• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18 
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32 #include <kvm/arm_psci.h>
33 
34 #define CREATE_TRACE_POINTS
35 #include "trace.h"
36 
37 #include <asm/uaccess.h>
38 #include <asm/ptrace.h>
39 #include <asm/mman.h>
40 #include <asm/tlbflush.h>
41 #include <asm/cacheflush.h>
42 #include <asm/virt.h>
43 #include <asm/kvm_arm.h>
44 #include <asm/kvm_asm.h>
45 #include <asm/kvm_mmu.h>
46 #include <asm/kvm_emulate.h>
47 #include <asm/kvm_coproc.h>
48 #include <asm/sections.h>
49 
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension	virt");
52 #endif
53 
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56 static unsigned long hyp_default_vectors;
57 
58 /* Per-CPU variable containing the currently running vcpu. */
59 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
60 
61 /* The VMID used in the VTTBR */
62 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
63 static u32 kvm_next_vmid;
64 static unsigned int kvm_vmid_bits __read_mostly;
65 static DEFINE_SPINLOCK(kvm_vmid_lock);
66 
67 static bool vgic_present;
68 
69 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
70 
kvm_arm_set_running_vcpu(struct kvm_vcpu * vcpu)71 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
72 {
73 	BUG_ON(preemptible());
74 	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 }
76 
77 /**
78  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
79  * Must be called from non-preemptible context
80  */
kvm_arm_get_running_vcpu(void)81 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
82 {
83 	BUG_ON(preemptible());
84 	return __this_cpu_read(kvm_arm_running_vcpu);
85 }
86 
87 /**
88  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
89  */
kvm_get_running_vcpus(void)90 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
91 {
92 	return &kvm_arm_running_vcpu;
93 }
94 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99 
kvm_arch_hardware_setup(void)100 int kvm_arch_hardware_setup(void)
101 {
102 	return 0;
103 }
104 
kvm_arch_check_processor_compat(void * rtn)105 void kvm_arch_check_processor_compat(void *rtn)
106 {
107 	*(int *)rtn = 0;
108 }
109 
110 
111 /**
112  * kvm_arch_init_vm - initializes a VM data structure
113  * @kvm:	pointer to the KVM struct
114  */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)115 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
116 {
117 	int ret, cpu;
118 
119 	if (type)
120 		return -EINVAL;
121 
122 	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
123 	if (!kvm->arch.last_vcpu_ran)
124 		return -ENOMEM;
125 
126 	for_each_possible_cpu(cpu)
127 		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
128 
129 	ret = kvm_alloc_stage2_pgd(kvm);
130 	if (ret)
131 		goto out_fail_alloc;
132 
133 	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
134 	if (ret)
135 		goto out_free_stage2_pgd;
136 
137 	kvm_vgic_early_init(kvm);
138 	kvm_timer_init(kvm);
139 
140 	/* Mark the initial VMID generation invalid */
141 	kvm->arch.vmid_gen = 0;
142 
143 	/* The maximum number of VCPUs is limited by the host's GIC model */
144 	kvm->arch.max_vcpus = vgic_present ?
145 				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146 
147 	return ret;
148 out_free_stage2_pgd:
149 	kvm_free_stage2_pgd(kvm);
150 out_fail_alloc:
151 	free_percpu(kvm->arch.last_vcpu_ran);
152 	kvm->arch.last_vcpu_ran = NULL;
153 	return ret;
154 }
155 
kvm_arch_has_vcpu_debugfs(void)156 bool kvm_arch_has_vcpu_debugfs(void)
157 {
158 	return false;
159 }
160 
kvm_arch_create_vcpu_debugfs(struct kvm_vcpu * vcpu)161 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
162 {
163 	return 0;
164 }
165 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)166 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168 	return VM_FAULT_SIGBUS;
169 }
170 
171 
172 /**
173  * kvm_arch_destroy_vm - destroy the VM data structure
174  * @kvm:	pointer to the KVM struct
175  */
kvm_arch_destroy_vm(struct kvm * kvm)176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178 	int i;
179 
180 	free_percpu(kvm->arch.last_vcpu_ran);
181 	kvm->arch.last_vcpu_ran = NULL;
182 
183 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
184 		if (kvm->vcpus[i]) {
185 			kvm_arch_vcpu_free(kvm->vcpus[i]);
186 			kvm->vcpus[i] = NULL;
187 		}
188 	}
189 
190 	kvm_vgic_destroy(kvm);
191 }
192 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)193 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
194 {
195 	int r;
196 	switch (ext) {
197 	case KVM_CAP_IRQCHIP:
198 		r = vgic_present;
199 		break;
200 	case KVM_CAP_IOEVENTFD:
201 	case KVM_CAP_DEVICE_CTRL:
202 	case KVM_CAP_USER_MEMORY:
203 	case KVM_CAP_SYNC_MMU:
204 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
205 	case KVM_CAP_ONE_REG:
206 	case KVM_CAP_ARM_PSCI:
207 	case KVM_CAP_ARM_PSCI_0_2:
208 	case KVM_CAP_READONLY_MEM:
209 	case KVM_CAP_MP_STATE:
210 		r = 1;
211 		break;
212 	case KVM_CAP_COALESCED_MMIO:
213 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
214 		break;
215 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
216 		r = 1;
217 		break;
218 	case KVM_CAP_NR_VCPUS:
219 		r = num_online_cpus();
220 		break;
221 	case KVM_CAP_MAX_VCPUS:
222 		r = KVM_MAX_VCPUS;
223 		break;
224 	default:
225 		r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
226 		break;
227 	}
228 	return r;
229 }
230 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)231 long kvm_arch_dev_ioctl(struct file *filp,
232 			unsigned int ioctl, unsigned long arg)
233 {
234 	return -EINVAL;
235 }
236 
