• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SWIOTLB-based DMA API implementation
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/gfp.h>
21 #include <linux/acpi.h>
22 #include <linux/bootmem.h>
23 #include <linux/cache.h>
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/genalloc.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/vmalloc.h>
30 #include <linux/swiotlb.h>
31 
32 #include <asm/cacheflush.h>
33 
34 static int swiotlb __ro_after_init;
35 
__get_dma_pgprot(unsigned long attrs,pgprot_t prot,bool coherent)36 static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot,
37 				 bool coherent)
38 {
39 	if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE))
40 		return pgprot_writecombine(prot);
41 	return prot;
42 }
43 
44 static struct gen_pool *atomic_pool;
45 
46 #define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
47 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
48 
early_coherent_pool(char * p)49 static int __init early_coherent_pool(char *p)
50 {
51 	atomic_pool_size = memparse(p, &p);
52 	return 0;
53 }
54 early_param("coherent_pool", early_coherent_pool);
55 
__alloc_from_pool(size_t size,struct page ** ret_page,gfp_t flags)56 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
57 {
58 	unsigned long val;
59 	void *ptr = NULL;
60 
61 	if (!atomic_pool) {
62 		WARN(1, "coherent pool not initialised!\n");
63 		return NULL;
64 	}
65 
66 	val = gen_pool_alloc(atomic_pool, size);
67 	if (val) {
68 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
69 
70 		*ret_page = phys_to_page(phys);
71 		ptr = (void *)val;
72 		memset(ptr, 0, size);
73 	}
74 
75 	return ptr;
76 }
77 
__in_atomic_pool(void * start,size_t size)78 static bool __in_atomic_pool(void *start, size_t size)
79 {
80 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
81 }
82 
__free_from_pool(void * start,size_t size)83 static int __free_from_pool(void *start, size_t size)
84 {
85 	if (!__in_atomic_pool(start, size))
86 		return 0;
87 
88 	gen_pool_free(atomic_pool, (unsigned long)start, size);
89 
90 	return 1;
91 }
92 
__dma_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flags,unsigned long attrs)93 static void *__dma_alloc_coherent(struct device *dev, size_t size,
94 				  dma_addr_t *dma_handle, gfp_t flags,
95 				  unsigned long attrs)
96 {
97 	if (dev == NULL) {
98 		WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
99 		return NULL;
100 	}
101 
102 	if (IS_ENABLED(CONFIG_ZONE_DMA) &&
103 	    dev->coherent_dma_mask <= DMA_BIT_MASK(32))
104 		flags |= GFP_DMA;
105 	if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) {
106 		struct page *page;
107 		void *addr;
108 
109 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
110 							get_order(size));
111 		if (!page)
112 			return NULL;
113 
114 		*dma_handle = phys_to_dma(dev, page_to_phys(page));
115 		addr = page_address(page);
116 		memset(addr, 0, size);
117 		return addr;
118 	} else {
119 		return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
120 	}
121 }
122 
__dma_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle,unsigned long attrs)123 static void __dma_free_coherent(struct device *dev, size_t size,
124 				void *vaddr, dma_addr_t dma_handle,
125 				unsigned long attrs)
126 {
127 	bool freed;
128 	phys_addr_t paddr = dma_to_phys(dev, dma_handle);
129 
130 	if (dev == NULL) {
131 		WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
132 		return;
133 	}
134 
135 	freed = dma_release_from_contiguous(dev,
136 					phys_to_page(paddr),
137 					size >> PAGE_SHIFT);
138 	if (!freed)
139 		swiotlb_free_coherent(dev, size, vaddr, dma_handle);
140 }
141 
__dma_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flags,unsigned long attrs)142 static void *__dma_alloc(struct device *dev, size_t size,
143 			 dma_addr_t *dma_handle, gfp_t flags,
144 			 unsigned long attrs)
145 {
146 	struct page *page;
147 	void *ptr, *coherent_ptr;
148 	bool coherent = is_device_dma_coherent(dev);
149 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
150 
151 	size = PAGE_ALIGN(size);
152 
153 	if (!coherent && !gfpflags_allow_blocking(flags)) {
154 		struct page *page = NULL;
