1 /*
2 * arch/arm/kernel/kprobes-test.c
3 *
4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 /*
12 * This file contains test code for ARM kprobes.
13 *
14 * The top level function run_all_tests() executes tests for all of the
15 * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
16 * fall into two categories; run_api_tests() checks basic functionality of the
17 * kprobes API, and run_test_cases() is a comprehensive test for kprobes
18 * instruction decoding and simulation.
19 *
20 * run_test_cases() first checks the kprobes decoding table for self consistency
21 * (using table_test()) then executes a series of test cases for each of the CPU
22 * instruction forms. coverage_start() and coverage_end() are used to verify
23 * that these test cases cover all of the possible combinations of instructions
24 * described by the kprobes decoding tables.
25 *
26 * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
27 * which use the macros defined in kprobes-test.h. The rest of this
28 * documentation will describe the operation of the framework used by these
29 * test cases.
30 */
31
32 /*
33 * TESTING METHODOLOGY
34 * -------------------
35 *
36 * The methodology used to test an ARM instruction 'test_insn' is to use
37 * inline assembler like:
38 *
39 * test_before: nop
40 * test_case: test_insn
41 * test_after: nop
42 *
43 * When the test case is run a kprobe is placed of each nop. The
44 * post-handler of the test_before probe is used to modify the saved CPU
45 * register context to that which we require for the test case. The
46 * pre-handler of the of the test_after probe saves a copy of the CPU
47 * register context. In this way we can execute test_insn with a specific
48 * register context and see the results afterwards.
49 *
50 * To actually test the kprobes instruction emulation we perform the above
51 * step a second time but with an additional kprobe on the test_case
52 * instruction itself. If the emulation is accurate then the results seen
53 * by the test_after probe will be identical to the first run which didn't
54 * have a probe on test_case.
55 *
56 * Each test case is run several times with a variety of variations in the
57 * flags value of stored in CPSR, and for Thumb code, different ITState.
58 *
59 * For instructions which can modify PC, a second test_after probe is used
60 * like this:
61 *
62 * test_before: nop
63 * test_case: test_insn
64 * test_after: nop
65 * b test_done
66 * test_after2: nop
67 * test_done:
68 *
69 * The test case is constructed such that test_insn branches to
70 * test_after2, or, if testing a conditional instruction, it may just
71 * continue to test_after. The probes inserted at both locations let us
72 * determine which happened. A similar approach is used for testing
73 * backwards branches...
74 *
75 * b test_before
76 * b test_done @ helps to cope with off by 1 branches
77 * test_after2: nop
78 * b test_done
79 * test_before: nop
80 * test_case: test_insn
81 * test_after: nop
82 * test_done:
83 *
84 * The macros used to generate the assembler instructions describe above
85 * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
86 * (branch backwards). In these, the local variables numbered 1, 50, 2 and
87 * 99 represent: test_before, test_case, test_after2 and test_done.
88 *
89 * FRAMEWORK
90 * ---------
91 *
92 * Each test case is wrapped between the pair of macros TESTCASE_START and
93 * TESTCASE_END. As well as performing the inline assembler boilerplate,
94 * these call out to the kprobes_test_case_start() and
95 * kprobes_test_case_end() functions which drive the execution of the test
96 * case. The specific arguments to use for each test case are stored as
97 * inline data constructed using the various TEST_ARG_* macros. Putting
98 * this all together, a simple test case may look like:
99 *
100 * TESTCASE_START("Testing mov r0, r7")
101 * TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
102 * TEST_ARG_END("")
103 * TEST_INSTRUCTION("mov r0, r7")
104 * TESTCASE_END
105 *
106 * Note, in practice the single convenience macro TEST_R would be used for this
107 * instead.
108 *
109 * The above would expand to assembler looking something like:
110 *
111 * @ TESTCASE_START
112 * bl __kprobes_test_case_start
113 * .pushsection .rodata
114 * "10:
115 * .ascii "mov r0, r7" @ text title for test case
116 * .byte 0
117 * .popsection
118 * @ start of inline data...
119 * .word 10b @ pointer to title in .rodata section
120 *
121 * @ TEST_ARG_REG
122 * .byte ARG_TYPE_REG
123 * .byte 7
124 * .short 0
125 * .word 0x1234567
126 *
127 * @ TEST_ARG_END
128 * .byte ARG_TYPE_END
129 * .byte TEST_ISA @ flags, including ISA being tested
130 * .short 50f-0f @ offset of 'test_before'
131 * .short 2f-0f @ offset of 'test_after2' (if relevent)
132 * .short 99f-0f @ offset of 'test_done'
133 * @ start of test case code...
134 * 0:
135 * .code TEST_ISA @ switch to ISA being tested
136 *
137 * @ TEST_INSTRUCTION
138 * 50: nop @ location for 'test_before' probe
139 * 1: mov r0, r7 @ the test case instruction 'test_insn'
140 * nop @ location for 'test_after' probe
141 *
142 * // TESTCASE_END
143 * 2:
144 * 99: bl __kprobes_test_case_end_##TEST_ISA
145 * .code NONMAL_ISA
146 *
147 * When the above is execute the following happens...
148 *
149 * __kprobes_test_case_start() is an assembler wrapper which sets up space
150 * for a stack buffer and calls the C function kprobes_test_case_start().
151 * This C function will do some initial processing of the inline data and
152 * setup some global state. It then inserts the test_before and test_after
153 * kprobes and returns a value which causes the assembler wrapper to jump
154 * to the start of the test case code, (local label '0').
155 *
156 * When the test case code executes, the test_before probe will be hit and
157 * test_before_post_handler will call setup_test_context(). This fills the
158 * stack buffer and CPU registers with a test pattern and then processes
159 * the test case arguments. In our example there is one TEST_ARG_REG which
160 * indicates that R7 should be loaded with the value 0x12345678.
161 *
162 * When the test_before probe ends, the test case continues and executes
163 * the "mov r0, r7" instruction. It then hits the test_after probe and the
164 * pre-handler for this (test_after_pre_handler) will save a copy of the
165 * CPU register context. This should now have R0 holding the same value as
166 * R7.
167 *
168 * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
169 * an assembler wrapper which switches back to the ISA used by the test
170 * code and calls the C function kprobes_test_case_end().
171 *
172 * For each run through the test case, test_case_run_count is incremented
173 * by one. For even runs, kprobes_test_case_end() saves a copy of the
174 * register and stack buffer contents from the test case just run. It then
175 * inserts a kprobe on the test case instruction 'test_insn' and returns a
176 * value to cause the test case code to be re-run.
177 *
178 * For odd numbered runs, kprobes_test_case_end() compares the register and
179 * stack buffer contents to those that were saved on the previous even
180 * numbered run (the one without the kprobe on test_insn). These should be
181 * the same if the kprobe instruction simulation routine is correct.
182 *
183 * The pair of test case runs is repeated with different combinations of
184 * flag values in CPSR and, for Thumb, different ITState. This is
185 * controlled by test_context_cpsr().
186 *
187 * BUILDING TEST CASES
188 * -------------------
189 *
190 *
191 * As an aid to building test cases, the stack buffer is initialised with
192 * some special values:
193 *
194 * [SP+13*4] Contains SP+120. This can be used to test instructions
195 * which load a value into SP.
