1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58
59 struct perf_callchain_entry {
60 __u64 nr;
61 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
62 };
63
64 struct perf_callchain_entry_ctx {
65 struct perf_callchain_entry *entry;
66 u32 max_stack;
67 u32 nr;
68 short contexts;
69 bool contexts_maxed;
70 };
71
72 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
73 unsigned long off, unsigned long len);
74
75 struct perf_raw_frag {
76 union {
77 struct perf_raw_frag *next;
78 unsigned long pad;
79 };
80 perf_copy_f copy;
81 void *data;
82 u32 size;
83 } __packed;
84
85 struct perf_raw_record {
86 struct perf_raw_frag frag;
87 u32 size;
88 };
89
90 /*
91 * branch stack layout:
92 * nr: number of taken branches stored in entries[]
93 *
94 * Note that nr can vary from sample to sample
95 * branches (to, from) are stored from most recent
96 * to least recent, i.e., entries[0] contains the most
97 * recent branch.
98 */
99 struct perf_branch_stack {
100 __u64 nr;
101 struct perf_branch_entry entries[0];
102 };
103
104 struct task_struct;
105
106 /*
107 * extra PMU register associated with an event
108 */
109 struct hw_perf_event_extra {
110 u64 config; /* register value */
111 unsigned int reg; /* register address or index */
112 int alloc; /* extra register already allocated */
113 int idx; /* index in shared_regs->regs[] */
114 };
115
116 /**
117 * struct hw_perf_event - performance event hardware details:
118 */
119 struct hw_perf_event {
120 #ifdef CONFIG_PERF_EVENTS
121 union {
122 struct { /* hardware */
123 u64 config;
124 u64 last_tag;
125 unsigned long config_base;
126 unsigned long event_base;
127 int event_base_rdpmc;
128 int idx;
129 int last_cpu;
130 int flags;
131
132 struct hw_perf_event_extra extra_reg;
133 struct hw_perf_event_extra branch_reg;
134 };
135 struct { /* software */
136 struct hrtimer hrtimer;
137 };
138 struct { /* tracepoint */
139 /* for tp_event->class */
140 struct list_head tp_list;
141 };
142 struct { /* intel_cqm */
143 int cqm_state;
144 u32 cqm_rmid;
145 int is_group_event;
146 struct list_head cqm_events_entry;
147 struct list_head cqm_groups_entry;
148 struct list_head cqm_group_entry;
149 };
150 struct { /* itrace */
151 int itrace_started;
152 };
153 struct { /* amd_power */
154 u64 pwr_acc;
155 u64 ptsc;
156 };
157 #ifdef CONFIG_HAVE_HW_BREAKPOINT
158 struct { /* breakpoint */
159 /*
160 * Crufty hack to avoid the chicken and egg
161 * problem hw_breakpoint has with context
162 * creation and event initalization.
163 */
164 struct arch_hw_breakpoint info;
165 struct list_head bp_list;
166 };
167 #endif
168 };
169 /*
170 * If the event is a per task event, this will point to the task in
171 * question. See the comment in perf_event_alloc().
172 */
173 struct task_struct *target;
174
175 /*
176 * PMU would store hardware filter configuration
177 * here.
178 */
179 void *addr_filters;
180
181 /* Last sync'ed generation of filters */
182 unsigned long addr_filters_gen;
183
184 /*
185 * hw_perf_event::state flags; used to track the PERF_EF_* state.
186 */
187 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
188 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
189 #define PERF_HES_ARCH 0x04
190
191 int state;
192
193 /*
194 * The last observed hardware counter value, updated with a
195 * local64_cmpxchg() such that pmu::read() can be called nested.
196 */
197 local64_t prev_count;
198
199 /*
200 * The period to start the next sample with.
201 */
202 u64 sample_period;
203
204 /*
205 * The period we started this sample with.
206 */
207 u64 last_period;
208
209 /*
210 * However much is left of the current period; note that this is
211 * a full 64bit value and allows for generation of periods longer
212 * than hardware might allow.
213 */
214 local64_t period_left;
215
216 /*
217 * State for throttling the event, see __perf_event_overflow() and
218 * perf_adjust_freq_unthr_context().
219 */
220 u64 interrupts_seq;
221 u64 interrupts;
222
223 /*
224 * State for freq target events, see __perf_event_overflow() and
225 * perf_adjust_freq_unthr_context().
226 */
227 u64 freq_time_stamp;
228 u64 freq_count_stamp;
229 #endif
230 };
231
232 struct perf_event;
233
234 /*
235 * Common implementation detail of pmu::{start,commit,cancel}_txn
236 */
237 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
238 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
239
240 /**
241 * pmu::capabilities flags
242 */
243 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
244 #define PERF_PMU_CAP_NO_NMI 0x02
245 #define PERF_PMU_CAP_AUX_NO_SG 0x04
246 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08
247 #define PERF_PMU_CAP_EXCLUSIVE 0x10
248 #define PERF_PMU_CAP_ITRACE 0x20
249 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
250
251 /**
252 * struct pmu - generic performance monitoring unit
253 */
254 struct pmu {
255 struct list_head entry;
256
257 struct module *module;
258 struct device *dev;
259 const struct attribute_group **attr_groups;
260 const char *name;
261 int type;
262
263 /*
264 * various common per-pmu feature flags
265 */
266 int capabilities;
267
268 int * __percpu pmu_disable_count;
269 struct perf_cpu_context * __percpu pmu_cpu_context;
270 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
271 int task_ctx_nr;
272 int hrtimer_interval_ms;
273
274 /* number of address filters this PMU can do */
275 unsigned int nr_addr_filters;
276
277 /*
278 * Fully disable/enable this PMU, can be used to protect from the PMI
279 * as well as for lazy/batch writing of the MSRs.