237 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)238 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
239 {
240 	int err;
241 	struct kvm_vcpu *vcpu;
242 
243 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
244 		err = -EBUSY;
245 		goto out;
246 	}
247 
248 	if (id >= kvm->arch.max_vcpus) {
249 		err = -EINVAL;
250 		goto out;
251 	}
252 
253 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
254 	if (!vcpu) {
255 		err = -ENOMEM;
256 		goto out;
257 	}
258 
259 	err = kvm_vcpu_init(vcpu, kvm, id);
260 	if (err)
261 		goto free_vcpu;
262 
263 	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
264 	if (err)
265 		goto vcpu_uninit;
266 
267 	return vcpu;
268 vcpu_uninit:
269 	kvm_vcpu_uninit(vcpu);
270 free_vcpu:
271 	kmem_cache_free(kvm_vcpu_cache, vcpu);
272 out:
273 	return ERR_PTR(err);
274 }
275 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)276 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
277 {
278 	kvm_vgic_vcpu_early_init(vcpu);
279 }
280 
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)281 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
282 {
283 	kvm_mmu_free_memory_caches(vcpu);
284 	kvm_timer_vcpu_terminate(vcpu);
285 	kvm_vgic_vcpu_destroy(vcpu);
286 	kvm_pmu_vcpu_destroy(vcpu);
287 	kvm_vcpu_uninit(vcpu);
288 	kmem_cache_free(kvm_vcpu_cache, vcpu);
289 }
290 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)291 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
292 {
293 	kvm_arch_vcpu_free(vcpu);
294 }
295 
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)296 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
297 {
298 	return kvm_timer_should_fire(vcpu);
299 }
300 
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)301 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
302 {
303 	kvm_timer_schedule(vcpu);
304 }
305 
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)306 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
307 {
308 	kvm_timer_unschedule(vcpu);
309 }
310 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)311 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
312 {
313 	/* Force users to call KVM_ARM_VCPU_INIT */
314 	vcpu->arch.target = -1;
315 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
316 
317 	/* Set up the timer */
318 	kvm_timer_vcpu_init(vcpu);
319 
320 	kvm_arm_reset_debug_ptr(vcpu);
321 
322 	return 0;
323 }
324 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)325 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
326 {
327 	int *last_ran;
328 
329 	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
330 
331 	/*
332 	 * We might get preempted before the vCPU actually runs, but
333 	 * over-invalidation doesn't affect correctness.
334 	 */
335 	if (*last_ran != vcpu->vcpu_id) {
336 		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
337 		*last_ran = vcpu->vcpu_id;
338 	}
339 
340 	vcpu->cpu = cpu;
341 	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
342 
343 	kvm_arm_set_running_vcpu(vcpu);
344 }
345 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)346 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
347 {
348 	/*
349 	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
350 	 * if the vcpu is no longer assigned to a cpu.  This is used for the
351 	 * optimized make_all_cpus_request path.
352 	 */
353 	vcpu->cpu = -1;
354 
355 	kvm_arm_set_running_vcpu(NULL);
356 	kvm_timer_vcpu_put(vcpu);
357 }
358 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)359 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
360 				    struct kvm_mp_state *mp_state)
361 {
362 	if (vcpu->arch.power_off)
363 		mp_state->mp_state = KVM_MP_STATE_STOPPED;
364 	else
365 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
366 
367 	return 0;
368 }
369 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)370 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
371 				    struct kvm_mp_state *mp_state)
372 {
373 	switch (mp_state->mp_state) {
374 	case KVM_MP_STATE_RUNNABLE:
375 		vcpu->arch.power_off = false;
376 		break;
377 	case KVM_MP_STATE_STOPPED:
378 		vcpu->arch.power_off = true;
379 		break;
380 	default:
381 		return -EINVAL;
382 	}
383 
384 	return 0;
385 }
386 
387 /**
388  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
389  * @v:		The VCPU pointer
390  *
391  * If the guest CPU is not waiting for interrupts or an interrupt line is
392  * asserted, the CPU is by definition runnable.
393  */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)394 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
395 {
396 	return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
397 		&& !v->arch.power_off && !v->arch.pause);
398 }
399 
400 /* Just ensure a guest exit from a particular CPU */
exit_vm_noop(void * info)401 static void exit_vm_noop(void *info)
402 {
403 }
404 
force_vm_exit(const cpumask_t * mask)405 void force_vm_exit(const cpumask_t *mask)
406 {
407 	preempt_disable();
408 	smp_call_function_many(mask, exit_vm_noop, NULL, true);
409 	preempt_enable();
410 }
411 
412 /**
413  * need_new_vmid_gen - check that the VMID is still valid
414  * @kvm: The VM's VMID to check
415  *
416  * return true if there is a new generation of VMIDs being used
417  *
418  * The hardware supports only 256 values with the value zero reserved for the
419  * host, so we check if an assigned value belongs to a previous generation,
420  * which which requires us to assign a new value. If we're the first to use a
421  * VMID for the new generation, we must flush necessary caches and TLBs on all
422  * CPUs.
