001 10002 if (ret) { 10003 btrfs_abort_transaction(trans, ret); 10004 goto out_fail; 10005 } 10006 } 10007 out_fail: 10008 /* 10009 * If we have pinned the log and an error happened, we unpin tasks 10010 * trying to sync the log and force them to fallback to a transaction 10011 * commit if the log currently contains any of the inodes involved in 10012 * this rename operation (to ensure we do not persist a log with an 10013 * inconsistent state for any of these inodes or leading to any 10014 * inconsistencies when replayed). If the transaction was aborted, the 10015 * abortion reason is propagated to userspace when attempting to commit 10016 * the transaction. If the log does not contain any of these inodes, we 10017 * allow the tasks to sync it. 10018 */ 10019 if (ret && log_pinned) { 10020 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) || 10021 btrfs_inode_in_log(new_dir, root->fs_info->generation) || 10022 btrfs_inode_in_log(old_inode, root->fs_info->generation) || 10023 (new_inode && 10024 btrfs_inode_in_log(new_inode, root->fs_info->generation))) 10025 btrfs_set_log_full_commit(root->fs_info, trans); 10026 10027 btrfs_end_log_trans(root); 10028 log_pinned = false; 10029 } 10030 btrfs_end_transaction(trans, root); 10031 out_notrans: 10032 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 10033 up_read(&root->fs_info->subvol_sem); 10034 10035 return ret; 10036 } 10037 btrfs_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)10038 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 10039 struct inode *new_dir, struct dentry *new_dentry, 10040 unsigned int flags) 10041 { 10042 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 10043 return -EINVAL; 10044 10045 if (flags & RENAME_EXCHANGE) 10046 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 10047 new_dentry); 10048 10049 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 10050 } 10051 btrfs_run_delalloc_work(struct btrfs_work * work)10052 static void btrfs_run_delalloc_work(struct btrfs_work *work) 10053 { 10054 struct btrfs_delalloc_work *delalloc_work; 10055 struct inode *inode; 10056 10057 delalloc_work = container_of(work, struct btrfs_delalloc_work, 10058 work); 10059 inode = delalloc_work->inode; 10060 filemap_flush(inode->i_mapping); 10061 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 10062 &BTRFS_I(inode)->runtime_flags)) 10063 filemap_flush(inode->i_mapping); 10064 10065 if (delalloc_work->delay_iput) 10066 btrfs_add_delayed_iput(inode); 10067 else 10068 iput(inode); 10069 complete(&delalloc_work->completion); 10070 } 10071 btrfs_alloc_delalloc_work(struct inode * inode,int delay_iput)10072 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 10073 int delay_iput) 10074 { 10075 struct btrfs_delalloc_work *work; 10076 10077 work = kmalloc(sizeof(*work), GFP_NOFS); 10078 if (!work) 10079 return NULL; 10080 10081 init_completion(&work->completion); 10082 INIT_LIST_HEAD(&work->list); 10083 work->inode = inode; 10084 work->delay_iput = delay_iput; 10085 WARN_ON_ONCE(!inode); 10086 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 10087 btrfs_run_delalloc_work, NULL, NULL); 10088 10089 return work; 10090 } 10091 btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work * work)10092 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 10093 { 10094 wait_for_completion(&work->completion); 10095 kfree(work); 10096 } 10097 10098 /* 10099 * some fairly slow code that needs optimization. This walks the list 10100 * of all the inodes with pending delalloc and forces them to disk. 10101 */ __start_delalloc_inodes(struct btrfs_root * root,int delay_iput,int nr)10102 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 10103 int nr) 10104 { 10105 struct btrfs_inode *binode; 10106 struct inode *inode; 10107 struct btrfs_delalloc_work *work, *next; 10108 struct list_head works; 10109 struct list_head splice; 10110 int ret = 0; 10111 10112 INIT_LIST_HEAD(&works); 10113 INIT_LIST_HEAD(&splice); 