155 		void *addr = __alloc_from_pool(size, &page, flags);
156 
157 		if (addr)
158 			*dma_handle = phys_to_dma(dev, page_to_phys(page));
159 
160 		return addr;
161 	}
162 
163 	ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
164 	if (!ptr)
165 		goto no_mem;
166 
167 	/* no need for non-cacheable mapping if coherent */
168 	if (coherent)
169 		return ptr;
170 
171 	/* remove any dirty cache lines on the kernel alias */
172 	__dma_flush_area(ptr, size);
173 
174 	/* create a coherent mapping */
175 	page = virt_to_page(ptr);
176 	coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
177 						   prot, __builtin_return_address(0));
178 	if (!coherent_ptr)
179 		goto no_map;
180 
181 	return coherent_ptr;
182 
183 no_map:
184 	__dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
185 no_mem:
186 	*dma_handle = DMA_ERROR_CODE;
187 	return NULL;
188 }
189 
__dma_free(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle,unsigned long attrs)190 static void __dma_free(struct device *dev, size_t size,
191 		       void *vaddr, dma_addr_t dma_handle,
192 		       unsigned long attrs)
193 {
194 	void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
195 
196 	size = PAGE_ALIGN(size);
197 
198 	if (!is_device_dma_coherent(dev)) {
199 		if (__free_from_pool(vaddr, size))
200 			return;
201 		vunmap(vaddr);
202 	}
203 	__dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
204 }
205 
__swiotlb_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)206 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
207 				     unsigned long offset, size_t size,
208 				     enum dma_data_direction dir,
209 				     unsigned long attrs)
210 {
211 	dma_addr_t dev_addr;
212 
213 	dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
214 	if (!is_device_dma_coherent(dev))
215 		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
216 
217 	return dev_addr;
218 }
219 
220 
__swiotlb_unmap_page(struct device * dev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)221 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
222 				 size_t size, enum dma_data_direction dir,
223 				 unsigned long attrs)
224 {
225 	if (!is_device_dma_coherent(dev))
226 		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
227 	swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
228 }
229 
__swiotlb_map_sg_attrs(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,unsigned long attrs)230 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
231 				  int nelems, enum dma_data_direction dir,
232 				  unsigned long attrs)
233 {
234 	struct scatterlist *sg;
235 	int i, ret;
236 
237 	ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
238 	if (!is_device_dma_coherent(dev))
239 		for_each_sg(sgl, sg, ret, i)
240 			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
241 				       sg->length, dir);
242 
243 	return ret;
244 }
245 
__swiotlb_unmap_sg_attrs(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,unsigned long attrs)246 static void __swiotlb_unmap_sg_attrs(struct device *dev,
247 				     struct scatterlist *sgl, int nelems,
248 				     enum dma_data_direction dir,
249 				     unsigned long attrs)
250 {
251 	struct scatterlist *sg;
252 	int i;
253 
254 	if (!is_device_dma_coherent(dev))
255 		for_each_sg(sgl, sg, nelems, i)
256 			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
257 					 sg->length, dir);
258 	swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
259 }
260 
__swiotlb_sync_single_for_cpu(struct device * dev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)261 static void __swiotlb_sync_single_for_cpu(struct device *dev,
262 					  dma_addr_t dev_addr, size_t size,
263 					  enum dma_data_direction dir)
264 {
265 	if (!is_device_dma_coherent(dev))
266 		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
267 	swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
268 }
269 
__swiotlb_sync_single_for_device(struct device * dev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)270 static void __swiotlb_sync_single_for_device(struct device *dev,
271 					     dma_addr_t dev_addr, size_t size,
272 					     enum dma_data_direction dir)
273 {
274 	swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
