• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2013 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/io.h>
13 #include <linux/irqchip/mips-gic.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/smp.h>
17 #include <linux/types.h>
18 
19 #include <asm/bcache.h>
20 #include <asm/mips-cm.h>
21 #include <asm/mips-cpc.h>
22 #include <asm/mips_mt.h>
23 #include <asm/mipsregs.h>
24 #include <asm/pm-cps.h>
25 #include <asm/r4kcache.h>
26 #include <asm/smp-cps.h>
27 #include <asm/time.h>
28 #include <asm/uasm.h>
29 
30 static bool threads_disabled;
31 static DECLARE_BITMAP(core_power, NR_CPUS);
32 
33 struct core_boot_config *mips_cps_core_bootcfg;
34 
setup_nothreads(char * s)35 static int __init setup_nothreads(char *s)
36 {
37 	threads_disabled = true;
38 	return 0;
39 }
40 early_param("nothreads", setup_nothreads);
41 
core_vpe_count(unsigned core)42 static unsigned core_vpe_count(unsigned core)
43 {
44 	unsigned cfg;
45 
46 	if (threads_disabled)
47 		return 1;
48 
49 	if ((!IS_ENABLED(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
50 		&& (!IS_ENABLED(CONFIG_CPU_MIPSR6) || !cpu_has_vp))
51 		return 1;
52 
53 	mips_cm_lock_other(core, 0);
54 	cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
55 	mips_cm_unlock_other();
56 	return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
57 }
58 
cps_smp_setup(void)59 static void __init cps_smp_setup(void)
60 {
61 	unsigned int ncores, nvpes, core_vpes;
62 	unsigned long core_entry;
63 	int c, v;
64 
65 	/* Detect & record VPE topology */
66 	ncores = mips_cm_numcores();
67 	pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
68 	for (c = nvpes = 0; c < ncores; c++) {
69 		core_vpes = core_vpe_count(c);
70 		pr_cont("%c%u", c ? ',' : '{', core_vpes);
71 
72 		/* Use the number of VPEs in core 0 for smp_num_siblings */
73 		if (!c)
74 			smp_num_siblings = core_vpes;
75 
76 		for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
77 			cpu_data[nvpes + v].core = c;
78 #if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_CPU_MIPSR6)
79 			cpu_data[nvpes + v].vpe_id = v;
80 #endif
81 		}
82 
83 		nvpes += core_vpes;
84 	}
85 	pr_cont("} total %u\n", nvpes);
86 
87 	/* Indicate present CPUs (CPU being synonymous with VPE) */
88 	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
89 		set_cpu_possible(v, true);
90 		set_cpu_present(v, true);
91 		__cpu_number_map[v] = v;
92 		__cpu_logical_map[v] = v;
93 	}
94 
95 	/* Set a coherent default CCA (CWB) */
96 	change_c0_config(CONF_CM_CMASK, 0x5);
97 
98 	/* Core 0 is powered up (we're running on it) */
99 	bitmap_set(core_power, 0, 1);
100 
101 	/* Initialise core 0 */
102 	mips_cps_core_init();
103 
104 	/* Make core 0 coherent with everything */
105 	write_gcr_cl_coherence(0xff);
106 
107 	if (mips_cm_revision() >= CM_REV_CM3) {
108 		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
109 		write_gcr_bev_base(core_entry);
110 	}
111 
112 #ifdef CONFIG_MIPS_MT_FPAFF
113 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
114 	if (cpu_has_fpu)
115 		cpumask_set_cpu(0, &mt_fpu_cpumask);
116 #endif /* CONFIG_MIPS_MT_FPAFF */
117 }
118 
cps_prepare_cpus(unsigned int max_cpus)119 static void __init cps_prepare_cpus(unsigned int max_cpus)
120 {
121 	unsigned ncores, core_vpes, c, cca;
122 	bool cca_unsuitable;
123 	u32 *entry_code;
124 
125 	mips_mt_set_cpuoptions();
126 
127 	/* Detect whether the CCA is unsuited to multi-core SMP */
128 	cca = read_c0_config() & CONF_CM_CMASK;
