• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 
19 /*
20  * Kernel-internal data types and definitions:
21  */
22 
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27 
28 struct perf_guest_info_callbacks {
29 	int				(*is_in_guest)(void);
30 	int				(*is_user_mode)(void);
31 	unsigned long			(*get_guest_ip)(void);
32 };
33 
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37 
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58 
59 struct perf_callchain_entry {
60 	__u64				nr;
61 	__u64				ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
62 };
63 
64 struct perf_callchain_entry_ctx {
65 	struct perf_callchain_entry *entry;
66 	u32			    max_stack;
67 	u32			    nr;
68 	short			    contexts;
69 	bool			    contexts_maxed;
70 };
71 
72 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
73 				     unsigned long off, unsigned long len);
74 
75 struct perf_raw_frag {
76 	union {
77 		struct perf_raw_frag	*next;
78 		unsigned long		pad;
79 	};
80 	perf_copy_f			copy;
81 	void				*data;
82 	u32				size;
83 } __packed;
84 
85 struct perf_raw_record {
86 	struct perf_raw_frag		frag;
87 	u32				size;
88 };
89 
90 /*
91  * branch stack layout:
92  *  nr: number of taken branches stored in entries[]
93  *
94  * Note that nr can vary from sample to sample
95  * branches (to, from) are stored from most recent
96  * to least recent, i.e., entries[0] contains the most
97  * recent branch.
98  */
99 struct perf_branch_stack {
100 	__u64				nr;
101 	struct perf_branch_entry	entries[0];
102 };
103 
104 struct task_struct;
105 
106 /*
107  * extra PMU register associated with an event
108  */
109 struct hw_perf_event_extra {
110 	u64		config;	/* register value */
111 	unsigned int	reg;	/* register address or index */
112 	int		alloc;	/* extra register already allocated */
113 	int		idx;	/* index in shared_regs->regs[] */
114 };
115 
116 /**
117  * struct hw_perf_event - performance event hardware details:
118  */
119 struct hw_perf_event {
120 #ifdef CONFIG_PERF_EVENTS
121 	union {
122 		struct { /* hardware */
123 			u64		config;
124 			u64		last_tag;
125 			unsigned long	config_base;
126 			unsigned long	event_base;
127 			int		event_base_rdpmc;
128 			int		idx;
129 			int		last_cpu;
130 			int		flags;
131 
132 			struct hw_perf_event_extra extra_reg;
133 			struct hw_perf_event_extra branch_reg;
134 		};
135 		struct { /* software */
136 			struct hrtimer	hrtimer;
137 		};
138 		struct { /* tracepoint */
139 			/* for tp_event->class */
140 			struct list_head	tp_list;
141 		};
142 		struct { /* intel_cqm */
143 			int			cqm_state;
144 			u32			cqm_rmid;
145 			int			is_group_event;
146 			struct list_head	cqm_events_entry;
147 			struct list_head	cqm_groups_entry;
148 			struct list_head	cqm_group_entry;
149 		};
150 		struct { /* itrace */
151 			int			itrace_started;
152 		};
153 		struct { /* amd_power */
154 			u64	pwr_acc;
155 			u64	ptsc;
156 		};
157 #ifdef CONFIG_HAVE_HW_BREAKPOINT
158 		struct { /* breakpoint */
159 			/*
160 			 * Crufty hack to avoid the chicken and egg
161 			 * problem hw_breakpoint has with context
162 			 * creation and event initalization.
163 			 */
164 			struct arch_hw_breakpoint	info;
165 			struct list_head		bp_list;
166 		};
167 #endif
168 	};
169 	/*
170 	 * If the event is a per task event, this will point to the task in
171 	 * question. See the comment in perf_event_alloc().
172 	 */
173 	struct task_struct		*target;
174 
175 	/*
176 	 * PMU would store hardware filter configuration
177 	 * here.
178 	 */
179 	void				*addr_filters;
180 
181 	/* Last sync'ed generation of filters */
182 	unsigned long			addr_filters_gen;
183 
184 /*
185  * hw_perf_event::state flags; used to track the PERF_EF_* state.
186  */
187 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
188 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
189 #define PERF_HES_ARCH		0x04
190 
191 	int				state;
192 
193 	/*
194 	 * The last observed hardware counter value, updated with a
195 	 * local64_cmpxchg() such that pmu::read() can be called nested.
196 	 */
197 	local64_t			prev_count;
198 
199 	/*
200 	 * The period to start the next sample with.
201 	 */
202 	u64				sample_period;
203 
204 	/*
205 	 * The period we started this sample with.
206 	 */
207 	u64				last_period;
208 
209 	/*
210 	 * However much is left of the current period; note that this is
211 	 * a full 64bit value and allows for generation of periods longer
212 	 * than hardware might allow.
213 	 */
214 	local64_t			period_left;
215 
216 	/*
217 	 * State for throttling the event, see __perf_event_overflow() and
218 	 * perf_adjust_freq_unthr_context().
219 	 */
220 	u64                             interrupts_seq;
221 	u64				interrupts;
222 
223 	/*
224 	 * State for freq target events, see __perf_event_overflow() and
225 	 * perf_adjust_freq_unthr_context().
