• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4
5<book id="MTD-NAND-Guide">
6 <bookinfo>
7  <title>MTD NAND Driver Programming Interface</title>
8
9  <authorgroup>
10   <author>
11    <firstname>Thomas</firstname>
12    <surname>Gleixner</surname>
13    <affiliation>
14     <address>
15      <email>tglx@linutronix.de</email>
16     </address>
17    </affiliation>
18   </author>
19  </authorgroup>
20
21  <copyright>
22   <year>2004</year>
23   <holder>Thomas Gleixner</holder>
24  </copyright>
25
26  <legalnotice>
27   <para>
28     This documentation is free software; you can redistribute
29     it and/or modify it under the terms of the GNU General Public
30     License version 2 as published by the Free Software Foundation.
31   </para>
32
33   <para>
34     This program is distributed in the hope that it will be
35     useful, but WITHOUT ANY WARRANTY; without even the implied
36     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
37     See the GNU General Public License for more details.
38   </para>
39
40   <para>
41     You should have received a copy of the GNU General Public
42     License along with this program; if not, write to the Free
43     Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
44     MA 02111-1307 USA
45   </para>
46
47   <para>
48     For more details see the file COPYING in the source
49     distribution of Linux.
50   </para>
51  </legalnotice>
52 </bookinfo>
53
54<toc></toc>
55
56  <chapter id="intro">
57      <title>Introduction</title>
58  <para>
59  	The generic NAND driver supports almost all NAND and AG-AND based
60	chips and connects them to the Memory Technology Devices (MTD)
61	subsystem of the Linux Kernel.
62  </para>
63  <para>
64  	This documentation is provided for developers who want to implement
65	board drivers or filesystem drivers suitable for NAND devices.
66  </para>
67  </chapter>
68
69  <chapter id="bugs">
70     <title>Known Bugs And Assumptions</title>
71  <para>
72	None.
73  </para>
74  </chapter>
75
76  <chapter id="dochints">
77     <title>Documentation hints</title>
78     <para>
79     The function and structure docs are autogenerated. Each function and
80     struct member has a short description which is marked with an [XXX] identifier.
81     The following chapters explain the meaning of those identifiers.
82     </para>
83     <sect1 id="Function_identifiers_XXX">
84	<title>Function identifiers [XXX]</title>
85     	<para>
86	The functions are marked with [XXX] identifiers in the short
87	comment. The identifiers explain the usage and scope of the
88	functions. Following identifiers are used:
89     	</para>
90	<itemizedlist>
91		<listitem><para>
92	  	[MTD Interface]</para><para>
93		These functions provide the interface to the MTD kernel API.
94		They are not replaceable and provide functionality
95		which is complete hardware independent.
96		</para></listitem>
97		<listitem><para>
98	  	[NAND Interface]</para><para>
99		These functions are exported and provide the interface to the NAND kernel API.
100		</para></listitem>
101		<listitem><para>
102	  	[GENERIC]</para><para>
103		Generic functions are not replaceable and provide functionality
104		which is complete hardware independent.
105		</para></listitem>
106		<listitem><para>
107	  	[DEFAULT]</para><para>
108		Default functions provide hardware related functionality which is suitable
109		for most of the implementations. These functions can be replaced by the
110		board driver if necessary. Those functions are called via pointers in the
111		NAND chip description structure. The board driver can set the functions which
112		should be replaced by board dependent functions before calling nand_scan().
113		If the function pointer is NULL on entry to nand_scan() then the pointer
114		is set to the default function which is suitable for the detected chip type.
115		</para></listitem>
116	</itemizedlist>
117     </sect1>
118     <sect1 id="Struct_member_identifiers_XXX">
119	<title>Struct member identifiers [XXX]</title>
120     	<para>
121	The struct members are marked with [XXX] identifiers in the
122	comment. The identifiers explain the usage and scope of the
123	members. Following identifiers are used:
124     	</para>
125	<itemizedlist>
126		<listitem><para>
127	  	[INTERN]</para><para>
128		These members are for NAND driver internal use only and must not be
129		modified. Most of these values are calculated from the chip geometry
130		information which is evaluated during nand_scan().
131		</para></listitem>
132		<listitem><para>
133	  	[REPLACEABLE]</para><para>
134		Replaceable members hold hardware related functions which can be
135		provided by the board driver. The board driver can set the functions which
136		should be replaced by board dependent functions before calling nand_scan().
137		If the function pointer is NULL on entry to nand_scan() then the pointer
138		is set to the default function which is suitable for the detected chip type.
139		</para></listitem>
140		<listitem><para>
141	  	[BOARDSPECIFIC]</para><para>
142		Board specific members hold hardware related information which must
143		be provided by the board driver. The board driver must set the function
144		pointers and datafields before calling nand_scan().
145		</para></listitem>
146		<listitem><para>
147	  	[OPTIONAL]</para><para>
148		Optional members can hold information relevant for the board driver. The
149		generic NAND driver code does not use this information.
150		</para></listitem>
151	</itemizedlist>
152     </sect1>
153  </chapter>
154
155  <chapter id="basicboarddriver">
156     	<title>Basic board driver</title>
157	<para>
158		For most boards it will be sufficient to provide just the
159		basic functions and fill out some really board dependent
160		members in the nand chip description structure.
161	</para>
162	<sect1 id="Basic_defines">
163		<title>Basic defines</title>
164		<para>
165			At least you have to provide a nand_chip structure
166			and a storage for the ioremap'ed chip address.
167			You can allocate the nand_chip structure using
168			kmalloc or you can allocate it statically.
169			The NAND chip structure embeds an mtd structure
170			which will be registered to the MTD subsystem.
171			You can extract a pointer to the mtd structure
172			from a nand_chip pointer using the nand_to_mtd()
173			helper.