275 	if (!is_device_dma_coherent(dev))
276 		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
277 }
278 
__swiotlb_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)279 static void __swiotlb_sync_sg_for_cpu(struct device *dev,
280 				      struct scatterlist *sgl, int nelems,
281 				      enum dma_data_direction dir)
282 {
283 	struct scatterlist *sg;
284 	int i;
285 
286 	if (!is_device_dma_coherent(dev))
287 		for_each_sg(sgl, sg, nelems, i)
288 			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
289 					 sg->length, dir);
290 	swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
291 }
292 
__swiotlb_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)293 static void __swiotlb_sync_sg_for_device(struct device *dev,
294 					 struct scatterlist *sgl, int nelems,
295 					 enum dma_data_direction dir)
296 {
297 	struct scatterlist *sg;
298 	int i;
299 
300 	swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
301 	if (!is_device_dma_coherent(dev))
302 		for_each_sg(sgl, sg, nelems, i)
303 			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
304 				       sg->length, dir);
305 }
306 
__swiotlb_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)307 static int __swiotlb_mmap(struct device *dev,
308 			  struct vm_area_struct *vma,
309 			  void *cpu_addr, dma_addr_t dma_addr, size_t size,
310 			  unsigned long attrs)
311 {
312 	int ret = -ENXIO;
313 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
314 					PAGE_SHIFT;
315 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
316 	unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
317 	unsigned long off = vma->vm_pgoff;
318 
319 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
320 					     is_device_dma_coherent(dev));
321 
322 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
323 		return ret;
324 
325 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
326 		ret = remap_pfn_range(vma, vma->vm_start,
327 				      pfn + off,
328 				      vma->vm_end - vma->vm_start,
329 				      vma->vm_page_prot);
330 	}
331 
332 	return ret;
333 }
334 
__swiotlb_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t handle,size_t size,unsigned long attrs)335 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
336 				 void *cpu_addr, dma_addr_t handle, size_t size,
337 				 unsigned long attrs)
338 {
339 	int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
340 
341 	if (!ret)
342 		sg_set_page(sgt->sgl, phys_to_page(dma_to_phys(dev, handle)),
343 			    PAGE_ALIGN(size), 0);
344 
345 	return ret;
346 }
347 
__swiotlb_dma_supported(struct device * hwdev,u64 mask)348 static int __swiotlb_dma_supported(struct device *hwdev, u64 mask)
349 {
350 	if (swiotlb)
351 		return swiotlb_dma_supported(hwdev, mask);
352 	return 1;
353 }
354 
__swiotlb_dma_mapping_error(struct device * hwdev,dma_addr_t addr)355 static int __swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t addr)
356 {
357 	if (swiotlb)
358 		return swiotlb_dma_mapping_error(hwdev, addr);
359 	return 0;
360 }
361 
362 static struct dma_map_ops swiotlb_dma_ops = {
363 	.alloc = __dma_alloc,
364 	.free = __dma_free,
365 	.mmap = __swiotlb_mmap,
366 	.get_sgtable = __swiotlb_get_sgtable,
367 	.map_page = __swiotlb_map_page,
368 	.unmap_page = __swiotlb_unmap_page,
369 	.map_sg = __swiotlb_map_sg_attrs,
370 	.unmap_sg = __swiotlb_unmap_sg_attrs,
371 	.sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
372 	.sync_single_for_device = __swiotlb_sync_single_for_device,
373 	.sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
374 	.sync_sg_for_device = __swiotlb_sync_sg_for_device,
375 	.dma_supported = __swiotlb_dma_supported,
376 	.mapping_error = __swiotlb_dma_mapping_error,
377 };
378 
atomic_pool_init(void)379 static int __init atomic_pool_init(void)
380 {
381 	pgprot_t prot = __pgprot(PROT_NORMAL_NC);
382 	unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
383 	struct page *page;
384 	void *addr;
385 	unsigned int pool_size_order = get_order(atomic_pool_size);
386 
387 	if (dev_get_cma_area(NULL))
388 		page = dma_alloc_from_contiguous(NULL, nr_pages,
389 							pool_size_order);
390 	else
391 		page = alloc_pages(GFP_DMA, pool_size_order);
