• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   *  arch/arm/include/asm/cacheflush.h
3   *
4   *  Copyright (C) 1999-2002 Russell King
5   *
6   * This program is free software; you can redistribute it and/or modify
7   * it under the terms of the GNU General Public License version 2 as
8   * published by the Free Software Foundation.
9   */
10  #ifndef _ASMARM_CACHEFLUSH_H
11  #define _ASMARM_CACHEFLUSH_H
12  
13  #include <linux/mm.h>
14  
15  #include <asm/glue-cache.h>
16  #include <asm/shmparam.h>
17  #include <asm/cachetype.h>
18  #include <asm/outercache.h>
19  
20  #define CACHE_COLOUR(vaddr)	((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
21  
22  /*
23   * This flag is used to indicate that the page pointed to by a pte is clean
24   * and does not require cleaning before returning it to the user.
25   */
26  #define PG_dcache_clean PG_arch_1
27  
28  /*
29   *	MM Cache Management
30   *	===================
31   *
32   *	The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
33   *	implement these methods.
34   *
35   *	Start addresses are inclusive and end addresses are exclusive;
36   *	start addresses should be rounded down, end addresses up.
37   *
38   *	See Documentation/cachetlb.txt for more information.
39   *	Please note that the implementation of these, and the required
40   *	effects are cache-type (VIVT/VIPT/PIPT) specific.
41   *
42   *	flush_icache_all()
43   *
44   *		Unconditionally clean and invalidate the entire icache.
45   *		Currently only needed for cache-v6.S and cache-v7.S, see
46   *		__flush_icache_all for the generic implementation.
47   *
48   *	flush_kern_all()
49   *
50   *		Unconditionally clean and invalidate the entire cache.
51   *
52   *     flush_kern_louis()
53   *
54   *             Flush data cache levels up to the level of unification
55   *             inner shareable and invalidate the I-cache.
56   *             Only needed from v7 onwards, falls back to flush_cache_all()
57   *             for all other processor versions.
58   *
59   *	flush_user_all()
60   *
61   *		Clean and invalidate all user space cache entries
62   *		before a change of page tables.
63   *
64   *	flush_user_range(start, end, flags)
65   *
66   *		Clean and invalidate a range of cache entries in the
67   *		specified address space before a change of page tables.
68   *		- start - user start address (inclusive, page aligned)
69   *		- end   - user end address   (exclusive, page aligned)
70   *		- flags - vma->vm_flags field
71   *
72   *	coherent_kern_range(start, end)
73   *
74   *		Ensure coherency between the Icache and the Dcache in the
75   *		region described by start, end.  If you have non-snooping
76   *		Harvard caches, you need to implement this function.
77   *		- start  - virtual start address
78   *		- end    - virtual end address
79   *
80   *	coherent_user_range(start, end)
81   *
82   *		Ensure coherency between the Icache and the Dcache in the
83   *		region described by start, end.  If you have non-snooping
84   *		Harvard caches, you need to implement this function.
85   *		- start  - virtual start address
86   *		- end    - virtual end address
87   *
88   *	flush_kern_dcache_area(kaddr, size)
89   *
90   *		Ensure that the data held in page is written back.
91   *		- kaddr  - page address
92   *		- size   - region size
93   *
94   *	DMA Cache Coherency
95   *	===================
96   *
97   *	dma_flush_range(start, end)
98   *
99   *		Clean and invalidate the specified virtual address range.
