1 /*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #ifndef __ARM64_KVM_MMU_H__
19 #define __ARM64_KVM_MMU_H__
20
21 #include <asm/page.h>
22 #include <asm/memory.h>
23 #include <asm/cpufeature.h>
24
25 /*
26 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
27 * "negative" addresses. This makes it impossible to directly share
28 * mappings with the kernel.
29 *
30 * Instead, give the HYP mode its own VA region at a fixed offset from
31 * the kernel by just masking the top bits (which are all ones for a
32 * kernel address). We need to find out how many bits to mask.
33 *
34 * We want to build a set of page tables that cover both parts of the
35 * idmap (the trampoline page used to initialize EL2), and our normal
36 * runtime VA space, at the same time.
37 *
38 * Given that the kernel uses VA_BITS for its entire address space,
39 * and that half of that space (VA_BITS - 1) is used for the linear
40 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
41 *
42 * The main question is "Within the VA_BITS space, does EL2 use the
43 * top or the bottom half of that space to shadow the kernel's linear
44 * mapping?". As we need to idmap the trampoline page, this is
45 * determined by the range in which this page lives.
46 *
47 * If the page is in the bottom half, we have to use the top half. If
48 * the page is in the top half, we have to use the bottom half:
49 *
50 * T = __pa_symbol(__hyp_idmap_text_start)
51 * if (T & BIT(VA_BITS - 1))
52 * HYP_VA_MIN = 0 //idmap in upper half
53 * else
54 * HYP_VA_MIN = 1 << (VA_BITS - 1)
55 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
56 *
57 * This of course assumes that the trampoline page exists within the
58 * VA_BITS range. If it doesn't, then it means we're in the odd case
59 * where the kernel idmap (as well as HYP) uses more levels than the
60 * kernel runtime page tables (as seen when the kernel is configured
61 * for 4k pages, 39bits VA, and yet memory lives just above that
62 * limit, forcing the idmap to use 4 levels of page tables while the
63 * kernel itself only uses 3). In this particular case, it doesn't
64 * matter which side of VA_BITS we use, as we're guaranteed not to
65 * conflict with anything.
66 *
67 * When using VHE, there are no separate hyp mappings and all KVM
68 * functionality is already mapped as part of the main kernel
69 * mappings, and none of this applies in that case.
70 */
71
72 #define HYP_PAGE_OFFSET_HIGH_MASK ((UL(1) << VA_BITS) - 1)
73 #define HYP_PAGE_OFFSET_LOW_MASK ((UL(1) << (VA_BITS - 1)) - 1)
74
75 #ifdef __ASSEMBLY__
76
77 #include <asm/alternative.h>
78 #include <asm/cpufeature.h>
79
80 /*
81 * Convert a kernel VA into a HYP VA.
82 * reg: VA to be converted.
83 *
84 * This generates the following sequences:
85 * - High mask:
86 * and x0, x0, #HYP_PAGE_OFFSET_HIGH_MASK
87 * nop
88 * - Low mask:
89 * and x0, x0, #HYP_PAGE_OFFSET_HIGH_MASK
90 * and x0, x0, #HYP_PAGE_OFFSET_LOW_MASK
91 * - VHE:
92 * nop
93 * nop
94 *
95 * The "low mask" version works because the mask is a strict subset of
96 * the "high mask", hence performing the first mask for nothing.
97 * Should be completely invisible on any viable CPU.
98 */
99 .macro kern_hyp_va reg
100 alternative_if_not ARM64_HAS_VIRT_HOST_EXTN
101 and \reg, \reg, #HYP_PAGE_OFFSET_HIGH_MASK
102 alternative_else_nop_endif
103 alternative_if ARM64_HYP_OFFSET_LOW
104 and \reg, \reg, #HYP_PAGE_OFFSET_LOW_MASK
105 alternative_else_nop_endif
106 .endm
107
108 #else
109
110 #include <asm/pgalloc.h>
111 #include <asm/cachetype.h>
112 #include <asm/cacheflush.h>
113 #include <asm/mmu_context.h>
114 #include <asm/pgtable.h>
115
__kern_hyp_va(unsigned long v)116 static inline unsigned long __kern_hyp_va(unsigned long v)
117 {
118 asm volatile(ALTERNATIVE("and %0, %0, %1",
119 "nop",
120 ARM64_HAS_VIRT_HOST_EXTN)
121 : "+r" (v)
122 : "i" (HYP_PAGE_OFFSET_HIGH_MASK));
123 asm volatile(ALTERNATIVE("nop",
124 "and %0, %0, %1",
125 ARM64_HYP_OFFSET_LOW)
126 : "+r" (v)
127 : "i" (HYP_PAGE_OFFSET_LOW_MASK));
128 return v;
129 }
130
131 #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
132
133 /*
134 * We currently only support a 40bit IPA.
