• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Blackfin performance counters
3  *
4  * Copyright 2011 Analog Devices Inc.
5  *
6  * Ripped from SuperH version:
7  *
8  *  Copyright (C) 2009  Paul Mundt
9  *
10  * Heavily based on the x86 and PowerPC implementations.
11  *
12  * x86:
13  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
14  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
15  *  Copyright (C) 2009 Jaswinder Singh Rajput
16  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
17  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
18  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
19  *
20  * ppc:
21  *  Copyright 2008-2009 Paul Mackerras, IBM Corporation.
22  *
23  * Licensed under the GPL-2 or later.
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/init.h>
29 #include <linux/perf_event.h>
30 #include <asm/bfin_pfmon.h>
31 
32 /*
33  * We have two counters, and each counter can support an event type.
34  * The 'o' is PFCNTx=1 and 's' is PFCNTx=0
35  *
36  * 0x04 o pc invariant branches
37  * 0x06 o mispredicted branches
38  * 0x09 o predicted branches taken
39  * 0x0B o EXCPT insn
40  * 0x0C o CSYNC/SSYNC insn
41  * 0x0D o Insns committed
42  * 0x0E o Interrupts taken
43  * 0x0F o Misaligned address exceptions
44  * 0x80 o Code memory fetches stalled due to DMA
45  * 0x83 o 64bit insn fetches delivered
46  * 0x9A o data cache fills (bank a)
47  * 0x9B o data cache fills (bank b)
48  * 0x9C o data cache lines evicted (bank a)
49  * 0x9D o data cache lines evicted (bank b)
50  * 0x9E o data cache high priority fills
51  * 0x9F o data cache low priority fills
52  * 0x00 s loop 0 iterations
53  * 0x01 s loop 1 iterations
54  * 0x0A s CSYNC/SSYNC stalls
55  * 0x10 s DAG read/after write hazards
56  * 0x13 s RAW data hazards
57  * 0x81 s code TAG stalls
58  * 0x82 s code fill stalls
59  * 0x90 s processor to memory stalls
60  * 0x91 s data memory stalls not hidden by 0x90
61  * 0x92 s data store buffer full stalls
62  * 0x93 s data memory write buffer full stalls due to high->low priority
63  * 0x95 s data memory fill buffer stalls
64  * 0x96 s data TAG collision stalls
65  * 0x97 s data collision stalls
66  * 0x98 s data stalls
67  * 0x99 s data stalls sent to processor
68  */
69 
70 static const int event_map[] = {
71 	/* use CYCLES cpu register */
72 	[PERF_COUNT_HW_CPU_CYCLES]          = -1,
73 	[PERF_COUNT_HW_INSTRUCTIONS]        = 0x0D,
74 	[PERF_COUNT_HW_CACHE_REFERENCES]    = -1,
75 	[PERF_COUNT_HW_CACHE_MISSES]        = 0x83,
76 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x09,
77 	[PERF_COUNT_HW_BRANCH_MISSES]       = 0x06,
78 	[PERF_COUNT_HW_BUS_CYCLES]          = -1,
79 };
80 
81 #define C(x)	PERF_COUNT_HW_CACHE_##x
82 
83 static const int cache_events[PERF_COUNT_HW_CACHE_MAX]
84                              [PERF_COUNT_HW_CACHE_OP_MAX]
85                              [PERF_COUNT_HW_CACHE_RESULT_MAX] =
86 {
87 	[C(L1D)] = {	/* Data bank A */
88 		[C(OP_READ)] = {
89 			[C(RESULT_ACCESS)] = 0,
90 			[C(RESULT_MISS)  ] = 0x9A,
91 		},
92 		[C(OP_WRITE)] = {
93 			[C(RESULT_ACCESS)] = 0,
94 			[C(RESULT_MISS)  ] = 0,
95 		},
96 		[C(OP_PREFETCH)] = {
97 			[C(RESULT_ACCESS)] = 0,
98 			[C(RESULT_MISS)  ] = 0,
99 		},
100 	},
101 
102 	[C(L1I)] = {
103 		[C(OP_READ)] = {
104 			[C(RESULT_ACCESS)] = 0,
105 			[C(RESULT_MISS)  ] = 0x83,
106 		},
107 		[C(OP_WRITE)] = {
108 			[C(RESULT_ACCESS)] = -1,
109 			[C(RESULT_MISS)  ] = -1,
110 		},
111 		[C(OP_PREFETCH)] = {
112 			[C(RESULT_ACCESS)] = 0,