100   *		- start  - virtual start address
101   *		- end    - virtual end address
102   */
103  
104  struct cpu_cache_fns {
105  	void (*flush_icache_all)(void);
106  	void (*flush_kern_all)(void);
107  	void (*flush_kern_louis)(void);
108  	void (*flush_user_all)(void);
109  	void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
110  
111  	void (*coherent_kern_range)(unsigned long, unsigned long);
112  	int  (*coherent_user_range)(unsigned long, unsigned long);
113  	void (*flush_kern_dcache_area)(void *, size_t);
114  
115  	void (*dma_map_area)(const void *, size_t, int);
116  	void (*dma_unmap_area)(const void *, size_t, int);
117  
118  	void (*dma_flush_range)(const void *, const void *);
119  };
120  
121  /*
122   * Select the calling method
123   */
124  #ifdef MULTI_CACHE
125  
126  extern struct cpu_cache_fns cpu_cache;
127  
128  #define __cpuc_flush_icache_all		cpu_cache.flush_icache_all
129  #define __cpuc_flush_kern_all		cpu_cache.flush_kern_all
130  #define __cpuc_flush_kern_louis		cpu_cache.flush_kern_louis
131  #define __cpuc_flush_user_all		cpu_cache.flush_user_all
132  #define __cpuc_flush_user_range		cpu_cache.flush_user_range
133  #define __cpuc_coherent_kern_range	cpu_cache.coherent_kern_range
134  #define __cpuc_coherent_user_range	cpu_cache.coherent_user_range
135  #define __cpuc_flush_dcache_area	cpu_cache.flush_kern_dcache_area
136  
137  /*
138   * These are private to the dma-mapping API.  Do not use directly.
139   * Their sole purpose is to ensure that data held in the cache
140   * is visible to DMA, or data written by DMA to system memory is
141   * visible to the CPU.
142   */
143  #define dmac_flush_range		cpu_cache.dma_flush_range
144  
145  #else
146  
147  extern void __cpuc_flush_icache_all(void);
148  extern void __cpuc_flush_kern_all(void);
149  extern void __cpuc_flush_kern_louis(void);
150  extern void __cpuc_flush_user_all(void);
151  extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
152  extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
153  extern int  __cpuc_coherent_user_range(unsigned long, unsigned long);
154  extern void __cpuc_flush_dcache_area(void *, size_t);
155  
156  /*
157   * These are private to the dma-mapping API.  Do not use directly.
158   * Their sole purpose is to ensure that data held in the cache
159   * is visible to DMA, or data written by DMA to system memory is
160   * visible to the CPU.
161   */
162  extern void dmac_flush_range(const void *, const void *);
163  
164  #endif
165  
166  /*
167   * Copy user data from/to a page which is mapped into a different
168   * processes address space.  Really, we want to allow our "user
169   * space" model to handle this.
170   */
171  extern void copy_to_user_page(struct vm_area_struct *, struct page *,
172  	unsigned long, void *, const void *, unsigned long);
173  #define copy_from_user_page(vma, page, vaddr, dst, src, len) \
174  	do {							\
175  		memcpy(dst, src, len);				\
176  	} while (0)
177  
178  /*
179   * Convert calls to our calling convention.
180   */
181  
182  /* Invalidate I-cache */
183  #define __flush_icache_all_generic()					\
184  	asm("mcr	p15, 0, %0, c7, c5, 0"				\
185  	    : : "r" (0));
186  
187  /* Invalidate I-cache inner shareable */
188  #define __flush_icache_all_v7_smp()					\
189  	asm("mcr	p15, 0, %0, c7, c1, 0"				\
190  	    : : "r" (0));
191  
192  /*
193   * Optimized __flush_icache_all for the common cases. Note that UP ARMv7
194   * will fall through to use __flush_icache_all_generic.
