1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32 #include <kvm/arm_psci.h>
33
34 #define CREATE_TRACE_POINTS
35 #include "trace.h"
36
37 #include <asm/uaccess.h>
38 #include <asm/ptrace.h>
39 #include <asm/mman.h>
40 #include <asm/tlbflush.h>
41 #include <asm/cacheflush.h>
42 #include <asm/virt.h>
43 #include <asm/kvm_arm.h>
44 #include <asm/kvm_asm.h>
45 #include <asm/kvm_mmu.h>
46 #include <asm/kvm_emulate.h>
47 #include <asm/kvm_coproc.h>
48 #include <asm/sections.h>
49
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension virt");
52 #endif
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56 static unsigned long hyp_default_vectors;
57
58 /* Per-CPU variable containing the currently running vcpu. */
59 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
60
61 /* The VMID used in the VTTBR */
62 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
63 static u32 kvm_next_vmid;
64 static unsigned int kvm_vmid_bits __read_mostly;
65 static DEFINE_SPINLOCK(kvm_vmid_lock);
66
67 static bool vgic_present;
68
69 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
70
kvm_arm_set_running_vcpu(struct kvm_vcpu * vcpu)71 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
72 {
73 BUG_ON(preemptible());
74 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 }
76
77 /**
78 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
79 * Must be called from non-preemptible context
80 */
kvm_arm_get_running_vcpu(void)81 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
82 {
83 BUG_ON(preemptible());
84 return __this_cpu_read(kvm_arm_running_vcpu);
85 }
86
87 /**
88 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
89 */
kvm_get_running_vcpus(void)90 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
91 {
92 return &kvm_arm_running_vcpu;
93 }
94
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
kvm_arch_hardware_setup(void)100 int kvm_arch_hardware_setup(void)
101 {
102 return 0;
103 }
104
kvm_arch_check_processor_compat(void * rtn)105 void kvm_arch_check_processor_compat(void *rtn)
106 {
107 *(int *)rtn = 0;
108 }
109
110
111 /**
112 * kvm_arch_init_vm - initializes a VM data structure
113 * @kvm: pointer to the KVM struct
114 */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)115 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
116 {
117 int ret, cpu;
118
119 if (type)
120 return -EINVAL;
121
122 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
123 if (!kvm->arch.last_vcpu_ran)
124 return -ENOMEM;
125
126 for_each_possible_cpu(cpu)
127 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
128
129 ret = kvm_alloc_stage2_pgd(kvm);
130 if (ret)
131 goto out_fail_alloc;
132
133 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
134 if (ret)
135 goto out_free_stage2_pgd;
136
137 kvm_vgic_early_init(kvm);
138 kvm_timer_init(kvm);
139
140 /* Mark the initial VMID generation invalid */
141 kvm->arch.vmid_gen = 0;
142
143 /* The maximum number of VCPUs is limited by the host's GIC model */
144 kvm->arch.max_vcpus = vgic_present ?
145 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146
147 return ret;
148 out_free_stage2_pgd:
149 kvm_free_stage2_pgd(kvm);
150 out_fail_alloc:
151 free_percpu(kvm->arch.last_vcpu_ran);
152 kvm->arch.last_vcpu_ran = NULL;
153 return ret;
154 }
155
kvm_arch_has_vcpu_debugfs(void)156 bool kvm_arch_has_vcpu_debugfs(void)
157 {
158 return false;
159 }
160
kvm_arch_create_vcpu_debugfs(struct kvm_vcpu * vcpu)161 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
162 {
163 return 0;
164 }
165
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)166 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168 return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173 * kvm_arch_destroy_vm - destroy the VM data structure
174 * @kvm: pointer to the KVM struct
175 */
kvm_arch_destroy_vm(struct kvm * kvm)176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178 int i;
179
180 free_percpu(kvm->arch.last_vcpu_ran);
181 kvm->arch.last_vcpu_ran = NULL;
182
183 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
184 if (kvm->vcpus[i]) {
185 kvm_arch_vcpu_free(kvm->vcpus[i]);
186 kvm->vcpus[i] = NULL;
187 }
188 }
189
190 kvm_vgic_destroy(kvm);
191 }
192
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)193 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
194 {
195 int r;
196 switch (ext) {
197 case KVM_CAP_IRQCHIP:
198 r = vgic_present;
199 break;
200 case KVM_CAP_IOEVENTFD:
201 case KVM_CAP_DEVICE_CTRL:
202 case KVM_CAP_USER_MEMORY:
203 case KVM_CAP_SYNC_MMU:
204 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
205 case KVM_CAP_ONE_REG:
206 case KVM_CAP_ARM_PSCI:
207 case KVM_CAP_ARM_PSCI_0_2:
208 case KVM_CAP_READONLY_MEM:
209 case KVM_CAP_MP_STATE:
210 r = 1;
211 break;
212 case KVM_CAP_COALESCED_MMIO:
213 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
214 break;
215 case KVM_CAP_ARM_SET_DEVICE_ADDR:
216 r = 1;
217 break;
218 case KVM_CAP_NR_VCPUS:
219 r = num_online_cpus();
220 break;
221 case KVM_CAP_MAX_VCPUS:
222 r = KVM_MAX_VCPUS;
223 break;
224 default:
225 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
226 break;
227 }
228 return r;
229 }
230
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)231 long kvm_arch_dev_ioctl(struct file *filp,
232 unsigned int ioctl, unsigned long arg)
233 {
234 return -EINVAL;
235 }
236
237