226 	 */
227 	u64				freq_time_stamp;
228 	u64				freq_count_stamp;
229 #endif
230 };
231 
232 struct perf_event;
233 
234 /*
235  * Common implementation detail of pmu::{start,commit,cancel}_txn
236  */
237 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
238 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
239 
240 /**
241  * pmu::capabilities flags
242  */
243 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
244 #define PERF_PMU_CAP_NO_NMI			0x02
245 #define PERF_PMU_CAP_AUX_NO_SG			0x04
246 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF		0x08
247 #define PERF_PMU_CAP_EXCLUSIVE			0x10
248 #define PERF_PMU_CAP_ITRACE			0x20
249 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x40
250 
251 /**
252  * struct pmu - generic performance monitoring unit
253  */
254 struct pmu {
255 	struct list_head		entry;
256 
257 	struct module			*module;
258 	struct device			*dev;
259 	const struct attribute_group	**attr_groups;
260 	const char			*name;
261 	int				type;
262 
263 	/*
264 	 * various common per-pmu feature flags
265 	 */
266 	int				capabilities;
267 
268 	int * __percpu			pmu_disable_count;
269 	struct perf_cpu_context * __percpu pmu_cpu_context;
270 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
271 	int				task_ctx_nr;
272 	int				hrtimer_interval_ms;
273 
274 	/* number of address filters this PMU can do */
275 	unsigned int			nr_addr_filters;
276 
277 	/*
278 	 * Fully disable/enable this PMU, can be used to protect from the PMI
279 	 * as well as for lazy/batch writing of the MSRs.
280 	 */
281 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
282 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
283 
284 	/*
285 	 * Try and initialize the event for this PMU.
286 	 *
287 	 * Returns:
288 	 *  -ENOENT	-- @event is not for this PMU
289 	 *
290 	 *  -ENODEV	-- @event is for this PMU but PMU not present
291 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
292 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
293 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
294 	 *  -EACCESS	-- @event is for this PMU, @event is valid, but no privilidges
295 	 *
296 	 *  0		-- @event is for this PMU and valid
297 	 *
298 	 * Other error return values are allowed.
299 	 */
300 	int (*event_init)		(struct perf_event *event);
301 
302 	/*
303 	 * Notification that the event was mapped or unmapped.  Called
304 	 * in the context of the mapping task.
305 	 */
306 	void (*event_mapped)		(struct perf_event *event); /*optional*/
307 	void (*event_unmapped)		(struct perf_event *event); /*optional*/
308 
309 	/*
310 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
311 	 * matching hw_perf_event::state flags.
312 	 */
313 #define PERF_EF_START	0x01		/* start the counter when adding    */
314 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
315 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
316 
317 	/*
318 	 * Adds/Removes a counter to/from the PMU, can be done inside a
319 	 * transaction, see the ->*_txn() methods.
320 	 *
321 	 * The add/del callbacks will reserve all hardware resources required
322 	 * to service the event, this includes any counter constraint
323 	 * scheduling etc.
324 	 *
325 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
326 	 * is on.
327 	 *
328 	 * ->add() called without PERF_EF_START should result in the same state
329 	 *  as ->add() followed by ->stop().
330 	 *
331 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
332 	 *  ->stop() that must deal with already being stopped without
333 	 *  PERF_EF_UPDATE.
334 	 */
335 	int  (*add)			(struct perf_event *event, int flags);
336 	void (*del)			(struct perf_event *event, int flags);
337 
338 	/*
339 	 * Starts/Stops a counter present on the PMU.
340 	 *
341 	 * The PMI handler should stop the counter when perf_event_overflow()
342 	 * returns !0. ->start() will be used to continue.
343 	 *
344 	 * Also used to change the sample period.
345 	 *
346 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
347 	 * is on -- will be called from NMI context with the PMU generates
348 	 * NMIs.
349 	 *
350 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
351 	 *  period/count values like ->read() would.
352 	 *
353 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
354 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
355 	 */
356 	void (*start)			(struct perf_event *event, int flags);
357 	void (*stop)			(struct perf_event *event, int flags);
358 
359 	/*
360 	 * Updates the counter value of the event.
361 	 *
362 	 * For sampling capable PMUs this will also update the software period
363 	 * hw_perf_event::period_left field.
364 	 */
365 	void (*read)			(struct perf_event *event);
366 
367 	/*
368 	 * Group events scheduling is treated as a transaction, add
369 	 * group events as a whole and perform one schedulability test.
370 	 * If the test fails, roll back the whole group
371 	 *
372 	 * Start the transaction, after this ->add() doesn't need to
373 	 * do schedulability tests.
374 	 *
375 	 * Optional.
376 	 */
377 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
378 	/*
379 	 * If ->start_txn() disabled the ->add() schedulability test
380 	 * then ->commit_txn() is required to perform one. On success
381 	 * the transaction is closed. On error the transaction is kept
382 	 * open until ->cancel_txn() is called.
383 	 *
384 	 * Optional.
385 	 */
386 	int  (*commit_txn)		(struct pmu *pmu);
387 	/*
388 	 * Will cancel the transaction, assumes ->del() is called
389 	 * for each successful ->add() during the transaction.
390 	 *
391 	 * Optional.
392 	 */
393 	void (*cancel_txn)		(struct pmu *pmu);
394 
395 	/*
396 	 * Will return the value for perf_event_mmap_page::index for this event,
397 	 * if no implementation is provided it will default to: event->hw.idx + 1.
398 	 */
399 	int (*event_idx)		(struct perf_event *event); /*optional */
400 
401 	/*
402 	 * context-switches callback
403 	 */
404 	void (*sched_task)		(struct perf_event_context *ctx,
405 					bool sched_in);
406 	/*
407 	 * PMU specific data size
408 	 */
409 	size_t				task_ctx_size;
410 
411 
412 	/*
413 	 * Return the count value for a counter.