423  */
need_new_vmid_gen(struct kvm * kvm)424 static bool need_new_vmid_gen(struct kvm *kvm)
425 {
426 	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
427 }
428 
429 /**
430  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
431  * @kvm	The guest that we are about to run
432  *
433  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
434  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
435  * caches and TLBs.
436  */
update_vttbr(struct kvm * kvm)437 static void update_vttbr(struct kvm *kvm)
438 {
439 	phys_addr_t pgd_phys;
440 	u64 vmid;
441 
442 	if (!need_new_vmid_gen(kvm))
443 		return;
444 
445 	spin_lock(&kvm_vmid_lock);
446 
447 	/*
448 	 * We need to re-check the vmid_gen here to ensure that if another vcpu
449 	 * already allocated a valid vmid for this vm, then this vcpu should
450 	 * use the same vmid.
451 	 */
452 	if (!need_new_vmid_gen(kvm)) {
453 		spin_unlock(&kvm_vmid_lock);
454 		return;
455 	}
456 
457 	/* First user of a new VMID generation? */
458 	if (unlikely(kvm_next_vmid == 0)) {
459 		atomic64_inc(&kvm_vmid_gen);
460 		kvm_next_vmid = 1;
461 
462 		/*
463 		 * On SMP we know no other CPUs can use this CPU's or each
464 		 * other's VMID after force_vm_exit returns since the
465 		 * kvm_vmid_lock blocks them from reentry to the guest.
466 		 */
467 		force_vm_exit(cpu_all_mask);
468 		/*
469 		 * Now broadcast TLB + ICACHE invalidation over the inner
470 		 * shareable domain to make sure all data structures are
471 		 * clean.
472 		 */
473 		kvm_call_hyp(__kvm_flush_vm_context);
474 	}
475 
476 	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
477 	kvm->arch.vmid = kvm_next_vmid;
478 	kvm_next_vmid++;
479 	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
480 
481 	/* update vttbr to be used with the new vmid */
482 	pgd_phys = virt_to_phys(kvm->arch.pgd);
483 	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
484 	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
485 	kvm->arch.vttbr = pgd_phys | vmid;
486 
487 	spin_unlock(&kvm_vmid_lock);
488 }
489 
kvm_vcpu_first_run_init(struct kvm_vcpu * vcpu)490 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
491 {
492 	struct kvm *kvm = vcpu->kvm;
493 	int ret = 0;
494 
495 	if (likely(vcpu->arch.has_run_once))
496 		return 0;
497 
498 	vcpu->arch.has_run_once = true;
499 
500 	/*
501 	 * Map the VGIC hardware resources before running a vcpu the first
502 	 * time on this VM.
503 	 */
504 	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
505 		ret = kvm_vgic_map_resources(kvm);
506 		if (ret)
507 			return ret;
508 	}
509 
510 	/*
511 	 * Enable the arch timers only if we have an in-kernel VGIC
512 	 * and it has been properly initialized, since we cannot handle
513 	 * interrupts from the virtual timer with a userspace gic.
514 	 */
515 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
516 		ret = kvm_timer_enable(vcpu);
517 
518 	return ret;
519 }
520 
kvm_arch_intc_initialized(struct kvm * kvm)521 bool kvm_arch_intc_initialized(struct kvm *kvm)
522 {
523 	return vgic_initialized(kvm);
524 }
525 
kvm_arm_halt_guest(struct kvm * kvm)526 void kvm_arm_halt_guest(struct kvm *kvm)
527 {
528 	int i;
529 	struct kvm_vcpu *vcpu;
530 
531 	kvm_for_each_vcpu(i, vcpu, kvm)
532 		vcpu->arch.pause = true;
533 	kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
534 }
535 
kvm_arm_halt_vcpu(struct kvm_vcpu * vcpu)536 void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
537 {
538 	vcpu->arch.pause = true;
539 	kvm_vcpu_kick(vcpu);
540 }
541 
kvm_arm_resume_vcpu(struct kvm_vcpu * vcpu)542 void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
543 {
544 	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
545 
546 	vcpu->arch.pause = false;
547 	swake_up(wq);
548 }
549 
kvm_arm_resume_guest(struct kvm * kvm)550 void kvm_arm_resume_guest(struct kvm *kvm)
551 {
552 	int i;
553 	struct kvm_vcpu *vcpu;
554 
555 	kvm_for_each_vcpu(i, vcpu, kvm)
556 		kvm_arm_resume_vcpu(vcpu);
557 }
558 
vcpu_sleep(struct kvm_vcpu * vcpu)559 static void vcpu_sleep(struct kvm_vcpu *vcpu)
560 {
561 	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
562 
563 	swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
564 				       (!vcpu->arch.pause)));
565 }
566 
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)567 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
568 {
569 	return vcpu->arch.target >= 0;
570 }
571 
572 /**
573  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
574  * @vcpu:	The VCPU pointer
575  * @run:	The kvm_run structure pointer used for userspace state exchange
576  *
577  * This function is called through the VCPU_RUN ioctl called from user space. It
578  * will execute VM code in a loop until the time slice for the process is used
579  * or some emulation is needed from user space in which case the function will
580  * return with return value 0 and with the kvm_run structure filled in with the
581  * required data for the requested emulation.
