• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1Virtual Routing and Forwarding (VRF)
2====================================
3The VRF device combined with ip rules provides the ability to create virtual
4routing and forwarding domains (aka VRFs, VRF-lite to be specific) in the
5Linux network stack. One use case is the multi-tenancy problem where each
6tenant has their own unique routing tables and in the very least need
7different default gateways.
8
9Processes can be "VRF aware" by binding a socket to the VRF device. Packets
10through the socket then use the routing table associated with the VRF
11device. An important feature of the VRF device implementation is that it
12impacts only Layer 3 and above so L2 tools (e.g., LLDP) are not affected
13(ie., they do not need to be run in each VRF). The design also allows
14the use of higher priority ip rules (Policy Based Routing, PBR) to take
15precedence over the VRF device rules directing specific traffic as desired.
16
17In addition, VRF devices allow VRFs to be nested within namespaces. For
18example network namespaces provide separation of network interfaces at the
19device layer, VLANs on the interfaces within a namespace provide L2 separation
20and then VRF devices provide L3 separation.
21
22Design
23------
24A VRF device is created with an associated route table. Network interfaces
25are then enslaved to a VRF device:
26
27         +-----------------------------+
28         |           vrf-blue          |  ===> route table 10
29         +-----------------------------+
30            |        |            |
31         +------+ +------+     +-------------+
32         | eth1 | | eth2 | ... |    bond1    |
33         +------+ +------+     +-------------+
34                                  |       |
35                              +------+ +------+
36                              | eth8 | | eth9 |
37                              +------+ +------+
38
39Packets received on an enslaved device and are switched to the VRF device
40in the IPv4 and IPv6 processing stacks giving the impression that packets
41flow through the VRF device. Similarly on egress routing rules are used to
42send packets to the VRF device driver before getting sent out the actual
43interface. This allows tcpdump on a VRF device to capture all packets into
44and out of the VRF as a whole.[1] Similarly, netfilter[2] and tc rules can be
45applied using the VRF device to specify rules that apply to the VRF domain
46as a whole.
47
48[1] Packets in the forwarded state do not flow through the device, so those
49    packets are not seen by tcpdump. Will revisit this limitation in a
50    future release.
51
52[2] Iptables on ingress supports PREROUTING with skb->dev set to the real
53    ingress device and both INPUT and PREROUTING rules with skb->dev set to
54    the VRF device. For egress POSTROUTING and OUTPUT rules can be written
55    using either the VRF device or real egress device.
56
57Setup
58-----
591. VRF device is created with an association to a FIB table.
60   e.g, ip link add vrf-blue type vrf table 10
61        ip link set dev vrf-blue up
62
632. An l3mdev FIB rule directs lookups to the table associated with the device.
64   A single l3mdev rule is sufficient for all VRFs. The VRF device adds the
65   l3mdev rule for IPv4 and IPv6 when the first device is created with a
66   default preference of 1000. Users may delete the rule if desired and add
67   with a different priority or install per-VRF rules.
68
69   Prior to the v4.8 kernel iif and oif rules are needed for each VRF device:
70       ip ru add oif vrf-blue table 10
71       ip ru add iif vrf-blue table 10
72
733. Set the default route for the table (and hence default route for the VRF).
74       ip route add table 10 unreachable default
75
764. Enslave L3 interfaces to a VRF device.
77       ip link set dev eth1 master vrf-blue
78
79   Local and connected routes for enslaved devices are automatically moved to
80   the table associated with VRF device. Any additional routes depending on
81   the enslaved device are dropped and will need to be reinserted to the VRF
82   FIB table following the enslavement.
83
84   The IPv6 sysctl option keep_addr_on_down can be enabled to keep IPv6 global
85   addresses as VRF enslavement changes.
86       sysctl -w net.ipv6.conf.all.keep_addr_on_down=1
87
885. Additional VRF routes are added to associated table.
89       ip route add table 10 ...
90
91
92Applications
93------------
94Applications that are to work within a VRF need to bind their socket to the
95VRF device:
96
97    setsockopt(sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev)+1);
98
99or to specify the output device using cmsg and IP_PKTINFO.
100
101TCP services running in the default VRF context (ie., not bound to any VRF
102device) can work across all VRF domains by enabling the tcp_l3mdev_accept
103sysctl option:
104    sysctl -w net.ipv4.tcp_l3mdev_accept=1
105
106netfilter rules on the VRF device can be used to limit access to services
107running in the default VRF context as well.
108
109The default VRF does not have limited scope with respect to port bindings.