392 
393 	if (page) {
394 		int ret;
395 		void *page_addr = page_address(page);
396 
397 		memset(page_addr, 0, atomic_pool_size);
398 		__dma_flush_area(page_addr, atomic_pool_size);
399 
400 		atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
401 		if (!atomic_pool)
402 			goto free_page;
403 
404 		addr = dma_common_contiguous_remap(page, atomic_pool_size,
405 					VM_USERMAP, prot, atomic_pool_init);
406 
407 		if (!addr)
408 			goto destroy_genpool;
409 
410 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
411 					page_to_phys(page),
412 					atomic_pool_size, -1);
413 		if (ret)
414 			goto remove_mapping;
415 
416 		gen_pool_set_algo(atomic_pool,
417 				  gen_pool_first_fit_order_align,
418 				  (void *)PAGE_SHIFT);
419 
420 		pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
421 			atomic_pool_size / 1024);
422 		return 0;
423 	}
424 	goto out;
425 
426 remove_mapping:
427 	dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
428 destroy_genpool:
429 	gen_pool_destroy(atomic_pool);
430 	atomic_pool = NULL;
431 free_page:
432 	if (!dma_release_from_contiguous(NULL, page, nr_pages))
433 		__free_pages(page, pool_size_order);
434 out:
435 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
436 		atomic_pool_size / 1024);
437 	return -ENOMEM;
438 }
439 
440 /********************************************
441  * The following APIs are for dummy DMA ops *
442  ********************************************/
443 
__dummy_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flags,unsigned long attrs)444 static void *__dummy_alloc(struct device *dev, size_t size,
445 			   dma_addr_t *dma_handle, gfp_t flags,
446 			   unsigned long attrs)
447 {
448 	return NULL;
449 }
450 
__dummy_free(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle,unsigned long attrs)451 static void __dummy_free(struct device *dev, size_t size,
452 			 void *vaddr, dma_addr_t dma_handle,
453 			 unsigned long attrs)
454 {
455 }
456 
__dummy_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)457 static int __dummy_mmap(struct device *dev,
458 			struct vm_area_struct *vma,
459 			void *cpu_addr, dma_addr_t dma_addr, size_t size,
460 			unsigned long attrs)
461 {
462 	return -ENXIO;
463 }
464 
__dummy_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)465 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
466 				   unsigned long offset, size_t size,
467 				   enum dma_data_direction dir,
468 				   unsigned long attrs)
469 {
470 	return DMA_ERROR_CODE;
471 }
472 
__dummy_unmap_page(struct device * dev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)473 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
474 			       size_t size, enum dma_data_direction dir,
475 			       unsigned long attrs)
476 {
477 }
478 
__dummy_map_sg(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,unsigned long attrs)479 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
480 			  int nelems, enum dma_data_direction dir,
481 			  unsigned long attrs)
482 {
483 	return 0;
484 }
485 
__dummy_unmap_sg(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,unsigned long attrs)486 static void __dummy_unmap_sg(struct device *dev,
487 			     struct scatterlist *sgl, int nelems,
488 			     enum dma_data_direction dir,
489 			     unsigned long attrs)
490 {
491 }
492 
__dummy_sync_single(struct device * dev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)493 static void __dummy_sync_single(struct device *dev,
494 				dma_addr_t dev_addr, size_t size,
495 				enum dma_data_direction dir)
496 {
497 }
498 
__dummy_sync_sg(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)499 static void __dummy_sync_sg(struct device *dev,
500 			    struct scatterlist *sgl, int nelems,
501 			    enum dma_data_direction dir)
502 {
503 }
504 
__dummy_mapping_error(struct device * hwdev,dma_addr_t dma_addr)505 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
506 {
507 	return 1;
508 }
509 
__dummy_dma_supported(struct device * hwdev,u64 mask)510 static int __dummy_dma_supported(struct device *hwdev, u64 mask)
511 {
512 	return 0;
513 }
514 
515 struct dma_map_ops dummy_dma_ops = {
