• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   * Copyright (C) 2013 Imagination Technologies
3   * Author: Paul Burton <paul.burton@imgtec.com>
4   *
5   * This program is free software; you can redistribute it and/or modify it
6   * under the terms of the GNU General Public License as published by the
7   * Free Software Foundation;  either version 2 of the  License, or (at your
8   * option) any later version.
9   */
10  
11  #include <linux/delay.h>
12  #include <linux/io.h>
13  #include <linux/irqchip/mips-gic.h>
14  #include <linux/sched.h>
15  #include <linux/slab.h>
16  #include <linux/smp.h>
17  #include <linux/types.h>
18  
19  #include <asm/bcache.h>
20  #include <asm/mips-cm.h>
21  #include <asm/mips-cpc.h>
22  #include <asm/mips_mt.h>
23  #include <asm/mipsregs.h>
24  #include <asm/pm-cps.h>
25  #include <asm/r4kcache.h>
26  #include <asm/smp-cps.h>
27  #include <asm/time.h>
28  #include <asm/uasm.h>
29  
30  static bool threads_disabled;
31  static DECLARE_BITMAP(core_power, NR_CPUS);
32  
33  struct core_boot_config *mips_cps_core_bootcfg;
34  
setup_nothreads(char * s)35  static int __init setup_nothreads(char *s)
36  {
37  	threads_disabled = true;
38  	return 0;
39  }
40  early_param("nothreads", setup_nothreads);
41  
core_vpe_count(unsigned core)42  static unsigned core_vpe_count(unsigned core)
43  {
44  	unsigned cfg;
45  
46  	if (threads_disabled)
47  		return 1;
48  
49  	if ((!IS_ENABLED(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
50  		&& (!IS_ENABLED(CONFIG_CPU_MIPSR6) || !cpu_has_vp))
51  		return 1;
52  
53  	mips_cm_lock_other(core, 0);
54  	cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
55  	mips_cm_unlock_other();
56  	return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
57  }
58  
cps_smp_setup(void)59  static void __init cps_smp_setup(void)
60  {
61  	unsigned int ncores, nvpes, core_vpes;
62  	unsigned long core_entry;
63  	int c, v;
64  
65  	/* Detect & record VPE topology */
66  	ncores = mips_cm_numcores();
67  	pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
68  	for (c = nvpes = 0; c < ncores; c++) {
69  		core_vpes = core_vpe_count(c);
70  		pr_cont("%c%u", c ? ',' : '{', core_vpes);
71  
72  		/* Use the number of VPEs in core 0 for smp_num_siblings */
73  		if (!c)
74  			smp_num_siblings = core_vpes;
75  
76  		for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
77  			cpu_data[nvpes + v].core = c;
78  #if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_CPU_MIPSR6)
79  			cpu_data[nvpes + v].vpe_id = v;
80  #endif
81  		}
82  
83  		nvpes += core_vpes;
84  	}
85  	pr_cont("} total %u\n", nvpes);
86  
87  	/* Indicate present CPUs (CPU being synonymous with VPE) */
88  	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
89  		set_cpu_possible(v, true);
90  		set_cpu_present(v, true);
91  		__cpu_number_map[v] = v;
92  		__cpu_logical_map[v] = v;
93  	}
94  
95  	/* Set a coherent default CCA (CWB) */
96  	change_c0_config(CONF_CM_CMASK, 0x5);
97  
98  	/* Core 0 is powered up (we're running on it) */
99  	bitmap_set(core_power, 0, 1);
100  
101  	/* Initialise core 0 */
102  	mips_cps_core_init();
103  
104  	/* Make core 0 coherent with everything */
105  	write_gcr_cl_coherence(0xff);
106  
107  	if (mips_cm_revision() >= CM_REV_CM3) {
108  		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
109  		write_gcr_bev_base(core_entry);
110  	}
111  
112  #ifdef CONFIG_MIPS_MT_FPAFF
113  	/* If we have an FPU, enroll ourselves in the FPU-full mask */
114  	if (cpu_has_fpu)
115  		cpumask_set_cpu(0, &mt_fpu_cpumask);
116  #endif /* CONFIG_MIPS_MT_FPAFF */
117  }
118  
cps_prepare_cpus(unsigned int max_cpus)119  static void __init cps_prepare_cpus(unsigned int max_cpus)
120  {
121  	unsigned ncores, core_vpes, c, cca;