280 */
281 void (*pmu_enable) (struct pmu *pmu); /* optional */
282 void (*pmu_disable) (struct pmu *pmu); /* optional */
283
284 /*
285 * Try and initialize the event for this PMU.
286 *
287 * Returns:
288 * -ENOENT -- @event is not for this PMU
289 *
290 * -ENODEV -- @event is for this PMU but PMU not present
291 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
292 * -EINVAL -- @event is for this PMU but @event is not valid
293 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
294 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges
295 *
296 * 0 -- @event is for this PMU and valid
297 *
298 * Other error return values are allowed.
299 */
300 int (*event_init) (struct perf_event *event);
301
302 /*
303 * Notification that the event was mapped or unmapped. Called
304 * in the context of the mapping task.
305 */
306 void (*event_mapped) (struct perf_event *event); /*optional*/
307 void (*event_unmapped) (struct perf_event *event); /*optional*/
308
309 /*
310 * Flags for ->add()/->del()/ ->start()/->stop(). There are
311 * matching hw_perf_event::state flags.
312 */
313 #define PERF_EF_START 0x01 /* start the counter when adding */
314 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
315 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
316
317 /*
318 * Adds/Removes a counter to/from the PMU, can be done inside a
319 * transaction, see the ->*_txn() methods.
320 *
321 * The add/del callbacks will reserve all hardware resources required
322 * to service the event, this includes any counter constraint
323 * scheduling etc.
324 *
325 * Called with IRQs disabled and the PMU disabled on the CPU the event
326 * is on.
327 *
328 * ->add() called without PERF_EF_START should result in the same state
329 * as ->add() followed by ->stop().
330 *
331 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
332 * ->stop() that must deal with already being stopped without
333 * PERF_EF_UPDATE.
334 */
335 int (*add) (struct perf_event *event, int flags);
336 void (*del) (struct perf_event *event, int flags);
337
338 /*
339 * Starts/Stops a counter present on the PMU.
340 *
341 * The PMI handler should stop the counter when perf_event_overflow()
342 * returns !0. ->start() will be used to continue.
343 *
344 * Also used to change the sample period.
345 *
346 * Called with IRQs disabled and the PMU disabled on the CPU the event
347 * is on -- will be called from NMI context with the PMU generates
348 * NMIs.
349 *
350 * ->stop() with PERF_EF_UPDATE will read the counter and update
351 * period/count values like ->read() would.
352 *
353 * ->start() with PERF_EF_RELOAD will reprogram the the counter
354 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
355 */
356 void (*start) (struct perf_event *event, int flags);
357 void (*stop) (struct perf_event *event, int flags);
358
359 /*
360 * Updates the counter value of the event.
361 *
362 * For sampling capable PMUs this will also update the software period
363 * hw_perf_event::period_left field.
364 */
365 void (*read) (struct perf_event *event);
366
367 /*
368 * Group events scheduling is treated as a transaction, add
369 * group events as a whole and perform one schedulability test.
370 * If the test fails, roll back the whole group
371 *
372 * Start the transaction, after this ->add() doesn't need to
373 * do schedulability tests.
374 *
375 * Optional.
376 */
377 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
378 /*
379 * If ->start_txn() disabled the ->add() schedulability test
380 * then ->commit_txn() is required to perform one. On success
381 * the transaction is closed. On error the transaction is kept
382 * open until ->cancel_txn() is called.
383 *
384 * Optional.
385 */
386 int (*commit_txn) (struct pmu *pmu);
387 /*
388 * Will cancel the transaction, assumes ->del() is called
389 * for each successful ->add() during the transaction.
390 *
391 * Optional.
392 */
393 void (*cancel_txn) (struct pmu *pmu);
394
395 /*
396 * Will return the value for perf_event_mmap_page::index for this event,
397 * if no implementation is provided it will default to: event->hw.idx + 1.
398 */
399 int (*event_idx) (struct perf_event *event); /*optional */
400
401 /*
402 * context-switches callback
403 */
404 void (*sched_task) (struct perf_event_context *ctx,
405 bool sched_in);
406 /*
407 * PMU specific data size
408 */
409 size_t task_ctx_size;
410
411
412 /*
413 * Return the count value for a counter.
414 */
415 u64 (*count) (struct perf_event *event); /*optional*/
416
417 /*
418 * Set up pmu-private data structures for an AUX area
419 */
420 void *(*setup_aux) (int cpu, void **pages,
421 int nr_pages, bool overwrite);
422 /* optional */
423
424 /*
425 * Free pmu-private AUX data structures
426 */
427 void (*free_aux) (void *aux); /* optional */
428
429 /*
430 * Validate address range filters: make sure the HW supports the
431 * requested configuration and number of filters; return 0 if the
432 * supplied filters are valid, -errno otherwise.
433 *
434 * Runs in the context of the ioctl()ing process and is not serialized
435 * with the rest of the PMU callbacks.