516 	.alloc                  = __dummy_alloc,
517 	.free                   = __dummy_free,
518 	.mmap                   = __dummy_mmap,
519 	.map_page               = __dummy_map_page,
520 	.unmap_page             = __dummy_unmap_page,
521 	.map_sg                 = __dummy_map_sg,
522 	.unmap_sg               = __dummy_unmap_sg,
523 	.sync_single_for_cpu    = __dummy_sync_single,
524 	.sync_single_for_device = __dummy_sync_single,
525 	.sync_sg_for_cpu        = __dummy_sync_sg,
526 	.sync_sg_for_device     = __dummy_sync_sg,
527 	.mapping_error          = __dummy_mapping_error,
528 	.dma_supported          = __dummy_dma_supported,
529 };
530 EXPORT_SYMBOL(dummy_dma_ops);
531 
arm64_dma_init(void)532 static int __init arm64_dma_init(void)
533 {
534 	if (swiotlb_force == SWIOTLB_FORCE ||
535 	    max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
536 		swiotlb = 1;
537 
538 	return atomic_pool_init();
539 }
540 arch_initcall(arm64_dma_init);
541 
542 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
543 
dma_debug_do_init(void)544 static int __init dma_debug_do_init(void)
545 {
546 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
547 	return 0;
548 }
549 fs_initcall(dma_debug_do_init);
550 
551 
552 #ifdef CONFIG_IOMMU_DMA
553 #include <linux/dma-iommu.h>
554 #include <linux/platform_device.h>
555 #include <linux/amba/bus.h>
556 
557 /* Thankfully, all cache ops are by VA so we can ignore phys here */
flush_page(struct device * dev,const void * virt,phys_addr_t phys)558 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
559 {
560 	__dma_flush_area(virt, PAGE_SIZE);
561 }
562 
__iommu_alloc_attrs(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)563 static void *__iommu_alloc_attrs(struct device *dev, size_t size,
564 				 dma_addr_t *handle, gfp_t gfp,
565 				 unsigned long attrs)
566 {
567 	bool coherent = is_device_dma_coherent(dev);
568 	int ioprot = dma_direction_to_prot(DMA_BIDIRECTIONAL, coherent);
569 	size_t iosize = size;
570 	void *addr;
571 
572 	if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
573 		return NULL;
574 
575 	size = PAGE_ALIGN(size);
576 
577 	/*
578 	 * Some drivers rely on this, and we probably don't want the
579 	 * possibility of stale kernel data being read by devices anyway.
580 	 */
581 	gfp |= __GFP_ZERO;
582 
583 	if (gfpflags_allow_blocking(gfp)) {
584 		struct page **pages;
585 		pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
586 
587 		pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
588 					handle, flush_page);
589 		if (!pages)
590 			return NULL;
591 
592 		addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
593 					      __builtin_return_address(0));
594 		if (!addr)
595 			iommu_dma_free(dev, pages, iosize, handle);
596 	} else {
597 		struct page *page;
598 		/*
599 		 * In atomic context we can't remap anything, so we'll only
600 		 * get the virtually contiguous buffer we need by way of a
601 		 * physically contiguous allocation.
602 		 */
603 		if (coherent) {
604 			page = alloc_pages(gfp, get_order(size));
605 			addr = page ? page_address(page) : NULL;
606 		} else {
607 			addr = __alloc_from_pool(size, &page, gfp);
608 		}
609 		if (!addr)
610 			return NULL;
611 
612 		*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
613 		if (iommu_dma_mapping_error(dev, *handle)) {
614 			if (coherent)
615 				__free_pages(page, get_order(size));
616 			else
617 				__free_from_pool(addr, size);
618 			addr = NULL;
619 		}
620 	}
621 	return addr;
622 }
623 
__iommu_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)624 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
625 			       dma_addr_t handle, unsigned long attrs)
626 {
627 	size_t iosize = size;
628 
629 	size = PAGE_ALIGN(size);
630 	/*
631 	 * @cpu_addr will be one of 3 things depending on how it was allocated:
632 	 * - A remapped array of pages from iommu_dma_alloc(), for all
633 	 *   non-atomic allocations.
634 	 * - A non-cacheable alias from the atomic pool, for atomic
635 	 *   allocations by non-coherent devices.
636 	 * - A normal lowmem address, for atomic allocations by
637 	 *   coherent devices.
638 	 * Hence how dodgy the below logic looks...