414 	 */
415 	u64 (*count)			(struct perf_event *event); /*optional*/
416 
417 	/*
418 	 * Set up pmu-private data structures for an AUX area
419 	 */
420 	void *(*setup_aux)		(int cpu, void **pages,
421 					 int nr_pages, bool overwrite);
422 					/* optional */
423 
424 	/*
425 	 * Free pmu-private AUX data structures
426 	 */
427 	void (*free_aux)		(void *aux); /* optional */
428 
429 	/*
430 	 * Validate address range filters: make sure the HW supports the
431 	 * requested configuration and number of filters; return 0 if the
432 	 * supplied filters are valid, -errno otherwise.
433 	 *
434 	 * Runs in the context of the ioctl()ing process and is not serialized
435 	 * with the rest of the PMU callbacks.
436 	 */
437 	int (*addr_filters_validate)	(struct list_head *filters);
438 					/* optional */
439 
440 	/*
441 	 * Synchronize address range filter configuration:
442 	 * translate hw-agnostic filters into hardware configuration in
443 	 * event::hw::addr_filters.
444 	 *
445 	 * Runs as a part of filter sync sequence that is done in ->start()
446 	 * callback by calling perf_event_addr_filters_sync().
447 	 *
448 	 * May (and should) traverse event::addr_filters::list, for which its
449 	 * caller provides necessary serialization.
450 	 */
451 	void (*addr_filters_sync)	(struct perf_event *event);
452 					/* optional */
453 
454 	/*
455 	 * Filter events for PMU-specific reasons.
456 	 */
457 	int (*filter_match)		(struct perf_event *event); /* optional */
458 };
459 
460 /**
461  * struct perf_addr_filter - address range filter definition
462  * @entry:	event's filter list linkage
463  * @inode:	object file's inode for file-based filters
464  * @offset:	filter range offset
465  * @size:	filter range size
466  * @range:	1: range, 0: address
467  * @filter:	1: filter/start, 0: stop
468  *
469  * This is a hardware-agnostic filter configuration as specified by the user.
470  */
471 struct perf_addr_filter {
472 	struct list_head	entry;
473 	struct inode		*inode;
474 	unsigned long		offset;
475 	unsigned long		size;
476 	unsigned int		range	: 1,
477 				filter	: 1;
478 };
479 
480 /**
481  * struct perf_addr_filters_head - container for address range filters
482  * @list:	list of filters for this event
483  * @lock:	spinlock that serializes accesses to the @list and event's
484  *		(and its children's) filter generations.
485  *
486  * A child event will use parent's @list (and therefore @lock), so they are
487  * bundled together; see perf_event_addr_filters().
488  */
489 struct perf_addr_filters_head {
490 	struct list_head	list;
491 	raw_spinlock_t		lock;
492 };
493 
494 /**
495  * enum perf_event_active_state - the states of a event
496  */
497 enum perf_event_active_state {
498 	PERF_EVENT_STATE_DEAD		= -4,
499 	PERF_EVENT_STATE_EXIT		= -3,
500 	PERF_EVENT_STATE_ERROR		= -2,
501 	PERF_EVENT_STATE_OFF		= -1,
502 	PERF_EVENT_STATE_INACTIVE	=  0,
503 	PERF_EVENT_STATE_ACTIVE		=  1,
504 };
505 
506 struct file;
507 struct perf_sample_data;
508 
509 typedef void (*perf_overflow_handler_t)(struct perf_event *,
510 					struct perf_sample_data *,
511 					struct pt_regs *regs);
512 
513 /*
514  * Event capabilities. For event_caps and groups caps.
515  *
516  * PERF_EV_CAP_SOFTWARE: Is a software event.
517  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
518  * from any CPU in the package where it is active.
519  */
520 #define PERF_EV_CAP_SOFTWARE		BIT(0)
521 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
522 
523 #define SWEVENT_HLIST_BITS		8
524 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
525 
526 struct swevent_hlist {
527 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
528 	struct rcu_head			rcu_head;
529 };
530 
531 #define PERF_ATTACH_CONTEXT	0x01
532 #define PERF_ATTACH_GROUP	0x02
533 #define PERF_ATTACH_TASK	0x04
534 #define PERF_ATTACH_TASK_DATA	0x08
535 
536 struct perf_cgroup;
537 struct ring_buffer;
538 
539 struct pmu_event_list {
540 	raw_spinlock_t		lock;
541 	struct list_head	list;
542 };
543 
544 /**
545  * struct perf_event - performance event kernel representation:
546  */
547 struct perf_event {
548 #ifdef CONFIG_PERF_EVENTS
549 	/*
550 	 * entry onto perf_event_context::event_list;
551 	 *   modifications require ctx->lock
552 	 *   RCU safe iterations.
553 	 */
554 	struct list_head		event_entry;
555 
556 	/*
557 	 * XXX: group_entry and sibling_list should be mutually exclusive;
558 	 * either you're a sibling on a group, or you're the group leader.
559 	 * Rework the code to always use the same list element.
560 	 *
561 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
562 	 * either sufficies for read.
563 	 */
564 	struct list_head		group_entry;
565 	struct list_head		sibling_list;
566 
567 	/*
568 	 * We need storage to track the entries in perf_pmu_migrate_context; we
569 	 * cannot use the event_entry because of RCU and we want to keep the
570 	 * group in tact which avoids us using the other two entries.
571 	 */
572 	struct list_head		migrate_entry;
573 
574 	struct hlist_node		hlist_entry;
575 	struct list_head		active_entry;
576 	int				nr_siblings;
577 
578 	/* Not serialized. Only written during event initialization. */
579 	int				event_caps;
580 	/* The cumulative AND of all event_caps for events in this group. */
581 	int				group_caps;
582 
583 	struct perf_event		*group_leader;
584 	struct pmu			*pmu;
585 	void				*pmu_private;
586 
587 	enum perf_event_active_state	state;
588 	unsigned int			attach_state;
589 	local64_t			count;
590 	atomic64_t			child_count;
591 
592 	/*
593 	 * These are the total time in nanoseconds that the event
594 	 * has been enabled (i.e. eligible to run, and the task has
595 	 * been scheduled in, if this is a per-task event)
596 	 * and running (scheduled onto the CPU), respectively.