196 *
197 * [SP+15*4] When testing branching instructions using TEST_BRANCH_{F,B},
198 * this holds the target address of the branch, 'test_after2'.
199 * This can be used to test instructions which load a PC value
200 * from memory.
201 */
202
203 #include <linux/kernel.h>
204 #include <linux/module.h>
205 #include <linux/slab.h>
206 #include <linux/kprobes.h>
207 #include <linux/errno.h>
208 #include <linux/stddef.h>
209 #include <linux/bug.h>
210 #include <asm/opcodes.h>
211
212 #include "core.h"
213 #include "test-core.h"
214 #include "../decode-arm.h"
215 #include "../decode-thumb.h"
216
217
218 #define BENCHMARKING 1
219
220
221 /*
222 * Test basic API
223 */
224
225 static bool test_regs_ok;
226 static int test_func_instance;
227 static int pre_handler_called;
228 static int post_handler_called;
229 static int jprobe_func_called;
230 static int kretprobe_handler_called;
231 static int tests_failed;
232
233 #define FUNC_ARG1 0x12345678
234 #define FUNC_ARG2 0xabcdef
235
236
237 #ifndef CONFIG_THUMB2_KERNEL
238
239 #define RET(reg) "mov pc, "#reg
240
241 long arm_func(long r0, long r1);
242
__arm_kprobes_test_func(void)243 static void __used __naked __arm_kprobes_test_func(void)
244 {
245 __asm__ __volatile__ (
246 ".arm \n\t"
247 ".type arm_func, %%function \n\t"
248 "arm_func: \n\t"
249 "adds r0, r0, r1 \n\t"
250 "mov pc, lr \n\t"
251 ".code "NORMAL_ISA /* Back to Thumb if necessary */
252 : : : "r0", "r1", "cc"
253 );
254 }
255
256 #else /* CONFIG_THUMB2_KERNEL */
257
258 #define RET(reg) "bx "#reg
259
260 long thumb16_func(long r0, long r1);
261 long thumb32even_func(long r0, long r1);
262 long thumb32odd_func(long r0, long r1);
263
__thumb_kprobes_test_funcs(void)264 static void __used __naked __thumb_kprobes_test_funcs(void)
265 {
266 __asm__ __volatile__ (
267 ".type thumb16_func, %%function \n\t"
268 "thumb16_func: \n\t"
269 "adds.n r0, r0, r1 \n\t"
270 "bx lr \n\t"
271
272 ".align \n\t"
273 ".type thumb32even_func, %%function \n\t"
274 "thumb32even_func: \n\t"
275 "adds.w r0, r0, r1 \n\t"
276 "bx lr \n\t"
277
278 ".align \n\t"
279 "nop.n \n\t"
280 ".type thumb32odd_func, %%function \n\t"
281 "thumb32odd_func: \n\t"
282 "adds.w r0, r0, r1 \n\t"
283 "bx lr \n\t"
284
285 : : : "r0", "r1", "cc"
286 );
287 }
288
289 #endif /* CONFIG_THUMB2_KERNEL */
290
291
call_test_func(long (* func)(long,long),bool check_test_regs)292 static int call_test_func(long (*func)(long, long), bool check_test_regs)
293 {
294 long ret;
295
296 ++test_func_instance;
297 test_regs_ok = false;
298
299 ret = (*func)(FUNC_ARG1, FUNC_ARG2);
300 if (ret != FUNC_ARG1 + FUNC_ARG2) {
301 pr_err("FAIL: call_test_func: func returned %lx\n", ret);
302 return false;
303 }
304
305 if (check_test_regs && !test_regs_ok) {
306 pr_err("FAIL: test regs not OK\n");
307 return false;
308 }
309
310 return true;
311 }
312
pre_handler(struct kprobe * p,struct pt_regs * regs)313 static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
314 {
315 pre_handler_called = test_func_instance;
316 if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
317 test_regs_ok = true;
318 return 0;
319 }
320
post_handler(struct kprobe * p,struct pt_regs * regs,unsigned long flags)321 static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
322 unsigned long flags)
323 {
324 post_handler_called = test_func_instance;
325 if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
326 test_regs_ok = false;
327 }
328
329 static struct kprobe the_kprobe = {
330 .addr = 0,
331 .pre_handler = pre_handler,
332 .post_handler = post_handler
333 };
334
test_kprobe(long (* func)(long,long))335 static int test_kprobe(long (*func)(long, long))
336 {
337 int ret;
338
339 the_kprobe.addr = (kprobe_opcode_t *)func;
340 ret = register_kprobe(&the_kprobe);
341 if (ret < 0) {
342 pr_err("FAIL: register_kprobe failed with %d\n", ret);
343 return ret;
344 }
345
346 ret = call_test_func(func, true);
347
348 unregister_kprobe(&the_kprobe);
349 the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
350
351 if (!ret)
352 return -EINVAL;
353 if (pre_handler_called != test_func_instance) {
354 pr_err("FAIL: kprobe pre_handler not called\n");
355 return -EINVAL;
356 }
357 if (post_handler_called != test_func_instance) {
358 pr_err("FAIL: kprobe post_handler not called\n");
359 return -EINVAL;
360 }
361 if (!call_test_func(func, false))
362 return -EINVAL;
363 if (pre_handler_called == test_func_instance ||
364 post_handler_called == test_func_instance) {
365 pr_err("FAIL: probe called after unregistering\n");
366 return -EINVAL;
367 }
368
369 return 0;
370 }
371
jprobe_func(long r0,long r1)372 static void __kprobes jprobe_func(long r0, long r1)
373 {
374 jprobe_func_called = test_func_instance;
375 if (r0 == FUNC_ARG1 && r1 == FUNC_ARG2)
376 test_regs_ok = true;
377 jprobe_return();
378 }
379
380 static struct jprobe the_jprobe = {
381 .entry = jprobe_func,
382 };
383
test_jprobe(long (* func)(long,long))384 static int test_jprobe(long (*func)(long, long))
385 {
386 int ret;
387
388 the_jprobe.kp.addr = (kprobe_opcode_t *)func;
389 ret = register_jprobe(&the_jprobe);
390 if (ret < 0) {
391 pr_err("FAIL: register_jprobe failed with %d\n", ret);
392 return ret;
393 }
394
395 ret = call_test_func(func, true);