110That is, if a process does a wildcard bind to a port in the default VRF it
111owns the port across all VRF domains within the network namespace.
112
113################################################################################
114
115Using iproute2 for VRFs
116=======================
117iproute2 supports the vrf keyword as of v4.7. For backwards compatibility this
118section lists both commands where appropriate -- with the vrf keyword and the
119older form without it.
120
1211. Create a VRF
122
123   To instantiate a VRF device and associate it with a table:
124       $ ip link add dev NAME type vrf table ID
125
126   As of v4.8 the kernel supports the l3mdev FIB rule where a single rule
127   covers all VRFs. The l3mdev rule is created for IPv4 and IPv6 on first
128   device create.
129
1302. List VRFs
131
132   To list VRFs that have been created:
133       $ ip [-d] link show type vrf
134         NOTE: The -d option is needed to show the table id
135
136   For example:
137   $ ip -d link show type vrf
138   11: mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
139       link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0
140       vrf table 1 addrgenmode eui64
141   12: red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
142       link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0
143       vrf table 10 addrgenmode eui64
144   13: blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
145       link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0
146       vrf table 66 addrgenmode eui64
147   14: green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
148       link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0
149       vrf table 81 addrgenmode eui64
150
151
152   Or in brief output:
153
154   $ ip -br link show type vrf
155   mgmt         UP             72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP>
156   red          UP             b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP>
157   blue         UP             36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP>
158   green        UP             e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP>
159
160
1613. Assign a Network Interface to a VRF
162
163   Network interfaces are assigned to a VRF by enslaving the netdevice to a
164   VRF device:
165       $ ip link set dev NAME master NAME
166
167   On enslavement connected and local routes are automatically moved to the
168   table associated with the VRF device.
169
170   For example:
171   $ ip link set dev eth0 master mgmt
172
173
1744. Show Devices Assigned to a VRF
175
176   To show devices that have been assigned to a specific VRF add the master
177   option to the ip command:
178       $ ip link show vrf NAME
179       $ ip link show master NAME
180
181   For example:
182   $ ip link show vrf red
183   3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
184       link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
185   4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
186       link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
187   7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN mode DEFAULT group default qlen 1000
188       link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
189
190
191   Or using the brief output:
192   $ ip -br link show vrf red
193   eth1             UP             02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP>
194   eth2             UP             02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP>
195   eth5             DOWN           02:00:00:00:02:06 <BROADCAST,MULTICAST>
196
197
1985. Show Neighbor Entries for a VRF
199
200   To list neighbor entries associated with devices enslaved to a VRF device
201   add the master option to the ip command:
202       $ ip [-6] neigh show vrf NAME
203       $ ip [-6] neigh show master NAME
204
205   For example:
206   $  ip neigh show vrf red
207   10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
208   10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE
209
210   $ ip -6 neigh show vrf red
211   2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
212
213
2146. Show Addresses for a VRF
215
216   To show addresses for interfaces associated with a VRF add the master
217   option to the ip command:
218       $ ip addr show vrf NAME
219       $ ip addr show master NAME
220
221   For example:
222   $ ip addr show vrf red
223   3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
224       link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
225       inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1
226          valid_lft forever preferred_lft forever
227       inet6 2002:1::2/120 scope global
228          valid_lft forever preferred_lft forever
229       inet6 fe80::ff:fe00:202/64 scope link
230          valid_lft forever preferred_lft forever
231   4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
232       link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
233       inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2
234          valid_lft forever preferred_lft forever
