• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (C) 2001-2006 Storlink, Corp.
3  *  Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  */
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/io.h>
13 #include <mach/hardware.h>
14 #include <mach/global_reg.h>
15 #include <asm/mach/time.h>
16 #include <linux/clockchips.h>
17 #include <linux/clocksource.h>
18 #include <linux/sched_clock.h>
19 
20 /*
21  * Register definitions for the timers
22  */
23 
24 #define TIMER1_BASE		GEMINI_TIMER_BASE
25 #define TIMER2_BASE		(GEMINI_TIMER_BASE + 0x10)
26 #define TIMER3_BASE		(GEMINI_TIMER_BASE + 0x20)
27 
28 #define TIMER_COUNT(BASE)	(IO_ADDRESS(BASE) + 0x00)
29 #define TIMER_LOAD(BASE)	(IO_ADDRESS(BASE) + 0x04)
30 #define TIMER_MATCH1(BASE)	(IO_ADDRESS(BASE) + 0x08)
31 #define TIMER_MATCH2(BASE)	(IO_ADDRESS(BASE) + 0x0C)
32 #define TIMER_CR		(IO_ADDRESS(GEMINI_TIMER_BASE) + 0x30)
33 #define TIMER_INTR_STATE	(IO_ADDRESS(GEMINI_TIMER_BASE) + 0x34)
34 #define TIMER_INTR_MASK		(IO_ADDRESS(GEMINI_TIMER_BASE) + 0x38)
35 
36 #define TIMER_1_CR_ENABLE	(1 << 0)
37 #define TIMER_1_CR_CLOCK	(1 << 1)
38 #define TIMER_1_CR_INT		(1 << 2)
39 #define TIMER_2_CR_ENABLE	(1 << 3)
40 #define TIMER_2_CR_CLOCK	(1 << 4)
41 #define TIMER_2_CR_INT		(1 << 5)
42 #define TIMER_3_CR_ENABLE	(1 << 6)
43 #define TIMER_3_CR_CLOCK	(1 << 7)
44 #define TIMER_3_CR_INT		(1 << 8)
45 #define TIMER_1_CR_UPDOWN	(1 << 9)
46 #define TIMER_2_CR_UPDOWN	(1 << 10)
47 #define TIMER_3_CR_UPDOWN	(1 << 11)
48 #define TIMER_DEFAULT_FLAGS	(TIMER_1_CR_UPDOWN | \
49 				 TIMER_3_CR_ENABLE | \
50 				 TIMER_3_CR_UPDOWN)
51 
52 #define TIMER_1_INT_MATCH1	(1 << 0)
53 #define TIMER_1_INT_MATCH2	(1 << 1)
54 #define TIMER_1_INT_OVERFLOW	(1 << 2)
55 #define TIMER_2_INT_MATCH1	(1 << 3)
56 #define TIMER_2_INT_MATCH2	(1 << 4)
57 #define TIMER_2_INT_OVERFLOW	(1 << 5)
58 #define TIMER_3_INT_MATCH1	(1 << 6)
59 #define TIMER_3_INT_MATCH2	(1 << 7)
60 #define TIMER_3_INT_OVERFLOW	(1 << 8)
61 #define TIMER_INT_ALL_MASK	0x1ff
62 
63 
64 static unsigned int tick_rate;
65 
gemini_read_sched_clock(void)66 static u64 notrace gemini_read_sched_clock(void)
67 {
68 	return readl(TIMER_COUNT(TIMER3_BASE));
69 }
70 
gemini_timer_set_next_event(unsigned long cycles,struct clock_event_device * evt)71 static int gemini_timer_set_next_event(unsigned long cycles,
72 				       struct clock_event_device *evt)
73 {
74 	u32 cr;
75 
76 	/* Setup the match register */
77 	cr = readl(TIMER_COUNT(TIMER1_BASE));
78 	writel(cr + cycles, TIMER_MATCH1(TIMER1_BASE));
79 	if (readl(TIMER_COUNT(TIMER1_BASE)) - cr > cycles)
80 		return -ETIME;
81 
82 	return 0;
83 }
84 
gemini_timer_shutdown(struct clock_event_device * evt)85 static int gemini_timer_shutdown(struct clock_event_device *evt)
86 {
87 	u32 cr;
88 
89 	/*
90 	 * Disable also for oneshot: the set_next() call will arm the timer
91 	 * instead.