113 			[C(RESULT_MISS)  ] = 0,
114 		},
115 	},
116 
117 	[C(LL)] = {
118 		[C(OP_READ)] = {
119 			[C(RESULT_ACCESS)] = -1,
120 			[C(RESULT_MISS)  ] = -1,
121 		},
122 		[C(OP_WRITE)] = {
123 			[C(RESULT_ACCESS)] = -1,
124 			[C(RESULT_MISS)  ] = -1,
125 		},
126 		[C(OP_PREFETCH)] = {
127 			[C(RESULT_ACCESS)] = -1,
128 			[C(RESULT_MISS)  ] = -1,
129 		},
130 	},
131 
132 	[C(DTLB)] = {
133 		[C(OP_READ)] = {
134 			[C(RESULT_ACCESS)] = -1,
135 			[C(RESULT_MISS)  ] = -1,
136 		},
137 		[C(OP_WRITE)] = {
138 			[C(RESULT_ACCESS)] = -1,
139 			[C(RESULT_MISS)  ] = -1,
140 		},
141 		[C(OP_PREFETCH)] = {
142 			[C(RESULT_ACCESS)] = -1,
143 			[C(RESULT_MISS)  ] = -1,
144 		},
145 	},
146 
147 	[C(ITLB)] = {
148 		[C(OP_READ)] = {
149 			[C(RESULT_ACCESS)] = -1,
150 			[C(RESULT_MISS)  ] = -1,
151 		},
152 		[C(OP_WRITE)] = {
153 			[C(RESULT_ACCESS)] = -1,
154 			[C(RESULT_MISS)  ] = -1,
155 		},
156 		[C(OP_PREFETCH)] = {
157 			[C(RESULT_ACCESS)] = -1,
158 			[C(RESULT_MISS)  ] = -1,
159 		},
160 	},
161 
162 	[C(BPU)] = {
163 		[C(OP_READ)] = {
164 			[C(RESULT_ACCESS)] = -1,
165 			[C(RESULT_MISS)  ] = -1,
166 		},
167 		[C(OP_WRITE)] = {
168 			[C(RESULT_ACCESS)] = -1,
169 			[C(RESULT_MISS)  ] = -1,
170 		},
171 		[C(OP_PREFETCH)] = {
172 			[C(RESULT_ACCESS)] = -1,
173 			[C(RESULT_MISS)  ] = -1,
174 		},
175 	},
176 };
177 
perf_pmu_name(void)178 const char *perf_pmu_name(void)
179 {
180 	return "bfin";
181 }
182 EXPORT_SYMBOL(perf_pmu_name);
183 
perf_num_counters(void)184 int perf_num_counters(void)
185 {
186 	return ARRAY_SIZE(event_map);
187 }
188 EXPORT_SYMBOL(perf_num_counters);
189 
bfin_pfmon_read(int idx)190 static u64 bfin_pfmon_read(int idx)
191 {
192 	return bfin_read32(PFCNTR0 + (idx * 4));
193 }
194 
bfin_pfmon_disable(struct hw_perf_event * hwc,int idx)195 static void bfin_pfmon_disable(struct hw_perf_event *hwc, int idx)
196 {
197 	bfin_write_PFCTL(bfin_read_PFCTL() & ~PFCEN(idx, PFCEN_MASK));
198 }
199 
bfin_pfmon_enable(struct hw_perf_event * hwc,int idx)200 static void bfin_pfmon_enable(struct hw_perf_event *hwc, int idx)
201 {
202 	u32 val, mask;
203 
204 	val = PFPWR;
205 	if (idx) {
206 		mask = ~(PFCNT1 | PFMON1 | PFCEN1 | PEMUSW1);
207 		/* The packed config is for event0, so shift it to event1 slots */
208 		val |= (hwc->config << (PFMON1_P - PFMON0_P));
209 		val |= (hwc->config & PFCNT0) << (PFCNT1_P - PFCNT0_P);
210 		bfin_write_PFCNTR1(0);
211 	} else {
212 		mask = ~(PFCNT0 | PFMON0 | PFCEN0 | PEMUSW0);
213 		val |= hwc->config;
214 		bfin_write_PFCNTR0(0);
215 	}
216 
217 	bfin_write_PFCTL((bfin_read_PFCTL() & mask) | val);
218 }
219 
bfin_pfmon_disable_all(void)220 static void bfin_pfmon_disable_all(void)
221 {
222 	bfin_write_PFCTL(bfin_read_PFCTL() & ~PFPWR);
223 }
224 
bfin_pfmon_enable_all(void)225 static void bfin_pfmon_enable_all(void)
226 {
227 	bfin_write_PFCTL(bfin_read_PFCTL() | PFPWR);
228 }
229 
230 struct cpu_hw_events {
231 	struct perf_event *events[MAX_HWEVENTS];
232 	unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
233 };
234 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
235 
hw_perf_cache_event(int config,int * evp)236 static int hw_perf_cache_event(int config, int *evp)
237 {
238 	unsigned long type, op, result;
239 	int ev;
240 
241 	/* unpack config */
242 	type = config & 0xff;
243 	op = (config >> 8) & 0xff;
244 	result = (config >> 16) & 0xff;
245 
246 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
247 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