396
397 unregister_jprobe(&the_jprobe);
398 the_jprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
399
400 if (!ret)
401 return -EINVAL;
402 if (jprobe_func_called != test_func_instance) {
403 pr_err("FAIL: jprobe handler function not called\n");
404 return -EINVAL;
405 }
406 if (!call_test_func(func, false))
407 return -EINVAL;
408 if (jprobe_func_called == test_func_instance) {
409 pr_err("FAIL: probe called after unregistering\n");
410 return -EINVAL;
411 }
412
413 return 0;
414 }
415
416 static int __kprobes
kretprobe_handler(struct kretprobe_instance * ri,struct pt_regs * regs)417 kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
418 {
419 kretprobe_handler_called = test_func_instance;
420 if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
421 test_regs_ok = true;
422 return 0;
423 }
424
425 static struct kretprobe the_kretprobe = {
426 .handler = kretprobe_handler,
427 };
428
test_kretprobe(long (* func)(long,long))429 static int test_kretprobe(long (*func)(long, long))
430 {
431 int ret;
432
433 the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
434 ret = register_kretprobe(&the_kretprobe);
435 if (ret < 0) {
436 pr_err("FAIL: register_kretprobe failed with %d\n", ret);
437 return ret;
438 }
439
440 ret = call_test_func(func, true);
441
442 unregister_kretprobe(&the_kretprobe);
443 the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
444
445 if (!ret)
446 return -EINVAL;
447 if (kretprobe_handler_called != test_func_instance) {
448 pr_err("FAIL: kretprobe handler not called\n");
449 return -EINVAL;
450 }
451 if (!call_test_func(func, false))
452 return -EINVAL;
453 if (jprobe_func_called == test_func_instance) {
454 pr_err("FAIL: kretprobe called after unregistering\n");
455 return -EINVAL;
456 }
457
458 return 0;
459 }
460
run_api_tests(long (* func)(long,long))461 static int run_api_tests(long (*func)(long, long))
462 {
463 int ret;
464
465 pr_info(" kprobe\n");
466 ret = test_kprobe(func);
467 if (ret < 0)
468 return ret;
469
470 pr_info(" jprobe\n");
471 ret = test_jprobe(func);
472 #if defined(CONFIG_THUMB2_KERNEL) && !defined(MODULE)
473 if (ret == -EINVAL) {
474 pr_err("FAIL: Known longtime bug with jprobe on Thumb kernels\n");
475 tests_failed = ret;
476 ret = 0;
477 }
478 #endif
479 if (ret < 0)
480 return ret;
481
482 pr_info(" kretprobe\n");
483 ret = test_kretprobe(func);
484 if (ret < 0)
485 return ret;
486
487 return 0;
488 }
489
490
491 /*
492 * Benchmarking
493 */
494
495 #if BENCHMARKING
496
benchmark_nop(void)497 static void __naked benchmark_nop(void)
498 {
499 __asm__ __volatile__ (
500 "nop \n\t"
501 RET(lr)" \n\t"
502 );
503 }
504
505 #ifdef CONFIG_THUMB2_KERNEL
506 #define wide ".w"
507 #else
508 #define wide
509 #endif
510
benchmark_pushpop1(void)511 static void __naked benchmark_pushpop1(void)
512 {
513 __asm__ __volatile__ (
514 "stmdb"wide" sp!, {r3-r11,lr} \n\t"
515 "ldmia"wide" sp!, {r3-r11,pc}"
516 );
517 }
518
benchmark_pushpop2(void)519 static void __naked benchmark_pushpop2(void)
520 {
521 __asm__ __volatile__ (
522 "stmdb"wide" sp!, {r0-r8,lr} \n\t"
523 "ldmia"wide" sp!, {r0-r8,pc}"
524 );
525 }
526
benchmark_pushpop3(void)527 static void __naked benchmark_pushpop3(void)
528 {
529 __asm__ __volatile__ (
530 "stmdb"wide" sp!, {r4,lr} \n\t"
531 "ldmia"wide" sp!, {r4,pc}"
532 );
533 }
534
benchmark_pushpop4(void)535 static void __naked benchmark_pushpop4(void)
536 {
537 __asm__ __volatile__ (
538 "stmdb"wide" sp!, {r0,lr} \n\t"
539 "ldmia"wide" sp!, {r0,pc}"
540 );
541 }
542
543
544 #ifdef CONFIG_THUMB2_KERNEL
545
benchmark_pushpop_thumb(void)546 static void __naked benchmark_pushpop_thumb(void)
547 {
548 __asm__ __volatile__ (
549 "push.n {r0-r7,lr} \n\t"
550 "pop.n {r0-r7,pc}"
551 );
552 }
553
554 #endif
555
556 static int __kprobes
benchmark_pre_handler(struct kprobe * p,struct pt_regs * regs)557 benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
558 {
559 return 0;
560 }
561
benchmark(void (* fn)(void))562 static int benchmark(void(*fn)(void))
563 {
564 unsigned n, i, t, t0;
565
566 for (n = 1000; ; n *= 2) {
567 t0 = sched_clock();
568 for (i = n; i > 0; --i)
569 fn();
570 t = sched_clock() - t0;
571 if (t >= 250000000)
572 break; /* Stop once we took more than 0.25 seconds */
573 }
574 return t / n; /* Time for one iteration in nanoseconds */
575 };
576
kprobe_benchmark(void (* fn)(void),unsigned offset)577 static int kprobe_benchmark(void(*fn)(void), unsigned offset)
578 {
579 struct kprobe k = {
580 .addr = (kprobe_opcode_t *)((uintptr_t)fn + offset),
581 .pre_handler = benchmark_pre_handler,
582 };
583
584 int ret = register_kprobe(&k);
585 if (ret < 0) {
586 pr_err("FAIL: register_kprobe failed with %d\n", ret);
587 return ret;
588 }
589
590 ret = benchmark(fn);
591
592 unregister_kprobe(&k);
593 return ret;
594 };
595
596 struct benchmarks {
597 void (*fn)(void);
598 unsigned offset;
599 const char *title;
600 };
601
run_benchmarks(void)602 static int run_benchmarks(void)
603 {
604 int ret;
605 struct benchmarks list[] = {
606 {&benchmark_nop, 0, "nop"},
607 /*
608 * benchmark_pushpop{1,3} will have the optimised
609 * instruction emulation, whilst benchmark_pushpop{2,4} will
610 * be the equivalent unoptimised instructions.