235       inet6 2002:2::2/120 scope global
236          valid_lft forever preferred_lft forever
237       inet6 fe80::ff:fe00:203/64 scope link
238          valid_lft forever preferred_lft forever
239   7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN group default qlen 1000
240       link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
241
242   Or in brief format:
243   $ ip -br addr show vrf red
244   eth1             UP             10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64
245   eth2             UP             10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64
246   eth5             DOWN
247
248
2497. Show Routes for a VRF
250
251   To show routes for a VRF use the ip command to display the table associated
252   with the VRF device:
253       $ ip [-6] route show vrf NAME
254       $ ip [-6] route show table ID
255
256   For example:
257   $ ip route show vrf red
258   prohibit default
259   broadcast 10.2.1.0 dev eth1  proto kernel  scope link  src 10.2.1.2
260   10.2.1.0/24 dev eth1  proto kernel  scope link  src 10.2.1.2
261   local 10.2.1.2 dev eth1  proto kernel  scope host  src 10.2.1.2
262   broadcast 10.2.1.255 dev eth1  proto kernel  scope link  src 10.2.1.2
263   broadcast 10.2.2.0 dev eth2  proto kernel  scope link  src 10.2.2.2
264   10.2.2.0/24 dev eth2  proto kernel  scope link  src 10.2.2.2
265   local 10.2.2.2 dev eth2  proto kernel  scope host  src 10.2.2.2
266   broadcast 10.2.2.255 dev eth2  proto kernel  scope link  src 10.2.2.2
267
268   $ ip -6 route show vrf red
269   local 2002:1:: dev lo  proto none  metric 0  pref medium
270   local 2002:1::2 dev lo  proto none  metric 0  pref medium
271   2002:1::/120 dev eth1  proto kernel  metric 256  pref medium
272   local 2002:2:: dev lo  proto none  metric 0  pref medium
273   local 2002:2::2 dev lo  proto none  metric 0  pref medium
274   2002:2::/120 dev eth2  proto kernel  metric 256  pref medium
275   local fe80:: dev lo  proto none  metric 0  pref medium
276   local fe80:: dev lo  proto none  metric 0  pref medium
277   local fe80::ff:fe00:202 dev lo  proto none  metric 0  pref medium
278   local fe80::ff:fe00:203 dev lo  proto none  metric 0  pref medium
279   fe80::/64 dev eth1  proto kernel  metric 256  pref medium
280   fe80::/64 dev eth2  proto kernel  metric 256  pref medium
281   ff00::/8 dev red  metric 256  pref medium
282   ff00::/8 dev eth1  metric 256  pref medium
283   ff00::/8 dev eth2  metric 256  pref medium
284
285
2868. Route Lookup for a VRF
287
288   A test route lookup can be done for a VRF:
289       $ ip [-6] route get vrf NAME ADDRESS
290       $ ip [-6] route get oif NAME ADDRESS
291
292   For example:
293   $ ip route get 10.2.1.40 vrf red
294   10.2.1.40 dev eth1  table red  src 10.2.1.2
295       cache
296
297   $ ip -6 route get 2002:1::32 vrf red
298   2002:1::32 from :: dev eth1  table red  proto kernel  src 2002:1::2  metric 256  pref medium
299
300
3019. Removing Network Interface from a VRF
302
303   Network interfaces are removed from a VRF by breaking the enslavement to
304   the VRF device:
305       $ ip link set dev NAME nomaster
306
307   Connected routes are moved back to the default table and local entries are
308   moved to the local table.
309
310   For example:
311   $ ip link set dev eth0 nomaster
312
313--------------------------------------------------------------------------------
314
315Commands used in this example:
316
317cat >> /etc/iproute2/rt_tables.d/vrf.conf <<EOF
3181  mgmt
31910 red
32066 blue
32181 green
322EOF
323
324function vrf_create
325{
326    VRF=$1
327    TBID=$2
328
329    # create VRF device
330    ip link add ${VRF} type vrf table ${TBID}
331
332    if [ "${VRF}" != "mgmt" ]; then
333        ip route add table ${TBID} unreachable default
334    fi
335    ip link set dev ${VRF} up
336}
337
338vrf_create mgmt 1
339ip link set dev eth0 master mgmt
340
341vrf_create red 10
342ip link set dev eth1 master red
343ip link set dev eth2 master red
344ip link set dev eth5 master red
345
346vrf_create blue 66
347ip link set dev eth3 master blue
348
349vrf_create green 81
350ip link set dev eth4 master green
351
352
353Interface addresses from /etc/network/interfaces:
354auto eth0
355iface eth0 inet static
356      address 10.0.0.2
357      netmask 255.255.255.0
358      gateway 10.0.0.254
359
360iface eth0 inet6 static
361      address 2000:1::2
362      netmask 120
363
364auto eth1
365iface eth1 inet static
366      address 10.2.1.2
367      netmask 255.255.255.0
368
369iface eth1 inet6 static
370      address 2002:1::2
371      netmask 120
372
373auto eth2
374iface eth2 inet static
375      address 10.2.2.2
376      netmask 255.255.255.0
377
378iface eth2 inet6 static
379      address 2002:2::2
380      netmask 120
381
382auto eth3
383iface eth3 inet static
384      address 10.2.3.2
385      netmask 255.255.255.0
386
387iface eth3 inet6 static
388      address 2002:3::2
389      netmask 120
390
391auto eth4
392iface eth4 inet static
393      address 10.2.4.2
394      netmask 255.255.255.0
395
396iface eth4 inet6 static
397      address 2002:4::2
398      netmask 120
399