582  */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * run)583 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
584 {
585 	int ret;
586 	sigset_t sigsaved;
587 
588 	if (unlikely(!kvm_vcpu_initialized(vcpu)))
589 		return -ENOEXEC;
590 
591 	ret = kvm_vcpu_first_run_init(vcpu);
592 	if (ret)
593 		return ret;
594 
595 	if (run->exit_reason == KVM_EXIT_MMIO) {
596 		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
597 		if (ret)
598 			return ret;
599 	}
600 
601 	if (vcpu->sigset_active)
602 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
603 
604 	ret = 1;
605 	run->exit_reason = KVM_EXIT_UNKNOWN;
606 	while (ret > 0) {
607 		/*
608 		 * Check conditions before entering the guest
609 		 */
610 		cond_resched();
611 
612 		update_vttbr(vcpu->kvm);
613 
614 		if (vcpu->arch.power_off || vcpu->arch.pause)
615 			vcpu_sleep(vcpu);
616 
617 		/*
618 		 * Preparing the interrupts to be injected also
619 		 * involves poking the GIC, which must be done in a
620 		 * non-preemptible context.
621 		 */
622 		preempt_disable();
623 		kvm_pmu_flush_hwstate(vcpu);
624 		kvm_timer_flush_hwstate(vcpu);
625 		kvm_vgic_flush_hwstate(vcpu);
626 
627 		local_irq_disable();
628 
629 		/*
630 		 * Re-check atomic conditions
631 		 */
632 		if (signal_pending(current)) {
633 			ret = -EINTR;
634 			run->exit_reason = KVM_EXIT_INTR;
635 		}
636 
637 		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
638 			vcpu->arch.power_off || vcpu->arch.pause) {
639 			local_irq_enable();
640 			kvm_pmu_sync_hwstate(vcpu);
641 			kvm_timer_sync_hwstate(vcpu);
642 			kvm_vgic_sync_hwstate(vcpu);
643 			preempt_enable();
644 			continue;
645 		}
646 
647 		kvm_arm_setup_debug(vcpu);
648 
649 		/**************************************************************
650 		 * Enter the guest
651 		 */
652 		trace_kvm_entry(*vcpu_pc(vcpu));
653 		guest_enter_irqoff();
654 		vcpu->mode = IN_GUEST_MODE;
655 
656 		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
657 
658 		vcpu->mode = OUTSIDE_GUEST_MODE;
659 		vcpu->stat.exits++;
660 		/*
661 		 * Back from guest
662 		 *************************************************************/
663 
664 		kvm_arm_clear_debug(vcpu);
665 
666 		/*
667 		 * We may have taken a host interrupt in HYP mode (ie
668 		 * while executing the guest). This interrupt is still
669 		 * pending, as we haven't serviced it yet!
670 		 *
671 		 * We're now back in SVC mode, with interrupts
672 		 * disabled.  Enabling the interrupts now will have
673 		 * the effect of taking the interrupt again, in SVC
674 		 * mode this time.
675 		 */
676 		local_irq_enable();
677 
678 		/*
679 		 * We do local_irq_enable() before calling guest_exit() so
680 		 * that if a timer interrupt hits while running the guest we
681 		 * account that tick as being spent in the guest.  We enable
682 		 * preemption after calling guest_exit() so that if we get
683 		 * preempted we make sure ticks after that is not counted as
684 		 * guest time.
685 		 */
686 		guest_exit();
687 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
688 
689 		/*
690 		 * We must sync the PMU and timer state before the vgic state so
691 		 * that the vgic can properly sample the updated state of the
692 		 * interrupt line.
693 		 */
694 		kvm_pmu_sync_hwstate(vcpu);
695 		kvm_timer_sync_hwstate(vcpu);
696 
697 		kvm_vgic_sync_hwstate(vcpu);
698 
699 		preempt_enable();
700 
701 		ret = handle_exit(vcpu, run, ret);
702 	}
703 
704 	if (vcpu->sigset_active)
705 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
706 	return ret;
707 }
708 
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)709 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
710 {
711 	int bit_index;
712 	bool set;
713 	unsigned long *ptr;
714 
715 	if (number == KVM_ARM_IRQ_CPU_IRQ)
716 		bit_index = __ffs(HCR_VI);
717 	else /* KVM_ARM_IRQ_CPU_FIQ */
718 		bit_index = __ffs(HCR_VF);
719 
720 	ptr = (unsigned long *)&vcpu->arch.irq_lines;
721 	if (level)
722 		set = test_and_set_bit(bit_index, ptr);
723 	else
724 		set = test_and_clear_bit(bit_index, ptr);
725 
726 	/*
727 	 * If we didn't change anything, no need to wake up or kick other CPUs
728 	 */
729 	if (set == level)
730 		return 0;
731 
732 	/*
733 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
734 	 * trigger a world-switch round on the running physical CPU to set the
735 	 * virtual IRQ/FIQ fields in the HCR appropriately.