611 */
612 {&benchmark_pushpop1, 0, "stmdb sp!, {r3-r11,lr}"},
613 {&benchmark_pushpop1, 4, "ldmia sp!, {r3-r11,pc}"},
614 {&benchmark_pushpop2, 0, "stmdb sp!, {r0-r8,lr}"},
615 {&benchmark_pushpop2, 4, "ldmia sp!, {r0-r8,pc}"},
616 {&benchmark_pushpop3, 0, "stmdb sp!, {r4,lr}"},
617 {&benchmark_pushpop3, 4, "ldmia sp!, {r4,pc}"},
618 {&benchmark_pushpop4, 0, "stmdb sp!, {r0,lr}"},
619 {&benchmark_pushpop4, 4, "ldmia sp!, {r0,pc}"},
620 #ifdef CONFIG_THUMB2_KERNEL
621 {&benchmark_pushpop_thumb, 0, "push.n {r0-r7,lr}"},
622 {&benchmark_pushpop_thumb, 2, "pop.n {r0-r7,pc}"},
623 #endif
624 {0}
625 };
626
627 struct benchmarks *b;
628 for (b = list; b->fn; ++b) {
629 ret = kprobe_benchmark(b->fn, b->offset);
630 if (ret < 0)
631 return ret;
632 pr_info(" %dns for kprobe %s\n", ret, b->title);
633 }
634
635 pr_info("\n");
636 return 0;
637 }
638
639 #endif /* BENCHMARKING */
640
641
642 /*
643 * Decoding table self-consistency tests
644 */
645
646 static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
647 [DECODE_TYPE_TABLE] = sizeof(struct decode_table),
648 [DECODE_TYPE_CUSTOM] = sizeof(struct decode_custom),
649 [DECODE_TYPE_SIMULATE] = sizeof(struct decode_simulate),
650 [DECODE_TYPE_EMULATE] = sizeof(struct decode_emulate),
651 [DECODE_TYPE_OR] = sizeof(struct decode_or),
652 [DECODE_TYPE_REJECT] = sizeof(struct decode_reject)
653 };
654
table_iter(const union decode_item * table,int (* fn)(const struct decode_header *,void *),void * args)655 static int table_iter(const union decode_item *table,
656 int (*fn)(const struct decode_header *, void *),
657 void *args)
658 {
659 const struct decode_header *h = (struct decode_header *)table;
660 int result;
661
662 for (;;) {
663 enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
664
665 if (type == DECODE_TYPE_END)
666 return 0;
667
668 result = fn(h, args);
669 if (result)
670 return result;
671
672 h = (struct decode_header *)
673 ((uintptr_t)h + decode_struct_sizes[type]);
674
675 }
676 }
677
table_test_fail(const struct decode_header * h,const char * message)678 static int table_test_fail(const struct decode_header *h, const char* message)
679 {
680
681 pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
682 message, h->mask.bits, h->value.bits);
683 return -EINVAL;
684 }
685
686 struct table_test_args {
687 const union decode_item *root_table;
688 u32 parent_mask;
689 u32 parent_value;
690 };
691
table_test_fn(const struct decode_header * h,void * args)692 static int table_test_fn(const struct decode_header *h, void *args)
693 {
694 struct table_test_args *a = (struct table_test_args *)args;
695 enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
696
697 if (h->value.bits & ~h->mask.bits)
698 return table_test_fail(h, "Match value has bits not in mask");
699
700 if ((h->mask.bits & a->parent_mask) != a->parent_mask)
701 return table_test_fail(h, "Mask has bits not in parent mask");
702
703 if ((h->value.bits ^ a->parent_value) & a->parent_mask)
704 return table_test_fail(h, "Value is inconsistent with parent");
705
706 if (type == DECODE_TYPE_TABLE) {
707 struct decode_table *d = (struct decode_table *)h;
708 struct table_test_args args2 = *a;
709 args2.parent_mask = h->mask.bits;
710 args2.parent_value = h->value.bits;
711 return table_iter(d->table.table, table_test_fn, &args2);
712 }
713
714 return 0;
715 }
716
table_test(const union decode_item * table)717 static int table_test(const union decode_item *table)
718 {
719 struct table_test_args args = {
720 .root_table = table,
721 .parent_mask = 0,
722 .parent_value = 0
723 };
724 return table_iter(args.root_table, table_test_fn, &args);
725 }
726
727
728 /*
729 * Decoding table test coverage analysis
730 *
731 * coverage_start() builds a coverage_table which contains a list of
732 * coverage_entry's to match each entry in the specified kprobes instruction
733 * decoding table.
734 *
735 * When test cases are run, coverage_add() is called to process each case.
736 * This looks up the corresponding entry in the coverage_table and sets it as
737 * being matched, as well as clearing the regs flag appropriate for the test.
738 *
739 * After all test cases have been run, coverage_end() is called to check that
740 * all entries in coverage_table have been matched and that all regs flags are
741 * cleared. I.e. that all possible combinations of instructions described by
742 * the kprobes decoding tables have had a test case executed for them.
743 */
744
745 bool coverage_fail;
746
747 #define MAX_COVERAGE_ENTRIES 256
748
749 struct coverage_entry {
750 const struct decode_header *header;
751 unsigned regs;
752 unsigned nesting;
753 char matched;
754 };
755
756 struct coverage_table {
757 struct coverage_entry *base;
758 unsigned num_entries;
759 unsigned nesting;
760 };
761
762 struct coverage_table coverage;
763
764 #define COVERAGE_ANY_REG (1<<0)
765 #define COVERAGE_SP (1<<1)
766 #define COVERAGE_PC (1<<2)
767 #define COVERAGE_PCWB (1<<3)
768
769 static const char coverage_register_lookup[16] = {
770 [REG_TYPE_ANY] = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
771 [REG_TYPE_SAMEAS16] = COVERAGE_ANY_REG,
772 [REG_TYPE_SP] = COVERAGE_SP,
773 [REG_TYPE_PC] = COVERAGE_PC,
774 [REG_TYPE_NOSP] = COVERAGE_ANY_REG | COVERAGE_SP,
775 [REG_TYPE_NOSPPC] = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
776 [REG_TYPE_NOPC] = COVERAGE_ANY_REG | COVERAGE_PC,
777 [REG_TYPE_NOPCWB] = COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
778 [REG_TYPE_NOPCX] = COVERAGE_ANY_REG,
779 [REG_TYPE_NOSPPCX] = COVERAGE_ANY_REG | COVERAGE_SP,
780 };
781
coverage_start_registers(const struct decode_header * h)782 unsigned coverage_start_registers(const struct decode_header *h)
783 {
784 unsigned regs = 0;
785 int i;
786 for (i = 0; i < 20; i += 4) {
787 int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
788 regs |= coverage_register_lookup[r] << i;
789 }
790 return regs;
791 }
792
coverage_start_fn(const struct decode_header * h,void * args)793 static int coverage_start_fn(const struct decode_header *h, void *args)
794 {
795 struct coverage_table *coverage = (struct coverage_table *)args;
796 enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
797 struct coverage_entry *entry = coverage->base + coverage->num_entries;
798
799 if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
800 pr_err("FAIL: Out of space for test coverage data");
801 return -ENOMEM;
802 }
803
804 ++coverage->num_entries;
805
806 entry->header = h;
807 entry->regs = coverage_start_registers(h);
808 entry->nesting = coverage->nesting;
809 entry->matched = false;
810
811 if (type == DECODE_TYPE_TABLE) {
812 struct decode_table *d = (struct decode_table *)h;
813 int ret;
814 ++coverage->nesting;
815 ret = table_iter(d->table.table, coverage_start_fn, coverage);
816 --coverage->nesting;
817 return ret;
818 }
819
820 return 0;
821 }
822
coverage_start(const union decode_item * table)823 static int coverage_start(const union decode_item *table)
824 {
825 coverage.base = kmalloc(MAX_COVERAGE_ENTRIES *
826 sizeof(struct coverage_entry), GFP_KERNEL);