436 */
437 int (*addr_filters_validate) (struct list_head *filters);
438 /* optional */
439
440 /*
441 * Synchronize address range filter configuration:
442 * translate hw-agnostic filters into hardware configuration in
443 * event::hw::addr_filters.
444 *
445 * Runs as a part of filter sync sequence that is done in ->start()
446 * callback by calling perf_event_addr_filters_sync().
447 *
448 * May (and should) traverse event::addr_filters::list, for which its
449 * caller provides necessary serialization.
450 */
451 void (*addr_filters_sync) (struct perf_event *event);
452 /* optional */
453
454 /*
455 * Filter events for PMU-specific reasons.
456 */
457 int (*filter_match) (struct perf_event *event); /* optional */
458 };
459
460 /**
461 * struct perf_addr_filter - address range filter definition
462 * @entry: event's filter list linkage
463 * @inode: object file's inode for file-based filters
464 * @offset: filter range offset
465 * @size: filter range size
466 * @range: 1: range, 0: address
467 * @filter: 1: filter/start, 0: stop
468 *
469 * This is a hardware-agnostic filter configuration as specified by the user.
470 */
471 struct perf_addr_filter {
472 struct list_head entry;
473 struct inode *inode;
474 unsigned long offset;
475 unsigned long size;
476 unsigned int range : 1,
477 filter : 1;
478 };
479
480 /**
481 * struct perf_addr_filters_head - container for address range filters
482 * @list: list of filters for this event
483 * @lock: spinlock that serializes accesses to the @list and event's
484 * (and its children's) filter generations.
485 *
486 * A child event will use parent's @list (and therefore @lock), so they are
487 * bundled together; see perf_event_addr_filters().
488 */
489 struct perf_addr_filters_head {
490 struct list_head list;
491 raw_spinlock_t lock;
492 };
493
494 /**
495 * enum perf_event_active_state - the states of a event
496 */
497 enum perf_event_active_state {
498 PERF_EVENT_STATE_DEAD = -4,
499 PERF_EVENT_STATE_EXIT = -3,
500 PERF_EVENT_STATE_ERROR = -2,
501 PERF_EVENT_STATE_OFF = -1,
502 PERF_EVENT_STATE_INACTIVE = 0,
503 PERF_EVENT_STATE_ACTIVE = 1,
504 };
505
506 struct file;
507 struct perf_sample_data;
508
509 typedef void (*perf_overflow_handler_t)(struct perf_event *,
510 struct perf_sample_data *,
511 struct pt_regs *regs);
512
513 /*
514 * Event capabilities. For event_caps and groups caps.
515 *
516 * PERF_EV_CAP_SOFTWARE: Is a software event.
517 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
518 * from any CPU in the package where it is active.
519 */
520 #define PERF_EV_CAP_SOFTWARE BIT(0)
521 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
522
523 #define SWEVENT_HLIST_BITS 8
524 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
525
526 struct swevent_hlist {
527 struct hlist_head heads[SWEVENT_HLIST_SIZE];
528 struct rcu_head rcu_head;
529 };
530
531 #define PERF_ATTACH_CONTEXT 0x01
532 #define PERF_ATTACH_GROUP 0x02
533 #define PERF_ATTACH_TASK 0x04
534 #define PERF_ATTACH_TASK_DATA 0x08
535
536 struct perf_cgroup;
537 struct ring_buffer;
538
539 struct pmu_event_list {
540 raw_spinlock_t lock;
541 struct list_head list;
542 };
543
544 /**
545 * struct perf_event - performance event kernel representation:
546 */
547 struct perf_event {
548 #ifdef CONFIG_PERF_EVENTS
549 /*
550 * entry onto perf_event_context::event_list;
551 * modifications require ctx->lock
552 * RCU safe iterations.
553 */
554 struct list_head event_entry;
555
556 /*
557 * XXX: group_entry and sibling_list should be mutually exclusive;
558 * either you're a sibling on a group, or you're the group leader.
559 * Rework the code to always use the same list element.
560 *
561 * Locked for modification by both ctx->mutex and ctx->lock; holding
562 * either sufficies for read.
563 */
564 struct list_head group_entry;
565 struct list_head sibling_list;
566
567 /*
568 * We need storage to track the entries in perf_pmu_migrate_context; we
569 * cannot use the event_entry because of RCU and we want to keep the
570 * group in tact which avoids us using the other two entries.
571 */
572 struct list_head migrate_entry;
573
574 struct hlist_node hlist_entry;
575 struct list_head active_entry;
576 int nr_siblings;
577
578 /* Not serialized. Only written during event initialization. */
579 int event_caps;
580 /* The cumulative AND of all event_caps for events in this group. */
581 int group_caps;
582
583 struct perf_event *group_leader;
584 struct pmu *pmu;
585 void *pmu_private;
586
587 enum perf_event_active_state state;
588 unsigned int attach_state;
589 local64_t count;
590 atomic64_t child_count;
591
592 /*
593 * These are the total time in nanoseconds that the event
594 * has been enabled (i.e. eligible to run, and the task has
595 * been scheduled in, if this is a per-task event)
596 * and running (scheduled onto the CPU), respectively.
597 *
598 * They are computed from tstamp_enabled, tstamp_running and
599 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
600 */
601 u64 total_time_enabled;
602 u64 total_time_running;
603
604 /*
605 * These are timestamps used for computing total_time_enabled
606 * and total_time_running when the event is in INACTIVE or
607 * ACTIVE state, measured in nanoseconds from an arbitrary point
608 * in time.