10114 10115 mutex_lock(&root->delalloc_mutex); 10116 spin_lock(&root->delalloc_lock); 10117 list_splice_init(&root->delalloc_inodes, &splice); 10118 while (!list_empty(&splice)) { 10119 binode = list_entry(splice.next, struct btrfs_inode, 10120 delalloc_inodes); 10121 10122 list_move_tail(&binode->delalloc_inodes, 10123 &root->delalloc_inodes); 10124 inode = igrab(&binode->vfs_inode); 10125 if (!inode) { 10126 cond_resched_lock(&root->delalloc_lock); 10127 continue; 10128 } 10129 spin_unlock(&root->delalloc_lock); 10130 10131 work = btrfs_alloc_delalloc_work(inode, delay_iput); 10132 if (!work) { 10133 if (delay_iput) 10134 btrfs_add_delayed_iput(inode); 10135 else 10136 iput(inode); 10137 ret = -ENOMEM; 10138 goto out; 10139 } 10140 list_add_tail(&work->list, &works); 10141 btrfs_queue_work(root->fs_info->flush_workers, 10142 &work->work); 10143 ret++; 10144 if (nr != -1 && ret >= nr) 10145 goto out; 10146 cond_resched(); 10147 spin_lock(&root->delalloc_lock); 10148 } 10149 spin_unlock(&root->delalloc_lock); 10150 10151 out: 10152 list_for_each_entry_safe(work, next, &works, list) { 10153 list_del_init(&work->list); 10154 btrfs_wait_and_free_delalloc_work(work); 10155 } 10156 10157 if (!list_empty_careful(&splice)) { 10158 spin_lock(&root->delalloc_lock); 10159 list_splice_tail(&splice, &root->delalloc_inodes); 10160 spin_unlock(&root->delalloc_lock); 10161 } 10162 mutex_unlock(&root->delalloc_mutex); 10163 return ret; 10164 } 10165 btrfs_start_delalloc_inodes(struct btrfs_root * root,int delay_iput)10166 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 10167 { 10168 int ret; 10169 10170 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 10171 return -EROFS; 10172 10173 ret = __start_delalloc_inodes(root, delay_iput, -1); 10174 if (ret > 0) 10175 ret = 0; 10176 /* 10177 * the filemap_flush will queue IO into the worker threads, but 10178 * we have to make sure the IO is actually started and that 10179 * ordered extents get created before we return 10180 */ 10181 atomic_inc(&root->fs_info->async_submit_draining); 10182 while (atomic_read(&root->fs_info->nr_async_submits) || 10183 atomic_read(&root->fs_info->async_delalloc_pages)) { 10184 wait_event(root->fs_info->async_submit_wait, 10185 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 10186 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 10187 } 10188 atomic_dec(&root->fs_info->async_submit_draining); 10189 return ret; 10190 } 10191 btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,int delay_iput,int nr)10192 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 10193 int nr) 10194 { 10195 struct btrfs_root *root; 10196 struct list_head splice; 10197 int ret; 10198 10199 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10200 return -EROFS; 10201 10202 INIT_LIST_HEAD(&splice); 10203 10204 mutex_lock(&fs_info->delalloc_root_mutex); 10205 spin_lock(&fs_info->delalloc_root_lock); 10206 list_splice_init(&fs_info->delalloc_roots, &splice); 10207 while (!list_empty(&splice) && nr) { 10208 root = list_first_entry(&splice, struct btrfs_root, 10209 delalloc_root); 10210 root = btrfs_grab_fs_root(root); 10211 BUG_ON(!root); 10212 list_move_tail(&root->delalloc_root, 10213 &fs_info->delalloc_roots); 10214 spin_unlock(&fs_info->delalloc_root_lock); 10215 10216 ret = __start_delalloc_inodes(root, delay_iput, nr); 10217 btrfs_put_fs_root(root); 10218 if (ret < 0) 10219 goto out; 10220 10221 if (nr != -1) { 10222 nr -= ret; 10223 WARN_ON(nr < 0); 10224 } 10225 spin_lock(&fs_info->delalloc_root_lock); 10226 } 10227 spin_unlock(&fs_info->delalloc_root_lock); 10228 10229 ret = 0; 10230 atomic_inc(&fs_info->async_submit_draining); 10231 while (atomic_read(&fs_info->nr_async_submits) || 10232 atomic_read(&fs_info->async_delalloc_pages)) { 10233 wait_event(fs_info->async_submit_wait, 10234 (atomic_read(&fs_info->nr_async_submits) == 0 && 10235 atomic_read(&fs_info->async_delalloc_pages) == 0)); 10236 } 10237 