736 	 */
737 	kvm_vcpu_kick(vcpu);
738 
739 	return 0;
740 }
741 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)742 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
743 			  bool line_status)
744 {
745 	u32 irq = irq_level->irq;
746 	unsigned int irq_type, vcpu_idx, irq_num;
747 	int nrcpus = atomic_read(&kvm->online_vcpus);
748 	struct kvm_vcpu *vcpu = NULL;
749 	bool level = irq_level->level;
750 
751 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
752 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
753 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
754 
755 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
756 
757 	switch (irq_type) {
758 	case KVM_ARM_IRQ_TYPE_CPU:
759 		if (irqchip_in_kernel(kvm))
760 			return -ENXIO;
761 
762 		if (vcpu_idx >= nrcpus)
763 			return -EINVAL;
764 
765 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
766 		if (!vcpu)
767 			return -EINVAL;
768 
769 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
770 			return -EINVAL;
771 
772 		return vcpu_interrupt_line(vcpu, irq_num, level);
773 	case KVM_ARM_IRQ_TYPE_PPI:
774 		if (!irqchip_in_kernel(kvm))
775 			return -ENXIO;
776 
777 		if (vcpu_idx >= nrcpus)
778 			return -EINVAL;
779 
780 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
781 		if (!vcpu)
782 			return -EINVAL;
783 
784 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
785 			return -EINVAL;
786 
787 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
788 	case KVM_ARM_IRQ_TYPE_SPI:
789 		if (!irqchip_in_kernel(kvm))
790 			return -ENXIO;
791 
792 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
793 			return -EINVAL;
794 
795 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
796 	}
797 
798 	return -EINVAL;
799 }
800 
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)801 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
802 			       const struct kvm_vcpu_init *init)
803 {
804 	unsigned int i;
805 	int phys_target = kvm_target_cpu();
806 
807 	if (init->target != phys_target)
808 		return -EINVAL;
809 
810 	/*
811 	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
812 	 * use the same target.
813 	 */
814 	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
815 		return -EINVAL;
816 
817 	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
818 	for (i = 0; i < sizeof(init->features) * 8; i++) {
819 		bool set = (init->features[i / 32] & (1 << (i % 32)));
820 
821 		if (set && i >= KVM_VCPU_MAX_FEATURES)
822 			return -ENOENT;
823 
824 		/*
825 		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
826 		 * use the same feature set.
827 		 */
828 		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
829 		    test_bit(i, vcpu->arch.features) != set)
830 			return -EINVAL;
831 
832 		if (set)
833 			set_bit(i, vcpu->arch.features);
834 	}
835 
836 	vcpu->arch.target = phys_target;
837 
838 	/* Now we know what it is, we can reset it. */
839 	return kvm_reset_vcpu(vcpu);
840 }
841 
842 
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)843 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
844 					 struct kvm_vcpu_init *init)
845 {
846 	int ret;
847 
848 	ret = kvm_vcpu_set_target(vcpu, init);
849 	if (ret)
850 		return ret;
851 
852 	/*
853 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
854 	 * guest MMU is turned off and flush the caches as needed.
855 	 */
856 	if (vcpu->arch.has_run_once)
857 		stage2_unmap_vm(vcpu->kvm);
858 
859 	vcpu_reset_hcr(vcpu);
860 
861 	/*
862 	 * Handle the "start in power-off" case.
863 	 */
864 	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
865 		vcpu->arch.power_off = true;
866 	else
867 		vcpu->arch.power_off = false;
868 
869 	return 0;
870 }
871 
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)872 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
873 				 struct kvm_device_attr *attr)
874 {
875 	int ret = -ENXIO;
876 
877 	switch (attr->group) {
878 	default:
879 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
880 		break;
881 	}
882 
883 	return ret;
884 }
885 
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)886 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
887 				 struct kvm_device_attr *attr)
888 {
889 	int ret = -ENXIO;
890 
891 	switch (attr->group) {
892 	default:
893 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
894 		break;
895 	}
896 
897 	return ret;
898 }
899 
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)900 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
901 				 struct kvm_device_attr *attr)
902 {
903 	int ret = -ENXIO;
904 
905 	switch (attr->group) {
906 	default:
907 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
908 		break;
909 	}
910 
911 	return ret;
912 }
913 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)914 long kvm_arch_vcpu_ioctl(struct file *filp,
915 			 unsigned int ioctl, unsigned long arg)
916 {
917 	struct kvm_vcpu *vcpu = filp->private_data;
918 	void __user *argp = (void __user *)arg;
919 	struct kvm_device_attr attr;
920 
921 	switch (ioctl) {
922 	case KVM_ARM_VCPU_INIT: {
923 		struct kvm_vcpu_init init;
924 
925 		if (copy_from_user(&init, argp, sizeof(init)))
926 			return -EFAULT;
927 
928 		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
929 	}
930 	case KVM_SET_ONE_REG:
931 	case KVM_GET_ONE_REG: {
932 		struct kvm_one_reg reg;