195   */
196  #if (defined(CONFIG_CPU_V7) && \
197       (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \
198  	defined(CONFIG_SMP_ON_UP)
199  #define __flush_icache_preferred	__cpuc_flush_icache_all
200  #elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP)
201  #define __flush_icache_preferred	__flush_icache_all_v7_smp
202  #elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920)
203  #define __flush_icache_preferred	__cpuc_flush_icache_all
204  #else
205  #define __flush_icache_preferred	__flush_icache_all_generic
206  #endif
207  
__flush_icache_all(void)208  static inline void __flush_icache_all(void)
209  {
210  	__flush_icache_preferred();
211  	dsb(ishst);
212  }
213  
214  /*
215   * Flush caches up to Level of Unification Inner Shareable
216   */
217  #define flush_cache_louis()		__cpuc_flush_kern_louis()
218  
219  #define flush_cache_all()		__cpuc_flush_kern_all()
220  
vivt_flush_cache_mm(struct mm_struct * mm)221  static inline void vivt_flush_cache_mm(struct mm_struct *mm)
222  {
223  	if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
224  		__cpuc_flush_user_all();
225  }
226  
227  static inline void
vivt_flush_cache_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)228  vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
229  {
230  	struct mm_struct *mm = vma->vm_mm;
231  
232  	if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
233  		__cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
234  					vma->vm_flags);
235  }
236  
237  static inline void
vivt_flush_cache_page(struct vm_area_struct * vma,unsigned long user_addr,unsigned long pfn)238  vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
239  {
240  	struct mm_struct *mm = vma->vm_mm;
241  
242  	if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) {
243  		unsigned long addr = user_addr & PAGE_MASK;
244  		__cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
245  	}
246  }
247  
248  #ifndef CONFIG_CPU_CACHE_VIPT
249  #define flush_cache_mm(mm) \
250  		vivt_flush_cache_mm(mm)
251  #define flush_cache_range(vma,start,end) \
252  		vivt_flush_cache_range(vma,start,end)
253  #define flush_cache_page(vma,addr,pfn) \
254  		vivt_flush_cache_page(vma,addr,pfn)
255  #else
256  extern void flush_cache_mm(struct mm_struct *mm);
257  extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
258  extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
259  #endif
260  
261  #define flush_cache_dup_mm(mm) flush_cache_mm(mm)
262  
263  /*
264   * flush_cache_user_range is used when we want to ensure that the
265   * Harvard caches are synchronised for the user space address range.
266   * This is used for the ARM private sys_cacheflush system call.
267   */
268  #define flush_cache_user_range(s,e)	__cpuc_coherent_user_range(s,e)
269  
270  /*
271   * Perform necessary cache operations to ensure that data previously
272   * stored within this range of addresses can be executed by the CPU.
273   */
274  #define flush_icache_range(s,e)		__cpuc_coherent_kern_range(s,e)
275  
276  /*
277   * Perform necessary cache operations to ensure that the TLB will
278   * see data written in the specified area.
279   */
280  #define clean_dcache_area(start,size)	cpu_dcache_clean_area(start, size)
281  
282  /*
283   * flush_dcache_page is used when the kernel has written to the page
284   * cache page at virtual address page->virtual.
285   *
286   * If this page isn't mapped (ie, page_mapping == NULL), or it might
287   * have userspace mappings, then we _must_ always clean + invalidate
288   * the dcache entries associated with the kernel mapping.
289   *
290   * Otherwise we can defer the operation, and clean the cache when we are
291   * about to change to user space.  This is the same method as used on SPARC64.
292   * See update_mmu_cache for the user space part.
293   */
294  #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
295  extern void flush_dcache_page(struct page *);
296  
flush_kernel_vmap_range(void * addr,int size)297  static inline void flush_kernel_vmap_range(void *addr, int size)
298  {
299  	if ((cache_is_vivt() || cache_is_vipt_aliasing()))
300  	  __cpuc_flush_dcache_area(addr, (size_t)size);
301  }
invalidate_kernel_vmap_range(void * addr,int size)302  static inline void invalidate_kernel_vmap_range(void *addr, int size)
303  {
304  	if ((cache_is_vivt() || cache_is_vipt_aliasing()))
305  	  __cpuc_flush_dcache_area(addr, (size_t)size);
306  }
307  
308  #define ARCH_HAS_FLUSH_ANON_PAGE
flush_anon_page(struct vm_area_struct * vma,struct page * page,unsigned long vmaddr)309  static inline void flush_anon_page(struct vm_area_struct *vma,
310  			 struct page *page, unsigned long vmaddr)
311  {
312  	extern void __flush_anon_page(struct vm_area_struct *vma,
313  				struct page *, unsigned long);
314  	if (PageAnon(page))
315  		__flush_anon_page(vma, page, vmaddr);
316  }
317  
318  #define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
319  extern void flush_kernel_dcache_page(struct page *);
320  
321  #define flush_dcache_mmap_lock(mapping) \
322  	spin_lock_irq(&(mapping)->tree_lock)
323  #define flush_dcache_mmap_unlock(mapping) \
324  	spin_unlock_irq(&(mapping)->tree_lock)
325  
326  #define flush_icache_user_range(vma,page,addr,len) \
327  	flush_dcache_page(page)
328  
329  /*
330   * We don't appear to need to do anything here.  In fact, if we did, we'd
331   * duplicate cache flushing elsewhere performed by flush_dcache_page().