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)238 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
239 {
240 int err;
241 struct kvm_vcpu *vcpu;
242
243 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
244 err = -EBUSY;
245 goto out;
246 }
247
248 if (id >= kvm->arch.max_vcpus) {
249 err = -EINVAL;
250 goto out;
251 }
252
253 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
254 if (!vcpu) {
255 err = -ENOMEM;
256 goto out;
257 }
258
259 err = kvm_vcpu_init(vcpu, kvm, id);
260 if (err)
261 goto free_vcpu;
262
263 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
264 if (err)
265 goto vcpu_uninit;
266
267 return vcpu;
268 vcpu_uninit:
269 kvm_vcpu_uninit(vcpu);
270 free_vcpu:
271 kmem_cache_free(kvm_vcpu_cache, vcpu);
272 out:
273 return ERR_PTR(err);
274 }
275
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)276 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
277 {
278 kvm_vgic_vcpu_early_init(vcpu);
279 }
280
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)281 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
282 {
283 kvm_mmu_free_memory_caches(vcpu);
284 kvm_timer_vcpu_terminate(vcpu);
285 kvm_vgic_vcpu_destroy(vcpu);
286 kvm_pmu_vcpu_destroy(vcpu);
287 kvm_vcpu_uninit(vcpu);
288 kmem_cache_free(kvm_vcpu_cache, vcpu);
289 }
290
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)291 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
292 {
293 kvm_arch_vcpu_free(vcpu);
294 }
295
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)296 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
297 {
298 return kvm_timer_should_fire(vcpu);
299 }
300
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)301 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
302 {
303 kvm_timer_schedule(vcpu);
304 }
305
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)306 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
307 {
308 kvm_timer_unschedule(vcpu);
309 }
310
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)311 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
312 {
313 /* Force users to call KVM_ARM_VCPU_INIT */
314 vcpu->arch.target = -1;
315 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
316
317 /* Set up the timer */
318 kvm_timer_vcpu_init(vcpu);
319
320 kvm_arm_reset_debug_ptr(vcpu);
321
322 return 0;
323 }
324
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)325 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
326 {
327 int *last_ran;
328
329 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
330
331 /*
332 * We might get preempted before the vCPU actually runs, but
333 * over-invalidation doesn't affect correctness.
334 */
335 if (*last_ran != vcpu->vcpu_id) {
336 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
337 *last_ran = vcpu->vcpu_id;
338 }
339
340 vcpu->cpu = cpu;
341 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
342
343 kvm_arm_set_running_vcpu(vcpu);
344 }
345
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)346 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
347 {
348 /*
349 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
350 * if the vcpu is no longer assigned to a cpu. This is used for the
351 * optimized make_all_cpus_request path.
352 */
353 vcpu->cpu = -1;
354
355 kvm_arm_set_running_vcpu(NULL);
356 kvm_timer_vcpu_put(vcpu);
357 }
358
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)359 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
360 struct kvm_mp_state *mp_state)
361 {
362 if (vcpu->arch.power_off)
363 mp_state->mp_state = KVM_MP_STATE_STOPPED;
364 else
365 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
366
367 return 0;
368 }
369
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)370 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
371 struct kvm_mp_state *mp_state)
372 {
373 switch (mp_state->mp_state) {
374 case KVM_MP_STATE_RUNNABLE:
375 vcpu->arch.power_off = false;
376 break;
377 case KVM_MP_STATE_STOPPED:
378 vcpu->arch.power_off = true;
379 break;
380 default:
381 return -EINVAL;
382 }
383
384 return 0;
385 }
386
387 /**
388 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
389 * @v: The VCPU pointer
390 *
391 * If the guest CPU is not waiting for interrupts or an interrupt line is
392 * asserted, the CPU is by definition runnable.
393 */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)394 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
395 {
396 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
397 && !v->arch.power_off && !v->arch.pause);
398 }
399
400 /* Just ensure a guest exit from a particular CPU */
exit_vm_noop(void * info)401 static void exit_vm_noop(void *info)
402 {
403 }
404
force_vm_exit(const cpumask_t * mask)405 void force_vm_exit(const cpumask_t *mask)
406 {
407 preempt_disable();
408 smp_call_function_many(mask, exit_vm_noop, NULL, true);
409 preempt_enable();
410 }
411
412 /**
413 * need_new_vmid_gen - check that the VMID is still valid
414 * @kvm: The VM's VMID to check
415 *
416 * return true if there is a new generation of VMIDs being used
417 *
418 * The hardware supports only 256 values with the value zero reserved for the
419 * host, so we check if an assigned value belongs to a previous generation,
420 * which which requires us to assign a new value. If we're the first to use a
421 * VMID for the new generation, we must flush necessary caches and TLBs on all
422 * CPUs.