122  	bool cca_unsuitable;
123  	u32 *entry_code;
124  
125  	mips_mt_set_cpuoptions();
126  
127  	/* Detect whether the CCA is unsuited to multi-core SMP */
128  	cca = read_c0_config() & CONF_CM_CMASK;
129  	switch (cca) {
130  	case 0x4: /* CWBE */
131  	case 0x5: /* CWB */
132  		/* The CCA is coherent, multi-core is fine */
133  		cca_unsuitable = false;
134  		break;
135  
136  	default:
137  		/* CCA is not coherent, multi-core is not usable */
138  		cca_unsuitable = true;
139  	}
140  
141  	/* Warn the user if the CCA prevents multi-core */
142  	ncores = mips_cm_numcores();
143  	if (cca_unsuitable && ncores > 1) {
144  		pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
145  			cca);
146  
147  		for_each_present_cpu(c) {
148  			if (cpu_data[c].core)
149  				set_cpu_present(c, false);
150  		}
151  	}
152  
153  	/*
154  	 * Patch the start of mips_cps_core_entry to provide:
155  	 *
156  	 * s0 = kseg0 CCA
157  	 */
158  	entry_code = (u32 *)&mips_cps_core_entry;
159  	uasm_i_addiu(&entry_code, 16, 0, cca);
160  	blast_dcache_range((unsigned long)&mips_cps_core_entry,
161  			   (unsigned long)entry_code);
162  	bc_wback_inv((unsigned long)&mips_cps_core_entry,
163  		     (void *)entry_code - (void *)&mips_cps_core_entry);
164  	__sync();
165  
166  	/* Allocate core boot configuration structs */
167  	mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
168  					GFP_KERNEL);
169  	if (!mips_cps_core_bootcfg) {
170  		pr_err("Failed to allocate boot config for %u cores\n", ncores);
171  		goto err_out;
172  	}
173  
174  	/* Allocate VPE boot configuration structs */
175  	for (c = 0; c < ncores; c++) {
176  		core_vpes = core_vpe_count(c);
177  		mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
178  				sizeof(*mips_cps_core_bootcfg[c].vpe_config),
179  				GFP_KERNEL);
180  		if (!mips_cps_core_bootcfg[c].vpe_config) {
181  			pr_err("Failed to allocate %u VPE boot configs\n",
182  			       core_vpes);
183  			goto err_out;
184  		}
185  	}
186  
187  	/* Mark this CPU as booted */
188  	atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
189  		   1 << cpu_vpe_id(&current_cpu_data));
190  
191  	return;
192  err_out:
193  	/* Clean up allocations */
194  	if (mips_cps_core_bootcfg) {
195  		for (c = 0; c < ncores; c++)
196  			kfree(mips_cps_core_bootcfg[c].vpe_config);
197  		kfree(mips_cps_core_bootcfg);
198  		mips_cps_core_bootcfg = NULL;
199  	}
200  
201  	/* Effectively disable SMP by declaring CPUs not present */
202  	for_each_possible_cpu(c) {
203  		if (c == 0)
204  			continue;
205  		set_cpu_present(c, false);
206  	}
207  }
208  
boot_core(unsigned int core,unsigned int vpe_id)209  static void boot_core(unsigned int core, unsigned int vpe_id)
210  {
211  	u32 access, stat, seq_state;
212  	unsigned timeout;
213  
214  	/* Select the appropriate core */
215  	mips_cm_lock_other(core, 0);
216  
217  	/* Set its reset vector */
218  	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
219  
220  	/* Ensure its coherency is disabled */
221  	write_gcr_co_coherence(0);
222  
223  	/* Start it with the legacy memory map and exception base */
224  	write_gcr_co_reset_ext_base(CM_GCR_RESET_EXT_BASE_UEB);
225  
226  	/* Ensure the core can access the GCRs */
227  	access = read_gcr_access();
228  	access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
229  	write_gcr_access(access);
230  
231  	if (mips_cpc_present()) {
232  		/* Reset the core */
233  		mips_cpc_lock_other(core);
234  
235  		if (mips_cm_revision() >= CM_REV_CM3) {
236  			/* Run only the requested VP following the reset */
237  			write_cpc_co_vp_stop(0xf);
238  			write_cpc_co_vp_run(1 << vpe_id);
239  
240  			/*
241  			 * Ensure that the VP_RUN register is written before the
242  			 * core leaves reset.