129 	switch (cca) {
130 	case 0x4: /* CWBE */
131 	case 0x5: /* CWB */
132 		/* The CCA is coherent, multi-core is fine */
133 		cca_unsuitable = false;
134 		break;
135 
136 	default:
137 		/* CCA is not coherent, multi-core is not usable */
138 		cca_unsuitable = true;
139 	}
140 
141 	/* Warn the user if the CCA prevents multi-core */
142 	ncores = mips_cm_numcores();
143 	if (cca_unsuitable && ncores > 1) {
144 		pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
145 			cca);
146 
147 		for_each_present_cpu(c) {
148 			if (cpu_data[c].core)
149 				set_cpu_present(c, false);
150 		}
151 	}
152 
153 	/*
154 	 * Patch the start of mips_cps_core_entry to provide:
155 	 *
156 	 * s0 = kseg0 CCA
157 	 */
158 	entry_code = (u32 *)&mips_cps_core_entry;
159 	uasm_i_addiu(&entry_code, 16, 0, cca);
160 	blast_dcache_range((unsigned long)&mips_cps_core_entry,
161 			   (unsigned long)entry_code);
162 	bc_wback_inv((unsigned long)&mips_cps_core_entry,
163 		     (void *)entry_code - (void *)&mips_cps_core_entry);
164 	__sync();
165 
166 	/* Allocate core boot configuration structs */
167 	mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
168 					GFP_KERNEL);
169 	if (!mips_cps_core_bootcfg) {
170 		pr_err("Failed to allocate boot config for %u cores\n", ncores);
171 		goto err_out;
172 	}
173 
174 	/* Allocate VPE boot configuration structs */
175 	for (c = 0; c < ncores; c++) {
176 		core_vpes = core_vpe_count(c);
177 		mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
178 				sizeof(*mips_cps_core_bootcfg[c].vpe_config),
179 				GFP_KERNEL);
180 		if (!mips_cps_core_bootcfg[c].vpe_config) {
181 			pr_err("Failed to allocate %u VPE boot configs\n",
182 			       core_vpes);
183 			goto err_out;
184 		}
185 	}
186 
187 	/* Mark this CPU as booted */
188 	atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
189 		   1 << cpu_vpe_id(&current_cpu_data));
190 
191 	return;
192 err_out:
193 	/* Clean up allocations */
194 	if (mips_cps_core_bootcfg) {
195 		for (c = 0; c < ncores; c++)
196 			kfree(mips_cps_core_bootcfg[c].vpe_config);
197 		kfree(mips_cps_core_bootcfg);
198 		mips_cps_core_bootcfg = NULL;
199 	}
200 
201 	/* Effectively disable SMP by declaring CPUs not present */
202 	for_each_possible_cpu(c) {
203 		if (c == 0)
204 			continue;
205 		set_cpu_present(c, false);
206 	}
207 }
208 
boot_core(unsigned int core,unsigned int vpe_id)209 static void boot_core(unsigned int core, unsigned int vpe_id)
210 {
211 	u32 access, stat, seq_state;
212 	unsigned timeout;
213 
214 	/* Select the appropriate core */
215 	mips_cm_lock_other(core, 0);
216 
217 	/* Set its reset vector */
218 	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
219 
220 	/* Ensure its coherency is disabled */
221 	write_gcr_co_coherence(0);
222 
223 	/* Start it with the legacy memory map and exception base */
224 	write_gcr_co_reset_ext_base(CM_GCR_RESET_EXT_BASE_UEB);
225 
226 	/* Ensure the core can access the GCRs */
227 	access = read_gcr_access();
228 	access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
229 	write_gcr_access(access);
230 
231 	if (mips_cpc_present()) {
232 		/* Reset the core */
233 		mips_cpc_lock_other(core);
234 
235 		if (mips_cm_revision() >= CM_REV_CM3) {
236 			/* Run only the requested VP following the reset */
237 			write_cpc_co_vp_stop(0xf);
238 			write_cpc_co_vp_run(1 << vpe_id);
239 
240 			/*
241 			 * Ensure that the VP_RUN register is written before the
242 			 * core leaves reset.