423 */
need_new_vmid_gen(struct kvm * kvm)424 static bool need_new_vmid_gen(struct kvm *kvm)
425 {
426 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
427 }
428
429 /**
430 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
431 * @kvm The guest that we are about to run
432 *
433 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
434 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
435 * caches and TLBs.
436 */
update_vttbr(struct kvm * kvm)437 static void update_vttbr(struct kvm *kvm)
438 {
439 phys_addr_t pgd_phys;
440 u64 vmid;
441
442 if (!need_new_vmid_gen(kvm))
443 return;
444
445 spin_lock(&kvm_vmid_lock);
446
447 /*
448 * We need to re-check the vmid_gen here to ensure that if another vcpu
449 * already allocated a valid vmid for this vm, then this vcpu should
450 * use the same vmid.
451 */
452 if (!need_new_vmid_gen(kvm)) {
453 spin_unlock(&kvm_vmid_lock);
454 return;
455 }
456
457 /* First user of a new VMID generation? */
458 if (unlikely(kvm_next_vmid == 0)) {
459 atomic64_inc(&kvm_vmid_gen);
460 kvm_next_vmid = 1;
461
462 /*
463 * On SMP we know no other CPUs can use this CPU's or each
464 * other's VMID after force_vm_exit returns since the
465 * kvm_vmid_lock blocks them from reentry to the guest.
466 */
467 force_vm_exit(cpu_all_mask);
468 /*
469 * Now broadcast TLB + ICACHE invalidation over the inner
470 * shareable domain to make sure all data structures are
471 * clean.
472 */
473 kvm_call_hyp(__kvm_flush_vm_context);
474 }
475
476 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
477 kvm->arch.vmid = kvm_next_vmid;
478 kvm_next_vmid++;
479 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
480
481 /* update vttbr to be used with the new vmid */
482 pgd_phys = virt_to_phys(kvm->arch.pgd);
483 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
484 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
485 kvm->arch.vttbr = pgd_phys | vmid;
486
487 spin_unlock(&kvm_vmid_lock);
488 }
489
kvm_vcpu_first_run_init(struct kvm_vcpu * vcpu)490 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
491 {
492 struct kvm *kvm = vcpu->kvm;
493 int ret = 0;
494
495 if (likely(vcpu->arch.has_run_once))
496 return 0;
497
498 vcpu->arch.has_run_once = true;
499
500 /*
501 * Map the VGIC hardware resources before running a vcpu the first
502 * time on this VM.
503 */
504 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
505 ret = kvm_vgic_map_resources(kvm);
506 if (ret)
507 return ret;
508 }
509
510 /*
511 * Enable the arch timers only if we have an in-kernel VGIC
512 * and it has been properly initialized, since we cannot handle
513 * interrupts from the virtual timer with a userspace gic.
514 */
515 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
516 ret = kvm_timer_enable(vcpu);
517
518 return ret;
519 }
520
kvm_arch_intc_initialized(struct kvm * kvm)521 bool kvm_arch_intc_initialized(struct kvm *kvm)
522 {
523 return vgic_initialized(kvm);
524 }
525
kvm_arm_halt_guest(struct kvm * kvm)526 void kvm_arm_halt_guest(struct kvm *kvm)
527 {
528 int i;
529 struct kvm_vcpu *vcpu;
530
531 kvm_for_each_vcpu(i, vcpu, kvm)
532 vcpu->arch.pause = true;
533 kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
534 }
535
kvm_arm_halt_vcpu(struct kvm_vcpu * vcpu)536 void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
537 {
538 vcpu->arch.pause = true;
539 kvm_vcpu_kick(vcpu);
540 }
541
kvm_arm_resume_vcpu(struct kvm_vcpu * vcpu)542 void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
543 {
544 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
545
546 vcpu->arch.pause = false;
547 swake_up(wq);
548 }
549
kvm_arm_resume_guest(struct kvm * kvm)550 void kvm_arm_resume_guest(struct kvm *kvm)
551 {
552 int i;
553 struct kvm_vcpu *vcpu;
554
555 kvm_for_each_vcpu(i, vcpu, kvm)
556 kvm_arm_resume_vcpu(vcpu);
557 }
558
vcpu_sleep(struct kvm_vcpu * vcpu)559 static void vcpu_sleep(struct kvm_vcpu *vcpu)
560 {
561 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
562
563 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
564 (!vcpu->arch.pause)));
565 }
566
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)567 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
568 {
569 return vcpu->arch.target >= 0;
570 }
571
572 /**
573 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
574 * @vcpu: The VCPU pointer
575 * @run: The kvm_run structure pointer used for userspace state exchange
576 *
577 * This function is called through the VCPU_RUN ioctl called from user space. It
578 * will execute VM code in a loop until the time slice for the process is used
579 * or some emulation is needed from user space in which case the function will
580 * return with return value 0 and with the kvm_run structure filled in with the
581 * required data for the requested emulation.