174		</para>
175		<para>
176			Kmalloc based example
177		</para>
178		<programlisting>
179static struct mtd_info *board_mtd;
180static void __iomem *baseaddr;
181		</programlisting>
182		<para>
183			Static example
184		</para>
185		<programlisting>
186static struct nand_chip board_chip;
187static void __iomem *baseaddr;
188		</programlisting>
189	</sect1>
190	<sect1 id="Partition_defines">
191		<title>Partition defines</title>
192		<para>
193			If you want to divide your device into partitions, then
194			define a partitioning scheme suitable to your board.
195		</para>
196		<programlisting>
197#define NUM_PARTITIONS 2
198static struct mtd_partition partition_info[] = {
199	{ .name = "Flash partition 1",
200	  .offset =  0,
201	  .size =    8 * 1024 * 1024 },
202	{ .name = "Flash partition 2",
203	  .offset =  MTDPART_OFS_NEXT,
204	  .size =    MTDPART_SIZ_FULL },
205};
206		</programlisting>
207	</sect1>
208	<sect1 id="Hardware_control_functions">
209		<title>Hardware control function</title>
210		<para>
211			The hardware control function provides access to the
212			control pins of the NAND chip(s).
213			The access can be done by GPIO pins or by address lines.
214			If you use address lines, make sure that the timing
215			requirements are met.
216		</para>
217		<para>
218			<emphasis>GPIO based example</emphasis>
219		</para>
220		<programlisting>
221static void board_hwcontrol(struct mtd_info *mtd, int cmd)
222{
223	switch(cmd){
224		case NAND_CTL_SETCLE: /* Set CLE pin high */ break;
225		case NAND_CTL_CLRCLE: /* Set CLE pin low */ break;
226		case NAND_CTL_SETALE: /* Set ALE pin high */ break;
227		case NAND_CTL_CLRALE: /* Set ALE pin low */ break;
228		case NAND_CTL_SETNCE: /* Set nCE pin low */ break;
229		case NAND_CTL_CLRNCE: /* Set nCE pin high */ break;
230	}
231}
232		</programlisting>
233		<para>
234			<emphasis>Address lines based example.</emphasis> It's assumed that the
235			nCE pin is driven by a chip select decoder.
236		</para>
237		<programlisting>
238static void board_hwcontrol(struct mtd_info *mtd, int cmd)
239{
240	struct nand_chip *this = mtd_to_nand(mtd);
241	switch(cmd){
242		case NAND_CTL_SETCLE: this->IO_ADDR_W |= CLE_ADRR_BIT;  break;
243		case NAND_CTL_CLRCLE: this->IO_ADDR_W &amp;= ~CLE_ADRR_BIT; break;
244		case NAND_CTL_SETALE: this->IO_ADDR_W |= ALE_ADRR_BIT;  break;
245		case NAND_CTL_CLRALE: this->IO_ADDR_W &amp;= ~ALE_ADRR_BIT; break;
246	}
247}
248		</programlisting>
249	</sect1>
250	<sect1 id="Device_ready_function">
251		<title>Device ready function</title>
252		<para>
253			If the hardware interface has the ready busy pin of the NAND chip connected to a
254			GPIO or other accessible I/O pin, this function is used to read back the state of the
255			pin. The function has no arguments and should return 0, if the device is busy (R/B pin
256			is low) and 1, if the device is ready (R/B pin is high).
257			If the hardware interface does not give access to the ready busy pin, then
258			the function must not be defined and the function pointer this->dev_ready is set to NULL.
259		</para>
260	</sect1>
261	<sect1 id="Init_function">
262		<title>Init function</title>
263		<para>
264			The init function allocates memory and sets up all the board
265			specific parameters and function pointers. When everything
266			is set up nand_scan() is called. This function tries to
267			detect and identify then chip. If a chip is found all the
268			internal data fields are initialized accordingly.
269			The structure(s) have to be zeroed out first and then filled with the necessary
270			information about the device.
271		</para>
272		<programlisting>
273static int __init board_init (void)
274{
275	struct nand_chip *this;
276	int err = 0;
277
278	/* Allocate memory for MTD device structure and private data */
279	this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL);
280	if (!this) {
281		printk ("Unable to allocate NAND MTD device structure.\n");
282		err = -ENOMEM;
283		goto out;
284	}
285
286	board_mtd = nand_to_mtd(this);
287
288	/* map physical address */
289	baseaddr = ioremap(CHIP_PHYSICAL_ADDRESS, 1024);
290	if (!baseaddr) {
291		printk("Ioremap to access NAND chip failed\n");
292		err = -EIO;
293		goto out_mtd;
294	}
295
296	/* Set address of NAND IO lines */
297	this->IO_ADDR_R = baseaddr;
298	this->IO_ADDR_W = baseaddr;
299	/* Reference hardware control function */
300	this->hwcontrol = board_hwcontrol;
301	/* Set command delay time, see datasheet for correct value */
302	this->chip_delay = CHIP_DEPENDEND_COMMAND_DELAY;
303	/* Assign the device ready function, if available */
304	this->dev_ready = board_dev_ready;
305	this->eccmode = NAND_ECC_SOFT;
306
307	/* Scan to find existence of the device */
308	if (nand_scan (board_mtd, 1)) {
309		err = -ENXIO;
310		goto out_ior;
311	}
312
313	add_mtd_partitions(board_mtd, partition_info, NUM_PARTITIONS);
314	goto out;
315
316out_ior:
317	iounmap(baseaddr);
318out_mtd:
319	kfree (this);
320out:
321	return err;
322}
323module_init(board_init);
324		</programlisting>
325	</sect1>
326	<sect1 id="Exit_function">
327		<title>Exit function</title>
328		<para>
329			The exit function is only necessary if the driver is
330			compiled as a module. It releases all resources which
331			are held by the chip driver and unregisters the partitions
332			in the MTD layer.
333		</para>
334		<programlisting>
335#ifdef MODULE
336static void __exit board_cleanup (void)
337{
338	/* Release resources, unregister device */
339	nand_release (board_mtd);
340
341	/* unmap physical address */
342	iounmap(baseaddr);
343
344	/* Free the MTD device structure */
345	kfree (mtd_to_nand(board_mtd));
346}
347module_exit(board_cleanup);
348#endif
349		</programlisting>
350	</sect1>
351  </chapter>
352
353  <chapter id="boarddriversadvanced">
354     	<title>Advanced board driver functions</title>
355	<para>
356		This chapter describes the advanced functionality of the NAND
357		driver. For a list of functions which can be overridden by the board
358		driver see the documentation of the nand_chip structure.