609 * tstamp_enabled: the notional time when the event was enabled
610 * tstamp_running: the notional time when the event was scheduled on
611 * tstamp_stopped: in INACTIVE state, the notional time when the
612 * event was scheduled off.
613 */
614 u64 tstamp_enabled;
615 u64 tstamp_running;
616 u64 tstamp_stopped;
617
618 /*
619 * timestamp shadows the actual context timing but it can
620 * be safely used in NMI interrupt context. It reflects the
621 * context time as it was when the event was last scheduled in.
622 *
623 * ctx_time already accounts for ctx->timestamp. Therefore to
624 * compute ctx_time for a sample, simply add perf_clock().
625 */
626 u64 shadow_ctx_time;
627
628 struct perf_event_attr attr;
629 u16 header_size;
630 u16 id_header_size;
631 u16 read_size;
632 struct hw_perf_event hw;
633
634 struct perf_event_context *ctx;
635 atomic_long_t refcount;
636
637 /*
638 * These accumulate total time (in nanoseconds) that children
639 * events have been enabled and running, respectively.
640 */
641 atomic64_t child_total_time_enabled;
642 atomic64_t child_total_time_running;
643
644 /*
645 * Protect attach/detach and child_list:
646 */
647 struct mutex child_mutex;
648 struct list_head child_list;
649 struct perf_event *parent;
650
651 int oncpu;
652 int cpu;
653
654 struct list_head owner_entry;
655 struct task_struct *owner;
656
657 /* mmap bits */
658 struct mutex mmap_mutex;
659 atomic_t mmap_count;
660
661 struct ring_buffer *rb;
662 struct list_head rb_entry;
663 unsigned long rcu_batches;
664 int rcu_pending;
665
666 /* poll related */
667 wait_queue_head_t waitq;
668 struct fasync_struct *fasync;
669
670 /* delayed work for NMIs and such */
671 int pending_wakeup;
672 int pending_kill;
673 int pending_disable;
674 struct irq_work pending;
675
676 atomic_t event_limit;
677
678 /* address range filters */
679 struct perf_addr_filters_head addr_filters;
680 /* vma address array for file-based filders */
681 unsigned long *addr_filters_offs;
682 unsigned long addr_filters_gen;
683
684 void (*destroy)(struct perf_event *);
685 struct rcu_head rcu_head;
686
687 struct pid_namespace *ns;
688 u64 id;
689
690 u64 (*clock)(void);
691 perf_overflow_handler_t overflow_handler;
692 void *overflow_handler_context;
693 #ifdef CONFIG_BPF_SYSCALL
694 perf_overflow_handler_t orig_overflow_handler;
695 struct bpf_prog *prog;
696 #endif
697
698 #ifdef CONFIG_EVENT_TRACING
699 struct trace_event_call *tp_event;
700 struct event_filter *filter;
701 #ifdef CONFIG_FUNCTION_TRACER
702 struct ftrace_ops ftrace_ops;
703 #endif
704 #endif
705
706 #ifdef CONFIG_CGROUP_PERF
707 struct perf_cgroup *cgrp; /* cgroup event is attach to */
708 int cgrp_defer_enabled;
709 #endif
710
711 struct list_head sb_list;
712 #endif /* CONFIG_PERF_EVENTS */
713 };
714
715 /**
716 * struct perf_event_context - event context structure
717 *
718 * Used as a container for task events and CPU events as well:
719 */
720 struct perf_event_context {
721 struct pmu *pmu;
722 /*
723 * Protect the states of the events in the list,
724 * nr_active, and the list:
725 */
726 raw_spinlock_t lock;
727 /*
728 * Protect the list of events. Locking either mutex or lock
729 * is sufficient to ensure the list doesn't change; to change
730 * the list you need to lock both the mutex and the spinlock.
731 */
732 struct mutex mutex;
733
734 struct list_head active_ctx_list;
735 struct list_head pinned_groups;
736 struct list_head flexible_groups;
737 struct list_head event_list;
738 int nr_events;
739 int nr_active;
740 int is_active;
741 int nr_stat;
742 int nr_freq;
743 int rotate_disable;
744 atomic_t refcount;
745 struct task_struct *task;
746
747 /*
748 * Context clock, runs when context enabled.
749 */
750 u64 time;
751 u64 timestamp;
752
753 /*
754 * These fields let us detect when two contexts have both
755 * been cloned (inherited) from a common ancestor.
756 */
757 struct perf_event_context *parent_ctx;
758 u64 parent_gen;
759 u64 generation;
760 int pin_count;
761 #ifdef CONFIG_CGROUP_PERF
762 int nr_cgroups; /* cgroup evts */
763 #endif
764 void *task_ctx_data; /* pmu specific data */
765 struct rcu_head rcu_head;
766 };
767
768 /*
769 * Number of contexts where an event can trigger:
770 * task, softirq, hardirq, nmi.