597 	 *
598 	 * They are computed from tstamp_enabled, tstamp_running and
599 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
600 	 */
601 	u64				total_time_enabled;
602 	u64				total_time_running;
603 
604 	/*
605 	 * These are timestamps used for computing total_time_enabled
606 	 * and total_time_running when the event is in INACTIVE or
607 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
608 	 * in time.
609 	 * tstamp_enabled: the notional time when the event was enabled
610 	 * tstamp_running: the notional time when the event was scheduled on
611 	 * tstamp_stopped: in INACTIVE state, the notional time when the
612 	 *	event was scheduled off.
613 	 */
614 	u64				tstamp_enabled;
615 	u64				tstamp_running;
616 	u64				tstamp_stopped;
617 
618 	/*
619 	 * timestamp shadows the actual context timing but it can
620 	 * be safely used in NMI interrupt context. It reflects the
621 	 * context time as it was when the event was last scheduled in.
622 	 *
623 	 * ctx_time already accounts for ctx->timestamp. Therefore to
624 	 * compute ctx_time for a sample, simply add perf_clock().
625 	 */
626 	u64				shadow_ctx_time;
627 
628 	struct perf_event_attr		attr;
629 	u16				header_size;
630 	u16				id_header_size;
631 	u16				read_size;
632 	struct hw_perf_event		hw;
633 
634 	struct perf_event_context	*ctx;
635 	atomic_long_t			refcount;
636 
637 	/*
638 	 * These accumulate total time (in nanoseconds) that children
639 	 * events have been enabled and running, respectively.
640 	 */
641 	atomic64_t			child_total_time_enabled;
642 	atomic64_t			child_total_time_running;
643 
644 	/*
645 	 * Protect attach/detach and child_list:
646 	 */
647 	struct mutex			child_mutex;
648 	struct list_head		child_list;
649 	struct perf_event		*parent;
650 
651 	int				oncpu;
652 	int				cpu;
653 
654 	struct list_head		owner_entry;
655 	struct task_struct		*owner;
656 
657 	/* mmap bits */
658 	struct mutex			mmap_mutex;
659 	atomic_t			mmap_count;
660 
661 	struct ring_buffer		*rb;
662 	struct list_head		rb_entry;
663 	unsigned long			rcu_batches;
664 	int				rcu_pending;
665 
666 	/* poll related */
667 	wait_queue_head_t		waitq;
668 	struct fasync_struct		*fasync;
669 
670 	/* delayed work for NMIs and such */
671 	int				pending_wakeup;
672 	int				pending_kill;
673 	int				pending_disable;
674 	struct irq_work			pending;
675 
676 	atomic_t			event_limit;
677 
678 	/* address range filters */
679 	struct perf_addr_filters_head	addr_filters;
680 	/* vma address array for file-based filders */
681 	unsigned long			*addr_filters_offs;
682 	unsigned long			addr_filters_gen;
683 
684 	void (*destroy)(struct perf_event *);
685 	struct rcu_head			rcu_head;
686 
687 	struct pid_namespace		*ns;
688 	u64				id;
689 
690 	u64				(*clock)(void);
691 	perf_overflow_handler_t		overflow_handler;
692 	void				*overflow_handler_context;
693 #ifdef CONFIG_BPF_SYSCALL
694 	perf_overflow_handler_t		orig_overflow_handler;
695 	struct bpf_prog			*prog;
696 #endif
697 
698 #ifdef CONFIG_EVENT_TRACING
699 	struct trace_event_call		*tp_event;
700 	struct event_filter		*filter;
701 #ifdef CONFIG_FUNCTION_TRACER
702 	struct ftrace_ops               ftrace_ops;
703 #endif
704 #endif
705 
706 #ifdef CONFIG_CGROUP_PERF
707 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
708 	int				cgrp_defer_enabled;
709 #endif
710 
711 	struct list_head		sb_list;
712 #endif /* CONFIG_PERF_EVENTS */
713 };
714 
715 /**
716  * struct perf_event_context - event context structure
717  *
718  * Used as a container for task events and CPU events as well:
719  */
720 struct perf_event_context {
721 	struct pmu			*pmu;
722 	/*
723 	 * Protect the states of the events in the list,
724 	 * nr_active, and the list:
725 	 */
726 	raw_spinlock_t			lock;
727 	/*
728 	 * Protect the list of events.  Locking either mutex or lock
729 	 * is sufficient to ensure the list doesn't change; to change
730 	 * the list you need to lock both the mutex and the spinlock.
731 	 */
732 	struct mutex			mutex;
733 
734 	struct list_head		active_ctx_list;
735 	struct list_head		pinned_groups;
736 	struct list_head		flexible_groups;
737 	struct list_head		event_list;
738 	int				nr_events;
739 	int				nr_active;
740 	int				is_active;
741 	int				nr_stat;
742 	int				nr_freq;
743 	int				rotate_disable;
744 	atomic_t			refcount;
745 	struct task_struct		*task;
746 
747 	/*
748 	 * Context clock, runs when context enabled.
749 	 */
750 	u64				time;
751 	u64				timestamp;
752 
753 	/*
754 	 * These fields let us detect when two contexts have both
755 	 * been cloned (inherited) from a common ancestor.