243  			 */
244  			wmb();
245  		}
246  
247  		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
248  
249  		timeout = 100;
250  		while (true) {
251  			stat = read_cpc_co_stat_conf();
252  			seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE_MSK;
253  
254  			/* U6 == coherent execution, ie. the core is up */
255  			if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
256  				break;
257  
258  			/* Delay a little while before we start warning */
259  			if (timeout) {
260  				timeout--;
261  				mdelay(10);
262  				continue;
263  			}
264  
265  			pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
266  				core, stat);
267  			mdelay(1000);
268  		}
269  
270  		mips_cpc_unlock_other();
271  	} else {
272  		/* Take the core out of reset */
273  		write_gcr_co_reset_release(0);
274  	}
275  
276  	mips_cm_unlock_other();
277  
278  	/* The core is now powered up */
279  	bitmap_set(core_power, core, 1);
280  }
281  
remote_vpe_boot(void * dummy)282  static void remote_vpe_boot(void *dummy)
283  {
284  	unsigned core = current_cpu_data.core;
285  	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
286  
287  	mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
288  }
289  
cps_boot_secondary(int cpu,struct task_struct * idle)290  static void cps_boot_secondary(int cpu, struct task_struct *idle)
291  {
292  	unsigned core = cpu_data[cpu].core;
293  	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
294  	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
295  	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
296  	unsigned long core_entry;
297  	unsigned int remote;
298  	int err;
299  
300  	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
301  	vpe_cfg->sp = __KSTK_TOS(idle);
302  	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
303  
304  	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
305  
306  	preempt_disable();
307  
308  	if (!test_bit(core, core_power)) {
309  		/* Boot a VPE on a powered down core */
310  		boot_core(core, vpe_id);
311  		goto out;
312  	}
313  
314  	if (cpu_has_vp) {
315  		mips_cm_lock_other(core, vpe_id);
316  		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
317  		write_gcr_co_reset_base(core_entry);
318  		mips_cm_unlock_other();
319  	}
320  
321  	if (core != current_cpu_data.core) {
322  		/* Boot a VPE on another powered up core */
323  		for (remote = 0; remote < NR_CPUS; remote++) {
324  			if (cpu_data[remote].core != core)
325  				continue;
326  			if (cpu_online(remote))
327  				break;
328  		}
329  		BUG_ON(remote >= NR_CPUS);
330  
331  		err = smp_call_function_single(remote, remote_vpe_boot,
332  					       NULL, 1);
333  		if (err)
334  			panic("Failed to call remote CPU\n");
335  		goto out;
336  	}
337  
338  	BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
339  
340  	/* Boot a VPE on this core */
341  	mips_cps_boot_vpes(core_cfg, vpe_id);
342  out:
343  	preempt_enable();
344  }
345  
cps_init_secondary(void)346  static void cps_init_secondary(void)
347  {
348  	/* Disable MT - we only want to run 1 TC per VPE */
349  	if (cpu_has_mipsmt)
350  		dmt();
351  
352  	if (mips_cm_revision() >= CM_REV_CM3) {
353  		unsigned ident = gic_read_local_vp_id();
354  
355  		/*
356  		 * Ensure that our calculation of the VP ID matches up with
357  		 * what the GIC reports, otherwise we'll have configured
358  		 * interrupts incorrectly.