771 */
772 #define PERF_NR_CONTEXTS 4
773
774 /**
775 * struct perf_event_cpu_context - per cpu event context structure
776 */
777 struct perf_cpu_context {
778 struct perf_event_context ctx;
779 struct perf_event_context *task_ctx;
780 int active_oncpu;
781 int exclusive;
782
783 raw_spinlock_t hrtimer_lock;
784 struct hrtimer hrtimer;
785 ktime_t hrtimer_interval;
786 unsigned int hrtimer_active;
787
788 struct pmu *unique_pmu;
789 #ifdef CONFIG_CGROUP_PERF
790 struct perf_cgroup *cgrp;
791 #endif
792
793 struct list_head sched_cb_entry;
794 int sched_cb_usage;
795 };
796
797 struct perf_output_handle {
798 struct perf_event *event;
799 struct ring_buffer *rb;
800 unsigned long wakeup;
801 unsigned long size;
802 union {
803 void *addr;
804 unsigned long head;
805 };
806 int page;
807 };
808
809 struct bpf_perf_event_data_kern {
810 struct pt_regs *regs;
811 struct perf_sample_data *data;
812 };
813
814 #ifdef CONFIG_CGROUP_PERF
815
816 /*
817 * perf_cgroup_info keeps track of time_enabled for a cgroup.
818 * This is a per-cpu dynamically allocated data structure.
819 */
820 struct perf_cgroup_info {
821 u64 time;
822 u64 timestamp;
823 };
824
825 struct perf_cgroup {
826 struct cgroup_subsys_state css;
827 struct perf_cgroup_info __percpu *info;
828 };
829
830 /*
831 * Must ensure cgroup is pinned (css_get) before calling
832 * this function. In other words, we cannot call this function
833 * if there is no cgroup event for the current CPU context.
834 */
835 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)836 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
837 {
838 return container_of(task_css_check(task, perf_event_cgrp_id,
839 ctx ? lockdep_is_held(&ctx->lock)
840 : true),
841 struct perf_cgroup, css);
842 }
843 #endif /* CONFIG_CGROUP_PERF */
844
845 #ifdef CONFIG_PERF_EVENTS
846
847 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
848 struct perf_event *event);
849 extern void perf_aux_output_end(struct perf_output_handle *handle,
850 unsigned long size, bool truncated);
851 extern int perf_aux_output_skip(struct perf_output_handle *handle,
852 unsigned long size);
853 extern void *perf_get_aux(struct perf_output_handle *handle);
854
855 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
856 extern void perf_pmu_unregister(struct pmu *pmu);
857
858 extern int perf_num_counters(void);
859 extern const char *perf_pmu_name(void);
860 extern void __perf_event_task_sched_in(struct task_struct *prev,
861 struct task_struct *task);
862 extern void __perf_event_task_sched_out(struct task_struct *prev,
863 struct task_struct *next);
864 extern int perf_event_init_task(struct task_struct *child);
865 extern void perf_event_exit_task(struct task_struct *child);
866 extern void perf_event_free_task(struct task_struct *task);
867 extern void perf_event_delayed_put(struct task_struct *task);
868 extern struct file *perf_event_get(unsigned int fd);
869 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
870 extern void perf_event_print_debug(void);
871 extern void perf_pmu_disable(struct pmu *pmu);
872 extern void perf_pmu_enable(struct pmu *pmu);
873 extern void perf_sched_cb_dec(struct pmu *pmu);
874 extern void perf_sched_cb_inc(struct pmu *pmu);
875 extern int perf_event_task_disable(void);
876 extern int perf_event_task_enable(void);
877 extern int perf_event_refresh(struct perf_event *event, int refresh);
878 extern void perf_event_update_userpage(struct perf_event *event);
879 extern int perf_event_release_kernel(struct perf_event *event);
880 extern struct perf_event *
881 perf_event_create_kernel_counter(struct perf_event_attr *attr,
882 int cpu,
883 struct task_struct *task,
884 perf_overflow_handler_t callback,
885 void *context);
886 extern void perf_pmu_migrate_context(struct pmu *pmu,
887 int src_cpu, int dst_cpu);
888 extern u64 perf_event_read_local(struct perf_event *event);
889 extern u64 perf_event_read_value(struct perf_event *event,
890 u64 *enabled, u64 *running);
891
892
893 struct perf_sample_data {
894 /*
895 * Fields set by perf_sample_data_init(), group so as to
896 * minimize the cachelines touched.
897 */
898 u64 addr;
899 struct perf_raw_record *raw;
900 struct perf_branch_stack *br_stack;
901 u64 period;
902 u64 weight;
903 u64 txn;
904 union perf_mem_data_src data_src;
905
906 /*
907 * The other fields, optionally {set,used} by
908 * perf_{prepare,output}_sample().
909 */
910 u64 type;
911 u64 ip;
912 struct {
913 u32 pid;
914 u32 tid;
915 } tid_entry;
916 u64 time;
917 u64 id;
918 u64 stream_id;
919 struct {
920 u32 cpu;
921 u32 reserved;
922 } cpu_entry;
923 struct perf_callchain_entry *callchain;
924
925 /*
926 * regs_user may point to task_pt_regs or to regs_user_copy, depending
927 * on arch details.