827 coverage.num_entries = 0;
828 coverage.nesting = 0;
829 return table_iter(table, coverage_start_fn, &coverage);
830 }
831
832 static void
coverage_add_registers(struct coverage_entry * entry,kprobe_opcode_t insn)833 coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
834 {
835 int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
836 int i;
837 for (i = 0; i < 20; i += 4) {
838 enum decode_reg_type reg_type = (regs >> i) & 0xf;
839 int reg = (insn >> i) & 0xf;
840 int flag;
841
842 if (!reg_type)
843 continue;
844
845 if (reg == 13)
846 flag = COVERAGE_SP;
847 else if (reg == 15)
848 flag = COVERAGE_PC;
849 else
850 flag = COVERAGE_ANY_REG;
851 entry->regs &= ~(flag << i);
852
853 switch (reg_type) {
854
855 case REG_TYPE_NONE:
856 case REG_TYPE_ANY:
857 case REG_TYPE_SAMEAS16:
858 break;
859
860 case REG_TYPE_SP:
861 if (reg != 13)
862 return;
863 break;
864
865 case REG_TYPE_PC:
866 if (reg != 15)
867 return;
868 break;
869
870 case REG_TYPE_NOSP:
871 if (reg == 13)
872 return;
873 break;
874
875 case REG_TYPE_NOSPPC:
876 case REG_TYPE_NOSPPCX:
877 if (reg == 13 || reg == 15)
878 return;
879 break;
880
881 case REG_TYPE_NOPCWB:
882 if (!is_writeback(insn))
883 break;
884 if (reg == 15) {
885 entry->regs &= ~(COVERAGE_PCWB << i);
886 return;
887 }
888 break;
889
890 case REG_TYPE_NOPC:
891 case REG_TYPE_NOPCX:
892 if (reg == 15)
893 return;
894 break;
895 }
896
897 }
898 }
899
coverage_add(kprobe_opcode_t insn)900 static void coverage_add(kprobe_opcode_t insn)
901 {
902 struct coverage_entry *entry = coverage.base;
903 struct coverage_entry *end = coverage.base + coverage.num_entries;
904 bool matched = false;
905 unsigned nesting = 0;
906
907 for (; entry < end; ++entry) {
908 const struct decode_header *h = entry->header;
909 enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
910
911 if (entry->nesting > nesting)
912 continue; /* Skip sub-table we didn't match */
913
914 if (entry->nesting < nesting)
915 break; /* End of sub-table we were scanning */
916
917 if (!matched) {
918 if ((insn & h->mask.bits) != h->value.bits)
919 continue;
920 entry->matched = true;
921 }
922
923 switch (type) {
924
925 case DECODE_TYPE_TABLE:
926 ++nesting;
927 break;
928
929 case DECODE_TYPE_CUSTOM:
930 case DECODE_TYPE_SIMULATE:
931 case DECODE_TYPE_EMULATE:
932 coverage_add_registers(entry, insn);
933 return;
934
935 case DECODE_TYPE_OR:
936 matched = true;
937 break;
938
939 case DECODE_TYPE_REJECT:
940 default:
941 return;
942 }
943
944 }
945 }
946
coverage_end(void)947 static void coverage_end(void)
948 {
949 struct coverage_entry *entry = coverage.base;
950 struct coverage_entry *end = coverage.base + coverage.num_entries;
951
952 for (; entry < end; ++entry) {
953 u32 mask = entry->header->mask.bits;
954 u32 value = entry->header->value.bits;
955
956 if (entry->regs) {
957 pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
958 mask, value, entry->regs);
959 coverage_fail = true;
960 }
961 if (!entry->matched) {
962 pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
963 mask, value);
964 coverage_fail = true;
965 }
966 }
967
968 kfree(coverage.base);
969 }
970
971
972 /*
973 * Framework for instruction set test cases
974 */
975
__kprobes_test_case_start(void)976 void __naked __kprobes_test_case_start(void)
977 {
978 __asm__ __volatile__ (
979 "mov r2, sp \n\t"
980 "bic r3, r2, #7 \n\t"
981 "mov sp, r3 \n\t"
982 "stmdb sp!, {r2-r11} \n\t"
983 "sub sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
984 "bic r0, lr, #1 @ r0 = inline data \n\t"
985 "mov r1, sp \n\t"
986 "bl kprobes_test_case_start \n\t"
987 RET(r0)" \n\t"
988 );
989 }
990
991 #ifndef CONFIG_THUMB2_KERNEL
992
__kprobes_test_case_end_32(void)993 void __naked __kprobes_test_case_end_32(void)
994 {
995 __asm__ __volatile__ (
996 "mov r4, lr \n\t"
997 "bl kprobes_test_case_end \n\t"
998 "cmp r0, #0 \n\t"
999 "movne pc, r0 \n\t"
1000 "mov r0, r4 \n\t"
1001 "add sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
1002 "ldmia sp!, {r2-r11} \n\t"
1003 "mov sp, r2 \n\t"
1004 "mov pc, r0 \n\t"
1005 );
1006 }
1007
1008 #else /* CONFIG_THUMB2_KERNEL */
1009
__kprobes_test_case_end_16(void)1010 void __naked __kprobes_test_case_end_16(void)
1011 {
1012 __asm__ __volatile__ (
1013 "mov r4, lr \n\t"
1014 "bl kprobes_test_case_end \n\t"
1015 "cmp r0, #0 \n\t"
1016 "bxne r0 \n\t"
1017 "mov r0, r4 \n\t"
1018 "add sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
1019 "ldmia sp!, {r2-r11} \n\t"
1020 "mov sp, r2 \n\t"
1021 "bx r0 \n\t"
1022 );
1023 }
1024
__kprobes_test_case_end_32(void)1025 void __naked __kprobes_test_case_end_32(void)
1026 {
1027 __asm__ __volatile__ (
1028 ".arm \n\t"
1029 "orr lr, lr, #1 @ will return to Thumb code \n\t"
1030 "ldr pc, 1f \n\t"
1031 "1: \n\t"
1032 ".word __kprobes_test_case_end_16 \n\t"
1033 );
1034 }
1035
1036 #endif
1037
1038
1039 int kprobe_test_flags;
1040 int kprobe_test_cc_position;
1041
1042 static int test_try_count;
1043 static int test_pass_count;
1044 static int test_fail_count;
1045
1046 static struct pt_regs initial_regs;
1047 static struct pt_regs expected_regs;
1048 static struct pt_regs result_regs;
1049
1050 static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
1051
1052 static const char *current_title;
1053 static struct test_arg *current_args;
1054 static u32 *current_stack;
1055 static uintptr_t current_branch_target;
1056
1057 static uintptr_t current_code_start;
1058 static kprobe_opcode_t current_instruction;
1059
1060
1061 #define TEST_CASE_PASSED -1
1062 #define TEST_CASE_FAILED -2
1063
1064 static int test_case_run_count;
1065 static bool test_case_is_thumb;
1066 static int test_instance;
1067
test_check_cc(int cc,unsigned long cpsr)1068 static unsigned long test_check_cc(int cc, unsigned long cpsr)
1069 {
1070 int ret = arm_check_condition(cc << 28, cpsr);
1071
1072 return (ret != ARM_OPCODE_CONDTEST_FAIL);
1073 }
1074
1075 static int is_last_scenario;
1076 static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
1077 static int memory_needs_checking;
1078
test_context_cpsr(int scenario)1079 static unsigned long test_context_cpsr(int scenario)
1080 {
1081 unsigned long cpsr;
1082
1083 probe_should_run = 1;
1084
1085 /* Default case is that we cycle through 16 combinations of flags */
1086 cpsr = (scenario & 0xf) << 28; /* N,Z,C,V flags */
1087 cpsr |= (scenario & 0xf) << 16; /* GE flags */
1088 cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
1089
1090 if (!test_case_is_thumb) {
1091 /* Testing ARM code */
1092 int cc = current_instruction >> 28;
1093
1094 probe_should_run = test_check_cc(cc, cpsr) != 0;
1095 if (scenario == 15)
1096 is_last_scenario = true;
1097
1098 } else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
1099 /* Testing Thumb code without setting ITSTATE */
1100 if (kprobe_test_cc_position) {
1101 int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
1102 probe_should_run = test_check_cc(cc, cpsr) != 0;
1103 }
1104
1105 if (scenario == 15)
1106 is_last_scenario = true;
1107
1108 } else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