135 */
136 #define KVM_PHYS_SHIFT (40)
137 #define KVM_PHYS_SIZE (1UL << KVM_PHYS_SHIFT)
138 #define KVM_PHYS_MASK (KVM_PHYS_SIZE - 1UL)
139
140 #include <asm/stage2_pgtable.h>
141
142 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
143 int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
144 void free_hyp_pgds(void);
145
146 void stage2_unmap_vm(struct kvm *kvm);
147 int kvm_alloc_stage2_pgd(struct kvm *kvm);
148 void kvm_free_stage2_pgd(struct kvm *kvm);
149 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
150 phys_addr_t pa, unsigned long size, bool writable);
151
152 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
153
154 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
155
156 phys_addr_t kvm_mmu_get_httbr(void);
157 phys_addr_t kvm_get_idmap_vector(void);
158 phys_addr_t kvm_get_idmap_start(void);
159 int kvm_mmu_init(void);
160 void kvm_clear_hyp_idmap(void);
161
162 #define kvm_set_pte(ptep, pte) set_pte(ptep, pte)
163 #define kvm_set_pmd(pmdp, pmd) set_pmd(pmdp, pmd)
164
kvm_s2pte_mkwrite(pte_t pte)165 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
166 {
167 pte_val(pte) |= PTE_S2_RDWR;
168 return pte;
169 }
170
kvm_s2pmd_mkwrite(pmd_t pmd)171 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
172 {
173 pmd_val(pmd) |= PMD_S2_RDWR;
174 return pmd;
175 }
176
kvm_set_s2pte_readonly(pte_t * pte)177 static inline void kvm_set_s2pte_readonly(pte_t *pte)
178 {
179 pteval_t pteval;
180 unsigned long tmp;
181
182 asm volatile("// kvm_set_s2pte_readonly\n"
183 " prfm pstl1strm, %2\n"
184 "1: ldxr %0, %2\n"
185 " and %0, %0, %3 // clear PTE_S2_RDWR\n"
186 " orr %0, %0, %4 // set PTE_S2_RDONLY\n"
187 " stxr %w1, %0, %2\n"
188 " cbnz %w1, 1b\n"
189 : "=&r" (pteval), "=&r" (tmp), "+Q" (pte_val(*pte))
190 : "L" (~PTE_S2_RDWR), "L" (PTE_S2_RDONLY));
191 }
192
kvm_s2pte_readonly(pte_t * pte)193 static inline bool kvm_s2pte_readonly(pte_t *pte)
194 {
195 return (pte_val(*pte) & PTE_S2_RDWR) == PTE_S2_RDONLY;
196 }
197
kvm_set_s2pmd_readonly(pmd_t * pmd)198 static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
199 {
200 kvm_set_s2pte_readonly((pte_t *)pmd);
201 }
202
kvm_s2pmd_readonly(pmd_t * pmd)203 static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
204 {
205 return kvm_s2pte_readonly((pte_t *)pmd);
206 }
207
kvm_page_empty(void * ptr)208 static inline bool kvm_page_empty(void *ptr)
209 {
210 struct page *ptr_page = virt_to_page(ptr);
211 return page_count(ptr_page) == 1;
212 }
213
214 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
215
216 #ifdef __PAGETABLE_PMD_FOLDED
217 #define hyp_pmd_table_empty(pmdp) (0)
218 #else
219 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
220 #endif
221
222 #ifdef __PAGETABLE_PUD_FOLDED
223 #define hyp_pud_table_empty(pudp) (0)
224 #else
225 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
226 #endif
227
228 struct kvm;
229
230 #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
231
vcpu_has_cache_enabled(struct kvm_vcpu * vcpu)232 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
233 {
234 return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
235 }
236
__coherent_cache_guest_page(struct kvm_vcpu * vcpu,kvm_pfn_t pfn,unsigned long size,bool ipa_uncached)237 static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu,
238 kvm_pfn_t pfn,
239 unsigned long size,
240 bool ipa_uncached)
241 {
242 void *va = page_address(pfn_to_page(pfn));
243
244 kvm_flush_dcache_to_poc(va, size);
245