atomic_dec(&fs_info->async_submit_draining); 10238 out: 10239 if (!list_empty_careful(&splice)) { 10240 spin_lock(&fs_info->delalloc_root_lock); 10241 list_splice_tail(&splice, &fs_info->delalloc_roots); 10242 spin_unlock(&fs_info->delalloc_root_lock); 10243 } 10244 mutex_unlock(&fs_info->delalloc_root_mutex); 10245 return ret; 10246 } 10247 btrfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)10248 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10249 const char *symname) 10250 { 10251 struct btrfs_trans_handle *trans; 10252 struct btrfs_root *root = BTRFS_I(dir)->root; 10253 struct btrfs_path *path; 10254 struct btrfs_key key; 10255 struct inode *inode = NULL; 10256 int err; 10257 int drop_inode = 0; 10258 u64 objectid; 10259 u64 index = 0; 10260 int name_len; 10261 int datasize; 10262 unsigned long ptr; 10263 struct btrfs_file_extent_item *ei; 10264 struct extent_buffer *leaf; 10265 10266 name_len = strlen(symname); 10267 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 10268 return -ENAMETOOLONG; 10269 10270 /* 10271 * 2 items for inode item and ref 10272 * 2 items for dir items 10273 * 1 item for updating parent inode item 10274 * 1 item for the inline extent item 10275 * 1 item for xattr if selinux is on 10276 */ 10277 trans = btrfs_start_transaction(root, 7); 10278 if (IS_ERR(trans)) 10279 return PTR_ERR(trans); 10280 10281 err = btrfs_find_free_ino(root, &objectid); 10282 if (err) 10283 goto out_unlock; 10284 10285 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10286 dentry->d_name.len, btrfs_ino(dir), objectid, 10287 S_IFLNK|S_IRWXUGO, &index); 10288 if (IS_ERR(inode)) { 10289 err = PTR_ERR(inode); 10290 goto out_unlock; 10291 } 10292 10293 /* 10294 * If the active LSM wants to access the inode during 10295 * d_instantiate it needs these. Smack checks to see 10296 * if the filesystem supports xattrs by looking at the 10297 * ops vector. 10298 */ 10299 inode->i_fop = &btrfs_file_operations; 10300 inode->i_op = &btrfs_file_inode_operations; 10301 inode->i_mapping->a_ops = &btrfs_aops; 10302 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10303 10304 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10305 if (err) 10306 goto out_unlock_inode; 10307 10308 path = btrfs_alloc_path(); 10309 if (!path) { 10310 err = -ENOMEM; 10311 goto out_unlock_inode; 10312 } 10313 key.objectid = btrfs_ino(inode); 10314 key.offset = 0; 10315 key.type = BTRFS_EXTENT_DATA_KEY; 10316 datasize = btrfs_file_extent_calc_inline_size(name_len); 10317 err = btrfs_insert_empty_item(trans, root, path, &key, 10318 datasize); 10319 if (err) { 10320 btrfs_free_path(path); 10321 goto out_unlock_inode; 10322 } 10323 leaf = path->nodes[0]; 10324 ei = btrfs_item_ptr(leaf, path->slots[0], 10325 struct btrfs_file_extent_item); 10326 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10327 btrfs_set_file_extent_type(leaf, ei, 10328 BTRFS_FILE_EXTENT_INLINE); 10329 btrfs_set_file_extent_encryption(leaf, ei, 0); 10330 btrfs_set_file_extent_compression(leaf, ei, 0); 10331 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10332 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10333 10334 ptr = btrfs_file_extent_inline_start(ei); 10335 write_extent_buffer(leaf, symname, ptr, name_len); 10336 btrfs_mark_buffer_dirty(leaf); 10337 btrfs_free_path(path); 10338 10339 inode->i_op = &btrfs_symlink_inode_operations; 10340 inode_nohighmem(inode); 10341 inode->i_mapping->a_ops = &btrfs_symlink_aops; 10342 inode_set_bytes(inode, name_len); 10343 btrfs_i_size_write(inode, name_len); 10344 err = btrfs_update_inode(trans, root, inode); 10345 /* 10346 * Last step, add directory indexes for our symlink inode. This is the 10347 * last step to avoid extra cleanup of these indexes if an error happens 10348 * elsewhere above. 