756 	 */
757 	struct perf_event_context	*parent_ctx;
758 	u64				parent_gen;
759 	u64				generation;
760 	int				pin_count;
761 #ifdef CONFIG_CGROUP_PERF
762 	int				nr_cgroups;	 /* cgroup evts */
763 #endif
764 	void				*task_ctx_data; /* pmu specific data */
765 	struct rcu_head			rcu_head;
766 };
767 
768 /*
769  * Number of contexts where an event can trigger:
770  *	task, softirq, hardirq, nmi.
771  */
772 #define PERF_NR_CONTEXTS	4
773 
774 /**
775  * struct perf_event_cpu_context - per cpu event context structure
776  */
777 struct perf_cpu_context {
778 	struct perf_event_context	ctx;
779 	struct perf_event_context	*task_ctx;
780 	int				active_oncpu;
781 	int				exclusive;
782 
783 	raw_spinlock_t			hrtimer_lock;
784 	struct hrtimer			hrtimer;
785 	ktime_t				hrtimer_interval;
786 	unsigned int			hrtimer_active;
787 
788 	struct pmu			*unique_pmu;
789 #ifdef CONFIG_CGROUP_PERF
790 	struct perf_cgroup		*cgrp;
791 #endif
792 
793 	struct list_head		sched_cb_entry;
794 	int				sched_cb_usage;
795 };
796 
797 struct perf_output_handle {
798 	struct perf_event		*event;
799 	struct ring_buffer		*rb;
800 	unsigned long			wakeup;
801 	unsigned long			size;
802 	union {
803 		void			*addr;
804 		unsigned long		head;
805 	};
806 	int				page;
807 };
808 
809 struct bpf_perf_event_data_kern {
810 	struct pt_regs *regs;
811 	struct perf_sample_data *data;
812 };
813 
814 #ifdef CONFIG_CGROUP_PERF
815 
816 /*
817  * perf_cgroup_info keeps track of time_enabled for a cgroup.
818  * This is a per-cpu dynamically allocated data structure.
819  */
820 struct perf_cgroup_info {
821 	u64				time;
822 	u64				timestamp;
823 };
824 
825 struct perf_cgroup {
826 	struct cgroup_subsys_state	css;
827 	struct perf_cgroup_info	__percpu *info;
828 };
829 
830 /*
831  * Must ensure cgroup is pinned (css_get) before calling
832  * this function. In other words, we cannot call this function
833  * if there is no cgroup event for the current CPU context.
834  */
835 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)836 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
837 {
838 	return container_of(task_css_check(task, perf_event_cgrp_id,
839 					   ctx ? lockdep_is_held(&ctx->lock)
840 					       : true),
841 			    struct perf_cgroup, css);
842 }
843 #endif /* CONFIG_CGROUP_PERF */
844 
845 #ifdef CONFIG_PERF_EVENTS
846 
847 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
848 				   struct perf_event *event);
849 extern void perf_aux_output_end(struct perf_output_handle *handle,
850 				unsigned long size, bool truncated);
851 extern int perf_aux_output_skip(struct perf_output_handle *handle,
852 				unsigned long size);
853 extern void *perf_get_aux(struct perf_output_handle *handle);
854 
855 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
856 extern void perf_pmu_unregister(struct pmu *pmu);
857 
858 extern int perf_num_counters(void);
859 extern const char *perf_pmu_name(void);
860 extern void __perf_event_task_sched_in(struct task_struct *prev,
861 				       struct task_struct *task);
862 extern void __perf_event_task_sched_out(struct task_struct *prev,
863 					struct task_struct *next);
864 extern int perf_event_init_task(struct task_struct *child);
865 extern void perf_event_exit_task(struct task_struct *child);
866 extern void perf_event_free_task(struct task_struct *task);
867 extern void perf_event_delayed_put(struct task_struct *task);
868 extern struct file *perf_event_get(unsigned int fd);
869 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
870 extern void perf_event_print_debug(void);
871 extern void perf_pmu_disable(struct pmu *pmu);
872 extern void perf_pmu_enable(struct pmu *pmu);
873 extern void perf_sched_cb_dec(struct pmu *pmu);
874 extern void perf_sched_cb_inc(struct pmu *pmu);
875 extern int perf_event_task_disable(void);
876 extern int perf_event_task_enable(void);
877 extern int perf_event_refresh(struct perf_event *event, int refresh);
878 extern void perf_event_update_userpage(struct perf_event *event);
879 extern int perf_event_release_kernel(struct perf_event *event);
880 extern struct perf_event *
881 perf_event_create_kernel_counter(struct perf_event_attr *attr,
882 				int cpu,
883 				struct task_struct *task,
884 				perf_overflow_handler_t callback,
885 				void *context);
886 extern void perf_pmu_migrate_context(struct pmu *pmu,
887 				int src_cpu, int dst_cpu);
888 extern u64 perf_event_read_local(struct perf_event *event);
889 extern u64 perf_event_read_value(struct perf_event *event,
890 				 u64 *enabled, u64 *running);
891 
892 
893 struct perf_sample_data {
894 	/*
895 	 * Fields set by perf_sample_data_init(), group so as to
896 	 * minimize the cachelines touched.
897 	 */
898 	u64				addr;
899 	struct perf_raw_record		*raw;
900 	struct perf_branch_stack	*br_stack;
901 	u64				period;
902 	u64				weight;
903 	u64				txn;
904 	union  perf_mem_data_src	data_src;
905 
906 	/*
907 	 * The other fields, optionally {set,used} by
908 	 * perf_{prepare,output}_sample().