359	</para>
360	<sect1 id="Multiple_chip_control">
361		<title>Multiple chip control</title>
362		<para>
363			The nand driver can control chip arrays. Therefore the
364			board driver must provide an own select_chip function. This
365			function must (de)select the requested chip.
366			The function pointer in the nand_chip structure must
367			be set before calling nand_scan(). The maxchip parameter
368			of nand_scan() defines the maximum number of chips to
369			scan for. Make sure that the select_chip function can
370			handle the requested number of chips.
371		</para>
372		<para>
373			The nand driver concatenates the chips to one virtual
374			chip and provides this virtual chip to the MTD layer.
375		</para>
376		<para>
377			<emphasis>Note: The driver can only handle linear chip arrays
378			of equally sized chips. There is no support for
379			parallel arrays which extend the buswidth.</emphasis>
380		</para>
381		<para>
382			<emphasis>GPIO based example</emphasis>
383		</para>
384		<programlisting>
385static void board_select_chip (struct mtd_info *mtd, int chip)
386{
387	/* Deselect all chips, set all nCE pins high */
388	GPIO(BOARD_NAND_NCE) |= 0xff;
389	if (chip >= 0)
390		GPIO(BOARD_NAND_NCE) &amp;= ~ (1 &lt;&lt; chip);
391}
392		</programlisting>
393		<para>
394			<emphasis>Address lines based example.</emphasis>
395			Its assumed that the nCE pins are connected to an
396			address decoder.
397		</para>
398		<programlisting>
399static void board_select_chip (struct mtd_info *mtd, int chip)
400{
401	struct nand_chip *this = mtd_to_nand(mtd);
402
403	/* Deselect all chips */
404	this->IO_ADDR_R &amp;= ~BOARD_NAND_ADDR_MASK;
405	this->IO_ADDR_W &amp;= ~BOARD_NAND_ADDR_MASK;
406	switch (chip) {
407	case 0:
408		this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIP0;
409		this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIP0;
410		break;
411	....
412	case n:
413		this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIPn;
414		this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIPn;
415		break;
416	}
417}
418		</programlisting>
419	</sect1>
420	<sect1 id="Hardware_ECC_support">
421		<title>Hardware ECC support</title>
422		<sect2 id="Functions_and_constants">
423			<title>Functions and constants</title>
424			<para>
425				The nand driver supports three different types of
426				hardware ECC.
427				<itemizedlist>
428				<listitem><para>NAND_ECC_HW3_256</para><para>
429				Hardware ECC generator providing 3 bytes ECC per
430				256 byte.
431				</para>	</listitem>
432				<listitem><para>NAND_ECC_HW3_512</para><para>
433				Hardware ECC generator providing 3 bytes ECC per
434				512 byte.
435				</para>	</listitem>
436				<listitem><para>NAND_ECC_HW6_512</para><para>
437				Hardware ECC generator providing 6 bytes ECC per
438				512 byte.
439				</para>	</listitem>
440				<listitem><para>NAND_ECC_HW8_512</para><para>
441				Hardware ECC generator providing 6 bytes ECC per
442				512 byte.
443				</para>	</listitem>
444				</itemizedlist>
445				If your hardware generator has a different functionality
446				add it at the appropriate place in nand_base.c
447			</para>
448			<para>
449				The board driver must provide following functions:
450				<itemizedlist>
451				<listitem><para>enable_hwecc</para><para>
452				This function is called before reading / writing to
453				the chip. Reset or initialize the hardware generator
454				in this function. The function is called with an
455				argument which let you distinguish between read
456				and write operations.
457				</para>	</listitem>
458				<listitem><para>calculate_ecc</para><para>
459				This function is called after read / write from / to
460				the chip. Transfer the ECC from the hardware to
461				the buffer. If the option NAND_HWECC_SYNDROME is set
462				then the function is only called on write. See below.
463				</para>	</listitem>
464				<listitem><para>correct_data</para><para>
465				In case of an ECC error this function is called for
466				error detection and correction. Return 1 respectively 2
467				in case the error can be corrected. If the error is
468				not correctable return -1. If your hardware generator
469				matches the default algorithm of the nand_ecc software
470				generator then use the correction function provided
471				by nand_ecc instead of implementing duplicated code.
472				</para>	</listitem>
473				</itemizedlist>
474			</para>
475		</sect2>
476		<sect2 id="Hardware_ECC_with_syndrome_calculation">
477		<title>Hardware ECC with syndrome calculation</title>
478			<para>
479				Many hardware ECC implementations provide Reed-Solomon
480				codes and calculate an error syndrome on read. The syndrome
481				must be converted to a standard Reed-Solomon syndrome
482				before calling the error correction code in the generic
483				Reed-Solomon library.
484			</para>
485			<para>
486				The ECC bytes must be placed immediately after the data
487				bytes in order to make the syndrome generator work. This
488				is contrary to the usual layout used by software ECC. The
489				separation of data and out of band area is not longer
490				possible. The nand driver code handles this layout and
491				the remaining free bytes in the oob area are managed by
492				the autoplacement code. Provide a matching oob-layout
493				in this case. See rts_from4.c and diskonchip.c for
494				implementation reference. In those cases we must also
495				use bad block tables on FLASH, because the ECC layout is
496				interfering with the bad block marker positions.
497				See bad block table support for details.
498			</para>
499		</sect2>
500	</sect1>
501	<sect1 id="Bad_Block_table_support">
502		<title>Bad block table support</title>
503		<para>
504			Most NAND chips mark the bad blocks at a defined
505			position in the spare area. Those blocks must
506			not be erased under any circumstances as the bad
507			block information would be lost.
508			It is possible to check the bad block mark each
509			time when the blocks are accessed by reading the
510			spare area of the first page in the block. This
511			is time consuming so a bad block table is used.