933 
934 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
935 			return -ENOEXEC;
936 
937 		if (copy_from_user(&reg, argp, sizeof(reg)))
938 			return -EFAULT;
939 		if (ioctl == KVM_SET_ONE_REG)
940 			return kvm_arm_set_reg(vcpu, &reg);
941 		else
942 			return kvm_arm_get_reg(vcpu, &reg);
943 	}
944 	case KVM_GET_REG_LIST: {
945 		struct kvm_reg_list __user *user_list = argp;
946 		struct kvm_reg_list reg_list;
947 		unsigned n;
948 
949 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
950 			return -ENOEXEC;
951 
952 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
953 			return -EFAULT;
954 		n = reg_list.n;
955 		reg_list.n = kvm_arm_num_regs(vcpu);
956 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
957 			return -EFAULT;
958 		if (n < reg_list.n)
959 			return -E2BIG;
960 		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
961 	}
962 	case KVM_SET_DEVICE_ATTR: {
963 		if (copy_from_user(&attr, argp, sizeof(attr)))
964 			return -EFAULT;
965 		return kvm_arm_vcpu_set_attr(vcpu, &attr);
966 	}
967 	case KVM_GET_DEVICE_ATTR: {
968 		if (copy_from_user(&attr, argp, sizeof(attr)))
969 			return -EFAULT;
970 		return kvm_arm_vcpu_get_attr(vcpu, &attr);
971 	}
972 	case KVM_HAS_DEVICE_ATTR: {
973 		if (copy_from_user(&attr, argp, sizeof(attr)))
974 			return -EFAULT;
975 		return kvm_arm_vcpu_has_attr(vcpu, &attr);
976 	}
977 	default:
978 		return -EINVAL;
979 	}
980 }
981 
982 /**
983  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
984  * @kvm: kvm instance
985  * @log: slot id and address to which we copy the log
986  *
987  * Steps 1-4 below provide general overview of dirty page logging. See
988  * kvm_get_dirty_log_protect() function description for additional details.
989  *
990  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
991  * always flush the TLB (step 4) even if previous step failed  and the dirty
992  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
993  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
994  * writes will be marked dirty for next log read.
995  *
996  *   1. Take a snapshot of the bit and clear it if needed.
997  *   2. Write protect the corresponding page.
998  *   3. Copy the snapshot to the userspace.
999  *   4. Flush TLB's if needed.
1000  */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)1001 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1002 {
1003 	bool is_dirty = false;
1004 	int r;
1005 
1006 	mutex_lock(&kvm->slots_lock);
1007 
1008 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1009 
1010 	if (is_dirty)
1011 		kvm_flush_remote_tlbs(kvm);
1012 
1013 	mutex_unlock(&kvm->slots_lock);
1014 	return r;
1015 }
1016 
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1017 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1018 					struct kvm_arm_device_addr *dev_addr)
1019 {
1020 	unsigned long dev_id, type;
1021 
1022 	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1023 		KVM_ARM_DEVICE_ID_SHIFT;
1024 	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1025 		KVM_ARM_DEVICE_TYPE_SHIFT;
1026 
1027 	switch (dev_id) {
1028 	case KVM_ARM_DEVICE_VGIC_V2:
1029 		if (!vgic_present)
1030 			return -ENXIO;
1031 		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1032 	default:
1033 		return -ENODEV;
1034 	}
1035 }
1036 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1037 long kvm_arch_vm_ioctl(struct file *filp,
1038 		       unsigned int ioctl, unsigned long arg)
1039 {
1040 	struct kvm *kvm = filp->private_data;
1041 	void __user *argp = (void __user *)arg;
1042 
1043 	switch (ioctl) {
1044 	case KVM_CREATE_IRQCHIP: {
1045 		int ret;
1046 		if (!vgic_present)
1047 			return -ENXIO;
1048 		mutex_lock(&kvm->lock);
1049 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1050 		mutex_unlock(&kvm->lock);
1051 		return ret;
1052 	}
1053 	case KVM_ARM_SET_DEVICE_ADDR: {
1054 		struct kvm_arm_device_addr dev_addr;
1055 
1056 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1057 			return -EFAULT;
1058 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1059 	}
1060 	case KVM_ARM_PREFERRED_TARGET: {
1061 		int err;
1062 		struct kvm_vcpu_init init;
1063 
1064 		err = kvm_vcpu_preferred_target(&init);
1065 		if (err)
1066 			return err;
1067 
1068 		if (copy_to_user(argp, &init, sizeof(init)))
1069 			return -EFAULT;
1070 
1071 		return 0;
1072 	}
1073 	default:
1074 		return -EINVAL;
1075 	}
1076 }
1077 
cpu_init_hyp_mode(void * dummy)1078 static void cpu_init_hyp_mode(void *dummy)
1079 {
1080 	phys_addr_t pgd_ptr;
1081 	unsigned long hyp_stack_ptr;
1082 	unsigned long stack_page;
1083 	unsigned long vector_ptr;
1084 
1085 	/* Switch from the HYP stub to our own HYP init vector */
1086 	__hyp_set_vectors(kvm_get_idmap_vector());
1087 
1088 	pgd_ptr = kvm_mmu_get_httbr();
1089 	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1090 	hyp_stack_ptr = stack_page + PAGE_SIZE;
1091 	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1092 
1093 	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1094 	__cpu_init_stage2();
1095 
1096 	kvm_arm_init_debug();
1097 }
1098 
cpu_hyp_reinit(void)1099 static void cpu_hyp_reinit(void)
1100 {
1101 	if (is_kernel_in_hyp_mode()) {
1102 		/*
1103 		 * __cpu_init_stage2() is safe to call even if the PM
1104 		 * event was cancelled before the CPU was reset.