928 */
929 struct perf_regs regs_user;
930 struct pt_regs regs_user_copy;
931
932 struct perf_regs regs_intr;
933 u64 stack_user_size;
934 } ____cacheline_aligned;
935
936 /* default value for data source */
937 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
938 PERF_MEM_S(LVL, NA) |\
939 PERF_MEM_S(SNOOP, NA) |\
940 PERF_MEM_S(LOCK, NA) |\
941 PERF_MEM_S(TLB, NA))
942
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)943 static inline void perf_sample_data_init(struct perf_sample_data *data,
944 u64 addr, u64 period)
945 {
946 /* remaining struct members initialized in perf_prepare_sample() */
947 data->addr = addr;
948 data->raw = NULL;
949 data->br_stack = NULL;
950 data->period = period;
951 data->weight = 0;
952 data->data_src.val = PERF_MEM_NA;
953 data->txn = 0;
954 }
955
956 extern void perf_output_sample(struct perf_output_handle *handle,
957 struct perf_event_header *header,
958 struct perf_sample_data *data,
959 struct perf_event *event);
960 extern void perf_prepare_sample(struct perf_event_header *header,
961 struct perf_sample_data *data,
962 struct perf_event *event,
963 struct pt_regs *regs);
964
965 extern int perf_event_overflow(struct perf_event *event,
966 struct perf_sample_data *data,
967 struct pt_regs *regs);
968
969 extern void perf_event_output_forward(struct perf_event *event,
970 struct perf_sample_data *data,
971 struct pt_regs *regs);
972 extern void perf_event_output_backward(struct perf_event *event,
973 struct perf_sample_data *data,
974 struct pt_regs *regs);
975 extern void perf_event_output(struct perf_event *event,
976 struct perf_sample_data *data,
977 struct pt_regs *regs);
978
979 static inline bool
is_default_overflow_handler(struct perf_event * event)980 is_default_overflow_handler(struct perf_event *event)
981 {
982 if (likely(event->overflow_handler == perf_event_output_forward))
983 return true;
984 if (unlikely(event->overflow_handler == perf_event_output_backward))
985 return true;
986 return false;
987 }
988
989 extern void
990 perf_event_header__init_id(struct perf_event_header *header,
991 struct perf_sample_data *data,
992 struct perf_event *event);
993 extern void
994 perf_event__output_id_sample(struct perf_event *event,
995 struct perf_output_handle *handle,
996 struct perf_sample_data *sample);
997
998 extern void
999 perf_log_lost_samples(struct perf_event *event, u64 lost);
1000
is_sampling_event(struct perf_event * event)1001 static inline bool is_sampling_event(struct perf_event *event)
1002 {
1003 return event->attr.sample_period != 0;
1004 }
1005
1006 /*
1007 * Return 1 for a software event, 0 for a hardware event
1008 */
is_software_event(struct perf_event * event)1009 static inline int is_software_event(struct perf_event *event)
1010 {
1011 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1012 }
1013
1014 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1015
1016 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1017 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1018
1019 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1020 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1021 #endif
1022
1023 /*
1024 * Take a snapshot of the regs. Skip ip and frame pointer to
1025 * the nth caller. We only need a few of the regs:
1026 * - ip for PERF_SAMPLE_IP
1027 * - cs for user_mode() tests
1028 * - bp for callchains
1029 * - eflags, for future purposes, just in case
1030 */
perf_fetch_caller_regs(struct pt_regs * regs)1031 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1032 {
1033 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1034 }
1035
1036 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1037 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1038 {
1039 if (static_key_false(&perf_swevent_enabled[event_id]))
1040 __perf_sw_event(event_id, nr, regs, addr);
1041 }
1042
1043 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1044
1045 /*
1046 * 'Special' version for the scheduler, it hard assumes no recursion,
1047 * which is guaranteed by us not actually scheduling inside other swevents
1048 * because those disable preemption.
1049 */
1050 static __always_inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1051 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1052 {
1053 if (static_key_false(&perf_swevent_enabled[event_id])) {
1054 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1055
1056 perf_fetch_caller_regs(regs);
1057 ___perf_sw_event(event_id, nr, regs, addr);
1058 }
1059 }
1060
1061 extern struct static_key_false perf_sched_events;
1062
1063 static __always_inline bool
perf_sw_migrate_enabled(void)1064 perf_sw_migrate_enabled(void)
1065 {
1066 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1067 return true;
1068 return false;
1069 }
1070
perf_event_task_migrate(struct task_struct * task)1071 static inline void perf_event_task_migrate(struct task_struct *task)
1072 {
1073 if (perf_sw_migrate_enabled())
1074 task->sched_migrated = 1;
1075 }
1076
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1077 static inline void perf_event_task_sched_in(struct task_struct *prev,
1078 struct task_struct *task)
1079 {
1080 if (static_branch_unlikely(&perf_sched_events))
1081 __perf_event_task_sched_in(prev, task);
1082
1083 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1084 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1085
1086 perf_fetch_caller_regs(regs);
1087 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1088 task->sched_migrated = 0;
1089 }
1090 }
1091
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1092 static inline void perf_event_task_sched_out(struct task_struct *prev,
1093 struct task_struct *next)
1094 {
1095 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1096
1097 if (static_branch_unlikely(&perf_sched_events))
1098 __perf_event_task_sched_out(prev, next);
1099 }
1100
__perf_event_count(struct perf_event * event)1101 static inline u64 __perf_event_count(struct perf_event *event)
1102 {
1103 return local64_read(&event->count) + atomic64_read(&event->child_count);
1104 }
1105
1106 extern void perf_event_mmap(struct vm_area_struct *vma);