248 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
249 		return -EINVAL;
250 
251 	ev = cache_events[type][op][result];
252 	if (ev == 0)
253 		return -EOPNOTSUPP;
254 	if (ev == -1)
255 		return -EINVAL;
256 	*evp = ev;
257 	return 0;
258 }
259 
bfin_perf_event_update(struct perf_event * event,struct hw_perf_event * hwc,int idx)260 static void bfin_perf_event_update(struct perf_event *event,
261 				   struct hw_perf_event *hwc, int idx)
262 {
263 	u64 prev_raw_count, new_raw_count;
264 	s64 delta;
265 	int shift = 0;
266 
267 	/*
268 	 * Depending on the counter configuration, they may or may not
269 	 * be chained, in which case the previous counter value can be
270 	 * updated underneath us if the lower-half overflows.
271 	 *
272 	 * Our tactic to handle this is to first atomically read and
273 	 * exchange a new raw count - then add that new-prev delta
274 	 * count to the generic counter atomically.
275 	 *
276 	 * As there is no interrupt associated with the overflow events,
277 	 * this is the simplest approach for maintaining consistency.
278 	 */
279 again:
280 	prev_raw_count = local64_read(&hwc->prev_count);
281 	new_raw_count = bfin_pfmon_read(idx);
282 
283 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
284 			     new_raw_count) != prev_raw_count)
285 		goto again;
286 
287 	/*
288 	 * Now we have the new raw value and have updated the prev
289 	 * timestamp already. We can now calculate the elapsed delta
290 	 * (counter-)time and add that to the generic counter.
291 	 *
292 	 * Careful, not all hw sign-extends above the physical width
293 	 * of the count.
294 	 */
295 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
296 	delta >>= shift;
297 
298 	local64_add(delta, &event->count);
299 }
300 
bfin_pmu_stop(struct perf_event * event,int flags)301 static void bfin_pmu_stop(struct perf_event *event, int flags)
302 {
303 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
304 	struct hw_perf_event *hwc = &event->hw;
305 	int idx = hwc->idx;
306 
307 	if (!(event->hw.state & PERF_HES_STOPPED)) {
308 		bfin_pfmon_disable(hwc, idx);
309 		cpuc->events[idx] = NULL;
310 		event->hw.state |= PERF_HES_STOPPED;
311 	}
312 
313 	if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
314 		bfin_perf_event_update(event, &event->hw, idx);
315 		event->hw.state |= PERF_HES_UPTODATE;
316 	}
317 }
318 
bfin_pmu_start(struct perf_event * event,int flags)319 static void bfin_pmu_start(struct perf_event *event, int flags)
320 {
321 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
322 	struct hw_perf_event *hwc = &event->hw;
323 	int idx = hwc->idx;
324 
325 	if (WARN_ON_ONCE(idx == -1))
326 		return;
327 
328 	if (flags & PERF_EF_RELOAD)
329 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
330 
331 	cpuc->events[idx] = event;
332 	event->hw.state = 0;
333 	bfin_pfmon_enable(hwc, idx);
334 }
335 
bfin_pmu_del(struct perf_event * event,int flags)336 static void bfin_pmu_del(struct perf_event *event, int flags)
337 {
338 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
339 
340 	bfin_pmu_stop(event, PERF_EF_UPDATE);
341 	__clear_bit(event->hw.idx, cpuc->used_mask);
342 
343 	perf_event_update_userpage(event);
344 }
345 
bfin_pmu_add(struct perf_event * event,int flags)346 static int bfin_pmu_add(struct perf_event *event, int flags)
347 {
348 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
349 	struct hw_perf_event *hwc = &event->hw;
350 	int idx = hwc->idx;
351 	int ret = -EAGAIN;
352 
353 	perf_pmu_disable(event->pmu);
354 