10349 */ 10350 if (!err) 10351 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 10352 if (err) { 10353 drop_inode = 1; 10354 goto out_unlock_inode; 10355 } 10356 10357 unlock_new_inode(inode); 10358 d_instantiate(dentry, inode); 10359 10360 out_unlock: 10361 btrfs_end_transaction(trans, root); 10362 if (drop_inode) { 10363 inode_dec_link_count(inode); 10364 iput(inode); 10365 } 10366 btrfs_btree_balance_dirty(root); 10367 return err; 10368 10369 out_unlock_inode: 10370 drop_inode = 1; 10371 unlock_new_inode(inode); 10372 goto out_unlock; 10373 } 10374 __btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)10375 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10376 u64 start, u64 num_bytes, u64 min_size, 10377 loff_t actual_len, u64 *alloc_hint, 10378 struct btrfs_trans_handle *trans) 10379 { 10380 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10381 struct extent_map *em; 10382 struct btrfs_root *root = BTRFS_I(inode)->root; 10383 struct btrfs_key ins; 10384 u64 cur_offset = start; 10385 u64 i_size; 10386 u64 cur_bytes; 10387 u64 last_alloc = (u64)-1; 10388 int ret = 0; 10389 bool own_trans = true; 10390 u64 end = start + num_bytes - 1; 10391 10392 if (trans) 10393 own_trans = false; 10394 while (num_bytes > 0) { 10395 if (own_trans) { 10396 trans = btrfs_start_transaction(root, 3); 10397 if (IS_ERR(trans)) { 10398 ret = PTR_ERR(trans); 10399 break; 10400 } 10401 } 10402 10403 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10404 cur_bytes = max(cur_bytes, min_size); 10405 /* 10406 * If we are severely fragmented we could end up with really 10407 * small allocations, so if the allocator is returning small 10408 * chunks lets make its job easier by only searching for those 10409 * sized chunks. 10410 */ 10411 cur_bytes = min(cur_bytes, last_alloc); 10412 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10413 min_size, 0, *alloc_hint, &ins, 1, 0); 10414 if (ret) { 10415 if (own_trans) 10416 btrfs_end_transaction(trans, root); 10417 break; 10418 } 10419 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 10420 10421 last_alloc = ins.offset; 10422 ret = insert_reserved_file_extent(trans, inode, 10423 cur_offset, ins.objectid, 10424 ins.offset, ins.offset, 10425 ins.offset, 0, 0, 0, 10426 BTRFS_FILE_EXTENT_PREALLOC); 10427 if (ret) { 10428 btrfs_free_reserved_extent(root, ins.objectid, 10429 ins.offset, 0); 10430 btrfs_abort_transaction(trans, ret); 10431 if (own_trans) 10432 btrfs_end_transaction(trans, root); 10433 break; 10434 } 10435 10436 btrfs_drop_extent_cache(inode, cur_offset, 10437 cur_offset + ins.offset -1, 0); 10438 10439 em = alloc_extent_map(); 10440 if (!em) { 10441 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10442 &BTRFS_I(inode)->runtime_flags); 10443 goto next; 10444 } 10445 10446 em->start = cur_offset; 10447 em->orig_start = cur_offset; 10448 em->len = ins.offset; 10449 em->block_start = ins.objectid; 10450 em->block_len = ins.offset; 10451 em->orig_block_len = ins.offset; 10452 em->ram_bytes = ins.offset; 10453 em->bdev = root->fs_info->fs_devices->latest_bdev; 10454 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10455 em->generation = trans->transid; 10456 10457 while (1) { 10458 write_lock(&em_tree->lock); 10459 ret = add_extent_mapping(em_tree, em, 1); 10460 write_unlock(&em_tree->lock); 10461 if (ret != -EEXIST) 10462 break; 10463 btrfs_drop_extent_cache(inode, cur_offset, 10464 cur_offset + ins.offset - 1, 10465 0); 10466 } 10467 free_extent_map(em); 10468 next: 10469 num_bytes -= ins.offset; 10470 cur_offset += ins.offset; 10471 *alloc_hint = ins.objectid + ins.offset; 10472 10473 inode_inc_iversion(inode); 10474 inode->i_ctime = current_time(inode); 10475 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10476 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10477 (actual_len > inode->i_size) && 10478 (cur_offset > inode->i_size)) { 10479 if (cur_offset > actual_len) 10480 i_size = actual_len; 10481 else 10482 i_size = cur_offset; 10483 i_size_write(inode, i_size); 10484 btrfs_ordered_update_i_size(inode, i_size, NULL); 10485 } 10486 10487 ret = btrfs_update_inode(trans, root, inode); 