582 */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * run)583 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
584 {
585 int ret;
586 sigset_t sigsaved;
587
588 if (unlikely(!kvm_vcpu_initialized(vcpu)))
589 return -ENOEXEC;
590
591 ret = kvm_vcpu_first_run_init(vcpu);
592 if (ret)
593 return ret;
594
595 if (run->exit_reason == KVM_EXIT_MMIO) {
596 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
597 if (ret)
598 return ret;
599 }
600
601 if (vcpu->sigset_active)
602 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
603
604 ret = 1;
605 run->exit_reason = KVM_EXIT_UNKNOWN;
606 while (ret > 0) {
607 /*
608 * Check conditions before entering the guest
609 */
610 cond_resched();
611
612 update_vttbr(vcpu->kvm);
613
614 if (vcpu->arch.power_off || vcpu->arch.pause)
615 vcpu_sleep(vcpu);
616
617 /*
618 * Preparing the interrupts to be injected also
619 * involves poking the GIC, which must be done in a
620 * non-preemptible context.
621 */
622 preempt_disable();
623 kvm_pmu_flush_hwstate(vcpu);
624 kvm_timer_flush_hwstate(vcpu);
625 kvm_vgic_flush_hwstate(vcpu);
626
627 local_irq_disable();
628
629 /*
630 * Re-check atomic conditions
631 */
632 if (signal_pending(current)) {
633 ret = -EINTR;
634 run->exit_reason = KVM_EXIT_INTR;
635 }
636
637 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
638 vcpu->arch.power_off || vcpu->arch.pause) {
639 local_irq_enable();
640 kvm_pmu_sync_hwstate(vcpu);
641 kvm_timer_sync_hwstate(vcpu);
642 kvm_vgic_sync_hwstate(vcpu);
643 preempt_enable();
644 continue;
645 }
646
647 kvm_arm_setup_debug(vcpu);
648
649 /**************************************************************
650 * Enter the guest
651 */
652 trace_kvm_entry(*vcpu_pc(vcpu));
653 guest_enter_irqoff();
654 vcpu->mode = IN_GUEST_MODE;
655
656 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
657
658 vcpu->mode = OUTSIDE_GUEST_MODE;
659 vcpu->stat.exits++;
660 /*
661 * Back from guest
662 *************************************************************/
663
664 kvm_arm_clear_debug(vcpu);
665
666 /*
667 * We may have taken a host interrupt in HYP mode (ie
668 * while executing the guest). This interrupt is still
669 * pending, as we haven't serviced it yet!
670 *
671 * We're now back in SVC mode, with interrupts
672 * disabled. Enabling the interrupts now will have
673 * the effect of taking the interrupt again, in SVC
674 * mode this time.
675 */
676 local_irq_enable();
677
678 /*
679 * We do local_irq_enable() before calling guest_exit() so
680 * that if a timer interrupt hits while running the guest we
681 * account that tick as being spent in the guest. We enable
682 * preemption after calling guest_exit() so that if we get
683 * preempted we make sure ticks after that is not counted as
684 * guest time.
685 */
686 guest_exit();
687 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
688
689 /*
690 * We must sync the PMU and timer state before the vgic state so
691 * that the vgic can properly sample the updated state of the
692 * interrupt line.
693 */
694 kvm_pmu_sync_hwstate(vcpu);
695 kvm_timer_sync_hwstate(vcpu);
696
697 kvm_vgic_sync_hwstate(vcpu);
698
699 preempt_enable();
700
701 ret = handle_exit(vcpu, run, ret);
702 }
703
704 if (vcpu->sigset_active)
705 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
706 return ret;
707 }
708
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)709 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
710 {
711 int bit_index;
712 bool set;
713 unsigned long *ptr;
714
715 if (number == KVM_ARM_IRQ_CPU_IRQ)
716 bit_index = __ffs(HCR_VI);
717 else /* KVM_ARM_IRQ_CPU_FIQ */
718 bit_index = __ffs(HCR_VF);
719
720 ptr = (unsigned long *)&vcpu->arch.irq_lines;
721 if (level)
722 set = test_and_set_bit(bit_index, ptr);
723 else
724 set = test_and_clear_bit(bit_index, ptr);
725
726 /*
727 * If we didn't change anything, no need to wake up or kick other CPUs
728 */
729 if (set == level)
730 return 0;
731
732 /*
733 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
734 * trigger a world-switch round on the running physical CPU to set the
735 * virtual IRQ/FIQ fields in the HCR appropriately.