243 			 */
244 			wmb();
245 		}
246 
247 		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
248 
249 		timeout = 100;
250 		while (true) {
251 			stat = read_cpc_co_stat_conf();
252 			seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE_MSK;
253 
254 			/* U6 == coherent execution, ie. the core is up */
255 			if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
256 				break;
257 
258 			/* Delay a little while before we start warning */
259 			if (timeout) {
260 				timeout--;
261 				mdelay(10);
262 				continue;
263 			}
264 
265 			pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
266 				core, stat);
267 			mdelay(1000);
268 		}
269 
270 		mips_cpc_unlock_other();
271 	} else {
272 		/* Take the core out of reset */
273 		write_gcr_co_reset_release(0);
274 	}
275 
276 	mips_cm_unlock_other();
277 
278 	/* The core is now powered up */
279 	bitmap_set(core_power, core, 1);
280 }
281 
remote_vpe_boot(void * dummy)282 static void remote_vpe_boot(void *dummy)
283 {
284 	unsigned core = current_cpu_data.core;
285 	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
286 
287 	mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
288 }
289 
cps_boot_secondary(int cpu,struct task_struct * idle)290 static void cps_boot_secondary(int cpu, struct task_struct *idle)
291 {
292 	unsigned core = cpu_data[cpu].core;
293 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
294 	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
295 	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
296 	unsigned long core_entry;
297 	unsigned int remote;
298 	int err;
299 
300 	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
301 	vpe_cfg->sp = __KSTK_TOS(idle);
302 	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
303 
304 	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
305 
306 	preempt_disable();
307 
308 	if (!test_bit(core, core_power)) {
309 		/* Boot a VPE on a powered down core */
310 		boot_core(core, vpe_id);
311 		goto out;
312 	}
313 
314 	if (cpu_has_vp) {
315 		mips_cm_lock_other(core, vpe_id);
316 		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
317 		write_gcr_co_reset_base(core_entry);
318 		mips_cm_unlock_other();
319 	}
320 
321 	if (core != current_cpu_data.core) {
322 		/* Boot a VPE on another powered up core */
323 		for (remote = 0; remote < NR_CPUS; remote++) {
324 			if (cpu_data[remote].core != core)
325 				continue;
326 			if (cpu_online(remote))
327 				break;
328 		}
329 		BUG_ON(remote >= NR_CPUS);
330 
331 		err = smp_call_function_single(remote, remote_vpe_boot,
332 					       NULL, 1);
333 		if (err)
334 			panic("Failed to call remote CPU\n");
335 		goto out;
336 	}
337 
338 	BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
339 
340 	/* Boot a VPE on this core */
341 	mips_cps_boot_vpes(core_cfg, vpe_id);
342 out:
343 	preempt_enable();
344 }
345 
cps_init_secondary(void)346 static void cps_init_secondary(void)
347 {
348 	/* Disable MT - we only want to run 1 TC per VPE */
349 	if (cpu_has_mipsmt)
350 		dmt();
351 
352 	if (mips_cm_revision() >= CM_REV_CM3) {
353 		unsigned ident = gic_read_local_vp_id();
354 
355 		/*
356 		 * Ensure that our calculation of the VP ID matches up with
357 		 * what the GIC reports, otherwise we'll have configured
358 		 * interrupts incorrectly.
359 		 */
360 		BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
361 	}
362 
363 	if (cpu_has_veic)
364 		clear_c0_status(ST0_IM);
365 	else
366 		change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
367 					 STATUSF_IP4 | STATUSF_IP5 |
368 					 STATUSF_IP6 | STATUSF_IP7);
369 }
370 
cps_smp_finish(void)371 static void cps_smp_finish(void)
372 {
373 	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
374 
375 #ifdef CONFIG_MIPS_MT_FPAFF
376 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
377 	if (cpu_has_fpu)
378 		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
379 #endif /* CONFIG_MIPS_MT_FPAFF */
380 
381 	local_irq_enable();
382 }
383 
384 #ifdef CONFIG_HOTPLUG_CPU
385 
cps_cpu_disable(void)386 static int cps_cpu_disable(void)
387 {
388 	unsigned cpu = smp_processor_id();
389 	struct core_boot_config *core_cfg;
390 
391 	if (!cpu)
392 		return -EBUSY;
393 
394 	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
395 		return -EINVAL;
396 
397 	core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
398 	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
399 	smp_mb__after_atomic();
400 	set_cpu_online(cpu, false);
401 	calculate_cpu_foreign_map();
402 	cpumask_clear_cpu(cpu, &cpu_callin_map);
403 
404 	return 0;
405 }
406 
407 static DECLARE_COMPLETION(cpu_death_chosen);
408 static unsigned cpu_death_sibling;
409 static enum {
410 	CPU_DEATH_HALT,
411 	CPU_DEATH_POWER,
412 } cpu_death;
413 
play_dead(void)414 void play_dead(void)
415 {
416 	unsigned int cpu, core, vpe_id;
417 
418 	local_irq_disable();
419 	idle_task_exit();
420 	cpu = smp_processor_id();
421 	cpu_death = CPU_DEATH_POWER;
422 
423 	pr_debug("CPU%d going offline\n", cpu);
424 
425 	if (cpu_has_mipsmt || cpu_has_vp) {
426 		core = cpu_data[cpu].core;
427 
428 		/* Look for another online VPE within the core */
429 		for_each_online_cpu(cpu_death_sibling) {
430 			if (cpu_data[cpu_death_sibling].core != core)
431 				continue;
432 
433 			/*
434 			 * There is an online VPE within the core. Just halt
435 			 * this TC and leave the core alone.