639 	 */
640 	if (__in_atomic_pool(cpu_addr, size)) {
641 		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
642 		__free_from_pool(cpu_addr, size);
643 	} else if (is_vmalloc_addr(cpu_addr)){
644 		struct vm_struct *area = find_vm_area(cpu_addr);
645 
646 		if (WARN_ON(!area || !area->pages))
647 			return;
648 		iommu_dma_free(dev, area->pages, iosize, &handle);
649 		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
650 	} else {
651 		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
652 		__free_pages(virt_to_page(cpu_addr), get_order(size));
653 	}
654 }
655 
__iommu_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)656 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
657 			      void *cpu_addr, dma_addr_t dma_addr, size_t size,
658 			      unsigned long attrs)
659 {
660 	struct vm_struct *area;
661 	int ret;
662 
663 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
664 					     is_device_dma_coherent(dev));
665 
666 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
667 		return ret;
668 
669 	area = find_vm_area(cpu_addr);
670 	if (WARN_ON(!area || !area->pages))
671 		return -ENXIO;
672 
673 	return iommu_dma_mmap(area->pages, size, vma);
674 }
675 
__iommu_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)676 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
677 			       void *cpu_addr, dma_addr_t dma_addr,
678 			       size_t size, unsigned long attrs)
679 {
680 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
681 	struct vm_struct *area = find_vm_area(cpu_addr);
682 
683 	if (WARN_ON(!area || !area->pages))
684 		return -ENXIO;
685 
686 	return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
687 					 GFP_KERNEL);
688 }
689 
__iommu_sync_single_for_cpu(struct device * dev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)690 static void __iommu_sync_single_for_cpu(struct device *dev,
691 					dma_addr_t dev_addr, size_t size,
692 					enum dma_data_direction dir)
693 {
694 	phys_addr_t phys;
695 
696 	if (is_device_dma_coherent(dev))
697 		return;
698 
699 	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
700 	__dma_unmap_area(phys_to_virt(phys), size, dir);
701 }
702 
__iommu_sync_single_for_device(struct device * dev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)703 static void __iommu_sync_single_for_device(struct device *dev,
704 					   dma_addr_t dev_addr, size_t size,
705 					   enum dma_data_direction dir)
706 {
707 	phys_addr_t phys;
708 
709 	if (is_device_dma_coherent(dev))
710 		return;
711 
712 	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
713 	__dma_map_area(phys_to_virt(phys), size, dir);
714 }
715 
__iommu_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)716 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
717 				   unsigned long offset, size_t size,
718 				   enum dma_data_direction dir,
719 				   unsigned long attrs)
720 {
721 	bool coherent = is_device_dma_coherent(dev);
722 	int prot = dma_direction_to_prot(dir, coherent);
723 	dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
724 
725 	if (!iommu_dma_mapping_error(dev, dev_addr) &&
726 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
727 		__iommu_sync_single_for_device(dev, dev_addr, size, dir);
728 
729 	return dev_addr;
730 }
731 
__iommu_unmap_page(struct device * dev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)732 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
733 			       size_t size, enum dma_data_direction dir,
734 			       unsigned long attrs)
735 {
736 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
737 		__iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
738 
739 	iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
740 }
741 
__iommu_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)742 static void __iommu_sync_sg_for_cpu(struct device *dev,
743 				    struct scatterlist *sgl, int nelems,
744 				    enum dma_data_direction dir)
745 {
746 	struct scatterlist *sg;
747 	int i;