736 */
737 kvm_vcpu_kick(vcpu);
738
739 return 0;
740 }
741
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)742 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
743 bool line_status)
744 {
745 u32 irq = irq_level->irq;
746 unsigned int irq_type, vcpu_idx, irq_num;
747 int nrcpus = atomic_read(&kvm->online_vcpus);
748 struct kvm_vcpu *vcpu = NULL;
749 bool level = irq_level->level;
750
751 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
752 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
753 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
754
755 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
756
757 switch (irq_type) {
758 case KVM_ARM_IRQ_TYPE_CPU:
759 if (irqchip_in_kernel(kvm))
760 return -ENXIO;
761
762 if (vcpu_idx >= nrcpus)
763 return -EINVAL;
764
765 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
766 if (!vcpu)
767 return -EINVAL;
768
769 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
770 return -EINVAL;
771
772 return vcpu_interrupt_line(vcpu, irq_num, level);
773 case KVM_ARM_IRQ_TYPE_PPI:
774 if (!irqchip_in_kernel(kvm))
775 return -ENXIO;
776
777 if (vcpu_idx >= nrcpus)
778 return -EINVAL;
779
780 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
781 if (!vcpu)
782 return -EINVAL;
783
784 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
785 return -EINVAL;
786
787 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
788 case KVM_ARM_IRQ_TYPE_SPI:
789 if (!irqchip_in_kernel(kvm))
790 return -ENXIO;
791
792 if (irq_num < VGIC_NR_PRIVATE_IRQS)
793 return -EINVAL;
794
795 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
796 }
797
798 return -EINVAL;
799 }
800
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)801 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
802 const struct kvm_vcpu_init *init)
803 {
804 unsigned int i;
805 int phys_target = kvm_target_cpu();
806
807 if (init->target != phys_target)
808 return -EINVAL;
809
810 /*
811 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
812 * use the same target.
813 */
814 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
815 return -EINVAL;
816
817 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
818 for (i = 0; i < sizeof(init->features) * 8; i++) {
819 bool set = (init->features[i / 32] & (1 << (i % 32)));
820
821 if (set && i >= KVM_VCPU_MAX_FEATURES)
822 return -ENOENT;
823
824 /*
825 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
826 * use the same feature set.
827 */
828 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
829 test_bit(i, vcpu->arch.features) != set)
830 return -EINVAL;
831
832 if (set)
833 set_bit(i, vcpu->arch.features);
834 }
835
836 vcpu->arch.target = phys_target;
837
838 /* Now we know what it is, we can reset it. */
839 return kvm_reset_vcpu(vcpu);
840 }
841
842
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)843 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
844 struct kvm_vcpu_init *init)
845 {
846 int ret;
847
848 ret = kvm_vcpu_set_target(vcpu, init);
849 if (ret)
850 return ret;
851
852 /*
853 * Ensure a rebooted VM will fault in RAM pages and detect if the
854 * guest MMU is turned off and flush the caches as needed.
855 */
856 if (vcpu->arch.has_run_once)
857 stage2_unmap_vm(vcpu->kvm);
858
859 vcpu_reset_hcr(vcpu);
860
861 /*
862 * Handle the "start in power-off" case.
863 */
864 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
865 vcpu->arch.power_off = true;
866 else
867 vcpu->arch.power_off = false;
868
869 return 0;
870 }
871
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)872 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
873 struct kvm_device_attr *attr)
874 {
875 int ret = -ENXIO;
876
877 switch (attr->group) {
878 default:
879 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
880 break;
881 }
882
883 return ret;
884 }
885
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)886 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
887 struct kvm_device_attr *attr)
888 {
889 int ret = -ENXIO;
890
891 switch (attr->group) {
892 default:
893 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
894 break;
895 }
896
897 return ret;
898 }
899
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)900 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
901 struct kvm_device_attr *attr)
902 {
903 int ret = -ENXIO;
904
905 switch (attr->group) {
906 default:
907 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
908 break;
909 }
910
911 return ret;
912 }
913
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)914 long kvm_arch_vcpu_ioctl(struct file *filp,
915 unsigned int ioctl, unsigned long arg)
916 {
917 struct kvm_vcpu *vcpu = filp->private_data;
918 void __user *argp = (void __user *)arg;
919 struct kvm_device_attr attr;
920
921 switch (ioctl) {
922 case KVM_ARM_VCPU_INIT: {
923 struct kvm_vcpu_init init;
924
925 if (copy_from_user(&init, argp, sizeof(init)))
926 return -EFAULT;
927
928 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
929 }
930 case KVM_SET_ONE_REG:
931 case KVM_GET_ONE_REG: {
932 struct kvm_one_reg reg;
933
934 if (unlikely(!kvm_vcpu_initialized(vcpu)))
935 return -ENOEXEC;
936
937 if (copy_from_user(®, argp, sizeof(reg)))
938 return -EFAULT;
939 if (ioctl == KVM_SET_ONE_REG)
940 return kvm_arm_set_reg(vcpu, ®);
941 else
942 return kvm_arm_get_reg(vcpu, ®);
943 }
944 case KVM_GET_REG_LIST: {
945 struct kvm_reg_list __user *user_list = argp;
946 struct kvm_reg_list reg_list;
947 unsigned n;
948
949 if (unlikely(!kvm_vcpu_initialized(vcpu)))
950 return -ENOEXEC;
951
952 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
953 return -EFAULT;
954 n = reg_list.n;
955 reg_list.n = kvm_arm_num_regs(vcpu);
956 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
957 return -EFAULT;
958 if (n < reg_list.n)
959 return -E2BIG;
960 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
961 }
962 case KVM_SET_DEVICE_ATTR: {
963 if (copy_from_user(&attr, argp, sizeof(attr)))
964 return -EFAULT;
965 return kvm_arm_vcpu_set_attr(vcpu, &attr);
966 }
967 case KVM_GET_DEVICE_ATTR: {
968 if (copy_from_user(&attr, argp, sizeof(attr)))
969 return -EFAULT;
970 return kvm_arm_vcpu_get_attr(vcpu, &attr);
971 }
972 case KVM_HAS_DEVICE_ATTR: {
973 if (copy_from_user(&attr, argp, sizeof(attr)))
974 return -EFAULT;
975 return kvm_arm_vcpu_has_attr(vcpu, &attr);
976 }
977 default:
978 return -EINVAL;
979 }
980 }
981
982 /**
983 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
984 * @kvm: kvm instance
985 * @log: slot id and address to which we copy the log
986 *
987 * Steps 1-4 below provide general overview of dirty page logging. See
988 * kvm_get_dirty_log_protect() function description for additional details.