512		</para>
513		<para>
514			The nand driver supports various types of bad block
515			tables.
516			<itemizedlist>
517			<listitem><para>Per device</para><para>
518			The bad block table contains all bad block information
519			of the device which can consist of multiple chips.
520			</para>	</listitem>
521			<listitem><para>Per chip</para><para>
522			A bad block table is used per chip and contains the
523			bad block information for this particular chip.
524			</para>	</listitem>
525			<listitem><para>Fixed offset</para><para>
526			The bad block table is located at a fixed offset
527			in the chip (device). This applies to various
528			DiskOnChip devices.
529			</para>	</listitem>
530			<listitem><para>Automatic placed</para><para>
531			The bad block table is automatically placed and
532			detected either at the end or at the beginning
533			of a chip (device)
534			</para>	</listitem>
535			<listitem><para>Mirrored tables</para><para>
536			The bad block table is mirrored on the chip (device) to
537			allow updates of the bad block table without data loss.
538			</para>	</listitem>
539			</itemizedlist>
540		</para>
541		<para>
542			nand_scan() calls the function nand_default_bbt().
543			nand_default_bbt() selects appropriate default
544			bad block table descriptors depending on the chip information
545			which was retrieved by nand_scan().
546		</para>
547		<para>
548			The standard policy is scanning the device for bad
549			blocks and build a ram based bad block table which
550			allows faster access than always checking the
551			bad block information on the flash chip itself.
552		</para>
553		<sect2 id="Flash_based_tables">
554			<title>Flash based tables</title>
555			<para>
556				It may be desired or necessary to keep a bad block table in FLASH.
557				For AG-AND chips this is mandatory, as they have no factory marked
558				bad blocks. They have factory marked good blocks. The marker pattern
559				is erased when the block is erased to be reused. So in case of
560				powerloss before writing the pattern back to the chip this block
561				would be lost and added to the bad blocks. Therefore we scan the
562				chip(s) when we detect them the first time for good blocks and
563				store this information in a bad block table before erasing any
564				of the blocks.
565			</para>
566			<para>
567				The blocks in which the tables are stored are protected against
568				accidental access by marking them bad in the memory bad block
569				table. The bad block table management functions are allowed
570				to circumvent this protection.
571			</para>
572			<para>
573				The simplest way to activate the FLASH based bad block table support
574				is to set the option NAND_BBT_USE_FLASH in the bbt_option field of
575				the nand chip structure before calling nand_scan(). For AG-AND
576				chips is this done by default.
577				This activates the default FLASH based bad block table functionality
578				of the NAND driver. The default bad block table options are
579				<itemizedlist>
580				<listitem><para>Store bad block table per chip</para></listitem>
581				<listitem><para>Use 2 bits per block</para></listitem>
582				<listitem><para>Automatic placement at the end of the chip</para></listitem>
583				<listitem><para>Use mirrored tables with version numbers</para></listitem>
584				<listitem><para>Reserve 4 blocks at the end of the chip</para></listitem>
585				</itemizedlist>
586			</para>
587		</sect2>
588		<sect2 id="User_defined_tables">
589			<title>User defined tables</title>
590			<para>
591				User defined tables are created by filling out a
592				nand_bbt_descr structure and storing the pointer in the
593				nand_chip structure member bbt_td before calling nand_scan().
594				If a mirror table is necessary a second structure must be
595				created and a pointer to this structure must be stored
596				in bbt_md inside the nand_chip structure. If the bbt_md
597				member is set to NULL then only the main table is used
598				and no scan for the mirrored table is performed.
599			</para>
600			<para>
601				The most important field in the nand_bbt_descr structure
602				is the options field. The options define most of the
603				table properties. Use the predefined constants from
604				nand.h to define the options.
605				<itemizedlist>
606				<listitem><para>Number of bits per block</para>
607				<para>The supported number of bits is 1, 2, 4, 8.</para></listitem>
608				<listitem><para>Table per chip</para>
609				<para>Setting the constant NAND_BBT_PERCHIP selects that
610				a bad block table is managed for each chip in a chip array.
611				If this option is not set then a per device bad block table
612				is used.</para></listitem>
613				<listitem><para>Table location is absolute</para>
614				<para>Use the option constant NAND_BBT_ABSPAGE and
615				define the absolute page number where the bad block
616				table starts in the field pages. If you have selected bad block
617				tables per chip and you have a multi chip array then the start page
618				must be given for each chip in the chip array. Note: there is no scan
619				for a table ident pattern performed, so the fields
620				pattern, veroffs, offs, len can be left uninitialized</para></listitem>
621				<listitem><para>Table location is automatically detected</para>
622				<para>The table can either be located in the first or the last good
623				blocks of the chip (device). Set NAND_BBT_LASTBLOCK to place
624				the bad block table at the end of the chip (device). The
625				bad block tables are marked and identified by a pattern which
626				is stored in the spare area of the first page in the block which
627				holds the bad block table. Store a pointer to the pattern
628				in the pattern field. Further the length of the pattern has to be
629				stored in len and the offset in the spare area must be given
630				in the offs member of the nand_bbt_descr structure. For mirrored
631				bad block tables different patterns are mandatory.</para></listitem>
632				<listitem><para>Table creation</para>
633				<para>Set the option NAND_BBT_CREATE to enable the table creation
634				if no table can be found during the scan. Usually this is done only
635				once if a new chip is found. </para></listitem>
636				<listitem><para>Table write support</para>
637				<para>Set the option NAND_BBT_WRITE to enable the table write support.
638				This allows the update of the bad block table(s) in case a block has
639				to be marked bad due to wear. The MTD interface function block_markbad
640				is calling the update function of the bad block table. If the write
641				support is enabled then the table is updated on FLASH.</para>
642				<para>
643				Note: Write support should only be enabled for mirrored tables with
644				version control.
645				</para></listitem>
646				<listitem><para>Table version control</para>
647				<para>Set the option NAND_BBT_VERSION to enable the table version control.