1105 		 */
1106 		__cpu_init_stage2();
1107 	} else {
1108 		if (__hyp_get_vectors() == hyp_default_vectors)
1109 			cpu_init_hyp_mode(NULL);
1110 	}
1111 }
1112 
cpu_hyp_reset(void)1113 static void cpu_hyp_reset(void)
1114 {
1115 	if (!is_kernel_in_hyp_mode())
1116 		__cpu_reset_hyp_mode(hyp_default_vectors,
1117 				     kvm_get_idmap_start());
1118 }
1119 
_kvm_arch_hardware_enable(void * discard)1120 static void _kvm_arch_hardware_enable(void *discard)
1121 {
1122 	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1123 		cpu_hyp_reinit();
1124 		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1125 	}
1126 }
1127 
kvm_arch_hardware_enable(void)1128 int kvm_arch_hardware_enable(void)
1129 {
1130 	_kvm_arch_hardware_enable(NULL);
1131 	return 0;
1132 }
1133 
_kvm_arch_hardware_disable(void * discard)1134 static void _kvm_arch_hardware_disable(void *discard)
1135 {
1136 	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1137 		cpu_hyp_reset();
1138 		__this_cpu_write(kvm_arm_hardware_enabled, 0);
1139 	}
1140 }
1141 
kvm_arch_hardware_disable(void)1142 void kvm_arch_hardware_disable(void)
1143 {
1144 	_kvm_arch_hardware_disable(NULL);
1145 }
1146 
1147 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1148 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1149 				    unsigned long cmd,
1150 				    void *v)
1151 {
1152 	/*
1153 	 * kvm_arm_hardware_enabled is left with its old value over
1154 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1155 	 * re-enable hyp.
1156 	 */
1157 	switch (cmd) {
1158 	case CPU_PM_ENTER:
1159 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1160 			/*
1161 			 * don't update kvm_arm_hardware_enabled here
1162 			 * so that the hardware will be re-enabled
1163 			 * when we resume. See below.
1164 			 */
1165 			cpu_hyp_reset();
1166 
1167 		return NOTIFY_OK;
1168 	case CPU_PM_ENTER_FAILED:
1169 	case CPU_PM_EXIT:
1170 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1171 			/* The hardware was enabled before suspend. */
1172 			cpu_hyp_reinit();
1173 
1174 		return NOTIFY_OK;
1175 
1176 	default:
1177 		return NOTIFY_DONE;
1178 	}
1179 }
1180 
1181 static struct notifier_block hyp_init_cpu_pm_nb = {
1182 	.notifier_call = hyp_init_cpu_pm_notifier,
1183 };
1184 
hyp_cpu_pm_init(void)1185 static void __init hyp_cpu_pm_init(void)
1186 {
1187 	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1188 }
hyp_cpu_pm_exit(void)1189 static void __init hyp_cpu_pm_exit(void)
1190 {
1191 	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1192 }
1193 #else
hyp_cpu_pm_init(void)1194 static inline void hyp_cpu_pm_init(void)
1195 {
1196 }
hyp_cpu_pm_exit(void)1197 static inline void hyp_cpu_pm_exit(void)
1198 {
1199 }
1200 #endif
1201 
teardown_common_resources(void)1202 static void teardown_common_resources(void)
1203 {
1204 	free_percpu(kvm_host_cpu_state);
1205 }
1206 
init_common_resources(void)1207 static int init_common_resources(void)
1208 {
1209 	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1210 	if (!kvm_host_cpu_state) {
1211 		kvm_err("Cannot allocate host CPU state\n");
1212 		return -ENOMEM;
1213 	}
1214 
1215 	/* set size of VMID supported by CPU */
1216 	kvm_vmid_bits = kvm_get_vmid_bits();
1217 	kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1218 
1219 	return 0;
1220 }
1221 
init_subsystems(void)1222 static int init_subsystems(void)
1223 {
1224 	int err = 0;
1225 
1226 	/*
1227 	 * Enable hardware so that subsystem initialisation can access EL2.
1228 	 */
1229 	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1230 
1231 	/*
1232 	 * Register CPU lower-power notifier
1233 	 */
1234 	hyp_cpu_pm_init();
1235 
1236 	/*
1237 	 * Init HYP view of VGIC
1238 	 */
1239 	err = kvm_vgic_hyp_init();
1240 	switch (err) {
1241 	case 0:
1242 		vgic_present = true;
1243 		break;
1244 	case -ENODEV:
1245 	case -ENXIO:
1246 		vgic_present = false;
1247 		err = 0;
1248 		break;
1249 	default:
1250 		goto out;
1251 	}
1252 
1253 	/*
1254 	 * Init HYP architected timer support
1255 	 */
1256 	err = kvm_timer_hyp_init();
1257 	if (err)
1258 		goto out;
1259 
1260 	kvm_perf_init();
1261 	kvm_coproc_table_init();
1262 
1263 out:
1264 	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1265 
1266 	return err;
1267 }
1268 
teardown_hyp_mode(void)1269 static void teardown_hyp_mode(void)
1270 {
1271 	int cpu;
1272 
1273 	if (is_kernel_in_hyp_mode())
1274 		return;
1275 
1276 	free_hyp_pgds();
1277 	for_each_possible_cpu(cpu)
1278 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1279 	hyp_cpu_pm_exit();
1280 }
1281 
init_vhe_mode(void)1282 static int init_vhe_mode(void)
1283 {
1284 	kvm_info("VHE mode initialized successfully\n");
1285 	return 0;
1286 }
1287 
1288 /**
1289  * Inits Hyp-mode on all online CPUs
1290  */
init_hyp_mode(void)1291 static int init_hyp_mode(void)
1292 {
1293 	int cpu;
1294 	int err = 0;
1295 
1296 	/*
1297 	 * Allocate Hyp PGD and setup Hyp identity mapping
1298 	 */
1299 	err = kvm_mmu_init();
1300 	if (err)
1301 		goto out_err;
1302 
1303 	/*
1304 	 * It is probably enough to obtain the default on one
1305 	 * CPU. It's unlikely to be different on the others.