92 	 */
93 	/* Stop timer and interrupt. */
94 	cr = readl(TIMER_CR);
95 	cr &= ~(TIMER_1_CR_ENABLE | TIMER_1_CR_INT);
96 	writel(cr, TIMER_CR);
97 
98 	/* Setup counter start from 0 */
99 	writel(0, TIMER_COUNT(TIMER1_BASE));
100 	writel(0, TIMER_LOAD(TIMER1_BASE));
101 
102 	/* enable interrupt */
103 	cr = readl(TIMER_INTR_MASK);
104 	cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
105 	cr |= TIMER_1_INT_MATCH1;
106 	writel(cr, TIMER_INTR_MASK);
107 
108 	/* start the timer */
109 	cr = readl(TIMER_CR);
110 	cr |= TIMER_1_CR_ENABLE;
111 	writel(cr, TIMER_CR);
112 
113 	return 0;
114 }
115 
gemini_timer_set_periodic(struct clock_event_device * evt)116 static int gemini_timer_set_periodic(struct clock_event_device *evt)
117 {
118 	u32 period = DIV_ROUND_CLOSEST(tick_rate, HZ);
119 	u32 cr;
120 
121 	/* Stop timer and interrupt */
122 	cr = readl(TIMER_CR);
123 	cr &= ~(TIMER_1_CR_ENABLE | TIMER_1_CR_INT);
124 	writel(cr, TIMER_CR);
125 
126 	/* Setup timer to fire at 1/HT intervals. */
127 	cr = 0xffffffff - (period - 1);
128 	writel(cr, TIMER_COUNT(TIMER1_BASE));
129 	writel(cr, TIMER_LOAD(TIMER1_BASE));
130 
131 	/* enable interrupt on overflow */
132 	cr = readl(TIMER_INTR_MASK);
133 	cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
134 	cr |= TIMER_1_INT_OVERFLOW;
135 	writel(cr, TIMER_INTR_MASK);
136 
137 	/* Start the timer */
138 	cr = readl(TIMER_CR);
139 	cr |= TIMER_1_CR_ENABLE;
140 	cr |= TIMER_1_CR_INT;
141 	writel(cr, TIMER_CR);
142 
143 	return 0;
144 }
145 
146 /* Use TIMER1 as clock event */
147 static struct clock_event_device gemini_clockevent = {
148 	.name			= "TIMER1",
149 	/* Reasonably fast and accurate clock event */
150 	.rating			= 300,
151 	.shift                  = 32,
152 	.features		= CLOCK_EVT_FEAT_PERIODIC |
153 				  CLOCK_EVT_FEAT_ONESHOT,
154 	.set_next_event		= gemini_timer_set_next_event,
155 	.set_state_shutdown	= gemini_timer_shutdown,
156 	.set_state_periodic	= gemini_timer_set_periodic,
157 	.set_state_oneshot	= gemini_timer_shutdown,
158 	.tick_resume		= gemini_timer_shutdown,
159 };
160 
161 /*
162  * IRQ handler for the timer
163  */
gemini_timer_interrupt(int irq,void * dev_id)164 static irqreturn_t gemini_timer_interrupt(int irq, void *dev_id)
165 {
166 	struct clock_event_device *evt = &gemini_clockevent;
167 
168 	evt->event_handler(evt);
169 	return IRQ_HANDLED;
170 }
171 
172 static struct irqaction gemini_timer_irq = {
173 	.name		= "Gemini Timer Tick",
174 	.flags		= IRQF_TIMER,
175 	.handler	= gemini_timer_interrupt,
176 };
177 
178 /*
179  * Set up timer interrupt, and return the current time in seconds.
180  */
gemini_timer_init(void)181 void __init gemini_timer_init(void)
182 {
183 	u32 reg_v;
184 
185 	reg_v = readl(IO_ADDRESS(GEMINI_GLOBAL_BASE + GLOBAL_STATUS));
186 	tick_rate = REG_TO_AHB_SPEED(reg_v) * 1000000;
187 
188 	printk(KERN_INFO "Bus: %dMHz", tick_rate / 1000000);
189 
190 	tick_rate /= 6;		/* APB bus run AHB*(1/6) */
191 
192 	switch(reg_v & CPU_AHB_RATIO_MASK) {
193 	case CPU_AHB_1_1:
194 		printk(KERN_CONT "(1/1)\n");
195 		break;
196 	case CPU_AHB_3_2:
197 		printk(KERN_CONT "(3/2)\n");
198 		break;
199 	case CPU_AHB_24_13:
200 		printk(KERN_CONT "(24/13)\n");
201 		break;
202 	case CPU_AHB_2_1:
203 		printk(KERN_CONT "(2/1)\n");
204 		break;
205 	}
206 
207 	/*
208 	 * Reset the interrupt mask and status
209 	 */
210 	writel(TIMER_INT_ALL_MASK, TIMER_INTR_MASK);
211 	writel(0, TIMER_INTR_STATE);
212 	writel(TIMER_DEFAULT_FLAGS, TIMER_CR);
213 
214 	/*
215 	 * Setup free-running clocksource timer (interrupts
216 	 * disabled.)
217 	 */
218 	writel(0, TIMER_COUNT(TIMER3_BASE));
219 	writel(0, TIMER_LOAD(TIMER3_BASE));
220 	writel(0, TIMER_MATCH1(TIMER3_BASE));
221 	writel(0, TIMER_MATCH2(TIMER3_BASE));
222 	clocksource_mmio_init(TIMER_COUNT(TIMER3_BASE),
223 			      "gemini_clocksource", tick_rate,
224 			      300, 32, clocksource_mmio_readl_up);
225 	sched_clock_register(gemini_read_sched_clock, 32, tick_rate);
226 
227 	/*
228 	 * Setup clockevent timer (interrupt-driven.)
229 	*/
230 	writel(0, TIMER_COUNT(TIMER1_BASE));
231 	writel(0, TIMER_LOAD(TIMER1_BASE));
232 	writel(0, TIMER_MATCH1(TIMER1_BASE));
233 	writel(0, TIMER_MATCH2(TIMER1_BASE));
234 	setup_irq(IRQ_TIMER1, &gemini_timer_irq);
235 	gemini_clockevent.cpumask = cpumask_of(0);
236 	clockevents_config_and_register(&gemini_clockevent, tick_rate,
237 					1, 0xffffffff);
238 
239 }
240