10488 10489 if (ret) { 10490 btrfs_abort_transaction(trans, ret); 10491 if (own_trans) 10492 btrfs_end_transaction(trans, root); 10493 break; 10494 } 10495 10496 if (own_trans) 10497 btrfs_end_transaction(trans, root); 10498 } 10499 if (cur_offset < end) 10500 btrfs_free_reserved_data_space(inode, cur_offset, 10501 end - cur_offset + 1); 10502 return ret; 10503 } 10504 btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10505 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10506 u64 start, u64 num_bytes, u64 min_size, 10507 loff_t actual_len, u64 *alloc_hint) 10508 { 10509 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10510 min_size, actual_len, alloc_hint, 10511 NULL); 10512 } 10513 btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10514 int btrfs_prealloc_file_range_trans(struct inode *inode, 10515 struct btrfs_trans_handle *trans, int mode, 10516 u64 start, u64 num_bytes, u64 min_size, 10517 loff_t actual_len, u64 *alloc_hint) 10518 { 10519 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10520 min_size, actual_len, alloc_hint, trans); 10521 } 10522 btrfs_set_page_dirty(struct page * page)10523 static int btrfs_set_page_dirty(struct page *page) 10524 { 10525 return __set_page_dirty_nobuffers(page); 10526 } 10527 btrfs_permission(struct inode * inode,int mask)10528 static int btrfs_permission(struct inode *inode, int mask) 10529 { 10530 struct btrfs_root *root = BTRFS_I(inode)->root; 10531 umode_t mode = inode->i_mode; 10532 10533 if (mask & MAY_WRITE && 10534 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10535 if (btrfs_root_readonly(root)) 10536 return -EROFS; 10537 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10538 return -EACCES; 10539 } 10540 return generic_permission(inode, mask); 10541 } 10542 btrfs_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)10543 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10544 { 10545 struct btrfs_trans_handle *trans; 10546 struct btrfs_root *root = BTRFS_I(dir)->root; 10547 struct inode *inode = NULL; 10548 u64 objectid; 10549 u64 index; 10550 int ret = 0; 10551 10552 /* 10553 * 5 units required for adding orphan entry 10554 */ 10555 trans = btrfs_start_transaction(root, 5); 10556 if (IS_ERR(trans)) 10557 return PTR_ERR(trans); 10558 10559 ret = btrfs_find_free_ino(root, &objectid); 10560 if (ret) 10561 goto out; 10562 10563 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10564 btrfs_ino(dir), objectid, mode, &index); 10565 if (IS_ERR(inode)) { 10566 ret = PTR_ERR(inode); 10567 inode = NULL; 10568 goto out; 10569 } 10570 10571 inode->i_fop = &btrfs_file_operations; 10572 inode->i_op = &btrfs_file_inode_operations; 10573 10574 inode->i_mapping->a_ops = &btrfs_aops; 10575 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10576 10577 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10578 if (ret) 10579 goto out_inode; 10580 10581 ret = btrfs_update_inode(trans, root, inode); 10582 if (ret) 10583 goto out_inode; 10584 ret = btrfs_orphan_add(trans, inode); 10585 if (ret) 10586 goto out_inode; 10587 10588 /* 10589 * We set number of links to 0 in btrfs_new_inode(), and here we set 10590 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10591 * through: 10592 * 10593 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10594 */ 10595 set_nlink(inode, 1); 10596 unlock_new_inode(inode); 10597 d_tmpfile(dentry, inode); 10598 mark_inode_dirty(inode); 10599 10600 out: 10601 btrfs_end_transaction(trans, root); 10602 if (ret) 10603 iput(inode); 10604 btrfs_balance_delayed_items(root); 10605 btrfs_btree_balance_dirty(root); 10606 return ret; 10607 10608 out_inode: 10609 unlock_new_inode(inode); 10610 goto out; 10611 10612 } 10613 10614 static const struct inode_operations btrfs_dir_inode_operations = { 10615 .getattr = btrfs_getattr, 10616 .lookup = btrfs_lookup, 10617 .create = btrfs_create, 10618 .unlink = btrfs_unlink, 10619 .link = btrfs_link, 10620 .mkdir = btrfs_mkdir, 10621 .rmdir = btrfs_rmdir, 10622 .rename = btrfs_rename2, 10623 .symlink = btrfs_symlink, 10624 .setattr = btrfs_setattr, 10625 .mknod = btrfs_mknod, 10626 .listxattr = btrfs_listxattr, 10627 .permission = btrfs_permission, 10628 .get_acl = btrfs_get_acl, 10629 .set_acl = btrfs_set_acl, 10630 .update_time = btrfs_update_time, 10631 .tmpfile = btrfs_tmpfile, 10632 }; 10633 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10634 .lookup = btrfs_lookup, 10635 .permission = btrfs_permission, 10636 .update_time = btrfs_update_time, 10637 }; 10638 10639 static const struct file_operations btrfs_dir_file_operations = { 10640 .llseek = generic_file_llseek, 10641 .read = generic_read_dir, 10642 .iterate_shared = btrfs_real_readdir, 10643 .unlocked_ioctl = btrfs_ioctl, 10644 #ifdef CONFIG_COMPAT 10645 .compat_ioctl = btrfs_compat_ioctl, 10646 #endif 10647 .release = btrfs_release_file, 10648 .fsync = btrfs_sync_file, 10649 }; 10650 10651 static const struct extent_io_ops btrfs_extent_io_ops = { 10652 .fill_delalloc = run_delalloc_range, 10653 .submit_bio_hook = btrfs_submit_bio_hook, 10654 .merge_bio_hook = btrfs_merge_bio_hook, 10655 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10656 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10657 .writepage_start_hook = btrfs_writepage_start_hook, 10658 .set_bit_hook = btrfs_set_bit_hook, 10659 .clear_bit_hook = btrfs_clear_bit_hook, 10660 .merge_extent_hook = btrfs_merge_extent_hook, 10661 .split_extent_hook = btrfs_split_extent_hook, 10662 }; 10663 10664 /* 10665 * btrfs doesn't support the bmap operation because swapfiles 10666 * use bmap to make a mapping of extents in the file. They assume 10667 * these extents won't change over the life of the file and they 10668 * use the bmap result to do IO directly to the drive. 10669 * 10670 * the btrfs bmap call would return logical addresses that aren't 10671 * suitable for IO and they also will change frequently as COW 10672 * operations happen. So, swapfile + btrfs == corruption. 10673 * 10674 * For now we're avoiding this by dropping bmap. 10675 */ 10676 static const struct address_space_operations btrfs_aops = { 10677 .readpage = btrfs_readpage, 10678 .writepage = btrfs_writepage, 10679 .writepages = btrfs_writepages, 10680 .readpages = btrfs_readpages, 10681 .direct_IO = btrfs_direct_IO, 10682 .invalidatepage = btrfs_invalidatepage, 10683 .releasepage = btrfs_releasepage, 10684 .set_page_dirty = btrfs_set_page_dirty, 10685 .error_remove_page = generic_error_remove_page, 10686 }; 10687 10688 static const struct address_space_operations btrfs_symlink_aops = { 10689 .readpage = btrfs_readpage, 10690 .writepage = btrfs_writepage, 10691 .invalidatepage = btrfs_invalidatepage, 10692 .releasepage = btrfs_releasepage, 10693 }; 10694 10695 static const struct inode_operations btrfs_file_inode_operations = { 10696 .getattr = btrfs_getattr, 10697 .setattr = btrfs_setattr, 10698 .listxattr = btrfs_listxattr, 10699 .permission = btrfs_permission, 10700 .fiemap = btrfs_fiemap, 10701 .get_acl = btrfs_get_acl, 10702 .set_acl = btrfs_set_acl, 10703 .update_time = btrfs_update_time, 10704 }; 10705 static const struct inode_operations btrfs_special_inode_operations = { 10706 .getattr = btrfs_getattr, 10707 .setattr = btrfs_setattr, 10708 .permission = btrfs_permission, 10709 .listxattr = btrfs_listxattr, 10710 .get_acl = btrfs_get_acl, 10711 .set_acl = btrfs_set_acl, 10712 .update_time = btrfs_update_time, 10713 }; 10714 static const struct inode_operations btrfs_symlink_inode_operations = { 10715 .readlink = generic_readlink, 10716 .get_link = page_get_link, 10717 .getattr = btrfs_getattr, 10718 .setattr = btrfs_setattr, 10719 .permission = btrfs_permission, 10720 .listxattr = btrfs_listxattr, 10721 .update_time = btrfs_update_time, 10722 }; 10723 10724 const struct dentry_operations btrfs_dentry_operations = { 10725 .d_delete = btrfs_dentry_delete, 10726 .d_release = btrfs_dentry_release, 10727 }; 10728