246 if (!icache_is_aliasing()) { /* PIPT */
247 flush_icache_range((unsigned long)va,
248 (unsigned long)va + size);
249 } else if (!icache_is_aivivt()) { /* non ASID-tagged VIVT */
250 /* any kind of VIPT cache */
251 __flush_icache_all();
252 }
253 }
254
__kvm_flush_dcache_pte(pte_t pte)255 static inline void __kvm_flush_dcache_pte(pte_t pte)
256 {
257 struct page *page = pte_page(pte);
258 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
259 }
260
__kvm_flush_dcache_pmd(pmd_t pmd)261 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
262 {
263 struct page *page = pmd_page(pmd);
264 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
265 }
266
__kvm_flush_dcache_pud(pud_t pud)267 static inline void __kvm_flush_dcache_pud(pud_t pud)
268 {
269 struct page *page = pud_page(pud);
270 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
271 }
272
273 #define kvm_virt_to_phys(x) __pa_symbol(x)
274
275 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
276 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
277
__kvm_cpu_uses_extended_idmap(void)278 static inline bool __kvm_cpu_uses_extended_idmap(void)
279 {
280 return __cpu_uses_extended_idmap();
281 }
282
__kvm_extend_hypmap(pgd_t * boot_hyp_pgd,pgd_t * hyp_pgd,pgd_t * merged_hyp_pgd,unsigned long hyp_idmap_start)283 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
284 pgd_t *hyp_pgd,
285 pgd_t *merged_hyp_pgd,
286 unsigned long hyp_idmap_start)
287 {
288 int idmap_idx;
289
290 /*
291 * Use the first entry to access the HYP mappings. It is
292 * guaranteed to be free, otherwise we wouldn't use an
293 * extended idmap.
294 */
295 VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
296 merged_hyp_pgd[0] = __pgd(__pa(hyp_pgd) | PMD_TYPE_TABLE);
297
298 /*
299 * Create another extended level entry that points to the boot HYP map,
300 * which contains an ID mapping of the HYP init code. We essentially
301 * merge the boot and runtime HYP maps by doing so, but they don't
302 * overlap anyway, so this is fine.
303 */
304 idmap_idx = hyp_idmap_start >> VA_BITS;
305 VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
306 merged_hyp_pgd[idmap_idx] = __pgd(__pa(boot_hyp_pgd) | PMD_TYPE_TABLE);
307 }
308
kvm_get_vmid_bits(void)309 static inline unsigned int kvm_get_vmid_bits(void)
310 {
311 int reg = read_system_reg(SYS_ID_AA64MMFR1_EL1);
312
313 return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
314 }
315
316 #ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
317 #include <asm/mmu.h>
318
kvm_get_hyp_vector(void)319 static inline void *kvm_get_hyp_vector(void)
320 {
321 struct bp_hardening_data *data = arm64_get_bp_hardening_data();
322 void *vect = kvm_ksym_ref(__kvm_hyp_vector);
323
324 if (data->fn) {
325 vect = __bp_harden_hyp_vecs_start +
326 data->hyp_vectors_slot * SZ_2K;
327
328 if (!cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN))
329 vect = lm_alias(vect);
330 }
331
332 return vect;
333 }
334
kvm_map_vectors(void)335 static inline int kvm_map_vectors(void)
336 {
337 return create_hyp_mappings(kvm_ksym_ref(__bp_harden_hyp_vecs_start),
338 kvm_ksym_ref(__bp_harden_hyp_vecs_end),
339 PAGE_HYP_EXEC);
340 }
341
342 #else
kvm_get_hyp_vector(void)343 static inline void *kvm_get_hyp_vector(void)
344 {
345 return kvm_ksym_ref(__kvm_hyp_vector);
346 }
347
kvm_map_vectors(void)348 static inline int kvm_map_vectors(void)
349 {
350 return 0;
351 }
352 #endif
353
354 #endif /* __ASSEMBLY__ */
355 #endif /* __ARM64_KVM_MMU_H__ */
356