1306 	 */
1307 	hyp_default_vectors = __hyp_get_vectors();
1308 
1309 	/*
1310 	 * Allocate stack pages for Hypervisor-mode
1311 	 */
1312 	for_each_possible_cpu(cpu) {
1313 		unsigned long stack_page;
1314 
1315 		stack_page = __get_free_page(GFP_KERNEL);
1316 		if (!stack_page) {
1317 			err = -ENOMEM;
1318 			goto out_err;
1319 		}
1320 
1321 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1322 	}
1323 
1324 	/*
1325 	 * Map the Hyp-code called directly from the host
1326 	 */
1327 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1328 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1329 	if (err) {
1330 		kvm_err("Cannot map world-switch code\n");
1331 		goto out_err;
1332 	}
1333 
1334 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1335 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1336 	if (err) {
1337 		kvm_err("Cannot map rodata section\n");
1338 		goto out_err;
1339 	}
1340 
1341 	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1342 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1343 	if (err) {
1344 		kvm_err("Cannot map bss section\n");
1345 		goto out_err;
1346 	}
1347 
1348 
1349 	err = kvm_map_vectors();
1350 	if (err) {
1351 		kvm_err("Cannot map vectors\n");
1352 		goto out_err;
1353 	}
1354 
1355 	/*
1356 	 * Map the Hyp stack pages
1357 	 */
1358 	for_each_possible_cpu(cpu) {
1359 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1360 		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1361 					  PAGE_HYP);
1362 
1363 		if (err) {
1364 			kvm_err("Cannot map hyp stack\n");
1365 			goto out_err;
1366 		}
1367 	}
1368 
1369 	for_each_possible_cpu(cpu) {
1370 		kvm_cpu_context_t *cpu_ctxt;
1371 
1372 		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1373 		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1374 
1375 		if (err) {
1376 			kvm_err("Cannot map host CPU state: %d\n", err);
1377 			goto out_err;
1378 		}
1379 	}
1380 
1381 	kvm_info("Hyp mode initialized successfully\n");
1382 
1383 	return 0;
1384 
1385 out_err:
1386 	teardown_hyp_mode();
1387 	kvm_err("error initializing Hyp mode: %d\n", err);
1388 	return err;
1389 }
1390 
check_kvm_target_cpu(void * ret)1391 static void check_kvm_target_cpu(void *ret)
1392 {
1393 	*(int *)ret = kvm_target_cpu();
1394 }
1395 
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)1396 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1397 {
1398 	struct kvm_vcpu *vcpu;
1399 	int i;
1400 
1401 	mpidr &= MPIDR_HWID_BITMASK;
1402 	kvm_for_each_vcpu(i, vcpu, kvm) {
1403 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1404 			return vcpu;
1405 	}
1406 	return NULL;
1407 }
1408 
1409 /**
1410  * Initialize Hyp-mode and memory mappings on all CPUs.
1411  */
kvm_arch_init(void * opaque)1412 int kvm_arch_init(void *opaque)
1413 {
1414 	int err;
1415 	int ret, cpu;
1416 
1417 	if (!is_hyp_mode_available()) {
1418 		kvm_err("HYP mode not available\n");
1419 		return -ENODEV;
1420 	}
1421 
1422 	for_each_online_cpu(cpu) {
1423 		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1424 		if (ret < 0) {
1425 			kvm_err("Error, CPU %d not supported!\n", cpu);
1426 			return -ENODEV;
1427 		}
1428 	}
1429 
1430 	err = init_common_resources();
1431 	if (err)
1432 		return err;
1433 
1434 	if (is_kernel_in_hyp_mode())
1435 		err = init_vhe_mode();
1436 	else
1437 		err = init_hyp_mode();
1438 	if (err)
1439 		goto out_err;
1440 
1441 	err = init_subsystems();
1442 	if (err)
1443 		goto out_hyp;
1444 
1445 	return 0;
1446 
1447 out_hyp:
1448 	teardown_hyp_mode();
1449 out_err:
1450 	teardown_common_resources();
1451 	return err;
1452 }
1453 
1454 /* NOP: Compiling as a module not supported */
kvm_arch_exit(void)1455 void kvm_arch_exit(void)
1456 {
1457 	kvm_perf_teardown();
1458 }
1459 
arm_init(void)1460 static int arm_init(void)
1461 {
1462 	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1463 	return rc;
1464 }
1465 
1466 module_init(arm_init);
1467