648				It's highly recommended to enable this for mirrored tables with write
649				support. It makes sure that the risk of losing the bad block
650				table information is reduced to the loss of the information about the
651				one worn out block which should be marked bad. The version is stored in
652				4 consecutive bytes in the spare area of the device. The position of
653				the version number is defined by the member veroffs in the bad block table
654				descriptor.</para></listitem>
655				<listitem><para>Save block contents on write</para>
656				<para>
657				In case that the block which holds the bad block table does contain
658				other useful information, set the option NAND_BBT_SAVECONTENT. When
659				the bad block table is written then the whole block is read the bad
660				block table is updated and the block is erased and everything is
661				written back. If this option is not set only the bad block table
662				is written and everything else in the block is ignored and erased.
663				</para></listitem>
664				<listitem><para>Number of reserved blocks</para>
665				<para>
666				For automatic placement some blocks must be reserved for
667				bad block table storage. The number of reserved blocks is defined
668				in the maxblocks member of the bad block table description structure.
669				Reserving 4 blocks for mirrored tables should be a reasonable number.
670				This also limits the number of blocks which are scanned for the bad
671				block table ident pattern.
672				</para></listitem>
673				</itemizedlist>
674			</para>
675		</sect2>
676	</sect1>
677	<sect1 id="Spare_area_placement">
678		<title>Spare area (auto)placement</title>
679		<para>
680			The nand driver implements different possibilities for
681			placement of filesystem data in the spare area,
682			<itemizedlist>
683			<listitem><para>Placement defined by fs driver</para></listitem>
684			<listitem><para>Automatic placement</para></listitem>
685			</itemizedlist>
686			The default placement function is automatic placement. The
687			nand driver has built in default placement schemes for the
688			various chiptypes. If due to hardware ECC functionality the
689			default placement does not fit then the board driver can
690			provide a own placement scheme.
691		</para>
692		<para>
693			File system drivers can provide a own placement scheme which
694			is used instead of the default placement scheme.
695		</para>
696		<para>
697			Placement schemes are defined by a nand_oobinfo structure
698	     		<programlisting>
699struct nand_oobinfo {
700	int	useecc;
701	int	eccbytes;
702	int	eccpos[24];
703	int	oobfree[8][2];
704};
705	     		</programlisting>
706			<itemizedlist>
707			<listitem><para>useecc</para><para>
708				The useecc member controls the ecc and placement function. The header
709				file include/mtd/mtd-abi.h contains constants to select ecc and
710				placement. MTD_NANDECC_OFF switches off the ecc complete. This is
711				not recommended and available for testing and diagnosis only.
712				MTD_NANDECC_PLACE selects caller defined placement, MTD_NANDECC_AUTOPLACE
713				selects automatic placement.
714			</para></listitem>
715			<listitem><para>eccbytes</para><para>
716				The eccbytes member defines the number of ecc bytes per page.
717			</para></listitem>
718			<listitem><para>eccpos</para><para>
719				The eccpos array holds the byte offsets in the spare area where
720				the ecc codes are placed.
721			</para></listitem>
722			<listitem><para>oobfree</para><para>
723				The oobfree array defines the areas in the spare area which can be
724				used for automatic placement. The information is given in the format
725				{offset, size}. offset defines the start of the usable area, size the
726				length in bytes. More than one area can be defined. The list is terminated
727				by an {0, 0} entry.
728			</para></listitem>
729			</itemizedlist>
730		</para>
731		<sect2 id="Placement_defined_by_fs_driver">
732			<title>Placement defined by fs driver</title>
733			<para>
734				The calling function provides a pointer to a nand_oobinfo
735				structure which defines the ecc placement. For writes the
736				caller must provide a spare area buffer along with the
737				data buffer. The spare area buffer size is (number of pages) *
738				(size of spare area). For reads the buffer size is
739				(number of pages) * ((size of spare area) + (number of ecc
740				steps per page) * sizeof (int)). The driver stores the
741				result of the ecc check for each tuple in the spare buffer.
742				The storage sequence is
743			</para>
744			<para>
745				&lt;spare data page 0&gt;&lt;ecc result 0&gt;...&lt;ecc result n&gt;
746			</para>
747			<para>
748				...
749			</para>
750			<para>
751				&lt;spare data page n&gt;&lt;ecc result 0&gt;...&lt;ecc result n&gt;
752			</para>
753			<para>
754				This is a legacy mode used by YAFFS1.
755			</para>
756			<para>
757				If the spare area buffer is NULL then only the ECC placement is
758				done according to the given scheme in the nand_oobinfo structure.
759			</para>
760		</sect2>
761		<sect2 id="Automatic_placement">
762			<title>Automatic placement</title>
763			<para>
764				Automatic placement uses the built in defaults to place the
765				ecc bytes in the spare area. If filesystem data have to be stored /
766				read into the spare area then the calling function must provide a
767				buffer. The buffer size per page is determined by the oobfree array in
768				the nand_oobinfo structure.
769			</para>
770			<para>
771				If the spare area buffer is NULL then only the ECC placement is
772				done according to the default builtin scheme.
773			</para>
774		</sect2>
775	</sect1>
776	<sect1 id="Spare_area_autoplacement_default">
777		<title>Spare area autoplacement default schemes</title>
778		<sect2 id="pagesize_256">
779			<title>256 byte pagesize</title>
780<informaltable><tgroup cols="3"><tbody>
781<row>
782<entry>Offset</entry>
783<entry>Content</entry>
784<entry>Comment</entry>
785</row>
786<row>
787<entry>0x00</entry>
788<entry>ECC byte 0</entry>
789<entry>Error correction code byte 0</entry>
790</row>
791<row>
792<entry>0x01</entry>
793<entry>ECC byte 1</entry>
794<entry>Error correction code byte 1</entry>
795</row>
796<row>
797<entry>0x02</entry>
798<entry>ECC byte 2</entry>
799<entry>Error correction code byte 2</entry>
800</row>
801<row>
802<entry>0x03</entry>
803<entry>Autoplace 0</entry>
804<entry></entry>
805</row>
806<row>
807<entry>0x04</entry>
808<entry>Autoplace 1</entry>
809<entry></entry>
810</row>
811<row>
812<entry>0x05</entry>
813<entry>Bad block marker</entry>
814<entry>If any bit in this byte is zero, then this block is bad.