989 *
990 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
991 * always flush the TLB (step 4) even if previous step failed and the dirty
992 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
993 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
994 * writes will be marked dirty for next log read.
995 *
996 * 1. Take a snapshot of the bit and clear it if needed.
997 * 2. Write protect the corresponding page.
998 * 3. Copy the snapshot to the userspace.
999 * 4. Flush TLB's if needed.
1000 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)1001 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1002 {
1003 bool is_dirty = false;
1004 int r;
1005
1006 mutex_lock(&kvm->slots_lock);
1007
1008 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1009
1010 if (is_dirty)
1011 kvm_flush_remote_tlbs(kvm);
1012
1013 mutex_unlock(&kvm->slots_lock);
1014 return r;
1015 }
1016
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1017 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1018 struct kvm_arm_device_addr *dev_addr)
1019 {
1020 unsigned long dev_id, type;
1021
1022 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1023 KVM_ARM_DEVICE_ID_SHIFT;
1024 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1025 KVM_ARM_DEVICE_TYPE_SHIFT;
1026
1027 switch (dev_id) {
1028 case KVM_ARM_DEVICE_VGIC_V2:
1029 if (!vgic_present)
1030 return -ENXIO;
1031 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1032 default:
1033 return -ENODEV;
1034 }
1035 }
1036
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1037 long kvm_arch_vm_ioctl(struct file *filp,
1038 unsigned int ioctl, unsigned long arg)
1039 {
1040 struct kvm *kvm = filp->private_data;
1041 void __user *argp = (void __user *)arg;
1042
1043 switch (ioctl) {
1044 case KVM_CREATE_IRQCHIP: {
1045 int ret;
1046 if (!vgic_present)
1047 return -ENXIO;
1048 mutex_lock(&kvm->lock);
1049 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1050 mutex_unlock(&kvm->lock);
1051 return ret;
1052 }
1053 case KVM_ARM_SET_DEVICE_ADDR: {
1054 struct kvm_arm_device_addr dev_addr;
1055
1056 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1057 return -EFAULT;
1058 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1059 }
1060 case KVM_ARM_PREFERRED_TARGET: {
1061 int err;
1062 struct kvm_vcpu_init init;
1063
1064 err = kvm_vcpu_preferred_target(&init);
1065 if (err)
1066 return err;
1067
1068 if (copy_to_user(argp, &init, sizeof(init)))
1069 return -EFAULT;
1070
1071 return 0;
1072 }
1073 default:
1074 return -EINVAL;
1075 }
1076 }
1077
cpu_init_hyp_mode(void * dummy)1078 static void cpu_init_hyp_mode(void *dummy)
1079 {
1080 phys_addr_t pgd_ptr;
1081 unsigned long hyp_stack_ptr;
1082 unsigned long stack_page;
1083 unsigned long vector_ptr;
1084
1085 /* Switch from the HYP stub to our own HYP init vector */
1086 __hyp_set_vectors(kvm_get_idmap_vector());
1087
1088 pgd_ptr = kvm_mmu_get_httbr();
1089 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1090 hyp_stack_ptr = stack_page + PAGE_SIZE;
1091 vector_ptr = (unsigned long)kvm_get_hyp_vector();
1092
1093 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1094 __cpu_init_stage2();
1095
1096 kvm_arm_init_debug();
1097 }
1098
cpu_hyp_reinit(void)1099 static void cpu_hyp_reinit(void)
1100 {
1101 if (is_kernel_in_hyp_mode()) {
1102 /*
1103 * __cpu_init_stage2() is safe to call even if the PM
1104 * event was cancelled before the CPU was reset.