359  		 */
360  		BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
361  	}
362  
363  	if (cpu_has_veic)
364  		clear_c0_status(ST0_IM);
365  	else
366  		change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
367  					 STATUSF_IP4 | STATUSF_IP5 |
368  					 STATUSF_IP6 | STATUSF_IP7);
369  }
370  
cps_smp_finish(void)371  static void cps_smp_finish(void)
372  {
373  	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
374  
375  #ifdef CONFIG_MIPS_MT_FPAFF
376  	/* If we have an FPU, enroll ourselves in the FPU-full mask */
377  	if (cpu_has_fpu)
378  		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
379  #endif /* CONFIG_MIPS_MT_FPAFF */
380  
381  	local_irq_enable();
382  }
383  
384  #ifdef CONFIG_HOTPLUG_CPU
385  
cps_cpu_disable(void)386  static int cps_cpu_disable(void)
387  {
388  	unsigned cpu = smp_processor_id();
389  	struct core_boot_config *core_cfg;
390  
391  	if (!cpu)
392  		return -EBUSY;
393  
394  	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
395  		return -EINVAL;
396  
397  	core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
398  	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
399  	smp_mb__after_atomic();
400  	set_cpu_online(cpu, false);
401  	calculate_cpu_foreign_map();
402  	cpumask_clear_cpu(cpu, &cpu_callin_map);
403  
404  	return 0;
405  }
406  
407  static DECLARE_COMPLETION(cpu_death_chosen);
408  static unsigned cpu_death_sibling;
409  static enum {
410  	CPU_DEATH_HALT,
411  	CPU_DEATH_POWER,
412  } cpu_death;
413  
play_dead(void)414  void play_dead(void)
415  {
416  	unsigned int cpu, core, vpe_id;
417  
418  	local_irq_disable();
419  	idle_task_exit();
420  	cpu = smp_processor_id();
421  	cpu_death = CPU_DEATH_POWER;
422  
423  	pr_debug("CPU%d going offline\n", cpu);
424  
425  	if (cpu_has_mipsmt || cpu_has_vp) {
426  		core = cpu_data[cpu].core;
427  
428  		/* Look for another online VPE within the core */
429  		for_each_online_cpu(cpu_death_sibling) {
430  			if (cpu_data[cpu_death_sibling].core != core)
431  				continue;
432  
433  			/*
434  			 * There is an online VPE within the core. Just halt
435  			 * this TC and leave the core alone.
436  			 */
437  			cpu_death = CPU_DEATH_HALT;
438  			break;
439  		}
440  	}
441  
442  	/* This CPU has chosen its way out */
443  	complete(&cpu_death_chosen);
444  
445  	if (cpu_death == CPU_DEATH_HALT) {
446  		vpe_id = cpu_vpe_id(&cpu_data[cpu]);
447  
448  		pr_debug("Halting core %d VP%d\n", core, vpe_id);
449  		if (cpu_has_mipsmt) {
450  			/* Halt this TC */
451  			write_c0_tchalt(TCHALT_H);
452  			instruction_hazard();
453  		} else if (cpu_has_vp) {
454  			write_cpc_cl_vp_stop(1 << vpe_id);
455  
456  			/* Ensure that the VP_STOP register is written */
457  			wmb();
458  		}
459  	} else {
460  		pr_debug("Gating power to core %d\n", core);
461  		/* Power down the core */
462  		cps_pm_enter_state(CPS_PM_POWER_GATED);
463  	}
464  
465  	/* This should never be reached */
466  	panic("Failed to offline CPU %u", cpu);
467  }
468  
wait_for_sibling_halt(void * ptr_cpu)469  static void wait_for_sibling_halt(void *ptr_cpu)
470  {
471  	unsigned cpu = (unsigned long)ptr_cpu;
472  	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
473  	unsigned halted;
474  	unsigned long flags;
475  
476  	do {
477  		local_irq_save(flags);
478  		settc(vpe_id);
479  		halted = read_tc_c0_tchalt();
480  		local_irq_restore(flags);
481  	} while (!(halted & TCHALT_H));
482  }
483  
cps_cpu_die(unsigned int cpu)484  static void cps_cpu_die(unsigned int cpu)
485  {
486  	unsigned core = cpu_data[cpu].core;
487  	unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
488  	unsigned stat;
489  	int err;
490  
491  	/* Wait for the cpu to choose its way out */
492  	if (!wait_for_completion_timeout(&cpu_death_chosen,
493  					 msecs_to_jiffies(5000))) {
494  		pr_err("CPU%u: didn't offline\n", cpu);
495  		return;
496  	}
497  
498  	/*
499  	 * Now wait for the CPU to actually offline. Without doing this that
500  	 * offlining may race with one or more of:
501  	 *
502  	 *   - Onlining the CPU again.