436 			 */
437 			cpu_death = CPU_DEATH_HALT;
438 			break;
439 		}
440 	}
441 
442 	/* This CPU has chosen its way out */
443 	complete(&cpu_death_chosen);
444 
445 	if (cpu_death == CPU_DEATH_HALT) {
446 		vpe_id = cpu_vpe_id(&cpu_data[cpu]);
447 
448 		pr_debug("Halting core %d VP%d\n", core, vpe_id);
449 		if (cpu_has_mipsmt) {
450 			/* Halt this TC */
451 			write_c0_tchalt(TCHALT_H);
452 			instruction_hazard();
453 		} else if (cpu_has_vp) {
454 			write_cpc_cl_vp_stop(1 << vpe_id);
455 
456 			/* Ensure that the VP_STOP register is written */
457 			wmb();
458 		}
459 	} else {
460 		pr_debug("Gating power to core %d\n", core);
461 		/* Power down the core */
462 		cps_pm_enter_state(CPS_PM_POWER_GATED);
463 	}
464 
465 	/* This should never be reached */
466 	panic("Failed to offline CPU %u", cpu);
467 }
468 
wait_for_sibling_halt(void * ptr_cpu)469 static void wait_for_sibling_halt(void *ptr_cpu)
470 {
471 	unsigned cpu = (unsigned long)ptr_cpu;
472 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
473 	unsigned halted;
474 	unsigned long flags;
475 
476 	do {
477 		local_irq_save(flags);
478 		settc(vpe_id);
479 		halted = read_tc_c0_tchalt();
480 		local_irq_restore(flags);
481 	} while (!(halted & TCHALT_H));
482 }
483 
cps_cpu_die(unsigned int cpu)484 static void cps_cpu_die(unsigned int cpu)
485 {
486 	unsigned core = cpu_data[cpu].core;
487 	unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
488 	unsigned stat;
489 	int err;
490 
491 	/* Wait for the cpu to choose its way out */
492 	if (!wait_for_completion_timeout(&cpu_death_chosen,
493 					 msecs_to_jiffies(5000))) {
494 		pr_err("CPU%u: didn't offline\n", cpu);
495 		return;
496 	}
497 
498 	/*
499 	 * Now wait for the CPU to actually offline. Without doing this that
500 	 * offlining may race with one or more of:
501 	 *
502 	 *   - Onlining the CPU again.
503 	 *   - Powering down the core if another VPE within it is offlined.
504 	 *   - A sibling VPE entering a non-coherent state.
505 	 *
506 	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
507 	 * with which we could race, so do nothing.
508 	 */
509 	if (cpu_death == CPU_DEATH_POWER) {
510 		/*
511 		 * Wait for the core to enter a powered down or clock gated
512 		 * state, the latter happening when a JTAG probe is connected
513 		 * in which case the CPC will refuse to power down the core.
514 		 */
515 		do {
516 			mips_cm_lock_other(core, 0);
517 			mips_cpc_lock_other(core);
518 			stat = read_cpc_co_stat_conf();
519 			stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
520 			mips_cpc_unlock_other();
521 			mips_cm_unlock_other();
522 		} while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
523 			 stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
524 			 stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
525 
526 		/* Indicate the core is powered off */
527 		bitmap_clear(core_power, core, 1);
528 	} else if (cpu_has_mipsmt) {
529 		/*
530 		 * Have a CPU with access to the offlined CPUs registers wait
531 		 * for its TC to halt.
532 		 */
533 		err = smp_call_function_single(cpu_death_sibling,
534 					       wait_for_sibling_halt,
535 					       (void *)(unsigned long)cpu, 1);
536 		if (err)
537 			panic("Failed to call remote sibling CPU\n");
538 	} else if (cpu_has_vp) {
539 		do {
540 			mips_cm_lock_other(core, vpe_id);
541 			stat = read_cpc_co_vp_running();
542 			mips_cm_unlock_other();
543 		} while (stat & (1 << vpe_id));
544 	}
545 }
546 
547 #endif /* CONFIG_HOTPLUG_CPU */
548 
549 static struct plat_smp_ops cps_smp_ops = {
550 	.smp_setup		= cps_smp_setup,
551 	.prepare_cpus		= cps_prepare_cpus,
552 	.boot_secondary		= cps_boot_secondary,
553 	.init_secondary		= cps_init_secondary,
554 	.smp_finish		= cps_smp_finish,
555 	.send_ipi_single	= mips_smp_send_ipi_single,
556 	.send_ipi_mask		= mips_smp_send_ipi_mask,
557 #ifdef CONFIG_HOTPLUG_CPU
558 	.cpu_disable		= cps_cpu_disable,
559 	.cpu_die		= cps_cpu_die,
560 #endif
561 };
562 
mips_cps_smp_in_use(void)563 bool mips_cps_smp_in_use(void)
564 {
565 	extern struct plat_smp_ops *mp_ops;
566 	return mp_ops == &cps_smp_ops;
567 }
568 
register_cps_smp_ops(void)569 int register_cps_smp_ops(void)
570 {
571 	if (!mips_cm_present()) {
572 		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
573 		return -ENODEV;
574 	}
575 
576 	/* check we have a GIC - we need one for IPIs */
577 	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
578 		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
579 		return -ENODEV;
580 	}
581 
582 	register_smp_ops(&cps_smp_ops);
583 	return 0;
584 }
585