748 
749 	if (is_device_dma_coherent(dev))
750 		return;
751 
752 	for_each_sg(sgl, sg, nelems, i)
753 		__dma_unmap_area(sg_virt(sg), sg->length, dir);
754 }
755 
__iommu_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)756 static void __iommu_sync_sg_for_device(struct device *dev,
757 				       struct scatterlist *sgl, int nelems,
758 				       enum dma_data_direction dir)
759 {
760 	struct scatterlist *sg;
761 	int i;
762 
763 	if (is_device_dma_coherent(dev))
764 		return;
765 
766 	for_each_sg(sgl, sg, nelems, i)
767 		__dma_map_area(sg_virt(sg), sg->length, dir);
768 }
769 
__iommu_map_sg_attrs(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,unsigned long attrs)770 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
771 				int nelems, enum dma_data_direction dir,
772 				unsigned long attrs)
773 {
774 	bool coherent = is_device_dma_coherent(dev);
775 
776 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
777 		__iommu_sync_sg_for_device(dev, sgl, nelems, dir);
778 
779 	return iommu_dma_map_sg(dev, sgl, nelems,
780 			dma_direction_to_prot(dir, coherent));
781 }
782 
__iommu_unmap_sg_attrs(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,unsigned long attrs)783 static void __iommu_unmap_sg_attrs(struct device *dev,
784 				   struct scatterlist *sgl, int nelems,
785 				   enum dma_data_direction dir,
786 				   unsigned long attrs)
787 {
788 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
789 		__iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
790 
791 	iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
792 }
793 
794 static struct dma_map_ops iommu_dma_ops = {
795 	.alloc = __iommu_alloc_attrs,
796 	.free = __iommu_free_attrs,
797 	.mmap = __iommu_mmap_attrs,
798 	.get_sgtable = __iommu_get_sgtable,
799 	.map_page = __iommu_map_page,
800 	.unmap_page = __iommu_unmap_page,
801 	.map_sg = __iommu_map_sg_attrs,
802 	.unmap_sg = __iommu_unmap_sg_attrs,
803 	.sync_single_for_cpu = __iommu_sync_single_for_cpu,
804 	.sync_single_for_device = __iommu_sync_single_for_device,
805 	.sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
806 	.sync_sg_for_device = __iommu_sync_sg_for_device,
807 	.dma_supported = iommu_dma_supported,
808 	.mapping_error = iommu_dma_mapping_error,
809 };
810 
811 /*
812  * TODO: Right now __iommu_setup_dma_ops() gets called too early to do
813  * everything it needs to - the device is only partially created and the
814  * IOMMU driver hasn't seen it yet, so it can't have a group. Thus we
815  * need this delayed attachment dance. Once IOMMU probe ordering is sorted
816  * to move the arch_setup_dma_ops() call later, all the notifier bits below
817  * become unnecessary, and will go away.
818  */
819 struct iommu_dma_notifier_data {
820 	struct list_head list;
821 	struct device *dev;
822 	const struct iommu_ops *ops;
823 	u64 dma_base;
824 	u64 size;
825 };
826 static LIST_HEAD(iommu_dma_masters);
827 static DEFINE_MUTEX(iommu_dma_notifier_lock);
828 
do_iommu_attach(struct device * dev,const struct iommu_ops * ops,u64 dma_base,u64 size)829 static bool do_iommu_attach(struct device *dev, const struct iommu_ops *ops,
830 			   u64 dma_base, u64 size)
831 {
832 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
833 
834 	/*
835 	 * If the IOMMU driver has the DMA domain support that we require,
836 	 * then the IOMMU core will have already configured a group for this
837 	 * device, and allocated the default domain for that group.
838 	 */
839 	if (!domain)
840 		goto out_err;
841 
842 	if (domain->type == IOMMU_DOMAIN_DMA) {
843 		if (iommu_dma_init_domain(domain, dma_base, size, dev))
844 			goto out_err;
845 
846 		dev->archdata.dma_ops = &iommu_dma_ops;
847 	}
848 
849 	return true;
850 out_err:
851 	pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
852 		 dev_name(dev));
853 	return false;
854 }
855 
queue_iommu_attach(struct device * dev,const struct iommu_ops * ops,u64 dma_base,u64 size)856 static void queue_iommu_attach(struct device *dev, const struct iommu_ops *ops,