503  	 *   - Powering down the core if another VPE within it is offlined.
504  	 *   - A sibling VPE entering a non-coherent state.
505  	 *
506  	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
507  	 * with which we could race, so do nothing.
508  	 */
509  	if (cpu_death == CPU_DEATH_POWER) {
510  		/*
511  		 * Wait for the core to enter a powered down or clock gated
512  		 * state, the latter happening when a JTAG probe is connected
513  		 * in which case the CPC will refuse to power down the core.
514  		 */
515  		do {
516  			mips_cm_lock_other(core, 0);
517  			mips_cpc_lock_other(core);
518  			stat = read_cpc_co_stat_conf();
519  			stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
520  			mips_cpc_unlock_other();
521  			mips_cm_unlock_other();
522  		} while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
523  			 stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
524  			 stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
525  
526  		/* Indicate the core is powered off */
527  		bitmap_clear(core_power, core, 1);
528  	} else if (cpu_has_mipsmt) {
529  		/*
530  		 * Have a CPU with access to the offlined CPUs registers wait
531  		 * for its TC to halt.
532  		 */
533  		err = smp_call_function_single(cpu_death_sibling,
534  					       wait_for_sibling_halt,
535  					       (void *)(unsigned long)cpu, 1);
536  		if (err)
537  			panic("Failed to call remote sibling CPU\n");
538  	} else if (cpu_has_vp) {
539  		do {
540  			mips_cm_lock_other(core, vpe_id);
541  			stat = read_cpc_co_vp_running();
542  			mips_cm_unlock_other();
543  		} while (stat & (1 << vpe_id));
544  	}
545  }
546  
547  #endif /* CONFIG_HOTPLUG_CPU */
548  
549  static struct plat_smp_ops cps_smp_ops = {
550  	.smp_setup		= cps_smp_setup,
551  	.prepare_cpus		= cps_prepare_cpus,
552  	.boot_secondary		= cps_boot_secondary,
553  	.init_secondary		= cps_init_secondary,
554  	.smp_finish		= cps_smp_finish,
555  	.send_ipi_single	= mips_smp_send_ipi_single,
556  	.send_ipi_mask		= mips_smp_send_ipi_mask,
557  #ifdef CONFIG_HOTPLUG_CPU
558  	.cpu_disable		= cps_cpu_disable,
559  	.cpu_die		= cps_cpu_die,
560  #endif
561  };
562  
mips_cps_smp_in_use(void)563  bool mips_cps_smp_in_use(void)
564  {
565  	extern struct plat_smp_ops *mp_ops;
566  	return mp_ops == &cps_smp_ops;
567  }
568  
register_cps_smp_ops(void)569  int register_cps_smp_ops(void)
570  {
571  	if (!mips_cm_present()) {
572  		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
573  		return -ENODEV;
574  	}
575  
576  	/* check we have a GIC - we need one for IPIs */
577  	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
578  		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
579  		return -ENODEV;
580  	}
581  
582  	register_smp_ops(&cps_smp_ops);
583  	return 0;
584  }
585