815This applies only to the first page in a block. In the remaining
816pages this byte is reserved</entry>
817</row>
818<row>
819<entry>0x06</entry>
820<entry>Autoplace 2</entry>
821<entry></entry>
822</row>
823<row>
824<entry>0x07</entry>
825<entry>Autoplace 3</entry>
826<entry></entry>
827</row>
828</tbody></tgroup></informaltable>
829		</sect2>
830		<sect2 id="pagesize_512">
831			<title>512 byte pagesize</title>
832<informaltable><tgroup cols="3"><tbody>
833<row>
834<entry>Offset</entry>
835<entry>Content</entry>
836<entry>Comment</entry>
837</row>
838<row>
839<entry>0x00</entry>
840<entry>ECC byte 0</entry>
841<entry>Error correction code byte 0 of the lower 256 Byte data in
842this page</entry>
843</row>
844<row>
845<entry>0x01</entry>
846<entry>ECC byte 1</entry>
847<entry>Error correction code byte 1 of the lower 256 Bytes of data
848in this page</entry>
849</row>
850<row>
851<entry>0x02</entry>
852<entry>ECC byte 2</entry>
853<entry>Error correction code byte 2 of the lower 256 Bytes of data
854in this page</entry>
855</row>
856<row>
857<entry>0x03</entry>
858<entry>ECC byte 3</entry>
859<entry>Error correction code byte 0 of the upper 256 Bytes of data
860in this page</entry>
861</row>
862<row>
863<entry>0x04</entry>
864<entry>reserved</entry>
865<entry>reserved</entry>
866</row>
867<row>
868<entry>0x05</entry>
869<entry>Bad block marker</entry>
870<entry>If any bit in this byte is zero, then this block is bad.
871This applies only to the first page in a block. In the remaining
872pages this byte is reserved</entry>
873</row>
874<row>
875<entry>0x06</entry>
876<entry>ECC byte 4</entry>
877<entry>Error correction code byte 1 of the upper 256 Bytes of data
878in this page</entry>
879</row>
880<row>
881<entry>0x07</entry>
882<entry>ECC byte 5</entry>
883<entry>Error correction code byte 2 of the upper 256 Bytes of data
884in this page</entry>
885</row>
886<row>
887<entry>0x08 - 0x0F</entry>
888<entry>Autoplace 0 - 7</entry>
889<entry></entry>
890</row>
891</tbody></tgroup></informaltable>
892		</sect2>
893		<sect2 id="pagesize_2048">
894			<title>2048 byte pagesize</title>
895<informaltable><tgroup cols="3"><tbody>
896<row>
897<entry>Offset</entry>
898<entry>Content</entry>
899<entry>Comment</entry>
900</row>
901<row>
902<entry>0x00</entry>
903<entry>Bad block marker</entry>
904<entry>If any bit in this byte is zero, then this block is bad.
905This applies only to the first page in a block. In the remaining
906pages this byte is reserved</entry>
907</row>
908<row>
909<entry>0x01</entry>
910<entry>Reserved</entry>
911<entry>Reserved</entry>
912</row>
913<row>
914<entry>0x02-0x27</entry>
915<entry>Autoplace 0 - 37</entry>
916<entry></entry>
917</row>
918<row>
919<entry>0x28</entry>
920<entry>ECC byte 0</entry>
921<entry>Error correction code byte 0 of the first 256 Byte data in
922this page</entry>
923</row>
924<row>
925<entry>0x29</entry>
926<entry>ECC byte 1</entry>
927<entry>Error correction code byte 1 of the first 256 Bytes of data
928in this page</entry>
929</row>
930<row>
931<entry>0x2A</entry>
932<entry>ECC byte 2</entry>
933<entry>Error correction code byte 2 of the first 256 Bytes data in
934this page</entry>
935</row>
936<row>
937<entry>0x2B</entry>
938<entry>ECC byte 3</entry>
939<entry>Error correction code byte 0 of the second 256 Bytes of data
940in this page</entry>
941</row>
942<row>
943<entry>0x2C</entry>
944<entry>ECC byte 4</entry>
945<entry>Error correction code byte 1 of the second 256 Bytes of data
946in this page</entry>
947</row>
948<row>
949<entry>0x2D</entry>
950<entry>ECC byte 5</entry>
951<entry>Error correction code byte 2 of the second 256 Bytes of data
952in this page</entry>
953</row>
954<row>
955<entry>0x2E</entry>
956<entry>ECC byte 6</entry>
957<entry>Error correction code byte 0 of the third 256 Bytes of data
958in this page</entry>
959</row>
960<row>
961<entry>0x2F</entry>
962<entry>ECC byte 7</entry>
963<entry>Error correction code byte 1 of the third 256 Bytes of data
964in this page</entry>
965</row>
966<row>
967<entry>0x30</entry>
968<entry>ECC byte 8</entry>
969<entry>Error correction code byte 2 of the third 256 Bytes of data
970in this page</entry>
971</row>
972<row>
973<entry>0x31</entry>
974<entry>ECC byte 9</entry>
975<entry>Error correction code byte 0 of the fourth 256 Bytes of data
976in this page</entry>
977</row>
978<row>
979<entry>0x32</entry>
980<entry>ECC byte 10</entry>
981<entry>Error correction code byte 1 of the fourth 256 Bytes of data
982in this page</entry>
983</row>
984<row>
985<entry>0x33</entry>
986<entry>ECC byte 11</entry>
987<entry>Error correction code byte 2 of the fourth 256 Bytes of data
988in this page</entry>
989</row>
990<row>
991<entry>0x34</entry>
992<entry>ECC byte 12</entry>
993<entry>Error correction code byte 0 of the fifth 256 Bytes of data
994in this page</entry>
995</row>
996<row>
997<entry>0x35</entry>
998<entry>ECC byte 13</entry>
999<entry>Error correction code byte 1 of the fifth 256 Bytes of data
1000in this page</entry>
1001</row>
1002<row>