1109 /* Testing Thumb code with all combinations of ITSTATE */
1110 unsigned x = (scenario >> 4);
1111 unsigned cond_base = x % 7; /* ITSTATE<7:5> */
1112 unsigned mask = x / 7 + 2; /* ITSTATE<4:0>, bits reversed */
1113
1114 if (mask > 0x1f) {
1115 /* Finish by testing state from instruction 'itt al' */
1116 cond_base = 7;
1117 mask = 0x4;
1118 if ((scenario & 0xf) == 0xf)
1119 is_last_scenario = true;
1120 }
1121
1122 cpsr |= cond_base << 13; /* ITSTATE<7:5> */
1123 cpsr |= (mask & 0x1) << 12; /* ITSTATE<4> */
1124 cpsr |= (mask & 0x2) << 10; /* ITSTATE<3> */
1125 cpsr |= (mask & 0x4) << 8; /* ITSTATE<2> */
1126 cpsr |= (mask & 0x8) << 23; /* ITSTATE<1> */
1127 cpsr |= (mask & 0x10) << 21; /* ITSTATE<0> */
1128
1129 probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
1130
1131 } else {
1132 /* Testing Thumb code with several combinations of ITSTATE */
1133 switch (scenario) {
1134 case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
1135 cpsr = 0x00000800;
1136 probe_should_run = 0;
1137 break;
1138 case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
1139 cpsr = 0xf0007800;
1140 probe_should_run = 0;
1141 break;
1142 case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
1143 cpsr = 0x00009800;
1144 break;
1145 case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
1146 cpsr = 0xf0002800;
1147 is_last_scenario = true;
1148 break;
1149 }
1150 }
1151
1152 return cpsr;
1153 }
1154
setup_test_context(struct pt_regs * regs)1155 static void setup_test_context(struct pt_regs *regs)
1156 {
1157 int scenario = test_case_run_count>>1;
1158 unsigned long val;
1159 struct test_arg *args;
1160 int i;
1161
1162 is_last_scenario = false;
1163 memory_needs_checking = false;
1164
1165 /* Initialise test memory on stack */
1166 val = (scenario & 1) ? VALM : ~VALM;
1167 for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
1168 current_stack[i] = val + (i << 8);
1169 /* Put target of branch on stack for tests which load PC from memory */
1170 if (current_branch_target)
1171 current_stack[15] = current_branch_target;
1172 /* Put a value for SP on stack for tests which load SP from memory */
1173 current_stack[13] = (u32)current_stack + 120;
1174
1175 /* Initialise register values to their default state */
1176 val = (scenario & 2) ? VALR : ~VALR;
1177 for (i = 0; i < 13; ++i)
1178 regs->uregs[i] = val ^ (i << 8);
1179 regs->ARM_lr = val ^ (14 << 8);
1180 regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
1181 regs->ARM_cpsr |= test_context_cpsr(scenario);
1182
1183 /* Perform testcase specific register setup */
1184 args = current_args;
1185 for (; args[0].type != ARG_TYPE_END; ++args)
1186 switch (args[0].type) {
1187 case ARG_TYPE_REG: {
1188 struct test_arg_regptr *arg =
1189 (struct test_arg_regptr *)args;
1190 regs->uregs[arg->reg] = arg->val;
1191 break;
1192 }
1193 case ARG_TYPE_PTR: {
1194 struct test_arg_regptr *arg =
1195 (struct test_arg_regptr *)args;
1196 regs->uregs[arg->reg] =
1197 (unsigned long)current_stack + arg->val;
1198 memory_needs_checking = true;
1199 /*
1200 * Test memory at an address below SP is in danger of
1201 * being altered by an interrupt occurring and pushing
1202 * data onto the stack. Disable interrupts to stop this.
1203 */
1204 if (arg->reg == 13)
1205 regs->ARM_cpsr |= PSR_I_BIT;
1206 break;
1207 }
1208 case ARG_TYPE_MEM: {
1209 struct test_arg_mem *arg = (struct test_arg_mem *)args;
1210 current_stack[arg->index] = arg->val;
1211 break;
1212 }
1213 default:
1214 break;
1215 }
1216 }
1217
1218 struct test_probe {
1219 struct kprobe kprobe;
1220 bool registered;
1221 int hit;
1222 };
1223
unregister_test_probe(struct test_probe * probe)1224 static void unregister_test_probe(struct test_probe *probe)
1225 {
1226 if (probe->registered) {
1227 unregister_kprobe(&probe->kprobe);
1228 probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
1229 }
1230 probe->registered = false;
1231 }
1232
register_test_probe(struct test_probe * probe)1233 static int register_test_probe(struct test_probe *probe)
1234 {
1235 int ret;
1236
1237 if (probe->registered)
1238 BUG();
1239
1240 ret = register_kprobe(&probe->kprobe);
1241 if (ret >= 0) {
1242 probe->registered = true;
1243 probe->hit = -1;
1244 }
1245 return ret;
1246 }
1247
1248 static int __kprobes
test_before_pre_handler(struct kprobe * p,struct pt_regs * regs)1249 test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
1250 {
1251 container_of(p, struct test_probe, kprobe)->hit = test_instance;
1252 return 0;
1253 }
1254
1255 static void __kprobes
test_before_post_handler(struct kprobe * p,struct pt_regs * regs,unsigned long flags)1256 test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
1257 unsigned long flags)
1258 {
1259 setup_test_context(regs);
1260 initial_regs = *regs;
1261 initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1262 }
1263
1264 static int __kprobes
test_case_pre_handler(struct kprobe * p,struct pt_regs * regs)1265 test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
1266 {
1267 container_of(p, struct test_probe, kprobe)->hit = test_instance;
1268 return 0;
1269 }
1270
1271 static int __kprobes
test_after_pre_handler(struct kprobe * p,struct pt_regs * regs)1272 test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
1273 {
1274 struct test_arg *args;
1275
1276 if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
1277 return 0; /* Already run for this test instance */
1278
1279 result_regs = *regs;
1280
1281 /* Mask out results which are indeterminate */
1282 result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1283 for (args = current_args; args[0].type != ARG_TYPE_END; ++args)
1284 if (args[0].type == ARG_TYPE_REG_MASKED) {
1285 struct test_arg_regptr *arg =
1286 (struct test_arg_regptr *)args;
1287 result_regs.uregs[arg->reg] &= arg->val;
1288 }
1289
1290 /* Undo any changes done to SP by the test case */
1291 regs->ARM_sp = (unsigned long)current_stack;
1292 /* Enable interrupts in case setup_test_context disabled them */
1293 regs->ARM_cpsr &= ~PSR_I_BIT;
1294
1295 container_of(p, struct test_probe, kprobe)->hit = test_instance;
1296 return 0;
1297 }
1298
1299 static struct test_probe test_before_probe = {
1300 .kprobe.pre_handler = test_before_pre_handler,
1301 .kprobe.post_handler = test_before_post_handler,
1302 };
1303
1304 static struct test_probe test_case_probe = {
1305 .kprobe.pre_handler = test_case_pre_handler,
1306 };
1307
1308 static struct test_probe test_after_probe = {
1309 .kprobe.pre_handler = test_after_pre_handler,
1310 };
1311
1312 static struct test_probe test_after2_probe = {
1313 .kprobe.pre_handler = test_after_pre_handler,
1314 };
1315
test_case_cleanup(void)1316 static void test_case_cleanup(void)
1317 {
1318 unregister_test_probe(&test_before_probe);
1319 unregister_test_probe(&test_case_probe);
1320 unregister_test_probe(&test_after_probe);
1321 unregister_test_probe(&test_after2_probe);
1322 }
1323
print_registers(struct pt_regs * regs)1324 static void print_registers(struct pt_regs *regs)
1325 {
1326 pr_err("r0 %08lx | r1 %08lx | r2 %08lx | r3 %08lx\n",