857 			      u64 dma_base, u64 size)
858 {
859 	struct iommu_dma_notifier_data *iommudata;
860 
861 	iommudata = kzalloc(sizeof(*iommudata), GFP_KERNEL);
862 	if (!iommudata)
863 		return;
864 
865 	iommudata->dev = dev;
866 	iommudata->ops = ops;
867 	iommudata->dma_base = dma_base;
868 	iommudata->size = size;
869 
870 	mutex_lock(&iommu_dma_notifier_lock);
871 	list_add(&iommudata->list, &iommu_dma_masters);
872 	mutex_unlock(&iommu_dma_notifier_lock);
873 }
874 
__iommu_attach_notifier(struct notifier_block * nb,unsigned long action,void * data)875 static int __iommu_attach_notifier(struct notifier_block *nb,
876 				   unsigned long action, void *data)
877 {
878 	struct iommu_dma_notifier_data *master, *tmp;
879 
880 	if (action != BUS_NOTIFY_BIND_DRIVER)
881 		return 0;
882 
883 	mutex_lock(&iommu_dma_notifier_lock);
884 	list_for_each_entry_safe(master, tmp, &iommu_dma_masters, list) {
885 		if (data == master->dev && do_iommu_attach(master->dev,
886 				master->ops, master->dma_base, master->size)) {
887 			list_del(&master->list);
888 			kfree(master);
889 			break;
890 		}
891 	}
892 	mutex_unlock(&iommu_dma_notifier_lock);
893 	return 0;
894 }
895 
register_iommu_dma_ops_notifier(struct bus_type * bus)896 static int __init register_iommu_dma_ops_notifier(struct bus_type *bus)
897 {
898 	struct notifier_block *nb = kzalloc(sizeof(*nb), GFP_KERNEL);
899 	int ret;
900 
901 	if (!nb)
902 		return -ENOMEM;
903 
904 	nb->notifier_call = __iommu_attach_notifier;
905 
906 	ret = bus_register_notifier(bus, nb);
907 	if (ret) {
908 		pr_warn("Failed to register DMA domain notifier; IOMMU DMA ops unavailable on bus '%s'\n",
909 			bus->name);
910 		kfree(nb);
911 	}
912 	return ret;
913 }
914 
__iommu_dma_init(void)915 static int __init __iommu_dma_init(void)
916 {
917 	int ret;
918 
919 	ret = iommu_dma_init();
920 	if (!ret)
921 		ret = register_iommu_dma_ops_notifier(&platform_bus_type);
922 	if (!ret)
923 		ret = register_iommu_dma_ops_notifier(&amba_bustype);
924 #ifdef CONFIG_PCI
925 	if (!ret)
926 		ret = register_iommu_dma_ops_notifier(&pci_bus_type);
927 #endif
928 	return ret;
929 }
930 arch_initcall(__iommu_dma_init);
931 
__iommu_setup_dma_ops(struct device * dev,u64 dma_base,u64 size,const struct iommu_ops * ops)932 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
933 				  const struct iommu_ops *ops)
934 {
935 	struct iommu_group *group;
936 
937 	if (!ops)
938 		return;
939 	/*
940 	 * TODO: As a concession to the future, we're ready to handle being
941 	 * called both early and late (i.e. after bus_add_device). Once all
942 	 * the platform bus code is reworked to call us late and the notifier
943 	 * junk above goes away, move the body of do_iommu_attach here.
944 	 */
945 	group = iommu_group_get(dev);
946 	if (group) {
947 		do_iommu_attach(dev, ops, dma_base, size);
948 		iommu_group_put(group);
949 	} else {
950 		queue_iommu_attach(dev, ops, dma_base, size);
951 	}
952 }
953 
arch_teardown_dma_ops(struct device * dev)954 void arch_teardown_dma_ops(struct device *dev)
955 {
956 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
957 
958 	if (WARN_ON(domain))
959 		iommu_detach_device(domain, dev);
960 
961 	dev->archdata.dma_ops = NULL;
962 }
963 
964 #else
965 
__iommu_setup_dma_ops(struct device * dev,u64 dma_base,u64 size,const struct iommu_ops * iommu)966 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
967 				  const struct iommu_ops *iommu)
968 { }
969 
970 #endif  /* CONFIG_IOMMU_DMA */
971 
arch_setup_dma_ops(struct device * dev,u64 dma_base,u64 size,const struct iommu_ops * iommu,bool coherent)972 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
973 			const struct iommu_ops *iommu, bool coherent)
974 {
975 	if (!dev->archdata.dma_ops)
976 		dev->archdata.dma_ops = &swiotlb_dma_ops;
977 
978 	dev->archdata.dma_coherent = coherent;
979 	__iommu_setup_dma_ops(dev, dma_base, size, iommu);
980 }
981