1105 */
1106 __cpu_init_stage2();
1107 } else {
1108 if (__hyp_get_vectors() == hyp_default_vectors)
1109 cpu_init_hyp_mode(NULL);
1110 }
1111 }
1112
cpu_hyp_reset(void)1113 static void cpu_hyp_reset(void)
1114 {
1115 if (!is_kernel_in_hyp_mode())
1116 __cpu_reset_hyp_mode(hyp_default_vectors,
1117 kvm_get_idmap_start());
1118 }
1119
_kvm_arch_hardware_enable(void * discard)1120 static void _kvm_arch_hardware_enable(void *discard)
1121 {
1122 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1123 cpu_hyp_reinit();
1124 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1125 }
1126 }
1127
kvm_arch_hardware_enable(void)1128 int kvm_arch_hardware_enable(void)
1129 {
1130 _kvm_arch_hardware_enable(NULL);
1131 return 0;
1132 }
1133
_kvm_arch_hardware_disable(void * discard)1134 static void _kvm_arch_hardware_disable(void *discard)
1135 {
1136 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1137 cpu_hyp_reset();
1138 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1139 }
1140 }
1141
kvm_arch_hardware_disable(void)1142 void kvm_arch_hardware_disable(void)
1143 {
1144 _kvm_arch_hardware_disable(NULL);
1145 }
1146
1147 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1148 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1149 unsigned long cmd,
1150 void *v)
1151 {
1152 /*
1153 * kvm_arm_hardware_enabled is left with its old value over
1154 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1155 * re-enable hyp.
1156 */
1157 switch (cmd) {
1158 case CPU_PM_ENTER:
1159 if (__this_cpu_read(kvm_arm_hardware_enabled))
1160 /*
1161 * don't update kvm_arm_hardware_enabled here
1162 * so that the hardware will be re-enabled
1163 * when we resume. See below.
1164 */
1165 cpu_hyp_reset();
1166
1167 return NOTIFY_OK;
1168 case CPU_PM_ENTER_FAILED:
1169 case CPU_PM_EXIT:
1170 if (__this_cpu_read(kvm_arm_hardware_enabled))
1171 /* The hardware was enabled before suspend. */
1172 cpu_hyp_reinit();
1173
1174 return NOTIFY_OK;
1175
1176 default:
1177 return NOTIFY_DONE;
1178 }
1179 }
1180
1181 static struct notifier_block hyp_init_cpu_pm_nb = {
1182 .notifier_call = hyp_init_cpu_pm_notifier,
1183 };
1184
hyp_cpu_pm_init(void)1185 static void __init hyp_cpu_pm_init(void)
1186 {
1187 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1188 }
hyp_cpu_pm_exit(void)1189 static void __init hyp_cpu_pm_exit(void)
1190 {
1191 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1192 }
1193 #else
hyp_cpu_pm_init(void)1194 static inline void hyp_cpu_pm_init(void)
1195 {
1196 }
hyp_cpu_pm_exit(void)1197 static inline void hyp_cpu_pm_exit(void)
1198 {
1199 }
1200 #endif
1201
teardown_common_resources(void)1202 static void teardown_common_resources(void)
1203 {
1204 free_percpu(kvm_host_cpu_state);
1205 }
1206
init_common_resources(void)1207 static int init_common_resources(void)
1208 {
1209 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1210 if (!kvm_host_cpu_state) {
1211 kvm_err("Cannot allocate host CPU state\n");
1212 return -ENOMEM;
1213 }
1214
1215 /* set size of VMID supported by CPU */
1216 kvm_vmid_bits = kvm_get_vmid_bits();
1217 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1218
1219 return 0;
1220 }
1221
init_subsystems(void)1222 static int init_subsystems(void)
1223 {
1224 int err = 0;
1225
1226 /*
1227 * Enable hardware so that subsystem initialisation can access EL2.
1228 */
1229 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1230
1231 /*
1232 * Register CPU lower-power notifier
1233 */
1234 hyp_cpu_pm_init();
1235
1236 /*
1237 * Init HYP view of VGIC
1238 */
1239 err = kvm_vgic_hyp_init();
1240 switch (err) {
1241 case 0:
1242 vgic_present = true;
1243 break;
1244 case -ENODEV:
1245 case -ENXIO:
1246 vgic_present = false;
1247 err = 0;
1248 break;
1249 default:
1250 goto out;
1251 }
1252
1253 /*
1254 * Init HYP architected timer support
1255 */
1256 err = kvm_timer_hyp_init();
1257 if (err)
1258 goto out;
1259
1260 kvm_perf_init();
1261 kvm_coproc_table_init();
1262
1263 out:
1264 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1265
1266 return err;
1267 }
1268
teardown_hyp_mode(void)1269 static void teardown_hyp_mode(void)
1270 {
1271 int cpu;
1272
1273 if (is_kernel_in_hyp_mode())
1274 return;
1275
1276 free_hyp_pgds();
1277 for_each_possible_cpu(cpu)
1278 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1279 hyp_cpu_pm_exit();
1280 }
1281
init_vhe_mode(void)1282 static int init_vhe_mode(void)
1283 {
1284 kvm_info("VHE mode initialized successfully\n");
1285 return 0;
1286 }
1287
1288 /**
1289 * Inits Hyp-mode on all online CPUs
1290 */
init_hyp_mode(void)1291 static int init_hyp_mode(void)
1292 {
1293 int cpu;
1294 int err = 0;
1295
1296 /*
1297 * Allocate Hyp PGD and setup Hyp identity mapping
1298 */
1299 err = kvm_mmu_init();
1300 if (err)
1301 goto out_err;
1302
1303 /*
1304 * It is probably enough to obtain the default on one
1305 * CPU. It's unlikely to be different on the others.