1327 regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
1328 pr_err("r4 %08lx | r5 %08lx | r6 %08lx | r7 %08lx\n",
1329 regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
1330 pr_err("r8 %08lx | r9 %08lx | r10 %08lx | r11 %08lx\n",
1331 regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
1332 pr_err("r12 %08lx | sp %08lx | lr %08lx | pc %08lx\n",
1333 regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
1334 pr_err("cpsr %08lx\n", regs->ARM_cpsr);
1335 }
1336
print_memory(u32 * mem,size_t size)1337 static void print_memory(u32 *mem, size_t size)
1338 {
1339 int i;
1340 for (i = 0; i < size / sizeof(u32); i += 4)
1341 pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
1342 mem[i+2], mem[i+3]);
1343 }
1344
expected_memory_size(u32 * sp)1345 static size_t expected_memory_size(u32 *sp)
1346 {
1347 size_t size = sizeof(expected_memory);
1348 int offset = (uintptr_t)sp - (uintptr_t)current_stack;
1349 if (offset > 0)
1350 size -= offset;
1351 return size;
1352 }
1353
test_case_failed(const char * message)1354 static void test_case_failed(const char *message)
1355 {
1356 test_case_cleanup();
1357
1358 pr_err("FAIL: %s\n", message);
1359 pr_err("FAIL: Test %s\n", current_title);
1360 pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
1361 }
1362
next_instruction(unsigned long pc)1363 static unsigned long next_instruction(unsigned long pc)
1364 {
1365 #ifdef CONFIG_THUMB2_KERNEL
1366 if ((pc & 1) &&
1367 !is_wide_instruction(__mem_to_opcode_thumb16(*(u16 *)(pc - 1))))
1368 return pc + 2;
1369 else
1370 #endif
1371 return pc + 4;
1372 }
1373
kprobes_test_case_start(const char ** title,void * stack)1374 static uintptr_t __used kprobes_test_case_start(const char **title, void *stack)
1375 {
1376 struct test_arg *args;
1377 struct test_arg_end *end_arg;
1378 unsigned long test_code;
1379
1380 current_title = *title++;
1381 args = (struct test_arg *)title;
1382 current_args = args;
1383 current_stack = stack;
1384
1385 ++test_try_count;
1386
1387 while (args->type != ARG_TYPE_END)
1388 ++args;
1389 end_arg = (struct test_arg_end *)args;
1390
1391 test_code = (unsigned long)(args + 1); /* Code starts after args */
1392
1393 test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
1394 if (test_case_is_thumb)
1395 test_code |= 1;
1396
1397 current_code_start = test_code;
1398
1399 current_branch_target = 0;
1400 if (end_arg->branch_offset != end_arg->end_offset)
1401 current_branch_target = test_code + end_arg->branch_offset;
1402
1403 test_code += end_arg->code_offset;
1404 test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1405
1406 test_code = next_instruction(test_code);
1407 test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1408
1409 if (test_case_is_thumb) {
1410 u16 *p = (u16 *)(test_code & ~1);
1411 current_instruction = __mem_to_opcode_thumb16(p[0]);
1412 if (is_wide_instruction(current_instruction)) {
1413 u16 instr2 = __mem_to_opcode_thumb16(p[1]);
1414 current_instruction = __opcode_thumb32_compose(current_instruction, instr2);
1415 }
1416 } else {
1417 current_instruction = __mem_to_opcode_arm(*(u32 *)test_code);
1418 }
1419
1420 if (current_title[0] == '.')
1421 verbose("%s\n", current_title);
1422 else
1423 verbose("%s\t@ %0*x\n", current_title,
1424 test_case_is_thumb ? 4 : 8,
1425 current_instruction);
1426
1427 test_code = next_instruction(test_code);
1428 test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1429
1430 if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
1431 if (!test_case_is_thumb ||
1432 is_wide_instruction(current_instruction)) {
1433 test_case_failed("expected 16-bit instruction");
1434 goto fail;
1435 }
1436 } else {
1437 if (test_case_is_thumb &&
1438 !is_wide_instruction(current_instruction)) {
1439 test_case_failed("expected 32-bit instruction");
1440 goto fail;
1441 }
1442 }
1443
1444 coverage_add(current_instruction);
1445
1446 if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
1447 if (register_test_probe(&test_case_probe) < 0)
1448 goto pass;
1449 test_case_failed("registered probe for unsupported instruction");
1450 goto fail;
1451 }
1452
1453 if (end_arg->flags & ARG_FLAG_SUPPORTED) {
1454 if (register_test_probe(&test_case_probe) >= 0)
1455 goto pass;
1456 test_case_failed("couldn't register probe for supported instruction");
1457 goto fail;
1458 }
1459
1460 if (register_test_probe(&test_before_probe) < 0) {
1461 test_case_failed("register test_before_probe failed");
1462 goto fail;
1463 }
1464 if (register_test_probe(&test_after_probe) < 0) {
1465 test_case_failed("register test_after_probe failed");
1466 goto fail;
1467 }
1468 if (current_branch_target) {
1469 test_after2_probe.kprobe.addr =
1470 (kprobe_opcode_t *)current_branch_target;
1471 if (register_test_probe(&test_after2_probe) < 0) {
1472 test_case_failed("register test_after2_probe failed");
1473 goto fail;
1474 }
1475 }
1476
1477 /* Start first run of test case */
1478 test_case_run_count = 0;
1479 ++test_instance;
1480 return current_code_start;
1481 pass:
1482 test_case_run_count = TEST_CASE_PASSED;
1483 return (uintptr_t)test_after_probe.kprobe.addr;
1484 fail:
1485 test_case_run_count = TEST_CASE_FAILED;
1486 return (uintptr_t)test_after_probe.kprobe.addr;
1487 }
1488
check_test_results(void)1489 static bool check_test_results(void)
1490 {
1491 size_t mem_size = 0;
1492 u32 *mem = 0;
1493
1494 if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
1495 test_case_failed("registers differ");
1496 goto fail;
1497 }
1498
1499 if (memory_needs_checking) {
1500 mem = (u32 *)result_regs.ARM_sp;
1501 mem_size = expected_memory_size(mem);
1502 if (memcmp(expected_memory, mem, mem_size)) {
1503 test_case_failed("test memory differs");
1504 goto fail;
1505 }
1506 }
1507
1508 return true;
1509
1510 fail:
1511 pr_err("initial_regs:\n");
1512 print_registers(&initial_regs);
1513 pr_err("expected_regs:\n");
1514 print_registers(&expected_regs);
1515 pr_err("result_regs:\n");
1516 print_registers(&result_regs);
1517
1518 if (mem) {
1519 pr_err("current_stack=%p\n", current_stack);
1520 pr_err("expected_memory:\n");
1521 print_memory(expected_memory, mem_size);
1522 pr_err("result_memory:\n");
1523 print_memory(mem, mem_size);
1524 }
1525
1526 return false;
1527 }
1528
kprobes_test_case_end(void)1529 static uintptr_t __used kprobes_test_case_end(void)
1530 {
1531 if (test_case_run_count < 0) {
1532 if (test_case_run_count == TEST_CASE_PASSED)
1533 /* kprobes_test_case_start did all the needed testing */
1534 goto pass;
1535 else
1536 /* kprobes_test_case_start failed */
1537 goto fail;
1538 }
1539
1540 if (test_before_probe.hit != test_instance) {
1541 test_case_failed("test_before_handler not run");
1542 goto fail;
1543 }
1544
1545 if (test_after_probe.hit != test_instance &&
1546 test_after2_probe.hit != test_instance) {
1547 test_case_failed("test_after_handler not run");
1548 goto fail;
1549 }
1550
1551 /*
1552 * Even numbered test runs ran without a probe on the test case so
1553 * we can gather reference results. The subsequent odd numbered run
1554 * will have the probe inserted.