1003<entry>0x36</entry>
1004<entry>ECC byte 14</entry>
1005<entry>Error correction code byte 2 of the fifth 256 Bytes of data
1006in this page</entry>
1007</row>
1008<row>
1009<entry>0x37</entry>
1010<entry>ECC byte 15</entry>
1011<entry>Error correction code byte 0 of the sixt 256 Bytes of data
1012in this page</entry>
1013</row>
1014<row>
1015<entry>0x38</entry>
1016<entry>ECC byte 16</entry>
1017<entry>Error correction code byte 1 of the sixt 256 Bytes of data
1018in this page</entry>
1019</row>
1020<row>
1021<entry>0x39</entry>
1022<entry>ECC byte 17</entry>
1023<entry>Error correction code byte 2 of the sixt 256 Bytes of data
1024in this page</entry>
1025</row>
1026<row>
1027<entry>0x3A</entry>
1028<entry>ECC byte 18</entry>
1029<entry>Error correction code byte 0 of the seventh 256 Bytes of
1030data in this page</entry>
1031</row>
1032<row>
1033<entry>0x3B</entry>
1034<entry>ECC byte 19</entry>
1035<entry>Error correction code byte 1 of the seventh 256 Bytes of
1036data in this page</entry>
1037</row>
1038<row>
1039<entry>0x3C</entry>
1040<entry>ECC byte 20</entry>
1041<entry>Error correction code byte 2 of the seventh 256 Bytes of
1042data in this page</entry>
1043</row>
1044<row>
1045<entry>0x3D</entry>
1046<entry>ECC byte 21</entry>
1047<entry>Error correction code byte 0 of the eighth 256 Bytes of data
1048in this page</entry>
1049</row>
1050<row>
1051<entry>0x3E</entry>
1052<entry>ECC byte 22</entry>
1053<entry>Error correction code byte 1 of the eighth 256 Bytes of data
1054in this page</entry>
1055</row>
1056<row>
1057<entry>0x3F</entry>
1058<entry>ECC byte 23</entry>
1059<entry>Error correction code byte 2 of the eighth 256 Bytes of data
1060in this page</entry>
1061</row>
1062</tbody></tgroup></informaltable>
1063		</sect2>
1064     	</sect1>
1065  </chapter>
1066
1067  <chapter id="filesystems">
1068     	<title>Filesystem support</title>
1069	<para>
1070		The NAND driver provides all necessary functions for a
1071		filesystem via the MTD interface.
1072	</para>
1073	<para>
1074		Filesystems must be aware of the NAND peculiarities and
1075		restrictions. One major restrictions of NAND Flash is, that you cannot
1076		write as often as you want to a page. The consecutive writes to a page,
1077		before erasing it again, are restricted to 1-3 writes, depending on the
1078		manufacturers specifications. This applies similar to the spare area.
1079	</para>
1080	<para>
1081		Therefore NAND aware filesystems must either write in page size chunks
1082		or hold a writebuffer to collect smaller writes until they sum up to
1083		pagesize. Available NAND aware filesystems: JFFS2, YAFFS.
1084	</para>
1085	<para>
1086		The spare area usage to store filesystem data is controlled by
1087		the spare area placement functionality which is described in one
1088		of the earlier chapters.
1089	</para>
1090  </chapter>
1091  <chapter id="tools">
1092     	<title>Tools</title>
1093	<para>
1094		The MTD project provides a couple of helpful tools to handle NAND Flash.
1095		<itemizedlist>
1096		<listitem><para>flasherase, flasheraseall: Erase and format FLASH partitions</para></listitem>
1097		<listitem><para>nandwrite: write filesystem images to NAND FLASH</para></listitem>
1098		<listitem><para>nanddump: dump the contents of a NAND FLASH partitions</para></listitem>
1099		</itemizedlist>
1100	</para>
1101	<para>
1102		These tools are aware of the NAND restrictions. Please use those tools
1103		instead of complaining about errors which are caused by non NAND aware
1104		access methods.
1105	</para>
1106  </chapter>
1107
1108  <chapter id="defines">
1109     <title>Constants</title>
1110     <para>
1111     This chapter describes the constants which might be relevant for a driver developer.
1112     </para>
1113     <sect1 id="Chip_option_constants">
1114	<title>Chip option constants</title>
1115     	<sect2 id="Constants_for_chip_id_table">
1116		<title>Constants for chip id table</title>
1117     		<para>
1118		These constants are defined in nand.h. They are ored together to describe
1119		the chip functionality.
1120     		<programlisting>
1121/* Buswitdh is 16 bit */
1122#define NAND_BUSWIDTH_16	0x00000002
1123/* Device supports partial programming without padding */
1124#define NAND_NO_PADDING		0x00000004
1125/* Chip has cache program function */
1126#define NAND_CACHEPRG		0x00000008
1127/* Chip has copy back function */
1128#define NAND_COPYBACK		0x00000010
1129/* AND Chip which has 4 banks and a confusing page / block
1130 * assignment. See Renesas datasheet for further information */
1131#define NAND_IS_AND		0x00000020
1132/* Chip has a array of 4 pages which can be read without
1133 * additional ready /busy waits */
1134#define NAND_4PAGE_ARRAY	0x00000040
1135		</programlisting>
1136     		</para>
1137     	</sect2>
1138     	<sect2 id="Constants_for_runtime_options">
1139		<title>Constants for runtime options</title>
1140     		<para>
1141		These constants are defined in nand.h. They are ored together to describe
1142		the functionality.