909 	 */
910 	u64				type;
911 	u64				ip;
912 	struct {
913 		u32	pid;
914 		u32	tid;
915 	}				tid_entry;
916 	u64				time;
917 	u64				id;
918 	u64				stream_id;
919 	struct {
920 		u32	cpu;
921 		u32	reserved;
922 	}				cpu_entry;
923 	struct perf_callchain_entry	*callchain;
924 
925 	/*
926 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
927 	 * on arch details.
928 	 */
929 	struct perf_regs		regs_user;
930 	struct pt_regs			regs_user_copy;
931 
932 	struct perf_regs		regs_intr;
933 	u64				stack_user_size;
934 } ____cacheline_aligned;
935 
936 /* default value for data source */
937 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
938 		    PERF_MEM_S(LVL, NA)   |\
939 		    PERF_MEM_S(SNOOP, NA) |\
940 		    PERF_MEM_S(LOCK, NA)  |\
941 		    PERF_MEM_S(TLB, NA))
942 
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)943 static inline void perf_sample_data_init(struct perf_sample_data *data,
944 					 u64 addr, u64 period)
945 {
946 	/* remaining struct members initialized in perf_prepare_sample() */
947 	data->addr = addr;
948 	data->raw  = NULL;
949 	data->br_stack = NULL;
950 	data->period = period;
951 	data->weight = 0;
952 	data->data_src.val = PERF_MEM_NA;
953 	data->txn = 0;
954 }
955 
956 extern void perf_output_sample(struct perf_output_handle *handle,
957 			       struct perf_event_header *header,
958 			       struct perf_sample_data *data,
959 			       struct perf_event *event);
960 extern void perf_prepare_sample(struct perf_event_header *header,
961 				struct perf_sample_data *data,
962 				struct perf_event *event,
963 				struct pt_regs *regs);
964 
965 extern int perf_event_overflow(struct perf_event *event,
966 				 struct perf_sample_data *data,
967 				 struct pt_regs *regs);
968 
969 extern void perf_event_output_forward(struct perf_event *event,
970 				     struct perf_sample_data *data,
971 				     struct pt_regs *regs);
972 extern void perf_event_output_backward(struct perf_event *event,
973 				       struct perf_sample_data *data,
974 				       struct pt_regs *regs);
975 extern void perf_event_output(struct perf_event *event,
976 			      struct perf_sample_data *data,
977 			      struct pt_regs *regs);
978 
979 static inline bool
is_default_overflow_handler(struct perf_event * event)980 is_default_overflow_handler(struct perf_event *event)
981 {
982 	if (likely(event->overflow_handler == perf_event_output_forward))
983 		return true;
984 	if (unlikely(event->overflow_handler == perf_event_output_backward))
985 		return true;
986 	return false;
987 }
988 
989 extern void
990 perf_event_header__init_id(struct perf_event_header *header,
991 			   struct perf_sample_data *data,
992 			   struct perf_event *event);
993 extern void
994 perf_event__output_id_sample(struct perf_event *event,
995 			     struct perf_output_handle *handle,
996 			     struct perf_sample_data *sample);
997 
998 extern void
999 perf_log_lost_samples(struct perf_event *event, u64 lost);
1000 
is_sampling_event(struct perf_event * event)1001 static inline bool is_sampling_event(struct perf_event *event)
1002 {
1003 	return event->attr.sample_period != 0;
1004 }
1005 
1006 /*
1007  * Return 1 for a software event, 0 for a hardware event
1008  */
is_software_event(struct perf_event * event)1009 static inline int is_software_event(struct perf_event *event)
1010 {
1011 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1012 }
1013 
1014 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1015 
1016 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1017 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1018 
1019 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1020 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1021 #endif
1022 
1023 /*
1024  * Take a snapshot of the regs. Skip ip and frame pointer to
1025  * the nth caller. We only need a few of the regs:
1026  * - ip for PERF_SAMPLE_IP
1027  * - cs for user_mode() tests
1028  * - bp for callchains
1029  * - eflags, for future purposes, just in case
1030  */
perf_fetch_caller_regs(struct pt_regs * regs)1031 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1032 {
1033 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1034 }
1035 
1036 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1037 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1038 {
1039 	if (static_key_false(&perf_swevent_enabled[event_id]))
1040 		__perf_sw_event(event_id, nr, regs, addr);
1041 }
1042 
1043 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1044 
1045 /*
1046  * 'Special' version for the scheduler, it hard assumes no recursion,
1047  * which is guaranteed by us not actually scheduling inside other swevents
1048  * because those disable preemption.