1107 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1108 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1109 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1110
1111 extern void perf_event_exec(void);
1112 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1113 extern void perf_event_fork(struct task_struct *tsk);
1114
1115 /* Callchains */
1116 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1117
1118 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1119 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1120 extern struct perf_callchain_entry *
1121 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1122 u32 max_stack, bool crosstask, bool add_mark);
1123 extern int get_callchain_buffers(int max_stack);
1124 extern void put_callchain_buffers(void);
1125
1126 extern int sysctl_perf_event_max_stack;
1127 extern int sysctl_perf_event_max_contexts_per_stack;
1128
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1129 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1130 {
1131 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1132 struct perf_callchain_entry *entry = ctx->entry;
1133 entry->ip[entry->nr++] = ip;
1134 ++ctx->contexts;
1135 return 0;
1136 } else {
1137 ctx->contexts_maxed = true;
1138 return -1; /* no more room, stop walking the stack */
1139 }
1140 }
1141
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1142 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1143 {
1144 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1145 struct perf_callchain_entry *entry = ctx->entry;
1146 entry->ip[entry->nr++] = ip;
1147 ++ctx->nr;
1148 return 0;
1149 } else {
1150 return -1; /* no more room, stop walking the stack */
1151 }
1152 }
1153
1154 extern int sysctl_perf_event_paranoid;
1155 extern int sysctl_perf_event_mlock;
1156 extern int sysctl_perf_event_sample_rate;
1157 extern int sysctl_perf_cpu_time_max_percent;
1158
1159 extern void perf_sample_event_took(u64 sample_len_ns);
1160
1161 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1162 void __user *buffer, size_t *lenp,
1163 loff_t *ppos);
1164 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1165 void __user *buffer, size_t *lenp,
1166 loff_t *ppos);
1167
1168 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1169 void __user *buffer, size_t *lenp, loff_t *ppos);
1170
perf_paranoid_any(void)1171 static inline bool perf_paranoid_any(void)
1172 {
1173 return sysctl_perf_event_paranoid > 2;
1174 }
1175
perf_paranoid_tracepoint_raw(void)1176 static inline bool perf_paranoid_tracepoint_raw(void)
1177 {
1178 return sysctl_perf_event_paranoid > -1;
1179 }
1180
perf_paranoid_cpu(void)1181 static inline bool perf_paranoid_cpu(void)
1182 {
1183 return sysctl_perf_event_paranoid > 0;
1184 }
1185
perf_paranoid_kernel(void)1186 static inline bool perf_paranoid_kernel(void)
1187 {
1188 return sysctl_perf_event_paranoid > 1;
1189 }
1190
1191 extern void perf_event_init(void);
1192 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1193 int entry_size, struct pt_regs *regs,
1194 struct hlist_head *head, int rctx,
1195 struct task_struct *task);
1196 extern void perf_bp_event(struct perf_event *event, void *data);
1197
1198 #ifndef perf_misc_flags
1199 # define perf_misc_flags(regs) \
1200 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1201 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1202 #endif
1203
has_branch_stack(struct perf_event * event)1204 static inline bool has_branch_stack(struct perf_event *event)
1205 {
1206 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1207 }
1208
needs_branch_stack(struct perf_event * event)1209 static inline bool needs_branch_stack(struct perf_event *event)
1210 {
1211 return event->attr.branch_sample_type != 0;
1212 }
1213
has_aux(struct perf_event * event)1214 static inline bool has_aux(struct perf_event *event)
1215 {
1216 return event->pmu->setup_aux;
1217 }
1218
is_write_backward(struct perf_event * event)1219 static inline bool is_write_backward(struct perf_event *event)
1220 {
1221 return !!event->attr.write_backward;
1222 }
1223
has_addr_filter(struct perf_event * event)1224 static inline bool has_addr_filter(struct perf_event *event)
1225 {
1226 return event->pmu->nr_addr_filters;
1227 }
1228
1229 /*
1230 * An inherited event uses parent's filters
1231 */
1232 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1233 perf_event_addr_filters(struct perf_event *event)
1234 {
1235 struct perf_addr_filters_head *ifh = &event->addr_filters;
1236
1237 if (event->parent)
1238 ifh = &event->parent->addr_filters;
1239
1240 return ifh;
1241 }
1242
1243 extern void perf_event_addr_filters_sync(struct perf_event *event);
1244
1245 extern int perf_output_begin(struct perf_output_handle *handle,
1246 struct perf_event *event, unsigned int size);
1247 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1248 struct perf_event *event,
1249 unsigned int size);
1250 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1251 struct perf_event *event,
1252 unsigned int size);
1253
1254 extern void perf_output_end(struct perf_output_handle *handle);
1255 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1256 const void *buf, unsigned int len);
1257 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1258 unsigned int len);
1259 extern int perf_swevent_get_recursion_context(void);
1260 extern void perf_swevent_put_recursion_context(int rctx);
1261 extern u64 perf_swevent_set_period(struct perf_event *event);
1262 extern void perf_event_enable(struct perf_event *event);
1263 extern void perf_event_disable(struct perf_event *event);
1264 extern void perf_event_disable_local(struct perf_event *event);
1265 extern void perf_event_disable_inatomic(struct perf_event *event);
1266 extern void perf_event_task_tick(void);
1267 extern int perf_event_account_interrupt(struct perf_event *event);
1268 #else /* !CONFIG_PERF_EVENTS: */
1269 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1270 perf_aux_output_begin(struct perf_output_handle *handle,
1271 struct perf_event *event) { return NULL; }