355 	if (__test_and_set_bit(idx, cpuc->used_mask)) {
356 		idx = find_first_zero_bit(cpuc->used_mask, MAX_HWEVENTS);
357 		if (idx == MAX_HWEVENTS)
358 			goto out;
359 
360 		__set_bit(idx, cpuc->used_mask);
361 		hwc->idx = idx;
362 	}
363 
364 	bfin_pfmon_disable(hwc, idx);
365 
366 	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
367 	if (flags & PERF_EF_START)
368 		bfin_pmu_start(event, PERF_EF_RELOAD);
369 
370 	perf_event_update_userpage(event);
371 	ret = 0;
372 out:
373 	perf_pmu_enable(event->pmu);
374 	return ret;
375 }
376 
bfin_pmu_read(struct perf_event * event)377 static void bfin_pmu_read(struct perf_event *event)
378 {
379 	bfin_perf_event_update(event, &event->hw, event->hw.idx);
380 }
381 
bfin_pmu_event_init(struct perf_event * event)382 static int bfin_pmu_event_init(struct perf_event *event)
383 {
384 	struct perf_event_attr *attr = &event->attr;
385 	struct hw_perf_event *hwc = &event->hw;
386 	int config = -1;
387 	int ret;
388 
389 	if (attr->exclude_hv || attr->exclude_idle)
390 		return -EPERM;
391 
392 	ret = 0;
393 	switch (attr->type) {
394 	case PERF_TYPE_RAW:
395 		config = PFMON(0, attr->config & PFMON_MASK) |
396 			PFCNT(0, !(attr->config & 0x100));
397 		break;
398 	case PERF_TYPE_HW_CACHE:
399 		ret = hw_perf_cache_event(attr->config, &config);
400 		break;
401 	case PERF_TYPE_HARDWARE:
402 		if (attr->config >= ARRAY_SIZE(event_map))
403 			return -EINVAL;
404 
405 		config = event_map[attr->config];
406 		break;
407 	}
408 
409 	if (config == -1)
410 		return -EINVAL;
411 
412 	if (!attr->exclude_kernel)
413 		config |= PFCEN(0, PFCEN_ENABLE_SUPV);
414 	if (!attr->exclude_user)
415 		config |= PFCEN(0, PFCEN_ENABLE_USER);
416 
417 	hwc->config |= config;
418 
419 	return ret;
420 }
421 
bfin_pmu_enable(struct pmu * pmu)422 static void bfin_pmu_enable(struct pmu *pmu)
423 {
424 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
425 	struct perf_event *event;
426 	struct hw_perf_event *hwc;
427 	int i;
428 
429 	for (i = 0; i < MAX_HWEVENTS; ++i) {
430 		event = cpuc->events[i];
431 		if (!event)
432 			continue;
433 		hwc = &event->hw;
434 		bfin_pfmon_enable(hwc, hwc->idx);
435 	}
436 
437 	bfin_pfmon_enable_all();
438 }
439 
bfin_pmu_disable(struct pmu * pmu)440 static void bfin_pmu_disable(struct pmu *pmu)
441 {
442 	bfin_pfmon_disable_all();
443 }
444 
445 static struct pmu pmu = {
446 	.pmu_enable  = bfin_pmu_enable,
447 	.pmu_disable = bfin_pmu_disable,
448 	.event_init  = bfin_pmu_event_init,
449 	.add         = bfin_pmu_add,
450 	.del         = bfin_pmu_del,
451 	.start       = bfin_pmu_start,
452 	.stop        = bfin_pmu_stop,
453 	.read        = bfin_pmu_read,
454 };
455 
bfin_pmu_prepare_cpu(unsigned int cpu)456 static int bfin_pmu_prepare_cpu(unsigned int cpu)
457 {
458 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
459 
460 	bfin_write_PFCTL(0);
461 	memset(cpuhw, 0, sizeof(struct cpu_hw_events));
462 	return 0;
463 }
464 
bfin_pmu_init(void)465 static int __init bfin_pmu_init(void)
466 {
467 	int ret;
468 
469 	/*
470 	 * All of the on-chip counters are "limited", in that they have
471 	 * no interrupts, and are therefore unable to do sampling without
472 	 * further work and timer assistance.
473 	 */
474 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
475 
476 	ret = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
477 	if (!ret)
478 		cpuhp_setup_state(CPUHP_PERF_BFIN, "PERF_BFIN",
479 				  bfin_pmu_prepare_cpu, NULL);
480 	return ret;
481 }
482 early_initcall(bfin_pmu_init);
483