1143     		<programlisting>
1144/* The hw ecc generator provides a syndrome instead a ecc value on read
1145 * This can only work if we have the ecc bytes directly behind the
1146 * data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */
1147#define NAND_HWECC_SYNDROME	0x00020000
1148		</programlisting>
1149     		</para>
1150     	</sect2>
1151     </sect1>
1152
1153     <sect1 id="EEC_selection_constants">
1154	<title>ECC selection constants</title>
1155	<para>
1156	Use these constants to select the ECC algorithm.
1157  	<programlisting>
1158/* No ECC. Usage is not recommended ! */
1159#define NAND_ECC_NONE		0
1160/* Software ECC 3 byte ECC per 256 Byte data */
1161#define NAND_ECC_SOFT		1
1162/* Hardware ECC 3 byte ECC per 256 Byte data */
1163#define NAND_ECC_HW3_256	2
1164/* Hardware ECC 3 byte ECC per 512 Byte data */
1165#define NAND_ECC_HW3_512	3
1166/* Hardware ECC 6 byte ECC per 512 Byte data */
1167#define NAND_ECC_HW6_512	4
1168/* Hardware ECC 6 byte ECC per 512 Byte data */
1169#define NAND_ECC_HW8_512	6
1170	</programlisting>
1171	</para>
1172     </sect1>
1173
1174     <sect1 id="Hardware_control_related_constants">
1175	<title>Hardware control related constants</title>
1176	<para>
1177	These constants describe the requested hardware access function when
1178	the boardspecific hardware control function is called
1179  	<programlisting>
1180/* Select the chip by setting nCE to low */
1181#define NAND_CTL_SETNCE 	1
1182/* Deselect the chip by setting nCE to high */
1183#define NAND_CTL_CLRNCE		2
1184/* Select the command latch by setting CLE to high */
1185#define NAND_CTL_SETCLE		3
1186/* Deselect the command latch by setting CLE to low */
1187#define NAND_CTL_CLRCLE		4
1188/* Select the address latch by setting ALE to high */
1189#define NAND_CTL_SETALE		5
1190/* Deselect the address latch by setting ALE to low */
1191#define NAND_CTL_CLRALE		6
1192/* Set write protection by setting WP to high. Not used! */
1193#define NAND_CTL_SETWP		7
1194/* Clear write protection by setting WP to low. Not used! */
1195#define NAND_CTL_CLRWP		8
1196	</programlisting>
1197	</para>
1198     </sect1>
1199
1200     <sect1 id="Bad_block_table_constants">
1201	<title>Bad block table related constants</title>
1202	<para>
1203	These constants describe the options used for bad block
1204	table descriptors.
1205  	<programlisting>
1206/* Options for the bad block table descriptors */
1207
1208/* The number of bits used per block in the bbt on the device */
1209#define NAND_BBT_NRBITS_MSK	0x0000000F
1210#define NAND_BBT_1BIT		0x00000001
1211#define NAND_BBT_2BIT		0x00000002
1212#define NAND_BBT_4BIT		0x00000004
1213#define NAND_BBT_8BIT		0x00000008
1214/* The bad block table is in the last good block of the device */
1215#define	NAND_BBT_LASTBLOCK	0x00000010
1216/* The bbt is at the given page, else we must scan for the bbt */
1217#define NAND_BBT_ABSPAGE	0x00000020
1218/* bbt is stored per chip on multichip devices */
1219#define NAND_BBT_PERCHIP	0x00000080
1220/* bbt has a version counter at offset veroffs */
1221#define NAND_BBT_VERSION	0x00000100
1222/* Create a bbt if none axists */
1223#define NAND_BBT_CREATE		0x00000200
1224/* Write bbt if necessary */
1225#define NAND_BBT_WRITE		0x00001000
1226/* Read and write back block contents when writing bbt */
1227#define NAND_BBT_SAVECONTENT	0x00002000
1228	</programlisting>
1229	</para>
1230     </sect1>
1231
1232  </chapter>
1233
1234  <chapter id="structs">
1235     <title>Structures</title>
1236     <para>
1237     This chapter contains the autogenerated documentation of the structures which are
1238     used in the NAND driver and might be relevant for a driver developer. Each
1239     struct member has a short description which is marked with an [XXX] identifier.
1240     See the chapter "Documentation hints" for an explanation.
1241     </para>
1242!Iinclude/linux/mtd/nand.h
1243  </chapter>
1244
1245  <chapter id="pubfunctions">
1246     <title>Public Functions Provided</title>
1247     <para>
1248     This chapter contains the autogenerated documentation of the NAND kernel API functions
1249      which are exported. Each function has a short description which is marked with an [XXX] identifier.
1250     See the chapter "Documentation hints" for an explanation.
1251     </para>
1252!Edrivers/mtd/nand/nand_base.c
1253!Edrivers/mtd/nand/nand_bbt.c
1254!Edrivers/mtd/nand/nand_ecc.c
1255  </chapter>
1256
1257  <chapter id="intfunctions">
1258     <title>Internal Functions Provided</title>
1259     <para>
1260     This chapter contains the autogenerated documentation of the NAND driver internal functions.
1261     Each function has a short description which is marked with an [XXX] identifier.
1262     See the chapter "Documentation hints" for an explanation.
1263     The functions marked with [DEFAULT] might be relevant for a board driver developer.
1264     </para>
1265!Idrivers/mtd/nand/nand_base.c
1266!Idrivers/mtd/nand/nand_bbt.c
1267<!-- No internal functions for kernel-doc:
1268X!Idrivers/mtd/nand/nand_ecc.c
1269-->
1270  </chapter>
1271
1272  <chapter id="credits">
1273     <title>Credits</title>
1274	<para>
1275		The following people have contributed to the NAND driver:
1276		<orderedlist>
1277			<listitem><para>Steven J. Hill<email>sjhill@realitydiluted.com</email></para></listitem>
1278			<listitem><para>David Woodhouse<email>dwmw2@infradead.org</email></para></listitem>
1279			<listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem>
1280		</orderedlist>
1281		A lot of users have provided bugfixes, improvements and helping hands for testing.
1282		Thanks a lot.
1283	</para>
1284	<para>
1285		The following people have contributed to this document:
1286		<orderedlist>
1287			<listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem>
1288		</orderedlist>
1289	</para>
1290  </chapter>
1291</book>
1292