332   */
333  #define flush_icache_page(vma,page)	do { } while (0)
334  
335  /*
336   * flush_cache_vmap() is used when creating mappings (eg, via vmap,
337   * vmalloc, ioremap etc) in kernel space for pages.  On non-VIPT
338   * caches, since the direct-mappings of these pages may contain cached
339   * data, we need to do a full cache flush to ensure that writebacks
340   * don't corrupt data placed into these pages via the new mappings.
341   */
flush_cache_vmap(unsigned long start,unsigned long end)342  static inline void flush_cache_vmap(unsigned long start, unsigned long end)
343  {
344  	if (!cache_is_vipt_nonaliasing())
345  		flush_cache_all();
346  	else
347  		/*
348  		 * set_pte_at() called from vmap_pte_range() does not
349  		 * have a DSB after cleaning the cache line.
350  		 */
351  		dsb(ishst);
352  }
353  
flush_cache_vunmap(unsigned long start,unsigned long end)354  static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
355  {
356  	if (!cache_is_vipt_nonaliasing())
357  		flush_cache_all();
358  }
359  
360  /*
361   * Memory synchronization helpers for mixed cached vs non cached accesses.
362   *
363   * Some synchronization algorithms have to set states in memory with the
364   * cache enabled or disabled depending on the code path.  It is crucial
365   * to always ensure proper cache maintenance to update main memory right
366   * away in that case.
367   *
368   * Any cached write must be followed by a cache clean operation.
369   * Any cached read must be preceded by a cache invalidate operation.
370   * Yet, in the read case, a cache flush i.e. atomic clean+invalidate
371   * operation is needed to avoid discarding possible concurrent writes to the
372   * accessed memory.
373   *
374   * Also, in order to prevent a cached writer from interfering with an
375   * adjacent non-cached writer, each state variable must be located to
376   * a separate cache line.
377   */
378  
379  /*
380   * This needs to be >= the max cache writeback size of all
381   * supported platforms included in the current kernel configuration.
382   * This is used to align state variables to their own cache lines.
383   */
384  #define __CACHE_WRITEBACK_ORDER 6  /* guessed from existing platforms */
385  #define __CACHE_WRITEBACK_GRANULE (1 << __CACHE_WRITEBACK_ORDER)
386  
387  /*
388   * There is no __cpuc_clean_dcache_area but we use it anyway for
389   * code intent clarity, and alias it to __cpuc_flush_dcache_area.
390   */
391  #define __cpuc_clean_dcache_area __cpuc_flush_dcache_area
392  
393  /*
394   * Ensure preceding writes to *p by this CPU are visible to
395   * subsequent reads by other CPUs:
396   */
__sync_cache_range_w(volatile void * p,size_t size)397  static inline void __sync_cache_range_w(volatile void *p, size_t size)
398  {
399  	char *_p = (char *)p;
400  
401  	__cpuc_clean_dcache_area(_p, size);
402  	outer_clean_range(__pa(_p), __pa(_p + size));
403  }
404  
405  /*
406   * Ensure preceding writes to *p by other CPUs are visible to
407   * subsequent reads by this CPU.  We must be careful not to
408   * discard data simultaneously written by another CPU, hence the
409   * usage of flush rather than invalidate operations.
410   */
__sync_cache_range_r(volatile void * p,size_t size)411  static inline void __sync_cache_range_r(volatile void *p, size_t size)
412  {
413  	char *_p = (char *)p;
414  
415  #ifdef CONFIG_OUTER_CACHE
416  	if (outer_cache.flush_range) {
417  		/*
418  		 * Ensure dirty data migrated from other CPUs into our cache
419  		 * are cleaned out safely before the outer cache is cleaned:
420  		 */
421  		__cpuc_clean_dcache_area(_p, size);
422  
423  		/* Clean and invalidate stale data for *p from outer ... */
424  		outer_flush_range(__pa(_p), __pa(_p + size));
425  	}
426  #endif
427  
428  	/* ... and inner cache: */
429  	__cpuc_flush_dcache_area(_p, size);
430  }
431  
432  #define sync_cache_w(ptr) __sync_cache_range_w(ptr, sizeof *(ptr))
433  #define sync_cache_r(ptr) __sync_cache_range_r(ptr, sizeof *(ptr))
434  
435  /*
436   * Disabling cache access for one CPU in an ARMv7 SMP system is tricky.