1272 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size,bool truncated)1273 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
1274 bool truncated) { }
1275 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1276 perf_aux_output_skip(struct perf_output_handle *handle,
1277 unsigned long size) { return -EINVAL; }
1278 static inline void *
perf_get_aux(struct perf_output_handle * handle)1279 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1280 static inline void
perf_event_task_migrate(struct task_struct * task)1281 perf_event_task_migrate(struct task_struct *task) { }
1282 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1283 perf_event_task_sched_in(struct task_struct *prev,
1284 struct task_struct *task) { }
1285 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1286 perf_event_task_sched_out(struct task_struct *prev,
1287 struct task_struct *next) { }
perf_event_init_task(struct task_struct * child)1288 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
perf_event_exit_task(struct task_struct * child)1289 static inline void perf_event_exit_task(struct task_struct *child) { }
perf_event_free_task(struct task_struct * task)1290 static inline void perf_event_free_task(struct task_struct *task) { }
perf_event_delayed_put(struct task_struct * task)1291 static inline void perf_event_delayed_put(struct task_struct *task) { }
perf_event_get(unsigned int fd)1292 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
perf_event_attrs(struct perf_event * event)1293 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1294 {
1295 return ERR_PTR(-EINVAL);
1296 }
perf_event_read_local(struct perf_event * event)1297 static inline u64 perf_event_read_local(struct perf_event *event) { return -EINVAL; }
perf_event_print_debug(void)1298 static inline void perf_event_print_debug(void) { }
perf_event_task_disable(void)1299 static inline int perf_event_task_disable(void) { return -EINVAL; }
perf_event_task_enable(void)1300 static inline int perf_event_task_enable(void) { return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1301 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1302 {
1303 return -EINVAL;
1304 }
1305
1306 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1307 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1308 static inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1309 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1310 static inline void
perf_bp_event(struct perf_event * event,void * data)1311 perf_bp_event(struct perf_event *event, void *data) { }
1312
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1313 static inline int perf_register_guest_info_callbacks
1314 (struct perf_guest_info_callbacks *callbacks) { return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1315 static inline int perf_unregister_guest_info_callbacks
1316 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1317
perf_event_mmap(struct vm_area_struct * vma)1318 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
perf_event_exec(void)1319 static inline void perf_event_exec(void) { }
perf_event_comm(struct task_struct * tsk,bool exec)1320 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
perf_event_fork(struct task_struct * tsk)1321 static inline void perf_event_fork(struct task_struct *tsk) { }
perf_event_init(void)1322 static inline void perf_event_init(void) { }
perf_swevent_get_recursion_context(void)1323 static inline int perf_swevent_get_recursion_context(void) { return -1; }
perf_swevent_put_recursion_context(int rctx)1324 static inline void perf_swevent_put_recursion_context(int rctx) { }
perf_swevent_set_period(struct perf_event * event)1325 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
perf_event_enable(struct perf_event * event)1326 static inline void perf_event_enable(struct perf_event *event) { }
perf_event_disable(struct perf_event * event)1327 static inline void perf_event_disable(struct perf_event *event) { }
__perf_event_disable(void * info)1328 static inline int __perf_event_disable(void *info) { return -1; }
perf_event_task_tick(void)1329 static inline void perf_event_task_tick(void) { }
perf_event_release_kernel(struct perf_event * event)1330 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1331 #endif
1332
1333 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1334 extern void perf_restore_debug_store(void);
1335 #else
perf_restore_debug_store(void)1336 static inline void perf_restore_debug_store(void) { }
1337 #endif
1338
perf_raw_frag_last(const struct perf_raw_frag * frag)1339 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1340 {
1341 return frag->pad < sizeof(u64);
1342 }
1343
1344 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1345
1346 struct perf_pmu_events_attr {
1347 struct device_attribute attr;
1348 u64 id;
1349 const char *event_str;
1350 };
1351
1352 struct perf_pmu_events_ht_attr {
1353 struct device_attribute attr;
1354 u64 id;
1355 const char *event_str_ht;
1356 const char *event_str_noht;
1357 };
1358
1359 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1360 char *page);
1361
1362 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1363 static struct perf_pmu_events_attr _var = { \
1364 .attr = __ATTR(_name, 0444, _show, NULL), \
1365 .id = _id, \
1366 };
1367
1368 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1369 static struct perf_pmu_events_attr _var = { \
1370 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1371 .id = 0, \
1372 .event_str = _str, \
1373 };
1374
1375 #define PMU_FORMAT_ATTR(_name, _format) \
1376 static ssize_t \
1377 _name##_show(struct device *dev, \
1378 struct device_attribute *attr, \
1379 char *page) \
1380 { \
1381 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1382 return sprintf(page, _format "\n"); \
1383 } \
1384 \
1385 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1386
1387 /* Performance counter hotplug functions */
1388 #ifdef CONFIG_PERF_EVENTS
1389 int perf_event_init_cpu(unsigned int cpu);
1390 int perf_event_exit_cpu(unsigned int cpu);
1391 #else
1392 #define perf_event_init_cpu NULL
1393 #define perf_event_exit_cpu NULL
1394 #endif
1395
1396 #endif /* _LINUX_PERF_EVENT_H */
1397