1555 */
1556 if ((test_case_run_count & 1) == 0) {
1557 /* Save results from run without probe */
1558 u32 *mem = (u32 *)result_regs.ARM_sp;
1559 expected_regs = result_regs;
1560 memcpy(expected_memory, mem, expected_memory_size(mem));
1561
1562 /* Insert probe onto test case instruction */
1563 if (register_test_probe(&test_case_probe) < 0) {
1564 test_case_failed("register test_case_probe failed");
1565 goto fail;
1566 }
1567 } else {
1568 /* Check probe ran as expected */
1569 if (probe_should_run == 1) {
1570 if (test_case_probe.hit != test_instance) {
1571 test_case_failed("test_case_handler not run");
1572 goto fail;
1573 }
1574 } else if (probe_should_run == 0) {
1575 if (test_case_probe.hit == test_instance) {
1576 test_case_failed("test_case_handler ran");
1577 goto fail;
1578 }
1579 }
1580
1581 /* Remove probe for any subsequent reference run */
1582 unregister_test_probe(&test_case_probe);
1583
1584 if (!check_test_results())
1585 goto fail;
1586
1587 if (is_last_scenario)
1588 goto pass;
1589 }
1590
1591 /* Do next test run */
1592 ++test_case_run_count;
1593 ++test_instance;
1594 return current_code_start;
1595 fail:
1596 ++test_fail_count;
1597 goto end;
1598 pass:
1599 ++test_pass_count;
1600 end:
1601 test_case_cleanup();
1602 return 0;
1603 }
1604
1605
1606 /*
1607 * Top level test functions
1608 */
1609
run_test_cases(void (* tests)(void),const union decode_item * table)1610 static int run_test_cases(void (*tests)(void), const union decode_item *table)
1611 {
1612 int ret;
1613
1614 pr_info(" Check decoding tables\n");
1615 ret = table_test(table);
1616 if (ret)
1617 return ret;
1618
1619 pr_info(" Run test cases\n");
1620 ret = coverage_start(table);
1621 if (ret)
1622 return ret;
1623
1624 tests();
1625
1626 coverage_end();
1627 return 0;
1628 }
1629
1630
run_all_tests(void)1631 static int __init run_all_tests(void)
1632 {
1633 int ret = 0;
1634
1635 pr_info("Beginning kprobe tests...\n");
1636
1637 #ifndef CONFIG_THUMB2_KERNEL
1638
1639 pr_info("Probe ARM code\n");
1640 ret = run_api_tests(arm_func);
1641 if (ret)
1642 goto out;
1643
1644 pr_info("ARM instruction simulation\n");
1645 ret = run_test_cases(kprobe_arm_test_cases, probes_decode_arm_table);
1646 if (ret)
1647 goto out;
1648
1649 #else /* CONFIG_THUMB2_KERNEL */
1650
1651 pr_info("Probe 16-bit Thumb code\n");
1652 ret = run_api_tests(thumb16_func);
1653 if (ret)
1654 goto out;
1655
1656 pr_info("Probe 32-bit Thumb code, even halfword\n");
1657 ret = run_api_tests(thumb32even_func);
1658 if (ret)
1659 goto out;
1660
1661 pr_info("Probe 32-bit Thumb code, odd halfword\n");
1662 ret = run_api_tests(thumb32odd_func);
1663 if (ret)
1664 goto out;
1665
1666 pr_info("16-bit Thumb instruction simulation\n");
1667 ret = run_test_cases(kprobe_thumb16_test_cases,
1668 probes_decode_thumb16_table);
1669 if (ret)
1670 goto out;
1671
1672 pr_info("32-bit Thumb instruction simulation\n");
1673 ret = run_test_cases(kprobe_thumb32_test_cases,
1674 probes_decode_thumb32_table);
1675 if (ret)
1676 goto out;
1677 #endif
1678
1679 pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
1680 test_try_count, test_pass_count, test_fail_count);
1681 if (test_fail_count) {
1682 ret = -EINVAL;
1683 goto out;
1684 }
1685
1686 #if BENCHMARKING
1687 pr_info("Benchmarks\n");
1688 ret = run_benchmarks();
1689 if (ret)
1690 goto out;
1691 #endif
1692
1693 #if __LINUX_ARM_ARCH__ >= 7
1694 /* We are able to run all test cases so coverage should be complete */
1695 if (coverage_fail) {
1696 pr_err("FAIL: Test coverage checks failed\n");
1697 ret = -EINVAL;
1698 goto out;
1699 }
1700 #endif
1701
1702 out:
1703 if (ret == 0)
1704 ret = tests_failed;
1705 if (ret == 0)
1706 pr_info("Finished kprobe tests OK\n");
1707 else
1708 pr_err("kprobe tests failed\n");
1709
1710 return ret;
1711 }
1712
1713
1714 /*
1715 * Module setup
1716 */
1717
1718 #ifdef MODULE
1719
kprobe_test_exit(void)1720 static void __exit kprobe_test_exit(void)
1721 {
1722 }
1723
1724 module_init(run_all_tests)
1725 module_exit(kprobe_test_exit)
1726 MODULE_LICENSE("GPL");
1727
1728 #else /* !MODULE */
1729
1730 late_initcall(run_all_tests);
1731
1732 #endif
1733