437   * To do so we must:
438   *
439   * - Clear the SCTLR.C bit to prevent further cache allocations
440   * - Flush the desired level of cache
441   * - Clear the ACTLR "SMP" bit to disable local coherency
442   *
443   * ... and so without any intervening memory access in between those steps,
444   * not even to the stack.
445   *
446   * WARNING -- After this has been called:
447   *
448   * - No ldrex/strex (and similar) instructions must be used.
449   * - The CPU is obviously no longer coherent with the other CPUs.
450   * - This is unlikely to work as expected if Linux is running non-secure.
451   *
452   * Note:
453   *
454   * - This is known to apply to several ARMv7 processor implementations,
455   *   however some exceptions may exist.  Caveat emptor.
456   *
457   * - The clobber list is dictated by the call to v7_flush_dcache_*.
458   *   fp is preserved to the stack explicitly prior disabling the cache
459   *   since adding it to the clobber list is incompatible with having
460   *   CONFIG_FRAME_POINTER=y.  ip is saved as well if ever r12-clobbering
461   *   trampoline are inserted by the linker and to keep sp 64-bit aligned.
462   */
463  #define v7_exit_coherency_flush(level) \
464  	asm volatile( \
465  	".arch	armv7-a \n\t" \
466  	"stmfd	sp!, {fp, ip} \n\t" \
467  	"mrc	p15, 0, r0, c1, c0, 0	@ get SCTLR \n\t" \
468  	"bic	r0, r0, #"__stringify(CR_C)" \n\t" \
469  	"mcr	p15, 0, r0, c1, c0, 0	@ set SCTLR \n\t" \
470  	"isb	\n\t" \
471  	"bl	v7_flush_dcache_"__stringify(level)" \n\t" \
472  	"mrc	p15, 0, r0, c1, c0, 1	@ get ACTLR \n\t" \
473  	"bic	r0, r0, #(1 << 6)	@ disable local coherency \n\t" \
474  	"mcr	p15, 0, r0, c1, c0, 1	@ set ACTLR \n\t" \
475  	"isb	\n\t" \
476  	"dsb	\n\t" \
477  	"ldmfd	sp!, {fp, ip}" \
478  	: : : "r0","r1","r2","r3","r4","r5","r6","r7", \
479  	      "r9","r10","lr","memory" )
480  
481  #ifdef CONFIG_MMU
482  int set_memory_ro(unsigned long addr, int numpages);
483  int set_memory_rw(unsigned long addr, int numpages);
484  int set_memory_x(unsigned long addr, int numpages);
485  int set_memory_nx(unsigned long addr, int numpages);
486  #else
set_memory_ro(unsigned long addr,int numpages)487  static inline int set_memory_ro(unsigned long addr, int numpages) { return 0; }
set_memory_rw(unsigned long addr,int numpages)488  static inline int set_memory_rw(unsigned long addr, int numpages) { return 0; }
set_memory_x(unsigned long addr,int numpages)489  static inline int set_memory_x(unsigned long addr, int numpages) { return 0; }
set_memory_nx(unsigned long addr,int numpages)490  static inline int set_memory_nx(unsigned long addr, int numpages) { return 0; }
491  #endif
492  
493  #ifdef CONFIG_DEBUG_RODATA
494  void set_kernel_text_rw(void);
495  void set_kernel_text_ro(void);
496  #else
set_kernel_text_rw(void)497  static inline void set_kernel_text_rw(void) { }
set_kernel_text_ro(void)498  static inline void set_kernel_text_ro(void) { }
499  #endif
500  
501  void flush_uprobe_xol_access(struct page *page, unsigned long uaddr,
502  			     void *kaddr, unsigned long len);
503  
504  #endif
505