1049  */
1050 static __always_inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1051 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1052 {
1053 	if (static_key_false(&perf_swevent_enabled[event_id])) {
1054 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1055 
1056 		perf_fetch_caller_regs(regs);
1057 		___perf_sw_event(event_id, nr, regs, addr);
1058 	}
1059 }
1060 
1061 extern struct static_key_false perf_sched_events;
1062 
1063 static __always_inline bool
perf_sw_migrate_enabled(void)1064 perf_sw_migrate_enabled(void)
1065 {
1066 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1067 		return true;
1068 	return false;
1069 }
1070 
perf_event_task_migrate(struct task_struct * task)1071 static inline void perf_event_task_migrate(struct task_struct *task)
1072 {
1073 	if (perf_sw_migrate_enabled())
1074 		task->sched_migrated = 1;
1075 }
1076 
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1077 static inline void perf_event_task_sched_in(struct task_struct *prev,
1078 					    struct task_struct *task)
1079 {
1080 	if (static_branch_unlikely(&perf_sched_events))
1081 		__perf_event_task_sched_in(prev, task);
1082 
1083 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
1084 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1085 
1086 		perf_fetch_caller_regs(regs);
1087 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1088 		task->sched_migrated = 0;
1089 	}
1090 }
1091 
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1092 static inline void perf_event_task_sched_out(struct task_struct *prev,
1093 					     struct task_struct *next)
1094 {
1095 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1096 
1097 	if (static_branch_unlikely(&perf_sched_events))
1098 		__perf_event_task_sched_out(prev, next);
1099 }
1100 
__perf_event_count(struct perf_event * event)1101 static inline u64 __perf_event_count(struct perf_event *event)
1102 {
1103 	return local64_read(&event->count) + atomic64_read(&event->child_count);
1104 }
1105 
1106 extern void perf_event_mmap(struct vm_area_struct *vma);
1107 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1108 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1109 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1110 
1111 extern void perf_event_exec(void);
1112 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1113 extern void perf_event_fork(struct task_struct *tsk);
1114 
1115 /* Callchains */
1116 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1117 
1118 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1119 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1120 extern struct perf_callchain_entry *
1121 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1122 		   u32 max_stack, bool crosstask, bool add_mark);
1123 extern int get_callchain_buffers(int max_stack);
1124 extern void put_callchain_buffers(void);
1125 
1126 extern int sysctl_perf_event_max_stack;
1127 extern int sysctl_perf_event_max_contexts_per_stack;
1128 
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1129 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1130 {
1131 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1132 		struct perf_callchain_entry *entry = ctx->entry;
1133 		entry->ip[entry->nr++] = ip;
1134 		++ctx->contexts;
1135 		return 0;
1136 	} else {
1137 		ctx->contexts_maxed = true;
1138 		return -1; /* no more room, stop walking the stack */
1139 	}
1140 }
1141 
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1142 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1143 {
1144 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1145 		struct perf_callchain_entry *entry = ctx->entry;
1146 		entry->ip[entry->nr++] = ip;
1147 		++ctx->nr;
1148 		return 0;
1149 	} else {
1150 		return -1; /* no more room, stop walking the stack */
1151 	}
1152 }
1153 
1154 extern int sysctl_perf_event_paranoid;
1155 extern int sysctl_perf_event_mlock;
1156 extern int sysctl_perf_event_sample_rate;
1157 extern int sysctl_perf_cpu_time_max_percent;
1158 
1159 extern void perf_sample_event_took(u64 sample_len_ns);
1160 
1161 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1162 		void __user *buffer, size_t *lenp,
1163 		loff_t *ppos);
1164 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1165 		void __user *buffer, size_t *lenp,
1166 		loff_t *ppos);
1167 
1168 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1169 				 void __user *buffer, size_t *lenp, loff_t *ppos);
1170 
perf_paranoid_any(void)1171 static inline bool perf_paranoid_any(void)
1172 {
1173 	return sysctl_perf_event_paranoid > 2;
1174 }
1175 
perf_paranoid_tracepoint_raw(void)1176 static inline bool perf_paranoid_tracepoint_raw(void)
1177 {
1178 	return sysctl_perf_event_paranoid > -1;
1179 }
1180 
perf_paranoid_cpu(void)1181 static inline bool perf_paranoid_cpu(void)
1182 {
1183 	return sysctl_perf_event_paranoid > 0;
1184 }
1185 
perf_paranoid_kernel(void)1186 static inline bool perf_paranoid_kernel(void)
1187 {
1188 	return sysctl_perf_event_paranoid > 1;
1189 }
1190 
1191 extern void perf_event_init(void);
1192 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1193 			  int entry_size, struct pt_regs *regs,
1194 			  struct hlist_head *head, int rctx,
1195 			  struct task_struct *task);
1196 extern void perf_bp_event(struct perf_event *event, void *data);
1197 
1198 #ifndef perf_misc_flags
1199 # define perf_misc_flags(regs) \
1200 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1201 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1202 #endif
1203 
has_branch_stack(struct perf_event * event)1204 static inline bool has_branch_stack(struct perf_event *event)
1205 {
1206 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1207 }
1208 
needs_branch_stack(struct perf_event * event)1209 static inline bool needs_branch_stack(struct perf_event *event)
1210 {
1211 	return event->attr.branch_sample_type != 0;
1212 }
1213 
has_aux(struct perf_event * event)1214 static inline bool has_aux(struct perf_event *event)
1215 {
1216 	return event->pmu->setup_aux;
1217 }
1218 
is_write_backward(struct perf_event * event)1219 static inline bool is_write_backward(struct perf_event *event)
1220 {
1221 	return !!event->attr.write_backward;
1222 }
1223 
has_addr_filter(struct perf_event * event)1224 static inline bool has_addr_filter(struct perf_event *event)
1225 {
1226 	return event->pmu->nr_addr_filters;
1227 }
1228 
1229 /*
1230  * An inherited event uses parent's filters
1231  */
1232 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1233 perf_event_addr_filters(struct perf_event *event)
1234 {
1235 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1236 
1237 	if (event->parent)
1238 		ifh = &event->parent->addr_filters;
1239 
1240 	return ifh;
1241 }
1242 
1243 extern void perf_event_addr_filters_sync(struct perf_event *event);
1244 
1245 extern int perf_output_begin(struct perf_output_handle *handle,
1246 			     struct perf_event *event, unsigned int size);
1247 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1248 				    struct perf_event *event,
1249 				    unsigned int size);
1250 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1251 				      struct perf_event *event,
1252 				      unsigned int size);
1253 