1306 */
1307 hyp_default_vectors = __hyp_get_vectors();
1308
1309 /*
1310 * Allocate stack pages for Hypervisor-mode
1311 */
1312 for_each_possible_cpu(cpu) {
1313 unsigned long stack_page;
1314
1315 stack_page = __get_free_page(GFP_KERNEL);
1316 if (!stack_page) {
1317 err = -ENOMEM;
1318 goto out_err;
1319 }
1320
1321 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1322 }
1323
1324 /*
1325 * Map the Hyp-code called directly from the host
1326 */
1327 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1328 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1329 if (err) {
1330 kvm_err("Cannot map world-switch code\n");
1331 goto out_err;
1332 }
1333
1334 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1335 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1336 if (err) {
1337 kvm_err("Cannot map rodata section\n");
1338 goto out_err;
1339 }
1340
1341 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1342 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1343 if (err) {
1344 kvm_err("Cannot map bss section\n");
1345 goto out_err;
1346 }
1347
1348
1349 err = kvm_map_vectors();
1350 if (err) {
1351 kvm_err("Cannot map vectors\n");
1352 goto out_err;
1353 }
1354
1355 /*
1356 * Map the Hyp stack pages
1357 */
1358 for_each_possible_cpu(cpu) {
1359 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1360 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1361 PAGE_HYP);
1362
1363 if (err) {
1364 kvm_err("Cannot map hyp stack\n");
1365 goto out_err;
1366 }
1367 }
1368
1369 for_each_possible_cpu(cpu) {
1370 kvm_cpu_context_t *cpu_ctxt;
1371
1372 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1373 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1374
1375 if (err) {
1376 kvm_err("Cannot map host CPU state: %d\n", err);
1377 goto out_err;
1378 }
1379 }
1380
1381 kvm_info("Hyp mode initialized successfully\n");
1382
1383 return 0;
1384
1385 out_err:
1386 teardown_hyp_mode();
1387 kvm_err("error initializing Hyp mode: %d\n", err);
1388 return err;
1389 }
1390
check_kvm_target_cpu(void * ret)1391 static void check_kvm_target_cpu(void *ret)
1392 {
1393 *(int *)ret = kvm_target_cpu();
1394 }
1395
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)1396 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1397 {
1398 struct kvm_vcpu *vcpu;
1399 int i;
1400
1401 mpidr &= MPIDR_HWID_BITMASK;
1402 kvm_for_each_vcpu(i, vcpu, kvm) {
1403 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1404 return vcpu;
1405 }
1406 return NULL;
1407 }
1408
1409 /**
1410 * Initialize Hyp-mode and memory mappings on all CPUs.
1411 */
kvm_arch_init(void * opaque)1412 int kvm_arch_init(void *opaque)
1413 {
1414 int err;
1415 int ret, cpu;
1416
1417 if (!is_hyp_mode_available()) {
1418 kvm_err("HYP mode not available\n");
1419 return -ENODEV;
1420 }
1421
1422 for_each_online_cpu(cpu) {
1423 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1424 if (ret < 0) {
1425 kvm_err("Error, CPU %d not supported!\n", cpu);
1426 return -ENODEV;
1427 }
1428 }
1429
1430 err = init_common_resources();
1431 if (err)
1432 return err;
1433
1434 if (is_kernel_in_hyp_mode())
1435 err = init_vhe_mode();
1436 else
1437 err = init_hyp_mode();
1438 if (err)
1439 goto out_err;
1440
1441 err = init_subsystems();
1442 if (err)
1443 goto out_hyp;
1444
1445 return 0;
1446
1447 out_hyp:
1448 teardown_hyp_mode();
1449 out_err:
1450 teardown_common_resources();
1451 return err;
1452 }
1453
1454 /* NOP: Compiling as a module not supported */
kvm_arch_exit(void)1455 void kvm_arch_exit(void)
1456 {
1457 kvm_perf_teardown();
1458 }
1459
arm_init(void)1460 static int arm_init(void)
1461 {
1462 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1463 return rc;
1464 }
1465
1466 module_init(arm_init);
1467