1254 extern void perf_output_end(struct perf_output_handle *handle);
1255 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1256 			     const void *buf, unsigned int len);
1257 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1258 				     unsigned int len);
1259 extern int perf_swevent_get_recursion_context(void);
1260 extern void perf_swevent_put_recursion_context(int rctx);
1261 extern u64 perf_swevent_set_period(struct perf_event *event);
1262 extern void perf_event_enable(struct perf_event *event);
1263 extern void perf_event_disable(struct perf_event *event);
1264 extern void perf_event_disable_local(struct perf_event *event);
1265 extern void perf_event_disable_inatomic(struct perf_event *event);
1266 extern void perf_event_task_tick(void);
1267 extern int perf_event_account_interrupt(struct perf_event *event);
1268 #else /* !CONFIG_PERF_EVENTS: */
1269 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1270 perf_aux_output_begin(struct perf_output_handle *handle,
1271 		      struct perf_event *event)				{ return NULL; }
1272 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size,bool truncated)1273 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
1274 		    bool truncated)					{ }
1275 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1276 perf_aux_output_skip(struct perf_output_handle *handle,
1277 		     unsigned long size)				{ return -EINVAL; }
1278 static inline void *
perf_get_aux(struct perf_output_handle * handle)1279 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1280 static inline void
perf_event_task_migrate(struct task_struct * task)1281 perf_event_task_migrate(struct task_struct *task)			{ }
1282 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1283 perf_event_task_sched_in(struct task_struct *prev,
1284 			 struct task_struct *task)			{ }
1285 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1286 perf_event_task_sched_out(struct task_struct *prev,
1287 			  struct task_struct *next)			{ }
perf_event_init_task(struct task_struct * child)1288 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
perf_event_exit_task(struct task_struct * child)1289 static inline void perf_event_exit_task(struct task_struct *child)	{ }
perf_event_free_task(struct task_struct * task)1290 static inline void perf_event_free_task(struct task_struct *task)	{ }
perf_event_delayed_put(struct task_struct * task)1291 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
perf_event_get(unsigned int fd)1292 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
perf_event_attrs(struct perf_event * event)1293 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1294 {
1295 	return ERR_PTR(-EINVAL);
1296 }
perf_event_read_local(struct perf_event * event)1297 static inline u64 perf_event_read_local(struct perf_event *event)	{ return -EINVAL; }
perf_event_print_debug(void)1298 static inline void perf_event_print_debug(void)				{ }
perf_event_task_disable(void)1299 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
perf_event_task_enable(void)1300 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1301 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1302 {
1303 	return -EINVAL;
1304 }
1305 
1306 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1307 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1308 static inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1309 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1310 static inline void
perf_bp_event(struct perf_event * event,void * data)1311 perf_bp_event(struct perf_event *event, void *data)			{ }
1312 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1313 static inline int perf_register_guest_info_callbacks
1314 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1315 static inline int perf_unregister_guest_info_callbacks
1316 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1317 
perf_event_mmap(struct vm_area_struct * vma)1318 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
perf_event_exec(void)1319 static inline void perf_event_exec(void)				{ }
perf_event_comm(struct task_struct * tsk,bool exec)1320 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
perf_event_fork(struct task_struct * tsk)1321 static inline void perf_event_fork(struct task_struct *tsk)		{ }
perf_event_init(void)1322 static inline void perf_event_init(void)				{ }
perf_swevent_get_recursion_context(void)1323 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
perf_swevent_put_recursion_context(int rctx)1324 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
perf_swevent_set_period(struct perf_event * event)1325 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
perf_event_enable(struct perf_event * event)1326 static inline void perf_event_enable(struct perf_event *event)		{ }
perf_event_disable(struct perf_event * event)1327 static inline void perf_event_disable(struct perf_event *event)		{ }
__perf_event_disable(void * info)1328 static inline int __perf_event_disable(void *info)			{ return -1; }
perf_event_task_tick(void)1329 static inline void perf_event_task_tick(void)				{ }
perf_event_release_kernel(struct perf_event * event)1330 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1331 #endif
1332 
1333 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1334 extern void perf_restore_debug_store(void);
1335 #else
perf_restore_debug_store(void)1336 static inline void perf_restore_debug_store(void)			{ }
1337 #endif
1338 
perf_raw_frag_last(const struct perf_raw_frag * frag)1339 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1340 {
1341 	return frag->pad < sizeof(u64);
1342 }
1343 
1344 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1345 
1346 struct perf_pmu_events_attr {
1347 	struct device_attribute attr;
1348 	u64 id;
1349 	const char *event_str;
1350 };
1351 
1352 struct perf_pmu_events_ht_attr {
1353 	struct device_attribute			attr;
1354 	u64					id;
1355 	const char				*event_str_ht;
1356 	const char				*event_str_noht;
1357 };
1358 
1359 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1360 			      char *page);
1361 
1362 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1363 static struct perf_pmu_events_attr _var = {				\
1364 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1365 	.id   =  _id,							\
1366 };
1367 
1368 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1369 static struct perf_pmu_events_attr _var = {				    \
1370 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1371 	.id		= 0,						    \
1372 	.event_str	= _str,						    \
1373 };
1374 
1375 #define PMU_FORMAT_ATTR(_name, _format)					\
1376 static ssize_t								\
1377 _name##_show(struct device *dev,					\
1378 			       struct device_attribute *attr,		\
1379 			       char *page)				\
1380 {									\
1381 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1382 	return sprintf(page, _format "\n");				\
1383 }									\
1384 									\
1385 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1386 
1387 /* Performance counter hotplug functions */
1388 #ifdef CONFIG_PERF_EVENTS
1389 int perf_event_init_cpu(unsigned int cpu);
1390 int perf_event_exit_cpu(unsigned int cpu);
1391 #else
1392 #define perf_event_init_cpu	NULL
1393 #define perf_event_exit_cpu	NULL
1394 #endif
1395 
1396 #endif /* _LINUX_PERF_EVENT_H */
1397